AP ${ }^{\circledR}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 3

12 points total
Distribution of points
(a) 4 points

For sketching either energy curve with a reasonably correct shape between
1 point $x=-D$ and $x=0$, with zero and maximum values at the correct locations
For sketching two curves from $x=-D$ to $x=0$ with shapes and values such that
1 point
the total energy is constant (even if the curves are incorrect)
For sketching potential energy equal to zero from $x=0$ to $x=3 D$
For sketching kinetic energy as a linear function from its maximum value at $x=0$ to zero at $x=3 D$
(b)
(i) 1 point

For identifying that the student is correct that the block will have more energy when it leaves the spring
(ii) 1 point

For identifying that the student is incorrect about the new final position of the
1 point

AP ${ }^{\circledR}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 3 (continued)

Distribution of points

(c) 3 points

For indicating that the final energy in the spring (which becomes the mechanical
1 point energy of the block as it reaches the rough track) is four times the original energy in the spring
For indicating that the frictional force remains the same
For equating the initial energy in the spring to an expression that shows that the energy dissipated by friction is proportional to the distance the block slides down the rough track
Example:
$U_{1}=\frac{1}{2} k D^{2}$ and $U_{2}=\frac{1}{2} k(2 D)^{2}$ so $U_{2}=4 U_{1}$
$W_{1}=\mu m g(3 D)$ and $W_{2}=\mu m g \Delta x_{2}$
$W_{1}=U_{1}$ and $W_{2}=U_{2}=4 U_{1}=4 W_{1}$
$\mu m g \Delta x_{2}=4(\mu m g(3 D))$
$\Delta x_{2}=4(3 D)=12 D$
(d) 3 points

For indicating that the student's correct reasoning that the block has more energy in the second situation is expressed by the calculations comparing the initial energy in the spring
For indicating that the student's correct reasoning that the block will slide farther is expressed by an equation that indicates that the work done by friction to stop the block in the second situation is some factor greater than the work done in the first situation
For indicating that the student's incorrect reasoning that energy scales linearly with the spring's compression is corrected by the expression for the initial energy of the spring

3. (12 points, suggested time 25 minutes)

A block is initially at position $x=0$ and in contact with an uncompressed spring of negligible mass. The block is pushed back along a frictionless surface from position $x=0$ to $x=-D$, as shown above, compressing the spring by an amount $\Delta x=D$. The block is then released. At $x=0$ the block enters a rough part of the track and eventually comes to rest at position $x=3 D$. The coefficient of kinetic friction between the block and the rough track is μ.
(a) On the axes below, sketch and label graphs of the following two quantities as a function of the position of the block between $x=-D$ and $x=3 D S$ You do not need to calculate values for the vertical axis, but the same vertical seale should be used for both quantities.
i.- The kinetic energy K of the block
ii. The potential energy U of the block-spring system.

P1Q3 A2
The spring is now compressed twice as much, to $\Delta x=2 D$. A student is asked to predict whether the final position of the block will be twice as far at $x=6 D$. The student reasons that since the spring will be compressed twice as much as before, the block will have more energy when it leaves the spring, so it will slide farther along the track before stopping at position $x=6 D$.
(b)
i. Which aspects of the student's reasoning, if any, are correct? Explain how you arrived at your answer.

The student is correct to soy f that composing he spring will result more a lager kmetre energy value fothe block when, it lares the spring. Springs stone more energy where compressed further, and that great r amount of enemy ii be mons ore.
ii. Which aspects of the student's reasoning, if any, are incorrect? Explain how you arrived at your answer.
The student ra minor rect to suppose thin the bloiknill go twice as fort. the amount of energy shored ma spring B proportional to the amount it is compressed squared. Becmse it res compressed trance as for, it will lour times he pitatial ornery which ion fl be. Fronstard ho the blot k, which will a Loo hame.t.e.thes (c) Use quantitative reasoning, including equations low tomes as for.
position

$$
\begin{aligned}
& E_{k}=E_{v} \quad \begin{aligned}
& E_{v}=F_{f} \cdot d=m g \mu \cdot d \\
& \sum F_{y}=F_{N}-m y=0
\end{aligned} \\
& \begin{aligned}
E F_{x}=F_{f}=F_{N} \mu \\
F_{f}=m g \mu
\end{aligned} d_{1}=\frac{k}{m g \mu} \cdot D^{2}=3 D \\
& \frac{1}{2} k x^{2}=m g \mu d d_{2}=\frac{k(2 D)^{2}}{m g \mu}=4\left(\frac{k D^{2}}{m g n}\right) \\
&=4(3 D) \\
& d=\frac{k x^{2}}{m y \mu}=12 D
\end{aligned}
$$

Four times the energy will be stores in the sonly, for times the eregy will go ind the block, and fraction will take 4 traces the distance to disperse the energy.
(d) Explain how any correct aspects of the student's reasoning identified in part (b) are expressed by your mathematical relationships in part (c). Explain how your relationships in part (c) correct any incorrect aspects of the student's reasoning identified in part (b). Refer to the relationships you wrote in part (c), not just the final answer you obtained by manipulating those relationships.
More potutial energy will be stood in he spring, when it is compressed further as the student, dated and as illustatd by the rintionsthup $E_{v}=\frac{1}{2} k \Delta x^{2}$. This relationship also shows that when the spring is compressed tavizess for (Δx is doubleal) four times heacrergy is stored in the sp ring. The force of fraction is the sumer in both instances, so the same mart of energy is dissipated by friction per unit of Lenym lacmonstrated by $E=F_{f} \cdot d$ so 4 tres tine energy mull tate 4 true the distance Lo be dissipated, not true the drstonce as pe student who assured

3. (12 points, suggested time 25 minutes)

A block is initially at position $x=0$ and in contact with an uncompressed spring of negligible mass. The block is pushed back along a frictionless surface from position $x=0$ to $x=-D$, as shown above, compressing the spring by an amount $\Delta x=D$. The block is then released. At $x=0$ the block enters a rough part of the track and eventually comes to rest at position $x=3 D$. The coefficient of kinetic friction between the block and the rough track is μ.
(a) On the axes below, sketch and label graphs of the following two quantities as a function of the position of the block between $x=-D$ and $x=3 D$. You do not need to calculate values for the vertical axis, but the same vertical scale should be used for both quantities.
i. The kinetic energy K of the block
ii. The potential energy U of the block-spring system

P1Q3 B2

The spring is now compressed twice as much, to $\Delta x=2 D$. A student is asked to predict whether the final position of the block will be twice as far at $x=6 D$. The student reasons that since the spring will be compressed twice as much as before, the block will have more energy when it leaves the spring, so it will slide farther along the track before stopping at position $x=6 D$.
(b)
i. Which aspects of the student's reasoning, if any, are correct? Explain how you arrived at your answer.

The student is correct that the increased compression results in an increased final position. The increased compression increases spring potential enemy. This results in an increased kinetic energy at $x=0$. This requires the fri action force to do more work, and yields a longer stopping
ii. Which aspects of the student's reasoning, if any, are incorrect? Explain how you arrived at your answer. The student's reasoning for why the block goes farther is incorrect. The block goes farther because more work was put in to it so more work is required to stop it. Friction is constant, so the distance must be amultiple factor of eroeng, not velocity.
(c) Use quantitative reasoning, including equations as needed, to develop an expression for the new final position of the block. Express your answer in terms of D.

(d) Explain how any correct aspects of the students reasoning identified in part (b)are expressed by your mathematical relationships in part (c). Explain how your relationships in part (c) correct any incorrect aspects of the student's reasoning identified in part (b). Refer to the relationships you wrote in part (c), not just the final answer you obtained by manipulating those relationships.
The student was correct that the block travels farther because it will go $12 D$ before coming to rest according to $4 K E=f \cdot \pm(3 D)$ but incorrect on its distance before coming to rest, which is actually 12D. The student was a'so correct that the blok k had more energy from being compressed twice as far, which according to $\Delta E=1 / 2 k x^{2}$, is 4 times the original energy.

P1Q3 C1

3. (12 points, suggested time 25 minutes)

A block is initially at position $x=0$ and in contact with an uncompressed spring of negligible mass. The block is pushed back along a frictionless surface from position $x=0$ to $x=-D$, as shown above, compressing the spring by an amount $\Delta x=D$. The block is then released. At $x=0$ the block enters a rough part of the track and eventually comes to rest at position $x=3 D$. The coefficient of kinetic friction between the block and the rough track is μ.

$$
u_{s}=\frac{1}{2} k x^{2}
$$

(a) On the axes below, sketch and label graphs of the following two quantities as a function of the position of the block between $x=-D$ and $x=3 D$. You do not need to calculate values for the vertical axis, but the same vertical scale should be used for both quantities.
i. The kinetic energy K of the block
ii. The potential energy U of the block-spring system

The spring is now compressed twice as much, to $\Delta x=2 D$. A student is asked to predict whether the final position of the block will be twice as far at $x=6 D$. The student reasons that since the spring will be compressed twice as much as before, the block will have more energy when it leaves the spring, so it will slide farther along the track before stopping at position $x=6 D$.
(b)
i. Which aspects of the student's reasoning, if any, are correct? Explain how you arrived at your answer.

$$
\begin{aligned}
& \text { The reasoning that the blok will move further } \\
& \text { is correct. The increased } U_{s} \text { will allow for the } \\
& \text { black to have a greater } V \text { when it has } K E \text {. This } \\
& \text { increase in velocity will allow it to travel further: }
\end{aligned}
$$

ii. Which aspects of the student's reasoning, if any, are incorrect? Explain how you arrived at your answer.
They are incorrect in reasoning that the blake will mare twice as far. This is because velocity is squared twice when determining ΔX.
(c) Use quantitative reasoning, including equations as needed, to develop an expression for the new final

$$
\begin{aligned}
& \text { position of the block. Express your answer in terms of } D \text {. } \\
& \begin{array}{l}
\frac{1}{2} k(2 D)^{2}=\frac{1}{2} m v^{2} \quad \frac{1}{2} k 4 D^{2}=\frac{1}{2} m v^{2} \quad \text { is now } 4 \times \text { larger } \\
\forall f^{2}
\end{array} V_{i}^{-2}+2 a \Delta X \\
& O=(4 D)^{2}+2 a \Delta X \\
& \Delta X=16 D
\end{aligned}
$$

(d) Explain how any correct aspects of the student's reasoning identified in part (b) are expressed by your mathematical relationships in part (c). Explain how your relationships in part (c) correct any incorrect aspects of the student's reasoning identified in part (b). Refer to the relationships you wrote in part (c), not just the final answer you obtained by manipulating those relationships.
Using part c, we can see that an increase
in x did in fact increase the distance traveled $b l c$ it allowed for an increase in velocity whin i) used to calculate ΔX. Part c also corrects the student's theory that Δx doubles by praing that it more than dabbles because of the kinematics involved.

AP ${ }^{\circledR}$ PHYSICS 1
 2015 SCORING COMMENTARY

Question 3

Overview

The purpose of the question is to examine the relationship between the energy stored in a compressed spring-block system and the work done by the friction force that stops the block once it leaves the spring. The intent is to test the student's understanding of energy principles in multiple representations including graphs, descriptions, and analytical relationships.

Sample: P1O3 A
 Score: 12

The student clearly understands what the question is asking and clearly communicates the reasoning and connections that are asked for by the question. This response received full credit.

Sample: P103 B Score: 9

Part (a) earned 2 points. The potential energy curve between $-D$ and 0 is correct, but energy is not shown to be conserved in that region. The zero potential energy line is correct, but the kinetic energy line is not straight between 0 and 3D. Part (b)(i) earned 1 point for full credit. It cites the increased final position as correct, but also refers to increased energy. Part (b)(ii) does not identify the distance as the error in reasoning and earned no credit. Part (c) earned 3 points for full credit. The explanation in part (d) is somewhat indirect, but earned 3 points for full credit.

Sample: P1O3 C
 \section*{Score: 5}

Part (a) earned 2 points for correct curves between $-D$ and 0 . Part (b)(i) earned 1 point for full credit. It cites the increased final position as correct, but also refers to increased energy. Part (b)(ii) has an unclear explanation and earned no credit. Part (c) earned 1 point for calculating the energy in the spring in the new case and recognizing that there is a factor of 4 increase as a result. Part (d) earned 1 point for relating the equations for energy to correct reasoning about energy by reference to part (c) and the increased velocity that is a result of the energy equations.

