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Abstract

Logarithmic conformal field theory is a relatively recent branch of mathematical

physics which gives rise to interesting representations of symmetry algebras through

the process of fusion. Fusion is fundamental to the study of conformal field theories

and mathematically may be considered to be something of an abstract tensor prod-

uct of representations. This has been made more precise through an algorithmic

approach developed by Nahm, Gaberdiel and Kausch and coded by several research

groups. Such an algorithm has been implemented for the case of Virasoro algebra

but not in the super-symmetric case. In this thesis we delve into the details of mod-

ifying and applying the NGK algorithm for the N=1 super Virasoro algebra and

study the representations that arise in both the Neveu-Schwarz and Ramond sector.

The algorithm has been encoded in the SAGE programming environment.

7





Contents

1 Virasoro Representation Theory 15

1.1 Verma Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Vertex Operator Algebras . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Vertex Operator Algebra Representations . . . . . . . . . . . . . . . . 22

1.4 Minimal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Verlinde Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Logarithmic CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 N=1 Representation Theory 33

2.1 N = 1 algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Extended Kac tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Neveu Schwarz Verma modules . . . . . . . . . . . . . . . . . . . . . 39

2.4 Ramond Verma modules . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Fock spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Kac modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Verlinde Formula 51

3.1 Characters, modular transforms and the Verlinde formula . . . . . . . 51

3.2 Modular transformations . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Verlinde products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 A fermionic Verlinde formula . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Grothendieck fusion products . . . . . . . . . . . . . . . . . . . . . . 62

4 Nahm Gaberdiel Kausch algorithm 69

4.1 The Untwisted Nahm-Gaberdiel-Kausch Fusion Algorithm . . . . . . 69

4.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9



4.2 Fusing twisted modules . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Explicit fusion products . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Example: fusing Ramond with Ramond . . . . . . . . . . . . . 87

4.3.2 Example: fusing Ramond with Neveu-Schwarz . . . . . . . . . 92

5 Results 99

5.1 Fusing Kr,1 with K1,s . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Fusing near the edge . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 An exceptional case: c = 3
2

. . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Fusing away from the edge . . . . . . . . . . . . . . . . . . . . . . . . 111

A Fusion and the Nahm-Gaberdiel-Kausch Algorithm 119

A.1 Coproduct Formulae for Untwisted Modules . . . . . . . . . . . . . . 120

A.2 Coproduct formulae for fusing twisted modules . . . . . . . . . . . . . 126

B Staggered Modules 133

B.1 Staggered modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2 Logarithmic Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C Computational Flow Chart 141

10



Introduction

Superconformal algebras have wide physical applications in superstring theory and

statistical mechanics. The superconformal algebras are parametrised by the number

N of fermionic partners to the energy-momentum tensor with the Virasoro algebra

being the simplest (N = 0) and the (N = 1) superconformal the next. We study

the N = 1 superconformal algebra in this thesis.

We are able to explicitly construct interesting indecomposable modules of the

N = 1 super Virasoro algebra via fusion. We have an algorithmic process for taking

two modules in some category and producing an algebraic sum of modules that is

compatible with the process of fusion of primary fields from conformal field theory

[3]. The algorithmic process was first theorised by Nahm [4] for the depth zero case

with explicit formulae given by Gaberdiel and Kausch [5, 6] for arbitrary depths and

specific examples. It is then of interest to try to understand the structure and type

of the resultant indecomposables. This work has been undertaken by Kytola and

Ridout [7] for the case of Virasoro modules, building upon the work of Rohsiepe [8].

In the Virasoro case, the simplest of these indecomposables were given the name

staggered modules due to the pictoral representation of two adjacent modules offset

by some amount and linked by a Jordan cell in a staggered fashion. The core struc-

ture was then the triangle gluing together the highest weights of each module. See

figure 1.

The key finding from [7], was that each staggered module sits inside a 1-parameter

family of modules, there is then a canonical way of uniquely determining this pa-

rameter referred to as β. Referring to figure 1, normalise v1 such that coefficient of

the Ln−1 term in the singular vector is one. Then apply the adjoint of the singular
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v1

sv v2

...
...

L0 − h2

β

Figure 1: A Jordan block between two highest weight modules creates what is known
as a staggered module. Here v1 and v2 are two highest weight vectors with sv a
singular vector in the module obtained from v1. The scalar β uniquely determines
the staggered module.

vector monomials to v2. This should return a scalar multiple of v1. The scalar is β.

The question can then be proposed: How does this all work in the Neveu-Schwarz

sector of the N = 1 super Virasoro algebra? It is expected to behave in a very sim-

ilar fashion due to the similarity in algebras. The more challenging case is that of

the Ramond sector. Here the expected structures are not clear and detailed inves-

tigation will offer insight into more general logarithmic structures in the N > 1 cases.

It is also possible to obtain fusion products via lattice calculations in statistical

mechanics [9, 10]. Here the eigenvalues of L0 are obtained through diagrammatic

means and numerical approximation [11]. Given this physical motivation, we set

about the task through a process of explicit calculation of interesting fusion prod-

ucts to ascertain the resulting structure and classification.

In chapter 1, I cover the preliminary material on Verma modules through the

example of the Virasoro algebra. Here the basic tenets of conformal field theory are

presented. I develop the theory through a blend of the language of vertex algebras

and the physical notation found in [12]. The goal is to briefly outline the key el-

ements when considering minimal models, the representation theory, the modular

transformations of characters and the fusion rules for the logarithmic analogue to

come.

In chapter 2, I build on the Virasoro theory with the N = 1 superconformal
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algebra representation theory. Here we extend the Kac table to include an infinite

number of representations of the Neveu-Schwarz and Ramond algebra that will allow

for logarithmic coupling in the following chapters. The representation theory of the

Neveu-Schwarz algebra mirrors that of the Virasoro algebra where as that of the Ra-

mond algebra is a little more complicated due to the presence of a G0-operator. The

structures of interest are certain submodules of Fock spaces known as Kac modules.

In chapter 3, I outline one of the main tools of this analysis, the fermionic Verlinde

formula. As we are considering an infinite number of representations, we require a

continuous analogue of the Verlinde formula. We construct the fermionic Verlinde

formula from its bosonic counterpart and establish the Grothendieck fusion ring of

characters and supercharacters for the Kac modules.

In chapter 4, I introduce the fundamental tool of this analysis, the Nahm-

Gaberdiel-Kausch coproduct formulae. An explicit fusion product of Kac mod-

ules is calculated using the Nahm-Gaberdiel-Kausch algorithm. The fusion product

of a Ramond representation with a Neveu-Schwarz representation or two Ramond

representations requires an adapted version of the usual Nahm-Gaberdiel-Kausch

algorithm, which brings with it a certain level of variability through the introduc-

tion of twist parameters. We show that only a finite set of twist parameters allow

for a meaningful result of the fusion product when using this algorithm.

In chapter 5, I then discuss the results of this analysis and offer some conjectures

on the structure and patterns to be found. The results reveal Jordan blocks in the

expected places when compared to the Virasoro case along with indecomposability

parameters to determine the structure.

Appendix A, provides a derivation of the Nahm-Gaberdiel-Kausch algorithm.

Appendix B, introduces the concept of a staggered module, the main structure of

interest found when the fusion product of two representations contain a Jordan

block. Appendix C, contains a flow diagram of the programmatic implementation

of the Nahm-Gaberdiel-Kausch algorithm.
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Chapter 1

Virasoro Representation Theory

In this chapter we will use the familiar example of the Virasoro algebra to elucidate

the concepts in representation theory and conformal field theory necessary to the

remainder of this thesis. The remainder of this thesis will focus on the super Virasoro

algebra where in addition to the generating function of Virasoro modes we also

have an additional set of fermionic modes. The super Virasoro algebra has similar

representation theory to the Virasoro case with a few key distinctions that will be

examined in the next chapter.

The primary source for this material will be the texts [12, 13]. We cover the

highest weight representation theory of the Virasoro algebra and its vertex operator

algebra as well as the conformal field theory concepts of minimal models, fusion, the

Verlinde formula and finally logarithmic minimal models. Fusion will be examined

via the usual method of correlation functions in this chapter, however we will see

later how this may be done algebraically and algorithmically via the Nahm Gaberdiel

Kausch algorithm, where fusion is considered to be the tensor product of vertex

operator algebra representations. In this chapter we see the bosonic Verlinde formula

which will be of importance when considering the Verlinde formula in the fermionic

setting. We also show how logarithmic conformal field theory may be seen as the

study of indecomposable representations of the Virasoro algebra.
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1.1 Verma Modules

The Virasoro algebra is the complex vector space spanned by Virasoro modes Ln

and central element C satisfying the Lie bracket relations

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm,−nC [Lm, C] = 0 m,n ∈ Z

The algebra admits a triangular decomposition, split by mode index into nega-

tive, zero and positive components.

vir = vir− ⊕ vir0 ⊕ vir+

We will consider modules over the universal enveloping algebra U of this alge-

bra. We may treat this as the associative unital algebra freely generated by Virasoro

modes subject to the Lie bracket relations, where the Lie bracket may now be re-

garded as the commutator [Lm, Ln] = LmLn − LnLm. Once again we impose a

triangular decomposition into finite length products of negative, zero and positive

modes which we will denote by U−,U0,U+. Note that U becomes a Virasoro mod-

ule under left multiplication. To construct a Verma module, we begin by defining a

one dimensional representation ρ, of U>0 (the subalgebra generated by non-negative

Virasoro modes) over a vector space Cv. The highest weight vector vh,c is si-

multaneously an eigenvector of L0 and C, with respective eigenvalues (conformal

weight) h and c.

ρ(L0).vh,c = hvh,c ρ(C).vh,c = cvh,c ρ(Ln).vh,c = 0 n > 0 (1.1.1)

The subalgebra U+ annihilates the highest weight vector. The Verma module

then follows from the induced module construction whereby U− (the creation

operators) acts freely on the highest weight vector.

Definition 1.1.1. The Verma module of the Virasoro algebra with conformal

weight h and central charge c is the induced module

Vh,c = U ⊗U>0 Cvh,c

By the Poincare-Birkhoff-Witt theorem this module admits a basis in which the
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Virasoro modes are ordered by mode index [14].

Theorem 1.1.1. A basis for the universal enveloping algebra of vir is given by

{L−n1 . . . L−nk |n1 > n2 > . . . > nk}

and thus a basis for Vh,c is given by

{L−n1 . . . L−nkvh,c|n1 > . . . > nk > 1}

Each basis state is then an L0 eigenvector of eigenvalue h +
∑

i ni. As a result

Vh,c admits a Z-grading under L0.

Vh,c =
⊕
n∈Z

Vnh,c

The dimension of each Vnh,c is equal to the number of partitions of n with basis

given by

Bn = {L−n1 . . . L−nkvh,c|n1 > . . . > nk > 1,
∑
i

ni = n}

Verma modules are completely parametrised by conformal weight h and central

charge c. We detail the submodule structure of Vh,c. A Verma submodule, itself

being a Verma module, is generated by singular vectors [15] satisfying the prop-

erties of (1.1.1). Due to the fact L1 and L2 generate U+, singular vectors may be

found by solving the set of equations

L1

∑
Xi∈Bn

αiXi = L2

∑
Xi∈Bn

αiXi = 0

We are interested in the set of conformal weights for which a solution to the

above exists for a fixed value of central charge. We begin by placing a bilinear form

on the module 〈·, ·〉 normalised by 〈vh,c, vh,c〉 = 1 with adjoint operation L+
−n = Ln.

This then defines a scalar product under which singular vectors belong to the kernel

〈χ,w〉 = 0 ∀w ∈ U−vh,c. Let χ be a singular vector in Vh,c with χ = U−vh,c for

U− ∈ U−. Then it can be seen that

〈χ,w〉 = 〈χ, U−vh,c〉 = 〈U+χ, vh,c〉 = 0

17



Where U+ is the adjoint of U−. As such we are able to locate singular vectors by

finding vectors in the kernel of the bilinear form. We fix the central charge and

analyse the module for fixed grade. A finite set of conformal weights will then lead

to kernel elements at this grade. We show this explicitly in the following example.

Example 1.1.1. Consider a Virasoro Verma module of highest weight h. The level

2 basis states are {L2
−1v, L−2v}. We construct a matrix of scalar products (Gram

matrix).

M (2) =

〈L2
−1v, L

2
−1v〉 〈L2

−1v, L−2v〉

〈L−2v, L
2
−1v〉 〈L−2v, L−2v〉

 =

4h(2h+ 1) 6h

6h 4h+ c/2


Then there exists a singular vector at level 2 if this matrix has zero eigenvalue for

some value of h. The matrix has determinant

detM (2) = 32(h− h1,1)(h− h1,2)(h− h2,1)

h1,1 = 0

h1,2(c) =
1

16
(5− c−

√
(1− c)(25− c))

h2,1(c) =
1

16
(5− c+

√
(1− c)(25− c))

Then for any given central charge c the Verma modules Vh1,2(c) and Vh2,1(c) will each

contain a singular vector at level 2. We ignore the module Vh1,1(c) as the level 2

state in the kernel of the scalar product here is actually a descendant of its level 1

singular vector L−1v.

A general formula for the determinant of a Gram matrix was first conjectured

by Kac [16] and proved by Feigin-Fuchs [17].

detM (l) = Const×
∏
r,s>1
rs6l

[h− hr,s(t)]p(l−rs)

hr,s(t) =
r2 − 1

4
t− rs− 1

2
+
s2 − 1

4
t−1

c(t) = 13− 6
(
t+ t( − 1)

)
Where p(n) is the number of partitions of n and t ∈ C is invariant under t↔ t−1.

18



detM (1) = (h− h1,1)

detM (2) = (h− h1,1)(h− h1,2)(h− h2,1)

detM (3) = (h− h1,1)2(h− h1,2)(h− h2,1)(h− h1,3)(h− h3,1)

...

We can see from the above that hr,s has a root at l = rs, as p(l − rs) = 0 for

l < rs. It then follows that a singular vector is found at level rs or less in the module

Vhr,s(c). It is the Jantzen filtration that confirms a singular vector at level rs [18]. As

the singular vector generates a Verma module, we expect to find p(l−rs) descendant

states at level l in the kernel of the scalar product. The above determinant formula

is crucial in the classification of Verma modules.

We describe here the four structure types for Virasoro Verma modules and

present them in figure 1.1.

Point If h 6= hr,s(t) for any r, s > 1 then Vhr,s(c) will be irreducible.

Link If t is irrational we see that hr,s(t) 6= hr′,s′(t) for (r, s) 6= (r′, s′) and as such

Vhr,s(c) contains a maximal irreducible submodule at grade rs.

When t = p
q

is rational we have an infinite set of nested submodules which we

can further divide into two types. Central charge and conformal dimension are as

follows

c = 1− 6
(p− q)2

pq

hr,s =
(pr − qs)2 − (p− q)2

4pq

We are able to see that Vhr,s(c) will have a submodule at grade rs. We will restrict to

t positive, rational. The set of weights for which 0 < r < q and 0 < s < p constitute

the Kac table, whereby each representation has a Braid structure of submodules.

The set of weights for which either r = mq or s = np are boundary representations

having a Chain structure of submodules. The representations outside of the Kac

table for which p - r and q - s are also braided.

It is desirable to keep track of the dimension of each L0 weight space Vnhr,s(c).

19



Point Link Chain

...

c 6 1

...

c > 25

Braid

...
...

c < 1

...
...

c > 25

Figure 1.1: The singular vector structure, marked by black circles, of Virasoro Verma
modules. Arrows from one singular vector to another indicate that the latter may be
obtained from the former by acting with a suitable linear combination of monomials
in the Ln. Note that t > 0 corresponds to c 6 1 and t < 0 corresponds to c > 25.

Definition 1.1.2. The character of a Virasoro Verma module Vhr,s(c), is the gen-

erating function

ch[Vhr,s(c)] =
∑
n∈Z>0

dim[Vnhr,s(c)]q
n+h−c/24 q = e2πiτ

which can be expressed more succinctly through the use of the Dedekind eta function

ch[Vhr,s(c)](τ) =
qh+(1−c)/24

η(τ)

1.2 Vertex Operator Algebras

The algebraic structure of relevance to the study of conformal field theory is not the

Lie algebra but rather the vertex operator algebra.

Definition 1.2.1. A vertex algebra is a collection of data [13]:

1. (space of states) A vector space V

2. (vacuum vector) A vector |0〉 ∈ V

3. (translation operator) A linear operator D : V → V

4. (vertex operators) A linear operation

Y (·, z) : V → EndV [[z±1]]
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taking each A ∈ V to a field

Y (A, z) =
∑
n∈Z

A(n)z
−n−1

where each A(n) is a linear operator acting on V

Along with the axioms

1. (vacuum axiom) Y (|0〉, z) = IdV and limz→0 Y (A, z)|0〉 = A

2. (translation axiom) For all A ∈ V

[D, Y (A, z)] = ∂zY (A, z)

and D|0〉 = 0

3. (locality axiom) All fields are mutually local, i.e. for all A,B ∈ V , there exists

some N ∈ Z+ such that

(z − w)N [Y (A, z), Y (B,w)] = 0

For the vertex algebra to be considered conformal and so be referred to as a

vertex operator algebra, we also require the existence of T (z),

T (z) =
∑
n∈Z

Lnz
−n−2

such that the Ln generate a copy of vir and D = L−1. ω = L−2|0〉 is called the

conformal vector.

Example 1.2.1. In the Virasoro case the vector space V is generically the quotient

of the h = 0 Verma module by the submodule generated by the singular vector

L−1|0〉. This gives the universal vertex operator algebra. The translation operator

is then the Virasoro mode L−1 and the vertex operators are given by

Y (Lj1 . . . Ljmvc, z) =
1

(−j1 − 2)!
. . .

1

(−jm − 2)!
: ∂−j1−2

z T (z) . . . ∂−jm−2
z T (z) :

for jr 6 −2.
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We are interested in the products of these fields (vertex operators). This is known

as the operator product expansion. We show here the example of the operator

product expansion of T (z) with itself where we implement the vacuum axiom and

state-field correspondence. We begin with the ansatz

T (z)T (w) =
∑
m∈Z

ψm(w)(z − w)−m−2

If we apply the vacuum to both sides and take the limit as w → 0

∑
n∈Z

LnL−2|0〉z−n−2 =
∑
m∈Z

|ψm〉z−m−2

T (z)T (w) =
Y (L2L−2|0〉, w)

(z − w)4
+
Y (L0L−2|0〉, w)

(z − w)2
+
Y (L−1L−2|0〉, w)

(z − w)
+ . . .

=
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ . . .

1.3 Vertex Operator Algebra Representations

We are interested in determining the set of Virasoro vertex algebra representations

corresponding to a central charge. Here we will show the case c = −22/5 (t = 2
5
).

Definition 1.3.1. A vertex operator algebra representation is a vector space M

and an action Y M : V ⊗M →M((z)) satisfying the following:

1. (Identity) Y M(|0〉, z) = IdM

2. (Locality) All fields Y M(A, z) are mutually local

If we consider the requirement that our representations are simple conformal ver-

tex algebra representations, then they should respect the relations of the conformal

vertex algebra. In this case, our vector space M is a vacuum module. This will lead

to a smaller set of representations than the universal vertex algebra. In forming the

vacuum module we set the following singular vector to zero. Such a vector is known

as a null vector,

N = (L−4 −
5

3
L2
−2)|0〉
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a vector which we set to zero in the quotient VOA. The null field corresponding to

this state is given by

N (z) = Y (L−4 −
5

3
L2
−2, z) =

1

2
∂2
zT (z)− 5

3
: T (z)T (z) :

When we quotient out by this submodule in the vacuum module, we expect the

VOA to respect this structure and hence it follows that the null field should then

act as the zero operator by the state-field correspondence. We consider the action

of the zeroth mode of this field on an arbitrary highest weight state |h〉 to derive a

constraint on the set of possible conformal weights h.

N (z)0 =
1

2
∂2
zT (z)0 −

5

3
: T (z)T (z) :0

= −5

3

(∑
r∈Z

: LrL−r : −9

5
L0

)

The normal ordering for Virasoro modes is as follows.

: LmLn :=

LmLn m 6 −2

LnLm m > −1

N (z)0 = −5

3

(
2
∑
r>2

L−rLr + L−1L1 + L1L−1 + L2
0 −

9

5
L0

)

Acting on the highest weight state

N (z)0|h〉 = −5

3

(
L1L−1 + L2

0 −
9

5
L0

)
|h〉

= −5

3

(
2L0 + L2

0 −
9

5
L0

)
|h〉

= −5

3

(
1

5
h+ h2

)
|h〉 = 0

The suitable conformal weights are then h = 0,−1
5
. We see that this is in
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accordance with the Kac table conformal weights

hr,s =
(pr − qs)2 − (p− q)2

4pq
1 6 r < q 1 6 s < p

for p = 2 and q = 5.

We are interested in relaxing the above condition that N be null. Doing so

allows for a wider class of representations whereby we are no longer restricted to the

minimal model conformal weights h = 0,−1/5 but rather the logarithmic minimal

model (to be explained later).

1.4 Minimal Models

Definition 1.4.1. For each positive rational value of t = p
q
, we have a non-empty

set of conformal weights {hr,s|r < q, s < p}, where each weight corresponds to an

irreducible representation. These are known as the minimal models and will be

denoted by M(p, q).

Example 1.4.1. The minimal model M(4, 5) has central charge 7
10

and Kac table

1 2 3 4

1 0 1
10

3
5

3
2

2 7
16

3
80

3
80

7
16

3 3
2

3
5

1
10

0

Each minimal model representation is irreducible and has an associated character

which may be calculated by considering the appropriate addition and subtraction

of characters of Verma submodules in a Virasoro Verma module. We give here the

formula [12]

χ(r,s)(q) =
q−c/24

φ(q)

[
qhr,s +

∞∑
k=1

(−1)k
(
qhr+kp′,(−1)ks+[1−(−1)k]p/2 + qhr,kp+(−1)ks+[1−(−1)k]p/2

)]

where φ(q) is Euler’s totient function. In the previous section, if we were to

relax the condition that N be null, we would instead be left with the universal
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vertex algebra. The set of representations associated to the universal vertex algebra

comprise the logarithmic minimal models.

Definition 1.4.2. For each positive rational value of t = p
q
, we have a non-empty

set of conformal weights {hr,s|r > 1, s > 1}. These are known as the logarithmic

minimal models and will be denoted by LM(p, q).

The representation theory for logarithmic minimal models is more involved and

will be described in detail in the following chapter.

1.5 Fusion

We introduce here the notion of a primary field [12]. In the previous example we

illustrated the state field correspondence for the Virasoro algebra. Fields correspond-

ing to highest weight states are known as primary fields. Fields corresponding to

descendant states are appropriately named descendant fields.

In the previous examples we calculated the product of the field T (z) with itself.

Likewise, we can calculate the product of T (z) with a primary field and furthermore

the associated correlation function.

Definition 1.5.1. Given a set A1, A2, . . . , An ∈ V and ϕ ∈ V ∗, v ∈ V , the formal

power series in C[[z±1, . . . z±1
n ]] of primary fields

〈ϕ, Y (A1, z1) . . . Y (An, zn)v〉

are called the n-point correlation functions

A weaker goal than calculating the correlation function of all the primary fields

is to calculate their fusion products.

Definition 1.5.2. The fusion product of Y (A1, z1) with Y (A2, z2) is the set of all

primary fields Y (An, zn), for some ϕ ∈ V ∗, v ∈ V for which the correlation function,

〈ϕ, Y (A1, z1)Y (A2, z2)Y (An, zn)v〉

is non-zero.
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We can then notate this compactly by,

[A1]× [A2] = [A3]∗ + . . .

where [A] and [A]∗ correspond to the highest weight representation with highest

weight state A and its conjugate respectively. We remark that in the Virasoro

sector every representation is self-conjugate.

Then by associativity we are able to calculate fusion products with more terms.

It is a central goal of conformal field theory to calculate these products. We demon-

strate the calculation for a case in the Virasoro sector when c = 0.

Example 1.5.1. For c = 0 the singular vector at depth 2 for the representation

[h1,2] over the universal vertex algebra, is given by

χ = (L2
−1 −

2

3
L−2)|h1,2〉

We will show the following fusion product,

[h1,2]× [hr,s] = [hr,s−1] + [hr,s+1] (1.5.1)

To do so we first show how descendant fields correspond to differential operators

in correlation functions. Let Y (|h〉, w) be the primary field corresponding to the

highest weight state |h〉. Let Y (χ,w) be the descendant field corresponding to the

singular vector above. Then for two representations [h1] and [h2],

0 = 〈Y (χ,w)Y (|h1〉, w1)Y (|h2〉, w2)〉 (1.5.2)

= (L2
−1 −

3

2
L−2)〈Y (|h〉, w)Y (|h1〉, w1)Y (|h2〉, w2)〉 (1.5.3)

where

L−n =
∑
i

(
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

)

and the subscript i refers to the remaining fields in the correlation function. To see
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this, consider the product of T (z) with a primary field Y (|h〉, w),

T (z)Y (|h〉, w) =
∑
k>0

(z − w)k−2Y (L−k|h〉, w) (1.5.4)

=
hY (|h〉, w)

(z − w)2
+
∂Y (|h〉, w)

(z − w)
+ . . . (1.5.5)

Then we may rewrite the descendant field,

Y (L−n|h〉, w) =

∮
w

(z − w)−n+1T (z)Y (|h〉, w) dz

Then for a product of fields X =
∏n

i=1 Y (|hi〉, wi),

〈Y (L−n|h〉, w)X〉 =
1

2πi

∮
w

(z − w)−n+1〈T (z)Y (|h〉, w)X〉

= − 1

2πi

∑
i

∮
wi

(z − w)−n+1

(
hi

(z − wi)2
+

∂wi
(z − wi)

)
〈Y (|h〉, w)X〉 dz

= − 1

2πi

∑
i

∮
wi

(
(−n+ 1)(wi − w)−nhi+

(wi − w)−n∂wi
)
〈Y (|h〉, w)X〉 dz

We then use the general form of the three-point correlation function [12]

〈Y (|h〉, w)Y (|h1〉, w1)Y (|h2〉, w2)〉 =
Const.

(w − w1)h+h1−h2(w1 − w2)h1+h2−h(w − w2)h+h2−h1

to solve the differential equation (1.5.3). We then arrive at the constraints

h2 =
1

6
+
h

3
+ h1 ±

2

3

√
h2 + 3hh1 −

1

2
h+

3

2
h1 +

1

16

If we set h = h1,2 and h1 = hr,s, then h2 ∈ {hr,s−1, hr,s+1}. We then arrive at the

fusion rule given in (1.5.1).

We give here the fusion rules for minimal models

[hr,s]× [hm,n] =
∑

k=l+|r−m|
k+r+m=1 mod 2

∑
l=1+|s−n|

k+s+n=1 mod 2

[hk,l]
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1.6 Verlinde Formula

In the previous section we give a method for calculating the fusion rules between

representations in minimal models. It was conjectured in [19] that this may be found

by consideration of modular transformations of the characters of these representa-

tions. The formula was shown to be true in [20] and proven rigorously in [21]. The

modular group PSL(2;Z) has the generators

S : τ → −1

τ
T : τ → τ + 1 (1.6.1)

with relations

〈S, T |S2 = I, (ST )3 = I〉 (1.6.2)

If we then take the S-transformation of the minimal model characters χr,s(τ), for a

minimal model M(p, p′)

S(χr,s(τ)) = 2

√
2

pp′

∑
(ρ,σ)∈Ep,p′

(−1)1+sρ+rσ sin(π
p

p′
rρ) sin(π

p

p′
sσ)χρ,σ(τ) (1.6.3)

where Ep,p′ is the set of tuples within the Kac table modulo the symmetry

(r, s)←→ (p′ − r, p− s). Then if the fusion of two representations [hr,s] and [hm,n]

is expressed as the following sum

[hr,s]× [hm,n] =
∑

(k,l)∈Ep,p′

N (k,l)
(r,s)(m,n)[hk,l] (1.6.4)

We are given the following famous formula for the fusion rules N (k,l)
(r,s)(m,n), first

given by Verlinde in [19].

N (k,l)
(r,s)(m,n) =

p′−1∑
i=1

p−1∑
j=1

S(i,j)
(r,s)S

(i,j)
(m,n)S

(k,l)
(i,j)

S(i,j)
1,1

(1.6.5)

Here S(i,j)
(r,s) is the S-matrix element corresponding to the (r, s) row and (i, j) column.

A goal of this thesis is to develop this Verlinde formula for the N = 1 superconformal

algebra in a logarithmic setting.
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1.7 Logarithmic CFT

The simplest of conformal field theories are comprised of irreducible representations

of their infinite-dimensional symmetry algebra, with the Virasoro algebra being one

example. There are however certain models from statistical mechanics and string

theory that require indecomposable yet reducible representations. These models are

then said to be examples of logarithmic conformal field theories as their correlation

functions contain logarithmic singularities. We can think of these indecomposable

representations as an L0 action with a Jordan block. We would like to show the

correspondence between an L0 action containing a Jordan cell and logarithmic sin-

gularities in correlation functions first noted in a different way by Gurarie [22]. The

main reference for this section will be [23]. We begin with the following L0 matrix

over an eigenvector φ and its Jordan partner, Φ.

L0 =

h 1

0 h


Our aim is to calculate the correlation function 〈Φ(z)Φ(w)〉 and show the pres-

ence of logarithmic singularities. We will first need the commutation relations

[Ln,Φ(w)] =

∮
w

T (z)Φ(w)zn+1 dz

2πi

We calculate the operator product expansion of the stress energy tensor T (z) =∑
m∈Z Lmz

−m−2 with the vertex operator Φ(z). We begin with a Laurent expansion

and solve for ψn(z).

T (z)Φ(w) =
∑
n∈Z

ψn(w)(z − w)−n−2

We apply the vacuum to both sides and take the limit w → 0.

∑
m∈Z

LmΦz−m−2 =
∑
n∈Z

ψnz
−n−2

Returning to our ope, we now have the states of the Fourier coefficients.

T (z)Φ(w) =
(L0Φ)(w)

(z − w)2
+

(L−1Φ)(w)

(z − w)
+ . . .
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It is at this point that the non-diagonal action of L0 on Φ comes into play. Now

using the state field correspondence we achieve the desired result.

T (z)Φ(w) =
hΦ(w) + φ(w)

(z − w)2
+

∂Φ(w)

(z − w)
+ . . .

From which we derive

[L−1,Φ(w)] = ∂Φ(w)

[L0,Φ(w)] = hΦ(w) + φ(w) + w∂Φ(w)

[L1,Φ(w)] = hwΦ(w) + wφ(w) + w2∂Φ(w)

Applying the L−1 operator to the correlation function

〈L−1Φ(z)Φ(w)〉 = (∂z + ∂w)〈Φ(z)Φ(w)〉+ 〈Φ(z)Φ(w)L−1〉

However both the term on the left hand side and final term on the right return

zero as the vacuum is invariant under both L1 and L−1. We are thus left with the

differential equation

0 = (∂z + ∂w)〈Φ(z)Φ(w)〉

Repeating this process for the operators L0 and L1 and exchanging Φ with φ

yields a set of differential equations which may then be solved to give the correlators

〈φ(z)φ(w)〉 = 0

〈φ(z)Φ(w)〉 =
B

(z − w)2h

〈Φ(z)Φ(w)〉 =
C − 2B log(z − w)

(z − w)2h

where B and C are constants. So we arrive at the mantra, Jordan blocks lead to

logarithmic singularities. It is for this reason that we study indecomposable modules

over the Virasoro and super Virasoro algebras with a non-diagonalisable L0 action.

We will see that the above treatment for minimal models may be adapted for the

logarithmic case, whereby we study the representation theory and show a novel new

form of the Verlinde formula to understand the fusion rules of logarithmic minimal
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models.
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Chapter 2

N=1 Representation Theory

In this chapter we address the representation theory for the N = 1 superconfor-

mal algebras. The super Virasoro algebra has wide ranging applications within

mathematical physics, both in string theory and statistical mechanics. The alge-

bra describes the infinitesimal symmetries of super strings as well as the continuum

scaling limit of certain lattice models with integrable boundary conditions. Super

conformal algebras contain N fermionic fields, as such the N = 1 super Virasoro

algebra can be considered to be the simplest case right after the Virasoro algebra

where N = 0. Within statistical mechanics there is a direct link between lattice di-

agrammatic methods and indecomposable representations of the Virasoro algebra.

On the lattice the L0 operator is modelled by the Hamiltonian after some constant

shifts and rescalings. The key structure is the Kac module which we build towards

by first introducing the N = 1 Verma modules both in the Neveu Schwarz sector

where the theory parallels that of the Virasoro and the Ramond sector where there

are a few technicalities to consider owing to the presence of a nilpotent operator

in the zero mode algebra. The Kac module is motivated by studies on the lattice,

whereby certain character evaluations suggested a structure equivalent to a quotient

of a Verma module is the relevant structure for these lattice calculations. We show

that this is false following Virasoro papers [24, 25] and detail Kac module theory

through a comprehensive picture of the structures for three central charges.

2.1 N = 1 algebras

The N = 1 superconformal algebras are infinite dimensional and may be defined as

the vector spaces spanned by the bosonic modes, Ln and C and fermionic modes Gk
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with the following bracket relations.

[
Lm, Ln

]
= (m− n)Lm+n +

1

12

(
m3 −m

)
δm+n=0C,

[
Lm, Gk

]
=

(
1

2
m− k

)
Gm+k,{

Gj, Gk

}
= 2Lj+k +

1

3

(
j2 − 1

4

)
δj+k=0 C,

[
Lm, C

]
=
[
Gj, C

]
= 0.

(2.1.1)

There are then two subalgebras which are distinguished by the values taken by the

index k of the fermionic modes Gk: The Neveu-Schwarz algebra takes k ∈ Z + 1
2
,

whereas the Ramond algebra takes k ∈ Z. Both algebras require the index n of

the bosonic modes Ln to be an integer, hence the bosonic Lie subalgebra of each is

identified with the Virasoro algebra.

The algebraic structures of interest to us are the universal vertex operator su-

peralgebras associated to the Neveu-Schwarz algebra.

0

1/2 3/2

3 5

15/2 21/2

14
...

18
...

Figure 2.1: Braided module structure for Neveu-Schwarz sector when the central
charge c = 0. The central charge is the scalar corresponding to the action of the
central element C. Each dot represents a singular vector with a corresponding
conformal weight given. An arrow from one singular vector to another indicates a
descendant.

If we consider the submodule structure of the Neveu Schwarz Verma module for

c = 0 (see figure 2.1) , then by the vacuum axiom we have that G−1/2|0〉 is necessarily

zero, annihilating the weight 1/2 singular vector and all of its descendants (i.e. the

3, 5, 15/2 etc.), leaving us with the single singular vector of weight 3/2

0

3/2

There are then two options here. If we were to set the weight 3/2 singular

vector to zero we would be left with an irreducible Neveu-Schwarz vacuum module
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and an irreducible Ramond module whose highest-weight vector also has conformal

weight 0. If however we were to retain the weight 3/2 singular vector then the set

of representations becomes infinite and allows for a wider class of structures. This

is known as the universal vertex operator algebra. We will be considering the latter

case for the remainder of this thesis. There are an infinite number of vertex operator

superalgebras, parametrised by the central charge c ∈ C, and they are realised [26]

on the Neveu-Schwarz module generated by a highest-weight vector Ω satisfying

L0Ω = 0, C Ω = cΩ, G−1/2Ω = 0.

LnΩ = 0, GkΩ = 0 n, k > 0
(2.1.2)

In other words, each such universal vertex operator superalgebra is defined on

the quotient of the Neveu-Schwarz Verma module NSV0, of conformal weight 0 and

central charge c, by the submodule generated by the singular vector of conformal

weight 1
2

(see Section 2.3 below). We will refer to these universal vertex operator

superalgebras as the N = 1 algebras, for short.

Field-theoretically, each N = 1 algebra extends the universal Virasoro vertex

operator algebra (of the same central charge) by a fermionic primary field G(z) of

conformal weight 3
2
. With the mode decompositions

T (z) =
∑
n∈Z

Lnz
−n−2, G(z) =

∑
k∈Z+ε

Gkz
−k−3/2, (2.1.3)

where ε = 1
2

in the Neveu-Schwarz sector and ε = 0 in the Ramond sector, the Lie

brackets (2.1.1) are equivalent to the operator product expansions

T (z)T (w) ∼ c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

z − w
,

T (z)G(w) ∼
3
2
G(w)

(z − w)2 +
∂G(w

z − w
, G(z)G(w) ∼ 2c/3

(z − w)3 +
2T (w)

z − w
.

(2.1.4)

Note that the energy-momentum tensor and a Virasoro primary field are always

mutually local (see [27] for example): T (z)G(w) = G(w)T (z). We emphasise that

we have defined the N = 1 algebra to be universal, meaning that the operator

product expansions (2.1.4) generate a complete set of relations. In particular, the

N = 1 algebra never coincides with an N = 1 minimal model vertex operator

superalgebra, even when c is a minimal model central charge.
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Definition 2.1.1. A conformal vertex superalgebra is a vertex algebra satisfy-

ing the additional axioms

1. (superspace) V admits the decomposition V = V0̄ ⊕ V1̄ with |0〉 ∈ V0̄

2. (parity preserving) For each A ∈ V0̄ all Fourier coefficients of Y (A, z) should be

parity preserving endomorphisms of V and parity reversing for A ∈ V1̄. T should

have even parity.

Along with the replacement of the locality axiom by the following

3. (super locality)

(z − w)NY (A, z)Y (B,w) = (−1)p(A)p(B)(z − w)NY (B,w)Y (A, z)

for some N ∈ Z+, where p(A) denotes the parity of A ∈ V

Example 2.1.1. We construct the vertex algebra for the N = 1 algebra. The

translation operator is given by L−1. We first construct the vacuum module. In

the super Virasoro algebra the vacuum module is in the Neveu Schwarz sector for

the reason that the module corresponding to the conformal weight h1,1 = 0 and

any central charge, contains a singular vector at a half integer grade (1/2). The

Verma module is then obtained by applying all negative Neveu Schwarz modes to

the vacuum vector. However the vacuum axiom reduces this space significantly.

lim
z→0

Y (G−3/2|0〉, z)|0〉 = lim
z→0

∑
m∈Z

Gm|0〉z−m−3/2

= lim
z→0

G−1/2|0〉z−1 +G−3/2|0〉

As such we are required to set G−1/2|0〉 to zero and subsequently all of its descendant

states. Note that G−1/2|0〉 is a singular vector and the submodule it generates

contains the L−1|0〉 vector. Then taking this quotient as our vacuum module V , we

have the following state-field correspondence Y (·, z) : V → EndV [[z±1]]

h = 0:

h = 3
2
:

h = 2:

h = 5
2
:

h = 3:

...

|0〉
G−3/2|0〉
L−2|0〉
G−5/2|0〉
L−3|0〉

...

IdV

G(z)

T (z)

∂G(z)

∂T (z)

...
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In general this can be expressed as

Y (Lj1 . . . LjnGk1 . . . Gkmvc, z) =
1

(−j1 − 2)!
. . .

1

(−jn − 2)!
: ∂−j1−2

z T (z) . . . ∂−jn−2T (z)

1

(−k1 − 3/2)!
. . .

1

(−km − 3/2)!
∂−k1−3/2
z G(z) . . . ∂−km−3/2G(z) :

with jr 6 −2 and ks 6 −3
2
.

The category of modules over a given N = 1 algebra is a full subcategory1 of

the category of Neveu-Schwarz modules consisting of the modules M that satisfy

the following conditions. The central element C acts on M as c times the identity

operator and, for each v ∈ M, one has Lnv = Gkv = 0 for all sufficiently large

n and k. The latter condition ensures that the orders of the poles in the operator

product expansions of T (z) and G(z) with v(w), hence in those of every N = 1 field

with v(w), are bounded above. In what follows, we shall further restrict to modules

that admit a Z2-grading compatible with that of the generators Ln and Gk. In other

words, each N = 1 module decomposes as a direct sum of two subspaces, one even

and the other odd; each is preserved by the action of Ln and they are swapped by

the action of Gk.

Ramond modules are twisted modules over the Neveu-Schwarz algebra, hence

over the N = 1 algebra, though we will usually drop this qualifier in what follows

and use the term N = 1 module to mean both Neveu-Schwarz and Ramond modules.

We define the Neveu-Schwarz sector to consist of the N = 1 modules that are Neveu-

Schwarz modules and the Ramond sector to consist of the (twisted) N = 1 modules

that are Ramond modules.

2.2 Extended Kac tables

The standard parametrisation suggested by the N = 1 analogues [16, 28, 29] of the

Kac determinant formula is

c =
15

2
−3
(
t+ t−1

)
, hr,s =

r2 − 1

8
t−1− rs− 1

4
+
s2 − 1

8
t+

1

16
δr 6=s mod 2, (2.2.1)

1A full subcategory is one that includes all morphisms between objects of the parent category
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where r, s ∈ Z and t ∈ C \ {0}. We remark that in applications to representation

theory, the conformal weight hr,s is associated to a module in the Neveu-Schwarz

sector, when r = s mod 2, and to a module in the Ramond sector, when r 6= s mod 2.

If t is rational, then this parametrisation may be written in the form

t =
p

p′
, c =

3

2

(
1− 2(p′ − p)2

pp′

)
, hr,s =

(p′r − ps)2 − (p′ − p)2

8pp′
+

1

16
δr 6=s mod 2,

(2.2.2)

where one customarily imposes the constraints p = p′ mod 2 and gcd
{
p, 1

2
(p′ − p)

}
=

1.

The N = 1 superconformal minimal models [30, 31, 28] correspond to p, p′ ∈ Z>2

satisfying these constraints. The indecomposable modules of the N = 1 minimal

model vertex operator superalgebra are precisely [32] the simple highest-weight mod-

ules of conformal highest weight hr,s, where 1 6 r 6 p− 1 and 1 6 s 6 p′ − 1. This

range of r and s defines the (N = 1) Kac table in which the entries are the conformal

weights hr,s.

For studying the representation theory of the (universal) N = 1 algebras, it is

convenient to consider instead the extended Kac table in which the entries hr,s are

indexed by r, s ∈ Z+. This table is relevant for all values of t, hence all central

charges, but we shall focus exclusively on the case t ∈ Q+ that is of most physical

interest. Defining p, p′ ∈ Z+ as above, we partition the entries of the extended Kac

table into four disjoint subsets (some of which may be empty):

• If p divides r and p′ divides s, then we say that (r, s) is of corner type in the

extended Kac table.

• If p divides r or p′ divides s, but not both, then (r, s) is said to be of boundary

type.

• If r = 1
2
p mod p and s = 1

2
p′ mod p′, then (r, s) is said to be of centre type.

• Otherwise, (r, s) is said to be of interior type.

We note the following facts: If p and p′ are odd, then there are no entries of centre

type in the extended Kac table; if p = 1 or p′ = 1, then there are no interior entries;

if p = p′ = 1, then there are no boundary entries. The extended Kac table for t = 1,

hence (p, p′) = (1, 1) and c = 3
2
, therefore consists entirely of corner entries. To
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illustrate the other possibilities, we present (parts of) four extended Kac tables in

Figure 2.2.

2.3 Neveu Schwarz Verma modules

In the Neveu-Schwarz sector, one obtains a highest-weight theory from the triangular

decomposition that splits the Neveu-Schwarz algebra into the spans of the positive

modes Ln, Gk, with n, k > 0, the negative modes Ln, Gk, with n, k < 0, and the

zero modes L0, C. A Neveu-Schwarz highest-weight vector is therefore characterised

by its L0-eigenvalue h (because C = c1 in the vertex operator superalgebra), also

called its conformal weight. We denote by NSVh the Neveu-Schwarz Verma module

generated by a highest-weight vector of conformal weight h. Its (unique) simple

quotient will be denoted by NSLh.

A determinant formula for the Neveu-Schwarz sector is given by

detM (l) =
∏
r−s∈Z
2rs6l

(h− h+
r,s(t))

p(l−2rs)(h− h−r,s(t))p(l−2rs)

h±r,s(t) = −1

8

[
(r2 + s2)(5− c)±

√
c2 − 10c+ 9(r2 − s2)− 8rs− 1

2
+

1

2
c

]

This determinant formula [16, 29] for Neveu-Schwarz Verma modules indicates

that a given Verma module NSVh is simple, NSVh = NSLh, unless h = hr,s for some

r, s ∈ Z+ with r = s mod 2. In this case, NSVhr,s possesses a singular vector of depth

1
2
rs, meaning that its conformal weight is hr,s + 1

2
rs. We will therefore denote the

non-simple Verma module NSVhr,s by Vr,s, for clarity, implicitly understanding that

it belongs to the Neveu-Schwarz sector because r = s mod 2. Similarly, the simple

quotient of Vr,s will be denoted by Lr,s.

The Neveu-Schwarz determinant was conjectured by Kac [16] and the Ramond

by [28]. Both were subsequently proved by Rocha-Caridi [33]. The submodule

structure is then given in figure 2.3.

It is useful to note that Neveu-Schwarz highest-weight modules may be natu-

rally Z2-graded because assigning a parity to a highest-weight vector automatically

results in a well-defined parity for each Poincaré-Birkhoff-Witt basis vector. This

generalises to other indecomposable Neveu-Schwarz modules if we replace “highest-
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Figure 2.2: Parts of four of the extended N = 1 Kac tables. The rows of the tables
are labelled by r = 1, 2, 3, . . . and the columns by s = 1, 2, 3, . . . . Centre entries
are shaded dark grey, interior entries are grey, boundary entries are light grey, while
corner entries are white.
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weight vector” by “ground state”, meaning a vector of minimal conformal weight

(all ground states must have the same parity). Such a grading is required for many

physical calculations, in particular for the fusion computations that we report here.

However, there are two choices of parity assignment for each Neveu-Schwarz

indecomposable: either the ground states are bosonic or they are fermionic.

We will therefore affix a superscript + or − to indecomposable Neveu-Schwarz

modules according to the parity, bosonic or fermionic, respectively, of their ground

states.2 For example, V+
r,s is generated by a bosonic highest-weight vector whereas

the highest-weight vector generating V−r,s is fermionic. We remark thatM+ andM−

are isomorphic as N = 1 modules, but not as Z2-graded N = 1 modules. However,

there is an obvious functor Π that reverses the parity of each indecomposable Neveu-

Schwarz module. Concretely, Π amounts to tensoring with the one-dimensional

fermionic trivial Neveu-Schwarz module C− (of central charge 0).

2.4 Ramond Verma modules

In the Ramond sector the zero modes do not form an abelian Lie superalgebra as

can be seen from the following algebra relation

G2
0 =

1

2

{
G0, G0

}
= L0 −

C

24
. (2.4.1)

We induce from an arbitrary simple module over the zero mode subalgebra (this

notion is called a relaxed Verma module in [34]).

There are two cases to consider depending on whether or not h = c
24

. If we

take the case h 6= c
24

(the more common case) we have a two dimensional Z2-graded

simple module sp{L0, C,G0}. The module is simple by the following relation.

G0G0v =

(
L0 −

C

24

)
v =

(
h− c

24

)
v 6= 0. (2.4.2)

If we ignore the requirement of a Z2 grading then this module is no longer simple

(we have two G0-eigenvectors which by definition cannot have a parity). In the case

h = c
24

, G0v must be zero in order to obtain a Z2-grading and so we have a one

dimensional module over {L0, C,G0}. In the case h 6= c
24

we do not need to assign a

2Actually, we shall often omit this superscript on an N = 1 module if its parity is not important
for the discussion at hand.
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parity to the Verma module, RVh as the module is isomorphic to its parity-reverse

(not so in the Neveu-Schwarz case). This is also true for quotients of Ramond Verma

modules as singular vectors come in bosonic/fermionic pairs of the same conformal

weight [35, Rem 3.2]. When h = c
24

, RVh has one ground state and G0 acts on it

as zero. Here the above argument breaks down and it is necessary to keep track of

parity. A determinant formula is given for the Ramond sector

detM (l) =
∏
r−s∈Z
2rs6l

(h− h+
r,s(t))

p(l−2rs)(h− h−r,s(t))p(l−2rs)

h±r,s(t) = −1

8

[
(r2 + s2)(5− c)±

√
c2 − 10c+ 9(r2 − s2)− 8rs− 1

2
+

1

2
c

]

The determinant formula [28, 29] for Ramond Verma modules given above shows

that RVh is simple, unless h = hr,s for some r, s ∈ Z+ with r 6= s mod 2. Again, RVhr,s
has a singular vector at depth 1

2
rs in this case. We therefore define Vr,s = RVhr,s and

Lr,s = RLhr,s , when r, s ∈ Z+ and r 6= s mod 2, complementing the Neveu-Schwarz

sector definition.

We can now summarise the structure theory [18, 35] of N = 1 Verma modules,

restricting to the case t ∈ Q+ and the modules Vr,s that are of most relevance to this

thesis. As with the structures of Virasoro Verma modules, it turns out that every

non-zero submodule of an N = 1 Verma module is generated by singular vectors

[35, Thm. 4.2]. When (r, s) is a corner or boundary entry in the extended Kac

table, the singular vectors are arranged in an infinite chain pattern; when (r, s) is

an interior entry, the singular vectors form an infinite braid instead. We illustrate

these patterns in Figure 2.3 and refer to [35] for explicit formulae for the conformal

weights of the singular vectors. For Neveu-Schwarz Verma modules, the multiplicity

of a singular vector in a given weight space (L0-eigenspace) is either 1 or 0. For non-

centre Ramond Verma modules, this multiplicity is either 2 or 0 — when a singular

vector exists, the weight space contains one of each parity. For centre Ramond

Verma modules, the singular vector multiplicity can be 4, 2, 1 or 0.

Aside from the doubling of the singular vector multiplicities in the Ramond

sector, due to G0, the structures of the non-centre N = 1 Verma modules are

analogous to those of the Virasoro algebra. The new features are exhibited in the

centre modules. Despite the chain-like depiction of the singular vector structures in
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Corner/Boundary

...

Interior

...
...

...

h = c
24

Centre

...

h 6= c
24

Figure 2.3: The singular vector structure of the N = 1 Verma modules Vr,s when
t ∈ Q+. Each black circle corresponds to a singular vector in the Neveu-Schwarz
sector and a pair of singular vectors, one bosonic and one fermionic, in the Ramond
sector. The white circle indicates a Ramond singular vector whose multiplicity is
one and the double circles indicate Ramond singular vectors of multiplicity four.
Arrows from one singular vector (pair of singular vectors) to another indicate that
the latter may be obtained from the former by acting with a suitable polynomial in
the Ln and Gj.

Figure 2.3, the centre Verma modules may be thought of as like interior modules

in which the conformal weights of the singular vectors at the same horizontal level

coincide (whence the multiplicity 4 singular vectors). However, the braided pattern

of the interior modules is absent. For h 6= c
24

, each singular vector space instead

splits uniformly in two [35], leading to the double-chain pattern of Figure 2.3.

An example helps to clarify the case of the centre Verma modules. For (p, p′) =

(2, 4), the Verma module V1,2 is of centre type (the extended Kac table is given

in Figure 2.2). As h1,2 = 0 = c
24

, its ground state space is one-dimensional and

it has two-dimensional singular vector spaces of conformal weights 1, 4, 9, . . . . The

Verma module V1,6 = V3,2 is also of centre type, with h1,6 = h3,2 = 1, and it has

singular vector spaces of weights 4, 9, 16, . . . as well, but these are four-dimensional.

It follows that a module homomorphism from V1,6 to V1,2 cannot be an inclusion, a

fact reinforced by consideration of their characters (see Section 3.1 below):

ch
[
V1,2

]
= 1+2q+4q2 +8q3 +14q4 + · · · , ch

[
V1,6

]
= 2q+4q2 +8q3 +16q4 + · · · .

(2.4.3)

Indeed, such a (non-zero) homomorphism maps one chain of singular vectors of V1,6

onto those of V1,2 and the other chain to 0. In other words, the submodule of V1,2
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vG0v

...
...

G0

Figure 2.4: The subsingular vector structure of the N = 1 pre-Verma module Uc/24

for t ∈ Q+. The white circles indicate singular vectors of multiplicity 1, the black
circles on the left indicate singular vectors of multiplicity 2, and those on the right
correspond to subsingular vectors of multiplicity 2. Arrows between (sub)singular
vectors have the same meaning as in Figure 2.3. Note that (sub)singular vectors
at the same horizontal level have the same conformal weights. The separation is
intended to emphasise subsingularity and accords with (2.4.4).

generated by the singular vectors of weight 1 is not isomorphic to a Verma module,

despite the fact [36] that the universal enveloping algebra of the Ramond algebra

has no zero divisors.

We conclude by noting that when h = c
24

, one can further relax the definition

of a Ramond Verma module to allow inducing indecomposable modules over the

zero mode subalgebra. Then, one may induce the two-dimensional module spanned

by the weight vectors v and G0v to obtain the module Uc/24 that is called a pre-

Verma module in [35, 37]. This module is again not fixed by parity-reversal and we

accordingly attach a superscript ± to match the parity of v. It is, in fact, a non-split

extension of the corresponding Verma module by its parity-reversed counterpart:

0 −→ RV∓c/24 −→ U
±
c/24 −→

RV±c/24 −→ 0. (2.4.4)

Unlike the case of Ramond Verma modules, there are submodules of pre-Verma

modules that are not generated by singular vectors. Instead, one has to introduce

subsingular vectors which are vectors that become singular upon taking an appro-

priate quotient. The structure of the pre-Verma modules was determined in [37]

and we indicate this structure, for t ∈ Q+ hence (r, s) = (p
2
, p
′

2
), in Figure 2.4.
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2.5 Fock spaces

TheN = 1 superconformal algebras have a free field realisation as a subalgebra of the

tensor product of the free boson and the free fermion vertex operator superalgebras.

In particular, the N = 1 algebra acts on the tensor product of any Fock space over

the Heisenberg algebra with either the Neveu-Schwarz or Ramond fermionic Fock

space. We shall refer to such tensor products as N = 1 Fock spaces for brevity.

The free boson and free fermion vertex operator superalgebras are generated by

fields a(z) =
∑

n∈Z anz
−n−1 and b(z) =

∑
j∈Z−1/2 bjz

−j−1/2, respectively, that satisfy

a(z)a(w) ∼ 1

(z − w)2 , b(z)b(w) ∼ 1

z − w
. (2.5.1)

The energy-momentum tensor and its superpartner, the generators of the N = 1

algebra, are then given by

T (z) =
1

2
: a(z)a(z) : +

1

2
Q∂a(z) +

1

2
: ∂b(z)b(z) : , G(z) = a(z)b(z) +Q∂b(z),

(2.5.2)

where : · · · : denotes normal ordering and we omit the tensor product symbols for

brevity. The resulting central charge is c = 3
2
− 3Q2 which matches the N = 1

parametrisation (2.2.2) if we set

α =

√
p

4p′
, α′ =

√
p′

4p
, Q = 2(α′ − α) =

p′ − p√
pp′

. (2.5.3)

In the Neveu-Schwarz sector, the N = 1 Fock space NSFλ is defined to be the

tensor product of the free boson Verma module of a0-eigenvalue λ with the free

fermion vacuum Verma module. It therefore has a one-dimensional space of ground

states and the conformal weight of these ground states is

hλ =
1

2
λ(λ−Q) =

4pp′(λ−Q/2)2 − (p′ − p)2

8pp′
. (2.5.4a)

Neveu-Schwarz Fock spaces inherit a choice of parity for the ground state from that

of the free fermion vacuum module; as before, we indicate this choice by a superscript

±. In the Ramond sector, an N = 1 Fock space RFλ is the tensor product of the

free boson Verma module of a0-eigenvalue λ with the free fermion Ramond Verma

module. It therefore has a two-dimensional space of ground states whose common
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conformal weight is

hλ =
1

2
λ(λ−Q) +

1

16
=

4pp′(λ−Q/2)2 − (p′ − p)2

8pp′
+

1

16
. (2.5.4b)

Ramond Fock spaces are preserved by the parity-reversing functor Π, even when the

conformal weight of the ground states satisfies hλ = c
24

.

The contribution to the conformal weight of the ground states from the free

fermion Ramond module accords perfectly with the N = 1 parametrisation (2.2.2).

Indeed, in both sectors, we have hλ = hr,s when

λ = λr,s ≡ −α′(r − 1) + α(s− 1), (2.5.5)

with r = s mod 2 in the Neveu-Schwarz sector and r 6= s mod 2 in the Ramond

sector. We note the following symmetries for later use:

λr+p,s = λr,s−
1

2

√
pp′, λr,s+p′ = λr,s+

1

2

√
pp′ ⇒ λr+p,s+p′ = λr,s. (2.5.6)

We therefore define Fr,s to be NSFλr,s or RFλr,s depending on whether r−s is even

or odd, respectively. The Fr,s, with r, s ∈ Z, exhaust the non-simple Fock spaces

[38]: A Neveu-Schwarz Fock space NSFλ is simple, unless λ = λr,s with r = s mod 2,

and a Ramond Fock space RFλ is simple, unless λ = λr,s with r 6= s mod 2. For

t ∈ Q+, we depict the submodule structure of the Fr,s in Figure 2.5. Unlike the case

of N = 1 Verma modules, submodules of Fock spaces are generated by subsingular

vectors in general.

We remark that there are two possible structures for boundary and interior Fock

spaces Fr,s, corresponding to the fact that these modules are not isomorphic to their

contragredient duals FQ−λr,s = F−r,−s. There is no ambiguity for corner and centre

Fock spaces as they are self-contragredient. For r, s ∈ Z+, the conformal weights

of the subsingular vectors of the Fock space Fr,s (and its contragredient F−r,−s)

coincide with those of the singular vectors of the Verma module Vr,s. Both Fr,s and

F−r,−s therefore have subsingular vectors of depth 1
2
rs. For r, s ∈ Z+, the depth 1

2
rs

subsingular vectors of Fr,s are always associated to the head of the Fock space (its

circle in Figure 2.5 has all arrows pointing away from it).

This fixes the ambiguity in the structure of a boundary Fock space Fr,s: One

uses the symmetries (2.5.6) to shift r and s to positive integers, thereby identifying
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Corner

...
...

Boundary

...
...

...

Interior

...
...

...

h = c
24

...

Centre

...
...

h 6= c
24

Figure 2.5: The subsingular vector structure of the N = 1 Fock spaces Fr,s when
t ∈ Q+. Each black circle corresponds to a subsingular vector in the Neveu-Schwarz
sector and a pair of subsingular vectors, one bosonic and one fermionic, in the Ra-
mond sector. The white circles indicate a Ramond singular vector whose multiplicity
is one. Arrows from one subsingular vector (pair of subsingular vectors) to another
have the same meaning as in Figures 2.3 and 2.4. The two structures for interior
Fock spaces are mirror images, the repetition serving to remind us that these Fock
spaces are not self-contragredient.

the depth 1
2
rs subsingular vectors as elements associated to the head. Because

the subsingular vectors of lesser depth are easily determined, this is sufficient to

distinguish between the two possibilities in Figure 2.5. For an interior Fock space

Fr,s, this information should be supplemented by the following fact. First, note

that every second horizontal level in the interior structures of Figure 2.5 indicates

singular vectors (associated to the socle of Fr,s) and subsingular vectors (associated

to the head). The relevant fact is that if the depth of the singular vectors is greater

than that of the subsingular vectors, at some given horizontal level, then it will

also be greater at the other horizontal levels (and vice versa). One may then check

which has greater depth in a given module because one knows that the depth 1
2
rs

subsingular vectors is associated with the head, for r, s ∈ Z+.

It remains to discuss the centre Fock spaces. The space of ground states is two-

dimensional and the structure, when the conformal weight h of the ground states is

not c
24

, is similar to the structure of the interior Fock spaces. The only difference

is that the subsingular vectors appearing at the same horizontal levels in Figure 2.5

now have the same conformal weight (this never happens for interior Fock spaces).

The case where h = c
24

differs further in that the ground states do not define a

simple module over the zero-mode subalgebra span{L0, C,G0}. Instead, the ground

47



states decompose as a direct sum of two simple modules upon which G0 acts as the

zero operator. This is easy to check as the ground states have the form v ⊗ w and

v ⊗ b0w, where v is a Heisenberg highest-weight vector with a0-eigenvalue

λp/2,p′/2 = −α′p− 2

2
+ α

p′ − 2

2
= α′ − α =

Q

2
(2.5.7)

and w is a Ramond highest-weight vector for the free fermion algebra. Using (2.5.2),

we verify that

G0(v ⊗ w) = a0v ⊗ b0w −
Q

2
v ⊗ b0w =

(
λp/2,p′/2 −

Q

2

)
v ⊗ w = 0 (2.5.8)

and, similarly, that G0(v ⊗ b0w) = 0.

2.6 Kac modules

In what follows, we will be interested in the fusion rules of certain modules Kr,s,

indexed by r, s ∈ Z+, that we shall refer to as N = 1 Kac modules. Analogues

of these modules over the Virasoro algebra were introduced non-constructively in

[39, 40, 41] in order to describe the quantum state space for a class of boundary

sectors in the scaling limit of certain integrable lattice models. Their characters

were determined in many examples, but a concrete proposal for the identities of the

corresponding Virasoro modules was only made recently, for corner and boundary

entries (r, s), as submodules of the corresponding Fock spaces [24]. More recent

work [25] has extended this proposal to interior entries of the extended Virasoro

Kac table and has also provided a significant amount of additional evidence for its

correctness.

N = 1 Kac modules in the Neveu-Schwarz sector have been recently considered

from the lattice [42]. The lattice analysis only studied the action of L0 on a few

examples, thereby obtaining a limited amount of structural information such as

the presence of non-semisimple L0-actions on several fusion products. Here we will

build upon this by describing explicit fusion calculations that confirm these non-

semisimple actions and, moreover, detail a series of conjectures for the structures of

certain Neveu-Schwarz Kac module fusion products.

We will therefore define, the N = 1 Kac module Kr,s, with r, s ∈ Z+, to be the
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submodule of the Fock space Fr,s that is generated by the subsingular vectors of

depths strictly less than 1
2
rs. This generalises the definition proposed in [25] for the

Virasoro algebra. We note that this definition does not preclude Kr,s from having

singular vectors of depth 1
2
rs or greater. A selection of Kac module structures is

illustrated in Figure 2.6.

Inspection shows that the parity-reversing functor Π fixes each Ramond Kac

module Kr,s (r + s odd) and maps each Neveu-Schwarz Kac module (r + s even)

to an inequivalent counterpart. We will therefore affix a superscript ± to indicate

the ground state parity in the Neveu-Schwarz sector. Note that K+
1,1 is always a

highest-weight module with an even conformal weight 0 ground state and at most 2

composition factors. It plays the role of the vacuum module, meaning that it carries

the structure of the universal vertex operator superalgebra (the N = 1 algebra).
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Figure 2.6: A depiction of the structures of the Kac modules Kr,s as (r, s) varies over
(a part of) the extended Kac table. The genuine Kac table, bounded by 1 6 r 6 p−1
and 1 6 s 6 p′−1, is represented by the dark grey rectangle in the upper-left corner.
Dark grey corresponds to interior and centre entries of the extended Kac table and
light grey and white correspond to boundary and corner entries, respectively, as in
Figure 2.2. When a dark grey cell contains two structures, the rightmost indicates
that of a centre entry with h = c

24
. If p = 1 or p′ = 1 (or both), then one should

remove the rows or columns (or both) that contain interior labels.
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Chapter 3

Verlinde Formula

In order to determine the decomposition of the fusion product of two N = 1 repre-

sentations a useful tool is the Verlinde formula. A Verlinde formula gives the fusion

product in terms of its characters, known as the Grothendieck ring 1 without the

action of the algebra on the fusion product space. Indecomposable modules are

then considered as a sum of their composition factors. Rational theories, where the

number of representations is finite, already have a well defined Verlinde formula, in

the logarithmic case however an analogue will need to be found. In this chapter we

will do exactly that for the N = 1 case.

3.1 Characters, modular transforms and the Ver-

linde formula

We report here the characters and supercharacters for the Neveu-Schwarz and Ra-

mond Fock spaces, as well as those of the Kac modules, before turning to their be-

haviour under modular transformations. The block form of the resulting S-matrix is

then used to formulate a fermionic Verlinde formula from which the fusion rules of

the Kac modules are easily obtained. As characters and supercharacters are blind to

the difference between a module and the direct sum of its composition factors, the

fermionic Verlinde formula only allows one to deduce the multiplicities of the com-

position factors of a fusion product, not the module structure of the fusion product

itself. We will address questions of structure in later chapters.

1The Grothendieck ring is the ring of characters with the product operation derived from the
fusion product
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3.2 Modular transformations

The characters and supercharacters of the Fock spaces are easily determined from

those of the free boson and free fermion. With q = e2πiτ , as usual, we have

ch
[

NSF±λ
](
τ
)

=
q(λ−Q/2)2/2

η(q)

√
ϑ3

(
1; q
)

η(q)
, ch

[
RFλ

](
τ
)

=
q(λ−Q/2)2/2

η(q)

√
2ϑ2

(
1; q
)

η(q)
,

sch
[

NSF±λ
](
τ
)

= ±q
(λ−Q/2)2/2

η(q)

√
ϑ4

(
1; q
)

η(q)
, sch

[
RFλ

](
τ
)

= 0,

(3.2.1)

where we refer to [43, App. B] for our conventions regarding Jacobi theta functions.

We note that the parity-reversing functor Π has no effect on characters, but it negates

supercharacters. As every Ramond Fock space is fixed by Π, their supercharacters

vanish identically.

Because the Ramond Fock space supercharacters are all trivial, there are only

three modular S-transforms to compute. These follow from the transforms of the

theta functions and the evaluation of a gaussian integral:

ch
[

NSF+
λ

](
−1

τ

)
=

∫ ∞
−∞

S
[

NSF+
λ →

NSF+
µ

]
ch
[

NSF+
µ

](
τ
)

dµ,

S
[

NSF+
λ →

NSF+
µ

]
= cos

[
2π(λ− Q

2
)(µ− Q

2
)
]
,

ch
[

RFλ
](
−1

τ

)
=

∫ ∞
−∞

S
[

RFλ → NSF+
µ

]
sch
[

NSF+
µ

](
τ
)

dµ,

S
[

RFλ → NSF+
µ

]
=
√

2 cos
[
2π(λ− Q

2
)(µ− Q

2
)
]
,

sch
[

NSF+
λ

](
−1

τ

)
=

∫ ∞
−∞

S
[

NSF+
λ →

RFµ
]
ch
[

RFµ
](
τ
)

dµ,

S
[

NSF+
λ →

RFµ
]

=
1√
2

cos
[
2π(λ− Q

2
)(µ− Q

2
)
]
.

(3.2.2)

Here, we have indicated S-transforms involving a supercharacter, instead of a char-

acter, by a bar. We have also assumed that the parity of each Neveu-Schwarz Fock

space is positive for simplicity. S-matrix entries involving negative parities follow

immediately from ch
[

NSF−λ
]

= ch
[

NSF+
λ

]
and sch

[
NSF−λ

]
= −sch

[
NSF+

λ

]
. Finally,

we have found it convenient to extend the natural integration range from [Q
2
,∞)

to (−∞,∞). This convenience is allowed because F±λ and its contragredient dual

F±Q−λ have the same (super)character.

With respect to the block-ordering
{

ch
[

NSF
]
, ch
[

RF
]
, sch

[
NSF

]}
of characters
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and supercharacters, the Fock space S-matrix may be summarised as
S
[

NSFλ → NSFµ
]

0 0

0 0 S
[

NSFλ → RFµ
]

0 S
[

RFλ → NSFµ
]

0

. (3.2.3)

We note that this S-matrix is not symmetric in this basis, but it is easily checked

to be unitary and to square to the conjugation permutation.

The Fock spaces constitute a set of standard modules [23, 44] for the N = 1

algebra. This means, among other things, that their characters form a (topological)

basis for the space spanned by the characters of all the N = 1 modules (in the

module category of interest). In particular, the Kac module characters must be

expressible in terms of Fock space characters. Recall that Kr,s is a submodule of

Fr,s, by definition. Inspection shows that the quotient Fr,s/Kr,s is not isomorphic to

another Fock space or Kac module, in general, but that the character of the quotient

matches that of a Fock space. More precisely, we have the identity

ch
[
Kr,s

]
= ch

[
Fr,s

]
− ch

[
F−r,s

]
= ch

[
Fr,s

]
− ch

[
Fr,−s

]
. (3.2.4)

We immediately obtain their S-transformations:

ch
[
Kr,s

](
−1/τ

)
=

∫ ∞
−∞

S
[
Kr,s → Fµ

]
ch
[
Fµ
](
τ
)

dµ, (3.2.5)

S
[
Kr,s → Fµ

]
= S
[
Fλr,s → Fµ

]
− S
[
Fλ−r,s → Fµ

]
(3.2.6)

= 2 sin
[
2πrα′(µ−Q/2)

]
sin
[
2πsα(µ−Q/2)

]
. (3.2.7)

Note that the result of S-transforming the character of a Kac module is an integral

over the Fock space characters. As the Fock spaces are the standard modules of

the theory, their characters give the canonical topological basis in which to express

all characters.2 In particular, it is not clear that the quantity S
[
Kr,s → Kr′,s′

]
is

well defined. We will therefore perform all subsequent computations in the basis of

standard characters without further comment.

Recall that Kac modules were only defined for r, s ∈ Z+. If the character formula

2We refer to this basis as topological because one might only recover a given character, for
example that of a simple atypical module Lr,s, as an infinite sum of Fock space characters. In this
case, the convergence is that of formal power series — the contribution to the multiplicity of a
given weight space is zero for all but finitely many terms in the sum.
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(3.2.4) is extended to general r, s ∈ Z, then we obtain

ch
[
K−r,s

]
= −ch

[
Kr,s

]
= ch

[
Kr,−s

]
, ch

[
Kr,0

]
= ch

[
K0,s

]
= 0, ch

[
K−r,−s

]
= ch

[
Kr,s

]
.

(3.2.8)

These formulae are important for interpreting the results of general Verlinde com-

putations.

The analogous data for supercharacters is a little more complicated. Since h−r,s =

hr,s + 1
2
rs, it follows that Fr,s and (the submodule whose character matches that of)

F−r,s have opposite parity in the Neveu-Schwarz sector, if r and s are both odd, and

the same parity if r and s are both even. In the Ramond sector, the supercharacters

all vanish, hence

sch
[
K±r,s

]
= sch

[
F±r,s

]
− (−1)rsch

[
F±−r,s

]
(r + s even),

sch
[
Kr,s

]
= 0 (r + s odd).

(3.2.9)

It is worth noting at this point that (3.2.4) and (3.2.9) allow one to formally

extend the Kac characters and supercharacters from r, s ∈ Z+ to all r, s ∈ Z. Upon

doing this, one arrives at the relations

ch
[
K−r,s

]
= −ch

[
Kr,s

]
= ch

[
Kr,−s

]
, ch

[
Kr,0

]
= ch

[
K0,s

]
= 0, ch

[
K−r,−s

]
= ch

[
Kr,s

]
,

sch
[
K±r,s

]
= −(−1)rsch

[
K±−r,s

]
= −(−1)ssch

[
K±r,−s

]
= sch

[
K±−r,−s

]
.

(3.2.10)

These relations will be important for interpreting the Verlinde formula calculations

that follow.

By combining (3.2.2) with (3.2.4) and (3.2.9), we obtain the S-matrix entries for

the Kac module characters and supercharacters as differences of Fock space S-matrix

entries:

S
[
K+
r,s → NSF+

µ

]
= 2 sin

[
2πα′r(µ− Q

2
)
]

sin
[
2παs(µ− Q

2
)
]

(r + s even),

S
[
Kr,s → NSF+

µ

]
= 2
√

2 sin
[
2πα′r(µ− Q

2
)
]

sin
[
2παs(µ− Q

2
)
]

(r + s odd),

S
[
K+
r,s → RFµ

]
=


√

2 cos
[
2πα′r(µ− Q

2
)
]

cos
[
2παs(µ− Q

2
)
]

(r, s odd),

√
2 sin

[
2πα′r(µ− Q

2
)
]

sin
[
2παs(µ− Q

2
)
]

(r, s even).

(3.2.11)

Again, we have assumed positive parity ground states in the Neveu-Schwarz sector
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for simplicity. We remark that S-matrix entries of the form S
[
Kr,s → Kr′,s′

]
are not

defined in this setup.

3.3 Verlinde products

In this section we give the Verlinde formula for subring of Kac characters contained

within the Grothendieck ring of Neveu-Schwarz characters before considering the

entire N = 1 algebra. This case is simpler than the complete case and will serve as

a template for the following section, where Ramond characters will be introduced.

We calculate the character product of the generators with an arbitrary module using

this formula as well as giving the general rules for a character product in this subring.

Assuming that the fusion product “×” descends to a well defined product “�”

on the Grothendieck ring of characters, we may decompose a character product into

a linear combination of Fock space characters:

ch
[
M×N

]
= ch

[
M
]
� ch

[
N
]

=

∫ ∞
−∞

N Fν
MN ch

[
Fν
]

dν. (3.3.1)

Here, M and N are Neveu-Schwarz modules and we recall that the Fock space

characters are the preferred (topological) basis for the space of all Neveu-Schwarz

characters. The multiplicities N Fν
MN are the Verlinde coefficients and are com-

puted, in terms of the S-transformation kernel, by the Verlinde formula:

N Fν
MN =

∫ ∞
−∞

S
[
M→ Fρ

]
S
[
N → Fρ

]
S
[
Fν → Fρ

]∗
S
[
K1,1 → Fρ

] dρ. (3.3.2)

Here, K1,1 plays the role of the vacuum module. Note that this Kac module is

generated by a highest-weight vector of conformal weight 0 that is annihilated by

both L−1 and G−1/2.

It is now straight-forward to compute the character of fusion products. The

unitarity of the S-transformation implies that the vacuum module K1,1 is the unit

of the character product:

ch
[
K1,1 ×N

]
= ch

[
K1,1

]
� ch

[
N
]

= ch
[
N
]
. (3.3.3)

A somewhat less trivial example involves the fusion of K3,1 with an arbitrary Fock
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space:

N Fν
K3,1 Fµ =

∫ ∞
−∞

S
[
K3,1 → Fρ

]
S
[
Fµ → Fρ

]
S
[
Fν → Fρ

]∗
S
[
K1,1 → Fρ

] dρ

=

∫ ∞
−∞

sin[6πα′ρ]

sin[2πα′ρ]
cos[2π(µ−Q/2)ρ] cos[2π(ν −Q/2)ρ] dρ

=
1

2

∫ ∞
−∞

(1 + 2 cos[4πα′ρ])(cos[2π(µ− ν)ρ] + cos[2π(µ+ ν −Q)ρ]) dρ

= δ(ν = µ− 2α′) + δ(ν = µ) + δ(ν = µ+ 2α′)

⇒ ch
[
K3,1

]
� ch

[
Fµ
]

= ch
[
Fµ−2α′

]
+ ch

[
Fµ
]

+ ch
[
Fµ+2α′

]
. (3.3.4a)

Similar computations result in

ch
[
K1,3

]
� ch

[
Fµ
]

= ch
[
Fµ−2α

]
+ ch

[
Fµ
]

+ ch
[
Fµ+2α

]
, (3.3.4b)

ch
[
K2,2

]
� ch

[
Fµ
]

= ch
[
Fµ−α′−α

]
+ ch

[
Fµ−α′+α

]
+ ch

[
Fµ+α′−α

]
+ ch

[
Fµ+α′+α

]
.

(3.3.4c)

Using Equation (3.2.4), we obtain the corresponding products with arbitrary Kac

modules:

ch
[
K3,1

]
� ch

[
Kr,s

]
= ch

[
Kr−2,s

]
+ ch

[
Kr,s

]
+ ch

[
Kr+2,s

]
, (3.3.5a)

ch
[
K1,3

]
� ch

[
Kr,s

]
= ch

[
Kr,s−2

]
+ ch

[
Kr,s

]
+ ch

[
Kr,s+2

]
, (3.3.5b)

ch
[
K2,2

]
� ch

[
Kr,s

]
= ch

[
Kr−1,s−1

]
+ ch

[
Kr−1,s+1

]
+ ch

[
Kr+1,s−1

]
+ ch

[
Kr+1,s+1

]
.

(3.3.5c)

Here, we must employ (3.2.8) if the labels on the Kac modules of the right-hand

side are not positive integers.

It follows from these character products that the Kac characters span a unital

subring of the Grothendieck ring of Neveu-Schwarz characters and that this subring

is generated by ch
[
K3,1

]
, ch

[
K2,2

]
and ch

[
K1,3

]
.3 Associativity then leads to an

explicit general formula for Kac character products:

ch
[
Kr,s

]
� ch

[
Kr′,s′

]
=

r+r′−1∑′

r′′=|r−r′|+1

s+s′−1∑′

s′′=|s−s′|+1

ch
[
Kr′′,s′′

]
. (3.3.6)

3There is a simple exception when c = 3
2 (p = p′ = 1) because then ch

[
K3,1

]
= ch

[
K1,3

]
and

ch
[
K2,2

]
= ch

[
K1,1

]
+ ch

[
K1,3

]
.
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Here, the primed sums indicate that the summation variable increases in steps of

two. We mention, for later purposes, the following special case:

ch
[
Kr,1

]
� ch

[
K1,s

]
= ch

[
Kr,s

]
. (3.3.7)

3.4 A fermionic Verlinde formula

The standard Verlinde formula fails to give a meaningful result when applied to

the N = 1 algebra. This is due to the fact that the S-matrix now contains many

zeroes, that will lead to an infinite denominator in some cases. It is necessary to

then consider this new S-matrix and construct a Verlinde formula that will give

meaningful results.

In this section, we provide a derivation of the fermionic Verlinde formula. This

extends the results of [45] and rests on one main assumption, that the standard

module formalism of [23, 44] applies to the bosonic orbifold of the N = 1 algebra.

As the application at hand only involves Neveu-Schwarz modules whose superchar-

acters are non-vanishing and Ramond modules whose supercharacters vanish, we

will incorporate these facts into the derivation and thereby simplify it. A more

general derivation will appear in [46].

We note that each N = 1 vertex operator superalgebra admits an order 2 au-

tomorphism that fixes the even (bosonic) elements and negates the odd (fermionic)

ones. The corresponding orbifold is the vertex operator algebra spanned by the

bosonic elements. The assumption that this bosonic orbifold admits a collection of

standard modules implies that the Grothendieck fusion rules of the orbifold may be

computed using the standard Verlinde formula. We compute these rules in terms of

N = 1 data, thereby reconstructing a Verlinde formula for the N = 1 algebras.

The derivation is conveniently cast in the language of induction and restriction.

To start, we note that the vacuum module K+
1,1 of the N = 1 algebra restricts to the

direct sum of its bosonic states, which form the vacuum module I+ of the bosonic

orbifold, and its fermionic states, which form a module J − over the orbifold algebra.

Conversely, inducing either orbifold module to an N = 1 module recovers the N = 1

vacuum module. Thus,

K+
1,1↓ = I+ ⊕ J −, I+↑ = J −↑ = K+

1,1. (3.4.1)
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It is sometimes convenient to remember the parities inherited in this fashion by orb-

ifold modules, even though the natural Z2-grading on the bosonic orbifold algebra is

trivial (parity is meaningless for bosonic algebras). For example, such considerations

show that J − is a simple current of order two:

(
J − × J −

)
↑ = J −↑ × J −↑ = K+

1,1 ×K+
1,1 = K+

1,1 ⇒ J − × J − = I+.

(3.4.2)

Here, we have used [44, Eq. (3.3)] to compute the induction of the fusion product

on the left-hand side and noted that the only alternative conclusion would be that

J − × J − = J − (which violates parity). It follows that the N = 1 algebra is the

simple current extension, by J −, of the orbifold algebra.

This restriction and induction generalises to N = 1 modules (we consider only

Fock spaces and Kac modules for simplicity) and the corresponding orbifold modules

as follows. In the Neveu-Schwarz sector, we may take restriction and induction to

act as

M±↓ = B+ ⊕ (J − × B+), B+↑ =M+, (J − × B+)↑ =M−, (3.4.3)

where we take B+ to consist of the bosonic states of M± (regardless of the latter’s

parity). This means that the ground states of M+ may be identified with those of

B+, while the ground states of M− should be identified with those of J − × B+.

In the Ramond sector, things are more straightforward because there is no need to

indicate the parity. The restriction and induction functors act as

M↓ = B ⊕ B, B↑ =M, (3.4.4)

because B × J − = B. From here on, we will omit parity labels on all orbifold

modules.

Define the orbifold modules NSBλ, J × NSBλ and RBλ, for λ ∈ R, to consist of

the bosonic states of NSF+
λ , NSF−λ and RFλ, respectively, as in (3.4.3) and (3.4.4).

We will assume that these define a set of standard modules for the orbifold vertex

operator algebra. In particular, their characters are linearly independent. The

correspondences NSBλ ↔ NSF+
λ , J × NSBλ ↔ NSF−λ and RBλ ↔ RFλ are each

one-to-one. However, the analogous correspondence between characters is only two-
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to-one in the Neveu-Schwarz sector because characters do not distinguish NSF+
λ from

NSF−λ . The correspondence for Neveu-Schwarz supercharacters is likewise two-to-

one as sch
[

NSF+
λ

]
= −sch

[
NSF−λ

]
, though that of the Ramond characters remains

one-to-one. It follows that in the Neveu-Schwarz sector, integrating over all the

standard orbifold characters, ch
[

NSBλ
]

and ch
[
J×NSBλ

]
, is equivalent to integrating

over all the standard N = 1 characters, ch
[

NSFλ
]
, twice, and the same is true for

supercharacters. However, integrating over the ch
[

RBλ
]

is the same as integrating

over all the ch
[

RFλ
]
.

With this preparation, we can now relate the S-matrix entries, in the basis of

standard characters, of the N = 1 theory to those of its bosonic orbifold. For this,

it is convenient to introduce the monodromy charge Q(B) of an orbifold module B

(with respect to the simple current J ) [47]:

Q(B) = h(B) + h(J )− h(J × B) =

0 if B↑ is Neveu-Schwarz,

1
2

if B↑ is Ramond.

(3.4.5)

Here, h(B) denotes the conformal weight of the ground states of B so, in particular,

h(J ) = 3
2
. The point is that the monodromy charge governs how the simple current

acts on the S-matrix entries [48]:

s
[
J × B → B′

]
= e2πiQ(B′)s

[
B → B′

]
=

+s
[
B → B′

]
if B′↑ is Neveu-Schwarz,

−s
[
B → B′

]
if B′↑ is Ramond.

(3.4.6)

Here, B and B′ are standard orbifold modules (NSBλ, J ×NSBλ, RBλ) and we denote

the S-matrix of the bosonic orbifold by s to distinguish it from S, the S-matrix of

the N = 1 algebra. The analogous relation for s
[
B → J ×B′

]
now follows from the

symmetry of the orbifold S-matrix in the standard basis [44].

From NSF+
λ ↓ = NSBλ⊕(J ×NSBλ) (we choose positive parities as in Section 3.2),

we deduce that

S
{

ch
[

NSF+
λ

]}
=

∫ (
s
[

NSBλ → B
]

+ s
[
J × NSBλ → B

])
ch
[
B
]

dB (3.4.7)

=

∫
B↑∈NS

2 s
[

NSBλ → B
]
ch
[
B
]

dB, (3.4.8)

where the first integral is over all the standard orbifold modules and the second is
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over the NSBµ and J × NSBµ that induce to Neveu-Schwarz N = 1 modules. It

follows that

S
{

ch
[

NSF+
λ

]}
=

∫ ∞
−∞

2
(
s
[

NSBλ → NSBµ
]
ch
[

NSBµ
]

+ s
[

NSBλ → J × NSBµ
]
ch
[
J × NSBµ

])
dµ

=

∫ ∞
−∞

2 s
[

NSBλ → NSBµ
](

ch
[

NSBµ
]

+ ch
[
J × NSBµ

])
dµ

=

∫ ∞
−∞

2 s
[

NSBλ → NSBµ
]
ch
[

NSF+
µ

]
dµ, (3.4.9)

where we have used (3.4.6) to simplify the S-transform. We conclude that

S
[

NSF+
λ →

NSF+
µ

]
= 2 s

[
NSBλ → NSBµ

]
. (3.4.10a)

Similar calculations result in

S
[

RFλ → NSF+
µ

]
= 2 s

[
RBλ → NSBµ

]
, (3.4.10b)

S
[

NSF+
λ →

RFµ
]

= s
[

NSBλ → RBµ
]
, (3.4.10c)

recalling that the bar indicates the supercharacter. The other S-matrix entries

vanish.

There are almost identical relations holding for the S-matrix entries involving

the Kac modules. As restricting an N = 1 module to its bosonic or fermionic

orbifold submodule defines an exact functor4, the analogues of the Kac modules

in the orbifold theory have characters satisfying similar identities to (3.2.4). The

analogues of (3.4.10) then follow readily. In particular, the vacuum S-matrix entries

satisfy

S
[
K+

1,1 → NSF+
µ

]
= 2 s

[
I → NSBµ

]
, S

[
K+

1,1 → RFµ
]

= s
[
I → RBµ

]
, (3.4.11)

where we recall that I denotes the vacuum module of the orbifold algebra.

We turn now to the Verlinde product of two orbifold modules, M and N , and

their N = 1 inductions:

ch
[
M↑

]
� ch

[
N↑
]

= ch
[
M↑×N↑

]
= ch

[
(M×N )↑

]
=
(
ch
[
I
]

+ ch
[
J
])
� ch

[
M×N

]
4An exact functor is a functor that preserves exact sequences
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=
(
ch
[
I
]

+ ch
[
J
])
�
∫

n B
MN ch

[
B
]

dB =

∫
n B
MN ch

[
B↑
]

dB,

(3.4.12)

where the integration is over all the standard orbifold modules and the n B
MN de-

note the Verlinde coefficients of the orbifold algebra. As ch
[

NSBν↑
]

= ch
[

NSF+
ν

]
=

ch
[

NSF−ν
]

= ch
[
(J × NSBν)↑

]
, we arrive at

ch
[
M↑

]
�ch

[
N↑
]

=

∫ ∞
−∞

(
n

NSBν
MN + n J×NSBν

MN

)
ch
[

NSF+
ν

]
dν+

∫ ∞
−∞

n
RBν

MN ch
[

RFν
]
dν,

(3.4.13)

hence the N = 1 Verlinde coefficients satisfy

N
NSF+

ν
M↑N↑ = n

NSBν
MN + n J×NSBν

MN , N
RFν

M↑N↑ = n
RBν

MN . (3.4.14a)

Repeating this analysis for supercharacters gives instead

N
NSF+

ν

M↑N↑ = n
NSBν

MN − n J×NSBν
MN . (3.4.14b)

Of course, any N = 1 Verlinde coefficient involving a Ramond supercharacter van-

ishes.

Substituting in the standard Verlinde formula for the orbifold Verlinde coeffi-

cients now gives the N = 1 Verlinde formulae. We first suppose that M and N

are orbifold modules whose inductions belong to the Neveu-Schwarz sector. Using

(3.4.14a) twice, then (3.4.10) and (3.4.11), results in the following N = 1 Verlinde

formula for NS� NS Verlinde coefficients:

N
NSF+

ν
M↑N↑ =

∫
s
[
M→ B

]
s
[
N → B

](
s
[

NSBν → B
]

+ s
[
J × NSF+

ν → B
])∗

s
[
I → B

] dB

=

∫ ∞
−∞

s
[
M→ NSBρ

]
s
[
N → NSBρ

]
2 s
[

NSBν → NSBρ
]∗

s
[
I → NSBρ

] dρ

+

∫ ∞
−∞

s
[
M→ J × NSBρ

]
s
[
N → J × NSBρ

]
2 s
[

NSBν → J × NSBρ
]∗

s
[
I → J × NSBρ

] dρ

= 4

∫ ∞
−∞

s
[
M→ NSBρ

]
s
[
N → NSBρ

]
s
[

NSBν → NSBρ
]∗

s
[
I → NSBρ

] dρ

=

∫ ∞
−∞

S
[
M↑ → NSF+

ρ

]
S
[
N↑ → NSF+

ρ

]
S
[

NSF+
ν → NSF+

ρ

]∗
S
[
K+

1,1 → NSF+
ρ

] dρ

(3.4.15a)
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(M↑, N↑ ∈ NS).

Here we reproduce the NS×NS Verlinde formula of the previous section. Analogous

calculations give the remaining non-vanishing Verlinde coefficients:

N
NSF+

ν
M↑N↑ =

∫ ∞
−∞

S
[
M↑ → NSF+

ρ

]
S
[
N↑ → NSF+

ρ

]
S
[

NSF+
ν → NSF+

ρ

]∗
S
[
K+

1,1 → NSF+
ρ

] dρ

(3.4.15b)

(M↑, N↑ ∈ R),

N
RFν

M↑N↑ =

∫ ∞
−∞

S
[
M↑ → NSF+

ρ

]
S
[
N↑ → NSF+

ρ

]
S
[

RFν → NSF+
ρ

]∗
2 S
[
K+

1,1 → NSF+
ρ

] dρ

(3.4.15c)

(M↑ ∈ NS, N↑ ∈ R),

N
NSF+

ν

M↑N↑ =

∫ ∞
−∞

2 S
[
M↑ → RFρ

]
S
[
N↑ → RFρ

]
S
[

NSF+
ν → RFρ

]∗
S
[
K+

1,1 → RFρ
] dρ (3.4.15d)

(M↑, N↑ ∈ NS).

This completes the derivation of the N = 1 Verlinde formula.

3.5 Grothendieck fusion products

We are interested in the fusion rules of the Kac modules Kr,s, for r, s ∈ Z+. Consider

therefore the category of N = 1 modules that is generated by the Kac modules under

finite iterated fusion products. We will assume here that the category is rigid, in

particular that fusing with a module defines an exact functor. We remark that the

results achieved in a latter section of this thesis would not be possible if this were

not the case. A detailed definition of rigidity is beyond the scope of this thesis,

however the interested reader may find a comprehensive definition in [50]. Because

Kac modules are believed to define boundary sectors of the logarithmic N = 1

superconformal minimal models [42] and because fusing with a module defining a

boundary sector is believed to define an exact endofunctor on the module category

relevant to the conformal field theory [49], we will assume that fusing with a Kac

module defines an exact functor on our category. If we further assume that fusion

defines a tensor structure on our module category, then fusing with any module from
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this category defines an exact functor [50]. The fusion product × then descends to

a commutative associative product � on the Grothendieck group of the category.

We call the resulting ring the Grothendieck fusion ring and call � the Grothendieck

fusion product.

In bosonic conformal field theory, one is accustomed to identifying the Grothendieck

fusion ring with the ring generated by the characters of the simple modules equipped

with�, checking first that these characters are linearly independent. In the fermionic

case, one cannot do this because ch
[
K+

1,1

]
= ch

[
K−1,1

]
(for example). Instead, one

equips the characters and, separately, the supercharacters with�, noting that knowl-

edge of an identity of characters and the corresponding identity of supercharacters

allows one to reconstruct the identity in the Grothendieck fusion ring. We denote

the image of an N = 1 moduleM in the Grothendieck fusion ring by
[
M
]

so that its

character ch
[
M
]

and supercharacter sch
[
M
]

are obtained by applying the formal

operators ch and sch, respectively.

Although the N = 1 Fock spaces NSFλ and RFλ are not in the category that

we are considering, the (super)characters of the Kac modules may be expressed as

linear combinations of Fock space (super)characters. Indeed, the standard module

formalism of [23, 44] requires that we use the Fock space (super)characters as a

canonical basis in all modular computations. It follows that ifM and N are N = 1

Kac modules, then we may decompose the (super)character of their fusion product

into a linear combination of Fock space (super)characters:

ch
[
M×N

]
= ch

[
M
]
� ch

[
N
]

=

∫ ∞
−∞

[
N

NSF+
ν

MN ch
[

NSF+
ν

]
+ N

RFν
MN ch

[
RFν

]]
dν,

sch
[
M×N

]
= sch

[
M
]
� sch

[
N
]

=

∫ ∞
−∞

N
NSF+

ν

MN sch
[

NSF+
ν

]
dν.

(3.5.1)

Here, bars indicate supercharacters, as above, and we have recalled that the sch
[

RFν
]

all vanish. The multiplicities N
NSF+

ν
MN , N

RFν
MN and N

NSF+
ν

MN are the Verlinde

coefficients which may be computed, in terms of the S-matrix entries, from the

following concise form of the fermionic Verlinde formula:

N Fν
MN = AMN

∫ ∞
−∞

S
[
M→ Fρ

]
S
[
N → Fρ

]
S
[
Fν → Fρ

]∗
S
[
K+

1,1 → Fρ
] dρ. (3.5.2)

Here we have combined four different formulae (3.4.15), into one compact formula

by use of AMN , a coefficient taking the value 1
2
, 1, or 2, depending on the relative
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sectors of M and N . We illustrate the use of this Verlinde formula by computing

the Grothendieck fusion rules involving K2,1. Fusing first with the Ramond Kac

module Kr,s (so r + s is odd), the N = 1 Verlinde formula (3.4.15) becomes

N
NSF+

ν
K2,1Kr,s =

∫ ∞
−∞

S
[
K2,1 → NSF+

ρ

]
S
[
Kr,s → NSF+

ρ

]
S
[

NSF+
ν → NSF+

ρ

]∗
S
[
K+

1,1 → NSF+
ρ

] dρ

= 8

∫ ∞
−∞

cos[2πα′ρ] sin[2πα′rρ] sin[2παsρ] cos
[
2π(ν − Q

2
)ρ
]

dρ

= δ(ν = λr−1,s)− δ
(
ν = λ−(r−1),s

)
− δ(ν = λr−1,−s) + δ

(
ν = λ−(r−1),−s

)
+ δ(ν = λr+1,s)− δ

(
ν = λ−(r+1),s

)
− δ(ν = λr+1,−s) + δ

(
ν = λ−(r+1),−s

)
(3.5.3)

and N
RFν

K2,1Kr,s = 0. Substituting into (3.5.1), while remembering (3.2.4) and

(3.2.10), we obtain

ch
[
K2,1 ×Kr,s

]
= 2
(

ch
[
Fr−1,s

]
− ch

[
F−(r−1),s

]
+ ch

[
Fr+1,s

]
− ch

[
F−(r+1),s

])
= 2
(

ch
[
Kr−1,s

]
+ ch

[
Kr+1,s

])
. (3.5.4)

As sch
[
K2,1×Kr,s

]
= sch

[
K2,1

]
�sch

[
Kr,s

]
= 0, the overall multiplicity of 2 appearing

in this character must correspond to each (Neveu-Schwarz) factor appearing once

with positive parity and once with negative parity. This lets us deduce the following

Grothendieck fusion rule:

[
K2,1

]
�
[
Kr,s

]
=
[
K+
r−1,s

]
+
[
K−r−1,s

]
+
[
K+
r+1,s

]
+
[
K−r+1,s

]
(r + s odd). (3.5.5)

Applying ch and sch then recovers the corresponding character and supercharacter

identities, respectively.

Fusing K2,1 with a Neveu-Schwarz Kac module K±r,s (so r + s is even), we note

that AK2,1K±r,s = 1
2

and thus

N
RFν

K2,1K±r,s
=

1

2

∫ ∞
−∞

S
[
K2,1 → NSF+

ρ

]
S
[
K±r,s → NSF+

ρ

]
S
[

RFν → NSF+
ρ

]∗
S
[
K+

1,1 → NSF+
ρ

] dρ

= 4

∫ ∞
−∞

cos[2πα′ρ] sin[2πα′rρ] sin[2παsρ] cos
[
2π(ν − Q

2
)ρ
]

dρ. (3.5.6)
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The result is therefore half that of the previous calculation:

ch
[
K2,1 ×K±r,s

]
= ch

[
Kr−1,s

]
+ ch

[
Kr+1,s

]
, sch

[
K2,1 ×K±r,s

]
= 0

⇒
[
K2,1

]
�
[
K±r,s

]
=
[
Kr−1,s

]
+
[
Kr+1,s

]
(r + s even). (3.5.7)

Similar calculations with K2,1 replaced by K1,2 lead to results analogous to (3.5.5)

and (3.5):

[
K1,2 ×K±r,s

]
=
[
K1,2

]
�
[
K±r,s

]
=
[
Kr,s−1

]
+
[
Kr,s+1

]
(r + s even),[

K1,2 ×Kr,s
]

=
[
K1,2

]
�
[
Kr,s

]
=
[
K+
r,s−1

]
+
[
K−r,s−1

]
+
[
K+
r,s+1

]
+
[
K−r,s+1

]
(r + s odd).

(3.5.8)

One can now use associativity to explore the Grothendieck fusion rules of general

Kac modules. However, because fusing two Ramond Kac modules gives back Neveu-

Schwarz Kac modules of both parities, associativity does not completely determine

the Grothendieck fusion rules of the Neveu-Schwarz Kac modules. Rather, it only

fixes these rules up to parity. To determine the missing information, we apply the

N = 1 Verlinde formula to Grothendieck fusion products involving K+
3,1, K+

2,2 and

K+
1,3. Applying associativity to these results will then determine the Grothendieck

fusion rule parities for all Kac modules.

In (3.3.6), we used the standard Verlinde formula (that applies to Neveu-Schwarz

characters) to deduce that

ch
[
K+

3,1

]
� ch

[
K+
r,s

]
= ch

[
K+
r−2,s

]
+ ch

[
K+
r,s

]
+ ch

[
K+
r+2,s

]
(r + s even), (3.5.9)

interpreting the right-hand side using (3.2.10) if necessary. The supercharacter

version of this now follows from (3.2.9) and the N = 1 Verlinde formula (3.5.2):

N
NSF+

ν

K+
3,1K

+
r,s

= 2

∫ ∞
−∞

S
[
K+

3,1 → RFρ
]
S
[
K+
r,s → RFρ

]
S
[

NSF+
ν → RFρ

]∗
S
[
K+

1,1 → RFρ
] dρ

=



2

∫ ∞
−∞

(
2 cos[4πα′ρ]− 1

)
cos[2πα′rρ] cos[2παsρ] cos

[
2π(ν − Q

2
)ρ
]

dρ

(r, s odd),

2

∫ ∞
−∞

(
2 cos[4πα′ρ]− 1

)
sin[2πα′rρ] sin[2παsρ] cos

[
2π(ν − Q

2
)ρ
]

dρ

(r, s even)
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⇒ sch
[
K+

3,1

]
� sch

[
K+
r,s

]
= sch

[
K+
r−2,s

]
− sch

[
K+
r,s

]
+ sch

[
K+
r+2,s

]
(r + s even).

(3.5.10)

It therefore follows that the Grothendieck fusion rule is

[
K+

3,1

]
�
[
K+
r,s

]
=
[
K+
r−2,s

]
+
[
K−r,s

]
+
[
K+
r+2,s

]
(3.5.11a)

(r + s even), (3.5.11b)

consistent with the explicit Neveu-Schwarz fusion calculations to be found in the

next chapter. We similarly obtain

[
K+

1,3

]
�
[
K+
r,s

]
=
[
K+
r,s−2

]
+
[
K−r,s

]
+
[
K+
r,s+2

]
(3.5.11c)

(r + s even),[
K+

2,2

]
�
[
K+
r,s

]
=
[
K+
r−1,s−1

]
+
[
K−r−1,s+1

]
+
[
K−r+1,s−1

]
+
[
K+
r+1,s+1

]
(3.5.11d)

(r + s even).

It is clear that Grothendieck fusion respects parities in the sense that changing

the parity of one of the modules being fused results in a global change of parity of

the fusion product.

Associativity now completely determines the Grothendieck fusion rules of the

N = 1 Kac modules. The simplest are the mixed fusion rules involving a Neveu-

Schwarz and a Ramond module:

[
K±r,s

]
�
[
Kr′,s′

]
=

r+r′−1∑′

r′′=|r−r′|+1

s+s′−1∑′

s′′=|s−s′|+1

[
Kr′′,s′′

]
(r + s even, r′ + s′ odd).

(3.5.12a)

Here, a primed summation indicates that the summation variable increases in steps

of two. The Ramond-Ramond fusion rules are similar, but the result decomposes

into Neveu-Schwarz modules of both parities:

[
Kr,s

]
�
[
Kr′,s′

]
=

r+r′−1∑′

r′′=|r−r′|+1

s+s′−1∑′

s′′=|s−s′|+1

([
K+
r′′,s′′

]
+
[
K−r′′,s′′

])
(r + s, r′ + s′ odd).

(3.5.12b)
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Finally, fusing a Neveu-Schwarz module with another Neveu-Schwarz module results

in

[
K+
r,s

]
�
[
K+
r′,s′

]
=

r+r′−1∑′

r′′=|r−r′|+1

s+s′−1∑′

s′′=|s−s′|+1

[
K•r′′,s′′

]
(r + s, r′ + s′ even).

(3.5.12c)

The parity • is + if 1
2
(r+s+r′+s′+r′′+s′′) is odd and is − otherwise. Alternatively,

• is + for (r′′, s′′) = (r + r′ − 1, s + s′ − 1) and it changes sign every time r′′ or s′′

decreases by 2.
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Chapter 4

Nahm Gaberdiel Kausch algorithm

In this chapter we give the main tool we will use for calculating fusion rules: the

Nahm-Gaberdiel-Kausch algorithm. We demonstrate the algorithmic process and

how it may be implemented in calculating fusion rules. The algorithm was first

given in [4] and proven for all depths in [6]. The main idea of the algorithm is to

treat the fusion of two representations as something like a tensor product of two

representations with corresponding coproduct formulae for the action of the N = 1

algebra elements. The fusion product space has a filtration by degree, allowing

for easy analysis by simply increasing the degree until the fusion product space has

been identified. We will hereafter refer to the maximum degree of the fusion product

space in question as the depth of the fusion product space. There are two cases to

consider, the untwisted and the twisted case. The untwisted case refers to fusion

algorithm and coproduct formulae for the Neveu-Schwarz and Virasoro algebras and

the twisted case for the Ramond. The twisted case was first dealt with in [51] the

full derivation of the coproduct formulae we will be using is given in Appendix A. A

twist parameter accounts for a half-integer difference between the integral Ramond

indices and the fractional exponents of the superfield which leads to some surprising

complications in the algorithm.

4.1 The Untwisted Nahm-Gaberdiel-Kausch Fu-

sion Algorithm

One important insight [4, 6] into the definition (A.2.27) of the fusion product is that

it admits consistent truncations which are easier to construct explicitly. For this,
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we consider subalgebras U of the universal enveloping algebra of the chiral algebra.

One important example is that generated by all the chiral modes with index not

greater than minus their conformal weight:

Uss =
〈
S(j)
n : n 6 −h(j)

〉
. (4.1.1)

For the Neveu-Schwarz algebra, this subalgebra is generated by the Ln, with n 6 −2,

and theGj, with j 6 −3
2
. The second example, actually a family of examples labelled

by d ∈ Z, that we shall employ is that spanned by monomials of weight greater than

d in the chiral modes:

Ud = span
{
S(j1)
n1

S(j2)
n2
· · ·S(jr)

nr : r ∈ Z>0, n1 + n2 + · · ·+ nr < −d
}
. (4.1.2)

The integer d will be referred to as the depth.

The ability to consistently truncate the fusion product amounts to the following

claim [4, 6] for the chiral algebra modules M and N :

M ×N
Ud(M ×N)

⊆ M

Uss(M)
⊗C

N

Ud(N)
. (4.1.3)

The first factor on the right-hand side defines the special subspace M ss of M and

the second factor defines the depth d subspace Nd of N (even though both are

defined as quotients). The claim is therefore succinctly expressed as the inclusion

(M ×N)d ⊆ M ss ⊗C N
d. We remark that fusion is commutative, so one may swap

the roles of M and N if desired.

The proof of the claim (4.1.3) amounts to showing that any v ⊗ w representing

the left-hand side may be written as a linear combination of elements of the right-

hand side by using the master coproduct formulae (A.1.19). This is demonstrated

through the following algorithm which is applied, at each step, to each term v ⊗ w

of the result of the previous step:

• If v /∈ M ss, so v = Snv
′, with n ≤ −h, then (A.1.19c), perhaps followed by

(A.1.19b), may be used to replace v ⊗ w by a linear combination of terms of the

form v′ ⊗ w′ and Smv
′ ⊗ w, where m > −h. Repeat until none of the resulting

terms v ⊗ w have v = Snv
′, with n ≤ −h. One may need to take into account

relations in M to arrive at terms with v ∈M ss.
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• If w /∈ Nd, so w = Uw′, where U is a monomial in the chiral modes of weight

greater than d, then combine ∆
(
U
)

= 0, coming from the left-hand side of (4.1.3),

with (A.1.19a) and (A.1.19b) to replace v ⊗ w by a linear combination of terms

of the form U ′v ⊗ w′, where the U ′ are monomials in the chiral modes of weight

strictly smaller than that of U . Repeat until each of the resulting terms have

w ∈ Nd, using relations in N .

• Repeat the above two steps as required. Termination is guaranteed for modules

over the Neveu-Schwarz algebra whose weights are bounded below, because each

step requires that the sum of the weights of the factors in each term strictly

decreases.

We have thus shown the validity of (4.1.3). An explicit example illustrating this

process is detailed in Section 4.1.1.

The first goal in constructing a depth d fusion product (M ×N)d is to determine

the subspace of M ss ⊗C N
d with which it may be identified. This determination

proceeds through the identification of spurious states which are actually relations

in the tensor product space that are derived from relations in M and N (or even in

the chiral algebra). Specifically, one combines ∆
(
U
)

= 0, for monomials of weight

greater than d, with these relations; a spurious state arises if reducing the result to

an element of M ss ⊗C N
d using the above algorithm does not yield zero identically.

We again refer to Section 4.1.1 for examples of this process. Quotienting by the

spurious states then gives the fusion product to depth d.

Once the depth d fusion product has been identified, its structure is analysed

by computing the action of the chiral modes Sn with |n| 6 d (all other chiral

modes must act as the zero operator). For this, one applies the coproduct formulae

(A.1.19a) and (A.1.19b) to a basis element of the depth d fusion product, reducing

the result to an element of M ss⊗CN
d using the above algorithm, then to an element

of (M ×N)d by imposing the spurious state relations. By analysing the structures

obtained for various (small) values of d, one gets highly non-trivial information about

the fusion product itself; in favourable cases, the information obtained is sufficient

to completely identify the fusion product. The example of Section 4.1.1 illustrates

such a case.
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4.1.1 Example

In this section, we use an example to illustrate the steps involved in completely de-

composing a fusion product and identifying its (indecomposable) direct summands.

To construct the fusion product itself, we utilise the Nahm-Gaberdiel-Kausch fusion

algorithm, referring to Appendix A for further details concerning this technology.

The example is fairly involved and we have chosen it in order to illustrate a wide

variety of the features and methods that we employ to analyse more general fusion

rules. Some rather more simple arguments are presented in Section 5.1 (though

stripped of the explicit Nahm-Gaberdiel-Kausch computations).

As our example, we consider the fusion of the Neveu-Schwarz Kac module K1,3

with itself at central charge c = 0 (p = 2 and p′ = 4). A part of the extended

Neveu-Schwarz Kac table for c = 0 appears in Figure 2.2. We remark that K1,3,

unlike most Kac modules, is a highest-weight module; indeed, it is generated by a

highest-weight vector v of conformal weight h1,3 = 0. We may therefore identify

K1,3 as the quotient of the Verma module V0 by the submodule generated by the

singular vector of conformal weight 3
2
. Thus,

(
L−1G−1/2 −

1

2
G−3/2

)
v = 0 (4.1.4)

in K1,3. For simplicity, we shall assume throughout that v is even.

First, we determine the character of the fusion product using the Verlinde for-

mula. Specifically, Equation (3.3.5b) gives

ch
[
K1,3

]
� ch

[
K1,3

]
= ch

[
K1,1

]
+ ch

[
K1,3

]
+ ch

[
K1,5

]
. (4.1.5)

However, each of the Kac modules appearing on the right-hand side is reducible,

with two (simple) composition factors each, so we learn that the fusion product has

six composition factors in all:

ch
[
K1,3 ×K1,3

]
= 2 ch

[
L0

]
+ 2 ch

[
L1/2

]
+ ch

[
L3/2

]
+ ch

[
L5

]
. (4.1.6)

Here, Lh denotes the simple highest-weight module whose highest-weight vector

has conformal weight h. To understand how these six simple modules are glued

together to form the fusion product, we will partially construct the product module
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and explicitly analyse the action of the Neveu-Schwarz algebra upon it.

To construct the fusion product of K1,3 with itself, we first calculate its special

subspace. This is defined (see Section 4.1) to be the (vector space) quotient of K1,3

by the action of the algebra generated by the Virasoro modes Ln, with n 6 −2, and

superfield modes Gj, with j 6 −3
2
, leaving only linear combinations of vectors in

which L−1 and G−1/2 act on v. Imposing the singular vector relation (4.1.4), we find

that L−1G−1/2v = 1
2
G−3/2v must be set to 0 in the special subspace; generalising

this shows that the special subspace is three-dimensional:

Kss
1,3 = span

{
v,G−1/2v, L−1v

}
. (4.1.7)

We will first determine the depth 0 truncation of the fusion product K1,3×K1,3.

Naturally enough, this requires the depth 0 truncation of K1,3. This subspace is

obtained by quotienting by the action of all Neveu-Schwarz monomials with negative

indices:

K0
1,3 = span{v}. (4.1.8)

The depth 0 truncated fusion product is constructed within the tensor product of

these two spaces. Thus,

[K1,3 ×K1,3]0 ⊆ Kss
1,3 ⊗C K0

1,3 = span
{
v ⊗ v, L−1v ⊗ v

∣∣G−1/2v ⊗ v
}
. (4.1.9)

The basis vectors here have been partitioned into even and odd parities, using a

vertical delimiter, recalling that v has been assumed to be even. To determine which

subspace of this three-dimensional tensor product is the depth 0 fusion product, we

search for spurious states. These are linear dependence relations (see Section 4.1)

that may be derived in Kss
1,3 ⊗C K0

1,3 when we impose the Neveu-Schwarz algebra

action defined by the fusion coproduct formulae. Inspection of the composition

factors (4.1.6) shows that there must be two vectors of conformal weight 0 in the

depth 0 product, hence there can be at most one spurious state.

We search for spurious states by implementing the singular vector relation (4.1.4).

This will require the following cases of the master formulae (A.1.19) derived in

Appendix A.1:

∆
(
G−1/2

)
= G−1/2 ⊗ 1 + µ1 1⊗G−1/2, (4.1.10a)
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∆
(
L−1

)
= L−1 ⊗ 1 + 1⊗ L−1, (4.1.10b)

∆
(
G−3/2

)
= G−1/2 ⊗ 1− · · ·+ µ1 1⊗G−3/2, (4.1.10c)

G−3/2 ⊗ 1 = ∆
(
G−3/2

)
+ · · ·+ µ1

[
1⊗G−1/2 + · · ·

]
. (4.1.10d)

Here, ∆ is the fusion coproduct, µ1 = ±1 is the parity of w1 when the formula

is applied to w1 ⊗ w2, and the dots stand for infinite numbers of omitted terms

which will not contribute to this calculation. First, we note that all Virasoro and

Neveu-Schwarz modes, except L0, will act as the zero operator on a depth 0 space.

In particular, ∆
(
G−1/2

)
= ∆

(
L−1

)
= ∆

(
G−3/2

)
= 0, so that

0 = ∆
(
G−3/2

)
v ⊗ v = G−1/2v ⊗ v + v ⊗G−3/2v = G−1/2v ⊗ v + 2 v ⊗ L−1G−1/2v

= G−1/2v ⊗ v − 2 L−1v ⊗G−1/2v = G−1/2v ⊗ v + 2G−1/2L−1v ⊗ v (4.1.11)

= G−1/2v ⊗ v + 2 L−1G−1/2v ⊗ v

= G−1/2v ⊗ v +G−3/2v ⊗ v = G−1/2v ⊗ v + v ⊗G−1/2v = 0. (4.1.12)

In this calculation, we have used (4.1.10c), (4.1.4), (4.1.10b), (4.1.10a), then the

commutation relations (2.1.1), (4.1.4) again, (4.1.10d), and finally (4.1.10a) again.

We have also assumed that the highest-weight vector v has even parity. In any case,

the right-hand side of (4.1.11) is identically zero which means that we have failed to

find a spurious state. Replacing v⊗ v by G−1/2v⊗ v or L−1v⊗ v in this calculation

likewise fails to uncover any spurious states.

We therefore assert that there are no spurious states to find and that the depth

0 fusion product is three-dimensional. It only remains to determine the action of

L0, that of the other modes being trivial. To this end, we need three additional

auxiliary formulae:

∆
(
L0

)
= L−1 ⊗ 1 + L0 ⊗ 1 + 1⊗ L0, (4.1.13a)

L−2 ⊗ 1 = ∆
(
L−2

)
+ · · ·+ 1⊗ L−1 − 1⊗ L0 + · · · , (4.1.13b)

L2
−1v = −1

2
G−3/2G−1/2v + L−2v. (4.1.13c)

The last is a consequence of the singular vector relation (4.1.4). The action of L0 is
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now given by

∆
(
L0

)
v ⊗ v = L−1v ⊗ v, (4.1.14a)

∆
(
L0

)
G−1/2v ⊗ v = L−1G−1/2v ⊗ v +

1

2
G−1/2v ⊗ v =

1

2
G−3/2v ⊗ v +

1

2
G−1/2v ⊗ v

=
1

2
v ⊗G−1/2v +

1

2
G−1/2v ⊗ v = 0, (4.1.14b)

∆
(
L0

)
L−1v ⊗ v = L2

−1v ⊗ v + L−1v ⊗ v = −1

2
G−3/2G−1/2v ⊗ v + L−2v ⊗ v + L−1v ⊗ v

=
1

2
G−1/2v ⊗G−1/2v + v ⊗ L−1v + L−1v ⊗ v

=
1

2
G2
−1/2v ⊗ v =

1

2
L−1v ⊗ v. (4.1.14c)

With respect to the ordered basis (4.1.9), we have

∆
(
L0

)
=


0 0 0

1 1
2

0

0 0 0

, (4.1.15)

where we have partitioned the matrix to indicate the separation into even and odd

basis elements. We conclude that the depth 0 fusion product is spanned by two

vectors of conformal weight 0, one even and one odd, and one even vector of weight

1
2
.

The depth 0 result therefore accounts for three of the six composition factors

of the fusion product, namely both of the L0 factors and one of the L1/2 factors.

The remaining factors, L1/2, L3/2 and L5, must appear as descendants of these via

the action of the negative modes; otherwise, they would have appeared in the depth

0 calculation. The factor L1/2 can only descend from one of the L0 factors, but

once this is fixed there are still three consistent possibilities, ignoring parities, for

identifying L3/2 and L5 as descendants:

0:

1
2
:

3
2
:

5: .

(4.1.16)

To distinguish between them, we must construct the fusion product to greater depth.

We therefore turn to the depth 1
2

calculation in which vectors are set to zero
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if they may be obtained from other vectors by acting with linear combinations

of Neveu-Schwarz monomials whose indices are negative and sum to at most −1.

The special subspace of K1,3 does not change, but now we consider its depth 1
2

truncation which is spanned by v and G−1/2v. Thus, the depth 1
2

fusion product

will be contained within a six-dimensional space:

[K1,3 ×K1,3]1/2 ⊆ span
{
v ⊗ v, L−1v ⊗ v,G−1/2v ⊗G−1/2v

∣∣G−1/2v ⊗ v,

v ⊗G−1/2v, L−1v ⊗G−1/2v
}
. (4.1.17)

Comparing with the three possible structures (4.1.16) for the fusion product, we see

that allowing descendants by G−1/2, as well as the depth zero vectors, always leads

to five depth 1
2

vectors with conformal weights 0, 0, 1
2
, 1

2
and 1. This indicates that

there is precisely one spurious state to find.

The calculation proceeds in much the same manner as before. The difference is

that because we are computing to depth 1
2
, we may no longer assert that ∆

(
G−1/2

)
=

0 (nor that ∆
(
G+1/2

)
= 0). Using (4.1.10c), (4.1.4) and (4.1.10b), we quickly arrive

at

0 = ∆
(
G−3/2

)
v ⊗ v = G−1/2v ⊗ v + v ⊗G−3/2v = G−1/2v ⊗ v + 2 v ⊗ L−1G−1/2v

= G−1/2v ⊗ v − 2 L−1v ⊗G−1/2v. (4.1.18)

The right-hand side has been expressed in terms of the basis elements (4.1.17) and

the fact that it does not vanish identically means that we have found a spurious

state. More precisely, it means that this relation must be imposed in the depth 1
2

fusion product. We have searched for more independent spurious states, but found

none in accord with the structural arguments above.

Imposing this relation reduces the dimension of the depth 1
2

fusion product from

6 to 5. Computing the action of L0 on this space is now straight-forward. With

respect to the ordered basis consisting of the first five elements of the right-hand
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side of (4.1.17), we obtain

∆
(
L0

)
=



0 0 0 0 0

1 0 −1
2

0 0

0 1
2

1 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2


∼



0 0 0 0 0

0 1
2

1 0 0

0 0 1
2

0 0

0 0 0 0 0

0 0 0 0 1


, (4.1.19)

where we also indicate the Jordan canonical form. While we do find the expected

conformal weights, more interesting is the presence of a rank 2 Jordan block for the

weight 1
2
, indicating the presence of a staggered submodule in the fusion product

(see Appendix B).

To determine which of the three possibilities of (4.1.16) is realised by the fusion

product, we can repeat the above computations to depth 3
2

and show that the fusion

product has no submodule isomorphic to L0, that is that no weight 0 vector is

annihilated by both singular combinations G−1/2 and L−1G−1/2− 1
2
G−3/2. This fact

implies that the fusion product corresponds to the leftmost possibility in (4.1.16).

We mention that the required computation is rather tedious by hand, involving one

spurious state in a 12-dimensional space, but is practically instantaneous in our

computer algebra implementation.

The full structure of the fusion product is

0:

1
2
:

3
2
:

5:

⇒ K1,3 ×K1,3 = K1,1 ⊕ S0,1
1,4 , (4.1.20)

where S0,1
1,4 denotes a staggered module described by the short exact sequence

0 −→ K1,3 −→ S0,1
1,4 −→ K1,5 −→ 0. (4.1.21)

The notation here derives from (4.1.21) in that S0,1
1,4 has a submodule isomorphic to

the Kac module with labels (r, s) = (1, 4)− (0, 1) = (1, 3) and the quotient by this

submodule is isomorphic to the Kac module with labels (r, s) = (1, 4)+(0, 1) = (1, 5).

We will use the obvious extension of this notation to describe more general staggered
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modules in what follows (see Appendix B).1

With our depth 3
2

computation, we are now able to check every aspect of (4.1.20)

except for explicitly verifying the arrow from the subsingular vector of conformal

weight 5 to the L0-eigenvector of weight 1
2
. Unfortunately, this would require com-

puting fusion truncations to depth 5 which is well beyond the current limits of our

computer. Below, we will discuss an alternative means of checking that this arrow

is present.

However, having determined that the fusion product involves a staggered module

S0,1
1,4 , we have to determine if the structure depicted in (4.1.20), equivalently if the

short exact sequence (4.1.21), completely specifies its isomorphism class. The general

theory states that this isomorphism class is characterised by its logarithmic coupling

β0,1
1,4 which may be determined, in this example, as follows (see Appendix B.2 for

generalities): Let x ∈ S0,1
1,4 have conformal weight 0, so that G−1/2x is singular.

Choose any y ∈ S0,1
1,4 satisfying

(
L0 − 1

2

)
y = G−1/2x and note that G1/2y must be

proportional to x. The constant of proportionality is β0,1
1,4 .

We may compute β0,1
1,4 within the depth 1

2
fusion product by computing ∆

(
G−1/2

)
and ∆

(
G+1/2

)
. In the basis consisting of the first five elements of the right-hand

side of (4.1.17), we find that

∆
(
G−1/2

)
=



0 0 0 0 0

0 0 0 1 −1

0 0 0 −1 1

1 1
2

1
2

0 0

0 1
2

1
2

0 0


, ∆

(
G+1/2

)
=



0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1
2

0 0

0 1
2

0 0 0


. (4.1.22)

The element x ∈ S0,1
1,4 may be identified (in the depth 1

2
product) with the vector

(0, 0, 0 | 1,−1)T . We then solve
(
L0 − 1

2

)
y = G−1/2x, giving y = (0,−2,−2 | 0, 0)T

modulo arbitrary multiples of G−1/2x and so G1/2y = (0, 0, 0 | − 3,−1)T = −x− 2z,

where z = (0, 0, 0 | 1, 1)T has conformal weight 1. Now, this appears to contradict

the fact that G1/2y must be proportional to x. This is down to a subtlety with the

1We emphasise that this notation differs from a similar notation Ra,b
r,s that has been used to

indicate certain modules over the Virasoro [40, 41] and Neveu-Schwarz [42] algebras. These modules
are believed to arise in the continuum scaling limit of certain statistical models via a lattice fusion
prescription and are conjectured to have Jordan blocks for L0 of rank 2, if exactly one of a and b
is non-zero, and rank 3, if both a and b are non-zero. If the rank-2 module Ra,b

r,s is staggered, then

the two notations are believed to agree: Ra,b
r,s = Sa,br,s .
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computation of ∆
(
G1/2

)
. This mode should not be regarded as mapping the depth

1
2

fusion product into itself, but rather as a map from the depth 1
2

product into the

depth 0 product. We note here that our method is equivalent to that of [6] with

the distinct difference that we have a 5x5 matrix instead of a 5x3 matrix due to the

presence of extra columns that must be set to zero. This has the benefit however of

allowing one to calculate the matrix directly at the desired depth without needing

to first calculate all depths up to that depth. The vector z, being of conformal

weight 1 and thus not in the depth 0 product, should therefore be set to 0 in order

to arrive at the correct result: G1/2y = −x. We therefore conclude that β0,1
1,4 = −1

and identify the fusion product as

K1,3 ×K1,3 = K1,1 ⊕ S0,1
1,4 (−1). (4.1.23)

Actually, we can refine this even further by keeping track of parities. We assumed

in our computations that the minimal conformal weight vectors of both copies of K1,3

were even. The same is true for the summand K1,1 found above, though the vector

x of minimal conformal weight in S0,1
1,4 (−1) is odd. A maximally precise version of

(4.1.21) and (4.1.23) is therefore

K+
1,3 ×K+

1,3 = K+
1,1 ⊕ S

0,1
1,4 (−1)−, 0 −→ K−1,3 −→ S

0,1
1,4 (−1)− −→ K+

1,5 −→ 0.

(4.1.24)

We have also confirmed the logarithmic coupling β0,1
1,4 = −1 using the method

described in [27]. This succeeds because, in this case, the exact sequence (4.1.21)

fixes the isomorphism class of the staggered module S0,1
1,4 completely. We omit the

rather tedious calculations. Instead, we indicate how to confirm this value using the

heuristic formula (B.2.5) developed in [52]. For this, we first perturb the parameter

t, hence the central charge c and Kac weights hr,s, as in (B.2.2) to t(ε) = t+ε = 1
2
+ε.

We then compute the scalar product

〈
x(ε), G1/2G−1/2x(ε)

〉
= 〈x(ε), 2L0x(ε)〉 = 2h1,3(ε) = 2ε (4.1.25)

in the (poorly characterised) perturbed theory in which x(ε) is a highest-weight
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vector of conformal weight h1,3(ε) = ε. Substituting into (B.2.5), we obtain

β0,1
1,4 =

8t2

0− (52 − 32)t2
lim
ε→0

2ε

ε
= −1, (4.1.26)

in agreement with the explicit depth 1
2

fusion construction.

Finally, we point out that one can also arrive at the leftmost possibility in

(4.1.16), without performing depth 3
2

calculations, by instead appealing to the the-

ory of staggered modules (Appendix B). This is generally far more efficient than

explicitly constructing the truncated fusion product, especially when the depth re-

quired for a complete identification becomes large. First, there are two independent

vectors of conformal weight 1
2

and we know that only one, w say, is descended from

a weight 0 vector. As the weight 0 vectors are eigenvectors of L0, so is w. Thus, w is

the L0-eigenvector in the Jordan block at weight 1
2
. Now, choose a Jordan partner

y for w so that
(
L0 − 1

2

)
y = w. Then, Proposition B.1.3 shows that w cannot have

a singular descendant of weight 5 unless this descendant also has a Jordan partner

(take U there to be the singular combination of weight 9
2

that annihilates πy). This

rules out the rightmost diagram in (4.1.16) — the corresponding staggered module

simply does not exist.

One can similarly rule out the middle diagram using some deeper structural

results for staggered modules. In this case, the purported staggered module S (−1)

would be described by the following exact sequence:

0 −→ V0

V3 + V5

−→ S (−1) −→
V1/2

V3

−→ 0. (4.1.27)

Here, we indicate the required logarithmic coupling which was obtained from a

depth 1
2

computation. If we replace the third module in this sequence by its Verma

cover V1/2, then a staggered module S (−1)′ with this new exact sequence may be

shown to exist (and be unique up to isomorphism) using the same methods that

were employed in [7] for Virasoro staggered modules. Moreover, a staggered module

S (−1) with sequence (4.1.27) will exist if and only if there exists a singular vector

of conformal weight 3 in S (−1)′. It is not difficult to check this explicitly with a

computer implementation of S (−1)′ — the result is that no such singular vector

exists, hence that S (−1) does not exist either. This rules out the middle diagram.

A similar calculation may be used to verify the presence of the arrow in (4.1.20)
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from the conformal weight 5 subsingular vector to the weight 1
2

singular vector

G−1/2x. If this arrow were not present, then this weight 5 vector would have to be

singular in S0,1
1,4 (−1). Again, an explicit search for a singular vector of this weight

leads to no solutions, thus verifying the arrow. In principle, the arrow could instead

point to the weight 0 singular vector x ∈ S0,1
1,4 (−1). However, this is easy to rule out

because all of the positive weight vectors in the submodule generated by x actually

belong to that generated by G−1/2x. More generally, we may appeal to the Neveu-

Schwarz generalisation of the Projection Lemma [7, Lem. 5.1] to identify the targets

of such arrows (assuming we have shown that said arrows exist).

4.2 Fusing twisted modules

Our task in this section is to develop a twisted version of this algorithm that can

be applied to both Neveu-Schwarz and Ramond modules. Such a twisted fusion

algorithm was first outlined in [53], where coproduct formulae were derived for

the action of a vertex operator superalgebra on a fusion product. However, the

implementation there was limited to the depth zero truncation of certain generic

fusion products, where indecomposable structure was ignored. Here, we extend the

algorithm to all depths while significantly simplifying the coproduct formulae. A

derivation of these formulae is detailed in Appendix A.2, for completeness, as is a

definition (A.2.27) of the fusion product M×N of two (twisted) modules M and

N .

A key feature of fusion products, as far as the (twisted) Nahm-Gaberdiel-Kausch

algorithm is concerned, is that they admit consistent truncations from which one can

(hopefully) determine the full structure unambiguously. In many cases, including

those considered here, it is enough to consider finite-dimensional truncations which

are easily encoded in a computer algebra system. For examples in which infinite-

dimensional truncations are unavoidable, see [54, 55, 56].

The truncations that we will compute in what follows are labelled by a non-

negative integer d (the depth) and correspond to quotienting the fusion product

by the subspace generated by the action of monomials in the modes whose total

weight is greater than d. More precisely, define the following subalgebra of the
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mode algebra:

Ud = span
{
S(k1)
n1
· · ·S(kr)

nr : r ∈ Z>0, n1 + · · ·+ nr < −d
}
. (4.2.1)

Here, the indices k1, . . . , kr serve to distinguish the generating fields of the vertex

operator superalgebra. The depth d truncation of a module M is then

Md =
M

UdM
. (4.2.2)

This defines truncations of fusion products M × N wherein the action of Ud is

obtained as (a quotient of) the action defined by the twisted coproduct formulae on

M⊗C N , see (A.2.27).

In the untwisted case, the key fact upon which the Nahm-Gaberdiel-Kausch

fusion algorithm rests is the (vector space) inclusion (4.1.3). This realises each

truncated fusion product inside a tensor product space where the action of the

modes may be explicitly computed using the untwisted coproduct formulae. Our

primary aim in this section is to generalise this inclusion to truncations of fusion

products of twisted modules.

For this, it is convenient to review the twisted coproduct formulae (A.2.23) which

we write in the form of three master equations:

∆
(
S̃n
)

=
∞∑

m=−h−ε1+1

(
n+ h+ ε1 − 1

m+ h+ ε1 − 1

)
wn−m(Sm ⊗ 1) (n > −h− ε+ 1)

+ µ1

∞∑
j=0

(
−ε1

j

)
(−w)−ε1−j(1⊗ Sn+ε1+j), (4.2.3a)

∆
(
S̃−n

)
=

∞∑
m=−h−ε1+1

(
m+ n− 1

m+ h+ ε1 − 1

)
(−1)m+h+ε1−1w−m−n(Sm ⊗ 1) (n > h+ ε)

+ µ1

∞∑
j=0

(
−ε1

j

)
(−w)−ε1−j(1⊗ S−n+ε1+j), (4.2.3b)

∞∑
j=0

(
−ε2

j

)
w−ε2−j(S−n+ε2+j ⊗ 1)

=
∞∑

j,k=0

(−1)j
(
ε1

j

)(
n− h− ε2 + k

k

)
wj+k∆

(
S̃−n−j−k

)
(n > h+ ε)
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+ µ1

∞∑
m=−h−ε2+1

(
m+ n− 1

m+ h+ ε2 − 1

)
(−1)m+h+ε2(−w)−m−n(1⊗ Sm). (4.2.3c)

Here, we have lightened the notation somewhat, as compared with Appendix A.2, by

writing ∆ for ∆
(2)
w,0 and S̃n for S̃w,0n (see (A.2.5) for the definition of the tilde modes).

Note that we have kept w and −w as formal indeterminates, instead of evaluating

them at w = 1 (say), because they may appear with non-integer exponents. These

master equations are to be understood as acting on a tensor product state ψ1 ⊗ ψ2.

Then, εi is the twist parameter for ψi(w), with respect to S(z), see (A.2.1), ε =

ε1 + ε2, and µ1 is the mutual locality parameter for S(z) and ψ1(w), see (A.2.7).2

We remark that (A.1.19c) is obtained by combining the coproduct formula

(A.2.23b) with the translation formula (A.2.25) to eliminate the alternative co-

product ∆
(1)
0,−w. Imposing this relation captures the definition (A.2.27) of the fusion

product as the largest quotient of the tensor product that is consistent with locality.

We also mention that the twist parameters εi are only defined modulo 1, in princi-

ple. However, it is clear that the coproduct formulae (A.1.19), and hence the actual

implementation of the twisted Nahm-Gaberdiel-Kausch algorithm, are not invariant

under shifting the εi by an integer. Whilst the structure of a fusion product cannot

depend on the choice of twist parameters used, we shall see that investigating this

structure algorithmically becomes hopelessly impractical for all but a small number

of choices.

To determine the appropriate generalisation of (4.1.3) for twisted modules, the

idea is to apply the master equations (A.1.19), along with ∆
(
Ud
)

= 0, to elements

ψ1 ⊗ ψ2 ∈M⊗CN . For the twisted special subspaceMss, we substitute (A.1.19b)

into (A.1.19c), assuming that n > h+ ε and suppressing all coefficients for brevity:

∞∑
j=0

(S−n+ε2+j ⊗ 1) ∼
∞∑

j,k=0

∆
(
S̃−n−j−k

)
+

∞∑
m=−h−ε2+1

(1⊗ Sm)

∼
∞∑

j,k=0

[
∞∑

m=−h−ε1+1

(Sm ⊗ 1) +
∞∑
`=0

(1⊗ S−n−j−k+ε1+`)

]
(4.2.4)

+
∞∑

m=−h−ε2+1

(1⊗ Sm). (4.2.5)

2Strictly speaking, the factors of µ1 appearing in (A.1.19) should not be present because acting
with 1 ⊗ Sm on ψ1 ⊗ ψ2 will reproduce µ1 from the parities of Sm and ψ1, since ⊗ is a graded
tensor product. However, we have decided to keep the µ1 factors as an explicit reminder of parity
and to be consistent with the conventions of [5, 53].
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We interpret this as saying that S−n+ε2ψ1 ⊗ ψ2 may always be written as a

linear combination of terms of the form Skψ1 ⊗ ψ2 and ψ1 ⊗ S`ψ2, where k >

min{−n+ ε2 + 1,−h− ε1 + 1}. By iteration, it follows that any Snψ1 ⊗ ψ2 with

n 6 −h−ε1 may be written as a linear combination of similar terms with n > −h−ε1

and terms of the form ψ1⊗Smψ2. This suggests the following definition for the twisted

special subspace of M:

Mss =
M

UssM
, Uss =

〈
S(k)
n : n 6 −h(k) − ε(k)

1

〉
. (4.2.6)

The twisted special subspaceMss therefore depends upon the twist parameters ε
(k)
1 ,

defined with respect to each (generating) field S(k)(z), of the fields of M.

We illustrate this definition for the N = 1 algebra. The generating fields are

T (z) and G(z) and we may assume that all twist parameters with respect to T (z)

are 0. In the Neveu-Schwarz sector, we may also assume that the twist parameters

with respect to G(z) are 0, hence we obtain

Uss =
〈
Lm, Gn : m 6 −2, n 6 −3

2

〉
. (4.2.7)

In particular, a Neveu-Schwarz Verma module NSV generated by a highest-weight

vector ψ1 has special subspace

NSVss = span
{
Lj−1G

k
−1/2ψ1 : j, k ∈ Z>0

}
. (4.2.8)

In the Ramond sector, one might choose the twist parameter ε1 for G(z) to be +1
2

or

−1
2

(or another element in Z + 1
2
). However, the resulting (generic) Verma module

special subspaces are quite different:

ε1 = −1

2
: Uss = 〈Lm, Gn : m 6 −2, n 6 −1〉,

Vss = span
{
Lj−1G

k
0ψ1 : j ∈ Z>0, k = 0, 1

}
.

ε1 = +
1

2
: Uss = 〈Lm, Gn : m,n 6 −2〉,

Vss = span
{
Lj−1G

k
−1G

`
0ψ1 : j ∈ Z>0, k, ` = 0, 1

}
.

(4.2.9)

One therefore has some freedom in choosing the twist parameter so as to optimise

the role of the special subspace in fusion computations. However, we shall see that
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this has to be balanced against other considerations.3

In particular, we also need to determine the twisted generalisation of the trun-

cated subspace N d appearing on the right-hand side of (4.1.3). For this, we may

assume that the master equations have already been utilised to convert ψ1 ⊗ ψ2 ∈

M⊗C N into a linear combination of similar terms in which each ψ1 ∈ Mss. Be-

cause we are truncating M×N to depth d, we may assert that ∆
(
Sn
)

= 0, for all

n < −d. It follows immediately from (A.2.5) that ∆
(
S̃n
)

= 0, for all n < −d, as

well. Substituting this into (A.1.19a) and (A.1.19b) then results in

∞∑
j=0

(1⊗ Sn+ε1+j) ∼
∞∑

m=−h−ε1+1

(Sm ⊗ 1), (4.2.10)

where we again suppress all constants. Thus, a term of the form ψ1⊗Sn+ε1ψ2, where

ψ1 ∈ Mss and n < −d, may be written as a linear combination of such terms with

n > −d and terms of the form Smψ1 ⊗ ψ2 with m > −h − ε1. Note that Smψ1

is (usually) an element of Mss under these conditions; we will return to this point

shortly.

Repeating these manipulations for ∆
(
S

(k1)
n1 · · ·S

(kr)
nr

)
= 0, which holds whenever

n1 + · · ·+nr < −d, thereby motivates the definition of the twisted truncated subspace

of N :

N (d) =
N

U(d)N
, U(d) = span

{
S(k1)
n1
· · ·S(kr)

nr : r ∈ Z>0,

n1 + · · ·+ nr < −d+ ε
(k1)
1 + · · ·+ ε

(kr)
1

}
. (4.2.11)

These twisted truncations of N therefore also depend upon the twist parameters ε
(k)
1

of the fields ofM. This may seem surprising, but recall that this notion of truncation

is chosen to facilitate the fusion ofM with N , so perhaps it should have been more

surprising that Mss did not depend upon N . Indeed, the relative asymmetry that

we have just observed between these two definitions is a consequence of the fact

that we have chosen to present the master equations (A.1.19) in terms of ∆ = ∆
(2)
w,0

instead of ∆
(1)
0,−w.

We also illustrate examples of twisted truncated subspaces for the N = 1 algebra.

3Observe that the twisted special subspace is empty for ε1 6 − 3
2 , indicating that the twisted

Nahm-Gaberdiel-Kausch algorithm, as presented here, cannot be employed to determine the struc-
ture of the fusion product with this choice of twist parameter. Whilst it may be possible to modify
the algorithm so as to overcome this problem, see [56, Sec. 7] for a similar situation, we shall avoid
it entirely by simply not choosing these values for ε1.
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NSV(d) ε1 = −1
2

ε1 = +1
2

d = 0 span
{
ψ2, G−1/2ψ2

}
span{ψ2}

d = 1
2

span
{
ψ2, G−1/2ψ2

}
span{ψ2}

d = 1 span
{
ψ2, L−1ψ2, G−1/2ψ2, span

{
ψ2, L−1ψ2, G−1/2ψ2

}
L−1G−1/2ψ2, G−3/2ψ2, G−3/2G−1/2ψ2

}
RV(d) ε1 = −1

2
ε1 = +1

2

d = 0 span{ψ2, G0ψ2, G−1G0ψ2} span{ψ2}
d = 1

2
span{ψ2, G0ψ2, L−1G0ψ2, G−1ψ2, G−1G0ψ2} span{ψ2, G0ψ2}

d = 1 span{ψ2, L−1ψ2, G0ψ2, L−1G0ψ2, span{ψ2, L−1ψ2, G0ψ2}
G−1ψ2, G−1G0ψ2, L−1G−1G0ψ2, G−2G0ψ2}

Figure 4.1: Two tables indicating a few of the twisted truncated subspaces when N
is a generic Verma module and M is Ramond with ε1 = ±1

2
.

If M belongs to the Neveu-Schwarz sector, then we may choose ε1 = 0 so that the

twisted and untwisted truncated subspaces coincide, N (d) = N d for all d. WhenM

is Ramond, we tabulate the d = 0, 1
2
, 1 and ε1 = ±1

2
truncations of a generic Verma

module V, generated by a highest-weight vector ψ2, in Figure 4.1. Comparing with

(4.2.9), we see that there is a tradeoff between the sizes of the special subspace and

the truncated subspaces as we vary ε1.

The above development, using the master equations to first express the states of

M⊗N as linear combinations of elements ofMss⊗N and then as linear combina-

tions of elements of Mss ⊗N (d), results in the following generalisation of (4.1.3):

(M×N )d ⊆Mss ⊗C N (d). (4.2.12)

However, the validity of this inclusion hinges on a subtle point — the second step

of this process may introduce terms ψ1 ⊗ ψ2 in which ψ1 /∈ Mss, in which case one

has to start again from the first step. If this repetition can be shown to always

terminate, then (4.2.12) follows. In the case of untwisted fusion products, one can

often apply elementary arguments to conclude that termination is guaranteed [3]

(see [55] for cases where the process encounters infinite regression).

Here, our approach to this question of termination is unashamedly practical:

we have implemented the twisted Nahm-Gaberdiel-Kausch fusion algorithm on a

computer and have observed that our implementation terminates, for all examples
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we have tested, if we set the twist parameters to 0 or −1
2

for Neveu-Schwarz or

Ramond modules, respectively. We will therefore defer a proper consideration of

the termination question to future work.

4.3 Explicit fusion products

In this section, we present two explicit computations using the twisted Nahm-

Gaberdiel-Kausch fusion algorithm. We first describe the fusion of two Ramond

modules because the product may then be identified straightforwardly using the

Neveu-Schwarz theory developed in Appendix A. The second example fuses a Neveu-

Schwarz module with a Ramond module, hence the result is Ramond. The identi-

fication in this case relies upon generalising the basic theory of staggered modules

[8, 7, 23] to the Ramond algebra. We outline the required features of this generali-

sation in Appendix B.1.

4.3.1 Example: fusing Ramond with Ramond

We first consider the fusion of the Kac Module K2,1 with itself at central charge c = 0

(p = 2 and p′ = 4). Note that K2,1 is generated by a Ramond highest-weight vector

u of conformal weight h2,1 = 9
16

. We may therefore identify K2,1 with the quotient of

the Verma module V2,1 by the submodule generated by its depth 1 singular vectors

(one bosonic and one fermionic). Thus, we have

(
L−1 −

4

3
G−1G0

)
u = 0,

(
L−1G0 −

3

4
G−1

)
u = 0 (4.3.1)

in K2,1. We will assume, for definiteness, that u is bosonic.

Our first task is to determine the composition factors of the fusion product

K2,1 × K2,1 using the Verlinde formula. Specifically, (3.5.5) gives the Grothendieck

fusion rule

[
K2,1 ×K2,1

]
=
[
K2,1

]
�
[
K2,1

]
=
[
K+

1,1

]
+
[
K−1,1

]
+
[
K+

3,1

]
+
[
K−3,1

]
. (4.3.2)

However, each of the Kac modules appearing on the right-hand side is reducible,

with two (simple) composition factors each, so we learn that the fusion product has
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eight composition factors in all:

[
K2,1×K2,1

]
=
[

NSL+
0

]
+2
[

NSL−3/2
]
+
[

NSL+
5

]
+
[

NSL−0
]
+2
[

NSL+
3/2

]
+
[

NSL−5
]
. (4.3.3)

Our goal is now to determine how these factors are arranged structurally in the fusion

product. Note that parity considerations force this product to decompose into the

direct sum of two modules, one of which has composition factors NSL+
0 , NSL−3/2,

NSL−3/2 and NSL+
5 (the factors of the other are obtained from these by applying the

parity-reversal functor Π).

It is convenient, at this point, to note that the composition factors of the Verma

modules NSV±1,1 (and the Fock spaces NSF±1,1) include all of those that appear in

(4.3.3). Specifically, we have

[
NSV±1,1

]
=
[

NSF±1,1
]

=
[

NSL±0
]
+
[

NSL∓1/2
]
+
[

NSL∓3/2
]
+
[

NSL±3
]
+
[

NSL±5
]
+ · · · (4.3.4)

in the Grothendieck ring. This information will be useful for certain arguments

involving descendant state counting in the calculations that follow.

To identify the structure of K2,1 ×K2,1, given (4.3.3), we use the twisted Nahm-

Gaberdiel-Kausch algorithm to compute truncated subspaces of this fusion product.

We will choose the twist parameters for the Gk to be ε1 = ε2 = −1
2

(we always take

those for the Ln to be ε1 = ε2 = 0), so that the twisted special subspace is given by

the following quotient of K2,1:

Kss
2,1 =

K2,1

〈Lm, Gn : m 6 −2, n 6 −1〉 K2,1

= span{u,G0u}. (4.3.5)

The relations (4.3.1) are responsible for the finite-dimensionality of this subspace

— the twisted special subspace (4.2.9) of Vss
2,1 is infinite-dimensional. We moreover

note that Kss
2,1 would have remained infinite-dimensional if we had chosen ε1 = +1

2

instead. The depth 0 twisted truncated subspace of K2,1 is also given by

K(0)
2,1 = span{u,G0u}, (4.3.6)

as may be seen by combining the result for V2,1, given in Figure 4.1, with the relations

(4.3.1).
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The depth 0 truncation of the fusion product is therefore at most four-dimensional:

[K2,1 ×K2,1]0 ⊆ Kss
2,1⊗CK(0)

2,1 = span{u⊗ u,G0u⊗G0u |G0u⊗ u, u⊗G0u}. (4.3.7)

Here, we separate the bosonic and fermionic vectors with a vertical bar. The com-

position factors NSL+
0 and NSL−0 contribute their highest-weight vectors to this trun-

cated subspace. However, these will generate at most two of the four factors of the

forms NSL−3/2 and NSL+
3/2 as descendants, hence at least two of these factors must

contribute their highest-weight vectors to the depth 0 truncation. This gives at least

four independent states in the depth 0 truncation, so we conclude that this trunca-

tion is precisely four-dimensional. The inclusion (4.3.7) is therefore an equality —

there are no spurious states to find. Moreover, this tells us that the composition

factors NSL−3/2, NSL+
3/2, NSL+

5 and NSL−5 must appear as descendants of the factors

NSL+
0 , NSL−0 , NSL−3/2 and NSL+

3/2, respectively. We summarise this conclusion in the

following structure diagram:

0:

3
2
:

5:

+

− −

+

⊕ −

+ +

− .

(4.3.8)

As in Chapter 2, composition factors (subsingular vectors) are denoted by black

circles and we indicate their parities and conformal weights in a (hopefully) obvious

fashion. However, this diagram is not yet complete — we cannot say at this point

whether the two summands of K2,1 × K2,1 may be further decomposed or not. To

determine this, we need to compute truncated subspaces of depth d > 0.

Before proceeding, however, let us quickly check the above conclusion by show-

ing explicitly that the twisted Nahm-Gaberdiel-Kausch fusion algorithm gives the

correct eigenvalues and eigenvector parities for the action of L0 on the depth 0 trun-

cation (we note that the other Neveu-Schwarz modes do not act on this truncated

subspace). For this, we will use the following two formulae along with the singular

vector equations (4.3.1):

∆
(
L0

)
= wL−1 ⊗ 1 + L0 ⊗ 1 + 1⊗ L0, (4.3.9a)

G−1 ⊗ 1 = −1

2
w−1G0 ⊗ 1− µ1w

−1/2(−w)−1/21⊗G0 + · · · . (4.3.9b)
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The first is (A.1.19a) with S̃n = L0, ε1 = 0 and µ1 = 1; the second is (A.1.19c) with

Sn = G1/2 and ε1 = ε2 = −1
2
. We have noted that ∆

(
G̃−1/2−j−k

)
= 0, because we

are computing to depth 0, and the omitted terms in (4.3.9b) correspond to terms

that annihilate each of the states encountered in the computations that follow.

The action of L0 on the depth 0 truncated subspace is now computed to be

∆
(
L0

)
u⊗ u = wL−1u⊗ u+

9

8
u⊗ u =

4

3
wG−1G0u⊗ u+

9

8
u⊗ u

=
3

4
u⊗ u+

4

3
w1/2(−w)−1/2G0u⊗G0u,

∆
(
L0

)
G0u⊗G0u = −27

64
w1/2(−w)−1/2u⊗ u+

3

4
G0u⊗G0u,

∆
(
L0

)
G0u⊗ u =

3

4
G0u⊗ u−

3

4
w1/2(−w)−1/2u⊗G0u,

∆
(
L0

)
u⊗G0u =

3

4
w1/2(−w)−1/2G0u⊗ u+

3

4
u⊗G0u.

(4.3.10)

With respect to the ordered basis (4.3.7), L0 is represented by the matrix

∆
(
L0

)
=


3
4

4
3
w1/2(−w)−1/2 0 0

−27
64
w1/2(−w)−1/2 3

4
0 0

0 0 3
4

−3
4
w1/2(−w)−1/2

0 0 3
4
w1/2(−w)−1/2 3

4

,
(4.3.11)

where the block structure confirms that L0 is bosonic with two bosonic and two

fermionic eigenvectors. We note that each diagonal block has trace 3
2

and determi-

nant 0, hence that the eigenvalues of ∆
(
L0

)
are 0 and 3

2
, each with multiplicity two

corresponding to one bosonic and one fermionic eigenvector, as concluded above.

Having checked our reasoning, we turn now to truncated subspaces of greater

depth. Specifically, we shall examine the depth 3
2

truncation of K2,1 × K2,1. The

twisted special subspace Kss
2,1 is still given by (4.3.5), but the twisted truncated sub-

space K(3/2)
2,1 needs calculating. That of a Ramond Verma module RV, generated by a

highest-weight vector ψ2, turns out to be 13-dimensional (compare with Figure 4.1):

RV(3/2) = span
{
ψ2, L−1ψ2, G0ψ2, L−1G0ψ2, L

2
−1G0ψ2, L−2G0ψ2, L−1G−1ψ2,

G−2ψ2, G−1G0ψ2, L−1G−1G0ψ2, G−2G0ψ2, G−2G−1G0ψ2

}
. (4.3.12)

The singular vector relations (4.3.1) and their L−1, G−1 and G−2 descendants cut

this down so that K(3/2)
2,1 is only six-dimensional. It follows that the depth 3

2
truncated
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fusion product is at most 12-dimensional.

We compare this with the dimension obtained from the composition factors

(4.3.3) and the partial structure (4.3.8). Each of the two conformal weight 0 highest-

weight vectors has a single descendant, to depth 3
2
: the singular vector of conformal

weight 3
2

(the other possible descendants of weight 1
2
, 1 and 3

2
must not appear as

there is no composition factor isomorphic to NSL±1/2). Similarly, each of the weight

3
2

vectors that appeared in the depth 0 truncation must have three descendants, to

depth 3
2

(the singular vector of weight 3 cannot be present as there is no composition

factor isomorphic to NSL±3 ). As this already amounts to 12 independent states, we

conclude that the depth 3
2

truncated fusion product is exactly 12-dimensional, hence

that there are again no spurious states to find.

Computing the action of L0 on the depth 3
2

truncated fusion product, we find two

Jordan blocks (one bosonic and one fermionic) for the eigenvalue 3
2
. The calculations

in this 12-dimensional space become somewhat tedious, so we omit the details and

just report the results. In particular, these Jordan blocks allow us to conclude

immediately that the fusion product K2,1×K2,1 decomposes as the direct sum of two

Neveu-Schwarz staggered modules (see Appendix B.1). The full structure diagram

is therefore
0:

3
2
:

5:

+

− −

+

⊕ −

+ +

− ,

(4.3.13)

where the horizontal arrows indicate the Jordan blocks in ∆
(
L0

)
.

To be more precise, each staggered module appearing in this fusion product may

be characterised through the non-split short exact sequence

0 −→ K±1,1 −→ S
1,0
2,1 (β)± −→ K∓3,1 −→ 0, (4.3.14)

where we follow the notation for Neveu-Schwarz staggered modules outlined in Ap-

pendix B.1. In particular, the parity label matches that of the states of minimal

conformal weight and β ∈ C is the logarithmic coupling [57], computed as follows:

First, let x± denote the highest-weight vector of conformal weight 0, so that the sin-

gular vector Ux±, where U = L−1G−1/2− 1
2
G−3/2, is the L0-eigenvector in the Jordan

block of eigenvalue 3
2
. Let y∓ be a Jordan partner to Ux±, so (L0 − 3

2
)y∓ = Ux±

and determine β from U †y∓ = βx±. Performing this calculation explicitly in the
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depth 3
2

truncation of K2,1 ×K2,1, we obtain

∆
(
U †
)
y∓ =

(
∆
(
G1/2

)
∆
(
L1

)
− 1

2
∆
(
G3/2

))
y∓ =

3

8
x±. (4.3.15)

The fusion product is therefore identified as4

K2,1 ×K2,1 = S1,0
2,1 (3

8
)+ ⊕ S1,0

2,1 (3
8
)−. (4.3.16)

This logarithmic coupling is confirmed by the heuristic limit formula [1, Eq. (B.5)],

originally obtained for Virasoro logarithmic minimal models in [52, 58].

Whilst this is not needed for the identification (4.3.16), let us remark that our

calculations have justified every arrow in the structure diagram (4.3.13) except those

pointing from the subsingular vectors of conformal weight 5 to the singular vectors of

weight 3
2
. To verify these arrows explicitly with the Nahm-Gaberdiel-Kausch fusion

algorithm would require computing to depth 5 which is infeasible with our current

implementation. However, if such an arrow exists, meaning that the staggered

module has no subsingular vector of conformal weight 5 that is actually singular,

then it clearly points to either the highest-weight vector of weight 0 or the singular

vector of weight 3
2
. The former is ruled out by the Neveu-Schwarz generalisation of

the Projection Lemma [7, Lem. 5.1], so we only need check that S1,0
2,1 (3

8
)± possesses

no singular vector of weight 5. This was explicitly verified by coding the general form

of the weight 5 subsingular vectors in S1,0
2,1 (3

8
)± using a computer implementation of

Neveu-Schwarz staggered modules.

4.3.2 Example: fusing Ramond with Neveu-Schwarz

Our second example addresses the fusion of the Ramond module K2,1 with the

Neveu-Schwarz module K+
2,2, again at central charge c = 0 (p = 2 and p′ = 4). The

Grothendieck fusion rule (3.5) gives

[
K2,1 ×K+

2,2

]
=
[
K2,1

]
�
[
K+

2,2

]
=
[
K1,2

]
+
[
K3,2

]
, (4.3.17)

4Actually, the methods of [27] may be used to show that there is a unique staggered module,
up to isomorphism, satisfying (4.3.14). Strictly speaking, the value of the logarithmic coupling is
therefore not needed to completely identify the fusion product.
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hence the fusion product has five composition factors in all:

[
K2,1 ×K+

2,2

]
=
[

RL+
0

]
+
[

RL−0
]

+ 2
[

RL1

]
+
[

RL4

]
. (4.3.18)

Here, we recall that h1,2 = 0 = c/24 is the unique conformal weight for which a

simple Ramond highest-weight module is not invariant under parity-reversal (G0

acts as 0 on the highest-weight vector). For convenience, we compare this with the

composition factors of RV±1,2 and RF1,2:

[
RV±1,2

]
=
[

RL±0
]

+
[

RL1

]
+
[

RL4

]
+ · · · ,[

RF1,2

]
=
[

RL+
0

]
+
[

RL−0
]

+ 2
[

RL1

]
+ 2

[
RL4

]
+ · · · .

(4.3.19)

To determine the structure of the fusion product K2,1×K+
2,2, we again turn to the

twisted Nahm-Gaberdiel-Kausch algorithm, initially for depth 0, choosing ε1 = −1
2

and ε2 = 0 for the Gk. Letting u denote the bosonic highest-weight vector of K2,1

of conformal weight h2,1 = 9
16

, as in Section 4.3.1, we have the same singular vector

relations (4.3.1) as before. Let v denote the (bosonic) highest-weight vector of K+
2,2

of conformal weight h2,2 = 3
16

. Then, it is easy to check the following singular vector

relation: (
L2
−1 −

1

4
L−2 −G−3/2G−1/2

)
v = 0. (4.3.20)

The twisted special subspace of K2,1 was given in (4.3.5) and the depth 0 twisted

truncated subspace of K+
2,2 is given in Figure 4.1:

K+
2,2

(0)
= span

{
v,G−1/2v

}
. (4.3.21)

This is identical to the truncated subspace of the Verma module in view of the

singular vector relation (4.3.20).

It follows that the depth 0 truncation of K2,1×K+
2,2 is at most four-dimensional:

[K2,1 ×K2,2]0 ⊆ span
{
u⊗ v,G0u⊗G−1/2v

∣∣u⊗G−1/2v,G0u⊗ v
}
. (4.3.22)

The composition factors RL±0 will contribute two highest-weight vectors to this trun-

cation and each of these will generate a centre-type highest-weight module. It is thus

possible that both the composition factors of type RL1, and also that of type RL4,

may be descended from these highest-weight vectors and hence be set to zero in the
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depth zero truncation. In other words, there may exist up to two spurious states in

(4.3.22).

Spurious states may be determined from non-trivial relations, in particular from

the singular vector relations (4.3.1) and (4.3.20). The former were used to determine

the twisted special subspace of K2,1, so we must use the latter in our search. Taking

S̃n = L−1, ε1 = 0 and µ1 = 1 in (A.1.19a) gives

0 = ∆
(
L−1

)
= L−1⊗1+1⊗L−1 ⇒ 0 = ∆

(
L2
−1

)
= L2

−1⊗1+2L−1⊗L−1+1⊗L2
−1,

(4.3.23)

as we are computing to depth 0. Thus,

0 = ∆
(
L2
−1

)
u⊗ v −∆

(
L−1

)
L−1u⊗ v = L−1u⊗ L−1v + u⊗ L2

−1v

=
4

3
G−1G0u⊗ L−1v +

1

4
u⊗ L−2v + u⊗G−3/2G−1/2v, (4.3.24)

where we have used (4.3.1) and (4.3.20). To simplify the first term of (4.3.24), take

(A.1.19c) with Sn = G−1, ε1 = −1
2

and ε2 = 0:

G−1 ⊗ 1 = µ1

[
−(−w)−1/21⊗G−1/2 +

1

2
(−w)−3/21⊗G1/2 + · · ·

]
. (4.3.25)

Applying (4.3.25), (4.3.23) and (4.3.1) in succession, twice, then (4.3.25) once again,

as well as the commutation relations (2.1.1), we deduce that

4

3
G−1G0u⊗ L−1v = − 3

16
w−2u⊗ v − 2(−w)−3/2G0u⊗G−1/2v. (4.3.26)

For the second term of (4.3.24), note that applying (A.1.19b) with S̃n = L−2, ε1 = 0

and µ1 = 1 to u⊗ v gives

1

4
u⊗L−2v = −1

4
w−1L−1u⊗v+

9

64
w−2u⊗v =

9

64
w−2u⊗v+

1

3
(−w)−3/2G0u⊗G−1/2v,

(4.3.27)

using (4.3.1) and (4.3.25). Finally, setting S̃n = G̃−1, ε1 = −1
2

and ε2 = 0 in

(A.1.19b) yields

0 = ∆
(
G̃−1

)
= w−1G0 ⊗ 1 + µ1

[
(−w)1/21⊗G−3/2 +

1

2
(−w)−1/21⊗G−1/2

(4.3.28)
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−1

8
(−w)−3/21⊗G1/2 + · · ·

]
, (4.3.29)

which simplifies the third term of (4.3.24) (again using (4.3.1) and (4.3.25)):

u⊗G−3/2G−1/2v =
3

64
w−2u⊗ v +

5

3
(−w)−3/2G0u⊗G−1/2v. (4.3.30)

With these simplifications, the right-hand side of (4.3.24) is easily checked to vanish

identically. This means that we have not obtained a spurious state. Similar calcula-

tions, starting from applying ∆
(
L2
−1

)
= 0 to the other vectors in (4.3.22) and then

using (4.3.20) and its descendants, also fail to find spurious states. This strongly

suggests that there are no spurious states to find and that the inclusion (4.3.22) is

actually an equality.

Granted this, we can now determine the action of L0 and G0 on the depth 0

truncation of K2,1 × K+
2,2 (the other N = 1 modes do not act). These calculations

require (4.3.1), (4.3.9a), (4.3.25) and

∆
(
G0

)
= ∆

(
G̃0

)
= G0⊗1+· · ·+µ1

[
(−w)1/21⊗G−1/2 +

1

2
(−w)−1/21⊗G1/2 + · · ·

]
,

(4.3.31)

the first equality being (A.2.5) for depth 0 and the second being (A.1.19a) with

S̃n = G̃0, ε1 = −1
2

and ε2 = 0. The results, with respect to the ordered basis

(4.3.22), are

∆
(
L0

)
=


3
4

− 9
64

(−w)−1/2 0 0

−4
3
(−w)1/2 1

4
0 0

0 0 1
4

3
4
(−w)1/2

0 0 1
4
(−w)−1/2 3

4

, (4.3.32a)

∆
(
G0

)
=


0 0 3

16
(−w)−1/2 9

16

0 0 −1
3

−(−w)1/2

(−w)1/2 − 3
16

0 0

1 − 3
16

(−w)−1/2 0 0

. (4.3.32b)

The eigenvalues of ∆
(
L0

)
are easily found to be 0 and 1, each occurring with mul-

tiplicity 2 and an eigenvector of each parity. Changing to an ordered basis of (ap-
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propriately normalised) definite parity L0-eigenvectors, these matrices become

∆
(
L0

)
=


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

, ∆
(
G0

)
=


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

. (4.3.33)

∆
(
G0

)
therefore annihilates both the conformal weight 0 vectors while swapping

those of conformal weight 1.

This analysis shows that one of the RL1 factors is not composed of descendant

states; the other copy of RL1 is descended from the RL+
0 or RL−0 factor, or from both.

Similarly, the RL4 factor is descended from one of the RL1 factors, but we cannot

as yet say which one. To determine the full structure of the fusion product, we will

again have to delve deeper with the Nahm-Gaberdiel-Kausch fusion algorithm.

Continuing the analysis to depth 1, the twisted special subspace Kss
2,1 does not

change, but the depth 1 twisted truncated subspace K+
2,2

(1)
differs from the depth 1

Verma subspace given in Figure 4.1 because of the singular vector relation (4.3.20):

K+
2,2

(1)
= span

{
v, L−1v,G−1/2v, L−1G−1/2v,G−3/2v

}
. (4.3.34)

The depth 1 truncation of K2,1×K+
2,2 is therefore at most 10-dimensional. However,

the RL1 that is not a descendant must contribute six states to the depth 1 truncation,

two of conformal weight 1 and four of conformal weight 2. Similarly, the RL±0 must

contribute two states of conformal weight 0 and two states of conformal weight 1

belonging to the descendant RL1 factor. As this is ten states in all, we see that the

dimension of the depth 1 truncation of K2,1 × K+
2,2 is precisely ten — there are no

spurious states to find.

We first compute ∆
(
L0

)
, using (A.1.19), on the depth 1 truncation of K2,1×K+

2,2.

Its (generalised) eigenvalues are 0, 1 and 2, appearing with multiplicities 2, 4 and 4,

respectively, and the dimensions of the bosonic and fermionic subspaces are equal in

each eigenspace. There are two rank 2 Jordan blocks, one bosonic and one fermionic,

of eigenvalue 1, hence the fusion product is a Ramond staggered module in the

sense of Appendix B.1. Let x+ (x−) denote the bosonic (fermionic) eigenvector of

conformal weight 0. Then, explicitly computing ∆
(
L−1

)
x± and ∆

(
G−1

)
x±, again

using (A.1.19), shows that each result is non-zero, hence that the RL1 factor must
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be descended from both RL+
0 and RL−0 . It follows that we may normalise x+ and x−

so that

∆
(
L−1

)
x+ =

1

2
∆
(
G−1

)
x−, ∆

(
L−1

)
x− =

1

2
∆
(
G−1

)
x+, (4.3.35)

recalling that ∆
(
G0

)
x+ = ∆

(
G0

)
x− = 0.

Because the fusion product is a staggered module, it follows from the theory

outlined in Appendix B.1 that the composition factor RL4 cannot be descended

from the factors RL±0 . We may therefore draw the structure diagram of K2,1 ×K+
2,2

as follows:
0:

1:

4:

+ −

.

(4.3.36)

Here, we indicate the composition factors (subsingular vectors) corresponding to

conformal weight c
24

= 0 with white circles, as in Chapter 2. This identifies the

fusion product as a staggered module with exact sequence

0 −→ K1,2 −→ K2,1 ×K+
2,2 −→ K3,2 −→ 0. (4.3.37)

It only remains to determine the logarithmic couplings.

Choose y+ and y− to be Jordan partners of ∆
(
L−1

)
x+ and ∆

(
L−1

)
x−, respec-

tively. As the latter are singular vectors, the logarithmic couplings β± defined by

∆
(
L1

)
y± = β±x± (4.3.38)

are independent of the choices of y±. As is discussed in Appendix B.1, it appears

that these logarithmic couplings could be independent, hence we must measure them

both. However, explicit calculation confirms that they coincide (as one might have

expected):

β+ = β− =
3

16
. (4.3.39)

The fusion rule is therefore

K2,1 ×K+
2,2 = S1,0

2,2 ( 3
16
, 3

16
). (4.3.40)
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Chapter 5

Results

In this chapter, we summarise the results that we have obtained by combining

the character product rules (3.5.12) with explicit Nahm-Gaberdiel-Kausch fusion

computations and the structure theory of staggered modules. As was explained in

the previous section, this combination allows us to significantly reduce the depth

to which the fusion algorithm must be applied in order to completely identify the

product. For brevity, we have only considered fusion rules between Kac modules,

restricting to the central charges c = 3
2
, −5

2
, −81

10
, 0, −21

4
and 7

10
, corresponding

to (p, p′) = (1, 1), (1, 3), (1, 5), (2, 4), (2, 8) and (3, 5), respectively. The results

obtained suggest conjectures for certain classes of general Kac fusion rules which we

describe below.

5.1 Fusing Kr,1 with K1,s

Perhaps the simplest Kac module fusion products are those involving a “first row”

module and a “first column” one. In this case, the proposed fusion formalism for the

underlying lattice models [42, 25] requires the following fusion rule for consistency:

Kr,1 ×K1,s = Kr,s (r, s ∈ 2Z+ − 1). (5.1.1)

This is certainly consistent with the corresponding character product rule (3.3.7)

and we have verified it explicitly, using the Nahm-Gaberdiel-Kausch algorithm, in

many cases (see below). The evidence is, in our opinion, sufficient to conjecture that

(5.1.1) holds in complete generality. Whilst this accords with the proposed lattice

fusion calculations, we view the result as also confirming, indirectly, that we have
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made the correct abstract definition for Kac modules.

We remark that when confirming the fusion product (5.1.1), the case in which

Kr,s is a corner type module, hence is semisimple, is the most computationally

intensive. To explicitly verify that each composition factor splits off as a direct sum,

thereby forming the required collection of islands (as indicated in Figure 2.6), we

must compute to the depth given by the maximal difference between the conformal

weights of consecutive composition factors (when they are ordered by their conformal

weight). This quickly becomes infeasible with our implementation as r and s grow,

so the direct evidence for corner type modules is somewhat less compelling than for

the other cases.

We also note here that the computational complexity of the fusion algorithm

means that we were only able to successfully confirm (5.1.1) when the required

depth was at most 4. However, as p or p′ increases, the labels r and s requiring a

given depth calculation tend to increase leading to an overall steady decrease in the

feasible depths due to the increasing complexity of the singular vectors for high r

and s. For (p, p′) = (2, 8) and (3, 5), we were therefore limited to depths at most 2.

Including parity in the fusion rule (5.1.1) is easy: In each case, explicit compu-

tation confirms that

K+
r,1 ×K+

1,s = K+
r,s (r, s ∈ 2Z+ − 1). (5.1.2)

More generally, if the parities of Kr,1 and K1,s coincide (differ), then that of Kr,s will

be even (odd). This observation does not appear to have a simple explanation in

terms of the fusion algorithm, although it is in accord with the well known principle

of conservation of fermion numbers. We will show later in this chapter that it follows

readily from a fermionic version of the Verlinde formula.

To illustrate some of the simpler issues that arise with fusion computations of

the form (5.1.1), we consider the example K3,1 × K1,3, for (p, p′) = (2, 4) (c = 0).

The Verlinde formula tells us that the character is that of K3,3 which means that

the fusion product has two composition factors, L1/2 and L3. However, there are
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three inequivalent structural possibilities:

1
2
:

3:

.

(5.1.3)

The first possibility is K3,3, the expected result, the second is its contragredient dual,

and the third is the direct sum L1/2⊕L3. Constructing K3,1×K1,3 to depth 0 leads to

a one-dimensional truncated space. Comparing with the possible structures, we see

that this is consistent with K3,3 where the L3 factor is descended from L1/2, hence

does not appear at depth 0. Moreover, the depth 0 truncations of the other two

structural possibilities are two-dimensional. For this reason, a depth 0 calculation

alone is sufficient to confirm that K3,1 ×K1,3 = K3,3.

A slightly more complicated example is the (p, p′) = (1, 3) (c = −5/2) fusion

product K3,1 × K1,5. The character is that of K3,5, so the composition factors of

the product are L1/2, L5/2 and L4. Depth 0 computations reveal a two-dimensional

truncated space with conformal weights 1/2 and 5/2. It follows from the general

structure theory that L4 is descended from L5/2, so it only remains to decide whether

L1/2 splits off as a direct summand or whether it is generated from L5/2 through

the action of the positive modes. This requires computing to depth 2 and the result

indicates that L1/2 is not a direct summand. The structure is therefore

1
2

5
2

4 ,

(5.1.4)

confirming the fusion rule K3,1 ×K1,5 = K3,5.

In the braided case, there may be further obstacles to overcome in completely

identifying the structure of the fusion product. For example, the product K3,1×K1,5

at (p, p′) = (2, 4) (c = 0) involves six composition factors: L0, L1/2, L3/2, L3, L5 and

L21/2. A depth 0 calculation indicates that all but L0 and L1/2 are descendants and

a depth 1
2

calculation shows that G1/2 maps the weight 1
2

vector to that of weight 0.
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The (partial) structure of the fusion product is thus

0

1
2

3
2

3 5

21
2

,

(5.1.5)

where it only remains to determine if there are upwards-pointing arrows emanating

from the three lowest nodes. The N = 1 version of the Projection Lemma of [7,

Lem. 5.1] rules out any such arrow from the node labelled by 21
2

and from the nodes

labelled by 3 and 5 to that labelled by 0. There are thus only two possible arrows:

those from 3 or 5 to 3
2
. The presence of these arrows may be ascertained as in [27],

see also [25, Sec. 4.2.2]. If they are absent, then the fusion product would possess a

singular vector of weight 3 or 5, respectively. By computing within the most general

abstract module with structure (5.1.5) (an arbitrary extension of the highest-weight

module V1/2/V15/2 by the highest-weight module K1,1
∼= V0/V1/2), we can explicitly

verify that such singular vectors do not exist. This is a relatively efficient calculation

for a computer; in particular, we do not need to invoke the Nahm-Gaberdiel-Kausch

algorithm. In this way, we arrive at the structure

0

1
2

3
2

3 5

21
2

(5.1.6)

from which we conclude that K3,1 ×K1,5 = K3,5.

We have also verified the above, using the twisted fusion algorithm, for Neveu-

Schwarz by Ramond fusions:

K+
r,1 ×K1,s = Kr,s (r odd, s even). (5.1.7)

However, the result for Ramond by Ramond fusion rules does not quite accord with

(5.1.1):

Kr,1 ×K1,s = K+
r,s ⊕K−r,s (r, s even). (5.1.8)
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To illustrate the above conjectured fusion rules, we consider the Ramond by

Ramond example K2,1 × K1,4, for (p, p′) = (1, 3) (c = −5/2). The Grothendieck

fusion rule (3.5.5) says that the result has the same composition factors as K+
2,4

and K−2,4, namely L±0 , L±1/2 and L±5/2 with each parity appearing once. A depth 0

calculation reveals both copies of L0 and both copies of L1/2, hence that the structure

is one of the following possibilities:

0:

1
2
:

5
2
:

+

−

−

⊕

−

+

+

or

+

⊕
−

−

⊕

−
⊕

+

+
.

(5.1.9)

Here, we have omitted two additional possibilities by supposing that fusion is pre-

served by the parity reversal functor Π (as K2,1 and K1,4 are Π-invariant, so is their

fusion product). In any case, a depth 1/2 calculation now confirms that the left

structure is correct, hence that

K2,1 ×K1,4 = K+
2,4 ⊕K−2,4, (5.1.10)

as predicted by (5.1.8).

5.2 Fusing near the edge

We do not have enough data to make conjectures concerning the general fusion

rules of the Kac modules (see the following section for some complicated examples).

However, we have observed some patterns that seem to be followed when the Kac

modules to be fused lie sufficiently close to the edges of the extended Kac table.

Below, we will indicate what this means precisely. For brevity, we will refer to

this situation as fusing “near the edge” (of the extended Kac table). We begin by

considering the Neveu-Schwarz sector before moving on to the Ramond

Recall the following specialisations of the Kac character rules (3.5.12) for the

Neveu-Schwarz sector:

ch
[
Kr,1

]
� ch

[
Kr′,s′

]
=

r+r′−1∑′

r′′=|r−r′|+1

ch
[
Kr′′,s′

]
, (5.2.1a)
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ch
[
K1,s

]
� ch

[
Kr′,s′

]
=

s+s′−1∑′

s′′=|s−s′|+1

ch
[
Kr′,s′′

]
. (5.2.1b)

As usual, primed sums indicate that the index increases in steps of two. If the Kac

modules Kr′′,s′ (Kr′,s′′) that appear in the above decompositions all satisfy either

r′′ 6 p or s′ 6 p′ (r′ 6 p or s′′ 6 p′), then we conjecture that the fusion rule

corresponding to Equation (5.2.1a) (Equation (5.2.1b)) may be determined through

the following procedure:

1) Write down a list of all the Kac modules Kr′′,s′ (Kr′,s′′) from the decomposition

(3.5.12) in order of increasing r′′ (s′′).

2) Starting from the smallest value of r′′ (s′′), check whether there exists a Kρ′′,s′

(Kr′,σ′′) in the list which is the reflection of Kr′′,s′ (Kr′,s′′) about the next bound-

ary. This means that ρ′′ (σ′′) must satisfy 0 < ρ′′ − r′′ < 2p (0 < σ′′ − s′′ < 2p′)

and K 1
2

(r′′+ρ′′),s′ (Kr′, 1
2

(s′′+σ′′)) must be of boundary or corner type.1

3) If there does, then replace Kr′′,s′ and Kρ′′,s′ (Kr′,s′′ and Kr′,σ′′) in the list by the

staggered module S
1
2

(ρ′′−r′′),0
1
2

(ρ′′+r′′),s′
(S0, 1

2
(σ′′−s′′)

r′, 1
2

(σ′′+s′′)
). Any logarithmic coupling must be

determined through other means.

4) Repeat withKr′′,s′ (Kr′,s′′), where r′′ (s′′) is the next-highest value. Once all values

are exhausted, the list consists of the direct summands of the fusion product.

Similar conjectures were made for certain classes of Virasoro Kac modules in [59, 40,

41, 57]. We have checked that this procedure gives results that are consistent (up

to the values of any logarithmic couplings) with our explicit fusion computations.

In this section we list, for each central charge considered (except c = 3
2

for reasons

that are explained in Section 5.3), those computations for which these checks have

been performed.

We illustrate this procedure with a few examples. First, take (p, p′) = (1, 3)

(c = −5
2
) and consider K1,3 × K1,5. The list, for this product, is K1,3, K1,5, K1,7,

according to (5.2.1b). Since K1,3 is of corner type, it has no reflection. However, K1,5

reflects onto K1,7 about the (Ramond) corner type module K1,6, so they are replaced

by S0,1
1,6 . Computing the logarithmic coupling using Nahm-Gaberdiel-Kausch fusion

1It is worth mentioning here that this boundary or corner type module may well be from the
Ramond sector.
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or (B.2.5) then gives

K1,3 ×K1,5 = K1,3 ⊕ S0,1
1,6 (−2) (c = −5

2
). (5.2.2)

Similar arguments for (p, p′) = (2, 4) result in

K3,1×K3,3 = S1,0
2,3 (1

2
)⊕K5,3, K1,5×K1,5 = S0,3

1,4 (−4)⊕S0,1
1,4 (−1)⊕K1,9 (c = 0).

(5.2.3)

We mention that in these examples, the original list of Kac modules did not by itself

uniquely determine which list members are combined to form a staggered module.

This is where it is important to start the above procedure with the smallest value

of the appropriate Kac label. For example, with K1,5×K1,5, we combined K1,1 with

K1,7 to correctly identify S0,3
1,4 (−4) as a direct summand, instead of combining K1,7

with K1,9.

The parities of the modules obtained by fusing near the edge of the extended

Kac table are easily determined. Assuming that the Kac modules being fused are

both assigned an even parity, we find that the parities of the Kac modules in the

ordered list constructed in step 1) above always alternate, starting (and therefore

ending) with even parity. This is also consistent with lattice expectations [42]. As

an example, take (p, p′) = (2, 4) (c = 0) and consider the fusion product K+
1,3×K+

2,4.

This yields the list K+
2,2, K−2,4, K+

2,6 from which we deduce that the first and last Kac

modules combine to form a staggered module. As h2,2 = h2,6 and both K2,2 and K2,6

are highest-weight modules (see Figure 2.1), there is no logarithmic coupling to find

and the final result is

K+
1,3 ×K+

2,4 = S0,2
2,4

+ ⊕K−2,4 (c = 0). (5.2.4)

As in the previous section, this parity rule is consistent with that from the fermionic

Verlinde formula.

The (conjectural) procedure described above for fusing near the edge of the

extended Kac table implies that the resulting fusion products may only admit Jordan

blocks of rank at most 2 for the action of L0. More precisely, it implies that these

products always decompose as direct sums of Kac modules and staggered modules.

We have observed such staggered modules in every model considered except for
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that with (p, p′) = (1, 1) (c = 3
2
). This exceptional case is discussed separately in

Section 5.3 below.

Finally, the procedure proposed above, for determining Kac fusion rules near the

edge of the extended Kac table, does not require restricting to fusing with either Kr,1
or K1,s, although the Kac module labels (r′′, s′′) appearing in the character product

(3.5.12) may need to satisfy either r′′ 6 p or s′′ 6 p′. An example illustrating this

is (p, p′) = (2, 4) (c = 0) with K2,2 × K2,2. The corresponding list in this case is

K1,1, K3,1, K1,3, K3,3 and an explicit calculation shows that the first two and last

two members combine to form staggered modules as one would expect from the

boundary reflection principle:

K2,2 ×K2,2 = S1,0
2,1 (3

8
)⊕ S1,0

2,3 (1
2
) (c = 0). (5.2.5)

Further examples like this are common for larger p and p′ and we have checked in

several cases that the fusion decompositions do lead to staggered modules whenever

two Kac modules in the list (not ordered in these examples) are related by reflection

about a boundary. However, the number of examples that we are able to fully analyse

is not particularly large, explaining why we have not included these observations in

the conjectured procedure.

We now show this prescription works in the Ramond sector by example. First, we

consider the Neveu-Schwarz by Ramond fusion product K+
3,1×K3,4 for (p, p′) = (4, 6)

(c = 1). The Grothendieck fusion rule is

[
K+

3,1

]
�
[
K3,4

]
=
[
K1,4

]
+
[
K3,4

]
+
[
K5,4

]
, (5.2.6)

so the above prescription requires us to start with K1,4. Its reflection about the

boundary at r = 4 is K7,4, see Figure 2.2, which is not in our list. We therefore move

on to K3,4 whose reflection is K5,4. Because this reflection is in the list, we replace

K3,4 and K5,4 by a Ramond staggered module S1,0
4,4 . Since h5,4 = 17

16
> 1

16
= h3,4 6= c

24
,

there is a single logarithmic coupling β to determine (Appendix B.1). We could try to

compute this by performing a depth 1 twisted Nahm-Gaberdiel-Kausch calculation,

but it is more efficient to use the (heuristic) formula [1, Eq. (B.5)], originally derived

for Virasoro logarithmic minimal models in [52, 58]. In this way, we arrive at the
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predicted fusion rule

K+
3,1 ×K3,4 = K1,4 ⊕ S1,0

4,4 (5
9
). (5.2.7)

Unfortunately, this Nahm-Gaberdiel-Kausch calculation turned out to be infeasible

with our current implementation.

Our second example is the Ramond by Ramond fusion product K1,4 × K1,4 for

(p, p′) = (1, 3) (c = −5
2
). This time the Grothendieck fusion rule gives modules of

both parities:

[
K1,4

]
�
[
K1,4

]
=
[
K+

1,1

]
+
[
K−1,1

]
+
[
K+

1,3

]
+
[
K−1,3

]
+
[
K+

1,5

]
+
[
K−1,5

]
+
[
K+

1,7

]
+
[
K−1,7

]
.

(5.2.8)

Since K1,1 reflects onto K1,5, we predict that the fusion rule is actually

K1,4 ×K1,4 = S0,2
1,3

+ ⊕ S0,2
1,3

− ⊕K+
1,3 ⊕K−1,3 ⊕K+

1,7 ⊕K−1,7, (5.2.9)

noting that there is no logarithmic coupling to compute because h1,1 = h1,5. We

remark that in this case, K1,5 reflects ontoK1,7, so one might have expected staggered

modules of the form S0,1
1,6 (β)± (or more complicated indecomposables involving three

Kac modules). However, the above prescription requires us to test for reflections in

order of smallest to largest label. The staggered modules S0,2
1,3

±
are confirmed by a

depth 1
2

Nahm-Gaberdiel-Kausch calculation.

We conclude by listing a selection of the fusion rules that we have been able

to obtain using our implementation of the twisted Nahm-Gaberdiel-Kausch fusion

algorithm. Each fusion rule is consistent with the prescription conjectured above

and each is selected because it yields at least one staggered module. This therefore

serves to record the logarithmic couplings of these staggered modules. In each case,

the value of the logarithmic coupling has been independently confirmed which also

appears to work in the Ramond sector, even when centre type modules are involved.

We mention that we have also computed many examples in which the fusion product

decomposes into a direct sum of Kac modules, again in accordance with the above

prescription. As it can be difficult to verify explicitly that a sum is direct (the

depths required can be very large), we introduce a symbol “
?
⊕” for these fusion rules

to indicate that the sum indicated may, or may not, be direct.
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(p, p′) = (1,3) (c = −5
2
)

K+
1,3 ×K+

1,3 = S0,2
1,3 ⊕K−1,3, K+

3,1 ×K+
3,1 = K+

1,1 ⊕K−3,1 ⊕K+
5,1,

K+
1,3 ×K+

1,5 = K+
1,3 ⊕ S

0,1
1,6 (−2), K+

3,1 ×K+
5,1 = K+

3,1 ⊕K−5,1 ⊕K+
7,1,

K+
1,3 ×K+

1,7 = S0,1
1,6 (−2)⊕K+

1,9, K+
3,1 ×K+

7,1 = K+
5,1 ⊕K−7,1 ⊕K+

9,1,

K+
1,3 ×K+

1,9 = S0,2
1,9 (−64/9)⊕K−1,9, K+

2,2 ×K+
2,2 = K+

1,1 ⊕K−1,3 ⊕K+
3,1 ⊕K−3,3,

K+
1,3 ×K+

1,11 = S0,1
1,12(−64)⊕K+

1,9, K+
2,2 ×K+

4,2 = K+
3,1 ⊕K−3,3 ⊕K+

5,1 ⊕K−5,3,

K+
1,5 ×K+

1,5 = S0,2
1,3 ⊕K−1,3 ⊕K−1,7 ⊕K+

1,9.

K1,2 ×K+
1,3 = S0,1

1,3 ,

K1,2 ×K+
1,9 = S0,1

1,9 (−8),

K1,2 ×K1,6 = S0,1
1,6 (−2)+ ⊕ S0,1

1,6 (−2)−.

(5.2.10)

(p, p′) = (1,5) (c = −81
10

)

K+
1,3 ×K+

1,3 = K+
1,1 ⊕K−1,3 ⊕K+

1,5, K+
1,5 ×K+

1,5 = S0,4
1,5 ⊕ S

0,2
1,5 ⊕K+

1,5,

K+
1,3 ×K+

1,5 = S0,2
1,5 ⊕K−1,5, K+

1,5 ×K+
1,9 = S0,3

1,10(16/25)⊕K+
1,5 ⊕ S

0,1
1,10(−4),

K+
1,3 ×K+

1,7 = K+
1,5 ⊕K−1,7 ⊕K+

1,9, K+
1,3 ×K+

1,9 = K+
1,7 ⊕ S

0,1
1,10(−4),

K+
1,3 ×K+

1,15 = S0,2
1,15(−1152/25)⊕K−1,15, K+

1,3 ×K+
1,19 = S0,1

1,20(−336)⊕K+
1,17.

K1,2 ×K+
1,5 = S0,1

1,5 ,

K1,2 ×K1,10 = S0,1
1,10(−4)+ ⊕ S0,1

1,10(−4)−.

(5.2.11)
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(p, p′) = (2,4) (c = 0)

K+
1,3 ×K+

1,3 = K+
1,1 ⊕ S

0,1
1,4 (−1), K+

3,1 ×K+
3,1 = S1,0

2,1 (3/8)
?
⊕K+

5,1,

K+
1,3 ×K+

1,5 = S0,1
1,4 (−1)⊕K1,7+, K+

3,1 ×K+
5,1 = S1,0

4,1 (14175/32)
?
⊕K+

7,1

K+
1,3 ×K+

1,7 = K+
1,5 ⊕ S

0,1
1,8 (−15), K+

3,1 ×K+
2,2 = K+

2,2 ⊕K−4,2,

K+
1,3 ×K+

1,11 = K+
1,9 ⊕ S

0,1
1,12(−3780), K+

3,1 ×K+
2,4 = K+

2,4 ⊕K−4,4,

K+
1,3 ×K+

2,2 = K+
2,2 ⊕K−2,4, K+

1,3 ×K+
2,4 = S0,2

2,4 ⊕K−2,4,

K+
1,3 ×K+

2,6 = K+
2,4 ⊕K−2,6 ⊕K+

2,8, K+
1,5 ×K+

1,5 = S0,3
1,4 (−1/4)⊕ S0,1

1,4 (−1)⊕K+
1,9,

K+
2,2 ×K+

2,2 = S1,0
2,1 (3/8)⊕ S1,0

2,3 (1/2).

K2,1 ×K+
2,2 = S1,0

2,2 ( 3
16
, 3

16
),

K2,1 ×K+
2,4 = S1,0

2,4 ,

K+
1,3 ×K1,4 = S0,2

1,4 (− 3
16
,− 3

16
)⊕K1,4

K+
1,3 ×K2,3 = K2,1 ⊕ S0,1

2,4 ,

K2,1 ×K2,1 = S1,0
2,1 (3

8
)+ ⊕ S1,0

2,1 (3
8
)−,

K2,1 ×K2,3 = S1,0
2,3 (1

2
)+ ⊕ S1,0

2,3 (1
2
)−.

(5.2.12)

(p, p′) = (2,8) (c = −21
4

)

K+
1,3 ×K+

1,3 = K+
1,1 ⊕K−1,3 ⊕K+

1,5, K+
1,3 ×K+

2,2 = K+
2,2 ⊕K−2,4,

K+
1,3 ×K+

1,5 = K+
1,3 ⊕K−1,5 ⊕K+

1,7, K+
1,3 ×K+

2,4 = K+
2,2 ⊕K−2,4 ⊕K+

2,6,

K+
1,3 ×K+

1,7 = S0,1
1,8 (−3)⊕K+

1,5, K+
1,3 ×K+

2,6 = K+
2,4 ⊕K−2,6 ⊕K+

2,8,

K+
1,3 ×K+

1,15 = K+
1,13 ⊕ S

0,1
1,16(−165), K+

1,3 ×K+
2,8 = S0,2

2,8 ⊕K−2,8,

K+
1,3 ×K+

1,23 = K+
1,21 ⊕ S

0,1
1,24(−163020),

K+
2,2 ×K+

2,4 = S1,0
2,3 (−105/256)⊕ S1,0

2,5 (−15/64),

K+
2,2 ×K+

3,3 = K+
2,2 ⊕K−2,4 ⊕K+

4,2 ⊕K−4,4.

K2,1 ×K+
2,6 = S1,0

2,6 (15
16

),

K1,2 ×K+
2,8 = S0,1

2,8 ,

K2,1 ×K2,7 = S1,0
2,7 (3

4
)+ ⊕ S1,0

2,7 (3
4
)−,

K1,2 ×K1,8 = S0,1
1,8 (−3)+ ⊕ S0,1

1,8 (−3)−.

(5.2.13)
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(p, p′) = (3,5) (c = 7
10

)

K+
1,3 ×K+

1,3 = K+
1,1 ⊕K−1,3 ⊕K+

1,5, K+
3,1 ×K+

2,2 = S1,0
3,2 (64/125),

K+
1,3 ×K+

1,5 = S0,2
1,5 (−256/675)⊕K−1,5, K+

3,1 ×K+
4,2 = S1,0

3,2 (64/125)⊕K+
6,2,

K+
1,3 ×K+

1,7 = K+
1,5 ⊕K−1,7 ⊕K+

1,9, K+
3,1 ×K+

3,3 = S2,0
3,3 (256/1125)⊕K−3,3,

K+
1,3 ×K+

1,9 = K+
1,7 ⊕ S

0,1
1,10(−11264/9), K+

3,1 ×K+
2,4 = S1,0

3,4 (2/5),

K+
1,3 ×K+

2,2 = K+
2,2 ⊕K−2,4, K+

3,1 ×K+
3,5 = S2,0

3,5 ⊕K−3,5,

K+
1,3 ×K+

2,4 = K+
2,2 ⊕ S

0,1
2,5 (−2/3), K+

2,2 ×K+
2,2 = K+

1,1 ⊕K−1,3 ⊕K+
3,1 ⊕K−3,3,

K+
1,3 ×K+

2,6 = S0,1
2,5 (−2/3)⊕K+

2,8, K+
2,2 ×K+

2,4 = K+
1,3 ⊕K−1,5 ⊕K+

3,3 ⊕K−3,5,

K+
1,3 ×K+

3,3 = K+
3,1 ⊕K−3,3 ⊕K+

3,5, K+
2,2 ×K+

3,3 = S1,0
3,2 (64/125)⊕ S1,0

3,4 (2/5),

K+
1,3 ×K+

3,5 = S0,2
3,5 ⊕K−3,5,

K+
2,2 ×K+

4,2 = K+
3,1 ⊕K−3,3 ⊕K+

5,1 ⊕K−5,3.

K2,1 ×K+
3,5 = S1,0

3,5 ,

K1,2 ×K+
1,5 = S0,1

1,5 (−16
9

),

K1,2 ×K+
3,5 = S0,1

3,5 ,

K2,1 ×K3,4 = S1,0
3,4 (2

5
)+ ⊕ S1,0

3,4 (2
5
)−,

K1,2 ×K2,5 = S0,1
2,5 (−2

3
)+ ⊕ S0,1

2,5 (−2
3
)−.

(5.2.14)

We did not attempt to compute fusion rules involving the centre modules K1,2, for

(p, p′) = (2, 4), or K1,4, for (p, p′) = (2, 8), as their exceptional structures would have

required rewriting much of the computer implementation. The results are, never-

theless, also expected to conform with the above conjectured fusion prescription.

5.3 An exceptional case: c = 3
2

In the exceptional case where (p, p′) = (1, 1), every Kac module has the islands

structure, hence they are all semisimple. The fusion rules therefore reduce to those

for the simple Kac modules and these are exhausted, up to isomorphism, by the K1,s

(in particular, Kr,1 ∼= K1,r). According to the conjectured prescription in Section 5.2,

the fusion products of these simple modules always decompose into a direct sum

of Kac modules K1,s′′ because corner type modules do not have reflections about

boundaries. It follows that, in this case, the general character rules (3.5.12) lift to
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the genuine fusion rules

Kr,s ×Kr′,s′ =

r+r′−1⊕′

r′′=|r−r′|+1

s+s′−1⊕′

s′′=|s−s′|+1

Kr′′,s′′ (c = 3
2
), (5.3.1)

where the primes on the direct sum symbols indicate that the summation variables

increase in steps of two. The fusion coefficients corresponding to this rule were

previously derived in [60]. Staggered modules do exist at c = 3
2
. This follows from

the N = 1 analogue of [7, Prop. 7.5].

We remark that one can derive this result from the isomorphism Kr,s ∼= Ks,r
(specific to this model), the conjectured fusion rule (5.1.1), and the definition of

corner type Kac modules. Indeed, we have

Kr,s ×Kr′,s′ =
( r+s−1⊕′

ρ=|r−s|+1

Kρ,1
)
×
( r′+s′−1⊕′

σ=|r′−s′|+1

K1,σ

)
=

r+s−1⊕′

ρ=|r−s|+1

r′+s′−1⊕′

σ=|r′−s′|+1

Kρ,σ

=

r+s−1⊕′

ρ=|r−s|+1

r′+s′−1⊕′

σ=|r′−s′|+1

ρ+σ−1⊕′

σ′=|ρ−σ|+1

K1,σ′ =

r+r′−1⊕′

r′′=|r−r′|+1

s+s′−1⊕′

s′′=|s−s′|+1

r′′+s′′−1⊕′

σ′′=|r′′−s′′|+1

K1,σ′′

=

r+r′−1⊕′

r′′=|r−r′|+1

s+s′−1⊕′

s′′=|s−s′|+1

Kr′′,s′′ . (5.3.2)

Of course, semisimplicity also proves that the character product (3.3.7) lifts to the

fusion rule (5.1.1), when c = 3
2
. It follows, in particular, that the Kac modules form

a closed fusion ring, without the need to introduce any staggered modules. This does

not mean, however, that staggered modules do not exist at c = 3
2
. For example,

one can construct staggered self-extensions of every (simple) Neveu-Schwarz Kac

module K1,s, with s 6= 1, by following the arguments of [7, Prop 7.5].

5.4 Fusing away from the edge

We first consider an interesting product, K1,3 × K2,2 at (p, p′) = (1, 3) (c = −5
2
),

which takes us slightly out of our comfort zone near the edge of the corresponding

extended Kac table. The Kac module list given by (5.2.1b) is K2,2, K2,4 (since the

character of K2,0 is formally 0, by (3.2.8)) and we note that (r′, s′′) = (2, 4) is not

near the edge — it fails to satisfy both r′ 6 p = 1 and s′′ 6 p′ = 3. However, K2,3

is of corner type, so one might expect that the result is the staggered module S0,1
2,3
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(with some logarithmic coupling). It is, at first, surprising that the fusion product

is actually found to be the staggered module S0,1
1,6 (−2) of (5.2.2). However, there is

no contradiction as the structures are identical:

1
2

1
2

0

5
2

0→ K2,2 → S0,1
2,3 → K2,4 → 0

1
2

1
2

0

5
2

0→ K1,5 → S0,1
1,6 → K1,7 → 0

(5.4.1)

The fact that G−1/2 annihilates the weight 0 vector of K2,4 means that its action

on the preimage of this vector in S0,1
2,3 will be proportional to the weight 1

2
vector

of the K2,2 submodule. The fusion algorithm merely shows that the proportionality

constant is not zero. In this case, the conjectured procedure of the previous section

does predict the correct answer. However, it indicates strongly that a theory of

staggered extensions of Kac modules, rather than highest-weight modules, will be

needed to properly understand the Kac fusion rules away from the edge.

The next example is a much more structurally intricate fusion product for which

the conjecture of the previous section fails spectacularly. Here, we consider K2,2 ×

K2,4 at (p, p′) = (2, 4) (c = 0), the result of which is sufficiently complicated that

we have not unravelled its full structure. First, the corresponding character rule

suggests that the product should involve the following Kac modules (which take us

well away from the edge of the extended Kac table):

0

K1,3

1
2

1
2

K1,5

3

1
2

K3,3

5

0

K3,5

1
2

3
2

3 5

21
2

.

(5.4.2)

In particular, this implies that the composition factors (including multiplicities) of

the fusion product are 2 L0, 4 L1/2, L3/2, 2 L3, 2 L5 and L21/2. If the result were

the direct sum of these Kac modules, then we would see five linearly independent

eigenvectors when computing with the Nahm-Gaberdiel-Kausch algorithm to depth

0, three of eigenvalue 1
2

and two of eigenvalue 0. However, the special subspace of
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K2,2 is only four-dimensional, so such a direct sum is ruled out. Indeed, explicit

computation shows that the depth 0 truncation of the fusion product has conformal

weights 0 and 1
2
, both with multiplicity 2, and that L0 possesses two rank 2 Jordan

blocks.

Extending to depth 1
2
, we encounter a new feature: our first rank 3 Jordan block.

The placement of the L3/2 factor is now determined by looking at the staggered

submodule generated by the copies of L0 and applying Proposition B.1.3 to rule out

one of the two possibilities:

0:

1
2
:

3
2
:

.

(5.4.3)

We have confirmed this placement by computing to depth 3
2
. However, determining

the placement of the L3 factors using the fusion algorithm is too computationally

demanding at present. We are therefore left with the question of where to place the

composition factors 2L3, 2L5 and L21/2. The first thing to note is that L21/2 can only

appear as a descendant of both an L3 and an L5. We are able to further restrict the

possibilities by appealing to staggered module theory.2 The Jordan block structure

thereby narrows the structural possibilities down to just two (though this is before

upwards-pointing arrows are considered):

:0:

:1
2
:

:3
2
:

:3:

:5:

:21
2

:

(5.4.4)

However, we note that even if we were able to decide between these structures (by

computing to greater depths, for example), then it is still not clear if there are

2Here, we look at the constraints on the existence of the staggered subquotients of this module.
Some of these are simple consequences of Proposition B.1.3, but more powerful non-existence
theorems follow from the Neveu-Schwarz analogues of [7, Sec. 7]. Similar arguments (in the Virasoro
case) may be found in [25, Sec. 4.2.2].
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additional parameters, generalising the logarithmic couplings of staggered modules,

required to completely identify the isomorphism class of this indecomposable mod-

ule.

The existence of indecomposable Neveu-Schwarz modules like these is not unex-

pected given that similar modules have been investigated over the Virasoro algebra

[59]. However, a full understanding of a single example of these modules is still

missing (see [23, Sec. 6.4] for a recent discussion), hence attempts to further explore

these structures here would be misguided.

Nevertheless, an obvious feature of K1,3 ×K2,2 at c = 0 is that the Kac modules

(5.4.2) suggested by the character product are related by boundary reflections of

different orientations. For example, K1,3 reflects onto K1,5 about the boundary type

(Ramond) module K1,4, but it also reflects onto K3,3 about the boundary module

K2,3. With this observation, it is not surprising that the procedure conjectured in

Section 5.2 does not suffice. It would be interesting to further investigate whether

this procedure gives correct fusion results whenever this multiple orientations phe-

nomenon is absent. An issue to address here is what happens when the (expected)

structure of the fusion product includes non-cyclic Kac modules, meaning that the

module is not generated by a single subsingular vector. Non-cyclicity is generic for

Kac modules (see Figure 2.6), but current computational limits mean that our fusion

calculations do not shed any light on this issue.
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Discussion and Outlook

The results presented in this thesis demonstrate that the paradigm of fusion product

computations using the Nahm-Gaberdiel-Kausch algorithm is as successful for the

N = 1 algebra as for the Virasoro algebra. In particular, our computations have

allowed us to formulate several conjectures for Kac module fusion rules in the loga-

rithmic N = 1 superconformal minimal models. We have seen that staggered Neveu-

Schwarz modules, upon which L0 has rank 2 Jordan blocks, are readily encountered

and that more complicated indecomposable modules can be generated on which L0

has rank 3 blocks. These results provide, among other things, strong evidence for

the conjectures made in [42] from numerical lattice-theoretic studies. On the other

hand, the reader may have noticed that our results and conjectures bear a striking

resemblance to their counterparts for the Virasoro algebra, see [59, 41, 57, 25]. This

accords with expectations, as there are many instances in which the representation

theories of the Neveu-Schwarz and Virasoro algebras mirror one another.

The representation theory of the Ramond algebra is significantly more involved

than that of the Virasoro or Neveu-Schwarz algebras. In particular, the relation

G2
0 = L0 − c/24 leads to a non-semisimple action on weight spaces. Because the

majority of the difficulties in the Ramond sector may be traced back to this obser-

vation, and because nilpotent actions are the norm for the odd generators of the

N > 1 superconformal algebras, it is reasonable to regard the N = 1 Ramond sector

as a non-trivial, but accessible, toy model for the representation theory of these

important superalgebras. This gives a separate motivation for studying logarithmic

N = 1 models: They give us an idea of what one can expect in the N > 1 case.

As logarithmic behaviour is now recognised to be generic (rather than pathological)

for conformal field theories, it makes sense to look for logarithmic structures when

investigating poorly understood representation theories.3

3We mention an example of where this looking has paid off: The longstanding issue of negative
“fusion coefficients” for fractional level ŝl(2) models, see [43, 61].

115



The fusion results presented here confirm the expectation that the N = 1 super-

conformal logarithmic minimal models exhibit logarithmic behaviour in the Ramond

sector. More precisely, fusing appropriate Neveu-Schwarz Kac modules and Ramond

Kac modules generates reducible but indecomposable N = 1 Ramond modules on

which L0 acts non-semisimply. These Ramond staggered modules have similar struc-

tures to their Neveu-Schwarz counterparts, except when the ground states have

conformal weight h = c
24

. In the latter case, it appears that two logarithmic cou-

plings are required to completely fix the isomorphism class of the staggered module.

However, these couplings are expected to be equal when the staggered module is

generated by fusing Kac modules. Whilst this equality is a very natural expectation,

we mention that it appears to have non-trivial consequences for the corresponding

scalar products and correlation functions (see Appendix B.1).

We remark that Ramond staggered modules always possess a non-semisimple

action of G0, for a semisimple action of G0 would imply that the action of L0 =

G2
0+ c

24
is also semisimple. The converse is not true, of course, but our results suggest

that fusing Kac modules never generates Ramond modules with a semisimple L0-

action but a non-semisimple G0-action, such as the pre-Verma modules U±c/24 of

Section 2.3. Nevertheless, such modules are N = 1 modules so they may yet play

some role in physical applications.

We conclude with a brief outlook for future research directions. One of our

motivations, besides the lattice calculations of [42], for exploring N = 1 supercon-

formal field theories is to develop technology and gain intuition that may profitably

be exploited in similar studies of N > 1 theories. In particular, the nilpotent ac-

tion of G0 on states of conformal weight h = c
24

serves as an accessible starting

point for exploring the difficulties caused by nilpotent fermions (which are legion

in the N > 1 superconformal algebras). Developing logarithmic technology here

seems prudent given that the non-unitary N = 2 superconformal minimal models

are surely logarithmic.4

One can also try to approach the N > 1 superconformal minimal models, log-

arithmic or otherwise, through relations with other conformal field theories. Here,

we have in mind those with affine Kac-Moody superalgebra symmetries, certain of

which give superconformal models upon quantum hamiltonian reduction [62]. Un-

4Here non-unitary minimal models refer to those obtained by the coset construction of non
unitary fractional ŝl(2) models
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fortunately, these affine superalgebra theories are not well understood at present,

see [63, 64, 65, 66, 67, 68] for some limited progress, though one might expect that

the affine symmetry might yet lead to beautiful general features. Again, affine su-

peralgebra theories are almost always logarithmic and their elucidation is expected

to yield important insights into superconformal minimal models, general logarithmic

conformal field theories and their myriad applications.

This work also relates to affine models through the celebrated coset construction

of Goddard, Kent and Olive [69, 70]. It is well known that the simple modules of the

N = 1 minimal models arise when considering admissible highest-weight modules

[71, 72] of the ŝl(2) components of the coset. However, as proposed in [73], one

expects to similarly realise N = 1 Kac modules, in particular, by extending these

considerations to the analogues of Kac modules over ŝl(2). As this approach is also

applicable to the infinite hierarchy of extended minimal models [74, 75, 76, 77, 78,

79], this will give important insight into their logarithmic counterparts. These ideas

are also currently being actively pursued.

Finally, it would be of interest to explore whether our results admit a W-extended

picture, generalising the situation [80, 81, 10, 82, 49, 83, 84, 85, 86, 87] for the

Virasoro logarithmic minimal models. From the lattice [88, 89, 90], this would

amount to identifying a W-extended vacuum boundary condition for the Neveu-

Schwarz algebra and devising the appropriate lattice implementation of fusion of

the W-extended representations. Presumably, this would give rise to W-extended

Neveu-Schwarz representations whose characters could then be compared with the

recent results of Adamović and Milas [91, 92, 93].
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Appendix A

Fusion and the

Nahm-Gaberdiel-Kausch

Algorithm

In this appendix, we review an algorithmic approach to fusion that was proposed by

Nahm [4] and then significantly generalised by Gaberdiel and Kausch [6]. This ap-

proach aims to construct the fusion product of two (vertex operator algebra) modules

by realising it as a vector space, in fact as a quotient of the vector space tensor prod-

uct of the modules being fused, upon which the chiral algebra acts through explicitly

given coproduct formulae. These formulae are deduced from fairly straight-forward

manipulations involving operator product expansions [3, 5] and the aforementioned

quotient corresponds to imposing the condition that two seemingly different means

of arriving at these coproduct formulae actually give identical results. As we will see,

this imposition follows from the mutual locality requirement for conformal fields.

The algorithm that has come to be known as Nahm-Gaberdiel-Kausch fusion

then observes that this tensor product realisation can be consistently truncated so

as to explicitly construct only a quotient, preferably a finite-dimensional one, of the

fusion product vector space. It is often the case that one can completely identify a

given fusion product by analysing the coproduct action on a sufficiently large trun-

cation. This allows one to perform fusion calculations explicitly with a computer

algebra system. There are several advantages to this approach to fusion over tradi-

tional approaches, the most important of which is that it facilitates the exploration

of the new classes of representations that fusion produces. For example, the result
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of fusing two simple modules need not be a direct sum of simple modules in general;

in fact, the fusion product need not even be highest-weight. The main disadvantage

is that the algorithm amounts to a computationally intensive brute force construc-

tion and is therefore not well suited for general fusion calculations or theoretical

studies. There is also the issue of determining when one has determined all of the

so-called spurious states. The algorithm itself does not guarantee termination here,

so it is important to be able to check this independently. In this article, we employ

a Verlinde formula for this purpose; in some cases, one can instead use correlation

function computations to confirm the result a posteriori.

A.1 Coproduct Formulae for Untwisted Modules

Here, we review the derivation, following [5], of the coproduct formulae that define

the action of the chiral algebra on the fusion product. We mention that the deriva-

tion for negative modes is only valid in the limit when one of the insertion points

is sent to zero. This is not important for practical purposes, but is expected to be

relevant to demonstrating that these fusion coproducts define a tensor structure on

appropriate categories of vertex operator algebra modules.

Let S(j)
(
z
)

be chiral fields of conformal weight h(j) whose mode expansions take

the form

S(j)(z) =
∑

n∈Z−h(j)
S(j)
n z−n−h

(j)

. (A.1.1)

For the purposes of this article, the relevant fields are T (z), with h = 2, and G(z),

with h = 3
2
. In what follows, we will omit the index j labelling the chiral field for

simplicity. We also introduce arbitrary fields ψ1

(
w1

)
and ψ2

(
w2

)
that are local with

respect to S
(
z
)
:

S(z)ψi(wi) = µiψi(wi)S(z). (A.1.2)

Here, µi ∈ C\{0} is the mutual locality index of S with ψi (this index also depends

on S; the notation likewise keeps this implicit for simplicity).

We deduce coproduct formulae for fusion by determining the natural action of

the modes Sn on the (radially ordered) products ψ1

(
w1

)
ψ2

(
w2

)
. This will define an

action of the Sn on the tensor product of the corresponding states ψ1⊗ψ2, the latter

being interpreted (after quotienting) as a state in the fusion product. The starting
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point of the computation is the contour integral

∮
Γ

〈φ, S(z)ψ1(w1)ψ2(w2)Ω〉zn+h−1 dz

2πi
, (A.1.3)

where the contour Γ encloses 0, w1 and w2, Ω is the vacuum, and φ is an arbitrary

spectator state. We remark that φ may even depend on other insertion points,

noting that because of radial ordering, such insertion points are not enclosed by Γ.

We will assume that the fields ψ1

(
w1

)
and ψ2

(
w2

)
correspond to untwisted rep-

resentations of the chiral algebra. In other words, their operator product expansions

with S
(
z
)

are characterised by modes Sm with m ∈ Z− h:

S(z)ψi(wi) =
∑

m∈Z−h

(Smψi)(wi)(z − wi)−m−h. (A.1.4)

Inserting these operator product expansions into (A.1.3), we see that there are no

branch cuts in the integrand. We may therefore split the contour into three simple

contours around each of the (potential) singularities w1, w2 and 0. The residue at

w1 is computed by substituting the operator product expansion of S
(
z
)

and ψ1

(
w1

)
:

∮
w1

〈φ, S(z)ψ1(w1)ψ2(w2)Ω〉zn+h−1 dz

2πi
(A.1.5)

=
∑

m∈Z−h

〈φ, (Smψ1)(w1)ψ2(w2)Ω〉
∮
w1

(z − w1)−m−hzn+h−1 dz

2πi

=
∞∑

m=−h+1

(
n+ h− 1

m+ h− 1

)
wn−m1 〈φ, (Smψ1)(w1)ψ2(w2)Ω〉. (A.1.6)

The residue at w2 is similarly computed, though we must first apply (A.1.2) before

we are able to substitute the operator product expansion S
(
z
)
ψ2

(
w2

)
:

∮
w2

〈φ, S(z)ψ1(w1)ψ2(w2)Ω〉zn+h−1 dz

2πi

= µ1

∞∑
m=−h+1

(
n+ h− 1

m+ h− 1

)
wn−m2 〈φ, ψ1(w1)(Smψ2)(w2)Ω〉. (A.1.7)

Note that (A.1.7) follows readily from (A.1.5) upon swapping w1 with w2 and then

making the replacements Smψ1 → ψ1 and ψ2 → µ1Smψ2.

If n > −h + 1, then the integrand of (A.1.3) has no pole at z = 0 and the
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coproduct formula for Sn is just

∆w1,w2

(
Sn
)

=
n∑

m=−h+1

(
n+ h− 1

m+ h− 1

)[
wn−m1 (Sm ⊗ 1) + µ1w

n−m
2 (1⊗ Sm)

]
(n > −h+ 1).

(A.1.8)

Here, we have extracted the action of Sm on the fields in the correlator so that, for

example,

〈φ, (Smψ1)(w1)ψ2(w2)Ω〉 −→ (Sm ⊗ 1). (A.1.9)

It should be clear now why we have insisted on the spectator state φ even though

it plays no role whatsoever in the analysis. If n 6 −h, then there is a pole at z = 0

and we can evaluate the corresponding residue by using either operator product

expansion:

∮
0

〈φ, S(z)ψ1(w1)ψ2(w2)Ω〉zn+h−1 dz

2πi
=
∑

m∈Z−h

∮
0

(z − w1)−m−hzn+h−1 dz

2πi
(Sm ⊗ 1)

(A.1.10a)

= µ1

∑
m∈Z−h

∮
0

(z − w2)−m−hzn+h−1 dz

2πi
(1⊗ Sm).

(A.1.10b)

We remark that z is supposed to make a small circle around 0, while inserting the

appropriate operator product expansion requires that z be close to either w1 or w2.

We conclude that (A.1.10a) is only valid when w1 is close to 0 whereas (A.1.10b)

is only valid when w2 is close to 0. We will later send w1 or w2 to 0 to arrive at a

simplified form for the fusion coproducts.

Evaluating the integral in (A.1.10a), we see that the z = 0 contribution to the

fusion coproduct ∆w1,w2

(
Sn
)
, with n 6 −h, takes the form

∑
m∈Z−h

(
−m− h
−n− h

)
(−w1)n−m(Sm ⊗ 1)

= −
∞∑

m=−h+1

(
n+ h− 1

m+ h− 1

)
wn−m1 (Sm ⊗ 1) +

−h∑
m=−∞

(
−m− h
−n− h

)
(−w1)n−m(Sm ⊗ 1).

(A.1.11)
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Here, we have used the binomial coefficient identity

(
−m− h
−n− h

)
= (−1)−n−h

(
m− n− 1

−n− h

)
= (−1)−n−h

(
m− n− 1

m+ h− 1

)
= (−1)m−n−1

(
n+ h− 1

m+ h− 1

)
(A.1.12)

which is valid when m > −h + 1 and n 6 −h. It is clear that the first sum on the

right-hand side of (A.1.11) precisely cancels the contribution (A.1.5) from z = w1,

when n 6 −h. Similarly, starting from the evaluation of (A.1.10b) shows that the

contribution (A.1.7) from z = w2 is cancelled.

In this way, we arrive at two formulae for the fusion coproduct of Sn with n 6 −h:

∆(1)
w1,w2

(
Sn
)

=
−h∑

m=−∞

(
−m− h
−n− h

)
(−w1)n−m(Sm ⊗ 1) + µ1

∞∑
m=−h+1

(
n+ h− 1

m+ h− 1

)
wn−m2 (1⊗ Sm)

(A.1.13a)

∆(2)
w1,w2

(
Sn
)

=
∞∑

m=−h+1

(
n+ h− 1

m+ h− 1

)
wn−m1 (Sm ⊗ 1) + µ1

−h∑
m=−∞

(
−m− h
−n− h

)
(−w2)n−m(1⊗ Sm).

(A.1.13b)

Of course, these formulae should coincide in some sense. However, they are only

supposed to be valid when w1 or w2 is small, respectively, so we make the substi-

tutions w1 = 0 and w2 = −w in the first and w1 = w and w2 = 0 in the second to

obtain

∆
(1)
0,−w

(
Sn
)

= (Sn ⊗ 1) + µ1

∞∑
m=−h+1

(
n+ h− 1

m+ h− 1

)
(−w)n−m(1⊗ Sm) (A.1.14a)

∆
(2)
w,0

(
Sn
)

=
∞∑

m=−h+1

(
n+ h− 1

m+ h− 1

)
wn−m(Sm ⊗ 1) + µ1(1⊗ Sn). (A.1.14b)

We remark that we can set w1 = 0 or w2 = 0 in the first or second coproduct

formula above because the binomial coefficient
(−m−h
−n−h

)
vanishes if m > n. We would

not have been able to make these simplifications if the residue at z = 0 did not

partially cancel the contribution from z = w1 or z = w2.

To summarise, the fusion coproduct formulae (for untwisted representations)

may be expressed as

∆
(1)
0,−w

(
Sn
)

= (Sn ⊗ 1) + µ1

n∑
m=−h+1

(
n+ h− 1

m+ h− 1

)
(−w)n−m(1⊗ Sm) (n > −h+ 1),

(A.1.15a)
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∆
(1)
0,−w

(
S−n

)
= (S−n ⊗ 1) + µ1

∞∑
m=−h+1

(
m+ n− 1

m+ h− 1

)
(−1)−n+h−1w−n−m(1⊗ Sm) (n > h)

(A.1.15b)

or as

∆
(2)
w,0

(
Sn
)

=
n∑

m=−h+1

(
n+ h− 1

m+ h− 1

)
wn−m(Sm ⊗ 1) + µ1(1⊗ Sn) (n > −h+ 1),

(A.1.15c)

∆
(2)
w,0

(
S−n

)
=

∞∑
m=−h+1

(
m+ n− 1

m+ h− 1

)
(−1)m+h−1w−n−m(Sm ⊗ 1) + µ1(1⊗ S−n) (n > h).

(A.1.15d)

These formulae are related by translation:

∆
(1)
0,−w

(
Sn
)

= ∆
(2)
w,0

(
ewL−1Sne

−wL−1
)
. (A.1.16)

Using
[
L−1, Sn

]
=
(
−h+ 1− n

)
Sn−1, we derive inductively the following formulae:

Lk−1Sn =
k∑
j=0

(
k

j

)
(−h+ 1− n) · · · (−h+ j − n)Sn−jL

k−j
−1 ⇒

ewL−1Sn =
∞∑
j=0

(
−h+ j − n

j

)
wjSn−je

wL−1 . (A.1.17)

Consequently, one has

∆
(1)
0,−w

(
S−n

)
=
∞∑
j=0

(
n− h+ j

j

)
wj∆

(2)
w,0

(
S−n−j

)
=

∞∑
m=n

(
m− h
m− n

)
wm−n∆

(2)
w,0

(
S−m

)
(A.1.18)

which leads to the three master equations for untwisted fusion:

∆
(
Sn
)

=
n∑

m=−h+1

(
n+ h− 1

m+ h− 1

)
wn−m(Sm ⊗ 1) + µ1(1⊗ Sn) (n > −h+ 1)

(A.1.19a)

∆
(
S−n

)
=

∞∑
m=−h+1

(
m+ n− 1

n− h

)
(−1)m+h−1w−n−m(Sm ⊗ 1) + µ1(1⊗ S−n) (n > h),

(A.1.19b)

S−n ⊗ 1 =
∞∑
m=n

(
m− h
n− h

)
wm−n∆

(
S−m

)
+ µ1(−1)−n+h

124



∞∑
m=−h+1

(
m+ n− 1

n− h

)
w−n−m(1⊗ Sm) (n > h). (A.1.19c)

Here, we let ∆ denote ∆
(2)
w,0 for brevity. In practice, such as when performing the

explicit computations reported in this work, we would set w to 1 to further simplify

these formulae. However, this masks the natural grading of these formulae by con-

formal weight in the same way that choosing insertion points masks the conformal

grading of operator product expansions.

We remark that the interpretation of fusion as a quotient of the (vector space)

tensor product is captured in Equation (A.2.25). This formula is actually a re-

quirement imposed by the locality of operator product expansions on the coproduct

formulae. Thus, we may define the fusion product (as a vector space) of two chiral

algebra modules M and N to be the quotient

M ×N =
M ⊗C N〈(

∆
(1)
0,−w

(
Sn
)
−∆

(2)
w,0

(
ewL−1Sne−wL−1

))
(M ⊗C N)

〉 , (A.1.20)

where the ideal is the sum of the images for all chiral modes Sn (and all w). Of

course, this is the same as the intersection of the corresponding kernels. The point

is that M × N is defined to be the largest quotient of M ⊗C N upon which the

coproduct actions coincide. We expect that this can be interpreted as a universality

property for fusion as is imposed in [94].

Finally, we remark that the cancellation between the contributions to the integral

(A.1.3) from the residues at z = 0 and z = w1 or z = w2 is best understood

analytically in terms of the regularity of the integrand at infinity. Explicitly, if we

use the operator product expansion S
(
z
)
ψ1

(
w1

)
, then the sum of the contributions

is, for fixed m > −h+ 1 and n 6 −h, proportional to the integral

[∮
0

+

∮
w1

]
(z − w1)−m−hzn+h−1 dz

2πi
= −

∮
∞

(z − w1)−m−hzn+h−1 dz

2πi

=

∮
0

(1− w1y)−m−hym−n−1 dy

2πi

= 0, (A.1.21)

because m−n− 1 > −h+ 1 +h− 1 = 0. In the above derivation, we have chosen to

instead derive the cancellation of these contributions algebraically, using binomial
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coefficient identities, because this method readily generalises to the twisted sector,

whereas the contour analysis becomes rather more subtle there due to the presence

of branch cuts.

A.2 Coproduct formulae for fusing twisted mod-

ules

In this appendix, we derive coproduct formulae for fusion products of twisted mod-

ules. Such formulae were first deduced by Gaberdiel [53] as generalisations of his

untwisted formulae [3, 5]. While some calculations for “generic” N = 1 and N = 2

superconformal modules were described, only a bare minimum of information was

reported, presumably because of the unwieldy nature of the twisted coproduct for-

mulae. In particular, the problem of identifying the mathematical structure of these

fusion products was not addressed. Here, we give simplified coproduct formulae that

are used in Section 4.2 to develop a twisted version of the Nahm-Gaberdiel-Kausch

fusion algorithm [4, 6]. This twisted algorithm has been implemented in python for

the N = 1 superconformal algebra; the results reported in Chapter 5 were obtained

using this implementation.

Before detailing the derivation of the twisted coproduct formulae, we remark

that the aim is to determine the natural action of the generating fields of the vertex

operator superalgebra on the operator product expansions of the fields corresponding

to the modules being fused. Because the algebra fields and the module fields satisfy

mutual locality relations, one obtains two different coproduct formulae on the vector

space tensor product of the modules. The fusion product is then defined as the

quotient on which these coproduct actions coincide.

Suppose then that the field ψi(wi), of conformal weight hi, is twisted with respect

to the action of a given generator S(z) of the vertex operator superalgebra:

S(z)ψi(wi) =
∑

m∈Z−hi−εi

(Smψi)(wi)(z − wi)−m−hi . (A.2.1)

We will refer to the real number εi as the twist parameter, with respect to S(z), of the

(twisted) module corresponding to ψi(wi). In principle, twist parameters are only

defined modulo Z. However, we will find it useful to regard them as real numbers.
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When εi ∈ Z, the powers of z − wi in (A.2.1) are integers and the corresponding

module is said to be untwisted with respect to S(z).

Because we want to study the action of the modes Sm of S(z) on the opera-

tor products ψ1(w1)ψ2(w2), and because twist parameters are conserved additively

under operator product expansions, we start with the fusion integral

∮
Γ

〈
φ
∣∣S(z)ψ1(w1)ψ2(w2)

∣∣Ω〉zn+h+ε−1 dz

2πi
. (A.2.2)

Here, h is the conformal weight of S(z), ε = ε1 + ε2 is the twist parameter of the

operator product expansion of ψ1(w1) and ψ2(w2), Γ is a contour enclosing 0, w1

and w2, Ω is the vacuum, and φ is an arbitrary spectator state (that may depend

on other insertion points that are not enclosed by Γ).

However, we see that inserting the operator product expansion (A.2.1) leads to

a branch cut at z = wi whenever εi /∈ Z. Anticipating that this will be problematic,

we note that any branching at z = wi will be converted to a pole (or a zero) upon

multiplying by (z − wi)−εi . In this way, we arrive at a new proposal for the fusion

integral:

∮
Γ

〈
φ
∣∣S(z)ψ1(w1)ψ2(w2)

∣∣Ω〉zn+h+ε−1(z − w1)−ε1(z − w2)−ε2
dz

2πi
. (A.2.3)

Of course, we can no longer interpret the result of evaluating this integral as defin-

ing a coproduct formula for the modes Sn acting on the coproduct ψ1(w1)ψ2(w2).

Rather, it gives a coproduct for the (w1- and w2-dependent) “modes” S̃w1,w2
n which

are characterised by

∑
n∈Z−h−ε

S̃w1,w2
n z−n−h = S̃(z) ≡ S(z)zε(z − w1)−ε1(z − w2)−ε2 . (A.2.4)

Explicitly, the relation between the Sn and the S̃w1,w2
n is given by expanding with

|z| > |wi| (because of the radial ordering implicit in (A.2.3)):

Sn =
∞∑

j1,j2=0

(
ε1

j1

)(
ε2

j2

)
(−w1)j1(−w2)j2S̃w1,w2

n−j1−j2 , (A.2.5a)

S̃w1,w2
n =

∞∑
j1,j2=0

(
−ε1

j1

)(
−ε2

j2

)
(−w1)j1(−w2)j2Sn−j1−j2 . (A.2.5b)
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As the integrand of (A.2.3) has no branch cuts, by construction, we may evaluate

the fusion integral by computing the residues at 0, w1 and w2. Inserting the operator

product expansion (A.2.1) with i = 1, we find that the residue at z = w1 is

∞∑
m=−h−ε1+1

∮
w1

zn+h+ε−1(z − w1)−m−h−ε1(z − w2)−ε2
dz

2πi
(Sm ⊗ 1), (A.2.6)

where Sm ⊗ 1 is shorthand for
〈
φ
∣∣(Smψ1)(w1)ψ2(w2)

∣∣Ω〉. The residue at z = w2 is

computed by applying the mutual locality relation

S(z)ψ1(w1) = µ1ψ1(w1)S(z) (µ1 ∈ C \ {0}) (A.2.7)

and inserting the operator product expansion (A.2.1) with i = 2. The result is

µ1

∞∑
m=−h−ε2+1

∮
w2

zn+h+ε−1(z − w1)−m−h−ε2(z − w2)−ε1
dz

2πi
(1⊗ Sm), (A.2.8)

where 1⊗ Sm is shorthand for
〈
φ
∣∣ψ1(w1)(Smψ2)(w2)

∣∣Ω〉. We note that the z = w2

result may be obtained from the z = w1 result by swapping ε1 with ε2, as well as

w1 with w2, and then replacing
(
Sm ⊗ 1

)
by µ1

(
1⊗ Sm

)
:

When n > −h − ε + 1, there is no residue at z = 0 and evaluating (A.2.6) and

(A.2.8) gives a coproduct formula:

∆w1,w2

(
S̃w1,w2
n

)
(A.2.9)

=
∞∑

m=−h−ε1+1

m+h+ε1−1∑
j=0

(
−ε2

j

)(
n+ h+ ε− 1

m+ h+ ε1 − 1− j

)
(w1 − w2)−ε2−jwn−m+ε2+j

1 (Sm ⊗ 1)

(A.2.10)

+ µ1

∞∑
m=−h−ε2+1

m+h+ε2−1∑
j=0

(
−ε1

j

)(
n+ h+ ε− 1

m+ h+ ε2 − 1− j

)
(w2 − w1)−ε1−jwn−m+ε1+j

2 (1⊗ Sm).

(A.2.11)

In this formula, we use the fact that the spectator state φ is arbitrary to extract

Sm⊗1 and 1⊗Sm acting on the tensor product state ψ1⊗ψ2 that corresponds to the

operator product ψ1(w1)ψ2(w2). We note that the powers of w1 and w2 appearing in

this formula are integral, unlike those of w1−w2 and w2−w1 (in general). Moreover,

swapping the order of summation lets us truncate the sum over m using the form
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of the binomial coefficients, assuming still that n > −h− ε+ 1:

∆w1,w2

(
S̃w1,w2
n

)
=
∞∑
j=0

n+ε2+j∑
m=−h−ε1+1+j

(
−ε2

j

)(
n+ h+ ε− 1

m+ h+ ε1 − 1− j

)
× (w1 − w2)−ε2−jwn−m+ε2+j

1 (Sm ⊗ 1)

+µ1

∞∑
j=0

n+ε1+j∑
m=−h−ε2+1+j

(
−ε1

j

)(
n+ h+ ε− 1

m+ h+ ε2 − 1− j

)
(w2 − w1)−ε1−jwn−m+ε1+j

2 (1⊗ Sm).

(A.2.12)

The upshot of this is that the integral powers of w1 and w2 that appear are

now manifestly non-negative, so it makes sense to send either w1 or w2 to 0. In

particular, substituting w1 = 0 and w2 = −w gives

∆0,−w
(
S̃0,−w
n

)
(A.2.13)

=
∞∑
j=0

(
−ε2

j

)
w−ε2−j(Sn+ε2+j ⊗ 1)

+ µ1

∞∑
m=−h−ε2+1

m+h+ε2−1∑
j=0

(
−ε1

j

)(
n+ h+ ε− 1

m+ h+ ε2 − 1− j

)
(−w)n−m(1⊗ Sm)

=
∞∑
j=0

(
−ε2

j

)
w−ε2−j(Sn+ε2+j ⊗ 1) + µ1

∞∑
m=−h−ε2+1

(
n+ h+ ε2 − 1

m+ h+ ε2 − 1

)
(−w)n−m(1⊗ Sm).

(A.2.14)

Here, we have evaluated the sum over j using the binomial identity

n∑
j=0

(
a

j

)(
b

n− j

)
=

(
a+ b

n

)
. (A.2.15)

We can likewise specialise to w1 = w and w2 = 0. The resulting formula (for

∆w,0

(
S̃w,0n

)
) may be obtained from (A.2.13) by swapping ε1 with ε2, w with −w,

and (Sm ⊗ 1) with µ1(1⊗ Sm).

We now turn to the case where n 6 −h − ε in which there is a contribution

from the residue at z = 0. For these n, (A.2.9) still gives the sum of the residues at

z = w1 and z = w2 (however, (A.2.12) is only valid if we replace the upper bound

on the sums over m by ∞). This time, we can write the contribution from z = 0 in

two forms according as to whether w1 or w2 is assumed to be close to 0. Suppose the

former, so that we may use the operator product expansion S
(
z
)
ψ1

(
w1

)
to evaluate
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the z = 0 residue as

∑
m∈Z−h−ε1

∮
0

zn+h+ε−1(z − w1)−m−h−ε1(z − w2)−ε2
dz

2πi
(Sm ⊗ 1)

=
∑

m∈Z−h−ε1

−n−h−ε∑
j=0

(
−ε2

j

)(
−m− h− ε1

−n− h− ε− j

)
(−w1)n−m+ε2+j(−w2)−ε2−j(Sm ⊗ 1).

(A.2.16)

We anticipate a partial cancellation of this contribution with that of the residue

at z = w1 — otherwise, we would not be able to specialise to w1 = 0. To this end,

we split the range of the sum over m into m > −h − ε1 + 1 and m ≤ −h − ε1.

Because of the identities

(
−m− h− ε1

−n− h− ε− j

)
(A.2.17)

= (−1)−n−h−ε−j
(
m− n− ε2 − 1− j
−n− h− ε− j

)
= (−1)−n−h−ε−j

(
m− n− ε2 − 1− j
m+ h+ ε1 − 1

)
= (−1)n−m+ε2+j+1

(
n+ h+ ε− 1 + j

m+ h+ ε1 − 1

)
, (A.2.18)

the m-sum over the former range may be written in the form

−
∞∑

m=−h−ε1+1

−n−h−ε∑
j=0

(
−ε2

j

)(
n+ h+ ε− 1 + j

m+ h+ ε1 − 1

)
wn−m+ε2+j

1 (−w2)−ε2−j(Sm ⊗ 1),

(A.2.19)

noting that n−m+ ε2 ∈ Z. The contribution from z = w1 is given in the first term

on the right-hand side of (A.2.9) which we can write as

∞∑
m=−h−ε1+1

∞∑
j=0

(
−ε2

j

)(
n+ h+ ε− 1

m+ h+ ε1 − 1− j

)

×
∞∑
k=0

(
−ε2 − j

k

)
wn−m+ε2+j+k

1 (−w2)−ε2−j−k(Sm ⊗ 1)

=
∞∑

m=−h−ε1+1

∞∑
j=0

∞∑
k=0

(
−ε2

j

)(
n+ h+ ε− 1

m+ h+ ε1 − 1− j

)
×
(
−ε2 − j

k

)
wn−m+ε2+j+k

1 (−w2)−ε2−j−k(Sm ⊗ 1), (A.2.20)

where we have expanded about w1 → 0. Writing ` = j+ k, converting the k-sum to

an `-sum, and then swapping the j- and `- sums, we find that the sum over j may
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be evaluated using

min{c,`}∑
j=0

(
a

j

)(
a− j
`− j

)(
b

c− j

)
=

(
a

`

)min{c,`}∑
j=0

(
`

j

)(
b

c− j

)
=

(
a

`

)(
b+ `

c

)
, (A.2.21)

which itself follows from (A.2.15). The result is

∞∑
m=−h−ε1+1

∞∑
`=0

(
−ε2

`

)(
n+ h+ ε− 1 + `

m+ h+ ε1 − 1

)
wn−m+ε2+`

1 (−w2)−ε2−`(Sm ⊗ 1) (A.2.22)

and we see that the contribution from z = w1 partially cancels (A.2.19), as antici-

pated.

The final result for the coproduct formula is then given by summing the terms in

(A.2.16) with m 6 −h− ε1, the second term on the right-hand side of (A.2.9) and

the terms in (A.2.22) with ` > −n − h − ε + 1. In each of these terms, the power

of w1 is a non-negative integer, so we can consistently set w1 to 0 and w2 to −w.

Combining with (A.2.13), valid for n > −h− ε+ 1, and using (A.2.15) judiciously,

we arrive at our final form for the twisted coproduct formulae:

∆
(1)
0,−w

(
S̃0,−w
n

)
=
∞∑
j=0

(
−ε2

j

)
w−ε2−j(Sn+ε2+j ⊗ 1) (n > −h− ε+ 1)

+ µ1

∞∑
m=−h−ε2+1

(
n+ h+ ε2 − 1

m+ h+ ε2 − 1

)
(−w)n−m(1⊗ Sm),

(A.2.23a)

∆
(1)
0,−w

(
S̃0,−w
−n

)
=
∞∑
j=0

(
−ε2

j

)
w−ε2−j(S−n+ε2+j ⊗ 1) (n > h+ ε)

+ µ1

∞∑
m=−h−ε2+1

(
m+ n− 1

m+ h+ ε2 − 1

)
(−1)m+h+ε2−1(−w)−m−n(1⊗ Sm).

(A.2.23b)

If we instead compute the residue at z = 0 using the operator product expansion

S
(
z
)
ψ2

(
w2

)
, valid for w2 → 0, then the resulting twisted coproduct formulae are

∆
(2)
w,0

(
S̃w,0n

)
=

∞∑
m=−h−ε1+1

(
n+ h+ ε1 − 1

m+ h+ ε1 − 1

)
wn−m(Sm ⊗ 1) (n > −h− ε+ 1)

+ µ1

∞∑
j=0

(
−ε1

j

)
(−w)−ε1−j(1⊗ Sn+ε1+j), (A.2.23c)
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∆
(2)
w,0

(
S̃w,0−n

)
=

∞∑
m=−h−ε1+1

(
m+ n− 1

m+ h+ ε1 − 1

)
(−1)m+h+ε1−1w−m−n(Sm ⊗ 1) (n > h+ ε)

+ µ1

∞∑
j=0

(
−ε1

j

)
(−w)−ε1−j(1⊗ S−n+ε1+j). (A.2.23d)

One can, of course, substitute these formulae into (A.2.5) in order to obtain co-

product formulae for the Sn. In practice, we prefer to employ (A.2.23) directly

and substitute when the explicit mode action is required. We note that if we set

ε1 = ε2 = ε = 0, then S̃0,−w
n = S̃w,0n = Sn, by (A.2.5), and (A.2.23) reduces to the

(untwisted) coproduct formulae derived in [5] (see also [1, App. A]).

As in the untwisted case, the twisted coproduct formulae are related by transla-

tion:

∆
(1)
0,−w

(
S−n

)
= ∆

(2)
w,0

(
ewL−1S−ne

−wL−1
)

=
∞∑
m=n

(
m− h
m− n

)
wm−n∆

(2)
w,0

(
S−m

)
. (A.2.24)

Applying (A.2.5) twice and (A.2.15), we obtain a translation formula relating the

coproducts of the S̃n:

∆
(1)
0,−w

(
S̃0,−w
−n

)
(A.2.25)

=
∞∑
j2=0

(
−ε2

j2

)
wj2∆

(1)
0,−w

(
S−n−j2

)
=

∞∑
j2=0

∞∑
m=n+j2

(
−ε2

j2

)(
m− h

m− n− j2

)
wm−n∆

(2)
w,0

(
S−m

)
=

∞∑
m=n

m−n∑
j2=0

(
−ε2

j2

)(
m− h

m− n− j2

)
wm−n

∞∑
j1=0

(
ε1

j1

)
(−w)j1∆

(2)
w,0

(
S̃w,0−m−j1

)
=
∞∑
j=0

∞∑
k=0

(−1)j
(
ε1

j

)(
n− h− ε2 + k

k

)
wj+k∆

(2)
w,0

(
S̃w,0−n−j−k

)
. (A.2.26)

This translation formula relates the two different coproducts that have been derived.

The above equalities are therefore non-trivial consequences of imposing mutual lo-

cality and amount to defining the fusion product of two twisted modulesM and N

as the quotient

M×N =
M⊗C N〈(

∆
(1)
0,−w

(
Sn
)
−∆

(2)
w,0

(
ewL−1Sne−wL−1

))
(M⊗C N )

〉 , (A.2.27)

where the submodule that one quotients by is the sum of the images of all modes Sn

of all vertex operator superalgebra fields S(z), for all insertion points w ∈ C \ {0}.

132



Appendix B

Staggered Modules

A staggered module is normally defined to be an extension of highest-weight modules

upon which L0 acts non-semisimply. Given the results reported in this thesis, and

in [24, 25], we believe that it will be necessary to generalise this to extensions of Kac

modules. However, most of the rigorous results [8, 7] about staggered modules were

proven for extensions of highest-weight modules over the Virasoro algebra and we

expect that these results will lift to the Neveu-Schwarz algebra without difficulty.

Moreover, the simplest Kac modules are also highest-weight modules, so that many

of the staggered modules we explicitly analyse will be of highest-weight type. We

will therefore make use of Virasoro results, lifted to the N = 1 algebra, that apply

to highest-weight type staggered modules.

B.1 Staggered modules

Let us define a Neveu-Schwarz staggered module to be an extension of a Kac mod-

ule by another Kac module upon which L0 acts non-semisimply. The short exact

sequence characterising the staggered module S is then

0 −→ Kr,s
ι−→ S π−→ Kρ,σ −→ 0, (B.1.1)

where the injection ι and surjection π are Neveu-Schwarz module homomorphisms.

We will customarily label the staggered module with two sets of indices Sk,`i,j such

that the Kac quotient is Ki+k,j+` and the Kac submodule is Ki−k,j−`. In the above
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exact sequence, we would therefore write

S = S
1
2

(ρ−r), 1
2

(σ−s)
1
2

(ρ+r), 1
2

(σ+s)
. (B.1.2)

We remark that this labelling need not completely specify the staggered module up

to isomorphism. When necessary, we shall append the required additional labels in

parentheses; for example, Sk,`i,j (β). We also mention that the staggered modules Sk,`i,j
that we have encountered in our fusion computations all have either k = 0 or ` = 0.

However, staggered modules with both k and ` non-zero do exist.

Most of the staggered modules analysed in this thesis have the property that both

the Kac submodule and quotient appearing in (B.1.1) are highest-weight modules

(an example where this is not the case is discussed in Section 5.4). In this case, we

have the following result.

Proposition B.1.1. If the Kac modules Kr,s and Kρ,σ in (B.1.1) are highest-weight,

then their minimal conformal weights must satisfy hρ,σ > hr,s and hρ,σ − hr,s ∈ 1
2
Z.

If this condition on the minimal conformal weights is not met, then there is no

staggered module S making (B.1.1) exact. The requirement that the Kac modules

be highest-weight is necessary as the example discussed in Section 5.4 shows. In

contrast, the following results hold for general staggered modules.

Proposition B.1.2. The Jordan blocks of L0, acting on S , have rank at most 2.

Proof. Let v belong to a Jordan block for L0 where the (generalised) eigenvalue is

h. Then, (L0 − h)v need not be zero, but π(L0 − h)v = (L0 − h)πv = 0, since πv

belongs to the Kac module Kρ,σ. By exactness, (L0 − h)v = ιw for some w ∈ Kr,s,

hence (L0 − h)2v = (L0 − h)ιw = ι(L0 − h)w = 0.

It follows from this proposition, and the definition, that the action of L0 on a

staggered module always possesses Jordan blocks of rank 2.

Proposition B.1.3. Let w, y ∈ S be elements of a rank 2 Jordan block for L0

satisfying (L0 − h)y = w. If πy is annihilated by some U in the universal enveloping

algebra of the Neveu-Schwarz algebra, then Uw = 0. In particular, if πy ∈ Kρ,σ is

singular of conformal weight h, then w is singular or zero in ι(Kr,s).

Proof. We may assume, without loss of generality, that U is homogeneous, meaning

that
[
L0, U

]
= −nU for some n ∈ Z. Since πUy = Uπy = 0, we have Uy ∈ ι(Kr,s)
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by exactness, hence Uy is an eigenvector of L0 with eigenvalue h− n. Thus, Uw =

U(L0 − h)y = (L0 − h+ n)Uy = 0. The last statement now follows by combining

this result for U = L0 − h with that for U a positive mode.

Note that if Kρ,σ is highest-weight with highest-weight vector πy of conformal weight

h, then w = (L0 − h)y cannot be 0 if there are to be any Jordan blocks at all. It

follows that, in this case, w is singular.

B.2 Logarithmic Couplings

In this section, we assume that the Kac submodule and quotient of each staggered

module is highest-weight. With this restriction, we can follow [7, 23] in discussing

parametrisations of the isomorphism classes of the staggered modules (B.1.1) with

Kr,s and Kρ,σ fixed. The parametrisations for general staggered modules are beyond

the scope of this thesis.

When the highest-weight vectors of the (highest-weight) modules Kr,s and Kρ,σ
have equal conformal weight, hr,s = hρ,σ, then this sequence determines the stag-

gered module up to isomorphism (assuming that it exists). This follows easily from

the fact that such staggered modules are quotients [7, Cor. 4.7] of universal “Verma-

like” staggered modules. However, the exact sequence typically does not determine

the isomorphism class uniquely when hρ,σ > hr,s. This seems to have been first

recognised in the Virasoro examples constructed in [6], where an additional pa-

rameter β was introduced to specify the module structure. The claim that this

parameter determines the isomorphism class was subsequently demonstrated for a

class of Verma-like Virasoro staggered modules in [8]. Extending this work to gen-

eral Virasoro staggered modules required a general invariant definition of β [57] and

was completed in [7].

The staggered modules typically encountered in fusion computations have the

following structure: Let x denote the highest-weight vector of the submodule ι(Kr,s)

and let w = Ux denote its singular descendant of conformal weight hρ,σ (unique up

to rescaling). The existence of w is guaranteed by Proposition B.1.3, so we may

choose y such that (L0 − hρ,σ)y = w. It follows that U †y must be proportional to x

and we define [57] this constant to be the logarithmic coupling β . The choice of y is

generally only unique up to adding elements of ι(Kr,s) (with conformal weight hρ,σ);
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however, these are annihilated by U † as Ux is singular. The logarithmic coupling

is therefore independent of such choices once we fix a normalisation for the singular

vector w. For the Neveu-Schwarz algebra, it is not hard to show that the coefficient

of the monomial involving only G−1/2 is non-zero [18], hence we let

w =
(
G
hρ,σ−hr,s
−1/2 + · · ·

)
x. (B.2.1)

With the (antilinear) adjoint generated by L†n = L−n and G†j = G−j, we see that

renormalising w by a factor of a leads to a renormalisation of β by a factor of |a|2.

We will often denote the logarithmic coupling of a staggered module Sk,`i,j , obtained

from fusion calculations, by βk,`i,j for convenience.

Logarithmic couplings are therefore fundamental representation-theoretic quanti-

ties. Their physical interest in logarithmic conformal field theory lies in the fact that

they also appear in the coefficients of certain operator product expansions and cor-

relation functions, often accompanied by the factors with logarithmic singularities.

One can compute the value of any logarithmic coupling by explicitly constructing

the staggered module to sufficient depth as in the Nahm-Gaberdiel-Kausch fusion al-

gorithm. However, this is, computationally, very intensive. An alternative method

proposed in [27], but typically limited to staggered modules involving braid type

highest-weight modules, is to consider staggered modules for which the quotient

Kρ,σ is replaced by its Verma cover. The desired staggered module may then be

realised as a quotient of the Verma-like one if the latter possesses a singular vector

of the appropriate conformal weight. Checking explicitly for the existence of such a

singular vector fixes β (in the braid type case); see [7] for the proofs.

To the best of our knowledge, the most efficient means of computing the loga-

rithmic coupling in a fusion product is the field-theoretic, though somewhat heuris-

tic, method outlined in [52] (noting the important clarifications described in [58,

App. D]). This builds on earlier work [95] addressing the so-called “c → 0 catas-

trophe” that is reviewed in [96, 97]. The computation for the staggered module

appearing in (B.1.1) realises its logarithmic coupling β as a limit — the parameter

t is perturbed away from the desired value t(0), hence the perturbed central charge

c and Kac weights hr,s take the form

t(ε) = t(0) + ε, (B.2.2)
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c(ε) = c(0)− 3

(
1− 1

t(0)2

)
ε+ · · · , (B.2.3)

hr,s(ε) = hr,s(0)−
(
r2 − 1

8t(0)2 −
s2 − 1

8

)
ε+ · · · . (B.2.4)

Let x(ε) denote a highest-weight vector of central charge c(ε) and conformal weight

hr,s(ε). We define U such that Ux(0) is the singular descendant of conformal weight

hu,v(0), normalised as in (B.2.1), then let w(ε) = Ux(ε). Note that U does not

depend on ε. The logarithmic coupling is then given by [52]

β = − lim
ε→0

〈w(ε), w(ε)〉
hu,v(ε)− hr,s(ε)− (hu,v(0)− hr,s(0))

(B.2.5)

=
8t(0)2

u2 − r2 − (v2 − s2)t(0)2 lim
ε→0

〈
x(ε), U †Ux(ε)

〉
ε

, (B.2.6)

where x(ε) is normalised so that 〈x(ε), x(ε)〉 = 1. We provide an example illustrating

the use of this formula in Section 4.1.1.

Let us turn now to the question of logarithmic couplings for Ramond staggered

modules. We shall simplify our considerations by restricting immediately to a set

of staggered modules that contains each of the modules that we have encountered

in our fusion computations. This set is characterised by the following properties,

referring to (B.1.1):

1. The Kac submodule Kr,s has a bosonic ground state x of conformal weight ∆ and

a singular vector Ux of conformal weight h > ∆ > − c
24

.

2. U cannot be factorised as U ′U ′′ such that U ′′x is a singular vector of Kr,s whose

conformal weight lies strictly between ∆ and h.

3. Ux has a Jordan partner y ∈ S satisfying (L0 − h)y = ι(Ux).

4. The projection π(y) is a ground state of the Kac quotient Kρ,σ.

We depict the structures of the staggered modules from this set in Figure B.1. Note

that if we modify property 1 by replacing h > ∆ by h = ∆, then the corresponding

set of staggered modules will have isomorphism classes that are always completely

specified by (B.1.1). They therefore require no logarithmic couplings, hence we have

excluded them from the present considerations.
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∆:

h: y Ux

x G0x

G0Ux G0y

U V

L0−h L0−h

β−1U† γ−1V †

∆ 6= c
24

y+ Ux+

x+ x−

Ux− y−

U U

L0−h L0−h

β−1U† β−1U†

∆ = c
24

Figure B.1: Schematic depictions of the staggered module structures that we have
encountered when decomposing fusion products. The right picture is necessarily
different because G0x

+ = G0x
− = 0 when ∆ = c

24
.

Suppose first that ∆ 6= c
24

, so that G0x 6= 0 and G0Ux 6= 0. We may then define

V =
G0UG0

∆− c/24
(B.2.7)

and note that V G0x = G0Ux. Moreover, (L0 − h)G0y = G0(L0 − h)y = G0Ux, so

we reproduce the left picture in Figure B.1 by defining the logarithmic couplings

β, γ ∈ C by

U †y = βx, V †G0y = γG0x. (B.2.8)

We note that these couplings do not depend upon the choice of y. However, they

are not independent:

V †G0y =
G0U

†(L0 − c/24)y

∆− c/24
=
G0U

†(h− c/24)y +G0U
†Ux

∆− c/24
=
h− c/24

∆− c/24
βG0x

⇒ γ =
h− c/24

∆− c/24
β. (B.2.9)

We therefore expect that such a Ramond staggered module requires at most one

logarithmic coupling in order to fully specify its isomorphism class.1

The precise value of a logarithmic coupling depends upon the normalisation

chosen for the singular vector Ux ∈ Kr,s. For Neveu-Schwarz staggered modules,

we chose to normalise by requiring that the coefficient of G
2(h−∆)
−1/2 in U be 1. For

Ramond staggered modules, we choose to normalise by requiring that U be bosonic

such that the coefficient of Lh−∆
−1 is 1. Both choices have the advantage that they

do not depend on how one decides to order modes.

The case ∆ = c
24

requires a separate treatment. The bosonic ground state of

1A staggered module of this type might actually be completely specified, up to isomorphism,
by the exact sequence (B.1.1), see [27, 7].
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the Kac submodule Kr,s is now annihilated by G0 as is the fermionic ground state.

We denote these ground states by x+ and x−, respectively. As Ux+ is singular, so

is Uv, where v ∈ RVc/24 is a highest-weight vector of conformal weight c
24

. Thus,

we may write each LnU and GkU , with n, k > 0 so that they annihilate v, in the

form U0(L0 − c/24) + V0G0 + U1L1 + V1G1, for some U0, V0, U1 and V1 (the modes

L0− c/24, G0, L1 and G1 generate the annihilating ideal of v). Each LnU and GkU ,

with n, k > 0, therefore annihilates x−. As Ux− is an L0-eigenvector, it follows that

it is also singular. Moreover, G0Ux
+ is singular with the same conformal weight

and parity as Ux−, hence they are proportional (see Figure 2.5). We may therefore

normalise x− so that G0Ux
+ = Ux−.

Let y+ and y− be Jordan partners to Ux+ and Ux−, respectively, as in the right

picture in B.1. Then,

(L0 − h)(y− −G0y
+) = Ux− −G0Ux

+ = 0, (B.2.10)

hence y− = G0y
+ + u, where u ∈ Kr,s has conformal weight h. We may again define

two logarithmic couplings β+, β− ∈ C by

U †y± = β±x±. (B.2.11)

Once again, these couplings do not depend upon the choice of y+ and y−. However,

this time the couplings appear to be independent unless we make some assumptions,

albeit natural ones, about the staggered module.

For example, if the staggered module is invariant under parity-reversal, φ : S →

ΠS
∼=−→ S , then φ(x+) = αx−, for some α ∈ C \ {0}, hence

(L0 − h)φ(y+) = φ(Ux+) = αUx− = (L0 − h)αy− (B.2.12)

and so φ(y+)− αy− ∈ ker(L0 − h). But then,

αβ+x− = β+φ(x+) = U †φ(y+) = U †αy− = αβ−x−, (B.2.13)

from which it follows that β+ = β−. Alternatively, if we define an invariant bilinear
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form 〈·, ·〉 on S by 〈x+, x+〉 = 1 and 〈x−, x−〉 = α, for some α ∈ C \ {0}, then

αβ− =
〈
U †y−, x−

〉
=
〈
y−, Ux−

〉
=
〈
y−, G0Ux

+
〉

=
〈
G0y

−, Ux+
〉

=
〈
(L0 − c

24
)y+, Ux+

〉
= (h− c

24
)
〈
y+, Ux+

〉
= (h− c

24
)β+. (B.2.14)

It is not clear to us that either relation must necessarily hold, but it seems reasonable

to suppose that the Ramond staggered modules that we construct as fusion products

are parity-invariant. This would, however, require the ratio of 〈x−, x−〉 to 〈x+, x+〉

to be h− c
24

, which is a little surprising.

Unfortunately, the only Ramond staggered modules with ∆ = c
24

that we have

been able to construct are the two c = 0 examples S1,0
2,2 and S0,2

1,4 , each of which has

Kac submodule K1,2 (see Sections 4.3.2 and 5.2). In both cases, the logarithmic

couplings coincide — they are 3
16

and − 3
16

, respectively. While this is consistent

with invariance under parity reversal, these examples also have h − c
24

= 1, so this

is also consistent with the existence of an invariant bilinear form with 〈x+, x+〉 =

〈x−, x−〉 = 1.

It would be very revealing to compute the logarithmic couplings of the c = −21
4

fusion product K2,1 × K2,4, which is expected to be a staggered module with Kac

submodule K1,4 (which is of centre type). In this case, h − c
24

= 2, so the norms

of the ground states of K1,4 would have to be different if the couplings coincide.

However, computing this product to depth 2, required to measure the logarithmic

couplings, has remained tantalisingly out of reach with our current implementation

of the twisted Nahm-Gaberdiel-Kausch fusion algorithm.
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Appendix C

Computational Flow Chart

We describe here the mechanism for calculating a fusion product in general terms for

either the untwisted or twisted sector of the N = 1 algorithm. The code is split into

two parts: creating the list of fusion basis states minus spurious states and acting

with the recursive fusion algorithm on this basis. In the fusion algorithm there are

three cases to consider when the current state is outside of the span of the fusion

basis each with an appropriate action to then bring the state within the span of the

fusion basis.
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Sort monomi-

als into PBW

Build basis at

each grade

Find singular vector

at certain grade

Calculate fusion basis

+ coproduct formulae

Act on basis state

with coproduct

Is output

in fusion

basis

Stop

Degree of right factor

greater than depth

Left or right fac-

tor is a singular
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Degree of left fac-
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conformal dimension
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between coproducts

to move left factor

terms to right factor

Reduce with singular

vector set to zero
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no

no
no

yes
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in Mathematics and Statistics, 36:349–368, 2011. arXiv:1111.5049 [hep-th].

[69] P Goddard, A Kent, and D Olive. Virasoro algebras and coset space models.

Phys. Lett., B152:88–92, 1985.

[70] P Goddard, A Kent, and D Olive. Unitary representations of the Virasoro and

super-Virasoro algebras. Commun. Math. Phys., 103:105–119, 1986.

[71] V Kac and M Wakimoto. Modular invariant representations of infinite-

dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA,

85:4956–4960, 1988.

[72] V Kac and M Wakimoto. Classification of modular invariant representations of

affine algebras. Adv. Ser. Math. Phys., 7:138–177, 1989.

[73] P Pearce and J Rasmussen. Coset construction of logarithmic minimal mod-

els: branching rules and branching functions. J. Phys., A46:355402, 2013.

arXiv:1305.7304 [hep-th].

[74] E Date, M Jimbo, T Miwa, and M Okado. Fusion of the eight vertex SOS

model. Lett. Math. Phys., 12:209–215, 1986.

148



[75] E Date, M Jimbo, T Miwa, and M Okado. Automorphic properties of local

height probabilities for integrable solid-on-solid models. Phys. Rev., B35:2105–

2107, 1987.

[76] E Date, M Jimbo, A Kuniba, T Miwa, and M Okado. Exactly solvable SOS

models: local height probabilities and theta function identities. Nucl. Phys.,

B290:231–273, 1987.

[77] C Ahn, S-W Chung, and S-H Tye. New parafermion, SU(2) coset and N = 2

superconformal field theories. Nucl. Phys., B365:191–240, 1991.

[78] A Berkovich, B McCoy, A Schilling, and S Warnaar. Bailey flows and Bose-

Fermi identities for the conformal coset models (A
(1)
1 )N × (A

(1)
1 )N ′/(A

(1)
1 )N+N ′ .

Nucl. Phys., B499:621–649, 1997. arXiv:hep-th/9702026.

[79] A Morin-Duchesne, P Pearce, and J Rasmussen. Fusion hierarchies, T -systems,

and Y -systems of logarithmic minimal models. J. Stat. Mech., 1405:P05012,

2014. arXiv:1401.7750 [math-ph].

[80] M Gaberdiel and H Kausch. A rational logarithmic conformal field theory.

Phys. Lett., B386:131–137, 1996. arXiv:hep-th/9606050.

[81] B Feigin, A Gainutdinov, A Semikhatov, and I Tipunin. Logarithmic extensions

of minimal models: Characters and modular transformations. Nucl. Phys.,

B757:303–343, 2006. arXiv:hep-th/0606196.

[82] A Semikhatov. A note on the logarithmic (p, p′) fusion. arXiv:0710.5157 [hep-th].

[83] J Rasmussen. Polynomial fusion rings of W-extended logarithmic minimal

models. J. Math. Phys., 50:043512, 2009. arXiv:0812.1070 [hep-th].

[84] J Rasmussen. Fusion of irreducible modules in WLM(p, p′). J. Phys.,

A43:045210, 2010. arXiv:0906.5414 [hep-th].

[85] S Wood. Fusion rules of the W (p, q) triplet models. J. Phys., A43:045212, 2010.

arXiv:0907.4421 [hep-th].

[86] J Rasmussen. W-extended Kac representations and integrable boundary con-

ditions in the logarithmic minimal models WLM(1, p). J. Phys., A44:395205,

2011. arXiv:1106.4893 [hep-th].

149



[87] A Tsuchiya and S Wood. The tensor structure on the representation category

of theWp triplet algebra. J. Phys., A46:445203, 2013. arXiv:1201.0419 [hep-th].

[88] P Pearce, J Rasmussen, and P Ruelle. Integrable boundary conditions and

W-extended fusion in the logarithmic minimal models LM(1, p). J. Phys.,

A41:295201, 2008. arXiv:0803.0785 [hep-th].

[89] J Rasmussen and P Pearce. W-extended fusion algebra of critical percolation.

J. Phys., A41:295208, 2008. arXiv:0804.4335 [hep-th].

[90] J Rasmussen.W-extended logarithmic minimal models. Nucl. Phys., B807:495–

533, 2009. arXiv:0805.2991 [hep-th].
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