AP ${ }^{\oplus}$ CALCULUS BC 2015 SCORING GUIDELINES

Question 6

The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series.
(a) Use the ratio test to find R.
(b) Write the first four nonzero terms of the Maclaurin series for f^{\prime}, the derivative of f. Express f^{\prime} as a rational function for $|x|<R$.
(c) Write the first four nonzero terms of the Maclaurin series for e^{x}. Use the Maclaurin series for e^{x} to write the third-degree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$.
(a) Let a_{n} be the nth term of the Maclaurin series.
$\frac{a_{n+1}}{a_{n}}=\frac{(-3)^{n} x^{n+1}}{n+1} \cdot \frac{n}{(-3)^{n-1} x^{n}}=\frac{-3 n}{n+1} \cdot x$
$\lim _{n \rightarrow \infty}\left|\frac{-3 n}{n+1} \cdot x\right|=3|x|$
$3|x|<1 \Rightarrow|x|<\frac{1}{3}$
The radius of convergence is $R=\frac{1}{3}$.
(b) The first four nonzero terms of the Maclaurin series for f^{\prime} are $1-3 x+9 x^{2}-27 x^{3}$.
$f^{\prime}(x)=\frac{1}{1-(-3 x)}=\frac{1}{1+3 x}$
(c) The first four nonzero terms of the Maclaurin series for e^{x} are $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$.

The product of the Maclaurin series for e^{x} and the Maclaurin series for f is

$$
\begin{aligned}
& \left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)\left(x-\frac{3}{2} x^{2}+3 x^{3}-\cdots\right) \\
& \quad=x-\frac{1}{2} x^{2}+2 x^{3}+\cdots
\end{aligned}
$$

The third-degree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$ is $T_{3}(x)=x-\frac{1}{2} x^{2}+2 x^{3}$.
$3:\left\{\begin{array}{l}1: \text { sets up ratio } \\ 1: \text { computes limit of ratio } \\ 1: \text { determines radius of convergence }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { first four nonzero terms } \\ 1: \text { rational function }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { first four nonzero terms } \\ \quad \text { of the Maclaurin series for } e^{x} \\ 2: \text { Taylor polynomial }\end{array}\right.$
6. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series.
(a) Use the ratio test to find R.

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n} x^{n+1}}{n+1} \cdot \frac{n}{(-3)^{n-1} x^{n}}\right| \\
=\lim _{n \rightarrow \infty}|-3 x|=\lim _{n \rightarrow \infty}|3 x|<1 \\
|x|<\frac{1}{3} \\
\left\lvert\, 2=\frac{1}{3}\right.
\end{gathered}
$$

(b) Write the first four nonzero terms of the Maclaurin series for f^{\prime}, the derivative of f. Express f^{\prime} as a

$$
\begin{aligned}
& f=x-\frac{3}{2} x^{2}+3 x^{3}-\frac{3^{3}}{4} x^{4} \\
& f^{\prime}=1-3 x+9 x^{2}-27 x^{3} \\
& a=1 \quad r=-3 x \\
& f^{\prime}=\frac{1}{1-(-3 x)}=\frac{1}{1+3 x} \text { for }|x|<\frac{1}{3}
\end{aligned}
$$

(c) Write the first four nonzero terms of the Maclaurin series for e^{x}. Use the Maclaurin series for e^{x} to write the third-degree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$.

$$
\begin{aligned}
P x & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
g(x) & =e^{x} f(x) \approx\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\right)\left(x-\frac{3}{2} x^{2}+3 x^{3}\right) \\
& =x-\frac{3}{2} x^{2}+3 x^{3}+x^{2}-\frac{3}{2} x^{3}+3 x^{4}+\frac{x^{3}}{2!}-\frac{3}{4} x^{4}+\frac{3}{2} x^{3} \\
& =x-\frac{3}{2} x^{2}+x^{2}+3 x^{3}-\frac{3}{2} x^{3}+\frac{1}{2} x^{3} \\
& =x-\frac{1}{2} x^{2}+2 x^{3}
\end{aligned}
$$

6. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series. (a) Use the ratio test to find R.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\frac{(-3)^{(n+1)-1}}{n+1} x^{n+1}}{\frac{(-3)^{n-1}}{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n}{n+1} \cdot \frac{(-3)^{n}}{(-3)^{n-1}} \cdot \frac{x^{n+1}}{x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}|-3 x|-3 x \mid<1 \\
& -\frac{1}{3}<x<\frac{1}{3} \\
& \\
& R=\frac{1}{3}
\end{aligned}
$$

(b) Write the first four nonzero terms of the Maclaurin series for f^{\prime}, the derivative of f. Express f^{\prime} as a rational function for $|x|<R$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\partial}{d x} \sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} \cdot n x^{n-1}=\sum_{n=1}^{\infty}(-3)^{n-1} x^{n-1}=f^{\prime}(x) \\
& f^{\prime}(x) \approx 1+(-3) x+(-3)^{2} x^{2}+(-3)^{3} x^{3}
\end{aligned}
$$

(c) Write the first four nonzero terms of the Maclaurin series for e^{x}. Use the Maclaurin series for e^{x} to write the third-degree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$.

$$
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \approx 1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}
$$

$$
g(x)=e^{x} f(x)
$$

$$
g(0)=e^{0} f(0)=f(0)=0 \Rightarrow g(0)=0
$$

$$
\sum_{n=0}^{\infty} \frac{j^{n}(c)}{n!}(x-c)^{n}
$$

6. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series. (a) Use the ratio test to find R.

$$
\frac{(-3)^{n} x^{n+1}}{n+1} \cdot \frac{n}{(-3)^{n-1} x^{n}}=(-3)(1) x
$$

$$
-3 x<1
$$

66 6

(b) Write the first four nonzero terms of the Maclaurin series for f^{\prime}, the derivative of f. Express f^{\prime} as a rational function for $|x|<R$.

$$
1-3 x+9 x^{2}-\frac{27 x^{3}}{4}
$$

(c) Write the first four nonzero terms of the Maclaurin series for e^{x}. Use the Maclaurin series for e^{x} to write the third-degree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$.

$$
1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}
$$

$$
x-\frac{3}{2} x^{3}
$$

AP ${ }^{\circledR}$ CALCULUS BC
 2015 SCORING COMMENTARY

Question 6

Overview

In this problem students were presented with the Maclaurin series
$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ for a function f. The Maclaurin series converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series. In part (a) students were asked to use the ratio test to find R. Students were expected to evaluate $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ and use this limit to find R. Students were expected to show that $|x|<\frac{1}{3}$, and thus the radius of convergence is $R=\frac{1}{3}$. In part (b) students were asked to write the first four nonzero terms of the Maclaurin series for f^{\prime}, then express f^{\prime} as a rational function for $|x|<R$. By using term-by-term differentiation, the first four nonzero terms are $1-3 x+9 x^{2}-27 x^{3}$. Because this series is geometric with a common ratio of $-3 x$, the rational function is $f^{\prime}(x)=\frac{1}{1+3 x}$. In part (c) students needed to write the first four nonzero terms of the Maclaurin series for e^{x} and use this series to write a thirddegree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$. After showing that the first four nonzero terms of the Maclaurin series for e^{x} are $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$, students were expected to multiply to determine that the thirddegree Taylor polynomial desired is $T_{3}(x)=x-\frac{1}{2} x^{2}+2 x^{3}$.

Sample: 6A
 Score: 9

The response earned all 9 points.

Sample: 6B

Score: 6

The response earned 6 points: 3 points in part (a), 2 points in part (b), and 1 point in part (c). In part (a) the student's work is correct. In part (b) the student writes the correct first four nonzero terms of f^{\prime}, so the first 2 points were earned. There is no rational function presented. In part (c) the student writes the correct first four nonzero terms of the Maclaurin series for e^{x}, so the first point was earned. The student does not present the correct third-degree Taylor polynomial for g.

Sample: 6C
Score: 3
The response earned 3 points: 1 point in part (a), 1 point in part (b), and 1 point in part (c). In part (a) the student writes the correct setup, so the first point was earned. The student does not indicate a limit, so the second point was not earned. The student does not determine a radius of convergence, so the third point was not earned. In part (b) the student writes three of the correct first four nonzero terms of the Maclaurin series for f^{\prime}, so 1 of the first 2 points was earned. There is no rational function presented. In part (c) the student writes the correct first four nonzero terms of the Maclaurin series for e^{x}, so the first point was earned. The student does not present the correct third-degree Taylor polynomial for g.

