# Introduction to the Real-time Articulatory Movement Database - Version 2 

Kikuo Maekawa<br>(National Institute for Japanese Language and Linguistics) 2024.04.01

Table of Contents ..... Page

1. Introduction ..... 1
2. Fields of the rtMRIDB_v2 data ..... 2
3. Utterance class ..... 10
4. Differences of data by the speaker ..... 13
5. Segmentation of utterance from a point of view of articulatory movement ..... 14
6. The making of MP4 data ..... 16
7. Searching the rtMRIDB_v2 ..... 18
8. Restrictions on this database ..... 25
RERERENCES ..... 26
Appendix 1: List of utterance items in rtMRIDB_v2 ..... 27
Appendix 2: Number of recorded utterances per speaker, FPS, and recording classes ..... 57

## 1. Introduction

We are pleased to announce the release of the second version of the "Real-time MRI Articulatory Motion Database. This is a database of moving images of the midsagittal section of the vocal tract during the production of Japanese utterances, recorded at a rate of 14 or 27 frames per second by using a medical MRI system with special operating settings. This data has realized the dream of articulatory phoneticians to visualize articulatory movements and may be widely used for critical review of the existing articulatory phonetic descriptions, education of Japanese pronunciation, or speech synthesis from vocal tract shape.

The data has been collected by the author's research group since 2017. In April 2021 the trial version containing data of about 13,000 utterances by 10 speakers was released. In April 2022, Version 1 of the database (abb. rtMRIDB_v1) containing more than 26,000 utterances by 22 speakers was released. This time, Version 2 of the database (abb. rtMRIDB_v2) is publicly available. The new version includes the following enhancements:
(1) With 3 new speakers, the total number of utterances by 25 speakers is now about 30,000 .
(2) New movies with superposed dentition image are provided for all utterances of all speakers.
(3) New audio noise reduction technique is applied for all audio data.
(4) Minor improvements in the search system

For the contents of the database, please refer to sections 2 to 6 of this document. If you want to know more about MRI imaging conditions, please refer to the appendix of Maekawa et al (2020). When using this database, please be aware that the database is released under the Creative Commons CC-BY-NC-SA license, and, the Principal Investigator and the National Institute for Japanese Language and Linguistics are not liable for any problems arising from the use of this database.

Lastly, an information for the users using the desktop version of the rtMRIDB_v1: the rtMRIDB_v2 is provided only as a web version. The desktop version provided by the National Institute of Informatics Spoken Language Resources Consortium (NII-SRC) will not be updated to version 2 this time.

## 2. Fields of the rtMRIDB_v2 data

The rtMRIDB_v2 covers 29,984 utterance samples. All samples are video movie in the MP4 format. To make them searchable, all the samples are given the information in Table 1. In the rest of this document, we will call these the fields of a database record.

Table 1: The 20 fields that make up a record of the rtMRIDB_v2

|  | FIELD NAME | DESCRIPTION |
| :--- | :--- | :--- |
| 1 | file | Name of the MP4 video file (not including the file extension) |
| 2 | start | Time at the beginning of the sample (time from the beginning of the file) |
| 3 | end | Time at the end of sample (time from the beginning of the file) |
| 4 | date | Date of data recording |
| 5 | fps | Number of frames per second (14 or 27) |
| 6 | text | A character string that uniquely identifies the content of the utterance as <br> instructed to the speaker |
| 7 | jtext | Text in Japanese character displayed for the speaker in recording |
| 8 | phoneme | A phoneme sequence that constitutes an utterance. |
| 9 | tag | Sample-specific events |
| 10 | class | Class of speech content (either 'MU', 'MB', 'MP', 'TT', 'SR', 'PL', or 'NS') |
| 11 | slide | ID of the slide presented to the speaker (without the repetition index) |
| 12 | slide2 | ID of the slide presented to the speaker (with the repeat index) |
| 13 | ser | Location of the text in a slide |
| 14 | session | Session number of the MRI recording (the serial order in the recordings <br> sessions performed in a single day) |
| 15 | subject | Speaker ID (begins with the letter 's' like s1, s2 etc.) |
| 16 | subjectID | Integer part of the speaker ID |
| 17 | gender | Speaker's gender (either 'F' or 'M') |
| 18 | birthYear | Year of birth of the speaker (A.D.) |
| 19 | birthPlace | Birthplace of the speaker (name of prefecture or city) |
| 20 | dialect | Speaker's dialect (Standard or Kinki) |

## 2. 1 The 'file' field

This field stands for the file name of the MP4 video file in which the utterance in question is recorded. The file name is a string such as "s5_40_mb26b". This field consists of the "Subject", "Session2", and "Slide2" fields in Table 1, which are concatenated, from left to right, with underscores. In some files, a suffix is added after the file name like "s7_11_mp1_add" or "s7_22_mu5a_27_add". In these examples, "_add" and "_27_add" are the suffixes. The suffix "add" indicates that it is an additionally recorded sample, i.e., the second recording from the same speaker who has already made recording of that utterance. The suffix "27" (sometimes "28") indicates the frame rate of 27 fps . Users are requested to note that the number 27 and 28 also appear in the session information, so the meaning of " 27 " (or " 28 ") differs depending on where it appears in a "File" field.

## 2. 2 The 'start' field

The sequences of still image data captured by the MRI machine are converted to a MP4 video for each session (see 2.14), and, in most cases, a single MP4 file contains multiple utterances. The "Start" field contains the starting time of a given sample as measured from the beginning of the file. The unit is seconds [sec].

## 2. 3 The 'end' field

This field contains the end time of a sample corresponding to the start field.

## 2. 4 The 'date' field

This field indicates the date of data recording using an 8 -digit integer such as 20171105. It is not possible for the same speaker to record twice on the same day, but there are cases where data was recorded on different occasions (different dates). It is important to notice that the head position in the MRI system is different for each date, and the midsagittal plane is not exactly the same. These issues should be taken into consideration when analyzing the data.

## 2. 5 The 'fps' field

This field contains the frame rate of the sample. The frame rate is the number of frames per second. This field takes values of either 14 or 27 , but these are not exact values. They are approximations to 13.79 ... and 27.17 ... These values are calculated by the following formula with the number of still images in the session being 512 .

Number of still images in the session / Length of time in the session [sec]
Samples recorded at 27 fps contain the number " 27 " or " 28 " in their 'file' field. The difference of " 27 " and " 28 " does not mean anything, it simply reflects that " 28 " was used in early days of recording and replaced by " 27 ". The recording rate is always $27.17 \ldots$ fps.

Table 2 ：List of homophonic pairs in the utterances

| Text | Jtext | Class | Slide | N |
| :---: | :---: | :---: | :---: | :---: |
| ae＿1 | アエ | MU | mu4 | 35 |
| ae＿2 | 会え | MP | mp4 | 36 |
| ai＿1 | アイ | MU | mu4 | 35 |
| ai＿2 | 愛 | MP | mp2 | 33 |
| aki＿1 | 秋 | MP | mp3 | 35 |
| aki＿2 | 空き | MP | mp4 | 36 |
| ama－imo | 甘芋 | MP | mp3 | 35 |
| amai－mo | 甘い藻 | MP | mp4 | 36 |
| ao＿1 | アオ | MU | mu4 | 34 |
| ao＿2 | 青 | MP | mp3 | 34 |
| au＿1 | アウ | MU | mu4 | 34 |
| au＿2 | 会う | MP | mp4 | 36 |
| eHgo＿1 | 英語 | MP | mp1 | 55 |
| eHgo＿2 | A 5 | MP | mp4 | 36 |
| ha－isja | 歯医者 | MP | mp4 | 36 |
| hai－sja | 敗者 | MP | mp3 | 35 |
| kaeru＿1 | 帰る | MP | mp3 | 35 |
| kaeru＿2 | 飼える | MP | mp4 | 35 |
| kai＿1 | 貝 | MP | mp3 | 35 |
| kai＿2 | 下位 | MP | mp4 | 36 |
| kehe | ケヘ | MB | mb5 | 27 |
| kehe＿1 | ケヘ | MP | mp2 | 36 |
| koHni | 高二 | MP | mp4 | 36 |
| ko－oni | 小鬼 | MP | mp4 | 36 |
| sato－oja | 里親 | MP | mp4 | 36 |
| satoH－ja | 砂糖屋 | MP | mp4 | 34 |
| sjoHka－izjoH | 消化異常 | MP | mp4 | 35 |
| sjoHkai－zjoH | 紹介状 | MP | mp3 | 35 |

## 2． 6 The＇text＇field

The information in this field is alpha－numeric characters that uniquely identify the text shown to the speaker in the recording．For example，if the speaker recites the Chinese character string ＂新案＂，the＂Text＂field contains an alphabetic string of＂siNaN＂．The phoneme sequence of the item is used as the basis of the＂Text＂field，but in the case of homophones like＂英語＂（／eHgo／ ＇English＇）and＂A5＂（paper size）or＂帰る＂（／kaeru／＇return＇）and＂飼える＂（＇be able to keep＇）， the suffixes consisting of underscore and integer are used：＂eHgo＿1＂and＂eHgo＿2＂in the case of former and＂kaeru＿1＂and＂kaeru＿2＂in the case of the latter．

There are also cases where a hyphen is used to distinguish homonyms by indicating morphological boundaries．An example is＂amaimo＂（＇sweet potato＇）and＂amai－mo＂（＇sweet seaweed＇），or＂haisja＂（＇loser＇）and＂ha－isja＂（＇dentist＇）．Note that in these cases，the hyphen is not attached to all morpheme boundaries，but only to those that are minimally necessary for the distinction．

Finally，some＇text＇fields begin with an underscore，such as＂＿neutral＂，＂＿suspicion＂， ＂＿focus0＂，＂＿takegaki＂，and＂＿northwind＂．These are exceptional entries where the string represents information other than phonemes．For example，＂＿suspicion＂represents the specification of so－called paralinguistic information in the PL class（see below），and＂＿norhwind＂ represents the reading of the＂Northwind and the Sun＂fable in the NS class（see below）．Table 2 shows the list of homophonic pairs in the utterance list，and Table 3 shows the list of utterance items whose＇text＇field begin with underscore．In both tables， N indicates the frequency of occurrence of the item in rtMRIDB＿v2．

Table 3 ：List of utterances whose＇text＇field starts with an underscore

| text | jtext | class | slide | N |
| :--- | :--- | :--- | :--- | ---: |
| ＿northwind | 『北風と太陽』 | NS | ns1 | 22 |
| ＿space | 『膨張する宇宙』 | NS | ns2 | 20 |
| ＿kikuguri | 『菊栗』 | TT | tt1 | 25 |
| ＿takegaki | 『竹垣』 | TT | tt1 | 23 |
| ＿tora | 『虎』 | TT | tt1 | 16 |
| ＿neutral | 『中立』 | PL | pI1 | 34 |
| ＿suspicion | 『反問』 | PL | pl1 | 33 |
| ＿admiration | 『感心』 | PL | $\mathrm{pl1}$ | 27 |
| ＿disappointment | 『落胆』 | PL | $\mathrm{pl1}$ | 27 |
| ＿focus0 | 『0』 | PL | $\mathrm{pl2}$ | 34 |
| ＿focus1 | 『1』 | PL | $\mathrm{pl2}$ | 29 |
| ＿focus2 | 『2』 | PL | $\mathrm{pl2}$ | 26 |
| ＿focus3 | 『3』 | PL | $\mathrm{pl2}$ | 25 |

## 2． 7 The＇jtext＇field

This is a string of the Japanese characters shown to the speaker at the time of data recording． Basically，it is a Japanese string that corresponds to the phonetic information in the＇text＇or ＇phoneme＇fields．Some kanji strings have furigana（pronunciation keys written in Japanese syllabic characters）to prevent misreading，but they are omitted in the＇jtext＇field．In the recording of the utterances in the PL，TT，and NS classes（see below），the specification of the semantic content of the utterance is given instead of the phonetic information．These specifications are given enclosed by the Japanese＂『』＂parentheses as in Table 3.

## 2． 8 The＇phoneme＇field

This field indicates the segmental phoneme representation of an utterance．It is identical to the string obtained by excluding suffixes and hyphens from the string in the＂text＇field in most cases．If，however，the＇text＇field starts with an underscore，the＇phoneme＇field is blank（See sections 2.6 and 2.7 above）．Also，the＇phoneme＇fields for＂スイ＂and＂ズィ＂in slide MU4 are ＂s＿i＂and＂z＿i＂，which contain underscores．These stand for the IPA phonetic symbols of＂si＂ ［si］and＂zi＂［zi］．Note ordinary＂シ＂［ci］and＂ジ＂［zi］are represented as＂si＂and＂zi＂ respectively in the＇phoneme＇field．

## 2． 9 The＇tag＇field

This field contains various tags attached to samples to represent sample－specific events．The following 12 tags are prepared for various，mostly irregular，articulatory events．Table 4 shows the total frequency of each tag（Total）and the breakdowns by utterance classes（MU－SR）． Utterance classes will be explained in section 3.

Table 4 ：Frequency of tags and the breakdowns by the utterance classes

| Tag | Total | MU |  | MB | MP |
| :--- | ---: | ---: | ---: | ---: | ---: |
| ［noRPf］ | 284 | 87 | 184 | 13 | 0 |
| ［pz］ | 246 | 0 | 246 | 0 | 0 |
| ［noRPp］ | 227 | 24 | 167 | 35 | 1 |
| $[?]$ | 81 | 2 | 73 | 6 | 0 |
| ［d］ | 69 | 0 | 67 | 2 | 0 |
| ［noRPp］［noRPf］ | 23 | 6 | 17 | 0 | 0 |
| ［head＿mv］ | 15 | 0 | 11 | 4 | 0 |
| ［lipLick］ | 5 | 2 | 0 | 2 | 1 |
| $[p z][d]$ | 5 | 0 | 5 | 0 | 0 |
| ［pz］［noRPf］ | 5 | 0 | 5 | 0 | 0 |
| ［pz］［noRPp］ | 4 | 0 | 4 | 0 | 0 |
| $[f p][n o R P p]$ | 2 | 0 | 1 | 1 | 0 |
| ［pz］［？］ | 1 | 0 | 1 | 0 | 0 |

［noRPf］tag：This tag is applied when the vocal tract has not returned to the so－called resting position at the end of an utterance．There are three main criteria for recognizing a vocal tract in its resting position：（1）lowered uvular and opening of the nasal passage，（2）no contact between the tongue and the palate，and（3）lowered larynx．In a typical resting state，all of these are satisfied．However，there are utterances that are lacking a typical resting position either at the beginning or the end．The［noRPf］tag is given when it is difficult to identify the resting position after the end of the utterance．In the same way，［noRPp］tag is applied when the
resting position immediately before the start of an utterance cannot be confirmed. See section 5 for the criteria of recognizing an utterance.
[pz] tag: As described below, in the utterances of the MB class, the target bimora is located in the carrier sentence "korega___gata" (this is $\sim$ type). Although speakers are instructed not to insert a silent pause after "korega" (this is), it is not uncommon for a perceptible pause to still be inserted between the carrier sentence and the target bimora. In such cases, this tag is applied. The majority of pauses are inserted immediately after "korega", but there are a few rare cases where a pause is inserted immediately after the target (just before "gata").
[noRPp] tag: This tag is applied when the vocal tract in its resting position cannot be observed in the time interval preceding the articulatory movement of the speech item. See section 5 for more details on this issue.
[d] tag: This tag applies to the utterances of the class $M B$ in which there is some kind of disfluency in the target bimora. A typical disfluency is related to the length of the consonantal closure, when, for example, "korega kaka gata" sounds like "korega kakka gata".
[noRPp][noRPf] tag: This composite tag is applied to utterances where the vocal tract in its resting position cannot be observed both before and after the utterance.
[?] tag: This tag is applied to utterances where it is difficult to confirm whether the utterance has been realized correctly either from an articulatory or perceptual point of view. For example, when listening to an utterance of an MB class whose 'jtext' is "samo", one may not be able to clearly decide whether it is "korega samo gata" or "korega sama gata". In such a case, the [?] tag is applied if it is still difficult to make the decision after referring to the recorded MRI image of the articulation. In a case where articulatory movement suggests that the speaker pronounced a different phoneme mistakenly, then [err] tag (see below) is applied instead of the [?].
[head_mv] tag: This tag is applied when a positional change in the speaker's head is clearly observed during an utterance (in most cases, the change is a nodding-like movement of the head). In utterances of the MB class, it is not uncommon to observe a slight upward or downward movement at the end of an utterance, but any positional changes that occur outside of the target bimora are ignored.
[lipLick] tag: This tag applies to the utterances in which the speaker licks his lips with the tip of his tongue just before or just after the start of the utterance. See section 5 for details.
$[\mathrm{pz}][\mathrm{d}]$ tag: This composite tag is applied when the $[\mathrm{pz}]$ and [d] described above cooccur in the same utterance.
[pz][noRPf] tag: This composite tag is applied when the [pz] and [noRPf] cooccur in the same utterance.
$[p z][$ noRPp $]$ tag: This composite tag is applied when the $[p z]$ and [noRPp] cooccur in the same utterance.
[fp][noRPp] tag: Sometimes a filled pause such as "eh" is uttered before the articulation of a speech item. This tag is applied to those utterances where it is impossible to separate the filled pause from the target utterance. Note that the articulation of the filled pause is included in the records with this tag.
[err] tag: This tag is applied to utterances in which the speaker articulated a phoneme sequence that is completely different from the text printed on the slide. In the original data of the database, there are 28 occurrences of the [err] tag, but all those utterances are removed in the process of database compilation. So, you can't find this tag in the database.

## 2. 10 The 'class' field

An utterance of rtMRIDB_v2 belongs to one of the following utterance classes: $\mathrm{MU}, \mathrm{MB}, \mathrm{MP}$, SR, PL, TT, and NS. See section 3 for details of each class.

## 2. 11 The 'slide' field

In the recording of the rtMRI data, the speaker reads one slide per session (see 2.14), and around 50 slides are presented in a single recording. These slides are identified by the 'slide' field, which is recorded in the form of a 'class' name followed by a serial number, such as MU1, MU2, ..., MB1, MB2, ..., MP1, MP2, ....

## 2. 12 The 'slide2' field

A speaker reads one slide per session (see 2.14). However, sometimes it happens that the speaker may not be able to read through all items printed in a slide within the time of one session (about 37 and 19 seconds in the case of 14 and 27 fps recordings respectively). In such a case, recording of the same slide will take place again. When the same slide is recorded more than once on the same recording date, each recording session needs to be distinguished. For this purpose, we made it a rule to add alphabetical suffixes (i.e., 'a', 'b', 'c' $\cdots$ ) to the end of the 'slide' field, which makes the 'slide2' field. The suffix 'a' indicates the first recording, 'b' the
second，＇$c$＇the third，and＇d＇the fourth．No suffix is given to utterances with only one recording． In most slides，the texts to be pronounced are printed in four or five lines（see Figure 1）．When rereading a slide，the speaker is instructed to start at the beginning of the third line and read to the end，then go back to the first line and read to the end of the second line．


Figure 1：Example of slide（the first slide in the MP class）
Note some items have＇furigana＇（pronunciation key）．

## 2． 13 The＇ser＇field

As can be seen in Figure 1，a slide usually contains multiple items（usually words），and the speaker starts reading with the top－left item and continues his way through the items．The＇ser＇ field indicates the serial location of an item on a slide．In the case of Figure 1，the＇ser＇values for＂新案＂，＂心音＂and＂浸水＂are 1， 3 and 10 ，respectively．

The recordings of the rtMRIDB＿v2 data were conducted from 2017 to 2023．During this period，the utterance list was expanded from time to time．However，although we added utterances，we do not delete utterances or change the serial order of utterances in a slide．For this reason，the＇ser＇value is constant regardless of the time of data collection．

But there is one exception．In the MP1 slide，there were two items，＂完備＂and＂幹部＂， immediately after＂上海＂（whose＇ser＇being 14）in early days of recording．These two items were deleted in the recordings later than the 20180233 （including the recording of this date）． For the sake of raw data management，these two items are also assigned their＇ser＇values，so in the MP1 slide，the＇ser＇values of items after＂簡便＂are given a＇ser＇value that is two larger than it appears．For example，the＇ser＇values of＂簡便＂and＂観覧＂are 17 and 27 respectively．This irregular manipulation is concerned only with the MP1 slide．No other slide has such a problem．

## 2． 14 The＇session＇field

In the recording，an rtMRI data is captured continuously for about 37 seconds（ 14 fps ）or 19 seconds（ 27 fps ）at a time．We call it a＂session＂．Usually， $50-60$ sessions are involved in a single recording that usually lasts 60－70 minutes．The MRI image data is managed by referring to the
session. The 'session' field is redundant because, as explained in 2.1, the 'file" field contains the session information, but we prepared this field for the convenience of data search and analysis.

## 2. 15 The ‘subject' field

This field uniquely identifies speakers. It consists of a letter 's' followed by an integer in the range of $1-30$, like ' $s 1$ ' or ' $s 24$ '. The number of speakers of rtMRIDB_v2 is 25 , so there are missing values in the integer part of the field. This is because some of the subjects are not native speakers Japanese.

## 2. 16 The ‘subjectID’ field

This field corresponds to the integer part of the 'subject' field. Needless to say, this is redundant information, but it is provided for the convenience of data search.

## 2. 17 The 'gender' field

This field indicates the gender of the speaker. It takes the value ' $F$ ' for females and ' $M$ ' for males.

## 2. 18 The 'birthYear' field

This field contains the birthyear of the speaker. By comparing this information with the first four digits of the 'date' field, it is possible to obtain an approximation of the speaker's age at the time of data acquisition.

## 2. 19 The 'birthPlace' field

This field contains the birthplace (mostly at the level of the prefecture) of the speaker.

## 2. 20 The 'dialect’ field

This field takes the value of 'Standard' if the speaker is speaking Standard (Tokyo-style) Japanese, or 'Kinki' if the speaker is speaking a Kansai dialect like Kyoto, Osaka, or Kobe.

## 3. Utterance class

As mentioned earlier in section 2.10, rtMRIDB_v2 has seven different utterance classes. The following sub-sections describe the characteristics of each class. The list of utterance items belonging to each class is shown in Appendix I. The number of utterances in each class for each speaker is shown in Table 5 below.

## 3. 1 The 'MU' class

MU stands for "mora unigram". It is a collection of separated Japanese morae, such as "ka", "su", "sja", "me", "rju", etc. As with the other classes, the items belonging to the MU class have been
expanded from time to time by including so-called peripheral mora such as "sje", "wo", "fe", "s_i" (See 2.8), and so on. Currently, 145 morae belong to the MU class.

In addition to the above, there are two types of additional items in the MU class. First, the sequences of two vowels like "ai", "ao", "ae", etc. are included in the MU class. Second, in the data recorded after (including) the date of 20180720, the vowel sequences separated by an $/ \mathrm{r} /$ like "ara", "ari", "ora", "ori" etc. are also included in this class.

The MU class data was recorded at 14 fps from all speakers (although the number of items varied depending on the recording date), and also at 27 fps from some speakers. Items in the MU class provide the most basic information about the articulation of the Japanese language. The 14 -fps data are collected from all 25 subjects.

## 3. 2 The 'MP’ class

MP stands for "mora phoneme". Items in this class include words (either meaningful or meaningless) containing Japanese special mora, i.e., the moraic nasal (/N/), geminate (/Q/), long vowel (/H/), and diphthong (/J/, but see below). The number of speech items in the MP class has been expanded, from 97 in 2017 to 151 in 2022. This is because the analysis of special morae, especially the moraic nasal, has been carried out in parallel with the data recording. The MP class data was recorded at 14 fps from all speakers (although the number of items varied depending on the recording dates), and at 27 fps from some speakers. The latter, however, is mainly limited to the MP1 slides.

It is mentioned above that Japanese special morae contain diphthongs. But the phonemic distinction is not made between, for example, the diphthongal/aJ/ and non-diphthongal /ai/ in this database, because the realization of the diphthong is highly variable in Japanese. All items are treated as having the /ai/ phoneme strings. Other vowel sequences that can be realized as diphthong are treated alike.

## 3. 3 The 'MB' class

MB stands for "mora bigram", which is a combination of two morae pronounced in a carrier sentence. The target bigram consists of the combination of 26 morae, viz., "ka, ki, ku, ke, ko, kja, kju, kjo, sa, si, su, se, so, sja, sju, sjo, ha, hi, hu, he, ho, ma, mi, mu, me, mo", resulting in $26 \times 26=676$ two-mora meaningless words. They are uttered in a carrier sentence "korega $\qquad$ gata" (Gloss: "this is the $\sim$ type").

The MB class makes up the bulk of rtMRIDB_v1 quantitatively. The main purpose of this class is to provide material for quantitative analysis of coarticulation in Japanese segmental phonemes. The suffix morpheme /kata/ (pronounced as [gata]) used in the carrier sentence is known as a deaccenting morpheme that deletes the lexical accent in the immediately preceding morpheme. As a result of this, all target bigrams are realized as unaccented words (both in the

Standard and Kinki Japanese）．In addition，the same＂ga＂mora is placed immediately before and after the target bigram to provide a uniform phonemic context．

The number of items in this class is 676 ，regardless of the recording date；data in the MB class were recorded at 14 fps from all speakers，and at 27 fps from some speakers．The latter recording was done only for the MB1 slide．

## 3． 4 The＇SR＇class

SR stands for＂speaking rate＂．In this class，we asked speakers who finished the recording of MU，MP，and MB classes to read aloud two slides of the MB class with intentionally decreased speaking rates．The data of the SR class was collected from only ten speakers in 2017 and 2018 （ $\mathrm{s} 1, \mathrm{~s} 2$ ，s5，s7，s8，s9，s10，s11，s12，and s14）．Recording of the SR class was ceased in late 2018 when stable imaging at 27 fps became possible．

## 3． 5 The＇PL＇class

PL stands for＂para－language＂．This class aims to examine the effects of paralinguistic information on articulatory movements．Among the various types of paralinguistic information， rtMRIDB＿v1 focuses on two types．One of them is the speaker＇s intentions or attitudes，where speakers are asked to read aloud the same text with four types of intentions：＂neutral，＂ ＂suspicion，＂＂admiration，＂and＂disappointment．We used semantically neutral sentence ＂Yamada－san ga＂（Gloss，Mr．Yamada－AGENT）as the text．The acoustic effects of these intentions are explained in chapter 3 of 森•前川•粕谷（2014）．

The other type of paralinguistic information is the contrastive focus．In this task，speakers are asked to utter a sentence repeatedly placing prosodic emphasis on different parts of the text． We used the text＂yachin－no takai manshon－ni haitta（Gloss，＂I entered an apartment with high rent＂）as the text and specified four types of foci：type 0 （no focus），type 1 （focus on＂yachin－ no＂），type 2 （focus on＂takai＂），and type 3 （focus on＂manshon－ni＂）．The＂Phoneme＂fields of these speech items are blank，as described in 2．8．

The PL class data was collected from 14 speakers between 2017 and 2019 （s1，s2，s7，s8， s9，s10，s11，s12，s16，s17，s18，s19，s20，s21）．All samples were captured at 14 fps．After 2020， the recording was ceased because the recording time became tight due to increase in the number of items in other classes．

## 3． 6 The＇TT＇class

TT stands for＂tongue twister＂．Three phrases were used as texts：＂kikuguri kikuguri mikikuguri awasete kikuguri mukikuguri＂，＂kono takegakini take tatekaketanowa take tatekaketakattakara take tatekaketanoda＂，and，＂torao torunara torao toruyori torio tori torio otorini torao tore＂． Data of the TT class were collected from 14 speakers between 2017 and 2019 （ $\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 7, \mathrm{~s} 8$ ， s9，s10，s11，s12，s14，s18，s19，s20，s21）．All were captured at 14 fps ．After 2020，the recording
was ceased because the recording time became tight due to increase in the number of items in other classes. Another reason for the cease was that many of the speakers had practiced well beforehand, so their speech was much smoother than we had initially expected.

## 3. 7 The 'NS' class

NS stands for "narrative speaking". This class aims to compare the word-level material (those in the MU, MP, MB classes) with so-called continuous speech with a coherent story. The texts used were "The North Wind and the Sun", which is used in the IPA (International Phonetic Alphabet) handbook (IPA 1999), and "The expanding universe", which is one of the read speech texts in the Corpus of Spontaneous Japanese (Maekawa 2003). The former text consists mainly of Japanese native words ("wago"), while the latter contains many Sino-Japanese words including palatalized phonemes (so-called "yoo-on").

Data collection of the NS class started in 2019 , and 15 speakers participated in the recording so far ( $s 1, \mathrm{~s} 2, \mathrm{~s} 4, \mathrm{~s} 5, \mathrm{~s} 7$, $\mathrm{s} 8, \mathrm{~s} 12$, $\mathrm{s} 14, \mathrm{~s} 19, \mathrm{~s} 20$, $\mathrm{s} 21, \mathrm{~s} 24, \mathrm{~s} 25, \mathrm{~s} 26, \mathrm{~s} 27$ ).

## 4. Differences of data by the speaker

Although the rtMRIDB_v2 contains the data of 25 speakers, the number of recorded utterances differs depending on speakers. Table 5 shows, from left to right, the properties ('dialect', 'gender', 'year of birth') of the 25 speakers in the rtmRIDB_v2, the number of times they were recorded on different dates (' N dates'), the number of utterances by class ('MU'-'NS'), the total number of utterances ('Total'), and the number of utterances captured at 27 fps out of the total ('27 fps').

As you see, the number of utterances is not identical across speakers. There are three reasons for this variation in the number of utterances. The first reason is the expansion of the utterance list. As explained in the previous section, the utterance list used in the rtMRI recording is constantly being expanded. As a result, for MU and MP classes, the number of utterances tends to increase as the recording period becomes later. To correct this problem, for speakers who were recorded earlier, additional items that were missing in the early utterance lists were recorded later. As of the time of writing, nine speakers (s1, s2, s4, s5, s7, s8, s12, s14, s19) have been additionally recorded.

The second reason is errors and repetitions. Occasionally, a speaker makes an utterance that is different from the one indicated on the slide and proceeds to the next utterance without noticing the error. This does not happen frequently because, during the recording, an experimenter monitors the speaker's speech in real-time. If an error is detected by the experimenter, the session is re-recorded. However, on a rare occasion, an error is overlooked both by the speaker and experimenter (partly because the MRI machine makes quite a lot of noise when it is in operation). In that case, the data for that item will be tagged with [err] and become a missing value.

On the other hand, repetition of utterance occurs when a single slide is read aloud multiple times. There are several reasons why this can happen. One is when an error is found in the speech, as mentioned immediately above. Repetition can also occur when a single slide is not fully read in a single session, as described in 2.12.

The final source of variation in the number of utterances is the additional recording described at the beginning of this section. Repetition occurs because, in the additional recordings of the MU and MP classes, speakers read not only the newly added items but also all other items printed in the same slide.

In rtMRIDB_v2, the same item recorded on the same date can be identified by the suffixes ' $a$ ', 'b', 'c' in the "Slide2" field (see 2.12). Multiple readings resulting from additional recordings can be identified by the value of the "Date" field (see 2.4).

Table 5: Variation in the number of utterances by speaker and class

| Subject | Dialect | Gender | BirthYear | N date | MU | MB | MP | SR | PL | TT | NS | Total | 27 fps |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s1 | Standard | M | 1956 | 2 | 177 | 797 | 272 | 35 | 15 | 4 | 2 | 1302 | 68 |
| s2 | Standard | M | 1970 | 2 | 197 | 865 | 364 | 31 | 20 | 4 | 2 | 1483 | 145 |
| s3 | Kinki | F | 1952 | 1 | 137 | 716 | 140 | 0 | 0 | 0 | 0 | 993 | 65 |
| s4 | Standard | M | 1969 | 2 | 244 | 775 | 315 | 0 | 0 | 0 | 2 | 1336 | 131 |
| s5 | Standard | M | 1958 | 2 | 195 | 746 | 305 | 41 | 0 | 3 | 4 | 1294 | 127 |
| s7 | Standard | M | 1955 | 2 | 210 | 800 | 320 | 38 | 12 | 10 | 3 | 1393 | 77 |
| s8 | Kinki | F | 1968 | 2 | 175 | 811 | 299 | 31 | 16 | 4 | 2 | 1338 | 66 |
| s9 | Standard | M | 1990 | 1 | 109 | 846 | 129 | 41 | 8 | 3 | 0 | 1136 | 51 |
| s10 | Standard | F | 1967 | 1 | 108 | 744 | 147 | 31 | 18 | 3 | 0 | 1051 | 58 |
| s11 | Standard | F | 1971 | 1 | 109 | 741 | 150 | 31 | 24 | 3 | 0 | 1058 | 48 |
| s12 | Kinki | M | 1961 | 2 | 228 | 716 | 310 | 41 | 10 | 5 | 2 | 1312 | 148 |
| s14 | Standard | M | 1950 | 2 | 212 | 855 | 319 | 31 | 0 | 5 | 2 | 1424 | 117 |
| s16 | Standard | F | 1969 | 1 | 175 | 752 | 217 | 0 | 20 | 0 | 0 | 1164 | 52 |
| s17 | Standard | F | 1969 | 1 | 167 | 752 | 201 | 0 | 16 | 0 | 0 | 1136 | 55 |
| s18 | Standard | M | 1958 | 1 | 140 | 789 | 208 | 0 | 18 | 3 | 0 | 1158 | 59 |
| s19 | Standard | M | 1961 | 2 | 230 | 774 | 408 | 0 | 18 | 8 | 2 | 1440 | 128 |
| s20 | Standard | M | 1994 | 1 | 142 | 734 | 149 | 0 | 19 | 4 | 1 | 1049 | 0 |
| s21 | Standard | M | 1991 | 1 | 142 | 782 | 171 | 0 | 21 | 5 | 1 | 1122 | 0 |
| s24 | Standard | F | 1956 | 1 | 192 | 787 | 196 | 0 | 0 | 0 | 4 | 1179 | 0 |
| s25 | Standard | M | 1969 | 1 | 145 | 676 | 149 | 0 | 0 | 0 | 2 | 972 | 0 |
| s26 | Kinki | M | 1964 | 1 | 205 | 745 | 174 | 0 | 0 | 0 | 2 | 1126 | 0 |
| s27 | Kinki | F | 1970 | 1 | 144 | 731 | 191 | 0 | 0 | 0 | 2 | 1068 | 0 |
| s28 | Kinki | M | 1950 | 1 | 143 | 786 | 220 | 0 | 0 | 0 | 4 | 1153 | 0 |
| s29 | Kinki | F | 1978 | 1 | 145 | 730 | 218 | 0 | 0 | 0 | 3 | 1096 | 0 |
| s30 | Standard | F | 1982 | 1 | 145 | 817 | 220 | 0 | 0 | 0 | 2 | 1184 | 0 |

## 5. Segmentation of utterance from a point of view of articulatory movement

Among the tags described in 2.9, [noRPp] and [noRPf] are closely related to the segmentation of utterance, i.e., the determination of the "start" and "end" values. Compared to the segmentation of utterance by audio signals, articulatory segmentation is much more complex. In this section, some basic issues will be explained.

The first thing to recognize is that articulatory movements begin in advance of the acoustic signal. For example, in producing the mora "pa", the perceivable speech signal is produced only at the burst stage of the bilabial closure of [p], but the various speech organs begin their articulatory movements before the timing of the burst; for example, the approximation of two lips (mainly by raising the lower lip) and tight closure of lips are completed before the timing of the burst. In the segmentation of audio signals, a silent pause is an important criterion for the segmentation, while in articulatory segmentation, it is the vocal tract in its resting position that plays a crucial role. Figure 2 shows a typical example of the vocal tract in its resting position. The soft palate is lowered, the larynx is in a slightly lowered position, and there is no closure anywhere in the oral cavity of the vocal tract. When such a vocal tract in its resting position is observed before or after an utterance, the "start" tag is assigned to the pause preceding the utterance, and the "end "tag to the pause immediately following the utterance.

Most utterances can be segmented by these criteria, but there are some deviant cases to which these criteria cannot be applied. For example, at the end of an utterance, articulatory organs may preempt the articulation of the consonant or vowel at the beginning of the following utterance. For example, in the case where the current utterance is "bada" and the following utterance is "mahha", the lip closure for the [m] in "mahha" can be formed immediately after the end of "bada" without any intervening resting position. Note that this kind of articulatory anticipation cannot be interpreted as a simple coarticulation, since articulatory anticipation can be observed even in cases where two adjacent utterances are separated by a long acoustic pause.

Another commonly occurring deviation is related to the movement of the soft palate. Normally, the soft palate descends between adjacent utterances (not necessarily for breathing), but sometimes subsequent utterances are initiated without this descent being observed. A similar problem can be noted with the vertical movement of the larynx. The larynx usually rises slightly before the start of a speech and falls at the end of the speech, but sometimes the larynx


Figure 2 : Example of vocal tract in the resting position
remains elevated over two successive utterances.
As explained in 2.9 , the [noRPp] and/or [noRPf] tags are assigned when these "deviant" articulatory movements cause uncertainty in the articulatory segmentation. Note, however, that these tags are assigned when uncertainty of segmentation remains even after referring to all criteria discussed above. For example, no uncertainty tag is applied to the example above ("bada" followed by "mahha" with preempted lip closure) if the end of the utterance can be confirmed by a pronounced lowering of the soft palate.

The three types of deviations described above are relatively common．However，other problems can also arise．One of them is the act of licking the lips．In the MRI recording，the speaker often lick the upper lip with the tongue tip to moisten the lips．Most speakers do this between sessions，but some lick their lips between adjacent utterances within a session．In such cases，the lip－licking behavior is recorded at the beginning or end of utterance．It is such utterances that are given the［LipLick］tag．

Finally，filled pauses can also cause problems．Some speakers utter filled pauses like＂eh＂ or＂ah＂before the target utterance．If the utterance and the filled pause were separable in terms of articulatory motion（and in acoustic signal），we treated it as a normal utterance．In some cases，however，it was difficult to separate them．In such cases，the［fp］tag was applied together with the $[$ noRPp］tag．

## 6．The making of MP4 data

## 6． 1 Movie without the dentition information

An MRI machine（MAGNETOM Prisma fit 3T，Siemens）settled at ATR－Promotions Brain Activity Imaging Center（ATR－BAIC），Inc．was used to record data for the rtMRIDB．This machine can capture 512 frames of MRI images（still images with a resolution of $256 \times 256$ pixels and a slice width of 10 mm ）at an imaging speed at 14 fps for about 37 seconds and at 27 fps for about 19 seconds．The frame number is inserted at the bottom left of each frame during the process of movie compilation from the still images captured by the MRI．The frame number starts from zero，so it takes a value from 0 to 511 ．For more specialized information on the imaging conditions of the MRI movies in this database，please refer to the appendix of 前川ほ か（2020）．
Still image data captured by the MRI system is saved in DCM format，the standard format for MRI data．The speech signal uttered by the speaker is recorded separately using a DAT （digital tape recorder）with a sampling frequency of 44.1 kHz and a quantization precision of 16 bits．

The rtMRIDB video was created by dubbing the DAT audio onto an MP4 video consisting of JPG data converted from DCM data．The beginning of the operation noise of the MRI machine recorded in the DAT was used to synchronize the image and audio．However，since the frame rate of the MRI movie and the sampling frequency of the audio are significantly different，the possibility cannot be excluded that there is a slight discrepancy in the synchronization．The large operation noise of the MRI machine overlaid onto the speech signal was digitally reduced．In the case of rtMRIDB＿v1，the noise－reduced audio had a slightly metallic sound．This problem was resolved in the rtMRIDB＿v2，resulting in a highly natural speech sound．Finally，this database only publishes the MP4 video data，and does not include the DCM image data and DAT audio data．

## 6． 2 Movie with the dentition information

RtMRIDB＿v2 now supports the retrieval of movie data with dentition information．Unlike X－ ray image，the image of bones does not appear in the MRI image．This is due to the basic principle of MRI imaging：materials that do not contain hydrogen atoms，such as bone，cannot be imaged by MRI．Basically，this is a major advantage of MRI data over the X－ray films because X－ray films clearly show the skull and dentition，and the researcher has to find out the contour of the tongue through these images，causing great difficulty in observation．However，the images of the incisors are sometimes necessary for phonetic research because some consonants


Figure 3：Example of the usefulness of dentition image
are classified in terms of their places of articulation with reference to the contact with the incisors（like dental and inter－dental consonants）．We have developed a technique to insert the contour images of incisors onto rtMRI images through image processing（常盤ほか 2023）．

Figure 3 compares the／ta／（in the MU class）pronounced by speakers s2 and s9．The upper part of the figure shows a video clip from a previously published movie without dentition information，with the data for s2 on the left and s9 on the right．On the other hand，the lower part of the figure shows the video image from the movie on which the dentition information was inserted．

Observing only the video in the upper part of the figure，we can imagine that there is an articulatory difference between s 2 and $\mathrm{s} 9 / \mathrm{t} /$ ，which may be related to the presence or absence of the tongue contact with the upper incisors，but we cannot be sure if such articulation is actually taking place．On the other hand，comparing the images in the lower part of the figure， we can see that in the case of s2，the tongue apex is not in contact with the insicor but with the
gums, whereas in the case of s 9 , the contact between the tongue apex and the teeth forms a closure of the vocal tract. Using the terminology of articulatory phonetics, /t/ by s2 is a alveolar stop and /t/ by s9 is a dental stop, and it would be reasonable to transcribe the consonant by s9 as [t] if expressed using IPA's auxiliary symbol.

Of course, the articulatory difference in $/ \mathrm{t} /$ between s 2 and s 9 is not phonologically distinctive. However, this example suggests that it is dangerous to simply describe Japanese /t/ as an alveolar consonant. The fact that a certain number of native speakers of standard Japanese also articulate $/ \mathrm{t} /$ as a dental consonant as s 9 is a finding that should be further explored in contrastive phonetics of Japanese and English.

## 7. Searching the rtMRIDB_v2

While rtMRIDB_v1 was released on the web as well as a Windows desktop application distributed by the National Institute of Informatics Speech Resource Consortium (NII-SRC http://research.nii.ac.jp/SRc/), rtMRIDB_v2 will be available only on the web for the time being. What follows is an instruction of how to use the search system available on the web. Basically, it is the same as the search system of rtMRIDB_v1, but there are some improvements.

## 7. 1 Access to the database

The rtMRIDB_v2 contains 29,984 utterances by 25 speakers. Users can search this data by specifying various criteria and can see the retrieved data as MP4 video. Users can also download the video.

To search rtMRIDB_v2, access https://rtmridb.ninjal.ac.jp using a browser. Chrome is recommended as the browser, but other browsers can also be used. After successful access, the page shown in Figure 4 will appear. At first, an English page is displayed, but you can switch to Japanese by using the switch in the upper right corner of the screen. The following explanation is given using the English page.

## 7. 2 Specifying search conditions

The menu for searching is displayed in the lower half of the screen in Figure 4. Although, usually, a search consists of multiple searching conditions, a single search condition is specified in three steps: "select attributes," "select operators," and "enter search string.

Let us now execute a simple search. Figure 5 specifies a condition to search for samples beginning with the phoneme sequence /sak/ in the Phoneme field. The user determines the search condition by specifying three elements: "attribute" (left menu, here 'Phoneme'), "operator" (middle menu, here 'begins with'), and "search string" (right menu, here 'sak'). After completing the specifications shown in Figure 5, select the button just below the menu to select whether to search for samples at 14 fps or 27 fps . You can search for both, but if you choose both 14 and 27 fps , the search results cannot be converted to a video. Here we choose 14 fps . Then, click on the light blue magnifying glass icon just below the 14 -fps button, and the search
results will immediately appear at the bottom of the screen. The search results show the values for all 20 fields for each sample.

Executing a search using the conditions in Figure 5 yields 259 hits for samples with Phoneme containing /sak/, but this is a little too many, so let's narrow down the search by adding additional search conditions. Click the green + icon to the right of the search condition to add a new condition.

| rtMRIDB (The real-time MRI articulatory movement database) |  |  |  |  |  |  |  |  | English |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | The Real-Time MRI Articulatory Databases, Version 2 (rtMRIDB_v2) is a database of articulatory movements in Japanese as observed by using real-time MRI video imaging technology with a simple database query system. The database is released under the Creative Commons license CC BY-NC-SA and can be used for teaching and research in phonetics. For more information about the database specifications and search methods, please read the description here. For specifications of the database, please refer to chapters 2 and 3 , and for the query methods, please refer to chapter 7 . When using this database, please be aware that the principal investigator and the National Institute for Japanese Language and Linguistics (NINJAL) are exempt from any liability and any problems that may arise from its use. <br> Click here for the description of the first version of this database. Click here for information on how to obtain the mp4 video data of the first version (mp4 data of the second version will remain private for the time being). <br> Principal Investigator: Kikuo Maekawa <br> (April 1, 2024) |  |  |  |  |  |  |  |
| $\times$ | Select Attribute | * | Sel | - | $\stackrel{\rightharpoonup}{*}$ | ch String | $+$ |  |  |
| 14 fps 27 fps Both <br> Data with different fps cannot be played at the same time. |  |  |  |  |  |  |  |  |  |
| $Q$ | Select All | Clear Sele |  | Margin | 0 | sec. |  | ( Dentition |  |
| Copyright © Kikuo Maekawa (NINJAL) 2020 |  |  |  |  |  |  |  |  |  |



Figure 4: Initial page of the search system on the web (English version on the top and Japanese version in the bottom)


Figure 5: Specification of search (only one condition)


Figure 6: Specification of search (three conditions on different fields)


Figure 7 : Specification of search (multiple conditions for the same attribute)

Figure 6 shows the search screen with the conditions "Class is equal to 'MP'" and "Gender is equal to ' F '" added to the conditions in Figure 5. When multiple conditions are specified in this way, the conditions concerning different fields are interpreted as AND (logical product) relationships, while the conditions for the same field are interpreted as OR (logical sum) relationships. Conditions shown in Figure 6 can be read "Phoneme begins with 'sak' AND Class is equal to 'MP' AND Gender is equal to ' F '". When the search is executed, the number of hit samples is 22 .

Finally, Figure 7 shows an example of a search in which multiple criteria are specified for the same attribute (in this case, 'Phoneme'). In Figure 7, "Phoneme begins with saQk" is added to the search condition. As mentioned earlier, multiple conditions for one field are interpreted as logical ORs. Accordingly, the logical operation can be expressed as (("Phoneme begins with ‘sak'" OR "Phoneme begins with ‘saQk'") AND "Class is equal to 'MP'" AND "Gender is equal to ' F '"), where parentheses are used to show the range of logical operators. Executing this search will result in 22 samples containing the two words /saka/ "slope" and /saQka/ "writer".

If you wish to remove a search condition, you can delete it by clicking on the red X mark to the left of the search condition. For example, if you delete the Gender criteria in Figure 7, the search result will increase to 71 samples.
rtMRIDB (The real-time MRI articulatory movement database)


Figure 8 : Selection of the search results (part of the screen displayed)

## 7. 3 Editing, playing, and downloading the search results

Now, let's edit select the samples you need from the retrieved samples into a video file and play it back. Since editing takes time when the number of samples is large, let's work with 18 samples found by searching with the condition shown in Figure 7 (including "Gender equals to F").

When you have finished your search, click the "Select All" button to the right of the magnifying glass icon, and all samples will be highlighted in gray with a $\checkmark$ mark to the left of
them, indicating that they are selected. You can deselect individual samples by clicking on the $\checkmark$ mark in this state. Figure 8 shows the screen after all samples have been selected, with the fourth and sixth samples deselected.

In this state, clicking the light blue $\square$ icon between "Clear selected" and "Margin" will start editing the video file, combining the selected samples in the order they appear into a single MP4 movie file. When editing is complete, the movie will be played back (Figure 9). The subtitle superimposed on the upper right corner of the movie indicates the 'File', 'Start', 'End', 'Text', and 'Phoneme' values of the sample being played back (red dashed rectangle in the figure; Also see 7.4).

The video can be repeatedly played and paused using the
and $=$ icons above the left end of the slider bar. You can select any part of the movie using the slider bar and start playing the movie. You can also click on the icons $\leftarrow \boldsymbol{a}$ and $\rightarrow$ placed in the white frame below the video to move frame by frame, allowing you to observe the articulatory movement in detail.


Figure 9 : Playback screen of videos generated from search results

The three small icons in the lower right corner of the movie (enclosed by a red dotted rectangle in the figure) are, from left to right, the volume control, full screen, and file operation menus. The file operation menu has two options: "Download" and "Picture-in-picture. By clicking "Download," you can download the edited movie. Clicking on "Picture-in-picture" will
open a small window outside the window in which the search system is operating. The size of this window can be freely changed, but it does not have a frame-by-frame function.

## 7. 4 Margins, Subtitles, and Dentition buttons

The search screen (see Figure 4) has buttons for "Margin", "Subtitle" and "Dentition". The "Margin" button expands the start and end time (Start, End) of the sample displayed on the search screen forward and backward. The maximum time range can be expanded up to 0.5 seconds in both directions. Note that for some samples, if the time range is expanded too much, there may be overlap between the sample immediately before and after. Normally, leave the value at 0 .
"Subtitles" is turned on by default, and information on 'File', 'Start', 'End', 'Text', and 'Phoneme' is displayed in the upper right corner of the video. The frame number in the lower left corner of the video is not a subtitle, so it will not disappear even if you turn subtitles off.

Finally, "Dentition" is a switch to change the search target to the movie data with dentition information newly released in the rtMRIDB_v2. When this is turned on, the search will be performed only on movies with dentition information. Note it is impossible to search for movies with and without the dentition information at the same time.

## 7. 5 Sorting function

A simple sorting function is implemented in the rtMRIDB search system. Look at Figure 8 again. At the top of the search results, the field names are displayed, and to the left of each field name is a small gray $\boldsymbol{\Delta} \boldsymbol{\nabla}$ icon (red oval in the figure). By clicking on these, you can change the sort order (ascending/descending) of the samples. However, this sorting function is simple and does not support complex sorting over multiple columns. Therefore, it cannot be used for purposes such as rearranging samples into an arbitrary order for presentation purposes.

To solve this problem, a new function that can change the ranking of samples arbitrarily is available in rtMRIDB_v2. Although not shown in Figure 8, if you scroll the search result display screen to the right edge, you will see $\uparrow$ and $\downarrow$ symbols surrounded by circles in the right-ends of samples. By clicking on these symbols, you can move the position of the relevant sample up or down one by one. Although it is a tedious operation, this function allows you to sort the searched samples in any order.

## 7. 6 Suggest function

As is clear from the description so far, knowledge of the contents of the database is required to use the search function of rtMRIDB. Knowing the possible values of the fields like 'Text', 'Jtext', 'Phoneme' is essential. A list of the values recorded in these fields is provided in Appendix 1 of this document. In addition, a suggestion function is implemented in the search system to reduce the burden of users.

This function predicts and displays subsequent candidates at the time when users enter a part of a character string. Suppose, for example, "Phoneme" and "Contains" are selected as an
attribute and operator．If two letters＇ aQ ＇are entered as the initial part of the search string，the system will show a drop－dwon menu of candidate values of＂Phoneme＂including＇aQpa＇， ＇aQsaku＇，＇baQda＇，＇baQku＇，＇baQda＇，＇baQnjari＇，＇baQta＇，＇gaQ＇，and more．，and users can select the desired value from this menu．

## 7． 7 Limitations of the system

The interface of the search system described so far was developed to provide an opportunity for users with limited computer experience to get in touch with the data of speech production．It does not provide a complete search function．

For example，as noted in 7．2，it is not possible to set multiple search criteria in a logical OR relationship across different fields．Also，the ability to further narrow down the results of a given search is not implemented．Therefore，it may not be possible to perfectly narrow down the sample desired by the user．If this is the case，please consider deselecting the unnecessary samples from an over－selected set of samples．

A problem can be pointed out regarding the playback of the search result movie．When playing back the movie in this system，there may be a delay of the video image to the audio signal，especially in the latter half of a movie of relatively large size．This problem is regarded to be related to several causes and may also depend on the performance of the computer being used．When this problem occurs，users may be able to avoid the problem in several ways．When you have a large number of search results，try to mitigate the problem by splitting the search results into multiple videos of modest size instead of editing one large video．Second，in case you playback a video of large size，you may be able to avoid the problem by jumping to the part of the video you wish to observe by use of the slider bar at the bottom of the screen before you playback the video．Lastly，you may be able to avoid the problem by downloading the movie and playing it back with a common video playback tool（such as Media player）．

## 7． 8 Data Viewing and Analysis Environment

For users who want to analyze the MP4 movies of the search results for purposes such as speech production studies，a data viewing and analysis environment specifically designed for the rtMRIDB data is available（＂MRI Vuewer Ver．2．0＂．https：／／kikuchiken－waseda．github．io／mri－ vuewer．ver2／）．This is a browser－based application developed by Takuya Asai of Kikuchi Laboratory in the School of Human Sciences，Waseda University（See 浅井•菊池•前川 2021，前川ほか 2021，Maekawa in press）．It allows users to perform annotation along the time axis （＂time series transcription＂）and annotation for a specific single frame（＂frame transcription＂）． The former allows users to work with MRI images along with speech signals and sound spectrograms，while the latter allows users to perform various measurements on vocal tract information．Annotated results are recorded in the browser database，but it can also be exported in JSON，xlsx，and other data formats．Incidentally，the Start，End，Text，and Tag information
recorded in rtMRIDB have been annotated using this system.
Figure 10 shows an image of annotation work using the MRI Vuewer Ver.2. Below the three consecutive MRI images in the upper left corner are shown sound spectrogram and audio signals. The central MRI image corresponds to the time cursor on the spectrogram and audio signal, and the images to its left- and right-side are the frames that immediately preceding and following the central frame. A frame transcription window is shown in the foreground, in which the tongue contours are marked with measurement dots. MRI Vuewer Ver. 2 and its documentation are available online at https://github.com/kikuchiken-waseda/mrivuewer.ver2/wiki/Usage. Chrome is recommended as browser.


Figure 10: Working image of the MRI Vuewer Ver. 2

## 8. Restrictions on this database

This database (rtmridb_v2) is released under the Creative Commons License CC BY-NC-SA (Attribution-NonCommercial-ShareAlike). Please note that there is a possibility that this database will be substantially upgraded in the future.

Acknowledgments: We are deeply grateful to the 25 speakers who agreed to make their data publicly available. The development of this database was supported by two Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (17H02339, 20H01265), Discretion Grant from the Director of the National Institutes for the Humanities for the years 2022-2023, and budget from the Corpus Development Center, National Institute for Japanese Language and Linguistics. Data recording and processing/editing were supported by Yukiko Nota, Takuya Asai, Yuichi Ishimoto, Koichi Katsurada, Ryo Tanji, and the members of Professor Hironori Takemoto's laboratory at Chiba Institute of Technology. Real-time MRI video data were recorded at the Brain Activity Imaging Center (BAIC), ATR-

Promotions，Inc．with assistance from Drs．Shinobu Masaki，Ikuhiro Shimada，Nobukazu Nishikido，and Nobuyoshi Tanki．The database search environment was developed under contract to PicoLab Inc．
（31 March 2024）
For inquiries about this database，please contact Kikuo Maekawa at kikuoATninjal．ac．jp（Please replace＇AT＇with an appropriate character．）

## RERERENCES

Maekawa，K．（To appear）．＂Real－time MRI articulatory movement database and its application to articulatory phonetics＂．Acoustical Science and Technology， 2024.
浅井拓也•菊池英明•前川喜久雄（2021）「リアルタイム MRI 調音動画データの閲覧および解析環境の開発」言語資源活用ワークショップ 2021 発表論文集，国立国語研究所コーパ ス開発センター。
常盤朔也•一岡昴輝•大谷幸聖•竹本浩典•前川喜久雄「頭頸部の正中矢状面における rtMRI動画への歯列補填」日本音響学会第149回（2023 年春季）研究発表会， 2023 ．
前川喜久雄•西川賢哉•浅井拓也•能田由紀子•正木信夫•島田育廣•竹本浩典•北村達也•斎藤純男•籠宮隆之•石本祐一•菊池英明•藤本雅子•八木豊「リアルタイム MRI動画日本語調音運動データベースの設計」（2020）。言語資源活用ワークショップ 2020 発表論文集，国立国語研究所コーパス開発センター。
前川喜久雄（2021）。「リアルタイム MRI 動画データベースプロジェクトの概要と調音音声学 への応用」言語資源活用ワークショップ 2021 発表論文集，国立国語研究所コーパス開発 センター。

## Appendix 1：List of utterance items in rtMRIDB＿v2

This is a list of the utterance items recorded in the rtMRIDB＿v2．Items are listed according to the＇Ser＇values（See 2．13）for each slide（See 2．11）．Each line shows the＇Jtext＇，＇text＇，and ＇phoneme＇of the utterance．The＇AddDate＇at the end of each utterance indicates the date the item was added or deleted from the list in the format yyyymmdd．If this field is blank，it means that the item was included in the list from the beginning．A＋at the end of＇AddDate＇field indicates the addition of the item，while a－indicates the deletion．Only two items，ser＝15 and 16 in the MP1 slide，were deleted．Note that the three classes MU，MP，and MB contain data from all speakers，while the other classes（NS，PL，SR，TT）may or may not contain data depending on the speaker．See Appendix 2 below for the differences in recording due to speakers．

| SLIDE | SER | JTEXT | TEXT | PHONEME | ADDDATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MU1 | 1 | ア | a | a |  |
| MU1 | 2 | ィ | i | i |  |
| MU1 | 3 | ウ | u | u |  |
| MU1 | 4 | エ | e | e |  |
| MU1 | 5 | 才 | 0 | 0 |  |
| MU1 | 6 | ヤ | ja | ja |  |
| MU1 | 7 | ユ | ju | ju |  |
| MU1 | 8 | ヨ | jo | jo |  |
| MU1 | 9 | イェ | je | je |  |
| MU1 | 10 | カ | ka | ka |  |
| MU1 | 11 | キ | ki | ki |  |
| MU1 | 12 | ク | ku | ku |  |
| MU1 | 13 | ヶ | ke | ke |  |
| MU1 | 14 | コ | ko | ko |  |
| MU1 | 15 | キャ | kja | kja |  |
| MU1 | 16 | キュ | kju | kju |  |
| MU1 | 17 | キョ | kjo | kjo |  |
| MU1 | 18 | キェ | kje | kje |  |
| MU1 | 19 | サ | sa | sa |  |
| MU1 | 20 | シ | si | si |  |
| MU1 | 21 | ス | su | su |  |
| MU1 | 22 | セ | se | se |  |
| MU1 | 23 | ソ | so | so |  |


| MU1 | 24 | シャ | sja | sja |
| :---: | :---: | :---: | :---: | :---: |
| MU1 | 25 | シュ | sju | sju |
| MU1 | 26 | ショ | sjo | sjo |
| MU1 | 27 | シェ | sje | sje |
| MU2 | 1 | タ | ta | ta |
| MU2 | 2 | 于 | ci | ci |
| MU2 | 3 | ツ | Cu | cu |
| MU2 | 4 | テ | te | te |
| MU2 | 5 | ト | to | to |
| MU2 | 6 | チャ | cja | cja |
| MU2 | 7 | チュ | cju | cju |
| MU2 | 8 | チョ | cjo | cjo |
| MU2 | 9 | チェ | cje | cje |
| MU2 | 10 | ナ | na | na |
| MU2 | 11 | ニ | ni | ni |
| MU2 | 12 | ヌ | nu | nu |
| MU2 | 13 | ネ | ne | ne |
| MU2 | 14 | ノ | no | no |
| MU2 | 15 | ニヤ | nja | nja |
| MU2 | 16 | ニュ | nju | nju |
| MU2 | 17 | ニョ | njo | njo |
| MU2 | 18 | ニェ | nje | nje |
| MU2 | 19 | 八 | ha | ha |
| MU2 | 20 | $ヒ$ | hi | hi |
| MU2 | 21 | $フ$ | hu | hu |
| MU2 | 22 | ヘ | he | he |
| MU2 | 23 | ホ | ho | ho |
| MU2 | 24 | ヒャ | hja | hja |
| MU2 | 25 | ヒュ | hju | hju |
| MU2 | 26 | ヒョ | hjo | hjo |
| MU2 | 27 | ヒェ | hje | hje |
| MU3 | 1 | パ | pa | pa |
| MU3 | 2 | ピ | pi | pi |
| MU3 | 3 | $フ ゚$ | pu | pu |
| MU3 | 4 | ペ | pe | pe |
| MU3 | 5 | ポ | po | po |


| MU3 | 6 | ピャ | pja | pja |
| :---: | :---: | :---: | :---: | :---: |
| MU3 | 7 | ピュ | pju | pju |
| MU3 | 8 | ピョ | pjo | pjo |
| MU3 | 9 | ピェ | pje | pje |
| MU3 | 10 | ザ | za | za |
| MU3 | 11 | ジ | zi | zi |
| MU3 | 12 | ズ | zu | zu |
| MU3 | 13 | ゼ | ze | ze |
| MU3 | 14 | ゾ | zo | zo |
| MU3 | 15 | ジャ | zja | zja |
| MU3 | 16 | ジュ | zju | zju |
| MU3 | 17 | ジョ | zjo | zjo |
| MU3 | 18 | ジェ | zje | zje |
| MU3 | 19 | マ | ma | ma |
| MU3 | 20 | ミ | mi | mi |
| MU3 | 21 | ム | MU | MU |
| MU3 | 22 | $x$ | me | me |
| MU3 | 23 | モ | mo | mo |
| MU3 | 24 | ミャ | mja | mja |
| MU3 | 25 | ミュ | mju | mju |
| MU3 | 26 | ミョ | mjo | mjo |
| MU3 | 27 | ミェ | mje | mje |
| MU4 | 1 | ラ | ra | ra |
| MU4 | 2 | リ | ri | ri |
| MU4 | 3 | ル | ru | ru |
| MU4 | 4 | $レ$ | re | re |
| MU4 | 5 | 口 | ro | ro |
| MU4 | 6 | リヤ | rja | rja |
| MU4 | 7 | リュ | rju | rju |
| MU4 | 8 | リョ | rjo | rjo |
| MU4 | 9 | リェ | rje | rje |
| MU4 | 10 | 7 | wa | wa |
| MU4 | 11 | ウィ | wi | wi |
| MU4 | 12 | ウェ | we | we |
| MU4 | 13 | ウォ | wo | wo |
| MU4 | 14 | ン | N | N |


| MU4 | 15 | ファ | fa | fa |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MU4 | 16 | フィ | fi | fi |  |
| MU4 | 17 | フェ | fe | fe |  |
| MU4 | 18 | フォ | fo | fo |  |
| MU4 | 19 | スィ | s＿i | s＿i |  |
| MU4 | 20 | ティ | ti | ti |  |
| MU4 | 21 | トゥ | tu | tu |  |
| MU4 | 22 | ズィ | z＿i | z＿i |  |
| MU4 | 23 | ディ | di | di |  |
| MU4 | 24 | ドゥ | du | du |  |
| MU4 | 25 | アイ | ai＿1 | ai |  |
| MU4 | 26 | アオ | ao＿1 | ao |  |
| MU4 | 27 | アエ | ae＿1 | ae |  |
| MU4 | 28 | アウ | au＿1 | au |  |
| MU4 | 29 | イア | ia | ia |  |
| MU4 | 30 | イウ | iu | iu |  |
| MU4 | 31 | イエ | ie | ie |  |
| MU4 | 32 | イオ | io | io |  |
| MU5 | 1 | アラ | ara | ara | 20180720＋ |
| MU5 | 2 | アリ | ari | ari | 20180720＋ |
| MU5 | 3 | アル | aru | aru | 20180720＋ |
| MU5 | 4 | アレ | are | are | 20180720＋ |
| MU5 | 5 | アロ | aro | aro | 20180720＋ |
| MU5 | 6 | イラ | ira | ira | 20180720＋ |
| MU5 | 7 | イリ | iri | iri | 20180720＋ |
| MU5 | 8 | イル | iru | iru | 20180720＋ |
| MU5 | 9 | イレ | ire | ire | 20180720＋ |
| MU5 | 10 | イロ | iro | iro | 20180720＋ |
| MU5 | 11 | オラ | ora | ora | 20180720＋ |
| MU5 | 12 | オリ | ori | ori | 20180720＋ |
| MU5 | 13 | オル | oru | oru | 20180720＋ |
| MU5 | 14 | オレ | ore | ore | 20180720＋ |
| MU5 | 15 | オロ | oro | oro | 20180720＋ |
| MU5 | 16 | オア | oa | oa | 20180720＋ |
| MU5 | 17 | オイ | oi | oi | 20180720＋ |
| MU5 | 18 | オウ | ou | ou | 20180720＋ |


| MU5 | 19 | オエ | oe | oe | 20180720＋ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MU5 | 20 | アー | aH | aH | 20180720＋ |
| MU5 | 21 | イー | iH | iH | 20180720＋ |
| MU5 | 22 | ウー | uH | uH | 20180720＋ |
| MU5 | 23 | エー | eH | eH | 20180720＋ |
| MU5 | 24 | オー | oH | oH | 20180720＋ |
| MU5 | 25 | バ | ba | ba | 20190111＋ |
| MU5 | 26 | ベ | be | be | 20190111＋ |
| MU5 | 27 | ボ | bo | bo | 20190111＋ |
| MU5 | 28 | フュ | fju | fju | 20190527＋ |
| MU5 | 29 | デュ | dju | dju | 20190527＋ |
| MU5 | 30 | テャ | tja | tja | 20201001＋ |
| MU5 | 31 | テュ | tju | tju | 20201001＋ |
| MU5 | 32 | テョ | tjo | tjo | 20201001＋ |
| MP1 | 1 | 新案 | siNaN | siNaN |  |
| MP1 | 2 | 真円 | siNeN | siNeN |  |
| MP1 | 3 | 心音 | siNoN | siNoN |  |
| MP1 | 4 | 心因 | siNiN | siNiN |  |
| MP1 | 5 | 新刊 | siNkaN | siNkaN |  |
| MP1 | 6 | 真剣 | siNkeN | siNkeN |  |
| MP1 | 7 | 四温（しおん） | sioN | sioN |  |
| MP1 | 8 | 資金 | sikiN | sikiN |  |
| MP1 | 9 | 辛酸（しんさん） | siNsaN | siNsaN |  |
| MP1 | 10 | 浸水 | siNsui | siNsui |  |
| MP1 | 11 | 新鮮 | siNseN | siNseN |  |
| MP1 | 12 | 深層 | siNsoH | siNsoH |  |
| MP1 | 13 | 岩盤 | gaNbaN | gaNbaN |  |
| MP1 | 14 | 上海（シャンハイ） | sjaNhai | sjaNhai | 20180223＋ |
| MP1 | 15 | 完備 | kaNbi | kaNbi | 20180223－ |
| MP1 | 16 | 幹部 | kaNbu | kaNbu | 20180223－ |
| MP1 | 17 | 簡便 | kaNbeN | kaNbeN |  |
| MP1 | 18 | サンホセ | saNhose | saNhose | 20180223＋ |
| MP1 | 19 | 冠婚 | kaNkoN | kaNkoN |  |
| MP1 | 20 | 英語 | eHgo＿1 | eHgo |  |
| MP1 | 21 | カンハン | kaNhaN | kaNhaN |  |
| MP1 | 22 | カンヒン | kaNhiN | kaNhiN |  |


| MP1 | 23 | カンフン | kaNhuN | kaNhuN |
| :---: | :---: | :---: | :---: | :---: |
| MP1 | 24 | 簡約 | kaNjaku | kaNjaku |
| MP1 | 25 | 肝油 | kaNju | kaNju |
| MP1 | 26 | 寛容 | kaNjoH | kaNjoH |
| MP1 | 27 | 観覧 | kaNraN | kaNraN |
| MP2 | 1 | カンヘン | kaNheN | kaNheN |
| MP2 | 2 | カンホン | kaNhoN | kaNhoN |
| MP2 | 3 | 蜜柑（みかん） | mikaN | mikaN |
| MP2 | 4 | 麒麟（きりん） | kiriN | kiriN |
| MP2 | 5 | 坂 | saka | saka |
| MP2 | 6 | 肩 | kata | kata |
| MP2 | 7 | 浅く | asaku | asaku |
| MP2 | 8 | アパ | apa | apa |
| MP2 | 9 | マハ | maha | maha |
| MP2 | 10 | 升席（ますせき） | masu－seki | masuseki |
| MP2 | 11 | 西小（にししょう） | nisi－sjoH | nisisjoH |
| MP2 | 12 | ガス栓 | gasu－seN | gasuseN |
| MP2 | 13 | ケヘ | kehe＿1 | kehe |
| MP2 | 14 | ウェブ | webu | webu |
| MP2 | 15 | バタ | bata | bata |
| MP2 | 16 | バダ | bada | bada |
| MP2 | 17 | マッハ | maQha | maQha |
| MP2 | 18 | 作家 | saQka | saQka |
| MP2 | 19 | 買った | kaQta | kaQta |
| MP2 | 20 | 圧搾（あっさく） | aQsaku | aQsaku |
| MP2 | 21 | 愛 | ai＿2 | ai |
| MP2 | 22 | 簡単 | kaNtaN | kaNtaN |
| MP2 | 23 | 広東（カントン） | kaNtoN | kaNtoN |
| MP2 | 24 | 緩和（かんわ） | kaNwa | kaNwa |
| MP2 | 25 | ガッ | gaQ | gaQ |
| MP3 | 1 | アッパ | aQpa | aQpa |
| MP3 | 2 | ケッヘ | keQhe | keQhe |
| MP3 | 3 | バック | baQku | baQku |
| MP3 | 4 | 別途 | beQto | beQto |
| MP3 | 5 | 末席 | maQseki | maQseki |
| MP3 | 6 | 日照 | niQsjoH | niQsjoH |


| MP3 | 7 | 合戦（かっせん） | kaQseN |
| :--- | :--- | :--- | :--- |
| MP3 | 8 | バッタ | baQta |
| MP3 | 9 | バッダ | baQta |
| MP3 | 10 | グッズ | baQda |
| MP3 | 11 | ウェッブ | guQzu |


| MP4 | 18 | 夜景 | jakeH | jakeH |
| :--- | ---: | :--- | :--- | :--- |
| MP4 | 19 | 焼板（やけいた） | jakeita | jakeita |
| MP4 | 20 | A 5 | eHgo＿2 | eHgo |
| MP4 | 21 | 会う | au＿2 | au |
| MP4 | 22 | 会え | ae＿2 | ae |
| MP4 | 23 | 案内 | aNnai | aNnai |
| MP4 | 24 | 欠品 | keQpiN | keQpiN |


| MP6 | 4 | 画商 | gasjoH | gasjoH | 20190111＋ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MP6 | 5 | 完封 | kaNpuH | kaNpuH | 20190111＋ |
| MP6 | 6 | 決勝 | keQsjoH | keQsjoH | 20190111＋ |
| MP6 | 7 | 鑑賞 | kaNsjoH | kaNsjoH | 20190111＋ |
| MP6 | 8 | 検証 | keNsjoH | keNsjoH | 20190111＋ |
| MP6 | 9 | 合掌 | gaQsjoH | gaQsjoH | 20190111＋ |
| MP6 | 10 | 化粧 | kesjoH | kesjoH | 20190111＋ |
| MP6 | 11 | 山陰 | saNiN | saNiN | 20190111＋ |
| MP6 | 12 | 婚姻 | koNiN | koNiN | 20190111＋ |
| MP6 | 13 | 率引 | keNiN | keNiN | 20190111＋ |
| MP6 | 14 | 雰囲気 | huNiki | huNiki | 20190111＋ |
| MP6 | 15 | 金運 | kiNuN | kiNuN | 20190111＋ |
| MP6 | 16 | 甲板 | kaNpaN | kaNpaN | 20190111＋ |
| MP6 | 17 | カラカラ | karakara | karakara | 20190111＋ |
| MP6 | 18 | カンラカラ | kaNrakara | kaNrakara | 20190111＋ |
| MP6 | 19 | カッラカラ | kaQrakara | kaQrakara | 20190111＋ |
| MP6 | 20 | バニャリ | banjari | banjari | 20190208＋ |
| MP6 | 21 | バンニャリ | baNnjari | baNnjari | 20190208＋ |
| MP6 | 22 | バッニャリ | baQnjari | baQnjari | 20190208＋ |
| MP6 | 23 | フュージョン | fjuHzjoN | fjuHzjoN | 20190527＋ |
| MP6 | 24 | デューク | djuHku | djuHku | 20190527＋ |
| MP7 | 1 | 艱難 | kaNnaN | kaNnaN | 20201228＋ |
| MP7 | 2 | 堪忍 | kaNniN | kaNniN | 20201228＋ |
| MP7 | 3 | カンヌ | kaNnu | kaNnu | 20201228＋ |
| MP7 | 4 | 三年 | saNneN | saNneN | 20201228＋ |
| MP7 | 5 | 観音 | kaNnoN | kaNnoN | 20201228＋ |
| MP7 | 6 | 散漫 | saNmaN | saNmaN | 20201228＋ |
| MP7 | 7 | 官民 | kaNmiN | kaNmiN | 20201228＋ |
| MP7 | 8 | 任務 | niNmu | niNmu | 20201228＋ |
| MP7 | 9 | 三面 | saNmeN | saNmeN | 20201228＋ |
| MP7 | 10 | 審問 | siNmoN | siNmoN | 20201228＋ |
| MP7 | 11 | 心眼 | siNgaN | siNgaN | 20201228＋ |
| MP7 | 12 | 震源 | siNgeN | siNgeN | 20201228＋ |
| MP7 | 13 | 呻吟 | siNgiN | siNgiN | 20201228＋ |
| MP7 | 14 | 真言 | siNgoN | siNgoN | 20201228＋ |
| MP7 | 15 | 進軍 | siNguN | siNguN | 20201228＋ |


| MP7 | 16 | 三本 | saNboN | saNboN | $20201228+$ |
| :--- | ---: | :--- | :--- | :--- | :--- |
| MP7 | 17 | 信任 | siNniN | siNniN | $20201228+$ |
| MP7 | 18 | 信念 | siNneN | siNneN | $20201228+$ |
| MP7 | 19 | 金満 | kiNmaN | kiNmaN | $20201228+$ |
| MP7 | 20 | 山門 | saNmoN | saNmoN | $20201228+$ |
| MP7 | 21 | 宦官 | kaNgaN | kaNgaN | $20201228+$ |
| MP7 | 22 | 勧銀 | kaNgiN | kaNgiN | $20201228+$ |
| MP7 | 23 | サンゴ | saNgo | saNgo | $20201228+$ |
| MP7 | 24 | 臣民 | siNmiN | siNmiN | $20201228+$ |
| MP7 | 25 | 新免 | siNmeN | siNmeN | $20201228+$ |
| MP8 | 1 | 三絃 | saNgeN | saNgeN | $20201228+$ |
| MP8 | 2 | 三軍 | saNguN | saNguN | $20201228+$ |
| MP8 | 3 | 割熟 | kaQpoH | kaQpoH | $20201228+$ |
| MP8 | 4 | サッフォー | saQfoH | saQfoH | $20201228+$ |
| MP8 | 5 | ン | N | N | MU4 と同－ |
| MP8 | 6 | カップ | kaQpu | kaQpu | $20201228+$ |
| MP8 | 7 | スタッフ | sutaQfu | sutaQfu | $20201228+$ |
| MP8 | 8 | 他人（たにん） | taniN | taniN | $20201228+$ |
| MP8 | 9 | カヌー | kanuH | kanuH | $20201228+$ |
| MP8 | 10 | カノン | kanoN | kanoN | $20201228+$ |
| MP8 | 11 | 我慢 |  | 12 | 仮眠 |


| MB1 | 2 | カキ | kaki | kaki |
| :---: | :---: | :---: | :---: | :---: |
| MB1 | 3 | カク | kaku | kaku |
| MB1 | 4 | カケ | kake | kake |
| MB1 | 5 | カコ | kako | kako |
| MB1 | 6 | カキャ | kakja | kakja |
| MB1 | 7 | カキュ | kakju | kakju |
| MB1 | 8 | カキョ | kakjo | kakjo |
| MB1 | 9 | カハ | kaha | kaha |
| MB1 | 10 | カヒ | kahi | kahi |
| MB1 | 11 | カフ | kahu | kahu |
| MB1 | 12 | カヘ | kahe | kahe |
| MB1 | 13 | カホ | kaho | kaho |
| MB1 | 14 | カサ | kasa | kasa |
| MB1 | 15 | カシ | kasi | kasi |
| MB1 | 16 | カス | kasu | kasu |
| MB1 | 17 | カセ | kase | kase |
| MB1 | 18 | カソ | kaso | kaso |
| MB1 | 19 | カシャ | kasja | kasja |
| MB1 | 20 | カシュ | kasju | kasju |
| MB2 | 1 | カショ | kasjo | kasjo |
| MB2 | 2 | カマ | kama | kama |
| MB2 | 3 | カミ | kami | kami |
| MB2 | 4 | カム | kamu | kamu |
| MB2 | 5 | カメ | kame | kame |
| MB2 | 6 | カモ | kamo | kamo |
| MB2 | 7 | キカ | kika | kika |
| MB2 | 8 | キキ | kiki | kiki |
| MB2 | 9 | キク | kiku | kiku |
| MB2 | 10 | キケ | kike | kike |
| MB2 | 11 | キコ | kiko | kiko |
| MB2 | 12 | キキャ | kikja | kikja |
| MB2 | 13 | キキュ | kikju | kikju |
| MB2 | 14 | キキョ | kikjo | kikjo |
| MB2 | 15 | キハ | kiha | kiha |
| MB2 | 16 | キヒ | kihi | kihi |
| MB2 | 17 | キフ | kihu | kihu |


| MB2 | 18 | キへ | kihe | kihe |
| :---: | :---: | :---: | :---: | :---: |
| MB2 | 19 | キホ | kiho | kiho |
| MB2 | 20 | キサ | kisa | kisa |
| MB3 | 1 | キシ | kisi | kisi |
| MB3 | 2 | キス | kisu | kisu |
| MB3 | 3 | キセ | kise | kise |
| MB3 | 4 | キソ | kiso | kiso |
| MB3 | 5 | キシャ | kisja | kisja |
| MB3 | 6 | キシュ | kisju | kisju |
| MB3 | 7 | キショ | kisjo | kisjo |
| MB3 | 8 | キマ | kima | kima |
| MB3 | 9 | キミ | kimi | kimi |
| MB3 | 10 | キム | kimu | kimu |
| MB3 | 11 | キメ | kime | kime |
| MB3 | 12 | キモ | kimo | kimo |
| MB3 | 13 | クカ | kuka | kuka |
| MB3 | 14 | クキ | kuki | kuki |
| MB3 | 15 | クク | kuku | kuku |
| MB3 | 16 | クケ | kuke | kuke |
| MB3 | 17 | クコ | kuko | kuko |
| MB3 | 18 | クキャ | kukja | kukja |
| MB3 | 19 | クキュ | kukju | kukju |
| MB3 | 20 | クキョ | kukjo | kukjo |
| MB4 | 1 | クハ | kuha | kuha |
| MB4 | 2 | クヒ | kuhi | kuhi |
| MB4 | 3 | クフ | kuhu | kuhu |
| MB4 | 4 | クヘ | kuhe | kuhe |
| MB4 | 5 | クホ | kuho | kuho |
| MB4 | 6 | クサ | kusa | kusa |
| MB4 | 7 | クシ | kusi | kusi |
| MB4 | 8 | クス | kusu | kusu |
| MB4 | 9 | クセ | kuse | kuse |
| MB4 | 10 | クソ | kuso | kuso |
| MB4 | 11 | クシャ | kusja | kusja |
| MB4 | 12 | クシュ | kusju | kusju |
| MB4 | 13 | クショ | kusjo | kusjo |


| MB4 | 14 | クマ | kuma | kuma |
| :---: | :---: | :---: | :---: | :---: |
| MB4 | 15 | クミ | kumi | kumi |
| MB4 | 16 | クム | kumu | kumu |
| MB4 | 17 | クメ | kume | kume |
| MB4 | 18 | クモ | kumo | kumo |
| MB4 | 19 | ケカ | keka | keka |
| MB4 | 20 | ケキ | keki | keki |
| MB5 | 1 | ケク | keku | keku |
| MB5 | 2 | ケケ | keke | keke |
| MB5 | 3 | ケコ | keko | keko |
| MB5 | 4 | ケキャ | kekja | kekja |
| MB5 | 5 | ケキュ | kekju | kekju |
| MB5 | 6 | ケキョ | kekjo | kekjo |
| MB5 | 7 | ケハ | keha | keha |
| MB5 | 8 | ケヒ | kehi | kehi |
| MB5 | 9 | ケフ | kehu | kehu |
| MB5 | 10 | ケへ | kehe | kehe |
| MB5 | 11 | ケホ | keho | keho |
| MB5 | 12 | ケサ | kesa | kesa |
| MB5 | 13 | ケシ | kesi | kesi |
| MB5 | 14 | ケス | kesu | kesu |
| MB5 | 15 | ケセ | kese | kese |
| MB5 | 16 | ケソ | keso | keso |
| MB5 | 17 | ケシャ | kesja | kesja |
| MB5 | 18 | ケシュ | kesju | kesju |
| MB5 | 19 | ケショ | kesjo | kesjo |
| MB5 | 20 | ケマ | kema | kema |
| MB6 | 1 | ケミ | kemi | kemi |
| MB6 | 2 | ケム | kemu | kemu |
| MB6 | 3 | ケメ | keme | keme |
| MB6 | 4 | ケモ | kemo | kemo |
| MB6 | 5 | コカ | koka | koka |
| MB6 | 6 | コキ | koki | koki |
| MB6 | 7 | コク | koku | koku |
| MB6 | 8 | コケ | koke | koke |
| MB6 | 9 | ココ | koko | koko |


| MB6 | 10 | コキャ | kokja | kokja |
| :---: | :---: | :---: | :---: | :---: |
| MB6 | 11 | コキュ | kokju | kokju |
| MB6 | 12 | コキョ | kokjo | kokjo |
| MB6 | 13 | コハ | koha | koha |
| MB6 | 14 | コヒ | kohi | kohi |
| MB6 | 15 | コフ | kohu | kohu |
| MB6 | 16 | コヘ | kohe | kohe |
| MB6 | 17 | コホ | koho | koho |
| MB6 | 18 | コサ | kosa | kosa |
| MB6 | 19 | コシ | kosi | kosi |
| MB6 | 20 | コス | kosu | kosu |
| MB7 | 1 | コセ | kose | kose |
| MB7 | 2 | コソ | koso | koso |
| MB7 | 3 | コシャ | kosja | kosja |
| MB7 | 4 | コシュ | kosju | kosju |
| MB7 | 5 | コショ | kosjo | kosjo |
| MB7 | 6 | コマ | koma | koma |
| MB7 | 7 | コミ | komi | komi |
| MB7 | 8 | コム | komu | komu |
| MB7 | 9 | $コ メ$ | kome | kome |
| MB7 | 10 | コモ | komo | komo |
| MB7 | 11 | キャカ | kjaka | kjaka |
| MB7 | 12 | キャキ | kjaki | kjaki |
| MB7 | 13 | キャク | kjaku | kjaku |
| MB7 | 14 | キャケ | kjake | kjake |
| MB7 | 15 | キャコ | kjako | kjako |
| MB7 | 16 | キャキャ | kjakja | kjakja |
| MB7 | 17 | キャキュ | kjakju | kjakju |
| MB7 | 18 | キャキョ | kjakjo | kjakjo |
| MB7 | 19 | キャハ | kjaha | kjaha |
| MB7 | 20 | キャヒ | kjahi | kjahi |
| MB8 | 1 | キャフ | kjahu | kjahu |
| MB8 | 2 | キャへ | kjahe | kjahe |
| MB8 | 3 | キャホ | kjaho | kjaho |
| MB8 | 4 | キャサ | kjasa | kjasa |
| MB8 | 5 | キャシ | kjasi | kjasi |


| MB8 | 6 | キャス | kjasu |
| :--- | ---: | :--- | :--- |
| MB8 | 7 | キャセ | kjase |


| MB10 | 2 | キュモ | kjumo | kjumo |
| :---: | :---: | :---: | :---: | :---: |
| MB10 | 3 | キョカ | kjoka | kjoka |
| MB10 | 4 | キョキ | kjoki | kjoki |
| MB10 | 5 | キョク | kjoku | kjoku |
| MB10 | 6 | キョケ | kjoke | kjoke |
| MB10 | 7 | キョコ | kjoko | kjoko |
| MB10 | 8 | キョキャ | kjokja | kjokja |
| MB10 | 9 | キョキュ | kjokju | kjokju |
| MB10 | 10 | キョキョ | kjokjo | kjokjo |
| MB10 | 11 | キョハ | kjoha | kjoha |
| MB10 | 12 | キョヒ | kjohi | kjohi |
| MB10 | 13 | キョフ | kjohu | kjohu |
| MB10 | 14 | キョヘ | kjohe | kjohe |
| MB10 | 15 | キョホ | kjoho | kjoho |
| MB10 | 16 | キョサ | kjosa | kjosa |
| MB10 | 17 | キョシ | kjosi | kjosi |
| MB10 | 18 | キョス | kjosu | kjosu |
| MB10 | 19 | キョセ | kjose | kjose |
| MB10 | 20 | キョソ | kjoso | kjoso |
| MB11 | 1 | キョシャ | kjosja | kjosja |
| MB11 | 2 | キョシュ | kjosju | kjosju |
| MB11 | 3 | キョショ | kjosjo | kjosjo |
| MB11 | 4 | キョマ | kjoma | kjoma |
| MB11 | 5 | キョミ | kjomi | kjomi |
| MB11 | 6 | キョム | kjomu | kjomu |
| MB11 | 7 | キョメ | kjome | kjome |
| MB11 | 8 | キョモ | kjomo | kjomo |
| MB11 | 9 | ハカ | haka | haka |
| MB11 | 10 | ハキ | haki | haki |
| MB11 | 11 | ハク | haku | haku |
| MB11 | 12 | ハケ | hake | hake |
| MB11 | 13 | ハコ | hako | hako |
| MB11 | 14 | ハキャ | hakja | hakja |
| MB11 | 15 | ハキュ | hakju | hakju |
| MB11 | 16 | ハキョ | hakjo | hakjo |
| MB11 | 17 | ハハ | haha | haha |


| MB11 | 18 | ハヒ | hahi | hahi |
| :---: | :---: | :---: | :---: | :---: |
| MB11 | 19 | ハフ | hahu | hahu |
| MB11 | 20 | 八へ | hahe | hahe |
| MB12 | 1 | ハホ | haho | haho |
| MB12 | 2 | ハサ | hasa | hasa |
| MB12 | 3 | ハシ | hasi | hasi |
| MB12 | 4 | ハス | hasu | hasu |
| MB12 | 5 | ハセ | hase | hase |
| MB12 | 6 | ハソ | haso | haso |
| MB12 | 7 | ハシャ | hasja | hasja |
| MB12 | 8 | ハシュ | hasju | hasju |
| MB12 | 9 | ハショ | hasjo | hasjo |
| MB12 | 10 | ハマ | hama | hama |
| MB12 | 11 | ハミ | hami | hami |
| MB12 | 12 | ハム | hamu | hamu |
| MB12 | 13 | ハメ | hame | hame |
| MB12 | 14 | ハモ | hamo | hamo |
| MB12 | 15 | ヒカ | hika | hika |
| MB12 | 16 | ヒキ | hiki | hiki |
| MB12 | 17 | ヒク | hiku | hiku |
| MB12 | 18 | ヒケ | hike | hike |
| MB12 | 19 | ヒコ | hiko | hiko |
| MB12 | 20 | ヒキャ | hikja | hikja |
| MB13 | 1 | ヒキュ | hikju | hikju |
| MB13 | 2 | ヒキョ | hikjo | hikjo |
| MB13 | 3 | ヒハ | hiha | hiha |
| MB13 | 4 | ヒヒ | hihi | hihi |
| MB13 | 5 | ヒフ | hihu | hihu |
| MB13 | 6 | ヒヘ | hihe | hihe |
| MB13 | 7 | ヒホ | hiho | hiho |
| MB13 | 8 | ヒサ | hisa | hisa |
| MB13 | 9 | ヒシ | hisi | hisi |
| MB13 | 10 | ヒス | hisu | hisu |
| MB13 | 11 | ヒセ | hise | hise |
| MB13 | 12 | ヒソ | hiso | hiso |
| MB13 | 13 | ヒシャ | hisja | hisja |


| MB13 | 14 | ヒシュ | hisju |
| :--- | :---: | :--- | :--- |
| MB13 | 15 | ヒショ | hisju |
| MB13 | 16 | ヒマ | hima |


| MB15 | 10 | ヘケ | heke | heke |
| :---: | :---: | :---: | :---: | :---: |
| MB15 | 11 | ヘコ | heko | heko |
| MB15 | 12 | ヘキャ | hekja | hekja |
| MB15 | 13 | ヘキュ | hekju | hekju |
| MB15 | 14 | ヘキョ | hekjo | hekjo |
| MB15 | 15 | ヘハ | heha | heha |
| MB15 | 16 | ヘヒ | hehi | hehi |
| MB15 | 17 | ヘフ | hehu | hehu |
| MB15 | 18 | ヘヘ | hehe | hehe |
| MB15 | 19 | ヘホ | heho | heho |
| MB15 | 20 | ヘサ | hesa | hesa |
| MB16 | 1 | ヘシ | hesi | hesi |
| MB16 | 2 | ヘス | hesu | hesu |
| MB16 | 3 | へセ | hese | hese |
| MB16 | 4 | ヘソ | heso | heso |
| MB16 | 5 | ヘシャ | hesja | hesja |
| MB16 | 6 | ヘシュ | hesju | hesju |
| MB16 | 7 | ヘショ | hesjo | hesjo |
| MB16 | 8 | ヘマ | hema | hema |
| MB16 | 9 | ヘミ | hemi | hemi |
| MB16 | 10 | ヘム | hemu | hemu |
| MB16 | 11 | ヘメ | heme | heme |
| MB16 | 12 | ヘモ | hemo | hemo |
| MB16 | 13 | ホカ | hoka | hoka |
| MB16 | 14 | ホキ | hoki | hoki |
| MB16 | 15 | ホク | hoku | hoku |
| MB16 | 16 | ホケ | hoke | hoke |
| MB16 | 17 | ホコ | hoko | hoko |
| MB16 | 18 | ホキャ | hokja | hokja |
| MB16 | 19 | ホキュ | hokju | hokju |
| MB16 | 20 | ホキョ | hokjo | hokjo |
| MB17 | 1 | ホハ | hoha | hoha |
| MB17 | 2 | ホヒ | hohi | hohi |
| MB17 | 3 | ホフ | hohu | hohu |
| MB17 | 4 | ホヘ | hohe | hohe |
| MB17 | 5 | ホホ | hoho | hoho |


| MB17 | 6 | ホサ | hosa | hosa |
| :---: | :---: | :---: | :---: | :---: |
| MB17 | 7 | ホシ | hosi | hosi |
| MB17 | 8 | ホス | hosu | hosu |
| MB17 | 9 | ホセ | hose | hose |
| MB17 | 10 | ホソ | hoso | hoso |
| MB17 | 11 | ホシャ | hosja | hosja |
| MB17 | 12 | ホシュ | hosju | hosju |
| MB17 | 13 | ホショ | hosjo | hosjo |
| MB17 | 14 | ホマ | homa | homa |
| MB17 | 15 | ホミ | homi | homi |
| MB17 | 16 | ホム | homu | homu |
| MB17 | 17 | ホメ | home | home |
| MB17 | 18 | ホモ | homo | homo |
| MB17 | 19 | サカ | saka | saka |
| MB17 | 20 | サキ | saki | saki |
| MB18 | 1 | サク | saku | saku |
| MB18 | 2 | サケ | sake | sake |
| MB18 | 3 | サコ | sako | sako |
| MB18 | 4 | サキャ | sakja | sakja |
| MB18 | 5 | サキュ | sakju | sakju |
| MB18 | 6 | サキョ | sakjo | sakjo |
| MB18 | 7 | サハ | saha | saha |
| MB18 | 8 | サヒ | sahi | sahi |
| MB18 | 9 | サフ | sahu | sahu |
| MB18 | 10 | サヘ | sahe | sahe |
| MB18 | 11 | サホ | saho | saho |
| MB18 | 12 | ササ | sasa | sasa |
| MB18 | 13 | サシ | sasi | sasi |
| MB18 | 14 | サス | sasu | sasu |
| MB18 | 15 | サセ | sase | sase |
| MB18 | 16 | サソ | saso | saso |
| MB18 | 17 | サシャ | sasja | sasja |
| MB18 | 18 | サシュ | sasju | sasju |
| MB18 | 19 | サショ | sasjo | sasjo |
| MB18 | 20 | サマ | sama | sama |
| MB19 | 1 | サミ | sami | sami |


| MB19 | 2 | サム | samu | samu |
| :---: | :---: | :---: | :---: | :---: |
| MB19 | 3 | サメ | same | same |
| MB19 | 4 | サモ | samo | samo |
| MB19 | 5 | シカ | sika | sika |
| MB19 | 6 | シキ | siki | siki |
| MB19 | 7 | シク | siku | siku |
| MB19 | 8 | シケ | sike | sike |
| MB19 | 9 | シコ | siko | siko |
| MB19 | 10 | シキャ | sikja | sikja |
| MB19 | 11 | シキュ | sikju | sikju |
| MB19 | 12 | シキョ | sikjo | sikjo |
| MB19 | 13 | シハ | siha | siha |
| MB19 | 14 | シヒ | sihi | sihi |
| MB19 | 15 | シフ | sihu | sihu |
| MB19 | 16 | シヘ | sihe | sihe |
| MB19 | 17 | シホ | siho | siho |
| MB19 | 18 | シサ | sisa | sisa |
| MB19 | 19 | シシ | sisi | sisi |
| MB19 | 20 | シス | sisu | sisu |
| MB20 | 1 | シセ | sise | sise |
| MB20 | 2 | シソ | siso | siso |
| MB20 | 3 | シシャ | sisja | sisja |
| MB20 | 4 | シシュ | sisju | sisju |
| MB20 | 5 | シショ | sisjo | sisjo |
| MB20 | 6 | シマ | sima | sima |
| MB20 | 7 | シミ | simi | simi |
| MB20 | 8 | シム | simu | simu |
| MB20 | 9 | シメ | sime | sime |
| MB20 | 10 | シモ | simo | simo |
| MB20 | 11 | スカ | suka | suka |
| MB20 | 12 | スキ | suki | suki |
| MB20 | 13 | スク | suku | suku |
| MB20 | 14 | スケ | suke | suke |
| MB20 | 15 | スコ | suko | suko |
| MB20 | 16 | スキャ | sukja | sukja |
| MB20 | 17 | スキュ | sukju | sukju |


| MB20 | 18 | スキョ | sukjo | sukjo |
| :---: | :---: | :---: | :---: | :---: |
| MB20 | 19 | スハ | suha | suha |
| MB20 | 20 | スヒ | suhi | suhi |
| MB21 | 1 | スフ | suhu | suhu |
| MB21 | 2 | スヘ | suhe | suhe |
| MB21 | 3 | スホ | suho | suho |
| MB21 | 4 | スサ | susa | susa |
| MB21 | 5 | スシ | susi | susi |
| MB21 | 6 | スス | susu | susu |
| MB21 | 7 | スセ | suse | suse |
| MB21 | 8 | スソ | suso | suso |
| MB21 | 9 | スシャ | susja | susja |
| MB21 | 10 | スシュ | susju | susju |
| MB21 | 11 | スショ | susjo | susjo |
| MB21 | 12 | スマ | suma | suma |
| MB21 | 13 | スミ | sumi | sumi |
| MB21 | 14 | スム | sumu | sumu |
| MB21 | 15 | スメ | sume | sume |
| MB21 | 16 | スモ | sumo | sumo |
| MB21 | 17 | セカ | seka | seka |
| MB21 | 18 | セキ | seki | seki |
| MB21 | 19 | セク | seku | seku |
| MB21 | 20 | セケ | seke | seke |
| MB22 | 1 | セコ | seko | seko |
| MB22 | 2 | セキャ | sekja | sekja |
| MB22 | 3 | セキュ | sekju | sekju |
| MB22 | 4 | セキョ | sekjo | sekjo |
| MB22 | 5 | セハ | seha | seha |
| MB22 | 6 | セヒ | sehi | sehi |
| MB22 | 7 | セフ | sehu | sehu |
| MB22 | 8 | セヘ | sehe | sehe |
| MB22 | 9 | セホ | seho | seho |
| MB22 | 10 | セサ | sesa | sesa |
| MB22 | 11 | セシ | sesi | sesi |
| MB22 | 12 | セス | sesu | sesu |
| MB22 | 13 | セセ | sese | sese |


| MB22 | 14 | セソ | seso | seso |
| :---: | :---: | :---: | :---: | :---: |
| MB22 | 15 | セシャ | sesja | sesja |
| MB22 | 16 | セシュ | sesju | sesju |
| MB22 | 17 | セショ | sesjo | sesjo |
| MB22 | 18 | セマ | sema | sema |
| MB22 | 19 | セミ | semi | semi |
| MB22 | 20 | セム | semu | semu |
| MB23 | 1 | セメ | seme | seme |
| MB23 | 2 | セモ | semo | semo |
| MB23 | 3 | ソカ | soka | soka |
| MB23 | 4 | ソキ | soki | soki |
| MB23 | 5 | ソク | soku | soku |
| MB23 | 6 | ソケ | soke | soke |
| MB23 | 7 | ソコ | soko | soko |
| MB23 | 8 | ソキャ | sokja | sokja |
| MB23 | 9 | ソキュ | sokju | sokju |
| MB23 | 10 | ソキョ | sokjo | sokjo |
| MB23 | 11 | ソハ | soha | soha |
| MB23 | 12 | ソヒ | sohi | sohi |
| MB23 | 13 | ソフ | sohu | sohu |
| MB23 | 14 | ソヘ | sohe | sohe |
| MB23 | 15 | ソホ | soho | soho |
| MB23 | 16 | ソサ | sosa | sosa |
| MB23 | 17 | ソシ | sosi | sosi |
| MB23 | 18 | ソス | sosu | sosu |
| MB23 | 19 | ソセ | sose | sose |
| MB23 | 20 | ソソ | soso | soso |
| MB24 | 1 | ソシャ | sosja | sosja |
| MB24 | 2 | ソシュ | sosju | sosju |
| MB24 | 3 | ソショ | sosjo | sosjo |
| MB24 | 4 | ソマ | soma | soma |
| MB24 | 5 | ソミ | somi | somi |
| MB24 | 6 | ソム | somu | somu |
| MB24 | 7 | ソメ | some | some |
| MB24 | 8 | ソモ | somo | somo |
| MB24 | 9 | シャカ | sjaka | sjaka |


| MB24 | 10 | シャキ | sjaki | sjaki |
| :---: | :---: | :---: | :---: | :---: |
| MB24 | 11 | シャク | sjaku | sjaku |
| MB24 | 12 | シャケ | sjake | sjake |
| MB24 | 13 | シャコ | sjako | sjako |
| MB24 | 14 | シャキャ | sjakja | sjakja |
| MB24 | 15 | シャキュ | sjakju | sjakju |
| MB24 | 16 | シャキョ | sjakjo | sjakjo |
| MB24 | 17 | シャハ | sjaha | sjaha |
| MB24 | 18 | シャヒ | sjahi | sjahi |
| MB24 | 19 | シャフ | sjahu | sjahu |
| MB24 | 20 | シャヘ | sjahe | sjahe |
| MB25 | 1 | シャホ | sjaho | sjaho |
| MB25 | 2 | シャサ | sjasa | sjasa |
| MB25 | 3 | シャシ | sjasi | sjasi |
| MB25 | 4 | シャス | sjasu | sjasu |
| MB25 | 5 | シャセ | sjase | sjase |
| MB25 | 6 | シャソ | sjaso | sjaso |
| MB25 | 7 | シャシャ | sjasja | sjasja |
| MB25 | 8 | シャシュ | sjasju | sjasju |
| MB25 | 9 | シャショ | sjasjo | sjasjo |
| MB25 | 10 | シャマ | sjama | sjama |
| MB25 | 11 | シャミ | sjami | sjami |
| MB25 | 12 | シャム | sjamu | sjamu |
| MB25 | 13 | シャメ | sjame | sjame |
| MB25 | 14 | シャモ | sjamo | sjamo |
| MB25 | 15 | シュカ | sjuka | sjuka |
| MB25 | 16 | シュキ | sjuki | sjuki |
| MB25 | 17 | シュク | sjuku | sjuku |
| MB25 | 18 | シュケ | sjuke | sjuke |
| MB25 | 19 | シュコ | sjuko | sjuko |
| MB25 | 20 | シュキャ | sjukja | sjukja |
| MB26 | 1 | シュキュ | sjukju | sjukju |
| MB26 | 2 | シュキョ | sjukjo | sjukjo |
| MB26 | 3 | シュハ | sjuha | sjuha |
| MB26 | 4 | シュヒ | sjuhi | sjuhi |
| MB26 | 5 | シュフ | sjuhu | sjuhu |


| MB26 | 6 | シュヘ | sjuhe | sjuhe |
| :---: | :---: | :---: | :---: | :---: |
| MB26 | 7 | シュホ | sjuho | sjuho |
| MB26 | 8 | シュサ | sjusa | sjusa |
| MB26 | 9 | シュシ | sjusi | sjusi |
| MB26 | 10 | シュス | sjusu | sjusu |
| MB26 | 11 | シュセ | sjuse | sjuse |
| MB26 | 12 | シュソ | sjuso | sjuso |
| MB26 | 13 | シュシャ | sjusja | sjusja |
| MB26 | 14 | シュシュ | sjusju | sjusju |
| MB26 | 15 | シュショ | sjusjo | sjusjo |
| MB26 | 16 | シュマ | sjuma | sjuma |
| MB26 | 17 | シュミ | sjumi | sjumi |
| MB26 | 18 | シュム | sjumu | sjumu |
| MB26 | 19 | シュメ | sjume | sjume |
| MB26 | 20 | シュモ | sjumo | sjumo |
| MB27 | 1 | ショカ | sjoka | sjoka |
| MB27 | 2 | ショキ | sjoki | sjoki |
| MB27 | 3 | ショク | sjoku | sjoku |
| MB27 | 4 | ショケ | sjoke | sjoke |
| MB27 | 5 | ショコ | sjoko | sjoko |
| MB27 | 6 | ショキャ | sjokja | sjokja |
| MB27 | 7 | ショキュ | sjokju | sjokju |
| MB27 | 8 | ショキョ | sjokjo | sjokjo |
| MB27 | 9 | ショハ | sjoha | sjoha |
| MB27 | 10 | ショヒ | sjohi | sjohi |
| MB27 | 11 | ショフ | sjohu | sjohu |
| MB27 | 12 | ショヘ | sjohe | sjohe |
| MB27 | 13 | ショホ | sjoho | sjoho |
| MB27 | 14 | ショサ | sjosa | sjosa |
| MB27 | 15 | ショシ | sjosi | sjosi |
| MB27 | 16 | ショス | sjosu | sjosu |
| MB27 | 17 | ショセ | sjose | sjose |
| MB27 | 18 | ショソ | sjoso | sjoso |
| MB27 | 19 | ショシャ | sjosja | sjosja |
| MB27 | 20 | ショシュ | sjosju | sjosju |
| MB28 | 1 | ショショ | sjosjo | sjosjo |

\(\left.\begin{array}{llll}MB28 \& 2 \& ショマ \& sjoma <br>
MB28 \& 3 \& ショミ \& sjomi <br>
MB28 \& 4 \& ショム \& sjomi <br>

MB28 \& 5 \& ショメ \& sjomu\end{array}\right]\)| sjomu |
| :--- |
| MB28 |


| MB29 | 18 | ミキャ | mikja | mikja |
| :---: | :---: | :---: | :---: | :---: |
| MB29 | 19 | ミキュ | mikju | mikju |
| MB29 | 20 | ミキョ | mikjo | mikjo |
| MB30 | 1 | ミハ | miha | miha |
| MB30 | 2 | ミヒ | mihi | mihi |
| MB30 | 3 | ミフ | mihu | mihu |
| MB30 | 4 | ミへ | mihe | mihe |
| MB30 | 5 | ミホ | miho | miho |
| MB30 | 6 | ミサ | misa | misa |
| MB30 | 7 | ミシ | misi | misi |
| MB30 | 8 | ミス | misu | misu |
| MB30 | 9 | ミセ | mise | mise |
| MB30 | 10 | ミソ | miso | miso |
| MB30 | 11 | ミシャ | misja | misja |
| MB30 | 12 | ミシュ | misju | misju |
| MB30 | 13 | ミショ | misjo | misjo |
| MB30 | 14 | ミマ | mima | mima |
| MB30 | 15 | ミミ | mimi | mimi |
| MB30 | 16 | ミム | mimu | mimu |
| MB30 | 17 | ミメ | mime | mime |
| MB30 | 18 | ミモ | mimo | mimo |
| MB30 | 19 | ム力 | muka | muka |
| MB30 | 20 | ムキ | muki | muki |
| MB31 | 1 | ムク | muku | muku |
| MB31 | 2 | ムケ | muke | muke |
| MB31 | 3 | ムコ | muko | muko |
| MB31 | 4 | ムキャ | mukja | mukja |
| MB31 | 5 | ムキュ | mukju | mukju |
| MB31 | 6 | ムキョ | mukjo | mukjo |
| MB31 | 7 | ムハ | muha | muha |
| MB31 | 8 | ムヒ | muhi | muhi |
| MB31 | 9 | ムフ | muhu | muhu |
| MB31 | 10 | ムへ | muhe | muhe |
| MB31 | 11 | ムホ | muho | muho |
| MB31 | 12 | ムサ | musa | musa |
| MB31 | 13 | ムシ | musi | musi |


| MB31 | 14 | ムス | musu | musu |
| :---: | :---: | :---: | :---: | :---: |
| MB31 | 15 | ムセ | muse | muse |
| MB31 | 16 | ムソ | muso | muso |
| MB31 | 17 | ムシャ | musja | musja |
| MB31 | 18 | ムシュ | musju | musju |
| MB31 | 19 | ムショ | musjo | musjo |
| MB31 | 20 | ムマ | muma | muma |
| MB32 | 1 | ムミ | mumi | mumi |
| MB32 | 2 | ムム | mumu | mumu |
| MB32 | 3 | ムメ | mume | mume |
| MB32 | 4 | ムモ | mumo | mumo |
| MB32 | 5 | メカ | meka | meka |
| MB32 | 6 | メキ | meki | meki |
| MB32 | 7 | メク | meku | meku |
| MB32 | 8 | メケ | meke | meke |
| MB32 | 9 | メコ | meko | meko |
| MB32 | 10 | メキャ | mekja | mekja |
| MB32 | 11 | メキュ | mekju | mekju |
| MB32 | 12 | メキョ | mekjo | mekjo |
| MB32 | 13 | メハ | meha | meha |
| MB32 | 14 | メヒ | mehi | mehi |
| MB32 | 15 | メフ | mehu | mehu |
| MB32 | 16 | メヘ | mehe | mehe |
| MB32 | 17 | メホ | meho | meho |
| MB32 | 18 | メサ | mesa | mesa |
| MB32 | 19 | メシ | mesi | mesi |
| MB32 | 20 | メス | mesu | mesu |
| MB33 | 1 | メセ | mese | mese |
| MB33 | 2 | メソ | meso | meso |
| MB33 | 3 | メシャ | mesja | mesja |
| MB33 | 4 | メシュ | mesju | mesju |
| MB33 | 5 | メショ | mesjo | mesjo |
| MB33 | 6 | メマ | mema | mema |
| MB33 | 7 | メミ | memi | memi |
| MB33 | 8 | メム | memu | memu |
| MB33 | 9 | $x \times$ | meme | meme |


| MB33 | 10 | メモ | memo | memo |
| :---: | :---: | :---: | :---: | :---: |
| MB33 | 11 | モカ | moka | moka |
| MB33 | 12 | モキ | moki | moki |
| MB33 | 13 | モク | moku | moku |
| MB33 | 14 | モケ | moke | moke |
| MB33 | 15 | モコ | moko | moko |
| MB33 | 16 | モキャ | mokja | mokja |
| MB33 | 17 | モキュ | mokju | mokju |
| MB33 | 18 | モキョ | mokjo | mokjo |
| MB33 | 19 | モハ | moha | moha |
| MB33 | 20 | モヒ | mohi | mohi |
| MB34 | 1 | モフ | mohu | mohu |
| MB34 | 2 | モヘ | mohe | mohe |
| MB34 | 3 | モホ | moho | moho |
| MB34 | 4 | モサ | mosa | mosa |
| MB34 | 5 | モシ | mosi | mosi |
| MB34 | 6 | モス | mosu | mosu |
| MB34 | 7 | モセ | mose | mose |
| MB34 | 8 | モソ | moso | moso |
| MB34 | 9 | モシャ | mosja | mosja |
| MB34 | 10 | モシュ | mosju | mosju |
| MB34 | 11 | モショ | mosjo | mosjo |
| MB34 | 12 | モマ | moma | moma |
| MB34 | 13 | モミ | momi | momi |
| MB34 | 14 | モム | momu | momu |
| MB34 | 15 | モメ | mome | mome |
| MB34 | 16 | モモ | momo | momo |
| SR1 | 1 | カカ | kaka | kaka |
| SR1 | 2 | カキ | kaki | kaki |
| SR1 | 3 | カク | kaku | kaku |
| SR1 | 4 | カケ | kake | kake |
| SR1 | 5 | カコ | kako | kako |
| SR1 | 6 | カキャ | kakja | kakja |
| SR1 | 7 | カキュ | kakju | kakju |
| SR1 | 8 | カキョ | kakjo | kakjo |
| SR1 | 9 | カハ | kaha | kaha |


| SR1 | 10 | カヒ | kahi | kahi |
| :---: | :---: | :---: | :---: | :---: |
| SR2 | 1 | カフ | kahu | kahu |
| SR2 | 2 | カヘ | kahe | kahe |
| SR2 | 3 | カホ | kaho | kaho |
| SR2 | 4 | カサ | kasa | kasa |
| SR2 | 5 | カシ | kasi | kasi |
| SR2 | 6 | カス | kasu | kasu |
| SR2 | 7 | カセ | kase | kase |
| SR2 | 8 | カソ | kaso | kaso |
| SR2 | 9 | カシャ | kasja | kasja |
| SR2 | 10 | カシュ | kasju | kasju |
| SR3 | 1 | カショ | kasjo | kasjo |
| SR3 | 2 | カマ | kama | kama |
| SR3 | 3 | カミ | kami | kami |
| SR3 | 4 | カム | kamu | kamu |
| SR3 | 5 | カメ | kame | kame |
| SR3 | 6 | カモ | kamo | kamo |
| SR3 | 7 | キカ | kika | kika |
| SR3 | 8 | キキ | kiki | kiki |
| SR3 | 9 | キク | kiku | kiku |
| SR3 | 10 | キケ | kike | kike |
| SR3 | 11 | キコ | kiko | kiko |
| TT1 | 1 | 『菊栗』 | ＿kikuguri |  |
| TT1 | 2 | 『竹垣』 | ＿takegaki |  |
| TT1 | 3 | 『虎』 | ＿tora |  |
| PL1 | 1 | 『中立』 | ＿neutral |  |
| PL1 | 2 | 『反問』 | ＿suspicion |  |
| PL1 | 3 | 『感心』 | ＿admiration |  |
| PL1 | 4 | 『落胆』 | ＿disappointment |  |
| PL2 | 1 | 『0』 | ＿focus0 |  |
| PL2 | 2 | 『1』 | ＿focus1 |  |
| PL2 | 3 | 『2』 | ＿focus2 |  |
| PL2 | 4 | 『3』 | ＿focus3 |  |

Appendix 2: Number of recorded utterances per speaker, FPS, and recording classes

For each speaker and FPS, the total number of recorded utterances and its break-down for utterance classes are indicated in this table.

| SUBJECT | FPS | MU | MP | MB | SR | PL | TT | NS | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s1 | 14 | 109 | 272 | 797 | 35 | 15 | 4 | 2 | 1234 |
| s1 | 27 | 68 | 0 | 0 | 0 | 0 | 0 | 0 | 68 |
| s2 | 14 | 109 | 336 | 836 | 31 | 20 | 4 | 2 | 1338 |
| s2 | 27 | 88 | 28 | 29 | 0 | 0 | 0 | 0 | 145 |
| s3 | 14 | 137 | 97 | 694 | 0 | 0 | 0 | 0 | 928 |
| s3 | 27 | 0 | 43 | 22 | 0 | 0 | 0 | 0 | 65 |
| s4 | 14 | 162 | 287 | 754 | 0 | 0 | 0 | 2 | 1205 |
| s4 | 27 | 82 | 28 | 21 | 0 | 0 | 0 | 0 | 131 |
| s5 | 14 | 134 | 273 | 712 | 41 | 0 | 3 | 4 | 1167 |
| s5 | 27 | 61 | 32 | 34 | 0 | 0 | 0 | 0 | 127 |
| s7 | 14 | 133 | 320 | 800 | 38 | 12 | 10 | 3 | 1316 |
| s7 | 27 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 77 |
| s8 | 14 | 109 | 299 | 811 | 31 | 16 | 4 | 2 | 1272 |
| s8 | 27 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | 66 |
| s9 | 14 | 109 | 100 | 824 | 41 | 8 | 3 | 0 | 1085 |
| s9 | 27 | 0 | 29 | 22 | 0 | 0 | 0 | 0 | 51 |
| s10 | 14 | 108 | 100 | 733 | 31 | 18 | 3 | 0 | 993 |
| s10 | 27 | 0 | 47 | 11 | 0 | 0 | 0 | 0 | 58 |
| s11 | 14 | 109 | 123 | 720 | 31 | 24 | 3 | 0 | 1010 |
| s11 | 27 | 0 | 27 | 21 | 0 | 0 | 0 | 0 | 48 |
| s12 | 14 | 137 | 274 | 695 | 41 | 10 | 5 | 2 | 1164 |
| s12 | 27 | 91 | 36 | 21 | 0 | 0 | 0 | 0 | 148 |
| s14 | 14 | 140 | 292 | 837 | 31 | 0 | 5 | 2 | 1307 |
| s14 | 27 | 72 | 27 | 18 | 0 | 0 | 0 | 0 | 117 |
| s16 | 14 | 175 | 187 | 730 | 0 | 20 | 0 | 0 | 1112 |
| s16 | 27 | 0 | 30 | 22 | 0 | 0 | 0 | 0 | 52 |
| s17 | 14 | 167 | 168 | 730 | 0 | 16 | 0 | 0 | 1081 |
| s17 | 27 | 0 | 33 | 22 | 0 | 0 | 0 | 0 | 55 |
| s18 | 14 | 140 | 168 | 770 | 0 | 18 | 3 | 0 | 1099 |
| s18 | 27 | 0 | 40 | 19 | 0 | 0 | 0 | 0 | 59 |
| s19 | 14 | 167 | 365 | 752 | 0 | 18 | 8 | 2 | 1312 |


| $s 19$ | 27 | 63 | 43 | 22 | 0 | 0 | 0 | 0 | 128 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $s 20$ | 14 | 142 | 149 | 734 | 0 | 19 | 4 | 1 | 1049 |
| $s 21$ | 14 | 142 | 171 | 782 | 0 | 21 | 5 | 1 | 1122 |
| $s 24$ | 14 | 192 | 196 | 787 | 0 | 0 | 0 | 4 | 1179 |
| $s 25$ | 14 | 145 | 149 | 676 | 0 | 0 | 0 | 2 | 972 |
| $s 26$ | 14 | 205 | 174 | 745 | 0 | 0 | 0 | 2 | 1126 |
| $s 27$ | 14 | 144 | 191 | 731 | 0 | 0 | 0 | 2 | 1068 |
| $s 28$ | 14 | 145 | 220 | 790 | 0 | 0 | 0 | 4 | 1159 |
| $s 29$ | 14 | 145 | 219 | 732 | 0 | 0 | 0 | 3 | 1009 |
| $s 30$ | 14 | 145 | 221 | 824 | 0 | 0 | 0 | 2 | 1192 |

