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Chapter 1

Before quantum mechanics

Imagine a time when it was finally accepted that the world consisted of atoms -
each atom with a positively charged nucleus surrounded by negatively charged
particles. These particles are subject to electromagnetic forces. Maxwell’s
equations of electromagnetism are known. It is also known that these equations
explain light as an electromagnetic wave. It is 1911, and the Rutherford model
of the atom has just been established.

There are particles and waves, all subject to equations of motion. The
particles are thought to be described by classical mechanics - Newton’s laws
- equivalently, Lagrange equations or Hamilton’s equations. The latter are
subsequent reformulations of Newton’s laws.

The forces (electromagnetic and gravity), that are responsible for most of
what happens on the surface of this planet, were known at this snapshot in
human history. In principle, if the exact state of a system is known at a specific
time, then the entire future of the system can be determined - at least according
to classical mechanics.

1.1 Classical mechanics

Newton’s second law is expressed by

Force = mass× acceleration.

The first law is really just the special case of no net force. Newton’s third law
is just the extension of the second law to a pair of particles (bodies).

For a system of N particles, all with the same mass m, the position of all
particles is specificied by a 3N dimensional vector, x. The components of x
are the x, y and z spatial coordinates for each particle. Newton’s second law
takes the form,

F = m
d2

dt2
x. (1.1)

1
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This is a second order differential equation in time. To obtain a unique solution
- for all time - requiries specifying initial position, x (0), and initial velocity,
v (0);

v (t) =
d

dt
x (t) .

According to the classical mechanics, we can uniquely predict the future - given
the initial state of the system. The classical state of the system consists of
specific positions and momenta (velocities), x and p = mv.

1.1.1 Hamilton’s formulation of classical mechanics

Momentum, as opposed to velocity, is used in Hamilton’s formulation of clas-
sical mechanics. This formulation begins with the construction of the system
Hamiltonian, H (x,p), as a function of position and momentum - the Hamilto-
nian is the energy function. The Hamiltonian consists of kinetic plus potential
energy;

H (x,p) =
p2

2m
+ V (x) , (1.2)

where
p2 = pTp

is the square magnitude of the momentum vector, and V (x) is the potential
energy which depends only on the positions of the particles - the configuration.

The differential equatons in Hamilton’s formulation are first order. Hamil-
ton’s equations are given by

d

dt
x (t) =

∂H

∂p
(1.3)

and
d

dt
p (t) = −∂H

∂x
. (1.4)

For the above Hamiltonian, these equation take the form,

d

dt
x =

p

m

and
d

dt
p = −∂V (x)

∂x
= F (x) .

The first of these equations is just the definition of momentum, while the second
equation is Newton’s second law - where the force is gven by the gradient of the
potential energy function. Hamilton’s formulation is equivalent to Newton’s
formulation. Its advantage arises from the equations being first order, rather
than second order.

A unique solution to the first order differential equation in time,

d

dt

�
x

p

�
=

�
p/m
F (x)

�
,
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results from a given initial state of the system,

�
x (0)
p (0)

�
. This system has

3N degrees of freedom. Each degree of freedom has a position and momentum
- the components of x and p.

1.2 The trouble with classical mechanics

Classical mechanics works well for macroscopic bodies - e.g., baseballs, cars,
planes, machine components. But it does not work for systems of elementary
particles. Classical mechanics was already in trouble before the atomic nature
of matter was universally accepted.

1.2.1 The ultraviolet catastrophe

The statistical theory of systems of large numbers of particles, classical statistical
mechanics, was known in 1911. In particular, the equipartition theorem was
known. It states that, for a system in thermal equilibrium, each unbound degree
of freedom has energy, 12kBT , while each bound degree of freedom has energy,
kBT . When this theorem is applied to the electromagnetic waves inside a box
in thermal equilibrium, there is a startling result.

In the classical theory of light, light is an electromagnetic wave. Specifically,
light consists of waves in electric and magnetic fields at right angles. The
components of the electric (and magnetic) field(s) satisfy the wave equation,

d2

dx2
E (x, y, z, t) +

d2

dy2
E (x, y, z, t) +

d2

dx2
E (x, y, z, t) =

1

u2
d2

dt2
E (xy, z, t) . (1.5)

The following sine wave satisfies this equation:

E (x, y, z, t) = E0 sin (kxx+ kyy + kzz − ωt) , (1.6)

where

k2x + k2y + k2z = k2 =
ω2

u2
. (1.7)

Here, u is the velocity of the wave,

u =
c

n
,

where n is the refractive index and c = 2.99792458× 108 m s−1 is the speed of
light in a vacuum. The wave vector,

k =
2π

λ
k̂

is inversely proportion to the wavelength, λ. k̂ is a unit vector giving the
direction of wave propagation.

ω = 2πν
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is the angular frequency.

For light constrained to a finite volume (consider a cube), there is a discrete
set of possible values of kx, ky and kz, corresponding to distinct standing waves
of light. Each possible set of the values determines a degree of freedom, or
mode, of light. The number of modes consistent with frequency, ν = ω/2π, is
proportional to ν2. This results because the wave vector components satisfy
Eq. 1.7 which is the equation for the surface of a sphere of radius, ω/u. The
number of modes with frequency, ν, is proportional to the area of that sphere
which increases in proportion to ν2.

Consider light in thermal equilibrium with the walls of the box, at tempera-
ture T . This light is called blackbody radiation. According to the equipartition
theorem, the amount of energy stored in the light is infinite. In particular, the
amount of energy in blackbody radiation at frequency, ν, increases as ν2. This
is called the ultraviolet catastrophe.

The problem was solved by Planck who modified the equipartition theo-
rem, replacing the fixed energy, kBT , by a function - equal to kBT for small
ν, and decreasing exponentially with ν when ν is large. The resulting black-
body spectrum - i.e., the distribution of energy over frequency - matches ex-
perimental observations of blackbody radiation (e.g., the light from the sun,
or any other star). This modification required introducing Planck’s constant,
h = 6.62606957× 10−34. It was Einstein who interpreted this modification as
accounting for the quantization of light energy. Specifically, light consists of
particles of light, photons, with energy equal to hν. Light has wave and particle
properties.

The Planck distribution or blackbody spectral emissivity - the power emitted,
at frequency ν, by an object at temperature T , per unit frequency and unit
surface area (of the object) - is given by

E (ν) =
2πhν3

c2
1

ehν/kB T − 1
(1.8)

=
2πhν3

c2
e−hν/kB T

1− e−hν/kB T
.

Blackbody emissivity - the total power emitted (over all frequencies) per unit
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surface area - is the integral of E (ν) over all frequencies.

� ∞

0

E (ν) dν =
2πh

c2

� ∞

0

ν3e−hν/kB T

1− e−hν/kB T dν (1.9)

=
2πh

c2

�
kBT

h

�4 � ∞

0

x3e−x

1− e−x
dx

=
2πk4B
h3c2

T 4
�� ∞

0

x3e−x dx+

� ∞

0

x3e−2x dx+ . . .

�

=
2πk4B
h3c2

T 4
�� ∞

0

x3e−x dx+
1

24

� ∞

0

x3e−x dx+ . . .

�

=
2πk4B
h3c2

T 4
�
6 +

6

24
+

6

34
+ . . .

�

=
2π5k4B
15h3c2

T 4 = σT 4

The T 4 dependence of emissivity is the Stefan-Boltzmann law. σ = 5.67×10−8

W m−2 K−4 is called the Stefan-Boltzmann constant. The frequency of peak
spectral emissivity is given by setting

dE (ν)

dν
= 0

or

0 =
d

dx

x3

ex − 1

=
3x2 (ex − 1)− x3ex

(ex − 1)2
,

where x = hν/kBT . Since the denominator and x must be positive, this
expression simplifies to

0 = 3 (ex − 1)− xex,

or

x = 3
�
1− e−x

�
.

This is a nonlinear equation which has solutions at x = 0 (ρ (ν) is a minimum
at zero frequency) and x = 2.822. The peak frequency is given by

ν = 2.822kBT/h (1.10)

= 5.88× 1010 Hz K−1.

When expressed in terms of wavelength, this result is known as Wien’s law.

Figure 1.1 shows Planck distributions for T from 200 to 800 K. For this
temperature range, blackbody emissivity varies from 90 W m−2 to 23 kW m−2.
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Figure 1.1: Spectral emissivity of blackbodies at different temperatures. The
spectral radiosity - power emitted per unit area of the blackbody, per unit
frequency of light emitted - in units of pW m−2Hz−1 is shown for T = 200, 400,
600 and 800 K. The area under the curve increases with increasing temperature
as - T 4 - while the peak shifts to higher frequency.

1.2.2 The stability of atoms, and atomic spectra

An atom consists of a positively charged nucleus, carrying most of the mass of
the atom, surrounded by enough electrons to balance the charge. According
to classical mechanics, electrons orbit the nucleus much as planets, asteroids
and comets orbit the sun. However, because the electrons are charged and
they are accelerated (centripetal acceleration), they should emit electromagnetic
waves (i.e., light). As the electrons emit light, they lose energy. Electrons
should, according to classical mechanics, eventually fall into the nucleus. The
classical atom is unstable. A ground state hydrogen atom would collapse in
16 ps [J.D. Olsen and K.T. McDonald, Classical Lifetime of a Bohr Atom,
http://www.physics.princeton.edu/~mcdonald/examples/orbitdecay.pdf].

Another problem with the classical atom, as if instability were not enough,
is that the energy of the atom varies continuously and any change in energy is
possible. Since hν = ∆E, the classical atom can absorb or emit any frequency
of light. The classical atom has a continuous spectrum. However, a real atom
has a discrete spectrum - i.e., there is a discrete set of frequencies of light that
can be absorbed or emitted.

Bohr tried to solve this problem for the hydrogen atom by positing that the
angular momentum of the orbiting electron must be a multiple of � = h/2π.
De Broglie later interpreted this model as requiring that the allowed orbits
correspond to standing electron waves, where the electrons have wavelength
given by

λdeB =
h

p
, (1.11)
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where p is the electron momentum.
The Bohr model of the hydrogen atom reproduces the frequencies actu-

ally emitted or absorbed by hydrogen atoms - specifically, the Lyman, Balmer,
Paschen, Backett, ... spectral series. The Schrödinger equation predicts the
same series for hydrogen, and determines every other kind of spectrum of any
atom or molecule. The key feature of electrons, according to quantum mechan-
ics, is that they have both wave and particle properties. Like light, matter is
both particle and wave.

1.2.3 Wave property of matter particles

In 1927, Davisson and Germer observed diffraction of a low energy electron beam
reflected from a crystal of nickel. The pattern was determined by the spacing
of nickel atoms at the surface of the crystal, and the de Broglie wavelength of
the electrons in the beam. A simplified low energy electron diffraction (LEED)
setup is shown in Figure 1.2.

Figure 1.3 shows an observed LEED diffraction pattern for a Si(100) crystal.
The structure of the surface layers of the crystal is manifest in the pattern of
peaks.

Electrons diffract in the same manner as X-rays. Electron hit the screen at
diffraction peaks. Diffraction is a wave property. For specular reflection (angle
of reflection equals angle of incidence) - when the Bragg condition is met (it is
usually written in terms of the sine of the complementary angle);

nλ = 2a cos θ. (1.12)

Here, a is the atomic spacing, θ is the angle of incidence (relative to normal),
λ is the wavelength of the electrons in the beam (all the same, as the electrons
all have the same momentum), and n = 1, 2, 3, ....

In general, for a crystal with three lattice vectors (these are the three sides
of a unit cell of the crystal), a, b and c, the von Laue equations determine the
diffraction peaks for any angle of reflection - i.e., not necessarily specular:

naλ

a
= cos θa,i + cos θa,r (1.13)

nbλ

b
= cos θb,i + cos θb,r

ncλ

c
= cos θc,i + cos θc,r,

where na, nb and nc are independent positive integers: 1, 2, 3, ... The angles
correspond to the angles depicted in Fig. 1.3, relative to the crystal planes
indicated - a, b or c.

Diffraction has been observed for particles heavier than electrons - e.g.,
He,[I. Estermann, O. Stern: Z. Phys. 61, 95 (1930)] and even large molecules
such as Buckminsterfullerene [B. Brezger, L. Hackermüller, S. Uttenthaler, J.
Petschinka, M. Arndt, A. Zeilinger: Phys. Rev. Lett. 88, 100404 (2002)].
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Figure 1.2: A low energy electron diffraction (LEED) experimental setup. Cur-
rent flows through the thin filament, making it hot - the filament has high resis-
tance (it is like an incandescent light-bulb filament). Electrons emitted by the
hot filament are accelerated through a potential difference, V = 20 to 200 V,
and collimated into a fixed velocity electron beam velocity. Electrons impact a
crystal with angle of incidence, θi, and reflects at angles θr (only one reflection
is angle shown here). Grids between sample and screen filter out electrons with
less energy than the incoming electrons (they have energy, eV ). The inner grid
shields the sample from the electric field induced by the filter. Phosphors in
the screen emit visible light when they are strck by electrons. The inset shows
the extra distance traveled by electrons that reflect off of the second layer of
atoms - in comparison to the first layer.
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Figure 1.3: The LEED pattern of diffraction peaks for a crystal of silicon
cut with the 100 surface exposed. The 100 designation gives the compo-
nents of a vector normal to the crystal surface, within the standard crytal-
lographic unit cell. Si(100) consists of the front face of the unit cell - only
y and z values vary across the surface. Diffraction peaks appear at angles
satifying the von Laue equations. From [http://en.wikipedia.org/wiki/Low-
energy_electron_diffraction# /media/File:Si100Reconstructed.png. Retrieved
Aug. 28, 2014.]

Example 1.1. Electron diffraction peaks. Consider a beam of electrons, accelerated
through a potential of 100. V, incident on a crystal of nickel with θa,i =
60◦. Nickel is face centered cubic. As such, it has just one lattice
parameter; a = b = c. a = 0.352 nm for nickel.

(a) What is the de Broglie wavelength of electrons in the beam?

(b) Determine the angles of reflection of the two diffraction peaks closest
to specular reflection, θb,r = θb,i = 60◦.

(c) How many diffraction peaks will be observed? Note that only re-
flected beams - i.e., −π

2 < θb,r <
π
2 - can be seen.

(d) If the electron gun voltage were 200.0 V, rather than 100. V, how
many diffraction peaks would be seen?

Solution 1.1.

(a) The kinetic energy of an electron accelerated through 100. V is

E = eV = 100. eV

=
mu2

2
=
p2

2m
,
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since p =mu, where u is the velocity of the electron. Therefore, the
electron momentum is

p =
√

2mE =
�

2× 9.109× 10−31 kg× 1.602× 10−19 C× 100. V

= 5.402 × 10−24 kg m s−1.

The electron velocity is 5. 930 8×106 m s−1. Since this is well below
the speed of light, the use of the above non-relativistic kinetic energy
formula is acceptable.

The de Broglie wavelength is

λ =
h

p
=

6.626× 10−34 J s

5.402 × 10−24 kg m s−1

= 1. 227 × 10−10 m

= 0.1227 nm.

(b) Since cos θa,i =
1
2 , and the von Laue equation (there is only one for

nickel) takes the form,3× 0.348 58− 1
2 = 0.545 74

cos θa,r =
naλ

a
− 1

2

= na
0.1227
0.352

− 1

2

= na × 0.348 6 −
1

2
.

For specular reflection, cos θa,r = 1
2 . This corresponds to na =

1/0.3486 = 2.87. Since this is not an integer, there is no diffraction
peak. The closest diffraction peaks occur at na = 2 and 3;

cos θa,r =

	
0.1972 na = 2
0.545 7 na = 3

The associated angles are cos−1 (0.1972) = 78. 6◦ and cos−1 (0.5457) =
56. 9◦.

(c) For angles in the observed hemisphere, the electron beam is reflected
and cos θa,r > 0. For na = 1, the von Laue equation produces a
negative cos θa,r (specifically, −0.151 4) corresponding to an angle of
reflection of cos−1 (−0.151 4) = 98. 7◦. The na = 1 actually corre-
sponds to transmission. However, unless the sample is extremely
thin, this transmission beam cannot be seen. Electron transmis-
sion microscopy is based on observing transmitted electrons through
ultra-thin samples. Here, the na = 1 peak cannot be seen. The
peaks begin with na = 2, then 3. Since cos θa,r cannot excede 1,
then sequence ends with na = 4. Three diffraction peaks can be
seen here.
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Figure 1.4: The double slit experiment. From
[http://www.hitachi.com/rd/research/em/doubleslit.html. Retrieved Aug. 24,
2014.]

(d) In this case, the electron energy is twice as big. This makes the
momentum larger by 21/2, and the de Broglie wavelength smaller - it
changes by the factor 2−1/2. In this case,

cos θa,r =
naλ

a
− 1

2

= na
2−1/2 × 0.1227

0.352
− 1

2

= na × 0.246 5 −
1

2
.

The observed diffraction peaks begin with na = 3 and end with
na = 6. The upper limit is found by setting cos θa,r = 1 in the von
Laue equation, then solving for na. The result is na = 6.09. na = 6
is the largest peak index below this value. Therefore, four diffraction
peaks are observed.

In a double slit experiment, shown in Fig. 1.4, there are two pathways to a
target available to the wave. The two portions of the wave that take different
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pathways interfere when they arrive at the target together. When the difference
in total pathlengths is a multiple of wavelength of the particles, the pathways
interfere constructively and particles are observed. When the difference in
total pathlengths is a half-integral multiple of the wavelength, the pathways
destructively interfere and particles are not observed.

When an electron is incident on a target (detector), it is seen at a specific
location. Each electron arrives at a different location. The interference effect is
manifest in the distribution of these locations on the detector. The interference
effect is seen even when the beam intensity is so low that there is only one
electron (or none) between the source and target (detector) at any given time.
In this case, the interference pattern builds up and becomes evident only after
very many electrons have been observed.



Chapter 2

The emergence of quantum

mechanics

Light is both wave and particle, and the components of matter are both particle
and wave. In 1926, Erwin Schrödinger introduced the wave equation for mat-
ter waves. In the previous year, 1925, Werner Heisenberg introduced matrix
mechanics - equivalent to Schrödinger’s quantum mechanics.

2.1 The Schrödinger equation

Schrödinger noticed that the Hamilton-Jacobi equation of classical mechanics
has the same form as the eikonal equation of geometric optics. The eikonal
equation of geometric optics arises fromMaxwell’s equations (the wave equations
for light) when the wavelength is small. Treating the Hamilton-Jacobi equation
as an eikonal equation, Schrödinger worked out the associated wave equation -
the time independent Schrödinger equation.

2.1.1 Geometric optics, Fermat’s principle and the eikonal

equation

The wavelengths of visible light - 400-700 nm - are small on the macroscopic
scale. As such, for many purposes (not including diffraction and interference),
visible light can be viewed as consisting of rays whose paths satisfy the eikonal
equation, 





∂ϕ (x)

∂x





 = k (x) =
ω

c
n (x) .

Here, x is a 3 dimensional vector - position in physical space; ∂/∂x is the
gradient. This equation follows from the wave equation for light (Eq. 1.5),
where ϕ (x) is the phase of the wave - if the oscillations in ϕ (x) are much faster
than the variation in the amplitude of the wave.

13
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Figure 2.1: The wavefronts - lines of constant ϕ (x), where ϕ (x) satisfies the
eikonal equation - across an interface between high and low refractive index
media. The inset shows how the wavefronts satisfies Snell’s law.

Solutions, ϕ (x), to the above equation determine rays along which light
travels - the rays are always perpendicular to the level surfaces of ϕ (x). The
level surfaces of ϕ (x) can be viewed as wavefront surfaces; ϕ (x) is the phase
of the wave. All directions of propagation are possible. The eikonal equation
simply fixed the magnitude of the gradient of the phase.

For homogeneous materials, the eikonal equation produces straight line rays.
When refractive index changes discontinuously across a boundary, rays travel
in accord with Snell’s law - see Fig. 2.1. The associated solution to the eikonal
equation consists of parallel wavefronts, with different wavelengths in the two
media, connecting continuously across the boundary. This requires bending of
the normal to the wavefronts - the rays - in accord with Snell’s law. The rays
bend at the interface so as to increase distance travelled in the material with
lower refractive index - i.e., faster speed. In general, light rays satisfy Fermat’s
principle of least time: light rays travel along the path that takes the least
time. To see how Fermat’s principle gives rise to Snell’s law rays, we consider
the lifeguard’s dilema. [Feynman’s Lectures on Physics]
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Figure 2.2: The lifeguard’s dilema. The optimal path satisfies Snell’s law.

The lifeguard’s dilema

When a swimmer is in trouble, a lifeguard must choose the angle of approach to
the shore that will minimize the time to get to the swimmer. The optimal path
is in accord with Snell’s law. This means keeping the swimming portion of the
path almost as short as possible. The speed in water, uw , is likely (excluding,
e.g., rocky beaches) much smaller than the speed on the beach, ub . In general,
the solution to the lifeguard’s dilema is the path that satisfies Snell’s law.

Proof of Snells’s law from Fermat’s principle:

To prove Snell’s law from Fermat’s principle, we express the time to get from A
to B - see Fig. 2.2 - in terms of a single variable, xw , and then minimize with
respect to xw , the x component of the distance travelled in the slow medium
(water in the above example).

The time to get from A to B is just

t =
db
ub

+
dw
uw

=

�
(xt − x)2 + y2w

�1/2

ub
+

�
x2 + y2w

�1/2

uw
.

The minimum of this function, with respect to x = xw , is given by setting dt/dx
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θw

θb
db

2  =  xb
2  +  yb

2

xw = x

y
b

y
w

A

B

xb = xt - x

dw
2
  =  xw

2
  +  yw

2

Figure 2.3: Proof of Snell’s law.

to zero, and solving for x. Specifically,

dt

dx
= −

(xt − x)
�
(xt − x)2 + y2w

�−1/2

ub
+
x
�
x2 + y2w

�−1/2

uw

= −xbd
−1
b

ub
+
xwd

−1
w

uw

= −sin θb
ub

+
sin θw
uw

= 0,

if
sin θb
ub

=
sin θw
uw

. Snell’s law (2.1)

That this condition determines a minimum time is verified as follows. (1) When
x exceeds the Snell’s law value, the positive term (the second term) contributing
to dt/dx is larger in magnitude than the negative term (the first term). In this
case, the derivative is positive and the time increases with further displacement
from the Snell’s law value. (2) When x is smaller than the Snell’s law value,
the first term dominates and the derivative is negative. In this case, time again
increases with further (negative) displacement of x.
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2.1.2 The Hamilton-Jacobi equation

The Hamilton-Jacobi equation arises when one attempts to construct new co-
ordinates in phase space (the space of positions and momenta) such that some
coordinates increase in proportion to time, while other coordinates remain fixed.
The desired conserved coordinates are expressed as the partial derivative of a
certain function determined by solving the Hamilton-Jacobi equation. Here, we
consider only the time independent Hamilton-Jacobi equation (there is also a
time dependent Hamilton-Jacobi equation). The time independent Hamilton-
Jacobi equation is normally written as

1

2m

�
∂W (x)

∂x

�2
+ V (x) = E, (2.2)

where ∂W(x)
∂x is the gradient of the function, W (x), and

�
∂W (x)

∂x

�2
=

�
∂W (x)

∂x

�T �
∂W (x)

∂x

�
=






∂W (x)

∂x






2

.

Any solution, W (x), is called Hamilton’s characteristic function.
If we re-write the Hamilton-Jacobi equation in the form,






∂W (x)

∂x





 = p (x) = [2m (E − V (x))]1/2 ,

it looks like the eikonal equation for the phase of some wave. If we suppose
that the wave in question has the de Broglie wavelength of a particle,

λ (x) =
h

p (x)
,

then the eikonal equation takes the form,





∂ϕ (x)

∂x





 = k (x) =
2π

λ (x)

=
p (x)

�
, where � =

h

2π

Thus, we identify W (x) /� as the phase of a wave,

ψ (x) = A (x) exp

�
iW (x)

�

�
, (2.3)

where A (x) is a slowly varying wave amplitude.
In the Hamilton-Jacobi equation, momentum appears as the gradient of

Hamilton’s characteristic function,

p =
∂W (x)

∂x
.
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In the limit of slowly varying A (x) (compared with W (x) /�) we can neglect
the gradient of A (x) and write

∂ψ (x)

∂x
=

i

�

∂W (x)

∂x
A (x) exp

�
iW (x)

�

�

=
i

�
pψ (x) ,

or

pψ (x) = −i�∂ψ (x)

∂x
. (2.4)

Here, momentum is identified with the linear operator,

p̂ =− i� ∂
∂x

(2.5)

and the above equation,
p̂ψ (x) = pψ (x) ,

valid in the limit of constant amplitude, A (x) = A, is an eigenvalue equation.
Taking the second derivative of the wavefunction (again, neglecting the gra-

dient of A (x)) gives

�
∂

∂x

�2
ψ (x) = − 1

�2

�
∂W (x)

∂x

�2
ψ (x)

= −2m

�2
(E − V (x))ψ (x) , from the Hamilton-Jacobi equation

or

−�2
2m

�
∂

∂x

�2
ψ (x) + V (x)ψ (x) = Eψ (x) (2.6)

−�2
2m

∇2ψ (x) + V (x)ψ (x) = Eψ (x) .

This is the time independent Schrôdinger equation (TISE) - the eigenvalue equa-
tion associated with the linear operator,

Ĥ =
−�2
2m

∇2 + V (x) .

The eigenvalue(s) of this Hamiltonian operator are the energies of the system.
With the TISE, we can predict the Rydberg formula for the the energy levels
of hydrogen. Extending the equation to more electrons (and nuclei), we can
(as far as we can tell) predict the properties of all materials and (in principle)
explain almost all natural phenomena.

The idea here is that this is the fundamental equation, and that neglecting
the gradient of A (x) is the approximation that leads to the Hamilton-Jacobi
equation from the TISE - it is the Hamilton-Jacobi equation that is approximate,
not the TISE.



2.2. THE POSTULATES OF QUANTUM MECHANICS 19

There is also the time dependent Hamilton-Jacobi equation,

1

2m

�
∂S (x, t)

∂x

�2
+ V (x) = −∂S (x, t)

∂t
.

A solution, S (x, t), of this equation is called Hamilton’s principle function.
Associating it with a time dependent wave,

Ψ(x, t) = A (x, t) exp

�
iS (x, t)

�

�
,

and neglecting both space and time derivatives of A (x, t)) gives the time de-
pendent Schrôdinger equation (TDSE),

−�2
2m

∇2Ψ(x, t) + V (x)Ψ (x, t) = i�
∂

∂t
Ψ(x, t) . (2.7)

Here, Ψ(x, t) is the wavefunction of a particle (or particles) that evolves in
time. This TDSE gives the equation of motion for the particle(s) in quantum
mechanics - i.e., its solution gives the future state of the particle(s) for all time.

Quantum mechanics (QM) is generally presented as a series of postulates.

2.2 The postulates of quantum mechanics

1. The state of a system of N particles (spinless particles - we add spin later)
is represented by a unique complex-valued wavefunction, ψ (x), such that

�ψ�2 = �ψ| ψ	 =
�

R3N

|ψ (x)|2 dx = .1. normalization condition

(2.8)
where R3N is the set of all positions of the N in three dimensional physical
space. In general, the wavefunction belongs to a Hilbert space - a vector
space with an inner product (and some more technical properties). Here,

�ψ1| ψ2	 =
�

R3N

ψ∗1 (x)ψ2 (x) dx (2.9)

is the inner product of two wavefunctions (two states), ψ1 and ψ2.

(a) The state of a system is everything we can know about the system.

(b) The wavefunction (uniquely representing a state), ψ (x), is a smooth,
single-valued, bounded function of x. Here, ψ (x) is smooth if it,
and its first derivative(s), are continuous functions of x.

(c) Since |ψ (x)|2 integrates to a finite value, it must decay to zero outside
a finite volume of space.
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2. Each observable, A, of the system is represented by a unique Hermitian
linear operator, Â, such that the eigenvalues of Â, {aj}j=1,2,..., are the
possible outcomes of a measurement of the observable - for all possible
system states. An observable is any property of the system you can
measure - e.g., the energy or momentum of the system, or atom(s) within
the system.

(a) A linear operator satisfies the condition,

Â (c1ψ1 + c2ψ2) = c1Âψ1 + c2Âψ2, (2.10)

for any states, ψ1 and ψ2, and any real coefficients, c1 and c2.

(b) A Hermitian operator satisfies the condition,

�ψ1| Âψ2



= �ψ2| Âψ1

∗

; matrix representations are Hermitian

(2.11)
i.e.,

�

R3N

ψ∗1 (x) Âψ2 (x) dx =

��

R3N

ψ∗2 (x) Âψ1 (x) dx

�∗
.

Note that

�ψ2| Âψ1

∗

=

�

R3N

ψ2 (x)
�
Âψ1 (x)

�∗
dx

=

�

R3N

�
Âψ1 (x)

�∗
ψ2 (x) dx

=
�
Âψ1

��� ψ2	

provides another equivalent expression of the Hermitian property,

�ψ1| Âψ2



=
�
Âψ1

��� ψ2	 (2.12)

(c) This postulate provides the source of quantization. For bound sys-
tems (e.g., a stable atom or molecule), the eigenvalues of Hermitian
linear operators generally come in discrete sets - they can be labeled
by a quantum number, n = 1, 2, . . ..

3. The expectation value of an observable (A), associated with a given state
of the system (ψ (x)), is given by

�
Â



= �ψ| Âψ



=

�

R3N

ψ∗ (x) Âψ (x) dx. (2.13)

The expectation value is the average of many measurements of the ob-
servable - all starting with the system in state, ψ (x).
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(a) This is where probability enters into quantum mechanics. Quan-
tum mechanics only gives probabilities of outcomes.. In fact, the
postulate requires only that quantum mechanics provides the aver-
age value of many measurements. Probabilities of outcomes can be
derived using this postulate - see below.

(b) Suppose the state of the system, ψ (x) = ψj (x), the normalized

eigenfunction of Â associated with eigenvalue, aj ; i.e.,

Âψj (x) = ajψj (x) . (2.14)

In this case,
�
Â



j
=

�

R3N

ψ∗j (x) Âψj (x) dx

=

�

R3N

ψ∗j (x) ajψj (x) dx

= aj

�

R3N

��ψj (x)
��2 dx

= aj ψj is normalized

The expectation value of A for an eigenfunction of Â is the associated
eigenvalue. In fact there is a stronger result:

(c) Corollary of this postulate: The probability that aj will be observed
upon measurement of observable A, when the system is in state ψ,
equals

ρj =
���ψj

�� ψ	
��2 (2.15)

= �ψ| ψj

� �
ψj

�� ψ	 .
This result follows from applying the postulate to the observable
which simply asks the question, "Is the outcome of the measurement
of A equal to aj?" The values of the observable are 1 for yes and 0 for
no. The probability, ρj , is the expectation value of this observable
which can be written in the abstract form,

Rj =
��ψj

� �
ψj

�� .

It is the projector onto the subspace spanned by ψj .

i. We know that, if ψ = ψj , then the outcome of a measurement of
A is certain to be aj . The above formula gives this result. In
this case,

ρj =
���ψj

�� ψj

���2

= 1. ψj is normalized

The eigenfunctions of Â thus represent states with well-defined
value of the observable, A, and that value is the associated eigen-
value.
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ii. Consider the observable equal to one when x is in some subset
of configuration space, S, and zero otherwise; i.e.,

Â = θS (x) =

	
1 x ∈ S
0 x /∈ S

In this case, the expectation of Â equals the probability that
x ∈ S,

ρS =

�

R3N

ψ∗ (x) θS (x)ψ (x) dx

=

�

S

|ψ (x)|2 dx

If the set S is is a small neighborhood (such that ψ (x) ∼= constant
on S) of a point, x0, then

ρS
∼= |ψ (x0)|2

�

S

dx.

Here, we see that |ψ (x)|2 is the probability density for observing

configuration x. Think of a single particle. In this case, |ψ (x)|2
is the probability per unit volume for finding the particle at x.

Before considering the next postulate, we consider a subpostulate of postu-
late 2 above.

2’. Operators representing observables:

(a) The operator that corresponds to position is the multiplication oper-
ator, x. Here, it is best to consider first the case of a single particle
in one dimension. In this case, x = x is a scalar and

x̂ψ (x) = xψ (x) ; (2.16)

i.e., simply mulitply the function ψ (x) by the function x. For one
particle in three dimensions,

x̂ψ (x, y, z) = xψ (x, y, z) ,

ŷψ (x, y, z) = yψ (x, y, z) ,

ẑψ (x, y, z) = zψ (x, y, z) .

i. Any observable which is a function of position is also represented
by a multiplication operator - simply multiply by the function of
position. The potential energy operator, V̂ , is a multiplication
operator:

V̂ ψ (x) = V (x)ψ (x) . (2.17)

The operator Â = θS (x), considered above, is also a multiplica-
tion operator.
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(b) The momentum operator is given by

p̂ = −i� ∂
∂x
.

i. An operator which is a function of momentum is given by the
function with −i�∂/∂x inserted as the argument. The kinetic
energy operator is

T̂ψ (x) =
p̂2

2m
ψ (x) (2.18)

= − �
2

2m

∂2

∂x2
ψ (x) .

(c) The Hamiltonian operator:

Ĥψ (x) =

�
p̂2

2m
+ V̂

�
ψ (x) (2.19)

= − �
2

2m

∂2

∂x2
ψ (x) + V (x)ψ (x)

The time independent Schrödinger equation (TISE) is just the eigen-
value equation for the energy (Hamiltonian) operator,

Ĥψ (x) = Eψ (x) . (2.20)

The eigenvalues are the allowed energies of the system. Energy
is quantized - in agreement with spectroscopic observations. The
special significance of the energy operator in QM arises because of
the next postulate.

4. The time evolution of the state of a system is given by the solutions to
the time dependent Schrödinger equation (TDSE),

ĤΨ(x, t) = i�
∂

∂t
Ψ(x, t) . (2.21)

Here, we use an upper case psi, Ψ(x, t), to denote the time dependent
state of the system. Given that the system is in the state, ψ (x), at
time = 0, the solution to the TDSE consistent with this intial condition
provides the state of the system at all later times - it is a function of x
and t.

(a) Solution to TDSE: Let

Ψ(x, t)|t=0 = ψ (x) .

For a very short time, δt,

Ψ(x, δt) ∼= Ψ(x, 0)+
∂

∂t
Ψ(x, t)

����
t=0

δt McLaurin series truncated at linear in δt
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Since
∂

∂t
Ψ(x, t)

����
t=0

= − i
�
ĤΨ(x, 0) = − i

�
Ĥψ (x) ,

Ψ(x, δt) ∼= ψ (x)− i

�
Ĥψ (x) δt.

=

�
1̂− i

�
Ĥ δt

�
ψ (x) .

Also,

Ψ(x, 2δt) ∼= Ψ(x, δt)− i

�
ĤΨ(x, δt) δt

=

�
1̂− i

�
Ĥ δt

�2
ψ (x) .

After N such steps, t = N δt and

Ψ(x, t) = Ψ (x,N δt) =

�
1̂− 1

N

i

�
Ĥ t

�N

ψ (x) (2.22)

→ exp

�
− i
�
Ĥ t

�
ψ (x) , N →∞ while δt =

t

N
→ 0

where

exp
�
Â
�

= 1̂ + Â+
1

2
Â2 +

1

3!
Â3 + . . .

is the exponential function of operator Â.

(b) Suppose Ψ(x, t)|t=0 = ψn (x) where ψn (x) is the n th energy eigen-
state - i.e., the solution to the TISE,

Ĥψn (x) = Enψn (x) .

In this case,

Ψ(x, t) = exp

�
− i
�
Ĥ t

�
ψn (x)

=

�
1̂− i

�
Ĥ t− 1

2�2
Ĥ2 t2 +

i

3! �3
Ĥ3 t3 + . . .

�
ψn (x)

=

�
1̂− i

�
En t−

1

2�2
E2n t

2 +
i

3! �3
E3n t

3 + . . .

�
ψn (x)

= exp

�
− i
�
En t

�
ψn (x)

Here, we see that solutions to the TISE - i.e., states with well-defined
energy - change in time only via an overall complex phase factor,

exp

�
− i
�
En t

�
.
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i. Note that

Ĥ exp

�
− i
�
En t

�
ψn (x) = exp

�
− i
�
En t

�
Ĥψn (x)

= En exp

�
− i
�
En t

�
ψn (x) ;

i.e., the time evolved energy eigenstate is also an eigenstate -
associated with the same energy eigenvalue.

ii. Also, the probability density in position space is independent of
time, when the system state is an energy eigenstate.

|Ψ(x, t)|2 =

����exp
�
− i
�
En t

�
ψn (x)

����
2

=

����exp
�
− i
�
En t

�����
2

|ψn (x)|2

= exp

�
i

�
En t−

i

�
En t

�
|ψn (x)|2

= |ψn (x)|2 = |Ψ(x, 0)|2

iii. Moreover, the probability of measuring any observable, A, to
have value, aj , does not change in time, when the system state
is an energy eigenstate.

ρj (t) =
���ψj

�� Ψ(x, t)	
��2

=

����
�
ψj

�� exp
�
− i
�
En t

�
ψn

�����
2

=

����exp
�
− i
�
En t

��
ψj

�� ψn	
����
2

=
���ψj

�� ψn	
��2 see point ii above

(c) Energy eigenstates are also called stationary states - for the above
reasons.

(d) The TDSE determines the time dependence of any state, Ψ(x, t) ,
given the state at any time (usually t = 0). Simply expand the
initial state, ψ (x), in terms of the energy eigenstates,

ψ (x) =
�

n

cnψn (x) .
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The state is given at any time, t, by

Ψ(x, t) = exp

�
− i
�
Ĥ t

�
ψ (x) (2.23)

= exp

�
− i
�
Ĥ t

��

n

cnψn (x)

=
�

n

cn exp

�
− i
�
Ĥ t

�
ψn (x) the propagator is linear

=
�

n

cn exp

�
− i
�
En t

�
ψn (x) . see point b above

The coefficients, cn, are given by

cn = �ψn| ψ	 .
This follows because the energy eigenstates, ψn, are orthogonal - see
the second fundamental theorem of quantum mechanics below.

(e) If the Hamiltonian is time independent, the TDSE is separable in
space and time. On the left side of the equation, the operator Ĥ
affects only on the spatial dependence of the wavefunction. On
the right, i� ∂/∂t affects only on the time dependence of the wave-
function. This allows the equation to be solved as the product of a
time dependent phase factor, exp

�
− i
�
En t

�
, and the spatial function,

ψn (x). The phase factor is an eigenfunction of i�∂/∂t, while the
spatial function is an eigenfunction of the time independent Hamil-
tonian - it is a solution to the TISE.

(f) When considering the interaction of the system with light, we intro-
duce a time dependent term into the Hamiltonian which accounts for
the coupling of the system to the electromagnetic field. The time
dependence arises because the electric field is oscillatory in time for
light which is resonant with a system transition. The interaction
term is

µ̂eE (t) ,

where µ̂e is the dipole operator of the system, and E (t) is the time
dependent electric field. Because the resulting Hamiltonian is time
dependent, the TDSE is not separable in this case. However, this
TDSE can be solved using time dependent perturbation theory (see
Sec. XX) wherein the interaction is treated as a small term which
induces transitions between the eigenstates of the time independent
Hamiltonian (i.e., without the interaction term).

Example 2.1 For a particle in one dimension, the state of the system is represented by
a function, ψ (x), of the one variable, x. The normalization condition for
the wavefunction is

�ψ| ψ	 =
� ∞

−∞
|ψ (x)|2 dx = 1.
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Any wavefunction with finite �ψ| ψ	 can be normalized (scaled by an ap-
propriate factor) to satisfy the normalization condition. Which of the
following functions can be normalized to represent a state of the particle?
For those that do not respresent a physical state, which conditions on
admissable wavefunctions are violated?

(a)
ψ (x) = exp (−|x|)

(b)
ψ (x) = cos (x) exp

�
−x2

�

(c)
ψ (x) = ± exp

�
x2
�

(d)

ψ (x) =

	
1
2 sin2 (x) exp

�
−x2

�
, x < 0

(1− cos (x)) exp
�
−x2

�
, x < 0

(e)
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(g)
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Below is a blow-up of the central region of the above plot.
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Solution 2.1

(a) This function has a discontinuous first derivative at x = 0 - see figure.
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To see this analytically, write

ψ (x) =

	
exp (−x) , x > 0
exp (x) , x < 0

and find

ψ′ (x) =

	
− exp (−x) , x > 0

exp (x) , x < 0
.

Thus,

lim
x→0−

ψ′ (x) = exp (x)|x=0 = 1

�= lim
x→0+

ψ′ (x) = − exp (−x)|x=0 = −1.

This function is not smooth. It thus cannot represent the state of a
physical system - it is not admissable. However, this function arises
as the solution to an idealized potential model system with infinite
potential energy in a infinitesimal interval about x = 0. It can
be viewed as the limit of a sequence of admissable wavefunctions,
associated with a increasing sequence of potentials, in a decreasing
interval about x = 0.

(b) Trigonomic and exponential functions are smooth, and products of
smooth functions are smooth. Therefore, this function is smooth.
It also decays rapidly to zero as x → ±∞ - see figure. It is an ad-
missable wavefunction - i.e., if normalized, it represents the state of
a physical system.

-1

-0.5

0.5

1

-4 -2 2 4x

(c) This function is multivalued - it is ± a single valued function. It
is also unbounded as x→±∞. It is not an admissable wavefunction.
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(d) In this case, we note that

lim
x→0−

ψ (x) = (1− cos (x)) exp
�
−x2

���
x=0

= 0

and

lim
x→0+

ψ (x) =
1

2
sin2 (x) exp

�
−x2

�
����
x=0

= 0.

This function is continuous at x = 0, and everywhere else. Now
consider the first derivative,

ψ′ (x) =

	 �
sin (x) cos (x)− x sin2 (x)

�
exp

�
−x2

�
, x < 0

(sin (x)− 2x (1− cos (x))) exp
�
−x2

�
, x < 0

.

lim
x→0−

ψ (x) =
�
sin (x) cos (x)− x sin2 (x)

�
exp

�
−x2

���
x=0

= 0

and

lim
x→0+

ψ (x) = (sin (x)− 2x (1− cos (x))) exp
�
−x2

���
x=0

= 0.

The first derivative of the function is also continuous everywhere. In
addition, the function decays rapidly to zero, as x→ ±∞. It is an
admissable wavefunction.
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(e) Admissable.

(f) Inadmissable. This function has poles where it blows up (down) to
±∞ on either side of the pole. The function is unbounded near the
poles.

(g) Inadmissable. This function and its derivative are continuous - see
blow-up for the interval about x = 0, where two functions are pieced
together. However, it does not decay to zero as x → ∞ (as far as
can be ascertained from the figure). This function does arise in the
treatment of a model system of a unbound particle - see Sec. XX
below. However, it describes a beam of particles - rather than just
a single particle.

Example 2.2 Which of the following operators, Â, represents an observable of a particle
in one dimension?

(a)
Âψ (x) = ψ2 (x)

(b)
Âψ (x) = sin (x)ψ (x)

(c)
Âψ (x) = ψ′ (x)

(d)
Âψ (x) = ψ′′ (x) + 3ψ (x)

Solution 2.2

(a) This operator is nonlinear. Âcψ = c2Âψ �= cÂψ. It does not
represent an observable.

(b) This operator is linear. It is a multiplication operator, a function of
the position operator, x. It is Hermitian. To see this, consider the
condition for Hermiticity,

�ψ| Âϕ



= �ϕ| Âψ

∗
.

Since Â is a multiplication operator, the order the functions appear
in the inner product does not matter. Since sin (x) is a real function
of x, the condition for Hermicity,

� ∞

−∞
ψ∗ (x) sin (x)ϕ (x) dx =

�� ∞

−∞
ϕ∗ (x) sin (x)ψ (x)

�∗
dx

is satisfied. This operator does represent an observable of the parti-
cle.
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(c) This operator is linear. However, it is not Hermitian. Here, the left
side of the above condition for Hermiticity takes the form,

�ψ| Âϕ



=

� ∞

−∞
ψ∗ (x)

d

dx
ϕ (x) dx

= [ψ∗ (x)ϕ (x)]
∞
−∞ −

� ∞

−∞

�
d

dx
ψ∗ (x)

�
ϕ (x) dx integration by parts

= −
� ∞

−∞
ϕ (x)

d

dx
ψ∗ (x) dx ψ (x) and ϕ (x)→ 0, as x→±∞

= −�ϕ| Âψ

∗
.

Thus, this operator does not represent an observable. The Hermi-
tian conjugate of d/dx is −d/dx. However, a Hermitian operator -
representing an observable - is obtained if the derivative operator is
multiplied by i (or −i). For example,

�ψ|
�
−i d
dx

�
ϕ

�
= −i

� ∞

−∞
ψ∗ (x)

d

dx
ϕ (x) dx

= i

� ∞

−∞
ϕ (x)

d

dx
ψ∗ (x) dx

= �ϕ|
�
−i d
dx

�
ψ

�∗
.

Multiplying this operator by � gives the momentum operator.

(d) This is the sum of two operators, d2/dx2 and the multiplication op-
erator, 3, which multiplies ψ (x) by 3. Both of these are linear
and Hermitian, producing a linear and Hermitian sum. The second
derivative operator is proportional to the kinetic energy operator.
We show that the second derivative operator is Hermitian as follows:

�ψ| Âϕ



=

� ∞

−∞
ψ∗ (x)

d2

dx2
ϕ (x) dx

=

�
ψ∗ (x)

d

dx
ϕ (x)

�∞

−∞
−
� ∞

−∞

�
d

dx
ψ∗ (x)

�
d

dx
ϕ (x) dx integration by parts

= −
� ∞

−∞

�
d

dx
ψ∗ (x)

�
d

dx
ϕ (x) dx ψ (x) and

d

dx
ϕ (x)→ 0, as x→±∞

=

��
d

dx
ψ∗ (x)

�
ϕ (x)

�∞

−∞
−
� ∞

−∞

�
d2

dx2
ψ∗ (x)

�
ϕ (x) dx integration by parts

= −
� ∞

−∞
ϕ (x)

d2

dx2
ψ∗ (x) dx

d

dx
ψ (x) and ϕ (x)→ 0, as x→ ±∞

= �ϕ| Âψ

∗
.
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Example 2.3 Match the list of operators with wavefunctions that are eigenstates of the
associated observable. What is the associated eigenvalue?

(a) Operators:

i.
Âψ (x) = −iψ′ (x)

ii.
B̂ψ (x) = −ψ′′ (x)

iii.
Ĉψ (x) = −ψ′′ (x) + 4x2ψ (x)

iv.

D̂ψ (x) = −ψ′′ (x)− 2

x
ψ (x)

(b) Wavefunctions:

i.
ψ (x) = x exp (−x)

ii.
ψ (x) = exp (ipx)

p is a real parameter. � = h/2π is reduced Planck’s constant.

iii.
ψ (x) = exp

�
−x2

�

iv.
ψ (x) = sin (px)

Solution 2.3

(a) i.

Â exp (ipx) = −i (exp (ipx))
′

= −i (ip) exp (ipx)

= p exp (ipx) .

exp (ipx) is an eigenfunction of operator Â. The associated
eigenvalue is p. Any real p produces a distinct eigenstate of this
operator (it is the momentum operator in units such that � = 1
- e.g., atomic units).

ii.

B̂ sin (px) = − (sin (px))′′

= p2 sin (px) .

sin (px) is an eigenfunction of B̂. The associated eigenvalue is
p2.
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iii.

Ĉ exp
�
−x2

�
= −

�
exp

�
−x2

��′′
+ 4x2 exp

�
−x2

�

=
�
2x exp

�
−x2

��′
+ 4x2 exp

�
−x2

�

=
�
2− 4x2

�
exp

�
−x2

�
+ 4x2 exp

�
−x2

�

= 2 exp
�
−x2

�
.

exp
�
−x2

�
is an eigenfunction of Ĉ. The associated eigenvalue

is 2.

iv.

D̂x exp (−x) = − (x exp (−x))′′ − 2

x
x exp (−x)

= − ((1− x) exp (−x))′ − 2 exp (−x)
= − (−2 + x) exp (−x)− 2 exp (−x)
= x exp (−x) .

x exp (−x) is an eigenfunction of D̂. The associated eigenvalue
is 1.

2.3 Fundamental theorems of quantum mechan-

ics

2.3.1 The eigenvalues and eigenfunctions of Hermitian op-

erators

Theorem 1. The eigenvalues of a Hermitian operator are real.

Proof: Let {aj} be the eigenvalues of Hermitian operator, Â, with
�
ψj

�
the

corresponding eigenfunctions - i.e.,

Âψj = ajψj .

The Hermitian property of Â gives

�ψ| Âϕ



= �ϕ| Âψ

∗
,

for any ψ and ϕ. If we let ψ = ϕ = ψj , then

�
ψj

�� Âψj



=

�
ψj

�� Âψj


∗

�
ψj

�� ajψj

�
=

�
ψj

�� ajψj

�∗

aj
�
ψj

�� ψj

�
= a∗j

�
ψj

�� ψj

�

aj = a∗j i.e., aj is real



2.3. FUNDAMENTAL THEOREMS OF QUANTUM MECHANICS 35

Theorem 2. Eigenfunctions associated with distinct eigenvalues of a Hermitian opera-
tor are orthogonal.

Proof: The Hermitian property of Â gives

�ψ| Âϕ



= �ϕ| Âψ

∗
,

for any ψ and ϕ. If we let ψ = ψj and ϕ = ψj′ , such that aj �= aj′ ,
then

�
ψj

�� Âψj′



=

�
ψj′

�� Âψj


∗

�
ψj

�� aj′ψj′
�

=
�
ψj′

�� ajψj

�∗

aj′
�
ψj

�� ψj′
�

= a∗j
�
ψj′

�� ψj

�∗

aj′
�
ψj

�� ψj′
�

= aj
�
ψj

�� ψj′
�

aj is real

or

(aj′ − aj)
�
ψj

�� ψj′
�
= 0.

Since, aj �= aj′ , we must have
�
ψj

�� ψj′
�
= 0;

i.e., ψj and ψj′ are orthogonal. If aj = aj′ , then the eigenvalue
is degenerate (there is more than one eigenfunction). In this case,
the eigenfunctions associated with the same eigenvalue form a vector
space. An orthonormal basis for the space can be found. Taking
these basis states as the distinct eigenstates associated with degen-
erate eigenvalues extends this orthogonality theorem to all pairs of
distinct eigenstates.

2.3.2 Commutators

Operators can be added or multiplied. Operator multiplication is like (exactly
like) matrix multiplication (matrices are just operators that act on vectors). In
particular, operators do not necessarily commute - specifically, in general,

ÂB̂ �= B̂Â.

When ÂB̂ does equal B̂Â, we say that Â and B̂ commute. Now we consider
another fundamental theorem of quantum mechanics.

Theorem 3. Â and B̂ commute iff they have a common set of eigenfunctions,
�
ψj

�
.

Proof (if): Suppose Â and B̂ have a common set of eigenfunctions,
�
ψj

�
. For phys-

ical observables, the set of eigenfunctions is always a complete set - i.e.,
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any function, ψ (x), can be written as a linear combination of the eigen-
functions:

ψ (x) =
�

j

cjψj (x) .

Apply ÂB̂ to ψ.

ÂB̂ψ = ÂB̂
�

j

cjψj (x)

=
�

j

cjÂB̂ψj (x) ÂB̂ is a linear operator

=
�

j

cjÂbjψj (x) ψj is an eigenfunction of B̂

=
�

j

cjbjÂψj (x) Â is linear

=
�

j

cjbjajψj (x) ψj is an eigenfunction of Â

=
�

j

cjajbjψj (x) complex numbers commute

=
�

j

cjajB̂ψj (x) ψj is an eigenfunction of B̂

=
�

j

cjB̂ajψj (x) B̂ is linear

=
�

j

cjB̂Âψj (x) ψj is an eigenfunction of Â

= B̂Â
�

j

cjψj (x) B̂Â is a linear operator

= B̂Âψ (x)

Since ÂB̂ψ = B̂Âψ for any function, ψ, we can say that the operators,
ÂB̂ and B̂Â are equal - i.e., Â and B̂ commute.

Proof (only if): Suppose that Â and B̂ commute. Let
�
ψj

�
be the set of eigenfunctions

of Â; i.e.,
Âψj = ajψj .

Now apply ÂB̂ to any ψj .

ÂB̂ψj = B̂Âψj Â and B̂ commute

= B̂ajψj ψj is an eigenfunction of Â

= ajB̂ψj B̂ is linear

This means that B̂ψj is an eigenfunction of Â, associated with eigenvalue,

aj . However, ψj is the eigenfunction of Â, associated with eigenvalue,
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aj . If there is only one eigenfunction associated with eigenvalue, aj , the

eigenvalue is said to be non-degenerate. In this case, B̂ψj must be a
multiple of ψj ; i.e.,

B̂ψj = bjψj .

The multiple is denoted by bj and is seen here to be the eigenvalue of B̂
associated with eigenfunction, ψj . Specifically, we see that ψj is an eigen-

function of B̂ and bj is the associated eigenvalue. Thus, the eigenfunctions

of Â are also eigenfunctions of B̂.

Degenerate case: If the eigenvalue, aj , is degenerate - i.e., there is more than one associ-

ated eigenfunction - we apply ÂB̂ to all the eigenfunctions associated
with eigenvalue, aj . The result is that B̂ maps the subspace spanned

by these eigenfunctions into itself. Specifically, B̂ maps any func-
tion from this subspace onto an eigenfunction of Â associated with
eigenvalue, aj . The eigenfunctions of B̂ that span this subspace

are thus also eigenfunctions of Â. Â and B̂ have a common set of
eigenfunctions.

We see that commuting operators have a common set of eigenfunctions.
This means that the associated observables have well-defined values for exactly
the same states. For example, if a state has well-defined value of observable,
A, then it also has well-defined value of any other observable, B, for which the
operators representing A and B commute.

The commutator of two operators is simply defined as

�
Â, B̂

�
= ÂB̂ − B̂Â.

If two operators commute, their commutator is zero. To evaluate commutators,
consider the operators acting on some wavefunction, ψ (x). ÂB̂ψ is given by
first applying B̂ to ψ, then applying Â to the result.

2.3.3 The commutator of position and momentum

For position and momentum operators, we consider the action of the position
and momentum commutator on an arbitrary wavefunction, ψ (x).
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[p̂, x]ψ (x) =

�
−i� d

dx
, x

�
ψ (x) definition of p̂

= −i� d
dx
xψ (x)− x

�
−i� d

dx

�
ψ (x) definition of commutator

= −i�
�
d

dx
xψ (x)− xdψ (x)

dx

�

= −i�
�
ψ (x) + x

dψ (x)

dx
− xdψ (x)

dx

�
product rule

= −i�ψ (x) .

Since the above is true for all wavefunctions, ψ (x), we must have

[p̂, x] = −i� (2.24)

This means that [p̂, x] is just −i�× the identity operator. Note that since

�
Â, B̂

�
= −

�
B̂, Â

�

for all Â and B̂, we also have

[x, p̂] = i�. (2.25)

Note that it is customary to leave the hat off of multiplication operators such
as x.

As position and momentum do not commute, they do not have a common
set of eigenfunctions. Position and momentum cannot have well-defined values
for the same system state.

2.4 Uncertainty principles

2.4.1 The Heisenberg uncertainty principle

The relationship between uncertainty in position and uncertainty in momentum
is quantified by the Heisenberg uncertainty principle. To understand this prin-
ciple, we must first define uncertainty. In quantum mechanics, the outcomes of
measurements are, in general, uncertain. The mean of such outcomes is given
by the expectation value of the associated operator. In statistics, the standard
deviation, σ, gives the spread in a distribution. It is the square root of the
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variance,

σ2 = �ψ
����
�
Â−

�
Â

�2

ψ

�
(2.26)

= �ψ
����

�
Â2 − 2

�
Â


Â+

�
Â

2�

ψ

�

= �ψ
���Â2ψ



− 2

�
Â


�ψ

���Âψ



+
�
Â

2
�ψ |ψ	

�
Â


is a constant

= �ψ
���Â2ψ



− 2

�
Â

2

+
�
Â

2

= �ψ
���Â2ψ



− �ψ

���Âψ

2
,

where �
Â



= �ψ
���Âψ



.

If ψ were an eigenfunction of Â, then �ψ
���Â2ψ



= �ψ

���Âψ

2
and σ = 0; i.e.,

there is no uncertainty in the value of A.
For position, we have

σ2x = �ψ
���(∆x)2 ψ




where
∆x = x− �x	 .

Similarly, for momentum,

σ2p = �ψ
���(∆p̂)2 ψ




where
∆p̂ = p̂− �p̂	 .

Consider the state,
ϕ = (∆p̂+ iα∆x)ψ,

where α is any real number. The norm of this state is greater than or equal to
zero - true for any state.

�ϕ�2 = �ϕ |ϕ	
= �(∆p̂+ iα∆x)ψ |(∆p̂+ iα∆x)ψ	
= �∆p̂ψ |(∆p̂+ iα∆x)ψ	 − iα �∆xψ |(∆p̂+ iα∆x)ψ	 definition of inner product

= �ψ |∆p̂ (∆p̂+ iα∆x)ψ	 − iα �ψ |∆x (∆p̂+ iα∆x)ψ	 ∆p̂ and ∆x are Hermitian

= �ψ |(∆p̂− iα∆x) (∆p̂+ iα∆x)ψ	 = f (α)
iα is brought into right side

of inner product

Since f (α) is the norm of a function, it must be positive. Thus,

f (α) = �ψ |(∆p̂− iα∆x) (∆p̂+ iα∆x)ψ	
= �ψ

���(∆p̂)2 ψ



+ α2 �ψ
���(∆x)2 ψ



− iα �ψ |[∆x,∆p̂]ψ	 ≥ 0
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Since

�ψ |[∆x,∆p̂]ψ	 = �ψ |[x, p̂]ψ	 constant terms drop out both on left
and right side of commutators - check this

= �ψ |i�ψ	 = i�,

the above inequality takes the form

f (α) = σ2p + α2σ2x + �α

≥ min
α
f (α) ≥ 0

The minimum of f (α) is determined by taking its derivative and setting it to
zero. This gives

d

dα
f (α) = 2ασ2x + � = 0,

or

α = − �

2σ2x
.

Substituting this value back into f (α) gives

min
α
f (α) = σ2p +

�
2

4σ4x
σ2x −

�
2

2σ2x

= σ2p +
�
2

4σ2x
− �

2

2σ2x

= σ2p −
�
2

4σ2x
≥ 0.

Therefore,

σ2p ≥
�
2

4σ2x
,

σ2xσ
2
p ≥

�
2

4

and

σxσp ≥
�

2
, (2.27)

the Heisenberg uncertainty principle. The uncertainty in the position and mo-
mentum of a particle are reciprocally related. If one of position and momentum
is precisely known, the other is less precisely known - and vice versa. �/2 sets
the scale on which the uncertainty principle plays a role. It is not relevant to
the macroscopic objects normally treated using classical mechanics. It is very
important for electrons on the atomic scale.
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2.4.2 Angular momentum

Angular momentum is a vector observable for particles in three dimensional
space. The three components of angular momentum are given by

L̂x = yp̂z − zp̂y (2.28)

L̂y = zp̂x − xp̂z
L̂z = xp̂y − yp̂x.

The angular momentum vector is the cross product of the position and momen-
tum vectors,

L̂ = x× p̂.
The order of the position and momentum factors in the terms on the right
sides of the above equations does not matter because each position component
is paired with a different momentum component - these operators commute.
However, the different components of L̂ do not commute. For example,

�
L̂x, L̂y

�
= [yp̂z − zp̂y, zp̂x − xp̂z]

= [yp̂z, zp̂x]− [yp̂z, xp̂z]− [zp̂y, zp̂x] + [zp̂y, xp̂z]
commutators are linear

with respect both left and right sides

Consider the first of the four terms on the second line above.

[yp̂z, zp̂x] = yp̂x [p̂z, z]

= −i�yp̂x [p̂z, z] = −i�

This follows because y and p̂x commute with all other operators present. As
such, they can be factored out of the commutator (on either side) [check this].
The second and third of the four terms above are zero because all operators in
both of these commutators commute. The fourth term takes the form,

[zp̂y, xp̂z] = xp̂y [z, p̂z]

= i�xp̂y.

Altogether,

�
L̂x, L̂y

�
= −i�yp̂x + i�xp̂y (2.29)

= i� (xp̂y − yp̂x)
= i�L̂z.

Similarly, �
L̂y, L̂z

�
= i�L̂x

and �
L̂z, L̂x

�
= i�L̂y.
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The latter two equations are obtained by substituting x for y, y for z and z for
x. The components of angular momentum advance in the same fashion.

Since no two of the components of L̂ commute, there is no common set of
eigenfunctions. However, each component of L̂ commutes with the (square)
magnitude of L̂. For example,

�
L̂z, L̂

2
�

=
�
L̂z, L̂

2
x + L̂2y + L̂2z

�

=
�
L̂z, L̂

2
x + L̂2y + L̂2z

�

=
�
L̂z, L̂

2
x + L̂2y

�
.

L̂z commutes with L̂z
or any power of L̂z

Since
�
L̂z, L̂

2
x

�
= L̂zL̂

2
x − L̂2xL̂z

= L̂zL̂
2
x − L̂xL̂zL̂x + L̂xL̂zL̂x − L̂2xL̂z

=
�
L̂zL̂x − L̂xL̂z

�
L̂x + L̂x

�
L̂zL̂x − L̂xL̂z

�

=
�
L̂z, L̂x

�
L̂x + L̂x

�
L̂z, L̂x

�

= L̂yL̂x + L̂xL̂y

and
�
L̂z, L̂

2
y

�
=

�
L̂z, L̂y

�
L̂y + L̂y

�
L̂z, L̂y

�

= −L̂xL̂y − L̂yL̂x,

clearly �
L̂z, L̂

2
�
= 0. (2.30)

We also have �
L̂x, L̂

2
�
= 0

and �
L̂y, L̂

2
�
= 0.

Therefore, it is possible to find eigenfunctions common to both L̂2 and one of
the components of L̂. It is customary to choose L̂z as the favored component of
L̂. The eigenfunctions of L̂z and L̂

2, expressed as functions of the two angles θ
and φ in spherical coordinates are called the spherical harmonics - see Sec. XX.

Example 2.4 Evaluate the following commutators using commutators evaluated above.

(a) �
x2, p̂x

�
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(b) �
x, p̂2x

�

(c) �
x2, p̂2x

�

(d) �
L̂x, L̂

2
y

�

(e) �
L̂x, L̂

2
z

�

Solution 2.4

(a)

�
x2, p̂x

�
= x2p̂x − p̂xx2

= x2p̂x − xp̂xx+ xp̂xx− p̂xx2

= x [x, p̂x] + [x, p̂x]x

= 2i�x [x, p̂x] = i�

(b)

�
x, p̂2x

�
= xp̂2x − p̂2xx
= xp̂2x − p̂xxp̂x + p̂xxp̂x − p̂2xx
= [x, p̂x] p̂x + p̂x [x, p̂x]

= 2i�p̂x

(c)

�
x2, p̂2x

�
= x2p̂2x − p̂2xx2

= x2p̂2x − xp̂2xx+ xp̂2xx− p̂2xx2

= x
�
x, p̂2x

�
+
�
x, p̂2x

�
x

= 2i� (xp̂x + p̂xx) see part b

= 2i� (2xp̂x − i�) [x, p̂x] = i�

(d)

�
L̂x, L̂

2
y

�
= L̂xL̂

2
y − L̂2yL̂x

=
�
L̂x, L̂y

�
L̂y + L̂y

�
L̂x, L̂y

� �
L̂x, L̂y

�
= i�L̂z

= i�
�
L̂zL̂y + L̂zL̂y

�
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(e)
�
L̂x, L̂

2
z

�
= L̂xL̂

2
z − L̂2zL̂x

=
�
L̂x, L̂z

�
L̂z + L̂z

�
L̂x, L̂z

�

= −i�
�
L̂yL̂z + L̂zL̂y

�

Example 2.5 Which of the following pairs of operators have a common set of eigenstates?

(a)
x and sin (x)

(b)

sin (x) and − i d
dx

(c)
p̂x and p̂

2
x

(d)
x and p̂y

Solution 2.5

(a) Only commuting operators have a common set of eigenstates. Thus,
we must show that the commutator is zero. To do this, apply the
two operators, in the order given, to an arbitrary state, ψ (x). Then
apply the operators in reverse order and take the difference. This

gives
�
Â, B̂

�
ψ (x). The operators commute only if the result is zero

for any ψ (x). Here,

ÂB̂ψ (x) = x sin (x)ψ (x) ,

B̂Âψ (x) = sin (x)xψ (x)

= x sin (x)ψ (x)

= ÂB̂ψ (x)

and the difference is �
Â, B̂

�
ψ (x) = 0,

for any ψ (x). The operators commute. They have a common set of
eigenstates. These are both multiplication operators - i.e., functions
of x. Any two multiplication operators commute because ordinary
multiplication is commutative. In fact any two functions of the same
operator commute. This can be proven by first proving that Â and

f
�
Â
�
commute - expand f

�
Â
�
as a Taylor series and show that Â

commutes with each term.
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(b) Here,

ÂB̂ψ (x) = sin (x)

�
−i d
dx
ψ (x)

�

= −i sin (x)
d

dx
ψ (x) ,

B̂Âψ (x) = −i d
dx

(sin (x)ψ (x))

= −i
�
cos (x)ψ (x) + sin (x)

d

dx
ψ (x)

�

and �
Â, B̂

�
ψ (x) = −i cos (x)ψ (x) �= 0.

Therefore, sin (x) and −id/dx do not commute, and do not have a
common set of eigenfunctions.

(c) Here,

ÂB̂ψ (x) = p̂xp̂
2
xψ (x)

= p̂3xψ (x) ,

B̂Âψ (x) = p̂2xp̂xψ (x)

= p̂3xψ (x)

= ÂB̂ψ (x)

and the difference is �
Â, B̂

�
ψ (x) = 0,

for any ψ (x). The operators commute. They have a common set of
eigenstates. This is another example of an operator (here, p̂x) and
a function of the operator (here, p̂2x). Such pairs always commute.

(d) Since there is a p̂y operator, there must also be a y coordinate. States
of a particle with an x and y coordinate are represented by functions
of both x and y. In this case,

ÂB̂ψ (x, y) = xp̂yψ (x, y)

= x

�
−i� ∂

∂y

�
ψ (x, y)

= −i�x ∂
∂y
ψ (x, y)
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B̂Âψ (x, y) = p̂yxψ (x, y)

= −i� ∂
∂y
xψ (x, y)

= −i�x ∂
∂y
ψ (x, y)

= ÂB̂ψ (x)

and the difference is �
Â, B̂

�
ψ (x) = 0.

These operators commute and have a common set of eigenstates.
Position, x, commutes with the momenta associated with other co-
ordinates.

Example 2.6 Uncertainty principle for angular momentum.

(a) Using the known commutator of L̂x and L̂y, derive an uncertainty
principle for the x and y components of angular momentum. To do
this simply replace x and p̂x, in the derivation of the Heisenberg
uncertainty principle, by L̂x and L̂y. The only difference is the form
of the commutator.

(b) There are subspaces of states with specific values of
���
�
L̂z

���. The

associated values are 0, �, 2�, . . . . Suppose the uncertainty in the

x component of angular momentum is �. For each distinct
���
�
L̂z


���
subspace of states, what does the uncertainty principle say about the
uncertainty of the y component of angular momentum? Is it possible
to have zero uncertainty in Ly?

Solution 2.6

(a) Following the derivation of the Heisenberg uncertainty principle, with
x and p̂x replaced by L̂x and L̂y, the first difference arises because
the commutator is different. Specifically, we have

f (α) = �ψ
���
�
∆L̂y − iα∆L̂x

��
∆L̂y + iα∆L̂x

�
ψ



= �ψ
����
�
∆L̂y

�2
ψ

�
+ α2 �ψ

����
�
∆L̂x

�2
ψ

�
− iα �ψ

���
�
∆L̂x,∆L̂y

�
ψ


≥ 0,

where

�ψ
���
�
∆L̂x,∆L̂y

�
ψ



= �ψ
���
�
L̂x, L̂y

�
ψ



= �ψ
���i�L̂zψ




= i� �ψ
���L̂zψ



.
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In the next step, we have

f (α) = σ2Ly + α2σ2Lx + �
�
L̂z


α

≥ min
α
f (α) ≥ 0.

The minimum of f (α) occurs for

α = −
�

�
L̂z



2σ2Lx
,

giving

σ2Ly −
�
2
�
L̂z


2

4σ2Lx
≥ 0,

or

σ2Lxσ
2
Ly ≥

�
2
�
L̂z

2

4

and

σLxσLy ≥
�

2

���
�
L̂z


��� ,

(b) If σLx = �, then

σLy ≥
�

2σLx

���
�
L̂z

��� =

1

2

���
�
L̂z


��� = 0,
�

2
, �,

3�

2
, . . . .

For example, for the
���
�
L̂z


��� = 0 subspace,

σLy ≥ 0.

It is possible to have zero uncertainty in Ly (or Lx) only for the���
�
L̂z


��� = 0 subspace. For the other
���
�
L̂z


��� = ℓ� subspaces, ℓ =

1, 2, . . ., we have

σLy ≥
ℓ�

2
> 0.
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Chapter 3

Model systems

Understanding quantum mechanics requires study of simple model systems. We
begin with the simplest such system, the particle in a one dimensional box.

3.1 Particle in a one dimensional box

Consider a mass, m, particle constrained to move in one dimension with rigid
boundaries. The position of the particle is specified by one variable, x. The
state of the system is represented by a function, ψ (x) - the wavefunction. The
allowed wavefunctions must be zero on the boundaries of the box, at x = 0 and
x = L. Otherwise, the wave function must be continuous. Normally we would
also impose the condition that the derivative of the wavefunction is continuous
at the boundary. However, in this case, the derivative of the wavefunction is not
continuous at the boundary. This arises because the potential of the particle
in a box has infinite discontinuities. The potential is zero within the box, but
infinite outside. Specifically,

V (x) =






∞, x ≤ 0
0, 0 < x < L
∞, L ≤ x

, (3.1)

as shown in Fig. 2.4. Such a potential can be viewed as the limit, as Vd →∞,
of the more realistic particle in a box potential,

Vfinite-well-depth (x) =






Vd , x ≤ 0
0, 0 < x < L
Vd , L ≤ x

. (3.2)

In the case of a particle in finite-well-depth potential, the wave function decays
exponentially with distance beyond the edge of the box. As Vd → ∞ the de-
caying portions of the wavefunction become vanishingly small and the boundary
conditions,

ψ (x) = 0 x = 0 or x = L

49
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Figure 3.1: The particle in a one dimensional box potential (left), and particle
in a finite one dimensional well (right). L is the width of the box and well. Vd
is the depth of the well. The particle in a box potential is the Vd →∞ limit of
the particle in a well potential.

follow.
With the above boundary conditions, we solve the TISE for the energy eigen-

states. For the particle in a one dimensional box, the TISE takes the form,

− �
2

2m

d2

dx2
ψ (x) = Eψ (x) (3.3)

or
d2

dx2
ψ (x) = −2mE

�2
ψ (x)

We need the eigenfunctions of d2/dx2.
The exponential function is an eigenfunction of the d2/dx2 operator;

d2

dx2
exp (ax) = a2 exp (ax) .

For positive energy (E > 0), setting

a2 = −2mE

�2

gives

a = ±i
√

2mE

�

There are thus two solutions to Eq. 3.3:

exp

�

i

√
2mE

�
x

�

and exp

�

−i
√

2mE

�
x

�

.
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Any combination of these two functions also solves Eq. 3.3 . The most general
solution takes the form,

ψ (x) = A exp

�

i

√
2mE

�
x

�

+B exp

�

−i
√

2mE

�
x

�

.

Now, we impose the boundary conditions.

1. At x = 0, ψ (x) = 0. Therefore,

0 = A exp

�

i

√
2mE

�
x

������
x=0

+B exp

�

−i
√

2mE

�
x

������
x=0

= A+B

or

B = −A

and

ψ (x) = A

�

exp

�

i

√
2mE

�
x

�

− exp

�

−i
√

2mE

�
x

� 

= 2iA sin

�√
2mE

�
x

�

= C sin

�√
2mE

�
x

�

C = 2iA is just an another arbitrary constant

2. At x = L, ψ (x) = 0. Therefore,

0 = C sin

�√
2mE

�
L

�

.

This equation is satisfied if

C = 0

or

sin

�√
2mE

�
L

�

= 0.

C = 0 gives ψ (x) = 0 which corresponds to no particle. If there is a
particle, then C �= 0 and

sin

�√
2mE

�
L

�

= 0.
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Figure 3.2: The first six energy levels of a particle in a one dimensional box.
En = n2E1 = E1,4E1,9E1,16E1,. . .

This equation is satisfied for energies such that

√
2mE

�
L = nπ n = 1, 2, 3, . . . the zeros of the sine function

(3.4)
Note that n = 0 does not give a state. In this case, we get E = 0 and
ψ (x) = 0 for all x - i.e., no particle. Also, negative n do not give real
energies. The energy eigenvalues - the solutions to Eq. 3.4 - are given by

En =
�
2n2π2

2mL2
n = 1, 2, 3, . . . (3.5)

These eigenvalues, also known as energy levels are depicted in Fig. 3.2.
They are the possible outcomes of an energy measurement for a mass, m,
particle in a one dimensional box of width, L.

The energy eigenstates are associated with a discrete set of energies. Energy
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level, En, is associated with energy eigenstate,

ψn (x) = C sin
�nπx
L

�
inside box, zero outside. (3.6)

Discrete energy levels is a hallmark of quantum mechanics. The energy levels
of any bound particle are discrete. Here, the particle is bound within a one
dimensional box. The spacing between energy levels increases with increasing
n, because of the n2 energy level dependence. The spacing is reciprocal to the
mass of the particle, and the square of the width of the box. A heavier particle,
or a larger box, produces smaller energy level spacings.

3.1.1 Normalization of energy eigenstates

The overall mulitplicative constant, C, is determined by imposing normalization.
Specifically, we impose the condition that the probability of finding the particle
somewhere inside the box is one; i.e.,

� L

0

|ψn (x)|2 dx = 1. the particle is definitely inside the box (ψn (x) = 0 for x < 0 or L < x)

For n = 1, this equation takes the form

� L

0

|C|2 sin2
�πx
L

�
dx = 1

|C|2
� L

0

sin2
�πx
L

�
dx = 1, constants can be moved outside integrals

or

|C| = 1
!" L

0 sin2
�
πx
L

�
dx
.

The integral here is given by

� L

0

sin2
�πx
L

�
dx =

L

π

� π

0

sin2 (u) du change of variables, u =
πx

L
.

To evaluate
" π

0 sin2 (u) du, we use the trigonometric identity,

cos (2u) = cos2 (u)− sin2 (u) = 1− 2 sin2 (u) ,

which gives

sin2 (u) =
1

2
(1− cos (2u))
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and
� π

0

sin2 (u) du =
1

2

� π

0

(1− cos (2u)) du

=
1

2

�� π

0

du−
� π

0

cos (2u) du

�

=
1

2

�
π −

�
1

2
sin (2u)

�π

0

�

=
1

2

�
π − 1

2
[sin (2π)− sin (0)]

�
=
π

2
,

since
sin (2π) = sin (0) = 0.

Therefore, the normalized wavefunction for n = 1 is given by

ψ1 (x) = C sin
�πx
L

�
=

1
!

L
π
π
2

sin
�πx
L

�

=

#
2

L
sin

�πx
L

�
.

Here, we set C = |C|. In principle, the above eigenstate can be multiplied
by any phase factor - i.e., a complex number with modulus one - and still be a
normalized energy eigenstate. However, we choose real wavefunctions whenever
possible.

In the case of ψn (x), we get

C =
1

!" L

0
sin2

�
nπx
L

�
dx

(3.7)

and

� L

0

sin2
�nπx
L

�
dx =

L

nπ

� nπ

0

sin2 (u) du

=
L

nπ
n

� π

0

sin2 (u) du integrand is periodic with period, π

=
L

π

π

2
=
L

2
. same as n = 1 case

So,

ψn (x) =

#
2

L
sin

�nπx
L

�
. (3.8)

The four lowest energy eigenstates, ψn (x) /(n = 1 to 4), are depicted in Fig.
3.3.The energy eigenstates of the particle in a one dimensional box are waves.
The n = 1 state has the lowest energy. It is called the ground state. It is the
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Figure 3.3: The first four energy eigenstates of a partile in a one dimensional
box.

simplest standing wave subject to the boundary conditions. Each subsequent
state has an additional node (x value such that ψ (x) = 0). Also, note that the
odd n states are even about the center of the box, while the even n states are
odd. Even states, about the center of the box, are symmetric with respect to
reflection through a mirror at the center of the box. Odd states are reversed in
sign when reflected through such a mirror.

3.1.2 Properties of a particle in a box

Momentum:

The expectation value of momentum for a particle in a box, in state ψn (x):

�p̂	n = �ψn| p̂ψn	 =
� L

0

ψ∗n (x)

�
−i� d

dx
ψn (x)

�
dx

=
2

L

� L

0

sin
�nπx
L

��
−i�nπ

L
cos

�nπx
L

��
dx

= −2inπ�

L2

� L

0

sin
�nπx
L

�
cos

�nπx
L

�
dx

= −2i�

L

� nπ

0

sin (u) cos (u) du

= − i�
L

� nπ

0

sin (2u) du

= − i�n
L

� π

0

sin (2u) du

=
i�n

2L
[cos (2u)]

π
0 =

i�n

2L
[1− 1] = 0
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The energy eigenstates of the particle in a box are standing waves - superposi-
tions of equal amounts of left-going and right-going wavefunctions. The average
of many momentum measurements is zero - plus and minus contributions cancel.
Note that the above conclusion could have reached much faster using symmetry.
Specifically, write the above integral in the form (just consider case of n = 1
here),

� L

0

sin
�πx
L

�
cos

�πx
L

�
dx =

� L/2

−L/2

sin

�
π (x+ L/2)

L

�
cos

�
π (x+ L/2)

L

�
dx

=

� L/2

−L/2

sin
�πx
L

+
π

2

�
cos

�πx
L

+
π

2

�
dx

= −
� L/2

−L/2

cos
�πx
L

�
sin

�πx
L

�
dx

= −L
π

� π/2

−π/2

cos (u) sin (u) du = 0

The integral in the last line is zero because the integrand is the product of an
even function, cos (u), and an odd function, sin (u), about u = 0, the center of
the box. The product of an even and odd function is odd. The integral over
the two halves of the box have equal magnitude, but opposite sign - they cancel
perfectly.

Position

The expectation value of position for a particle in a box, in state ψn (x):

�x̂	n = �ψn| x̂ψn	 =
� L

0

ψ∗n (x)xψn (x) dx (3.9)

=
2

L

� L

0

x sin2
�nπx
L

�
dx

=
2L

n2π2

� nπ

0

u sin2 (u) du

=
2L

n2π2

� nπ

0

u

�
1− cos (2u)

2

�
du

=
L

n2π2

	� nπ

0

udu−
� nπ

0

cos (2u) du

$

=
L

n2π2

	
1

2

�
u2
�nπ
0
− 1

2
[sin (2u)]

nπ
0

$

=
L

2n2π2
��
n2π2 − 0

�
− [0− 0]

�

=
L

2
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The distribution of position is spread out within the box, symmetrically about
the middle, x = L/2. The average of many position measurements would be
L/2, for any energy eigenstate, ψn.

3.1.3 Spectroscopic transitions

Light impinging on a particle in a box (e.g., an electron in a polyene) can induce
transitions between the states of the particle in a box. Specifically, an electron
can absorb the energy of one photon of light, if its energy (hν) equals the
difference in energy between the initial and final states of the electron - ni and
nf , respectively. In this case, the probability Pnf ,ni that the electron absorbs the
light (per unit time squared, given a constant intensity of light) is proportional
to the light intensity, and to the square of the expectation of the electron dipole
moment, µ̂e = −ex, (−e is the charge on an electron) - see Sec. 6.3.1.

Pnf ,ni ∝
����µ̂e	nf ,ni

���
2

= e2

�����

� L

0

xψnf (x)ψni (x) dx

�����

2

.

For example, in the case of ni = 1 and nf = 2, the transition integral (the
probability is proportional to the square of this integral) takes the form,

I2,1 =
2

L

� L

0

x sin

�
2πx

L

�
sin

�πx
L

�
dx

=
2L

π2

� π

0

u sin (2u) sin (u) du u =
πx

L

This integral is evaluated using the trigonometric identities,

cos (a+ b) = cos (a) cos (b)− sin (a) sin (b)

and
cos (a− b) = cos (a) cos (b) + sin (a) sin (b)

which together give

sin (a) sin (b) =
1

2
[cos (a− b)− cos (a+ b)]

or

sin (2u) sin (u) =
1

2
[cos (u)− cos (3u)] .

The above integral now takes the form,

I2,1 =
L

π2

� π

0

u [cos (u)− cos (3u)] du

=
L

π2

�� π

0

u cos (u) du−
� π

0

u cos (3u) du

�
.
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Both integrals in the square bracket are of the form,

� π

0

u cos (ju) du

=

� u=π

u=0

u
1

j
d sin (ju)

=
1

j

	
[u sin (ju)]π0 −

� π

0

sin (ju) du

$

=
1

j

%�

π sin (jπ)
= 0, since j= an integer

− 0

 

−
�
−1

j
cos (ju)

�π

0

&

=
1

j2
[cos (jπ)− cos (0)]

=
1

j2

�
(−1)j − 1

�
=

	
0, j even
− 2

j2 , j odd
.

Applying this formula to the integral that determines the n = 1 to 2 transition
integral gives

I2,1 =
L

π2

�
− 2

12
+

2

32

�
= −2L

π2

�
1− 1

9

�
= −16L

9π2
. (3.10)

The associated transition probability is proportional to

P2,1 ∝ |I2,1|2 =
256L2

81π4
.

If we considered the transition from n = 1 to 3, the integral would have been
(3− 1 = 2 and 3 + 1 = 4)

P3,1 =
L

π2

� π

0

u [cos (2u)− cos (4u)] du = 0,

since j is even (2 and 4) in both of the (sub) integrals appearing here.
In general, the transition probability is zero for transitions from even n to

even n, and for odd n to odd n. This is called a selection rule. In spectroscopy,
there are selection rules which specify which transitions are possible. Transi-
tions with zero probability are said to be forbidden. Transitions with non-zero
probability are allowed. Since the above formula is actually an approximation
- the electric dipole approximation - transitions that are allowed according to
that formula are dipole-allowed.

We can use the square of the transition integral to determine ratios of tran-
sition probabilities and thereby predict the relative heights of absorption peaks
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Figure 3.4: Absorption spectrum of a particle in a box in its ground state.
Frequency - along horizontal axis - is in units of E1/h.

in a measured spectrum. For example, the n = 1 to 4 transition integral takes
the form,

L

π2

� π

0

u [cos (3u)− cos (5u)] du

=
L

π2

�
− 2

32
+

2

52

�
= −2L

π2

�
1

9
− 1

25

�
= − 48L

225π2
.

and the ratio of the 1 to 2 transition peak to the 1 to 4 transition peak is

256
81
482

2252

= 69.4

The 1 to 4 overtone transition is much weaker than the 1 to 2 transition. Sub-
sequent overtones (1 to 6, 1 to 8, ...) are successively weaker. The fundamental
transition, 1 to 2, dominates the absorption spectrum.

Figure 3.4 shows the absorption spectrum for an electron, in its ground state,
in a one dimensional box.

Example 3.1. Expectation values for superposition states of a particle in a one dimen-
sional box.

(a) Determine the expectation value of x for the particle in the superpo-
sition state,

ψ+ (x) =
1√
2

(ψ1 (x) + ψ2 (x)) ,

where ψ1 and ψ2 are the first two energy eigenstates.
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(b) Determine the expectation value of x for the particle in the superpo-
sition state,

ψ− (x) =
1√
2

(ψ1 (x)− ψ2 (x)) ,

(c) Determine the expectation value of energy (i.e., Ĥ) for the particle
in either ψ+ or ψ−.

Solution 3.1.

(a) The expectation of position for this particle is

�x	+ =
�
ψ+

��xψ+
�

=

'
1√
2

(ψ1 + ψ2)

����x
1√
2

(ψ1 + ψ2)

�

=
1

2
�ψ1 + ψ2 |x (ψ1 + ψ2)	

=
1

2
(�ψ1 |xψ1	+ �ψ2 |xψ2	+ �ψ1 |xψ2	+ �ψ2 |xψ1	)

=
1

2
(�x	1 + �x	2 + 2 �ψ2 |xψ1	) x is Hermitian

The expectation value for the particle in state ψ1 or ψ2 is determined
above to be

�x	1 = �x	2 =
L

2
,

where L is the width of the box. The matrix element, �ψ2 |xψ1	, is
also determined above;

�ψ2 |xψ1	 = −16L

9π2
.

Thus,

�x	+ =
1

2

�
L+ 2

�
−16L

9π2

��

= 0.320L.

The particle is more likely to be found closer to the left side of the
box than the right.

(b) Here,

�x	− =
�
ψ−

��xψ−
�

=

'
1√
2
(ψ1 − ψ2)

����x
1√
2
(ψ1 − ψ2)

�

=
1

2
(�x	1 + �x	2 − 2 �ψ2 |xψ1	)

=
1

2

�
L− 2

�
−16L

9π2

��

= 0.680L.
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In ths case, the particle is more likely to be found closer to the right
side of box.

(c) The ψ+ energy expectation is given by
�
Ĥ



+
=

�
ψ+

���Ĥψ+



=

'
1√
2
(ψ1 + ψ2)

����Ĥ
1√
2

(ψ1 + ψ2)

�

=
1

2

��
Ĥ



1
+
�
Ĥ



2
+ 2 �ψ2

���Ĥψ1

�
.

Since ψ1 and ψ2 are energy eigenstates, the terms in the last line
simplify. Specifically,

�
Ĥ



1
= �ψ1

���Ĥψ1



= �ψ1 |E1ψ1	
ψ1 is an eigenfunction of Ĥ
E1 is the associated eigenvalue

= E1 �ψ1 |ψ1	 E1 is a constant

= E1, ψ1 is normalized

�
Ĥ



2
= �ψ2

���Ĥψ2



= E2 same argument as above

and

�ψ2
���Ĥψ1



= �ψ2 |E1ψ1	
= E1 �ψ2 |ψ1	
= 0. ψ1 and ψ2 are orthogonal

The off-diagonal matrix element of Ĥ, �ψ2
���Ĥψ1



, is zero because

ψ1 and ψ2 are eigenfunctions of Ĥ, and distinct eigenfunctions of a
Hermitian operator are orthogonal. Thus,

�
Ĥ



+
=

1

2
(E1 +E2 + 2× 0)

=
1

2
(E1 +E2)

Similarly,
�
Ĥ



−
=

�
ψ−

���Ĥψ−



=

'
1√
2
(ψ1 − ψ2)

����Ĥ
1√
2

(ψ1 − ψ2)
�

=
1

2

��
Ĥ



1
+
�
Ĥ



2
− 2 �ψ2

���Ĥψ1

�

=
1

2
(E1 +E2) .
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These two superposition states have the same energy expectation
value - the average of the associated energy eigenvalues.

Example 3.2. Measurements of observables for superposition states of a particle in a one
dimensional box.

(a) Suppose the particle is in the superposition state,

ϕ1 (x) =

√
3

2
ψ1 (x) +

1

2
ψ2 (x) .

What are the possible outcomes of an energy measurement for this
particle? What are the probabilities of the possible outcomes of an
energy measurement?

(b) What is the probability of a measurement of position yielding a value
to the left of the center of the box?

(c) Repeat parts a and b for a particle in the superposition,

ϕ2 (x) =
1

2
ψ1 (x)−

√
3

2
ψ2 (x) .

Solution 3.2.

(a) The possible outcomes of an energy measurement are the eigenvalues
of the Hamiltonian, the energy operator. For a particle in a box,
these are the energies, En, n = 1, 2, . . . ;

En =
π2�2

2mL2
n2 = E1n

2.

The probability of outcome En is given by the mod-squared inner
product of the eigenstate, ψn (x), associated with eigenvalue, En.
Specifically,

P (En) = |�ψn |ϕ1	|2

=

�����
�ψn

�����

√
3

2
ψ1 +

1

2
ψ2

(�����

2

=

�����

√
3

2
�ψn |ψ1	+

1

2
�ψn |ψ2	

�����

2

=






���
√
3
2

���
2

, n = 1
�� 1
2

��2 , n = 2
0, n > 2

=






3
4 , n = 1
1
4 , n = 2

0, n > 2
.
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These probabilities result because the distinct ψn are orthogonal and
normalized. We see that only E1 and E2 are possible outcomes of
an energy measurement for this state - the probability of the other
outcomes is zero. The probability of outcome E1 is 3/4 which is just
the mod-squared coefficient of ψ1 in the expansion of ϕ1 in terms of
the ψn. Similarly, the probability of outcome E2 is 1/4, the mod-
squared coefficient of ψ2.

(b) The probability of observing position less than L/2 is given by inte-

grating |ϕ1 (x)|2 from 0 to L/2.

P (0, L/2) =

� L/2

0

|ϕ1 (x)|2 dx

=

� L/2

0

�����

√
3

2
ψ1 (x) +

1

2
ψ2 (x)

�����

2

dx

=
3

4

� L/2

0

ψ21 (x) dx+
1

4

� L/2

0

ψ22 (x) dx+ ψ1 and ψ2 are real

+2

√
3

4

� L/2

0

ψ1 (x)ψ2 (x) dx

To evaluate this probability, we must evaluate three integrals. The
first two integrals give the probability of observing x < L/2 for the
states ψ1 and ψ2. The associated two contributions to P (0, L/2)
together give the weighted average of these two probabilities, with
weightings given by the probabilities determined in part a. Since
ψ21 (x) and ψ

2
2 (x) are both symmetric about x = L/2, the probability

of observing x < L/2 for the states ψ1 and ψ2 is just 1/2. It is the
same for both states. Thus, the first two contributions to P (0, L/2)
together give 1/2. The third integral is given by

� L/2

0

ψ1 (x)ψ2 (x) dx =
2

L

� L/2

0

sin
�πx
L

�
sin

�
2πx

L

�
dx

=
1

L

� L/2

0

�
cos

�
(2− 1) πx

L

�
− cos

�
(2 + 1)πx

L

��
dx

=
1

π

� π/2

0

(cos (u)− cos (3u)) du

=
1

π

�

[sin (u)]
π/2
0 −

�
1

3
sin (3u)

�π/2

0

�

=
1

π

�
[1− 0]− 1

3
[−1− 0]

�

=
4

3π
.
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Therefore, the probability of observing x < L/2 is

P (0, L/2) =
3

4

1

2
+

1

4

1

2
+

√
3

2

�
4

3π

�

=
1

2
+

2
√

3

3π
= 0.86755.

In this state, the particle is more likely to be closer to the left wall
at x = 0.

(c) The probability of an energy measurement yielding En is

Pn = |�ψn |ϕ2	|2

=

�����
�ψn

�����
1

2
ψ1 −

√
3

2
ψ2

(�����

2

=

�����
1

2
�ψn |ψ1	 −

√
3

2
�ψn |ψ2	

�����

2

=






�� 1
2

��2 , n = 1���
√
3
2

���
2

, n = 2

0, n > 2

=






1
4 , n = 1
3
4 , n = 2

0, n > 2
.

The same two energies, E1 and E2, are the possible outcomes. They
are observed with probabilities 1/4 and 3/4, respectively. These
probabilities are the reverse of those found in part a, as the ψ1 and ψ2
coefficients are reversed. The minus sign makes no contribution to
the probability of E2, as probability is given by the mod-squared
coefficient. The probability of a position measurement outcome less
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than L/2 is

P (0, L/2) =

� L/2

0

|ϕ2 (x)|2 dx

=

� L/2

0

�����
1

2
ψ1 (x)−

√
3

2
ψ2 (x)

�����

2

dx

=
1

4

� L/2

0

ψ21 (x) dx+
3

4

� L/2

0

ψ22 (x) dx+ ψ1 and ψ2 are real

−2

√
3

4

� L/2

0

ψ1 (x)ψ2 (x) dx

=
1

2
−
√

3

2

�
4

3π

�

=
1

2
− 2

√
3

3π
= 0.13245

In this case, the particle is more likely to nearer the right wall at
x = L.

3.2 A well with finite binding energy

Bound particles are everywhere. However, for real systems, the particles have a
finite binding energy. Particles can be ejected from a well by absorbing energy
- most often by absorbing light. The lowest that can eject the particle is called
the binding energy of the particle in the well. Here, we consider a one-sided
well with finite depth, Vd ;

V (x) =






∞, x ≤ 0
0, 0 < x < L
Vd , L < x

.

For this potential, the particle can only escape the well to the right. The well
depth is larger than the binding energy because the particle has energy in its
ground state - c.f., the case of a one dimensional box.

Just like the particle in the box, we solve the Schrödinger equation inside
the well and apply the boundary condition, ψ (0) = 0 (there is still a hard wall
at x = 0) to get

ψ (x) = C1 sin

�√
2mEx

�

�

,

where C1 is (so far) an arbitrary constant. The boundary condition at x = L
is different in this case. The wavefunction is not zero at x = L, because the
barrier on the right is finite. First, we must consider the wavefunction beyond
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the right edge of the box. For x > L, the Schrödinger equation takes the form,
�−�2

2m

d2

dx2
+ Vd

�
ψ (x) = Eψ (x) ,

which rearranges to

d2ψ

dx2
= −2m (E − Vd)

�2
ψ

=
2m (Vd −E)

�2
ψ.

If E < Vd (the states of the particle bound to the well), Vd − E > 0 and the
general solution to this equation is

ψ (x) = A exp

��
2m (Vd −E)x

�

�

+B exp

�

−
�

2m (Vd −E)x

�

�

,

where A and B are new (so far) arbitrary constants. Because this region extends
to x = ∞, the coefficient, A, must equal zero. Otherwise, the wavefunction
would blow up as x→∞. This is a boundary condition at infinity - solutions
which blow up are discarded. This leaves only the exponentially decaying
solution for x > L. Altogether, we have

ψ (x) =

%
ψ(1) (x) , 0 < x < L

ψ(2) (x) , L < x

=






C1 sin
�√

2mEx
�

�
, 0 < x < L

C2 exp

�
−
√
2m(Vd−E)(x−L)

�

�
, L < x

,

in terms of the more convenient abitrary constant,

C2 = B exp

�

−
�

2m (Vd −E)L

�

�

.

The exponential decay portion of the wavefunction is called barrier penetration.
In quantum mechanics, particles penetrate into regions where they are classically
forbidden. In classical mechanics, a particle cannot be in a place, x, where E <
V (x). This is because kinetic energy cannot be negative. When wavefunctions
penetrate into classically forbidden regions, they decay exponentially. A larger
difference between the barrier and particle energy, or larger mass of particle,
produces a faster exponential decay.

3.2.1 Energy levels

Since the wavefunction must be smooth, it is subject to boundary conditions at
x = L. First, the values of ψ(1) (x) and ψ(2) (x) must match at x = L;

ψ(1) (L) = ψ(2) (L) ,
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or

C1 sin

�√
2mEL

�

�

= C2. (3.11)

This reduces the number of arbitrary constants back to one. Next, the deriva-
tives of ψ(1) (x) and ψ(2) (x) must match at x = L. This gives the smoothest
possible wavefunction at a discontinuity in the potential.

dψ(1)

dx

�����
x=L

=
dψ(2)

dx

�����
x=L

,

or √
2mE

�
C1 cos

�√
2mEL

�

�

= −
�

2m (Vd −E)

�
C2. (3.12)

Dividing Eq. 3.11 by Eq. 3.12 gives

�√
2mE

tan

�√
2mEL

�

�

= − �
�

2m (Vd −E)

or

tan

�√
2mEL

�

�

= −
#

E

Vd −E
. (3.13)

This is an equation only for the energy. It is the quantization condition for
the particle in a (one-sided) well. It is a non-linear equation that requires
a non-linear equation solver - see below. However, its solutions can be seen
graphically - see Fig. 3.5. The intersections of the tangent function on the left
of Eq. 3.13 with the square root function on the right determine the energy
levels of the particle in a well. The functions are plotted versus the square root
of energy in units of ǫ1, where ǫ1 is the ground state energy of the particle in
the same width box - i.e.,

ǫ1 =
π2�2

2mL2
.

The number of intersections is finite because the square root function on
the right of Eq. 3.13 is real only if E < Vd . There are no bound states with
energy above the well depth. This is the biggest contrast with the particle in
a box. A finite well depth produces a finite number of bound states. The

figure shows that the number of bound states is just (Vd/ǫ1)
1/2 , rounded to the

nearest whole number. The energy levels of the particle in a well are lower than
the corresponding particle in a box levels - i.e.,

En � n
2ǫ1, n = 1, 2, . . . [(Vd/ǫ1)

1/2].

A more detailed analysis can provide formulas. In terms of

η =

√
2mE

π�
L,
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Figure 3.5: The quantization condition for a particle in a well. The intersections
of the tangent function (solid) and the square root function (dashed) determine
the energy levels. The well depth, V0 = 15ǫ1, where ǫ1 = π2�2/

�
2mL2

�
is the

ground state the particle in a box with the same width. The horizontal axis

here is (E/ǫ1)
1/2.
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Eq. 3.13 takes the form,

tan (πη) = − η
�
η2d − η2

, (3.14)

where

ηd =

√
2mVd
π�

L.

The particle in a box energy levels arises if V0 → ∞. In this case, Eq. 3.14
reduces to

tan
�
πη(0)

�
= 0,

with solutions
η(0)n = n, n = 1, 2, 3, . . . .

Figure 3.5 shows that the energy levels of the well are lower than, but close
to, the corresponding energy levels of the box. It also shows that the inter-
sections can be approximated via linear approximation of the tangent function.
Specifically, we let

ηn = η(0)n − δn
= n− δn

aniticipating that δn will be positive. Since the derivative of tan (x) is sec2 (x),
the left side of Eq. 3.14 takes the form

tan (πηn)
∼= tan

�
πη(0)n

�
− π sec2

�
πη(0)n

�
δn

= 0− π sec2 (nπ) δn

= −πδn.

With this approximation, Eq. 3.14 becomes

−πδn ∼= − n− δn!
η2d − (n− δn)2

,

which rearranges to

(n− δn)2 ∼=
π2δ2nη

2
d�

1 + π2δ2n
� ,

or

δn ∼= n− πδnηd
�
1 + π2δ2n

�1/2 (3.15)

∼= n− πδnηd δ2n is much smaller than 1/π2

This equation is easily solved to give

δn ∼=
n

1 + πηd
<

1

π
. (3.16)
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This approximation can be refined by iteration of the first line of Eq. 3.15 .
We are content with this lowest order approximation for the sake of simplicity.
The associated energy values - the energy eigenvalues - are given by

En = η2nǫ1 (3.17)

∼= (n− δn)2 ǫ1

= n2
�

ηd
ηd + 1/π

�2
ǫ1.

They still vary in proportion to n2. All the energy levels - except the highest
- have approximately the same relative shift. Here, we see that the energy
levels of a finite well are lower than those of the particle in a box. All levels
are lowered. The highest energy levels are lowered the most. In general,
energy levels are lowered when a barrier is lowered. This is because of barrier
penetration. The particle is able to access a wider space. Just as a wider box
has lower energy levels than a narrower box, a well that has barrier penetration
has lower energy levels.

3.2.2 Bound state energy eigenfunctions

Consider a finite well wavefunction with energy much lower than V0. In this
case, the energy is close to a particle in a box energy eigenvalue, and the wave-
function is similarly close to the particle in a box wavefunction. Even the
normalization factor is almost the same - it is close to

�
2/L. It is a little

smaller because the integral of sin2 (πηnx/L) over x ∈ (0, L) is larger when
ηn < n, and there is an additional contribution for x > L. The latter is the
integral of the exponentially decaying function with a small prefactor,

|C2|2 exp
�
−2

�
2m (Vd −En) (x− L) /�

�
,

from x = L to x = ∞. Since both corrections are small, we approximate the
energy eigenfunction of the particle in a finite well using the particle in a box
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normalization constant, and let C1 =
�

2/L. In this case,

C2 =

#
2

L
sin

�√
2mEnL

�

�

=

#
2

L
sin (ηnπ) (3.18)

∼=
#

2

L

�
sin

�
η(0)n π

�
− π cos

�
η(0)n π

�
δn
�

(3.19)

=

#
2

L
(−1)n+1 πδn (3.20)

=

#
2

L
(−1)n+1

πn

πηd + 1
(3.21)

∼=
#

2

L

(−1)n+1 n

ηd
if 1≪ ηd (3.22)

and

ψn (x) ∼=






!
2
L sin

�
ηd

ηd+1/π
nπx
L

�
, 0 < x < L

!
2
L
(−1)n+1n
ηd+1/π

exp

�

−
�
η2d − n2

�
ηd

ηd+1/π

�2�1/2
π(x−L)

L

�

, L < x
.

(3.23)
These wavefunctions are depicted in Fig. 3.6. The error in the approximations
used to get Eqs. 3.17 and 3.23 , is evident only in the top level wavefunction
which does not quite satisfy the boundary condition at x = 1 - if you look
closely.

3.2.3 State with energy above binding energy

For energy greater than the binding energy, the particle is not bound to the box.
If E > Vd , E − Vd > 0 and the general solution to the Schrödinger equation for
x > L is

ψ (x) = A exp

�

i

�
2m (E − Vd)x

�

�

+B exp

�

−i
�

2m (E − Vd)x
�

�

,

or

ψ (x) = C2 exp

�

i

�
2m (E − Vd) (x− L)

�

�

+C3 exp

�

−i
�

2m (E − Vd) (x− L)
�

�

,

where C2 and C3 (or A and B) are new (so far) arbitrary constants. Neither
of the two solutions blows up as x→∞. However, neither do they decay. As
such, the integral of |ψ (x)|2 over all x (up to x =∞) cannot be finite. It is not
possible to normalize this wavefunction. When dealing with unbound particles,
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Figure 3.6: The four bound energy eigenstates of a particle in a one dimensional
well. The wavefunctions (solid) are show superimposed on a potential energy
plot (dashed). There is separate vertical axis for each wavefunction - the wave-
function zero is translated vertically to match the associated energy eigenvalue.
The wavefunctions are scaled by 1/2, so they do not overlap. The energy levels
are depicted with thin dashed lines, while the corresponding particle in a box
energy levels are shown as dotted lines. Eigenfunctions and eigenvalues are
computed using Eqs. 3.23 and 3.17 , respectively.
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the postulate of quantum mechanics requiring that �ψ�2 = 1 is not satisfied
by the energy eigenstates. Unbound energy eigenstates are unnormalizable.
They do not describe single particles. They describe beams of particles. These
beam states are spread over an infinite distance, and they have infinite norm.
However, they are beam-normalized : |ψ (x)|2 gives the number of particles per
unit distance, at x.

Because neither of the two arbitrary constants, C2 and C3, is eliminated by
the boundary condition at x =∞, there is one less constraint on the coefficients
than there were in the case of bound states. Energy is not quantized for states
above the binding energy - it varies continuously, just as in classical mechanics.

The boundary conditions at x = L relate unknown coefficient C1 to unknown
coefficients, C2 and C3. Specifically,

ψ(1) (L) = ψ(2) (L) ,

gives

C1 sin (kL) = C2 +C3, (3.24)

where

k =

√
2mE

�

is the wavenumber that correponds with energy, E. Also,

dψ(1)

dx

�����
x=L

=
dψ(2)

dx

�����
x=L

,

gives

kC1 cos (kL) = i
!
k2 − k2d (C2 −C3) , (3.25)

where

kd =

√
2mVd
�

is the well-depth wavenumber.
Equations 3.24 and 3.25 constrain two of the three unknowns. However,

there is always an overall undetermined constant in the solution to the Schrödinger
equation. It is fixed (to within a phase factor, eiθ) by the normalization con-
dition. Here, the beam normalization condition is simply to set one of C2 and
C3 to one. We choose C3 = 1. This corresponds to a unit intensity beam (one
particle per unit distance) incoming from ∞. The wavefunction,

exp (−ikx) ,

is a unit-intensity incoming beam wavefunction. It is an eigenfunction of the
momentum operator (check this) associated with eigenvalue,

−�k.
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Negative momentum corresponds to motion from right to left. C2 is the co-
efficient of the right-going beam wavefunction. It corresponds to the reflected
(outgoing) beam that results subsequent to the incoming beam encountering
the well and associated left wall.

With C3 = 1, Eqs. 3.24 and 3.25 take the form,

C1 sin (kL) = C2 + 1

and

kC1 cos (kL) = i
!
k2 − k2d (C2 − 1) .

These two equations can be solved as two linear equations with two unknowns.
Alternatively, note that

1

k
tan (kL) = −i 1

�
k2 − k2d

�
C2 + 1

C2 − 1

�
.

So,

C2 + 1

C2 − 1
= iτ = i

�
k2 − k2d
k

tan (kL)

and

C2 = −1 + iτ

1− iτ (3.26)

= −k + i
�
k2 − k2d tan (kL)

k − i
�
k2 − k2d tan (kL)

(3.27)

= −k cos (kL) + i
�
k2 − k2d sin (kL)

k cos (kL)− i
�
k2 − k2d sin (kL)

(3.28)

= −κ+ iσ

κ− iσ (3.29)

where
κ = k cos (kL)

and

σ =
!
k2 − k2d sin (kL) .

Note that |C2|2 = 1; i.e., the intensity of the outgoing beam equals that of the
incoming beam. This corresponds to particle conservation - there is an outgoing
particle for every incoming particle.

Determining C1 completes specification of the wavefunction.

C1 = − 2iσ

(κ− iσ) sin (kL)

= −2i

�
k2 − k2d
κ− iσ
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and

ψE (x) =






2i
√

k2−k2d
κ−iσ sin (kx) , 0 < x < L

−κ+iσ
κ−iσ exp

�
i
�
k2 − k2d (x− L)

�

+exp
�
−i
�
k2 − k2d (x− L)

�
,

L < x
. (3.30)

It is instructive to evaluate the number of particles within the well. For
beam normalized wavefunctions, the integral of |ψE (x)|2 from 0 to L gives the
number of particles in the well (associated with a unit intensity incoming beam).
The integral of sin2 (kx) varies around, but always close to, L/2 (it equals L/2
exactly when kL = nπ). The number of particles in the well is thus close to

|C1|2 L/2 (with deviations diminishing as k increases). The the mean particle
density within the well is

|C1|2 /2 = 2
k2 − k2d
κ2 + σ2

= 2
k2 − k2d

k2 cos2 (kL) + (k2 − k2d) sin2 (kL)

= 2
k2 − k2d

k2 − k2d sin2 (kL)

It has a maximum of 2, when sin (kL) = ±1, or kL = (n+ 1/2)π. In this case,
C2 = 1 - i.e., the phase of the outgoing wave is the same as the incoming wave, at
the well boundary. Such energies are called resonances. They arise here when
kL is a half-integral multiple of π. For unbound particles, the quantization
condition is replaced by a resonance condition. A maximum mean particle
density of 2 matches that of the incoming and outgoing beam mean particle
density - the incoming and outgoing beam interfere to the right of the well
producing a particle density varying from 0 to 4, with a mean of 2. Between
the resonances, |C1|2 /2 is a minimum when sin (kL) = 0, or kL = nπ. For
these energies, C2 = −1 - the incoming and outgoing waves are exactly out
of phase at the well boundary, and the particle density inside the well is a
minimum. At these energies, the incoming beam mostly reflects directly off the
right boundary of the well, and fewer particles enter the well. Figure 3.7 shows
energy eigenstates for beams at five different energies, E = 42, 4.252, 4.52, 52

and 5.52, in units of ǫ1 the associated particle in a box ground state energy.
The top and third-from-top of these eigenstates are resonance states, showing
maximum well penetration. Between resonance energies - at the particle in a
box energy levels - well penetration has local minima, most notably just above
the well depth.

If the well were two-sided - i.e., the infinite barrier on the left is replaced
by a Vd barrier, as on the right - then the resonance condition reverts back to
the particle in a box quantization condition, kL = nπ. At the particle in a
box energies, a wave incoming from the right passes through the barrier with
100% likelihood - i.e., 100% transmission probability. At other energies, there
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Figure 3.7: Some unbound energy eigenstates of a beam of particles encountering
a one dimensional well. The wavefunctions (solid) are show superimposed on a
potential energy plot (dashed). Here, the top of the well is just visible. There is
separate vertical axis for each wavefunction - the wavefunction zero is translated
vertically to match the associated energy eigenvalue. Since all energies above
Vd are eigenvalues, only a few examples are shown. The wavefunctions are
scaled by 1/3, so they do not overlap. The energy levels are depicted with thin
dashed lines. Eigenfunctions are computed using Eq. 3.30 .
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is some reflection. Reflection is a maximum at half integral multiples of π, in
this case.

3.2.4 Tunneling

We now suppose that the barrier on the right side of the well just described has
a finite width, w. Here, there is a second boundary at x = L+w, beyond which
V (x) = Ve < Vd , the particle escape potential. Specifically,

V (x) =






∞, x ≤ 0
0, 0 < x < L
Vd , L < x < L+w
Ve, L+w < x

.

We consider the below barrier - but above escape potential - case with Ve <
E < Vd . In this case, were it not for the escape channel on right, the eigenstates
would be the particle in a well bound states found in Sec. 3.2.2 above. To find
the new energy eigenstates requires introducing two new constants, and satis-
fying two new boundary conditions. Anticipating that there will be resonances
at the well energy eigenvalues between Ve and Vd , we consider the beam states
of the particle only at these energies. In addition, rather than imposing a unit
intensity incoming (or outgoing) beam from the left, we normalize by imposing
that there be one particle in well. The resulting outgoing beam intensity is
related to probability (per unit time) with which the particle tunnels from the
well. Consequently, we adopt the following wavefunction - expressed in terms
of four unknown coefficients - with the coefficient in the well specified by the
one particle normalization - the wavefunction integrates to (close to) 1 within
the well.

ψEn
(x) ∼=






!
2
L sin

�ηnπx
L

�
, 0 < x < L

C1 exp
�
−
�
η2d − η2n

�1/2 π(x−L)
L

�

+C2 exp
��
η2d − η2n

�1/2 π(x−L)
L

� L < x < L+w

C3 exp
�
i
�
η2n − η2e

�1/2 π(x−L−w)
L

�

+C4 exp
�
−i

�
η2n − η2e

�1/2 π(x−L−w)
L

� L+w < x

.

(3.31)
where

ηn = n
ηd

ηd + 1/π

and

ηe =

√
2mVe
π�

L.

The boundary conditions at x = L are the continuity equation,

#
2

L
sin (ηnπ) = C1 +C2,
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and the continuity of derivative equation,

#
2

L
ηn
π

L
cos (ηnπ) = −

�
η2d − η2n

�1/2 π
L

(C1 −C2)

or (cancel π/L from the second equation and divide the equations)

C1 +C2
C1 −C2

= −
�
η2d − η2n

�1/2

ηn
tan (ηnπ) = −τ

and

C2 = −τ + 1

τ − 1
C1.

Substituting this back into the first equation gives,

#
2

L
sin (ηnπ) =

�
1− τ + 1

τ − 1

�
C1

= − 2

τ − 1
C1

or

C1 = −τ − 1

2

#
2

L
sin (ηnπ)

and

C2 =
τ + 1

2

#
2

L
sin (ηnπ) .

At the resonance energies, τ = −1. In this case,

C1 =

#
2

L
sin (ηnπ)

and

C2 = 0.

The energy eigenstate reduces to the form of the well bound state, at resonance
energies.

The boundary conditions at x = L+w are the continuity equation,

C1γ +C2γ
−1 = C3 +C4

where

γ = exp
�
−
�
η2d − η2n

�1/2 πw
L

�

and the continuity of derivative equation,

−
�
η2d − η2n

�1/2 π
L

�
C1γ −C2γ−1

�
= i

�
η2n − η2e

�1/2 π
L

(C3 −C4) .
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Under resonance conditions, these two equations become

γ

#
2

L
sin (ηnπ) = C3 +C4

and

i

�
η2d − η2n
η2n − η2e

�1/2
γ sin (ηnπ) = C3 −C4,

or
C3 −C4
C3 +C4

= i

�
η2d − η2n
η2n − η2e

�1/2
= iβ

and

C4 =
1− iβ
1 + iβ

C3,

which gives

γ sin (ηnπ) = C3 +
1− iβ
1 + iβ

C3

=
2

1 + iβ
C3,

or

C3 =
1 + iβ

2
γ

#
2

L
sin (ηnπ)

and

C4 =
1− iβ

2
γ

#
2

L
sin (ηnπ) .

The intensity of the outgoing beam - i.e., the probability, per unit distance, of
finding a particle in the beam - is just

|C3|2 =
1 + β2

2L
γ2 sin (ηnπ) (3.32)

=
η2d − η2e

2L (η2n − η2e )
exp

�
−2

�
η2d − η2n

�1/2 πw
L

�
sin (ηnπ)

=
Vd − Ve

2L (En − Ve)
exp

�
−2 (2m (Vd −En))

1/2 w

�

�
sin

�
(2mEn)

1/2 L

�

�
.

|C4|2 = |C3|2 gives the intensity of the associated incoming beam that maintains
one particle in the well. If we multiply |C3|2 by the velocity of the outgoing
particles, (2 (En − Ve) /m)

1/2
, we get the outgoing flux - the probability per

unit time of a particle tunneling from the n th state of the well,

Ptunnel = (2 (En − Ve) /m)1/2 |C3|2 (3.33)

=
Vd − Ve

L (2m (En − Ve))1/2
exp

�
−2 (2m (Vd −En))

1/2 w

�

�
sin

�
(2mEn)

1/2 L

�

�
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The tunneling probability (flux) decreases exponentially with increasing barrier
width, and the square root of the energy difference to the top of the barrier.

The system just studied is a simple model for scanning tunneling microscopy
(STM). In STM, a very sharp metal tip (represented above by the escape region
to the right) is brought very close to the surface of another metal. Atoms on the
surface are like wells for electrons. Tunneling current, −ePtunnel, is measured
as the tip is scanned across the metal surface. The distance between the tip
and an atom on the surface is represented here by w. Because the exponential
function is so sensitive to w, a distinctly larger current is measured when the
tip is directly over an atom, than when it is over the space between atoms.
The exponential sensitivity of STM gives it atomic level resolution. Individual
atoms can be seen on the surface when the tunneling current, as a function of
tip position over the surface, is itself rendered as a surface.

Figure 3.8 shows an STM image of iron atoms - arranged in the shape of a
stadium - on a copper (111) surface. The stadium-shaped arrangement of iron
atoms was achieved using the STM with high voltage, scanning very close to the
surface. Under these conditions, the tip exerts sufficient force to move atoms
around on the surface. The copper atoms in the surface are not well resolved
because it is further from the tip and the current is weak. More importantly,
because copper is a metal, it has delocalized valence electrons. These electrons
are sensitive to the arrangement of iron atoms. These correspond to the highest
energy resonance states of copper electrons on the surface. Consequently, they
make the principle contribution to the STM current. These electrons appear
as a wave pattern both inside and outside the stadium structure.

To better understand STM, we need more realistic models. In particular, we
need three dimensional models. After all, ,space has (at least) three dimensions.

3.3 Particle in a three dimensional box

We return now to the particle in a box problem, except this time the particle is
in a three dimensional box. It has three coordinates and its state is represented
by a wavefunction, ψ (x, y, z). The Hamiltonian for this problem is pure kinetic
energy, with three components,

Ĥ =
1

2m

�
p̂2x + p̂2y + p̂2z

�

=
−�2
2m

�
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

�
.

The potential energy is zero inside the box. We account for the hard wall
potential (V = ∞) at the walls of the box by the boundary condition that
ψ (x, y, z) = 0 on the walls.

The TISE for this problem is

Ĥψ (x, y, z) = Eψ (x, y, z) (3.34)

=
−�2
2m

�
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

�
ψ (x, y, z)
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Figure 3.8: An STM image of iron atoms on a copper (111) surface. The
iron atoms are arranged in the shape of a stadium. This was accomplished by
the STM tip using high voltage and very close proximity to the surface. [From:
IBM STM image gallery, http://researcher.watson.ibm.com/researcher/files/us-
flinte/stm15.jpg, retrieved May 8, 2015]
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Now, we have a partial differential equation. This one is soluble because each
term in the Hamiltonian probes the dependence of ψ on just one of the three
variables - i.e., one variable at a time. Suppose we can write ψ (x, y, z) in the
form,

ψ (x, y, z) = ψx (x)ψy (y)ψz (z) .

Substitute this ansatz into the TISE, and divide both sides by ψ (x, y, z), to get

E =
−�2
2m

�
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

�
ψx (x)ψy (y)ψz (z)

ψx (x)ψy (y)ψz (z)

=
−�2
2m

�
ψy (y)ψz (z) ∂2

∂x2ψx (x) + ψx (x)ψz (z) ∂2

∂y2ψy (y) + ψx (x)ψy (y) ∂2

∂z2ψz (z)
�

ψx (x)ψy (y)ψz (z)

=
−�2
2m

�
1

ψx (x)

∂2

∂x2
ψx (x) +

1

ψy (y)

∂2

∂y2
ψy (y) +

1

ψz (z)

∂2

∂z2
ψz (z)

�

= f (x) + g (y) + h (z) ,

where f (x), g (y) and h (z) functions only of x, y and z, respectively. This
equation can be rearranged to take the form

f (x) = E − g (y)− h (z)

Since E is a constant and neither g nor h is a function of x, f (x) must be
independent of x. We write

f (x) = Ex,

where Ex is some constant. Similarly,

g (y) = Ey

and

h (z) = Ez

are constants, independent of y and z, respectively.
Thus,

−�2
2m

1

ψx (x)

∂2

∂x2
ψx (x) = Ex

or
−�2
2m

d2

dx2
ψx (x) = Exψx (x) . since ψx (x) only depends on x

Also,
−�2
2m

d2

dy2
ψy (y) = Eyψy (y)

and
−�2
2m

d2

dz2
ψz (z) = Ezψz (z) .
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We see that the partial differential equation in three variables separates into
three independent ordinary differential equations. This is called separation of
variables.

The total energy is the sum of three energy eigenvalues - one for each degree
of freedom:

E = Ex +Ey +Ez.

Each of the individual energies is an eigenvalue of a particle in a one dimensional
box. The energy eigenvalues are labeled by three quantum numbers, nx, ny
and nz, each varying from 1 to ∞ in unit steps (1, 2, 3, ...). If the box has
length a in the x direction, b in the y direction and c in the z direction, the
energy eigenvalues are

Enx,ny,nz =
�
2π2

2m

�
n2x
a2

+
n2y
b2

+
n2z
c2

�

. (3.35)

Each energy eigenvalue is the sum of three particle-in-a-one-dimensional-box
eigenvalues. In general, every distinct set of natural numbers, (nx, ny, nz),
corresponds to a distinct energy. However, if the lengths satisfy certain re-
lationships, there can be degenerate energy levels - i.e., more than one set of
(nx, ny, nz) giving the same energy. Most notably, if a = b = c, then

Enx,ny,nz =
�
2π2

2ma2
�
n2x + n2y + n2z

�
,

and there are many degeneracies. First, any distinct permutation of the three
quantum numbers produces the same energy. If all three quantum numbers are
different, then there are six such permutations. There are even more degenera-
cies. For example, since 36 + 49 = 4 + 81, the quantum numbers (6, 7, n) (or
any permutation) produce the same energy as (2, 9, n) (or any permutation).

The eigenfunctions associated with the above energy eigenvalues are given
by

ψnx,ny,nz (x, y, z) =

#
2

a
sin

�nxπx
a

�#2

b
sin

�nyπy
b

�#2

c
sin

�nzπz
c

�

=
23/2√
abc

sin
�nxπx

a

�
sin

�nyπy
b

�
sin

�nzπz
c

�
.

It is the product of three particle-in-a-one-dimensional-box eigenfunctions. That
these are eigenfunctions of the Hamiltonian is easily verified by substituting this
function into the TISE and noting that it satisfies the boundary conditions. To
further support the initial ansatz, we note that it can be shown that any function
of x, y and z can be written as a linear combination (summing over all values
of nx, ny and nz) of the above eigenfunctions. Thus, the ansatz is justified.
All eigenfunctions either satisfy the ansatz, or are sums of such functions (only
in case of degenerate eigenvalues). In the latter case, the product functions
considered here provide a complete basis for the associated eigenspace - sums
of product functions are not required.
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3.3.1 Properties of a particle in three dimensional box

The inner product for states of a particle in three dimensions is an integral over
all three coordinates, x, y and z. For example, the expectation value of x for a
particle in the above state, ψnx,ny,nz (x, y, z), is

�x	nx,ny,nz =

� a

0

� b

0

� c

0

ψ∗nx,ny,nz (x, y, z)xψnx,ny,nz (x, y, z) dxdydz

=
2

a

� a

0

x sin2
�nxπx

a

�
dx

2

b

� b

0

sin2
�nyπy

b

�
dy

2

c

� c

0

sin2
�nzπz

c

�
dz

=
a

2
× 1× 1 =

a

2
. see Eq. 3.9

Because the integrand in the first line is a product of factors - each depending on
only one of the three variables - the integral factors into three one dimensional
integrals. The three factors are particle-in-a-one-dimensional-box expectation
values. Since this is the expectation value of x, the y and z integrals are
both just the expectation value of 1 - i.e., they are both 1. The expectation
value of any operator that does not depend on two of the three variables, or
their associated partial derivatives, reduces to a particle-in-a-one-dimensional-
box expectation value. In this case, we get a/2; i.e., the particle is - on average
- in the middle of the interval of possible x values, for all the energy eigenstates.

3.4 Many independent electron systems

So far, we have considered only single particle systems. Particles abound in
nature - most notably, electrons. When we treat a multiparticle system, the
wavefunction is a function of the coordinates of all the particles. However, if
the particle-particle interaction is negligible, or can be approximated by a mean
field, the energy eigenstates are products of one-particle states. In this case,
the energy eigenvalues are sums of one-particle eigenvalues. When the particles
are electrons, the energy eigenstates must satisfy the Pauli principle - see Sec.
XX. This means that only two electrons - one with spin up, the other with spin
down - can occupy each one-particle state. This limits the number of energy
levels of an n electron system. These points are illustrated by considering many
electrons in one and three dimensional boxes, and in a one dimensional well.

3.4.1 Many electrons in a one dimensional box

Suppose there are many electrons in a one dimensional box, large enough so that
the electrons can be treated as independent via a mean field approximation.
The mean field is already incorporated into the model potential - in this case,
the one dimensional box potential. The states of the many electron system can
be viewed in terms of spin up and spin down electrons occupying the one-particle
states, ψn (x), found above (Eq. 3.8 ). These one-particle states are filled, two
electrons each, starting with the lowest energy level, then moving to the next
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lowest energy level - until all there are no more electrons. For example, four
electrons in a box produces the ground state energy,

Eg.s. = 2E1 + 2E2

=
�
2 + 2× 22

�
E1

= 10E1

because the two lowest energy one-particle states accomodate the four electrons.
The first excited state energy for this system corresponds to one of the n = 2
electrons excited to the n = 3 level, and its energy is given by

E1st e.s. = 2E1 +E2 +E3

=
�
2 + 22 + 32

�
E1

= 15E1.

The transition energy, 5E1, is just the difference in energy between the n = 3
and n = 2 levels. It is an even to odd transition that is dipole-allowed.

The next three excited states of the four electron system have energy,

E2nd e.s. = E1 + 2E2 +E3

=
�
1 + 2× 22 + 32

�
E1

= 18E1,

E3rd e.s. = 2E1 + 2E3

=
�
2 + 2× 32

�
E1

= 20E1

and

E4th e.s. = 2E1 +E2 +E4

=
�
2 + 22 + 42

�
E1

= 22E1.

However, transitions to these levels are dipole-forbidden. The first of these
requires a 1 to 3 transition - an odd to odd - while the last requires a 2 to 4
transition - an even to even. The third excited state is also dipole-forbidden
- it requires two electrons to make transitions simultaneously. This is dipole-
forbidden for independent electron systems.

3.4.2 Many electrons in a three dimensional box

Now, we let the box be three dimensional - in particular a cubic box; a = b = c.
In this case, the first three one-particle energy levels are

E1 = E1,1,1 =
�
12 + 12 + 12

�
ǫ1

= 3ǫ1,
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E2 = E1,1,2 =
�
12 + 12 + 22

�
ǫ1

= 6ǫ1

and

E3 = E1,2,2 =
�
12 + 22 + 22

�
ǫ1

= 9ǫ1

where

ǫ1 =
�
2π2

2ma2
.

The second and third energy levels are triply degenerate. The three distinct
permutations of the indices 1,1,2 and 1,2,2 produce the same energy. Thus, the
first two energy levels can accomodate eight electrons. The ground and first
excited state energies of eight electron in this box are

Eg.s. = 2E1 + 6E2

= (2× 3 + 6× 6) ǫ1

= 42ǫ1

and

E1st e.s. = 2E1 + 5E2 +E3

= (2× 3 + 5× 6 + 9)E1

= 45ǫ1.

Transitions to the first excited state are dipole-allowed, involving an nx = 1 to
2 (or, for ny or nz) transition of one electron from the E2 to the E3 level. The
energy difference is 3ǫ1.

3.4.3 Many electrons in a one dimensional well

We return to electrons in one dimension - this time in a well with finite depth.
The finite well depth allows the system to model ionization processes - the
electrons can escape. We determine the ionization energy and electron affinity
for a system of four independent electrons in the well depicted in Figure 3.6.
These electrons occupy the bottom two one-electron levels - two electrons in
each. The ground state energy is

Eg.s. = 2E1 + 2E2

= 2
�
η21 + η22

�
ǫ1

= 2
�
12 + 22

�� ηd
ηd + 1/π

�2
ǫ1

= 10E1
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Suppose the four electron system is neutral - i.e., the well has a net charge of
+4e that binds the electrons. The (first) ionization energy, I1, is the difference
in energy between the cation ground state plus one electron at the ionization
threshold, and the ground state of the neutral system. Here, the ionization
threshold is Vd = η2d ǫ1 (= 15ǫ1 for the well depicted in Fig. 3.6).

I1 = Ecation g.s. + Vd −Eg.s.
= 2E1 +E2 + Vd − 10E1

= 6E1 + Vd − 10E1

= η2dǫ1 − 4

�
ηd

ηd + 1/π

�2
ǫ1

=

�

15− 4
15

�√
15 + 1/π

�2

�

ǫ1

= 11.584ǫ1

The (first) electron affinity, A1, is the difference in energy between the anion
ground state, and the neutral system plus one electron at the ionization thresh-
old.

A1 = Eanion g.s. − (Eg.s. + Vd)

= 2E1 + 2E2 +E3 − 10E1 − Vd
= 19E1 − 10E1 − Vd

= 9

�
ηd

ηd + 1/π

�2
ǫ1 − η2dǫ1

=

�

9
15

�√
15 + 1/π

�2 − 15

�

ǫ1

= −7.3151ǫ1

The electron affinity is negative - the third one-electron level is below the ion-
ization threshold. If the neutral system had eight electrons, than it would have
a positive electron affinity. There is no fifth one-electron level for the well un-
der consideration. However, there are resonance states - as seen in Sec. 3.2.3.
These resonance states decay rapidly, as they connect to a unit intensity outgo-
ing beam. However, if there were a barrier - as in Sec. 3.2.4 - then the lowest
energy resonance state could decay slowly, and a positive electron affinity can
be defined. This is analogous to the electron affinities of alkaline earth metals,
and nitrogen. The positive electron affinity results because, for these atoms,
the anion ground state is actually a resonance state which autoionizes with a
certain rate.

Many electrons in boxes or wells provide models for quantum dots - nanocrys-
tals of a semiconductor. While the electrons are delocalized within the quantum
dot, they are confined to the dot. The quantum dot can be a colloidal particle,
or a nano-sized island etched into the surface of an oxide coated semiconduc-
tor. Quantum dots can also exist in semiconductor heterostructures - layered
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Figure 3.9: Quantum dots, in aqueous suspension, emitting light. Fre-
quency varies continuously with the size of the dots - increasing from left
to right. [From: http://en.wikipedia.org/wiki/Quantum_dot#/media/
File:Quantum_Dots_with_emission_maxima_in_a_10-
nm_step_are_being_produced_at_PlasmaChem_in_a_kg_scale.jpg.
Retrieved May 8, 2015]

materials that can produce confinement in the direction of layering. Quantum
dots are so small that hold a limited number of electrons, with well separated
energy levels. Transition frequencies of quantum dots can be finely tuned by
adjusting the size of the dot - L or a in the models considered above. The
principle transition frequency in the above models is inversely proportional to
L2 (or a2) - recall, ǫ1 = �

2π2/
�
2mL2

�
. Figure 3.9 shows ZnCdSeS colloidal

quantum dots in a liquid suspension. The quantum dots are larger in each suc-
cessive suspension - from left to right. Since these quantum dots are emitting
light (they have been excited), we see the color shift from violet for the smallest
quantum dots - with the largest energy spacings - to red for the largest quantum
dots - with the smallest energy spacings.

Example 3.3. Consider a particle in the n th energy eigenstate of a one dimensional well.
Approximate energy eigenvalues and eigenfunctions are given in Eqs. 3.17
and 3.23 , respectively. Note that the normalization constant,

�
2/L, in

only an approximation. For probability calculations, this constant must
be corrected.

(a) Determine the normalization contant, C, given the form of the n th
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energy eigenstate,

ψn (x) ∼=






C sin
�

ηd
ηd+1/π

nπx
L

�
, 0 < x < L

C (−1)n+1n
ηd+1/π

exp

�

−
�
η2d − n2

�
ηd

ηd+1/π

�2�1/2
π(x−L)

L

�

, L < x
.

(b) Determine a formula (depending on n, L and ηd) for the probability
that a measurement of the position of the particle will yield a value
outside the well.

(c) Evaluate the probability determined in part b, for the n = 1 and 4
states of the particle in a well depicted in Fig. 3.6 - L = 1, Vd = 15ǫ1.

(d) How do you expect the expectation of x for a particle in the well to
compare with the expectation value of x in the corresponding particle
in a box state - i.e., L/2? Which state - the ground state, n = 1, or
the top state, n = 4 - has the largest x expectation value?

Solution 3.3. (a) The normalization condition takes the form,

1 =

� ∞

0

|ψn|2 dx

=

� L

0

|ψn|2 dx+

� ∞

L

|ψn|2 dx

= |C|2
�� L

0

sin2
�ηnπx
L

�
dx+

�
ηn
ηd

�2 � ∞

L

exp

�
−2

�
η2d − η2n

�1/2 π (x− L)
L

�
dx

�

The first integral in the second line is determined as follows:

� L

0

sin2
�ηnπx
L

�
dx

=
1

2

� L

0

�
1− cos

�
2ηnπx

L

��
dx

=
1

2

�

L−
� L

0

cos

�
2ηnπx

L

�
dx

�

=
1

2

�

L− L

2ηnπ

�
sin

�
2ηnπx

L

��L

0

�

=
L

2

�
1− [sin (2ηnπ)− 0]

2ηnπ

�

=
L

2

�
1− sin (2ηnπ)

2ηnπ

�
.
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The second integral gives

� ∞

L

exp

�
−2

�
η2d − η2n

�1/2 π (x− L)
L

�

=
−L

2 (η2d − η2n)
1/2
π

�
exp

�
−2

�
η2d − η2n

�1/2 π (x− L)
L

��∞

L

=
L

2 (η2d − η2n)
1/2
π
.

Altogether, we have

1 =

� ∞

0

|ψn|2 dx

= |C|2
�
L

2

�
1− sin (2ηnπ)

2ηnπ

�
+

�
ηn
ηd

�2
L

(η2d − η2n)
1/2
π

�

=
L

2
|C|2

�

1− sin (2ηnπ)

2ηnπ
+

η2n

η2d (η2d − η2n)
1/2
π

�

,

or

C =

�
2

L

�1/2�

1− sin (2ηnπ)

2ηnπ
+

η2n

η2d (η2d − η2n)
1/2
π

�−1/2
.

(b) The probability that the particle is outside the well is given by

Poutside =

� ∞

L

|ψn|2 dx

= C2
�
ηn
ηd

�2 � ∞

L

exp

�
−2

�
η2d − η2n

�1/2 π (x− L)
L

�
dx

=
L

2
C2

η2n

η2d (η2d − η2n)
1/2
π

from part a

=
η2n

η2d (η2d − η2n)
1/2
π

�

1− sin (2ηnπ)

2ηnπ
+

η2n

η2d (η2d − η2n)
1/2
π

�−1
.

(c) For the well with L = 1 and Vd = 15ǫ1, η2d = 15, and

ηd
ηd + 1/π

=

√
15√

15 + 1/π
= 0.92405.

In this case,

η1 = 0.92405
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and

η4 = 4× 0.92405

= 3.6962.

For the ground state, n = 1,

Poutside

=
0.924052

15 (15− 0.924052)1/2 π

�

1−sin (2× 0.92405π)

2× 0.92405π
+

0.924052

15 (15− 0.924052)1/2 π

�−1

=
4.82× 10−3

1.0791 + 4.82× 10−3
= 4.45× 10−3.

For the top state, n = 4,

Poutside

=
16× 0.924052

15 (15− 16× 0.924052)1/2 π

�

1−sin (8× 0.92405π)

8× 0.92405π
+

16× 0.924052

15 (15− 16× 0.924052)1/2 π

�−1

=
0.25063

1.0406 + 0.25063
= 0.1941.

The particle is much more likely to be found outside the well when
in the top state, rather than the ground state.

(d) The expectation of position for a particle in the n th state is

� ∞

0

x |ψn|2 dx

=

� L

0

xψ2ndx+

� ∞

L

xψ2ndx

= C2

�� L

0

x sin2
�ηnπx
L

�
dx+

�
ηn
ηd

�2 � ∞

L

x exp

�
−2

�
η2d − η2n

�1/2 π (x− L)
L

�
dx

�

.

The first integral is like the expectation value of a particle in a box,
except that the sine function does not quite reach zero at the right
boundary - the miss is more prounounced for larger n values. This
means the position probability density is shifted a higher values - in
comparison with the particle in a box state. The associated mean -
the x expectation - is larger for this distribution. The second integral
is an exponential integral that can be evaluated using integration by
parts. Here, we note that it shifts the x expectation to higher values.
The shift increases with energy, as the prefactor increases and the
exponential decay is slower. Overall, the x expectation associated
with a particle in a well energy eigenstates increases with energy, and
is always
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Example 3.4. Consider a three dimensional box with sides, a = 2b and c = b. Suppose
�
2π2/

�
2mb2

�
= 1.00 eV, where m is electron mass.

(a) Determine the lowest five energy levels and the associated degenera-
cies for an electron in this box.

(b) What are the ground and first excited state energies of ten indepen-
dent electrons in the box?

(c) Suppose now that there are eight independent electrons in the box.
What are the two lowest dipole-allowed absorption frequencies?

Solution 3.4.

(a) The energy levels have given by

Enx,ny,nz = n2x
�
2π2

2ma2
+ n2y

�
2π2

2mb2
+ n2z

�
2π2

2mb2

=
n2x
4

+ n2y + n2z eV.

The ground state energy,

E1,1,1 = 2.25 eV,

is non-degenerate. The next three energy levels are

E2,1,1 = 3.00 eV,

E3,1,1 = 4.25 eV,

E1,2,1 = E1,1,2 = 5.25 eV

and
E4,1,1 = 6.00 eV.

Only the second highest of these, 5.25 eV, is degenerate - it is doubly
degenerate.

(b) Ten electrons would completely fill the first four energy levels found
in part a. The associated ground state energy is

Eg.s. = 2×E1,1,1 + 2×E2,1,1 + 2×E3,1,1 + 4×E1,2,1
= 40.00 eV.

The first excited state energy is

E1st e.s. = 2×E1,1,1 + 2×E2,1,1 + 2×E3,1,1 + 3×E1,2,1 +E4,1,1

= 40.00 − 5.25 + 6.00 eV

= 40.75 eV.

This excited state here corresponds to an excitation of an electron
from 1, 2, 1 (or 1, 1, 2) to 3, 1, 1.
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(c) If there are eight electrons in the box, then the ground state energy
would be

Eg.s. = 2×E1,1,1 + 2×E2,1,1 + 2×E3,1,1 + 2×E1,2,1
= 29.50 eV.

Excited states that are dipole-allowed involve the transition of one
electron. It must also involve the change of only one quantum num-
ber. The transition integral is zero if more than one more quantum
number changes. This results because the three dimensional transi-
tion integral factors into three one dimensional integrals. In three
dimensions, the dipole moment is linear in x, y and z. The x term
connects (i.e., produces a non-zero integral) states differing in only
nx. If the ny or nz quantum numbers are different in the two states,
the y or z integral is zero - the distinct states of a particle in a
one dimension are orthogonal. Similarly, the y and z tems connect
states differing in ny and nz, respectively - while the other quantum
numbers do not change. Thus, we look for allowed changes in a
quantum number. For the particle in a box, the lowest frequency
dipole-allowed transitions are for ∆n = 1 and 3. The energy spac-
ings are smallest for the x degree of freedom. However, the lowest
energy transition available is nx = 3 to 4; i.e., 3, 1, 1 to 4, 1, 1. This
transition produces the higher energy excited state,

Ee.s. = 2×E1,1,1 + 2×E2,1,1 +E3,1,1 + 2×E1,2,1 +E4,1,1

= 29.50− 4.25 + 6.00 eV

= 31.25 eV.

Here, ∆E = 6.00− 4.25 eV = 1.75 eV. The 3, 1, 1 to 6, 1, 1 is much
higher in energy, ∆E = 9.00 − 4.25 eV = 4.75 eV. Because there
is still room for two more electrons at the 1, 2, 1 energy level, the
lowest energy ∆n = 1 transition for ny (or nz), is 1, 1, 1 to 1, 2, 1,
with energy, ∆E = 4.00 − 1.00 eV = 3.00 eV. This is the lowest
energy dipole-allowed transition. It results in the excited state with
energy,

Ee.s. = E1,1,1 + 2×E2,1,1 + 2×E3,1,1 + 3×E1,2,1
= 29.50− 1.00 + 4.00 eV

= 32.50 eV.

= 30.50 eV.

The two lowest allowed transition frequencies are given by ν = ∆E/h.
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Chapter 4

Vibrations of a diatomic

molecule

Here, we jump to the diatomic molecule - two atoms bound together by shared
electrons in covalent bond(s). Diatomic molecules vibrate and rotate, while
their enter of mass travels freely. To treat these motions using quantum me-
chanics, we must treat all the particles - all the electrons, and the two nuclei.
However, because electrons are so much lighter than nuclei, they move much
faster. The diatomic molecule is well-modeled by first solving the Schrödinger
equation for the electrons in the diatomic molecule - see Sec. XX - for all dis-
tances between the nuclei. The resulting electronic ground state energy, as a
function of distance between the nuclei, becomes the potential energy that binds
the nuclei together. We suppose that the electronic portion of the Schrödinger
equation has been solved, and the Schrödinger equation for two nuclei has a po-
tential energy that depends only on the distance between the nuclei. Since we
have two particles in three dimensional space, there are six degrees of freedom
in total - three coordinates for each nucleus. The TISE is a partial differential
equation in six coordinates. However, it is subject to separation of variables.

4.1 Relative and center of mass motion

The Hamiltonian has the form,

Ĥ =
1

2m1
p̂21 +

1

2m2
p̂22 + V (r) ,

where p̂1 and p̂2 are the momentum operators (each a three component vector)
for nucleus 1 and nucleus 2. These momentum operators are conjugate to the
position vectors, x1 and x2 of the two nuclei;

p̂j = −i� ∂

∂xj

95



96 CHAPTER 4. VIBRATIONS OF A DIATOMIC MOLECULE

is the gradient with respect to the coordinates of the j th atom (nucleus). Since
the potential depends only on

r = �x2 − x1� ,

we change variables to relative and center of mass variables,

x = x2 − x1

and

X =
m1x1 +m2x2

M
,

respectively. M = m1 +m2 is the total mass. To transform the momentum
operators, we must express p̂1 and p̂2 is terms of

p̂ = −i� ∂
∂x

and

P̂ = −i� ∂
∂X

,

the momenta conjugate to the relative and center of mass coordinates, respec-
tively. Using the chain rule,

p̂1 = −i� ∂

∂x1

= −i�
�
∂x

∂x1

∂

∂x
+
∂X

∂x1

∂

∂X

�

= −i�
�
− ∂

∂x
+
m1

M

∂

∂X

�

= −p̂+
m1

M
P̂

and

p̂2 = −i� ∂

∂x2

= −i�
�
∂x

∂x2

∂

∂x
+
∂X

∂x2

∂

∂X

�

= −i�
�
∂

∂x
+
m2

M

∂

∂X

�

= p̂+
m2

M
P̂.

Here, the derivatives, ∂x/∂x1, ∂x/∂x2, ∂X/∂x1 and ∂X/∂x2 are Jacobi matri-
ces, and terms like ∂x

∂x2
∂
∂x are matrix vector products.
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Substituting the above expressions into the Hamiltonian expression gives

Ĥ =
1

2m1

�
−p̂+

m1

M
P̂
�2

+
1

2m2

�
p̂+

m2

M
P̂
�2

+ V (r)

=
1

2m1

�
p̂2 − 2m1

M
p̂T P̂+

m2
1

M2
P̂2

�
+

1

2m2

�
p̂2 +

2m2

M
p̂T P̂+

m2
2

M2
P̂2

�
+ V (r)

=
1

2

�
1

m1
+

1

m2

�
p̂2 +

(m1 +m2)

2M2
P̂2 + V (r)

=
1

2m
p̂2 +

1

2M
P̂2 + V (�x�) ,

where
m =

m1m2

M

is called the reduced mass. Since the Hamiltonian is the sum of two operators -
one that acts only affects functions of x, and another that affects only functions
of X - the TISE separates into two independent equations - one for the relative
configuration of atoms, and another for the center of mass. Specifically, let

ψ (x,X) = ψrel (x)ψcen (X)

and note that the TISE separates into

�
1

2m
p̂2 + V (�x�)

�
ψrel (x) = Erelψrel (x) (4.1)

and
1

2M
P̂2ψcen (X) = Ecenψcen (X) . (4.2)

E = Ecen +Erel.

4.1.1 Center of mass motion

The center of mass TISE - Eq. 4.2 above - in turn separates into three indepen-
dent TISE’s - one for each dimension of space;

ψcen (X) = ψcen, X (X)ψcen, Y (Y )ψcen, Z (Z) ,

1

2M
P̂ 2Xψcen, X (X) = Ecen, Xψcen, X (X) , etc. (4.3)

and
Ecen = Ecen, X +Ecen, Y +Ecen, Z .

The energy eigenvalues are not quantized, as the center of mass motion is un-
bound. The center of mass motion is the motion of a free particle in three
dimensions - there is no potential energy. For each coordinate, there are two
states - plane waves corresponding to forward and backward motion - for each
energy eigenvalue, Ecen, X, Y or Z > 0. The only boundary condition here is the
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y

x

(x. y, z)  =  (r cosφ sinθ, r sinφ sinθ, r cosθ)

θ

φ

z

r

r  =  (x2 + y2  + z2)1/2

θ  =  cos-1(z / r)

φ  =  tan-1(y / x)

Figure 4.1: Cartesian coordinates in terms of spherical coordinates - and vice
versa.

requirement that the wavefunction not blow up (i.e., diverge to ∞) for all X
(Y or Z) from −∞ to +∞. For energy less than zero one solution blows up
at −∞ while the other blows up at +∞. Since both of these solutions are
inadmissable, negative energies are not eigenvalues of the Hamiltonian. For
energy greater than or equal to zero, the plane wave solutions are

ψcen (X) = exp

�

i

�
2MEcen, X

�
X

�

exp

�

i

�
2MEcen, Y

�
Y

�

exp

�

i

�
2MEcen, Z

�
Z

�

.

4.2 Relative motion - angular and radial

The relative TISE - Eq. 4.1 above - also further separates. Here, we must change
variables - this time from Cartesian (x, y and z) to spherical coordinates, (r, θ
and φ) defined in Figure 4.1.

This transformation requires many steps - see the Appendix, Sec. 4.6. The
key results are Eqs. 4.13 and 4.14 which express the relative kinetic energy
in spherical coordinates. Since the potential depends only on r, the relative
Hamiltonian is now expressed as the sum of angular and radial Hamiltonians.
The only trouble here is that the angular Hamiltonian depends on r (it has
a 1/r2 prefactor). Nevertheless, the relative energy eigenfunctions are still
poducts of radial and angular parts,

ψ (r, θ, φ) = ψr (r)Y (θ, φ) .
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Substituting this form into the TISE for the relative motion gives

�
− �

2

2m

�
∂2

∂r2
+

2

r

∂

∂r

�
+ V (r) +

1

2mr2
L̂2
�
ψr (r)Y (θ, φ) = Eψr (r)Y (θ, φ) .

If Y (θ, φ) is an eigenfunction of L̂2, i.e.,

L̂2Y (θ, φ) = L2Y (θ, φ) ,

then we can divide the above equation by Y (θ, φ) to get

Eψr (r) =

�
− �

2

2m

�
∂2

∂r2
+

2

r

∂

∂r

�
+ V (r)

�
ψr (r) + ψr (r)

1

2mr2
L̂2Y (θ, φ)

Y (θ, φ)

=

�
− �

2

2m

�
∂2

∂r2
+

2

r

∂

∂r

�
+ V (r)

�
ψr (r) + ψr (r)

1

2mr2
L2Y (θ, φ)

Y (θ, φ)

=

�
− �

2

2m

�
d2

dr2
+

2

r

d

dr

�
+ V (r) +

L2

2mr2

�
ψr (r) .

This is almost the TISE for a particle in one dimension - the kinetic energy has
an extra term. The potential energy consists of the potential, V (r), which binds
the atoms, and an effective potential - the centrifugal potential energy - which
pulls the atoms apart. The centrifugal potential is proportional to angular
momentum squared. It it inversely proportional to r2. The centrifugal force -
minus the derivative of the centrifugal potential - drops off as 1/r3. It is largest
when the rotating atoms are closest together (c.f., a figure skater pulling their
arms and leg in to spin faster).

The kinetic energy portion of the above radial TISE can be simplified by
making the substitution,

ψr (r) =
1

r
ϕ (r) ,

to get

�
− �

2

2m

�
d2

dr2
+

2

r

d

dr

�
+ V (r) +

L2

2mr2

�
1

r
ϕ (r) = E

1

r
ϕ (r)
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or

Eϕ (r) = −�
2r

2m

�
d2

dr2
+

2

r

d

dr

�
1

r
ϕ (r) +

�
V (r) +

L2

2mr2

�
ϕ (r)

= −�
2r

2m

�
d

dr
+

2

r

�
d

dr

1

r
ϕ (r) +

�
V (r) +

L2

2mr2

�
ϕ (r)

= −�
2r

2m

�
d

dr
+

2

r

��
− 1

r2
ϕ (r) +

1

r

d

dr
ϕ (r)

�
+

�
V (r) +

L2

2mr2

�
ϕ (r)

= −�
2r

2m

�
2

r3
ϕ (r)− 2

r2
d

dr
ϕ (r) +

1

r

d2

dr2
ϕ (r)− 2

r3
ϕ (r) +

2

r2
d

dr
ϕ (r)

�

+

�
V (r) +

L2

2mr2

�
ϕ (r)

= − �
2

2m

d2

dr2
ϕ (r) +

�
V (r) +

L2

2mr2

�
ϕ (r)

=

�
− �

2

2m

d2

dr2
+ V (r) +

L2

2mr2

�
ϕ (r) ,

the TISE for a mass, m, particle in one dimension subject to the potential,
V (r) + L2/

�
2mr2

�
.

Example 4.1. Consider the following Hamiltonians:

Ĥ1 =
p̂2x
2

+
p̂2y
2
,

Ĥ2 =
p̂2x
2

+
p̂2y
2x

and

Ĥ3 =
p̂2x
2

+
p̂2y
2

+ xy.

(a) For which of these Hamiltonians can the eigenfunctions can be writ-
ten as a product of a function of x and a function of y?

(b) For those that can, determine the eigenvalue equations satisfied by
the functions of x and y. What is the relationship between the
associated eigenvalues, and the eigenvalues of the Hamiltonian?

Solution 4.1.

(a) The first Hamiltonian is separable. It is a sum of operators that each
only affect functions of one variable. Its eigenfunctions are products
of functions of just x and just y. The second Hamiltonian has a 1/x
factor in front of the operator that, otherwise, acts on functions of
just y. Nevertheless, the eigenfunctions are still products of functions
of just x and just y. The third Hamiltonian has a potential energy
term that couples x and y. The eigenfunctions of this Hamiltonian
are not products of one variable wavefunctions.
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(b) For the first Hamiltonian, the eigenfunctions have the form

ψ (x, y) = ψx (x)ψy (y) ,

where
p̂2x
2
ψx (x) = Exψx (x) ,

p̂2y
2
ψy (y) = Eyψy (y)

and the eigenvalues of Ĥ1 are sums of the p̂
2
x/2 and p̂

2
y/2 eigenvalues;

E = Ex +Ey.

For the second Hamiltonian, we still have

ψ (x, y) = ψx (x)ψy (y) ,

where
p̂2y
2
ψy (y) = Eyψy (y) .

Substituting this into the Ĥ2 eigenvalue equation gives

Ĥ2ψ (x, y) = Eψ (x, y)
�
p̂2x
2
ψx (x)

�
ψy (y) +

1

x
ψx (x)

�
p̂2y
2
ψy (y)

�

= Eψx (x)ψy (y)

�
p̂2x
2
ψx (x) +

Ey

x
ψx (x)

�
ψy (y) = Eψx (x)ψy (y)

�
p̂2x
2

+
Ey

x

�
ψx (x) = Eψx (x)

The eigenvalues of Ĥ2 are the eigenvalues of the ψx (x) eigenvalue
equation. The eigenvalues of p̂2y/2 appear as a parameter - the
coefficient of the 1/x effective potential term. There is a set of E
eigenvalues for each Ey eigenvalue.

4.3 The quantum harmonic oscillator

The radial relative motion of the diatomic molecule is the molecular vibration.
Typically, the binding potential, V (r), consists of a narrow well restricting r to
a narrow range about the mean bond distance between the two atoms - as long
as there is limited vibrational energy. In this case, the centrifugal potential can
be approximated as a constant,

L2

2mr2
∼= L2

2mr20
=
L2

2I0
,
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where r0 is equilibrium bond distance (where V (r) is a minimum), and I0 =
mr20 is the associated equilibrium moment of inertia of the diatomic molecule.
Now, the angular kinetic energy (which we investigate later - see Chapter 5)
simply adds a constant term to the total relative energy. For now, we leave
out this energy and solve for the vibrational energy eigenvalues and associated
eigenfunction, ϕ (r). Further, we Taylor-expand V (r) about r0 and keep only
the terms up to quadratic. Here, we set V (r0) = 0, which corresponds to
choosing the equilibrium bond distance as the reference configuration for the
vibrational energy. Also, because V (r) has a minimum at r = r0, the first
derivative of V (r) is zero at r = r0. Thus, only the second derivative term
remains and the vibrational TISE takes the form,

�
− �

2

2m

d2

dr2
+

1

2
V ′′ (r0) (r − r0)2

�
ϕ (r) = Evibϕ (r) .

Now, we make the substitution, x = r − r0, which gives the TISE for the
harmonic oscillator,

Ĥvibψvib (x) =

�
− �

2

2m

d2

dx2
+
k

2
x2
�
ψvib (x) = Evibψvib (x) , (4.4)

where

k = V ′′ (r0)

is the force constant of the harmonic oscillator, and

ψvib (x) = ϕ (r0 + x)

is just the wavefunction expressed in terms of displacement from equilibrium.
Note that variable x is re-purposed here, as the displacement of bond length
from equilbium.

There is yet another simplification. Multiplying Eq. 4.4 by m1/2/
�
�k1/2

�

gives

1

2

�

− �

(mk)1/2
d2

dx2
+

(mk)
1/2

�
x2

�

ψvib (x) =
Evib
�ω

ψvib (x)

or

Ĥψ (y) =
1

2

�
− d

2

dy2
+ y2

�
ψ (y) = ǫψ (y) (4.5)

where

y =
x

α
,

α =
�
1/2

(mk)1/4
,

ǫ =
Evib
�ω
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and

ω =

�
k

m

�1/2
.

Here, we re-purpose y and ψ.
Equation 4.5 is the scaled TISE for the harmonic oscillator. It is corresponds

to solving Eq. 4.4 with displacement from equilibrium measured in units of α,
and energy measured in units of �ω.

4.3.1 Raising and lowering operators

We solve the vibrational TISE using raising and lowering operators, â† and â,
respectively:

â† =
1√
2

�
− d
dy

+ y

�

and

â =
1√
2

�
d

dy
+ y

�
.

The idea is to try to factor the vibrational Hamiltonian - it is the sum of two
squares. The only twist is that the operators that are squared, d/dy and y, do
not commute. Consider the product, â†â - expressed here with a test function,
ϕ (y), to avoid errors in operator evaluation.

â†âϕ (y) =
1√
2

�
− d
dy

+ y

�
1√
2

�
d

dy
+ y

�
ϕ (y)

=
1

2

�
− d

2

dy2
+ y

d

dy
− d

dy
y + y2

�
ϕ (y)

=
1

2

��
− d

2

dy2
+ y2

�
ϕ (y) + y

d

dy
ϕ (y)− d

dy
yϕ (y)

�

=
1

2

��
− d

2

dy2
+ y2

�
ϕ (y) + y

d

dy
ϕ (y)− y d

dy
ϕ (y)− ϕ (y)

�

= Ĥϕ (y)− 1

2
ϕ (y) .

Therefore,

â†â = Ĥ − 1

2

or

Ĥ = â†â+
1

2
.

To use the raising and lowering operators to solve the TISE associated with Ĥ,
we need the commutation relations of â† and â with each other and with the
Hamiltonian.
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First,

�
â†, â

�
=

�
1√
2

�
− d
dy

+ y

�
,

1√
2

�
d

dy
+ y

��

=
1

2

�
− d
dy

+ y,
d

dy
+ y

�

=
1

2

��
− d
dy
, y

�
+

�
y,
d

dy

��

=

�
y,
d

dy

�

= −1.

Next,

�
Ĥ, â

�
=

�
â†â+

1

2
, â

�

=
�
â†â, â

�

= â†â2 − ââ†â
=

�
â†, â

�
â

= −â.

Similarly,

�
Ĥ, â†

�
=

�
â†â+

1

2
, â†

�

=
�
â†â, â†

�

= â†ââ† −
�
â†
�2
â

= â†
�
â, â†

�

= −â†
�
â†, â

�

= â†.

The significance of the last two commutators is made clear in the following
two arguments: Suppose ψ (y) is an eigenstate of Ĥ associated with eigenvalue,
ǫ; i.e.,

Ĥψ (y) = ǫψ (y) .

Now consider Ĥ acting on âψ (y):

Ĥâψ (y) =
�
Ĥ, â

�
ψ (y) + âĤψ (y)

= −âψ (y) + âǫψ (y)

= (ǫ− 1) âψ (y) .
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Thus, âψ (x) is also an eigenstate of the Hamiltonian, except that it is associated
with energy eigenvalue, ǫ − 1. This is why â is called a lowering operator - it
transforms ψ (x) into a lower energy eigenstate. Similarly,

Ĥâ†ψ (y) =
�
Ĥ, â†

�
ψ (y) + â†Ĥψ (y)

= â†ψ (y) + â†ǫψ (y)

= (ǫ+ 1) â†ψ (y) ;

i.e., â† is a raising operator.

4.3.2 The ground state

With the raising and lowering operators, once we have one solution to the TISE,
we can generate a ladder of solutions with higher or lower energies. So, what
remains is to find one solution. We do this by noting that there must be a lowest
energy state. In particular, there can be no solutions associated with negative
energy - i.e., below the minimum of the potential. It is possible to prove this
without raising and lowering operators. However, we need only suppose that
there cannot be states extending to arbitrarily low energies. As such, there
must be an eigenstate (or eigenstates) that cannot be lowered in energy by the
lowering operator, â. The relationship,

Ĥâψ (y) = (ǫ− 1) âψ (y) ,

is reconciled with this observation by noting that the relationship is still satisfied
if

âψ (y) = 0. (4.6)

This must be the case for any state that cannot be subject to further lowering.
The above equation is a first order differential equation that is easily solved. It
takes the form,

1√
2

�
d

dy
+ y

�
ψ (y) = 0

or

d

dy
ψ (y) = −yψ (y)

which gives

dψ

ψ
= −ydy.
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Integrating both sides of this equation (from y = 0) gives

� ψ(y)

ψ(0)

dψ

ψ
= −

� y

0

y′dy′

[lnψ]
ψ(y)
ψ(0) = −

�
1

2
y′2

�y

0

lnψ (y)− lnψ (0) = −y
2

2

ln
ψ (y)

ψ (0)
= −y

2

2

ψ (y) = ψ (0) exp

�
−y

2

2

�
.

This solution is unique to the multiplicative constant, ψ (0). This is because
solutions to the TISE (an eigenvalue equation) are only determined up to a
multiplicative constant. Imposing the normalization condition on ψ (y) deter-
mines ψ (0) - up to an arbitrary phase factor that we set equal to one. Up to
the arbitrary phase factor (present for any eigenfunction solution), the lowest
energy state is determined uniquely - i.e., there is only one lowest energy state.

The multiplicative constant, C0 = ψ (0), is determined by setting

1 =

� ∞

−∞
|ψ (y)|2 dy

= |C0|2
� ∞

−∞

�
exp

�
−y

2

2

��2
dy

= |C0|2
� ∞

−∞
exp

�
−y2

�
dy

= |C0|2 π1/2,

or

|C0| = π−1/4.

Here, we used the standard Gaussian integral,

� ∞

−∞
exp

�
−y2

�
dy = π1/2.

We now have the lowest energy state - the ground state - of the harmonic
oscillator,

ψ0 (y) = π−1/4 exp

�
−y

2

2

�
.

The arbritary phase factor is set to one to give a real ground state. The
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associated energy eigenvalue is determined by applying Ĥ. Specifically,

Ĥψ0 (y) =

�
â†â+

1

2

�
ψ0 (y)

= â†âψ0 (y) +
1

2
ψ0 (y)

= â† (0) +
1

2
ψ0 (y)

=
1

2
ψ0 (y)

= ǫ0ψ0 (y) .

The ground state energy, ǫ0, is given by

ǫ0 =
1

2
.

This corresponds to

Evib,0 =
�ω

2
,

with the units of energy made explicit. This energy is called the zero point
energy - it is the lowest energy attainable, and it is greater than the minimum
in the potential energy.

4.3.3 The excited states

The remaining eigenfunctions are determined by repeated application of the
raising operator. For example,

ψ1 (y) = C1â
†ψ0 (y) ,

where

Ĥψ1 (y) = (ǫ0 + 1)ψ1 (y)

=
3

2
ψ1 (y)

= ǫ1ψ1 (y) .

In general,

ǫυ = υ +
1

2
, υ = 0, 1, 2, . . . ,

and

Evib,υ = �ω

�
υ +

1

2

�
, υ = 0, 1, 2, . . . .

Note that while â†ψ0 (x) is an eigenfunction of Ĥ associated with eigenvalue,
ǫ1, it is not necessarily normalized. The constant, C1, is introduced to account
for normalization. In general, we let

ψυ (y) = Cυâ
†ψυ−1 (y) , (4.7)
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and determine Cυ by requiring that

�ψυ |ψυ	 = 1

which gives
�
Cυâ

†ψυ−1
��Cυâ

†ψυ−1
�

= 1

|Cυ|2
�
â†ψυ−1

��â†ψυ−1
�

= 1

|Cυ|2
�
ψυ−1

��ââ†ψυ−1
�

= 1 â† is the hermitian conjugate of â

|Cυ|2
�
ψυ−1

����â, â†
�
+ â†â

�
ψυ−1

�
= 1

|Cυ|2
�
ψυ−1

����

�
1 + Ĥ − 1

2

�
ψυ−1

�
= 1

|Cυ|2
�
ψυ−1

����

�
Ĥ +

1

2

�
ψυ−1

�
= 1

|Cυ|2
�
ψυ−1

����

�
ǫυ−1 +

1

2

�
ψυ−1

�
= 1

|Cυ|2 υ
�
ψυ−1

��ψυ−1
�

= 1

|Cυ|2 =
1

υ
or

|Cυ| = υ−1/2.
We set

Cυ = υ−1/2 (4.8)

to obtain real wavefunctions. Here, we used the fact that â is the Hermitian
conjugate of â†. This follows because −d/dy is the Hermitian conjugate of
d/dy, which follows from integration by parts - see Example 2.2c.

Example 4.2. Evaluate ψ1 (y) and ψ2 (y) by successive applications of the raising oper-
ator to ψ0 (y).

Solution 4.2. Apply â† to ψ0 (y) to get ψ1 (y):

ψ1 (y) = C1â
†ψ0 (y)

= 1−1/2
1√
2

�
− d
dy

+ y

�
ψ0 (y)

=
1√
2

�
− d
dy

+ y

�
π−1/2 exp

�
−y

2

2

�

= (2π)−1/2
�
− d
dy

exp

�
−y

2

2

�
+ y exp

�
−y

2

2

��

= (2π)−1/2 (y + y) exp

�
−y

2

2

�

= (2π)
−1/2

2y exp

�
−y

2

2

�
.



4.3. THE QUANTUM HARMONIC OSCILLATOR 109

Apply â† to ψ1 (y) to get ψ2 (y):

ψ2 (y) = C2â
†ψ1 (y)

= 2−1/2
1√
2

�
− d
dy

+ y

�
ψ1 (y)

=
1√
2

�
− d
dy

+ y

�
(2π)−1/2 2y exp

�
−y

2

2

�

= (4π)−1/2
�
− d
dy

2y exp

�
−y

2

2

�
+ 2y2 exp

�
−y

2

2

��

= (4π)−1/2
�
−2 + 2y2 + 2y2

�
exp

�
−y

2

2

�

= (4π)−1/2
�
4y2 − 2

�
exp

�
−y

2

2

�
.

The υ th energy eigenstate of the harmonic oscillator is given by

ψυ (y) = AυHυ (y) exp

�
−y

2

2

�
,

where Hυ (y) is the υ th Hermite polynomial. Hυ (y) = 1, H1 (y) = 2y, and all
remaining Hermite polynomials are obtained from the recursion,

Hυ+1 (y) = 2yHυ (y)− 2υHυ−1 (y) .

For example, H1 (y) = 4y2 − 2. The normalization constant, Aυ, is given by

Aυ = (2υπυ!)−1/2 .

4.3.4 Expectation values

Raising and lowering operators can be used to determine position and momen-
tum expectation values. For example, forming sums and differences of the
raising and lowering operators gives

â+ â† =
1√
2

�
d

dy
+ y

�
+

1√
2

�
− d
dy

+ y

�

=
√

2y

and

â− â† =
1√
2

�
d

dy
+ y

�
− 1√

2

�
− d
dy

+ y

�

=
√

2
d

dy

=

√
2i

�
p̂.
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So

y =
1√
2

�
â+ â†

�

and

p̂ = −i �√
2

�
â− â†

�
.

The position expectation value is

�ψυ |yψυ	 =
1√
2
�ψυ

���â+ â†
�
ψυ

�

=
1√
2

�
�ψυ |âψυ	+ �ψυ

��â†ψυ

��

The action of the raising operator is provided by Eqs. 4.7 and 4.8 . Specifically,

â†ψυ = C−1υ+1ψυ+1 (4.9)

= (υ + 1)1/2 ψυ+1.

To get the action of the lowering operator, use the fact that â is the Hermitian
conjugate of â†. Specifcally, we consider

�
ψυ−1 |âψυ	 =

�
â†ψυ−1 |ψυ	

=
�
υ1/2

�∗
�ψυ |ψυ	

= υ1/2

= υ1/2
�
ψυ−1

��ψυ−1
�
,

and note that

âψυ = υ1/2ψυ−1. (4.10)

Now we evaluate the position expectation

�ψυ |yψυ	 =
1√
2

�
�ψυ |âψυ	+ �ψυ

��â†ψυ

��

=
1√
2

�
υ1/2�ψυ

��ψυ−1
�

=0

+ (υ + 1)1/2 �ψυ

��ψυ+1

�

=0

�
the ψυ are

mutually orthogonal

= 0.

This comes as no surpise, since y is the scaled displacement from equilibrium -
its expectation value is zero for an energy eigenstate. The harmonic oscillator
oscillates symmetrically about equilibrium. The expectation of y2 gives the
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variance of the scaled displacement;

�ψυ

��y2ψυ

�
=

1

2
�ψυ

���
�
â+ â†

�2
ψυ




=
1

2

�
�ψυ

��â2ψυ

�
+ �ψυ

��â†2ψυ

�
+ �ψυ

��ââ†ψυ

�
+ �ψυ

��â†âψυ

��

=
1

2

�
(υ (υ − 1))1/2 �ψυ

��ψυ−2
�

=0

+ (υ (υ + 1))1/2 �ψυ

��ψυ+2

�

=0

(υ + 1) �ψυ |ψυ	
=1

+ υ�ψυ |ψυ	
=1

�

=
1

2
(2υ + 1) = υ +

1

2
.

The standard deviation of the displacement, x = αy, is just

σx = �ψυ

��x2ψυ

�1/2
=

�
υ +

1

2

�1/2
α.

α = �
1/2 (mk)−1/4 is seen to be a characteristic distance scale - smaller for

larger masses and stiffer bonds (i.e., large k).
The expectation of momentum is

�ψυ |p̂ψυ	 = −i �√
2

�
�ψυ |âψυ	 − �ψυ

��â†ψυ

��

= −i �√
2

�
υ1/2�ψυ

��ψυ−1
�

=0

+ (υ + 1)1/2 �ψυ

��ψυ+1

�

=0

�
the ψυ are

mutually orthogonal

= 0.

The expectation value of momentum is always zero for bound energy eigenstates.
The expectation of p̂2 gives the variance of scaled-displacement momentum,

�ψυ

��p̂2ψυ

�
= −�

2

2
�ψυ

���
�
â− â†

�2
ψυ




= −�
2

2

�
�ψυ

��â2ψυ

�
+ �ψυ

��â†2ψυ

�
− �ψυ

��ââ†ψυ

�
− �ψυ

��â†âψυ

��

= −�
2

2

�
(υ (υ − 1))1/2 �ψυ

��ψυ−2
�

=0

+ (υ (υ + 1))1/2 �ψυ

��ψυ+2

�

=0

− (υ + 1) �ψυ |ψυ	
=1

− υ�ψυ |ψυ	
=1

�

=
�
2

2
(2υ + 1) = �

2

�
υ +

1

2

�
.

Consequently, the standard deviation of the displacement momentum, p̂x =
−i�d/dx = p̂/α, is just

σpx =
�

α

�
υ +

1

2

�1/2
.
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The product of σx and σpx is given by

σxσpx = �

�
υ +

1

2

�
≥ �

2
,

in accord with the Heisenberg uncertainty principle. For the ground state, the
equality holds - the ground state is a minimum uncertainty wavefunction.

Example 4.3. Suppose

ψ (y) =
1√
2
(ψ0 (y) + iψ1 (y))

where ψ0 (y) and ψ1 (y) are the first two harmonic oscillator energy eigen-
states.

(a) What is the scaled energy expectation value, �ψ
���Ĥψ



, for this state?

(b) What is the scaled displacement, y, expectation value for this state?

(c) What is the uncertainty in scaled energy,

σǫ =

�
�ψ

���Ĥ2ψ


− �ψ

���Ĥψ

2�1/2

,

for this state?

(d) What are the scaled displacement, y, expectation values for the
states,

ψ+ (y) =
1√
2
(ψ0 (y) + ψ1 (y))

and

ψ− (y) =
1√
2
(ψ0 (y)− ψ1 (y))?

Solution 4.3.

(a) The energy expectation is

�ψ
���Ĥψ



=

'
1√
2
(ψ0 + iψ1)

����Ĥ
1√
2
(ψ0 + iψ1)

�

=
1

2
�ψ0 + iψ1

���Ĥψ0 + iĤψ1




=
1

2
�ψ0 + iψ1 |ǫ0ψ0 + iǫ1ψ1	

=
1

2

�
ǫ0�ψ0 |ψ0	

=1
+ ǫ1�iψ1 |iψ1	

=i∗i×1=1

�
�ψ0 |ψ1	 = 0

=
1

2
(ǫ0 + ǫ1)

=
1

2

�
1

2
+

3

2

�
= 1
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(b) The y expectation is

�ψ |yψ	 =

'
1√
2
(ψ0 + iψ1)

����
1√
2

�
â+ â†

� 1√
2

(ψ0 + iψ1)

�

=
1

2
√

2
�ψ0 + iψ1

���â+ â†
�
ψ0 + i

�
â+ â†

�
ψ1
�

=
1

2
√

2
�ψ0 + iψ1

���ψ1 + i
�
ψ0 +

√
2ψ2

�


=
1

2
√

2
(�ψ0 |iψ0	+ �iψ1 |ψ1	)

mutually orthogonal
states

=
1

2
√

2
(i− i) = 0.

(c) The calculation of the expectation of Ĥ2 is exactly the same as the
calculation of Ĥ in part a, except that ǫ0 is replaced by ǫ

2
0 and ǫ1 is

replaced by ǫ21.

�ψ
���Ĥ2ψ



=

'
1√
2

(ψ0 + iψ1)

����Ĥ
2 1√

2
(ψ0 + iψ1)

�

=
1

2
�ψ0 + iψ1

��ǫ20ψ0 + iǫ21ψ1
�

=
1

2

�
ǫ20 + ǫ21

�

=
1

2

�
1

4
+

9

4

�
=

5

4

The uncertainty in scaled energy is

σǫ =

�
�ψ

���Ĥ2ψ


− �ψ

���Ĥψ

2�1/2

=

�
ǫ20 + ǫ21

2
−
�
ǫ0 + ǫ1

2

�2�1/2

=

�
ǫ20 + ǫ21

2
− ǫ

2
0 + 2ǫ0ǫ1 + ǫ21

4

�1/2

=

�
ǫ20 − 2ǫ0ǫ1 + ǫ21

4

�1/2

=
|ǫ0 − ǫ1|

2
=
ǫ1 − ǫ0

2
=

1

2
.

(d) Calculation of the y expectation for states, ψ±, is analogous to the
calcuation for ψ in part b. Simply substitute ±1 for i in the second
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last line.

�
ψ±

��yψ±
�

=

'
1√
2
(ψ0 ± ψ1)

����
1√
2

�
â+ â†

� 1√
2

(ψ0 ± ψ1)
�

=
1

2
√

2
(�ψ0 |±ψ0	+ �±ψ1 |ψ1	)

= ± 1

2
√

2
(1 + 1) = ± 1√

2
.

Example 4.4. Consider a harmonic oscillator initially in the state,

ψ+ (y) =
1√
2

(ψ0 (y) + ψ1 (y)) .

(a) Write down the state of the system after the passage of time, t. Show
that the time evolving state is periodic. What is the frequency of
its oscillations?

(b) Show that the expectation of y is periodic. What are the amplitude
and frequency of these oscillations?

Solution 4.4.

(a) The time evolution of a wavefunction is given by writing the wave-
function as a linear combination of energy eigenstates. The coef-
ficient of each energy eigenstate is multiplied by the phase factor,
exp (−iEvib, υt/�), which depends on time. This is the solution to
the time dependent Schrodinger equation - see Sec. 2.2. The current
intial state is already written as a combination of the bottom two
energy eigenstates. At time t, we have

Ψ(y, t) =
1√
2

�
exp

�
−i�ωt

2�

�
ψ0 (y) + exp

�
−i3�ωt

2�

�
ψ1 (y)

�

=
exp

�
−iωt2

�
√

2
(ψ0 (y) + exp (−iωt)ψ1 (y)) .

The function exp (−iωt) is periodic with period, τ = 2π/ω, while
exp

�
−iωt2

�
has twice this period. Thus, the frequency of the oscil-

lations is ω/4π.

(b) See Example 4.3 b and d. The expectation of y, at time t, is given
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by

�ψ |yψ	 =

*
exp

�
−iωt2

�
√

2
(ψ0 + exp (−iωt)ψ1)

�����
1√
2

�
â+ â†

� exp
�
−iωt2

�
√

2
(ψ0 + exp (−iωt)ψ1)

(

=
exp

�
iωt2 − iωt2

�

2
√

2
�ψ0 + exp (−iωt)ψ1

���â+ â†
�
ψ0 + exp (−iωt)

�
â+ â†

�
ψ1
�

=
1

2
√

2
�ψ0 + exp (−iωt)ψ1

���ψ1 + exp (−iωt)
�
ψ0 +

√
2ψ2

�


=
1

2
√

2
(�ψ0 |exp (−iωt)ψ0	+ �exp (−iωt)ψ1 |ψ1	)

mutually orthogonal
states

=
1

2
√

2
(exp (−iωt) + exp (iωt))

=
1√
2
cos (ωt) .

This function is periodic with frequency, ω/2π. The amplitude of
the oscillations is 1/

√
2.

4.4 The classical harmonic oscillator

To best understand the properties of the harmonic oscillator eigenstates, it is
instructive to consider a classical treatment of the harmonic oscillator. In
classical mechanics, the Hamiltonian is a function of variables, x and px. The
shape of the path in the x, px plane is determined by energy conservation.

H =
1

2m
p2x +

k

2
x2 = E.

The oscillator follows a path along the ellipse determined by this equation. This
ellipse extends from −

�
2E/k to

�
2E/k in the x direction, and −

√
2mE to√

2mE in the px direction. The points,

xmin = −
�

2E/k

and
xmax =

�
2E/k

are called the turning points of the oscillator. They are found by setting
p = 0 into the above energy conservation equation. When the oscillator reaches
x = xmin or xmax, the sign of px reverses and x begins to change in the reverse
direction. Positions beyond x = xmin or xmax (i.e., x < xmin or x > xmax)
are not accesible to oscillatory. These regions are said to classically forbidden.
Since the quantum mechanical energy eigenstates are non-zero for all x from
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−∞ to ∞, the quantum harmonic oscillator exhibits barrier penetration. The
wavefunctions do, however, decay rapidly in the classically forbidden regions.
Nevertheless, there is non-zero probability for finding the oscillator in classically
forbidden configurations.

In classical mechanics, the probability density associated with position, is
just the relative amount of time spent by the oscillator at each position - over
one complete oscillation. This is proportional to the absolute value of the
velocity, at each point,

ρCM (x) ∝
1

�
2 (E − kx2/2) /m

.

The classical harmonic oscillator is more likely found near its turning points,
since the velocity goes to zero there. It is least likely to be found at the
equilibrium position where it is moving fastest.

For the ground state, the quantum position distribution (shown here in terms
of unscaled displacement, x),

|ψ0 (x)|2 =
α2

π
exp

�
−x

2

α2

�
,

is very different from the classical distribution - see Fig. 4.2 below. The
quantum ground state distribution is peaked at the equilibrium position, and
it exhibits significant penetration into classically forbidden regions.For the fifth
excited state of the harmonic oscillator, the quantum distribution begins to
resemble the classical distribution, except that it has an interference pattern -
associated with inteference between left and right going waves.For the twelfth
excited state of the harmonic oscillator, the quantum distribution oscillates -
with more oscillations - about the classical distribution.

In the high quantum number limit, the quantum distribution oscillates rapidly
between zero and twice the classical distribution. Averaging over small x in-
tervals makes the quantum distribution indistinguishable from the quantum
distribution, in the large υ limit.

The time dependence of x and px, in a classical treatement is given by solving
Hamilton’s equations:

dx

dt
=

∂H

∂px

=
px
m

and

dpx
dt

= −∂H
∂x

= −kx.
Taking the time derivative of the first equation gives

d2x

dt2
= − k

m
x
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Figure 4.2: The quantum ground state position probability density (solid) of
the harmonic oscillator, together with the classical probability density (dashed)
- for the same energy.
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Figure 4.3: The position probability density (solid) for the fifth excited state
of the harmonic oscillator, together with the corresponding classical probability
density (dashed).
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Figure 4.4: The position probability density (solid) for the twelfth excited state
of the harmonic oscillator, together with the corresponding classical probability
density (dashed).
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or
d2x

dt2
= −ω2x

which has solutions

x (t) = A cos (ωt) +B sin (ωt)

with corresponding momentum (px = mdx/dt) ,

px (t) = ωB cos (ωt)− ωA sin (ωt) .

The coefficients are determiend by the initial conditions,

A = x (0)

and

B = px (0) /ω.

Note the appearance of the angular frequency ω = (k/m)1/2, which arose in the
quantum treatment through the spacing of the vibrational energy levels, �ω.
The vibrational frequency, in cycles per second, is just

νvib =
ω

2π
=

1

2π

�
k

m

�1/2
.

4.5 Infrared spectroscopy

A diatomic molecule can make vibrational transitions by absorbing or emitting
a photon with energy,

hν = ∆E,

where ∆E = Efinal−Eintial is the transition energy difference. Transitions arise
because of coupling of the molecular electric dipole to the oscillating electric
field of light - see Sec. 6.3.1. The transition probability is proportional to the
mod-square of the transition matrix element,

�ψυ′ |µ̂e ψυ	 ,

where µ̂e is the electric dipole of the diatomic molecule. Vibrational transitions
depend upon µ̂e varying with deviation from the equilibrium geometry; i.e., µ̂e
must vary with x. Note that for small x (the usual realm of the harmonic
approximation),

µ̂e (x) = µ (x) µ̂e is a multiplication operator

= µeq +
dµ

dx
x, small x

where µeq = µ (0) is the equilibrium dipole moment of the molecule.
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The transition matrix element takes the form,

�ψυ′ |µ̂e ψυ	 = �ψυ′

����

�
µeq +

dµ

dx
x

�
ψυ

�

= µeq �ψυ′ |ψυ	+
dµ

dx
�ψυ′ |xψυ	 µeq and

dµ

dx
are constants

=
dµ

dx
�ψυ′ |xψυ	 . �ψυ′ |ψυ	 = 0 for υ′ �= υ

Thus, the transition vanishes if dµ/dx = 0 (i.e., the dipole moment does not
change with vibrational motion). For example, our atmosphere consists pre-
dominantly of nitrogen and oxygen. Because these diatomic molecules are
homonuclear, they have no electric dipole. This is true for any extension, x,
away from equilibrium. Thus, for N2 and O2, µeq = 0 and dµ/dx = 0. On
account of the latter observation, the vibrational transitions of N2 and O2 are
electric dipole forbidden. Consequently, N2 and O2 are not greenhouse gases.
Greenhouse gases absorb infrared radiation emitted from the surface of the
earth. They re-emit the radiation. However, one half of the re-emitted radia-
tion is returns to the earth, mitigating the cooling associated with the infrared
emission into space. The principle greenhouses in the earth’s atmosphere are
H2O and CO2 (CH4 is also important). Note that although CO2 has no net
electric dipole at equilibrium, bending motion (a type of vibration) gives rise to
an electric dipole. Thus, in this case, dµ/dx �= 0, where x equals displacement
of the bond angle from 180◦. CO2 exhibits electric-dipole allowed bending
transitions shifting the energy balance at the earth’s surface to make it warmer.

The transition matrix element is proportional to

�ψυ′ |xψυ	 .

Since x = αy can be written as the difference of the raising and lowering oper-
ators, the right side of the inner product takes the form,

xψυ =
α√
2

�
(υ + 1)

1/2 ψυ+1 + υ1/2ψυ−1

�

and

�ψυ′ |xψυ	 = �ψυ′

����
α√
2

�
(υ + 1)1/2 ψυ+1 + υ1/2ψυ−1

��

=
α√
2

�
(υ + 1)1/2 �ψυ′

��ψυ+1

�
+ υ1/2 �ψυ′

��ψυ−1
��

=
α√
2

�
(υ + 1)

1/2
δυ′,υ+1 + υ1/2δυ′,υ−1

�

=






α√
2
(υ + 1)1/2 , υ′ = υ + 1

α√
2
υ1/2, υ′ = υ − 1

0, otherwise

(4.11)
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This gives the selection rule for vibrational transitions:

∆υ = ±1. (4.12)

Vibrational transitions increase (case of absorption) or decrease (case of emis-
sion) the vibrational quantum number only by 1. The associated vibrational
transition frequency is given by setting the photon energy to the change in en-
ergy of the oscillator. For absorption from state υ, or emission from υ + 1, we
have

hν = Eυ+1 −Eυ

= �ω

�
υ +

3

2

�
− �ω

�
υ +

1

2

�

= �ω = hνvib .

Thus, the frequency of the light that induces a transition equals the oscillation
frequency of the classical harmonic oscillator. It is also the frequency of light
emitted by the oscillator. Because of the above selection rule, and the equal
spacing of harmonic oscillator energy eigenvalues, there is only one vibrational
transition frequency. The selection rule ensures there is only one transition
frequency for a given level. The equal spacing of levels makes this frequency
the same for all levels. Thus, excited states have the transition frequency as the
ground state. In any case, vibrational level spacings are large enough such that
at ordinary temperatures most molecules are in the vibrational ground state.
Only for low frequency vibrations, is there significant population of first excited
states (or higher).

Real diatomic molecule potentials are only quadratic close to the equilibrium
geometry. Typically, the potential is less steep than quadratic for stretched
bonds, and steeper than quadratic for compressed bonds. Deviation from a
quadratic potential is called anharmonicity. It typically results in transition
frequencies that are slightly smaller for excited states - the energy spacing ac-
tually decreases with increasing υ. Since vibrational excited state populations
are usually small at ordinary temperatures, transitions originating in vibrational
excited states - appearing at lower frequency - have small intensity. The as-
sociated absorption or emission bands are called hot bands. Note that we use
the term band to describe the manifestation of vibrational transitions in absorp-
tion of emission spectra because there is a range of frequencies absorbed/emitted
about the vibrational frequency. The structure of a band results from rotatonal
transitions that accompany vibrational transitions. The rotational transitions
are associated with the angular kinetic energy term we left out at the beginning
of this chapter - see Chapter 5.

Polyatomic molecules have multiple vibrational modes. For example, CO2
has two stretch modes - symmetric and antisymmetric combinations of the two
bond stretch vibrations - and two degenerate (they have the same frequency)
bends. Only the bending modes have dµ/dx �= 0 and produce infrared ab-
sorption spectra. In general, molecules have vibrational degrees of freedom
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that couple the displacements of all atoms from equilibrium - each degree of
freedom couples the atomic motions in specific ways. However, some of these
degrees of freedom are primarily associated with specific bond vibrations. This
occurs when the bond frequency is different from those of neighboring bonds.
Otherwise, bonds with the same frequency couple - their vibrations get mixed
together. The isolated degrees of freedom have frequencies characteristic of
specific bonds. This allows functional groups to be identified from an infrared
spectrum. Also, bonds between atoms with different electronegativity - such as
a ketone C=O - have larger electric dipoles, and larger electric dipole derivative.
They appear as strong absorption bands in infrared spectra.

Example 4.5. Which of the following matrix elements of harmonic oscillator eigenstates
are non-zero?

(a) �ψ1 |p̂ ψ1	
(b) �ψ2 |p̂ ψ1	
(c) �ψ3 |p̂ ψ1	
(d) �ψ2

��p̂2 ψ1
�

(e) �ψ3
��p̂2 ψ1

�

Solution 4.5. Matrix elements b and e are non-zero. p̂ is a linear combination of the
lowering and raising operators. It acts on ψ1 to give a combination of ψ0
and ψ2. Thus, of the first three matrix elements, only b is non-zero. A
second action of p̂ produces a combination of ψ1 and ψ3. Thus, of the
remaining matrix elements, only e is non-zero.

Example 4.6. Suppose you have a sample of diatomic molecules in their vibrational
ground and first exciting states, with populations, ρ0 and ρ1, respectively.
Using the harmonic approximation, determine the peak intensity of the 1
to 2 dipole transition relative to the 0 to 1 peak intensity.

Solution 4.6. The transition integrals we need are already evaluated in Eq. 4.11 . We
repeat the computation here for the specific transitions in question.

�ψ1 |xψ0	 = �ψ1
����
α√
2

(ψ1 + 0)

�

=
α√
2
�ψ1 |ψ1	

=1

=
α√
2

and

�ψ2 |xψ1	 = �ψ2
����
α√
2

�√
2ψ2 + ψ0

��

=
α√
2

�√
2�ψ2 |ψ2	

=1
+ �ψ2 |ψ1	

=0

�

= α.
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The peak intensities are proportional to the square of these transition
integrals, and to the population of the initial state. Therefore, the 1 to 2
peak intensity is

α2ρ1
α2

2 ρ0
= 2

ρ1
ρ0
,

relative to the 0 to 1 peak intensity. Of course, in the harmonic ap-
proximation, these transitions occur at the same frequency. However,
high resolution gas phase spectroscopy can easily resolve the small shift in
frequency due to anharmonicity. Thus, the 1 to 2 hot appears in a real
spectrum with intensity about double the excited state population relative
to the ground state.

4.6 Appendix: kinetic energy in spherical coor-

dinates

To get the relative kinetic energy in Cartesian coordinates we need to express
the derivative operators, ∂/∂x, ∂/∂y and ∂/∂z in terms of derivatives with
respect to spherical coordinates. This is done using the chain rule. It requires
the derivatives of the spherical coordinates in terms of Cartesian coordinates.
Specifically,

∂θ

∂x
=

∂θ

∂ cos θ

∂ cos θ

∂x

= − 1

sin θ

∂

∂x

z

(x2 + y2 + z2)1/2

=
1

sin θ

xz

(x2 + y2 + z2)3/2

=
1

sin θ

cosφ sin θ cos θ

r

=
cosφ cos θ

r
,

∂θ

∂y
=

∂θ

∂ cos θ

∂ cos θ

∂y

= − 1

sin θ

∂

∂y

z

(x2 + y2 + z2)1/2

=
1

sin θ

yz

(x2 + y2 + z2)3/2

=
sinφ cos θ

r
,
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∂θ

∂z
=

∂θ

∂ cos θ

∂ cos θ

∂z

= − 1

sin θ

∂

∂z

z

(x2 + y2 + z2)1/2

= − 1

sin θ

�
1

(x2 + y2 + z2)1/2
− z2

(x2 + y2 + z2)3/2

 

= − 1

sin θ

1− cos2 θ

r

= −sin θ

r
,

∂φ

∂x
=

∂φ

∂ tanφ

∂ tanφ

∂x

=
1

sec2 φ

∂

∂x

y

x

= − cos2 φ
y

x2

= − cos2 φ
sinφ

r cos2 φ sin θ

= − sinφ

r sin θ
,

∂φ

∂y
=

∂φ

∂ tanφ

∂ tanφ

∂y

=
1

sec2 φ

∂

∂y

y

x

= cos2 φ
1

x

= cos2 φ
1

r cosφ sin θ

=
cosφ

r sin θ
,

∂φ

∂z
=

∂φ

∂ tanφ

∂ tanφ

∂z

=
1

sec2 φ

∂

∂z

y

x
= 0,

∂r

∂x
=

∂
�
x2 + y2 + z2

�1/2

∂x

=
x

r
= cosφ sin θ
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∂r

∂y
=

y

r

= sinφ sin θ

and

∂r

∂z
=

z

r
= cos θ.

Therefore,

∂

∂x
=

∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ

= cosφ sin θ
∂

∂r
+

cosφ cos θ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

∂

∂y
=

∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ

= sinφ sin θ
∂

∂r
+

sinφ cos θ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

and

∂

∂z
=

∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂φ

∂z

∂

∂φ

= cos θ
∂

∂r
− sin θ

r

∂

∂θ
.

Note that

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
= r cosφ sin θ

�
cosφ sin θ

∂

∂r
+

cosφ cos θ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

�

+r sinφ sin θ

�
sinφ sin θ

∂

∂r
+

sinφ cos θ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

�

+r cos θ

�
cos θ

∂

∂r
− sin θ

r

∂

∂θ

�

= r
�
cos2 φ+ sin2 φ

�
sin2 θ

∂

∂r
+
�
cos2 φ+ sin2 φ

�
sin θ cos θ

∂

∂θ

+r cos2 θ
∂

∂r
− sin θ cos θ

∂

∂θ

= r
�
sin2 θ + cos2 θ

� ∂
∂r

= r
∂

∂r
.

In terms of momentum operators, this becomes

xp̂x + yp̂y + zp̂z = −i�r ∂
∂r

= rp̂r
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which gives

r2p̂2r = (rp̂r)
2 − r [p̂r, r] p̂r

= (xp̂x + yp̂y + zp̂z)
2
+ i�rp̂r

= xp̂xxp̂x + yp̂yyp̂y + zp̂zzp̂z + 2 (yp̂yzp̂z + zp̂zxp̂x + xp̂xyp̂y) + i�rp̂r

= x2p̂2x + y2p̂2y + z2p̂2z + x [p̂x, x] p̂x + y [p̂y, y] p̂y + z [p̂z, z] p̂z

+2 (yp̂yzp̂z + zp̂zxp̂x + xp̂xyp̂y) + i�rp̂r

= x2p̂2x + y2p̂2y + z2p̂2z − i� (xp̂x + yp̂y + zp̂z) + 2 (yp̂yzp̂z + zp̂zxp̂x + xp̂xyp̂y) + i�rp̂r

= x2p̂2x + y2p̂2y + z2p̂2z + 2 (yp̂yzp̂z + zp̂zxp̂x + xp̂xyp̂y) .

Now we can write the kinetic energy operator as the sum of radial and
angular kinetic energies. The angular kinetic energy - which still depends on r
through a prefactor - takes the form,

Ĥang =
1

2mr2
L̂2. (4.13)

To see this and to find the form of the radial kinetic energy, we evaluate

L̂2 = L̂2x + L̂2y + L̂2z.

The first term, expressed in terms of Cartesan relative coordinates and mo-
menta, is given by

L̂2x = (yp̂z − zp̂y)2

= y2p̂2z − yp̂zzp̂y − zp̂yyp̂z + z2p̂2y

= y2p̂2z + z2p̂2y − yzp̂zp̂y − y [p̂z, z] p̂y − zyp̂yp̂z − z [p̂y, y] p̂z
= y2p̂2z + z2p̂2y − 2yzp̂yp̂z − (−i�) yp̂y − (−i�) zp̂z
= y2p̂2z + z2p̂2y − 2yzp̂yp̂z + i� (yp̂y + zp̂z)

The next term, L̂2y, (and subsequently L̂
2
z) is obtained from this expression by

replacing y by z and z by x (and x by y, in the subsequent step). Specifically,

L̂2y = (zp̂x − xp̂z)2

= z2p̂2x + x2p̂2z − 2zxp̂zp̂x + i� (zp̂z + xp̂x) .

and

L̂2z = (xp̂y − yp̂x)2

= x2p̂2y + y2p̂2x − 2xyp̂xp̂y + i� (xp̂x + yp̂y) .

Consequently,

L̂2 =
�
x2 + y2

�
p̂2z +

�
y2 + z2

�
p̂2x +

�
z2 + x2

�
p̂2y

−2 (yzp̂yp̂z + zxp̂zp̂x + xyp̂xp̂y) + 2i� (xp̂x + yp̂y + zp̂z)

= r2
�
p̂2x + p̂2y + p̂2z

�

−
�
x2p̂2x + y2p̂2y + z2p̂2z + 2 (yzp̂yp̂z + zxp̂zp̂x + xyp̂xp̂y)

�
+ 2i�rp̂r

= r2p̂2 − r2p̂2r + 2i�rp̂r,
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and the relative kinetic energy is given by

1

2m
p̂2 =

1

2mr2

�
L̂2 + r2p̂2r − 2i�rp̂r

�

=
1

2mr2
L̂2 +

1

2m

��
−i� ∂

∂r

�2
+

(−i�)2
r

∂

∂r

 

= Ĥang −
�
2

2m

�
∂2

∂r2
+

2

r

∂

∂r

�
. (4.14)

It is the sum of angular and radial parts.



Chapter 5

Rotations of a diatomic

molecule

5.1 Angular Momentum Eigenfunctions

In Chapter 4, we showed that the energy eigenfunctions for the relative motion
of a diatomic molecule have the form,

ψ (r, θ, φ) =
1

r
ϕ (r)Y (θ, φ) ,

where ϕ (req + x) is a harmonic oscillator energy eigenfunction of x, and Y (θ, φ)

is an eigenfunction of L̂2;

L̂2Y (θ, φ) = L2Y (θ, φ) . (5.1)

To make this equation, we need L̂2 in spherical coordinates. The components
of angular momentum are given as follows:

L̂x = yp̂z − zp̂y

= −i�
�
r sin θ sinφ

�
cos θ

∂

∂r
− sin θ

r

∂

∂θ

�

= −r cos θ
�
sinφ sin θ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

��

= −i�
��
− sin2 θ sinφ− cos2 θ sinφ

� ∂
∂θ
− cos θ cosφ

sin θ

∂

∂φ

�

= −i�
�
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

�
, sin2 θ + cos2 θ = 1

129
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L̂y = zp̂x − xp̂z

= −i�
�
r cos θ

�
cosφ sin θ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

�

−r sin θ cosφ
�
cos θ

∂

∂r
− sin θ

r

∂

∂θ

��

= −i�
�
cos2 θ cosφ

∂

∂θ
+ sin2 θ cosφ

∂

∂θ
− cos θ sinφ

sin θ

∂

∂φ

�

= −i�
�
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

�

and

L̂z = xp̂y − yp̂x

= −i�
�
r sin θ cosφ

�
sinφ sin θ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

�

−r sin θ sinφ
�
cosφ sin θ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

��

= −i�
�
cos2 φ+ sin2 φ

� ∂
∂φ

= −i� ∂
∂φ
.

The z component of angular momentum is simplest because, in spherical coordi-
nates, rotation about the z axis corresponds to simply advancing φ. Spherical
coordinates could have been defined differently, if we wished for L̂x or L̂y to
have the simplest form.

We actually need the square angular momentum components. L̂2z is easy;

L̂2z = −�2 ∂
2

∂φ2
.

For the other two components, we only need L̂2x + L̂2y. So, we write

L̂2x = −i�
�
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

��
−i�

�
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

��

= −�2
�
sin2 φ

∂2

∂θ2
+ sinφ cosφ

∂

∂θ
cot θ

∂

∂φ
+ cot θ cosφ

∂

∂φ
sinφ

∂

∂θ
+ cot2 θ cosφ

∂

∂φ
cosφ

∂

∂φ

�

= −�2
�

sin2 φ ∂2

∂θ2
+ sinφ cosφ ∂

∂θ cot θ ∂
∂φ + cot θ cosφ

�
cosφ ∂

∂θ + sinφ ∂2

∂φ∂θ

�

+cot2 θ cosφ ∂
∂φ cosφ ∂

∂φ

�
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L̂2y = −i�
�
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

��
−i�

�
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

��

= −�2
�

cos2 φ ∂2

∂θ2
− sinφ cosφ ∂

∂θ cot θ ∂
∂φ − cot θ sinφ ∂

∂φ cosφ ∂
∂θ

+cot2 θ sinφ ∂
∂φ sinφ ∂

∂φ

�

= −�2
�

cos2 φ ∂2

∂θ2
− sinφ cosφ ∂

∂θ cot θ ∂
∂φ − cot θ sinφ

�
− sinφ ∂

∂θ + cosφ ∂2

∂φ∂θ

�

+cot2 θ sinφ ∂
∂φ sinφ ∂

∂φ

�

and note that when these expressions are added, the second and fourth terms
(with inner parentheses expanded) in the two expressions cancel. The remaining
terms take the form,

L̂2x + L̂2y = −�2
��

sin2 φ+ cos2 φ
� ∂2

∂θ2
+ cot θ

�
sin2 φ+ cos2 φ

� ∂
∂θ

+ cot2 θ
�
sin2 φ+ cos2 φ

� ∂2

∂φ2

�

= −�2
�
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂φ2

�

= −�2
�
∂2

∂θ2
+

1

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

�

In principle, we would like to find the simultaneous eigenfunctions of all three
components of L̂. However, this is not possible because the components of L̂ do
not commute. From [x, p̂x] = i� (and similarly for y and z), and components
of L̂ expressed in terms of Cartesian coordinates and momenta (see Sec. 2.4.2),

�
L̂x, L̂y

�
= i�L̂z,

�
L̂y, L̂z

�
= i�L̂x

and �
L̂z, L̂x

�
= i�L̂y.

However, each component of L̂ commutes with L̂2. This can be shown using
the above commutators (also note that, in spherical coordinates, L̂z clearly
commutes with L̂2x+L̂

2
y) - see Example 5.1. Thus, it is possible to find functions

of θ and φ that are simultaneous eigenfunctions of L̂2 and one component of
L̂. We choose that component to be L̂z, as spherical coordinates are already
convenient for L̂z. Specifically, we seek

Y (θ, φ) = Θ (θ) Φ (φ)

such that

L̂2Y (θ, φ) = L2Y (θ, φ)

and
L̂zY (θ, φ) = LzY (θ, φ) .
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The latter equation is simplified by dividing by Θ(θ). Since L̂z affects only
functions of φ, Θ(θ) cancels out on both sides. The equation takes the form,

L̂zΦ(φ) = LzΦ(φ) .

This equation is easy to solve. Explicitly,

−i� ∂
∂φ

Φ(φ) = LzΦ(φ)

or
∂

∂φ
Φ(φ) =

iLz

�
Φ(φ)

which has the solution,

Φ(φ) = A exp

�
iLzφ

�

�
.

The azimuthal angle, φ, varies from 0 to 2π. For values beyond 2π, the same
points are repeated - φ is equivalent to φ−2π. Consequently, only wavefunctions
that are periodic in φ, with period 2π, correspond to physically admissable
wavefunctions. Applying this periodic boundary condition, we must have

Φ(φ+ 2π) = Φ (φ)

or

A exp

�
iLzφ

�
+

2πiLz

�

�
= A exp

�
iLzφ

�

�

exp

�
2πiLz

�

�
= 1.

This condition is satisfied if

Lz
�

= mℓ, where mℓ is any integer

where mℓ is the Lz quantum number (the orbital magnetic quantum number
when L̂ is the orbital angular momentum of an electron).

The eigenfunctions of L̂z are the functions,

Φmℓ (φ) = A exp (imℓφ) (5.2)

=
1√
2π

exp (imℓφ)

labeled by integer quantum number, mℓ. The corresponding eigenvalue is

Lz =mℓ�. (5.3)

Here we see that � is the quantum of angular momentum - Lz changes only in
increments of �. In the second line of Eq. 5.2 , the normalization constant is
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made explicit. It follows from setting
" 2π
0
|Φmℓ

(φ)|2 dφ = 1 - see the Appendix,
Sec. 5.5.

Equation 5.1 has the following explicit form, in spherical coordinates:

�
L̂2x + L̂2y + L̂2z

�
Y (θ, φ) = L2Y (θ, φ)

−�2
�
∂2

∂θ2
+

1

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
+
∂2

∂φ2

�
Θ(θ)Φ (φ) = L2Θ(θ) Φ (φ)

−�2
�
∂2

∂θ2
+

1

sin θ

∂

∂θ
+

�
1

sin2 θ
+ 1

�
∂2

∂φ2

�
Θ(θ)Φmℓ

(φ) = L2Θ(θ) Φmℓ
(φ)

−�2
�
∂2

∂θ2
+

1

sin θ

∂

∂θ
+

�
1

sin2 θ
+ 1

��
−m2

ℓ

��
Θ(θ)Φmℓ

(φ) = L2Θ(θ) Φmℓ
(φ)

−�2
�
∂2

∂θ2
+

1

sin θ

∂

∂θ
−m2

ℓ

�
1

sin2 θ
+ 1

��
Θ(θ) = L2Θ(θ) .

In the last step, we divide out Φmℓ (φ) to get an equation for Θ(θ). This equa-
tion depends solely on θ, and completes the separation of the six dimensional
TISE of two particles in three dimensional space into six TISE’s in one dimen-
sion. The twist here is that the TISE for Θ(θ) depends on mℓ, the quantum
number associated with the Lz eigenvalue equation for Φ(φ). We will solve the
above θ equation using ladder operators for the quantum number mℓ.

Let

L̂+ = L̂x + iL̂y

and

L̂− = L̂x − iL̂y.

Consider the commutators of L̂+ and L̂− with L̂z,

�
L̂z, L̂+

�
=

�
L̂z, L̂x

�
+ i

�
L̂z, L̂y

�

= i�L̂y + i
�
−i�L̂x

�

= �

�
L̂x + iL̂y

�

= �L̂+

and

�
L̂z, L̂−

�
=

�
L̂z, L̂x

�
− i

�
L̂z, L̂y

�

= i�L̂y − i
�
−i�L̂x

�

= −�
�
L̂x − iL̂y

�

= −�L̂−.
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From the first commutator, we get

L̂zL̂+Θ(θ)Φmℓ
(φ) =

�
L̂z, L̂+

�
Θ(θ) Φmℓ

(φ) + L̂+L̂zΘ(θ)Φmℓ
(φ)

= �L̂+Θ(θ) Φmℓ
(φ) + L̂+mℓ�Θ(θ)Φmℓ

(φ)

= (mℓ + 1)�L̂+Θ(θ)Φmℓ
(φ) .

This means that L̂+Θ(θ)Φmℓ
(φ) is an eigenfunction of L̂z associated with quan-

tum number, mℓ + 1. L̂+ is a raising operator. Specifically, L̂+Θ(θ)Φmℓ
(φ)

is proportional to Φmℓ+1 (φ). Similarly,

L̂zL̂−Θ(θ)Φmℓ (φ) =
�
L̂z, L̂−

�
Θ(θ)Φmℓ (φ) + L̂−L̂zΘ(θ)Φmℓ (φ)

= −�L̂−Θ(θ) Φmℓ (φ) + L̂−mℓ�Θ(θ)Φmℓ (φ)

= (mℓ − 1)�L̂−Θ(θ)Φmℓ
(φ) .

L̂− is a lowering operator which lowers the mℓ quantum number by 1.

The trick to finding the other quantum number - the quantum number as-
sociated with L̂2 - is to realize that L2z cannot exceed L

2. Since L2 is fixed,
there must be a maximum and minimum value for mℓ, which we denote by ±ℓ.
Specifically,

−ℓ ≤mℓ ≤ ℓ.

ℓ is the remaining quantum number. As such, we label Θ by ℓ and mℓ (it
depends on both of these quantum numbers), and write the simultaneous eigen-
functions of L̂2 and Lz as

Yℓ,mℓ (θ, φ) = Θℓ,mℓ (θ)Φmℓ (φ) ,

ℓ = 0, 1, 2, . . . and mℓ = −ℓ, . . . , ℓ. The ℓ quantum number is related to the
total angular momentum.

In spherical coordinates, the raising and lowering operators take the form,

L̂+ = L̂x + iL̂y

= −i�
�
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ
+ i

�
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

��

= −i�
�
i (cosφ+ i sinφ)

∂

∂θ
− cot θ (cosφ+ i sinφ)

∂

∂φ

�

= � exp (iφ)

�
∂

∂θ
+ i cot θ

∂

∂φ

�
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and

L̂− = L̂x − iL̂y

= −i�
�
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ
− i

�
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

��

= −i�
�
i (− cosφ+ i sinφ)

∂

∂θ
− cot θ (cosφ− i sinφ) ∂

∂φ

�

= � exp (−iφ)
�
− ∂
∂θ

+ i cot θ
∂

∂φ

�
.

Since there is a top state - the state for which mℓ = ℓ - it must be the solution
to the equation,

L̂+Θℓ,ℓ (θ)Φℓ (φ) = 0. (5.4)

Otherwise, L̂+ would further raise mℓ to ℓ + 1, and no such state exists. In
spherical coordinates, Eq. 5.4 takes the form,

� exp (iφ)

�
∂

∂θ
+ i cot θ

∂

∂φ

�
Θℓ,ℓ (θ)Φℓ (φ) = 0

or
�
∂

∂θ
+ i cot θ

∂

∂φ

�
Θℓ,ℓ (θ)Φℓ (φ) = 0

�
∂

∂θ
+ i cot θ (iℓ)

�
Θℓ,ℓ (θ)Φℓ (φ) = 0

�
d

dθ
− ℓ cot θ

�
Θℓ,ℓ (θ) = 0. divide by Φℓ (φ)

This equation is solved as follows:

dΘ

dθ
= ℓ cot θΘ

dΘ

Θ
= ℓ cot θdθ

�
dΘ

Θ
= ℓ

�
cot θdθ

lnΘ = ℓ

�
cos θ

sin θ
dθ

= ℓ

�
1

u
du u = sin θ

= ℓ ln (sin θ) + constant

= ln
�
sinℓ θ

�
+ constant

or
Θ(θ) = Θℓ,ℓ (θ) = Bℓ sin

ℓ θ.
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In the Appendix, Sec. 5.5, the normalization condition for Θ(θ) is shown to be
� π

0

Θ2 (θ) sin θdθ = 1

B2ℓ

� π

0

sin2ℓ+1 θdθ = 1

or
Bℓ = I

−1/2
ℓ ,

where

Iℓ =

� π

0

sin2ℓ+1 θdθ =

� π

0

sin2ℓ θ sin θdθ

= −
� π

0

�
sin2 θ

�ℓ
d cos θ

=

� 1

−1

�
1− x2

�ℓ
dx

=
ℓ (ℓ− 1) · · · 1�

ℓ+ 1
2

� �
ℓ− 1

2

�
· · · 32 × 1

2

=
2ℓ+1ℓ!

(2ℓ+ 1) (2ℓ− 1) · · · 3× 1

=
2ℓ+1ℓ!

(2ℓ+ 1)!!

= 2,
4

3
,
16

15
,
32

35
, for ℓ = 0, 1, 2, 3, . . .

Once we have the top state, we can obtain any other state (associated with
the same value of ℓ) by applying the lowering operator, L̂−. However, we still
need to express the eigenvalues of L̂2 in terms of quantum number, ℓ. To that
end, note that

L̂−L̂+ =
�
L̂x − iL̂y

��
L̂x + iL̂y

�

= L̂2x + L̂2y + iL̂xL̂y − iL̂yL̂x
= L̂2 − L̂2z + i

�
L̂x, L̂y

�

= L̂2 − L̂2z − �L̂z.
Therefore,

L̂2 = L̂−L̂+ + L̂2z + �L̂z

and

L̂2Yℓ,ℓ (θ, φ) =
�
L̂−L̂+ + L̂2z + �L̂z

�
Yℓ,ℓ (θ, φ)

= L̂−L̂+Yℓ,ℓ (θ, φ) + L̂2zYℓ,ℓ (θ, φ) + �L̂zYℓ,ℓ (θ, φ)

=
�
0 + (ℓ�)2 + � (ℓ�)

�
Yℓ,ℓ (θ, φ)

= ℓ (ℓ+ 1)�2Yℓ,ℓ (θ, φ) .
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The eigenvalues of L̂2 are ℓ (ℓ+ 1)�2 where ℓ = 0, 1, 2, . . .. There are 2ℓ + 1

states with this eigenvalue. Since
�
L̂−, L̂2

�
= 0, L̂− lowers the mℓ quantum

number without affecting ℓ. Altogether,

L̂2Yℓ,mℓ
(θ, φ) = ℓ (ℓ+ 1)�2Yℓ,mℓ

(θ, φ) , ℓ = 0, 1, 2, . . . (5.5)

and
L̂zYℓ,mℓ (θ, φ) = mℓ�Yℓ,mℓ (θ, φ) − ℓ ≤ mℓ ≤ ℓ. (5.6)

The eigenvalues, L2 = ℓ (ℓ+ 1)�2, are degenerate when ℓ > 0. The Yℓ,mℓ
(θ, φ)

are called the spherical harmonics. They are products of complex exponential
functions (in φ) and (associated) Legendre polynomials (in θ).

We now get explicit expressions for the actions of L̂+ and L̂−. Specifically,
we determine the coefficients in the following equations:

L̂−Yℓ,mℓ
= C−;ℓ,mℓ−1Yℓ,mℓ−1

and
L̂+Yℓ,mℓ = C+;ℓ,mℓYℓ,mℓ+1.

The lowering operator is the Hermitian conjugate of the raising operator - check;

L̂− = L̂†+.

Consequently,
�
L̂−Yℓ,mℓ+1

|Yℓ,mℓ
	 = �C−;ℓ,mℓ

Yℓ,mℓ
|Yℓ,mℓ

	
= C∗−;ℓ,mℓ

�Yℓ,mℓ |Yℓ,mℓ	
= C∗−;ℓ,mℓ

Yℓ,mℓ is normalized

=
�
Yℓ,mℓ+1

���L̂†−Yℓ,mℓ




=
�
Yℓ,mℓ+1

���L̂+Yℓ,mℓ




= �Yℓ,mℓ+1 |C+;ℓ,mℓ
Yℓ,mℓ+1	

= C+;ℓ,mℓ . Yℓ,mℓ+1 is normalized

Also,
�
L̂+Yℓ,mℓ

���L̂+Yℓ,mℓ



= �C+;ℓ,mℓYℓ,mℓ+1 |C+;ℓ,mℓYℓ,mℓ+1	

= |C+;ℓ,mℓ |2 �Yℓ,mℓ+1 |Yℓ,mℓ+1	 = |C+;ℓ,mℓ |2 Yℓ,mℓ+1 is normalized

= �Yℓ,mℓ

���L̂−L̂+Yℓ,mℓ



L̂†+ = L̂−

= �Yℓ,mℓ

���
�
L̂2 − L̂2z − �L̂z

�
Yℓ,mℓ




= �Yℓ,mℓ

���ℓ (ℓ+ 1)�2 −m2
ℓ�
2 −mℓ�

2
�
Yℓ,mℓ

�

= [ℓ (ℓ+ 1)−mℓ (mℓ + 1)] �2 �Yℓ,mℓ |Yℓ,mℓ	
= [ℓ (ℓ+ 1)−mℓ (mℓ + 1)] �2. Yℓ,mℓ

is normalized
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Thus,

|C+;ℓ,mℓ
| = [ℓ (ℓ+ 1)−mℓ (mℓ + 1)]1/2 �

and
C∗−;ℓ,mℓ

= C+;ℓ,mℓ .

We let C+;ℓ,mℓ
= Cℓ,mℓ

be real, but with an additional (−1)ℓ factor - i.e.,

Cℓ,mℓ = (−1)
ℓ
[ℓ (ℓ+ 1)−mℓ (mℓ + 1)]

1/2
�.

C−;ℓ,mℓ
= Cℓ,mℓ

because Cℓ,mℓ
is real.

L̂−Yℓ,mℓ
= Cℓ,mℓ−1Yℓ,mℓ−1

= (−1)
ℓ
[ℓ (ℓ+ 1)− (mℓ − 1)mℓ]

1/2
�Yℓ,mℓ−1

and

L̂+Yℓ,mℓ = Cℓ,mℓYℓ,mℓ+1

= (−1)ℓ [ℓ (ℓ+ 1)−mℓ (mℓ + 1)]1/2 �Yℓ,mℓ+1.

The s state (ℓ = 0) is the top state and bottom state of its ladder of states;

Y0,0 (θ, φ) = Θ0,0 (θ) Φ0 (φ) = (2πI0)
−1/2

= (4π)−1/2 .

It is simply a constant. Since |Y0,0|2 = (4π)−1 is constant, this is an isotropic
state with no prefered direction.

The p states (ℓ = 1) are obtained as follows: The top state is

Y1,1 (θ, φ) = Θ1,1 (θ) Φ1 (φ) = (2πI1)
−1/2 sin θ exp (iφ)

=

�
8π

3

�−1/2
sin θ exp (iφ)

Here, |Y1,1|2 = (8π/3)−1 sin2 θ is largest for θ = π/2; i.e., in the x y plane.
There are nodes at the poles - θ = 0 or π. Applying the lowering operator gives
Y1,0. Specifically,

C1,0Y1,0 = L̂−Y1,1

(−1)1 [1 (1 + 1)− 0 (0 + 1)]1/2 �Y1,0 = � exp (−iφ)
�
− ∂
∂θ

+ i cot θ
∂

∂φ

�
(2πI1)

−1/2 sin θ exp (iφ)

(2)1/2 Y1,0 = − (2πI1)
−1/2

exp (−iφ)
�
− ∂
∂θ

sin θ + (i cos θ) (i)

�
exp (iφ)

or

Y1,0 = (4πI1)
−1/2 exp (−iφ) (cos θ + cos θ) exp (iφ)

= (4πI1)
−1/2 2 cos θ

=

�
4π

3

�−1/2
cos θ
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The introduction of the (−1)ℓ factor in the definition of Y1,0 makes it a positive
function. This state is concentrated at the poles - i.e., along the z axis - with
a node in the x y plane. The bottom state is given by another application of
the lowering operator;

C1,−1Y1,−1 = L̂−Y1,0

(−1)1 [1 (1 + 1)− (−1) (−1 + 1)]1/2 �Y1,−1 = � exp (−iφ)
�
− ∂
∂θ

+ i cot θ
∂

∂φ

�
(4πI1)

−1/2 2 cos θ

(2)1/2 Y1,−1 = − (4πI1)
−1/2 2 exp (−iφ)

�
− ∂
∂θ

cos θ + 0

�

or

Y1,−1 (θ, φ) = − (2πI1)
−1/2 sin θ exp (−iφ)

= −
�

8π

3

�−1/2
sin θ exp (−iφ)

This state is concentrated in the x y plane, with the same probability density as
Y1,1 - i.e., |Y1,−1|2 = |Y1,1|2. The bottom state has the the same Θ(θ) function
as the top state, except for the sign. In general,

Yℓ,−mℓ
(θ, φ) = (−1)mℓ Y ∗ℓ,mℓ

(θ, φ) .

It is therefore sufficient to determine the spherical harmonics for 0 ≤mℓ ≤ ℓ.
It is possible to simplify the computation of the spherical harmonics by

defining the lowering operator for the Θℓ,mℓ
(θ) functions,

b̂−; ℓ,mℓ
Θℓ,mℓ

(θ) = Θℓ,mℓ−1 (θ) .

Specifically, since

(−1)ℓ [ℓ (ℓ+ 1)− (mℓ − 1)mℓ]
1/2
�Yℓ,mℓ−1 = � exp (−iφ)

�
− ∂
∂θ

+ i cot θ
∂

∂φ

�
Yℓ,mℓ ,

Θℓ,mℓ−1 (θ) (2π)
−1/2 exp (i (mℓ − 1)φ)

= (−1)ℓ [ℓ (ℓ+ 1)− (mℓ − 1)mℓ]
−1/2

�
− ∂
∂θ
−mℓ cot θ

�
Θℓ,mℓ (θ) (2π)

−1/2 exp (i (mℓ − 1)φ)

and

b̂−; ℓ,mℓ = (−1)ℓ+1 [ℓ (ℓ+ 1)− (mℓ − 1)mℓ]
−1/2

�
d

dθ
+mℓ cot θ

�
.

The raising operator for Θℓ,mℓ
(θ) is similarly defined;

b̂+; ℓ,mℓΘℓ,mℓ (θ) = Θℓ,mℓ+1 (θ) ,

b̂+; ℓ,mℓ = (−1)ℓ+1 [ℓ (ℓ+ 1)−mℓ (mℓ + 1)]−1/2
�
d

dθ
−mℓ cot θ

�
.

Also,
Θℓ,−mℓ (θ) = (−1)mℓ Θℓ,mℓ (θ) .
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Example 5.1. Determine the five ℓ = 2 spherical harmonics, Y2,mℓ
(θ, φ),mℓ = −2, . . . , 2.

Solution 5.1. Start with the top Θ2,mℓ
function.

Θ2,2 (θ) = I
−1/2
2 sin2 θ

=

�
16

15

�−1/2
sin2 θ.

Apply the lowering operator - we use the operator specific to the Θℓ,mℓ
to

simplify the calculation - to get Θ2,1.

Θ2,1 (θ) = b̂−; 2,2Θ2,2 (θ)

= (−1)3 [2× 3− 1× 2]−1/2
�
d

dθ
+ 2cot θ

��
16

15

�−1/2
sin2 θ

= −1

2

�
16

15

�−1/2
(2 cos θ sin θ + 2cos θ sin θ)

= −2

�
16

15

�−1/2
sin θ cos θ

= −
�

4

15

�−1/2
sin θ cos θ.

Another application of the lowering operator gives,

Θ2,0 (θ) = b̂−; 2,1Θ2,1 (θ)

= [2× 3− 0× 1]−1/2
�
d

dθ
+ cot θ

��
4

15

�−1/2
sin θ cos θ

=

�
6× 4

15

�−1/2 �
cos2 θ − sin2 θ + cos2 θ

�

=

�
8

5

�−1/2 �
3 cos2 θ − 1

�
.

Consequently,

Y2,2 (θ, φ) =

�
32π

15

�−1/2
sin2 θ exp (2iφ) ,

Y2,1 (θ, φ) = −
�

8π

15

�−1/2
sin θ cos θ exp (iφ) ,

Y2,0 (θ, φ) =

�
16π

5

�−1/2 �
3 cos2 θ − 1

�
,

Y2,−1 (θ, φ) =

�
8π

15

�−1/2
sin θ cos θ exp (−iφ)
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and

Y2,−2 (θ, φ) =

�
32π

15

�−1/2
sin2 θ exp (−2iφ) .

5.2 The rigid rotor

If a diatomic molecule is in its vibrational ground state (most diatomics at
ordinary temperature), it is essentially a rigid rotor with Hamiltonian,

Hrr =
1

2mr2eq
L̂2 =

1

2Ieq
L̂2,

where Ieq = mr2eq is the equilibrium moment of inertia of the molecule. This
is the term left out in Chapter 4, in order to focus on the vibrational motion.
In general, if the vibrational quantum number is not too large, the relative
Hamiltonian is the sum of vibrational and rotational Hamiltonians - the energy
eigenvalues are sums of vibrational and rotational energies. Otherwise, the
x dependence of the moment of inertia cannot be neglected. Under ordinary
conditions, this separation of vibration and rotation is a good approximation,
and the rotational energy eigenvalues are the energy eigenvalues of the rigid
rotor,

Eℓ =
ℓ (ℓ+ 1)�2

2Ieq
, ℓ = 0, 1, 2, . . . .

It is customary to use the letter J as the total angular momentum quantum
when describing molecular rotation. Quantum number ℓ is reserved for electron
orbital angular momentum. Thus, we write

Erot, J =
J (J + 1)�2

2Ieq
, J = 0, 1, 2, . . .

for the molecular rotational energy. The associated rotational eigenfunctions
are written as

YJ,MJ (θ, φ) , −J ≤MJ ≤ J.
The angular momentum operators are also denoted by the letter J .

Expectation values of Ĵx and Ĵy, for these states, can be determined by

expressing Ĵx and Ĵy in terms of Ĵ+ and Ĵ−, and then using the known action

of Ĵ+ and Ĵ− on the YJ,MJ . Since

ĴxYJ,MJ =
Ĵ+ + Ĵ−

2
YJ,MJ

=
(−1)J �

2

�
[J (J + 1)−MJ (MJ + 1)]1/2 YJ,MJ+1 + [J (J + 1)−MJ (MJ − 1)]1/2 YJ,MJ−1

�

is a linear combination of YJ,MJ+1 and YJ,MJ−1, functions orthogonal to YJ,MJ ,

�YJ,MJ

���ĴxYJ,MJ



= 0.
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Non-zero expectation values are obtained only for Ĵ2x or Ĵ
2
y which have Ĵ−Ĵ+

and Ĵ+Ĵ− terms which produce YJ,MJ . For example, consider the expectation

value of Ĵx for the top state, YJ,J .

�YJ,J
���Ĵ2xYJ,J



=

�
2

4
[J (J + 1)− J (J − 1)] �YJ,J |YJ,J	 arises from Ĵ+Ĵ−

=
�
2

2
J .

This state has the maximum possible z component of angular momentum, yet
still has x and y components. This is a manifestion of the angular momentum
commutator relationships. If the z component of angular is known, the x and y
components cannot be known - and hence cannot be zero. This means that the
angular momentum vector cannot point directly along the z axis. The 2J + 1
states, YJ,MJ correspond to angular momentum vectors of length,

�
J (J + 1)�,

with componentMJ� along z. The vector is otherwise uncertain. The possible
orientations of the angular momentum vector, for each state, maps out a cone
(or a disk, if MJ = 0). The discrete set of orientations are given by setting

cos θJ =
MJ�
J (J + 1)

.

This discretization of orientations is called space quantization. Figure 5.1 shows
the angular momentum cones for J = 2.

5.3 Rotational Spectroscopy

Dipole transitions between rotational levels are associated with changes in quan-
tum number J . DifferentMJ states with the same J value have the same energy.
Transitions between these states requires a magnetic field to split these levels.
Transitions between different J states occurs for states connected by a non-zero
transition matrix element. Suppose the oscillating electric field of incoming
light is along the z axis (this is how we could define the z axis). In this case,
the z component of the dipole moment of the molecule couples to the incoming
light. This component is evidently µz (r, θ) = µ (r) cos θ. The µ (r) factor
in this expression leads to vibrational transitions - treated in Sec. 4.5. The
cos θ factor leads to rotational transitions. However, transitions occur only
if µeq = µ (req) is non-zero - i.e., the molecule must have a permanent dipole
moment. Homonuclear diatomics consequently exhibit no rotational spectra.

For rotational transitions, the matrix elements of µeq cos θ determine the
probability of transition. To determine the selection rule for rotational transi-
tions, it is sufficient to consider the matrix elements of the form,

�YJ′,0 |cos θYJ,0	 .

The MJ = 0 state, YJ,0, is a J th order polynomial in cos θ. Multiplying by
cos θ gives a J+1 th order polynomial which can be written as a combination of
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y

Figure 5.1: Space quanitzation. The possible angular momentum vector orien-
tations associated with the Y2,MJ states, MJ = −2,−1, 0, 1, 2 (from bottom to
top).

YJ+1,0 and YJ−1,0. Consequently, the rotational transition selection rules are

∆J = ±1. (5.7)

and

∆MJ = 0. (5.8)

5.3.1 Microwave absorption spectroscopy

The change in energy associated with a ∆J = +1 transition - corresponding to
absorption of light - is given by

∆Erot, J = Erot, J+1 −Erot, J =
(J + 1) (J + 2)�2

2Ieq
− J (J + 1)�2

2Ieq

= 2 (J + 1)
�
2

2Ieq

= 2 (J + 1)Brot , (5.9)

where

Brot =
�
2

2Ieq

is called the rotational constant. Unlike the vibrational energy levels, the rota-
tional levels are not equally spaced. Consequently, even though transitions only
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Figure 5.2: An ideal microwave absorption spectrum - i.e., the rotational spec-
trum - of HCl at 400 K. The horizontal axis is wavenumbers in cm−1. The
vertical axis is peak intensity relative to the J = 0 peak.

occur between neighboring levels, there is a series of rotational transition fre-
quencies - each frequency associated with a different initial J value. Equation
5.9 shows that the frequencies, νrot, J = ∆Erot, J/h, are equally spaced. The
intensity of each peak is determined by the population of diatomic molecules
initially at level J . Since there are 2J+1 states (the differentMJ values) with
energy, Erot, J , the peak intensities are described (normalized to the J = 0 peak
intensity) by

ρrot, J (T ) = (2J + 1) exp

�
−Erot, J
kBT

�

= (2J + 1) exp

�
−J (J + 1)Brot

kBT

�
.

This is the Boltzmann distribution of rotational state populations.
Above we see the rotational spectrum of HCl at 400 K, with wavenumbers on

the horizontal axis (in cm−1). The transition peak intensities follow the shape
of ρrot, J (T ). The transition frequency associated with ground state, J = 0, is

νrot, 0 =
∆Erot, 0
h

=
2Brot
h

.

Rotational frequencies are usually reported as wavenumbers in cm−1;

ν̄rot, 0 =
νrot, 0
c

=
2Brot
hc

= 2B̄rot ,

where B̄rot is the rotational constant in wavenumbers. The wavenumber spac-
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ings between successive peaks is

∆ν̄rot = ν̄rot, J+1 − ν̄rot, J
=

∆Erot, J+1
hc

− ∆Erot, J
hc

= 2 (J + 2) B̄rot − 2 (J + 1) B̄rot

= 2B̄rot .

Thus, the rotational transitions occur at ν̄rot = 2B̄rot , 4B̄rot , 6B̄rot , . . ., with
the Boltzmann distribution providing a peak intensity envelope.

There is an overall exponential decay of peak intensities (of the form, exp
�
−αJ2

�
)

for large increasing J . However, the 2J + 1 degeneracy factor increases (with
increasing J) the number of possible transtions, giving rise to a maximum peak
intensity for J > 0. Setting dρrot, J/dJ = 0, and solving for J (choose nearest
integer) gives the J level with the highest population - the level for which the
increase in degeneracy is balanced by the exponential decrease due to increasing
energy.

dρrot, J (T )

dJ
= 2 exp

�
−J (J + 1)Brot

kBT

�
− (2J + 1)2

Brot
kBT

exp

�
−J (J + 1)Brot

kBT

�

=

�
2− (2J + 1)2

Brot
kBT

�
exp

�
−J (J + 1)Brot

kBT

�
= 0.

Because the exponential function is always positive, we can divide by the expo-
nential factor to get

2− (2J + 1)2
Brot
kBT

= 0

or

Jmax =
1

2

�
2kBT

Brot

�1/2
− 1

2

=

�
kBT

2Brot

�1/2
− 1

2
.

Microwave absorption has an important application in cooking - the mi-
crowave oven. A microwave oven produces microwave radiation tuned to the
absorption band of water in the liquid phase. The water molecules, in food,
make J to J+1 transitions - they rotate faster. The increased rotational energy
gets distributed to other degrees of freedom by collisions with other molecules.
The food gets hot.

5.3.2 The classical rigid rotor

It is instructive to consider the classical rigid rotor model of a diatomic molecule.
If the diatomic molecule has angular momentum L, then the rotational frequency
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is given by (recall that L = Ieqω, where ω = 2πνrot is the angular velocity - or
angular frequency)

νrot =
1

2π

L

Ieq
.

In classical mechanics, the rotational frequency varies continuously with angu-
lar momentum. In quantum mechanics angular momentum is quantized. If
we associate the J th level of the quantum system with a classical angular mo-
mentum, L = (J + 1)�, J = 0, 1, . . ., then the allowed rotational frequencies
are

νrot, J =
1

2π

(J + 1)�

Ieq

=
1

h

(J + 1)�2

Ieq

=
2 (J + 1)Brot

h
.

These are the quantum transition frequencies. Thus, rotational transitions
occur when the incident microwave frequency matches quantized values of the
classical rotational frequency of the diatomic molecule. Successive J value peaks
correspond to progressively larger angular momentum values - in increments of
�. This correspondence between quantum transition frequencies and classical
rotational frequencies requires identifying angular momentum, L = (J + 1)�,
with the J th transition (from level J to J + 1). This angular momentum
is the root-mean-square of the angular momenta associated with the J th and
(J + 1) th quantum states -

�
J (J + 1)� and

�
(J + 1) (J + 2)�, respectively.

Specifically,

#
J (J + 1)�2 + (J + 1) (J + 2)�2

2
=

#
(J + 1) (2J + 2)

2
�

= (J + 1)� = L.

The J th and (J + 1) th quantum states are initial and final states of the
quantum transition.

5.4 Ro-vibrational spectroscopy

The infrared spectra of diatomic molecules do not correspond to a single peak at
the vibrational frequency. The reason is that the vibrational quantum number
selection rule, ∆υ = ±1, is accompanied by the rotational quantum number
selection rule, ∆J = ±1. For example, in an infrared absorption spectrum
(∆υ = +1), the change in energy of the molecule is the change in vibrational
energy plus the change in rotational energy (a much smaller value). The change
in rotational energy cannot be zero because ∆J = 0 is not allowed. Only
∆J = +1 and ∆J = −1 transitions are possible.
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In the case of ∆J = +1, the peaks of the rotational absorption spectrum
(these lines correspond to ∆J = +1) are seen again - this time shifted by
the vibrational frequency into the infrared range. These peaks constitute the
R branch of the ro-vibrational spectrum - the gas phase infrared absorption
spectrum. The associated wavenumbers are

ν̄R,J = ν̄vib +
Erot, J+1 −Erot, J

hc
= ν̄vib + [(J + 1) (J + 2)− J (J + 1)] B̄rot

= ν̄vib + 2 (J + 1) B̄rot , J = 0, 1, 2, . . . .

The case of ∆J = −1 is not seen in the rotational absorption spectrum, but
it appears in the vibrational absorption spectrum because the sum of the change
in vibrational and rotational energy is still positive in this case. The associated
transition frequencies are below the vibrational absorption frequency because
rotational energy decreases in the transition. The transition wavenumbers in
this case are

ν̄P,J = ν̄vib +
Erot, J−1 −Erot, J

hc
= ν̄vib + [(J − 1)J − J (J + 1)] B̄rot

= ν̄vib − 2JB̄rot , J = 1, 2, . . . .

Note that there is no J = 0 transition because that is the lowest J state - it
cannot be lowered to J − 1. This series of peaks, below ν̄vib is called the P
branch of the ro-vibrational spectrum.

The Q branch - with ∆J = 0 - is forbidden for diatomic molecules, and not
seen. However, the Q branch is seen for triatomic and larger molecules. The
selection rules are ∆J = 0, or ±1, beyond diatomics.

The idealized infrared absorption spectrum of 1H35Cl is depicted below.The
horizontal axis gives the wavenumbers in units of cm−1. Note the asymmetry,
about ν̄vib = 2991 cm−1, resulting from the different initial states in the two
series - the P branch starts with J = 1, while the R branch starts with J = 0.

In real ro-vibrational spectra, there are deviations from the above idealized
spectrum. One deviation is due to centrifugal distortion. For large J states,
the angular momentum is large enough to shift the molecular equilibrium bond
distance - the molecule is stretched. This shifts the moment of inertia to
larger values. The spacing between peaks becomes J dependent, decreasing
with increasing J . The P and R branches would appear to be compressed near
the outside edges, compared to the idealized spectrum shown above.

5.4.1 Raman Spectroscopy

Raman spectroscopy has different selection rules. The transition matrix element
for a Raman transition - inelastic scattering of a UV frequency photon - is a
matrix element of the molecule polarizability which is proportional to cos2 θ.
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Figure 5.3: The idealized infrared absorption spectrum of 1H35Cl. Relative
peak intensity (relative to the R J = 0 peak) is plotted versus wavenumbers in
cm−1.

The selection rule is ∆J = 0 or ±2. The O, Q and S branches (∆J = −2, 0
and 2, respectively) are observed. Moreover, there are many vibrational modes
that are not infrared active - electric dipole does not change - that are Raman
active. The other Raman selection rule is that polarizability must change upon
vibration. The polarizability often changes when the electric dipole does not.
In fact, for centrosymmetric molecules - molecules with a center of symmetry
- Raman active modes are always infrared inactive, and vice versa - they are
mutually exclusive.

Example 5.2. Consider the superposition state,

Yx =
1

21/2
(Y1,1 − Y1,−1)

=

�
4π

3

�−1/2
sin θ cos (φ) .

(a) What is the expectation value of Ĵz for a rigid rotor in this state?

(b) Show that px is an eigenfunction of Ĵ2. What is the associated
eigenvalue?

(c) For which θ and φ is the probability density, |Yx|2, largest? In terms
of Cartesian axes, which directions are mostly likely?

Solution 5.2.
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(a) The Ĵz expectation is

�Yx
���ĴzYx



=

'
1

21/2
(Y1,1 − Y1,−1)

����Ĵz
1

21/2
(Y1,1 − Y1,−1)

�

=
1

2
�Y1,1 − Y1,−1

���ĴzY1,1 − ĴzY1,−1



=
1

2
�Y1,1 − Y1,−1 |�Y1,1 − (−�)Y1,−1	

=
�

2
(�Y1,1 |Y1,1 + Y1,−1	 − �Y1,−1 |Y1,1 + Y1,−1	)

=
�

2

�
�Y1,1 |Y1,1	

=1

+ �Y1,1 |Y1,−1	
=0

− �Y1,−1 |Y1,1	
=0

− �Y1,−1 |Y1,−1	
=1

�

= 0.

(b) Apply Ĵ2 to Yx;

Ĵ2Yx = Ĵ2
1

21/2
(Y1,1 − Y1,−1)

=
1

21/2

�
Ĵ2Y1,1 − Ĵ2Y1,−1

�

=
1

21/2
�
2�2Y1,1 − 2�2Y1,−1

�

= 2�2
1

21/2
(Y1,1 − Y1,−1)

= 2�2Yx.

px is an eigenfunction of Ĵ2, with eigenvalue 2�2.

(c) The probability density is

|Yx (θ, φ)|2 =

�
4π

3

�−1
sin2 θ cos2 (φ) .

This function is a maximum when θ = π/2 (there is only one maxi-
mum of sin2 θ in the range, 0 ≤ θ ≤ π) and φ = 0 or π (here the range
is 0 ≤ φ < 2π). θ = π/2 corresponds to the x y plane, while φ = 0 or
π correspond to the positive and negative x axis, respectively. The
density is concentrated in the directions of the positive and negative
x axis.

Example 5.3. Consider the superposition state,

Y = 2−1/2 (Y1,1 − Y0,0)

= (8π)−1/2
��

3

2

�1/2
sin θ exp (iφ)− 1

�

(a) What is the expectation value of Ĵz for a rigid rotor in this state?
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(b) Suppose Y is the state of a rigid rotor at time zero. Determine the
expectation of cosφ at the times, t = 0, h

4Bro t
and h

2Br o t
. Show that

this expectation value is periodic in time. What is the period?

Solution 5.3.

(a) The expectation value of Ĵz is

�Y
���ĴzY




= 2−1 �Y1,1 − Y0,0
���Ĵz (Y1,1 − Y0,0)




= 2−1 �Y1,1 − Y0,0
���ĴzY1,1 − ĴzY0,0




= 2−1 �Y1,1 − Y0,0 |�Y1,1 − 0× Y0,0	

= 2−1�

�
�Y1,1 |Y1,1	

=1

− �Y0,0 |Y1,1	
=0

�

=
�

2
.

(b) The time dependence of the state is given by solving the TDSE. Since
the state is already written as a sum of energy eigenstates of the rigid
rotor, the time dependence is given by applying time dependent phase
factors to the coefficients of the energy eigenstates - here, Y1,1 and
Y0,0. The phase of these factors is −Erot, J t/�. Specifically, at time
t we have

Yt = 2−1/2
�
exp

�
−iErot, 1t

�

�
Y1,1 − exp

�
−iErot, 0t

�

�
Y0,0

�

= 2−1/2
�
exp

�
−i2Brott

�

�
Y1,1 − Y0,0

�
,

since Erot, 1 = 2Brot and Erot, 0 = 0. We write this equation in the
form,

Yt = 2−1/2 (exp (−iτ)Y1,1 − Y0,0)

= (8π)−1/2
��

3

2

�1/2
sin θ exp (i (φ− τ))− 1

�

and evaluate the expectation of cosφ.

�Yt |cosφYt	

=

� 2π

0

� π

0

|Yt (θ, φ)|2 cosφ sin θ dθdφ

= (8π)
−1

� 2π

0

� π

0

�
3

2
sin2 θ − 2

�
3

2

�1/2
sin θ cos (φ− τ) + 1

�

cosφ sin θ dθdφ.
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There are three terms inside the integrand. We integrate them
separately. The last term is easily evaluated. It gives

(8π)
−1

� 2π

0

� π

0

cosφ sin θ dθdφ

= (8π)−1
� 2π

0

cosφdφ

=0

� π

0

sin θ dθ

= 0.

cosφ integrates to zero over the interval 0 to 2π, as it is periodic on
this interval. Alternatively, just do the the integral - the antideriva-
tive, sinφ, is also periodic on the interval. The next term to consider
is

(8π)−1
� 2π

0

� π

0

3

2
sin2 θ cosφ sin θ dθdφ

=
3

16π

� 2π

0

cosφdφ

=0

� π

0

sin3 θ dθ

= 0.

It is also zero. Thus,

�Yt |cosφYt	

= − (8π)−1 2

�
3

2

�1/2 � 2π

0

� π

0

sin θ cos (φ− τ) cosφ sin θ dθdφ

= − (4π)−1
�

3

2

�1/2 � 2π

0

cos (φ− τ) cosφdφ
� π

0

sin2 θ dθ.

The θ integral is

� π

0

sin2 θ dθ =
1

2

� π

0

(1− cos 2θ) dθ

=
π

2
.

The φ integral depends upon τ . There are three cases: (i) for t = 0,
τ = 0; (ii) for t = h

4Bro t
,

τ =
2Brott

�
= π

and (iii) for t = h
2Bro t

, τ = 2π. Since cosine is periodic with period
2π, the expectation of cosφ is periodic in τ with the same period.
The expectation is the same for t = 0 and t = h

2Br o t
, the period of
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the oscillation in time. For these times,

� 2π

0

cos (φ− τ) cosφdφ =

� 2π

0

cos2 φdφ

=
1

2

� 2π

0

(1 + cos 2θ) dθ

= π,

and

�Yt |cosφYt	 = − (4π)−1
�

3

2

�1/2
× π × π

2

= −π
8

�
3

2

�1/2
.

The second time, t = h
4Br o t

, is half of the period of the expectation.
In this case,

� 2π

0

cos (φ− τ) cosφdφ =

� 2π

0

cos (φ− π) cosφdφ

= −
� 2π

0

cos2 θ dθ

= −π,

and

�Yt |cosφYt	 =
π

8

�
3

2

�1/2
.

The expectation of cosφ is periodic. It oscillates between ±π
8

�
3
2

�1/2

with period, h
2Br o t

= 2π Ie q
�
, the period of a classical rigid rotor with

angular momentum �.

Example 5.4. Determine the moment of inertia of 1H35Cl molecules in the gas phase from
the spectrum shown in Fig. 5.3. Use your result to get the equilibrium
bond distance. You can usem1 = 1 amu and m2 = 35 amu for the masses
of the two atoms. Analysis of high resolution data requires highly precise
masses.

Solution 5.4. From the figure, we can see that from 2800 to 3200 cm−1 there are slightly
less than 19 spacings (including the un-allowed Q peak). The spacing is
estimated to be about

405

19
cm−1

= 21.3 cm−1.
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Setting this equal to 2B̄rot gives

2B̄rot =
�
2

hcIeq
= 21.3 cm−1,

or

Ieq =
h

4π2c× 21.3 cm−1

=
6.63× 10−34 kg m2 s−1

4π2 × 3.00× 1010 cm s−1 × 21.3 cm−1

= 2.63× 10−47 kg m2.

The moment of inertia is just the product of reduced mass and equilibrium
distance squared. The reduced mass is

m =
m1m2

m1 +m2
=

35

36
amu

= 0.972 amu× 1

6.02× 1023 amu g−1

= 1.61× 10−24 g

= 1.61× 10−27 kg.

Thus,

req =

�
Ieq
m

�1/2

=

�
2.63× 10−47 kg m2

1.61× 10−27 kg

�1/2

= 1.28× 10−10 m

= 128 pm.

Example 5.5. Match each of the spectra in list a, with selection rules from list b.

(a) Spectra:

i. Microwave absorption spectrum of a diatomic molecule

ii. Infrared absorption spectrum of a diatomic molecule

iii. Infrared absorption spectrum of a triatomic molecule

iv. Raman scattering spectrum of a triatomic molecule

v. Optical absorption spectrum of a quantum dot modeled as a
particle in a box

(b) Selection rules:

i. ∆υ = 1
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ii. ∆J = 0,±1

iii. ∆J = 1

iv. ∆J = 0,±2

v. ∆J = ±1

vi. ∆n = 1, 3, 5, . . .

Solution 5.5. Spectra:

(a) i. Microwave absorption spectrum of a diatomic molecule: ∆J =
1

ii. Infrared absorption spectrum of a diatomic molecule: ∆υ = 1
and ∆J = ±1

iii. Infrared absorption spectrum of a triatomic molecule: ∆υ =
1 and ∆J = 0,±1

iv. Raman scattering spectrum of a triatomic molecule: ∆υ = 1
and ∆J = 0,±2

v. Optical absorption spectrum of a quantum dot modeled as a
particle in a box: ∆n = 1, 3, 5, . . .

5.5 Appendix: the volume element in spherical

coordinates

Wavefunctions, ψ (x, y, z), are normalized by requiring that

�ψ |ψ	 =
� ∞

−∞

� ∞

−∞

� ∞

−∞
|ψ (x, y, z)|2 dxdydz = 1.

When the wavefunction is expressed in terms of spherical coordinates, the three
dimensional integral over Cartesian coordinates, x, y and z, must be written
as a three dimensional integral over r, θ and φ. Because the transformation
between Cartestian and spherical coordinates is not linear, the volume element,

dV = dxdydz (5.10)

= r2 sin θdrdθdφ

has r and θ dependence, when expressed in terms of drdθdφ.
To prove the above formula for the volume element, consider infinitesimal

changes in r, θ and φ. Each of these changes is associated with an infinitesimal
vector. For example, dr, is associated with the vector,




∂x
∂r
∂y
∂r
∂z
∂r



 dr.

The three vectors define a parallelepiped in three dimensions - they determine
three edges emanating from a common vertex. The volume of this parallelepiped
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is the volume element in spherical coordinates. This volume is the dot product
of one edge vector with the cross product of the other two. This result can be
expressed as a 3× 3 determinant, with each vector providing a column;

dV =

�������

∂x
∂r dr

∂x
∂θdθ

∂x
∂φdφ

∂y
∂rdr

∂y
∂θdθ

∂y
∂φdφ

∂z
∂rdr

∂z
∂θdθ

∂z
∂φdφ

�������

=

�������

∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

�������
drdθdφ a property of determinants

=

������

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

������
drdθdφ

= r2
�
cos θ

����
cos θ cosφ − sin θ sinφ
cos θ sinφ sin θ cosφ

����

= +sin θ

����
sin θ cosφ − sin θ sinφ
sin θ sinφ sin θ cosφ

����

�
drdθdφ

= r2
�
cos2 θ sin θ

�
cos2 φ+ sin2 φ

�
+ sin3 θ

�
cos2 φ+ sin2 φ

��
drdθdφ

= r2 sin θ
�
cos2 θ + sin2 θ

�
drdθdφ

= r2 sin θ drdθdφ.

With this volume element, we can express the normalization condition for a
wavefunction expressed in terms of spherical coordinates. Specifically,

� 2π

0

� π

0

� ∞

0

|ψ (r, θ, φ)|2 r2 sin θ drdθdφ = 1.

The ranges of integration covers all of space. The radial coordinate extends
from 0 to ∞. The angle θ varies from 0 to π - from the positive z axis to the
negative z axis. The angle in the x y plane varies from 0 to 2π.

If the wavefunction is a product of functions of just r, just θ and just φ, then
the factors can be separately normalized. Specifically, if

ψ (r, θ, φ) = ψr (r)Y (θ, φ) ,

then

�ψr |ψr	 =
� ∞

0

|ψr (r)|2 r2 dr = 1

and

�Y |Y 	 =
� 2π

0

� π

0

|Y (θ, φ)|2 sin θ dθdφ = 1.

If
Y (θ, φ) = Θ(θ)Φ (φ) ,
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then

�Θ |Θ	 =
� π

0

|Θ(θ)|2 sin θ dθ = 1.

and

�Φ |Φ	 =
� 2π

0

|Φ(φ)|2 dφ = 1.

The inner product �· |·	 is an integral defined by the context. It is an integral,
with appropriate weight function (i.e., such as r2 or sin θ), over all admissable
values of the coordinates of the wavefunctions in the inner product.



Chapter 6

Perturbations

There are few systems for which the Schrödinger equation can be solved exactly.
Most systems must be solved using numerical methods. One approach, per-
turbation theory, is very useful when the system of interest is close to a system
which has already been solved. In this approach, the system which is already
solved is the zero order system, and the system is said to be perturbed from of
the zero order system. The Hamiltonian of the perturbed system is the zero
order Hamiltonian, Ĥ(0), plus a perturbation, Ĥ(1). If the perturbation is not
too large, then the energy eigenvalues and eigenfunctions of the perturbed sys-
tem can be written as the corresponding zero order values plus corrections.that
can be computed.

6.1 Time independent perturbation theory

Let
Ĥ = Ĥ(0) + λĤ(1),

where λ is a convenient perturbation scaling parameter. In the end, we set it
to 1. However, in the meantime, keeping λ free lets us keep track of the order

of correction terms. Suppose
/
ψ(0)n

0
are the zero order eigenfunctions;

Ĥ(0)ψ(0)n = E(0)n ψ(0)n . (6.1)

The eigenvalues and eigenfunctions of Ĥ can be written as power series in the
scaling parameter, λ:

En = E(0)n + λE(1)n + λ2E(2)n + . . . (6.2)

and
ψn = ψ(0)n + λψ(1)n + . . . . (6.3)

Equations for the correction terms, E
(1)
n , E

(2)
n , ψ(1)n etc., are determined by

substituting the power series expressions into the perturbed system Schrödinger

157
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equation,
Ĥψn = Enψn,

to give

�
Ĥ(0) + λĤ(1)

��
ψ(0)n + λψ(1)n + . . .

�
=
�
E(0)n + λE(1)n + λ2E(2)n + . . .

��
ψ(0)n + λψ(1)n + . . .

�
.

The left side of this equation has the form,

Ĥ(0)
�
ψ(0)n + λψ(1)n + . . .

�
+ Ĥ(1)

�
λψ(0)n + λ2ψ(1)n + . . .

�

Ĥ(0)ψ(0)n + λ
�
Ĥ(0)ψ(1)n + Ĥ(1)ψ(0)n

�
+ λ2

�
Ĥ(0)ψ(2)n + Ĥ(1)ψ(1)n

�
+ . . . .

The right side has the form,

E(0)n ψ(0)n + λE(1)n ψ(0)n + λ2E(2)n ψ(0)n + . . .+ λE(0)n ψ(1)n + λ2E(1)n ψ(1)n + . . .+ λ2E(0)n ψ(2)n

= E(0)n ψ(0)n + λ
�
E(1)n ψ(0)n +E(0)n ψ(1)n

�
+ λ2

�
E(2)n ψ(0)n +E(1)n ψ(1)n +E(0)n ψ(2)n

�
+ . . . .

Equating coefficients of like powers of λ on either side of the equation gives the
following relations:

Coefficients of λ0:
Ĥ(0)ψ(0)n = E(0)n ψ(0)n .

This is just the unperturbed Schrödinger equation.

Coefficients of λ1:
Ĥ(0)ψ(1)n + Ĥ(1)ψ(0)n = E(1)n ψ(0)n +E(0)n ψ(1)n . (6.4)

Restrict ψ(1)n to be orthogonal to ψ(0)n . This removes redundancy in Eq.

6.3 . Specifically, any component of ψ(0)n included in ψ(1)n should already

be considered included within the first term. We can assume that ψ(0)n

is normalized. In this case, the ψn of Eq. 6.3 is not normalized. This
is not a problem; ψn can always be normalized after λ is set to 1. Now,

take the inner product of both sides of the above equation, with ψ(0)n , to
get

�
ψ(0)n

���Ĥ(0)ψ(1)n + Ĥ(1)ψ(0)n



=

�
ψ(0)n

���E(1)n ψ(0)n +E(0)n ψ(1)n




�
ψ(0)n

���Ĥ(0)ψ(1)n



+
�
ψ(0)n

���Ĥ(1)ψ(0)n



= E(1)n

�
ψ(0)n

���ψ(0)n




=1

+E(0)n

�
ψ(0)n

���ψ(1)n




=0�
Ĥ(0)ψ(0)n

���ψ(1)n



+
�
ψ(0)n

���Ĥ(1)ψ(0)n



= E(1)n Ĥ(0) is Hermitian

�
E(0)n ψ(0)n

���ψ(1)n



+
�
ψ(0)n

���Ĥ(1)ψ(0)n



= E(1)n

E(0)n

�
ψ(0)n

���ψ(1)n




=0

+
�
ψ(0)n

���Ĥ(1)ψ(0)n



= E(1)n E(0)n is real



6.1. TIME INDEPENDENT PERTURBATION THEORY 159

Specifically, the first order correction to the n th energy eigenvalue is
the expectation value (in the n th zeroth order energy eigenstate) of the
perturbation:

E(1)n =
�
ψ(0)n

���Ĥ(1)ψ(0)n



. (6.5)

The n th energy eigenvalue, estimated to first order in the perturbation,
is just the expectation value of the perturbed Hamiltonian,

En
∼= E(0)n +E(1)n

=
�
ψ(0)n

���Ĥ(0)ψ(0)n



+
�
ψ(0)n

���Ĥ(1)ψ(0)n




=
�
ψ(0)n

���Ĥψ(0)n



.

We are done with Eq. 6.4. So far we have only considered the ψ(0)n

component of the equation. Now, we consider all other components.

Specifically, take the inner product of both sides of Eq. 5 with ψ
(0)
n′ , for

all n′ �= n:
�
ψ
(0)
n′

���Ĥ(0)ψ(1)n + Ĥ(1)ψ(0)n



=

�
ψ
(0)
n′

���E(1)n ψ(0)n +E(0)n ψ(1)n




�
ψ
(0)
n′

���Ĥ(0)ψ(1)n



+
�
ψ
(0)
n′

���Ĥ(1)ψ(0)n



= E(1)n

�
ψ
(0)
n′

���ψ(0)n




=0

+E(0)n

�
ψ
(0)
n′

���ψ(1)n




=c
(1)

n′�
Ĥ(0)ψ

(0)
n′

���ψ(1)n



+
�
ψ
(0)
n′

���Ĥ(1)ψ(0)n



= E(0)n c

(1)
n′

�
E
(0)
n′ ψ

(0)
n′

���ψ(1)n



+
�
ψ
(0)
n′

���Ĥ(1)ψ(0)n



= E(0)n c

(1)
n′

�
E(0)n −E(0)n′

�
c
(1)
n′ =

�
ψ
(0)
n′

���Ĥ(1)ψ(0)n



,

or

c
(1)
n′ =

�
ψ
(0)
n′

���Ĥ(1)ψ(0)n




E
(0)
n −E(0)n′

.

The c
(1)
n′ are the expansion coefficients of ψ

(1)
n , expanded in terms of the

ψ
(0)
n′ , n

′ �= n. Specifically,

ψ(1)n =
�

n′ �=n
c
(1)
n′ ψ

(0)
n′

=
�

n′ �=n

�
ψ
(0)
n′

���Ĥ(1)ψ(0)n




E
(0)
n −E(0)n′

ψ
(0)
n′

= −
�

n′ �=n

�
ψ
(0)
n′

���Ĥ(1)ψ(0)n




E
(0)
n′ −E

(0)
n

ψ
(0)
n′ (6.6)
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Here, we see that the n′ �= n contributions that are largest are those for

which E
(0)
n′ is close to E

(0)
n (and

�
ψ
(0)
n′

���Ĥ(1)ψ(0)n



is not zero). In fact,

the formalism fails when there is degeneracy - i.e., when there are n′ �= n
values for E

(0)
n′ = E

(0)
n and the denominator of the c

(1)
n′ expression vanishes.

Degenerate case: Suppose there is a set of zero order eigenstates,
/
ψ
(0)
k

0
, all associ-

ated the same zero order energy eigenvalue, E
(0)
n . In this case, we

construct the matrix of Ĥ(1) in the space spanned by the ψ
(0)
k . The

k′, k th element of this matrix is just

�
ψ
(0)
k′

���Ĥ(1)ψ
(0)
k



.

The eigenvalues of this perturbation matrix determine the first order

shifts in the zero order eigenvalue, E
(0)
n . The perturbation can pro-

duce g distinct shifts for an eigenvalue with g-fold degeneracy, and
thereby completely lift the degeneracy - splitting the degenerate level
into distinct levels. In other cases, the degeneracy is partially lifted
by the perturbation. The eigenvectors of the perturbation matrix

determine the combinations of ψ
(0)
k associated with the distinct first

order shifts of the zero order energy - call these ψ
(0)
j . These combi-

nations can then be used in the general perturbation described above

and below. The denominator problem is removed because ψ
(0)
j is an

eigenfunction of the perturbation (in the
/
ψ
(0)
k

0
basis), and conse-

quently,
�
ψ
(0)
j′

���Ĥ(1)ψ
(0)
j



= 0 , j′ �= j. Only non-zero denominators

have non-zero coefficients.

Higher powers of λ: Equating coefficients of higher powers of λ give the remaining equations
of perturbation theory. Here, we simply give the equation for the second
order corrections to the energy eigenvalues:

E(2)n = −
�

n′ �=n

���
�
ψ
(0)
n′

���Ĥ(1)ψ(0)n


���
2

E
(0)
n′ −E

(0)
n

(6.7)

Each term in this sum is a correction to the n th energy level, associated
with another level. The correction is the square of the perturbation
matrix element connecting the two levels, divided by the energy difference
between the levels. The sign of the difference is such that other levels -
connected to the n th level by the perturbation - effectively repel the n
th level. The shift is greatest coming from nearby energy levels which
are well-connected to n th level - i.e., the perurbation matrix element is
large. Thus, the next higher energy connected to the n th level shifts the
n th level to lower energy, while the next lowest level connected to the n
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th level shifts it to higher energy. Since there are no states with lower
energy than the ground state, the second order correction to the ground
state energy is always negative.

Example 6.1. Consider a particle in a one dimensional box - from x = 0 to L - subject
to a perturbation,

Ĥ(1) =

	
ε, 0 < x < L/2
0, otherwise

,

ε > 0.

(a) Determine the energy levels of this particle, at the level of first order
perturbation theory. Is the first order correction positive or negative?
Does this make sense?

(b) What are the transition frequencies for the n = 1 to 2 and 2 to 3
transitions?

(c) Determine the first order correction to ψ
(0)
1 associated with the first

excited state, ψ
(0)
2 . This is the largest first order correction to ψ

(0)
1 .

Determine the associated correction to the ground state expectation
of x. Does the sign of the correction make sense?

Solution 6.1.

(a) The zero order energy levels of the particle in a one dimensional box
are

E(0)n =
�
2π2n2

2mL2
.

The first order correction to the n th energy level is

�
ψ(0)n

���Ĥ(1)ψ(0)n



=

2

L

� L

0

εθ[0,L/2] (x) sin
2
�nπx
L

�
dx

=
2ε

L

� L/2

0

sin2
�nπx
L

�
dx

=
ε

L

� L/2

0

�
1− cos

�
2nπx

L

��
dx

=
ε

L

�
L

2
−
�
L

2nπ
sin

�
2nπx

L

��L/2

0

�

=
ε

2

�
1− 1

nπ

�
sin (nπ)

=0
− 0

��

=
ε

2
.

Therefore, the energy levels corrected to first order are

En
∼= �

2π2n2

2mL2
+
ε

2
.
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The corrections are all positive - largest for n = 1 and smallest for
n = 2. A positive correction makes sense because the perturbation
is a positive potential energy. Also, the correction is ε/2, as the
perturbation extends over only half the width of the box, and - in
the zero order states - the particle is equally likely to be on the right
side of the box (where the perturbation is) or the left side of the box.

(b) To first order, the first three energy levels are

E1 ∼=
�
2π2

2mL2
+
ε

2
,

E2 ∼= 4
�
2π2

2mL2
+
ε

2
and

E3 ∼= 9
�
2π2

2mL2
+
ε

2
.

Therefore,

ν1 to 2 =
∆E1 to 2
h

=
1

h
3
�
2π2

2mL2

and

ν2 to 3 =
∆E2 to 3
h

=
1

h
5
�
2π2

2mL2
.

The transition frequencies are not shifted by the perturbation (to
first order) because all level are shifted by the same amount.

(c) The first order correction to the ground state is

ψ
(1)
1 = −

�

n′>1

�
ψ
(0)
n′

���Ĥ(1)ψ
(0)
1




E
(0)
n′ −E

(0)
1

ψ
(0)
n′ .

Including only the first excited state contribution, which is the largest
contribution, gives

ψ
(1)
1
∼= −

�
ψ
(0)
2

���Ĥ(1)ψ
(0)
1




E
(0)
2 −E(0)1

ψ
(0)
2 .

Since

�
ψ
(0)
2

���Ĥ(1)ψ
(0)
1



=

2ε

L

� L/2

0

sin

�
2πx

L

�
sin

�πx
L

�
dx

=
ε

L

� L/2

0

�
cos

�πx
L

�
− cos

�
3πx

L

��
dx

=
ε

L

��
L

π
sin

�πx
L

��L/2

0

−
�
L

3π
sin

�
3πx

L

��L/2

0

�

dx

=
ε

π

�
1 +

1

3

�
=

4ε

3π
,
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ψ
(1)
1
∼= −

�
2

L

�1/2
4ε

3π

sin
�
2πx
L

�

3 �2π2

2mL2

,

and

ψ1
∼=

�
2

L

�1/2�
sin

�πx
L

�
− 8mL2ε

9�2π3
sin

�
2πx

L

��

= ψ
(0)
1 − 8mL2ε

9�2π3
ψ
(0)
2 .

This state is not normalized. However, normalized, it takes the form,

ψ1
∼=

�
1 +

64m2L4ε2

81�4π6

�−1/2�
ψ
(0)
1 − 8mL2ε

9�2π3
ψ
(0)
2

�

∼=
�
ψ
(0)
1 − 8mL2ε

9�2π3
ψ
(0)
2

��
1− 32m2L4ε2

81�4π6

�

∼= ψ
(0)
1 − 8mL2ε

9�2π3
ψ
(0)
2 to first order in ε

The expectation of x for this state is

�ψ1 |xψ1	 =

'
ψ
(0)
1 − 8mL2ε

9�2π3
ψ
(0)
2

����x
�
ψ
(0)
1 − 8mL2ε

9�2π3
ψ
(0)
2

��

∼=
�
ψ
(0)
1

���xψ(0)1


− 16mL2ε

9�2π3

�
ψ
(0)
1

���xψ(0)2



to first order in ε

=
L

2
− 16mL2ε

9�2π3

�
−16L

9π2

�
see Eq. 3.9 and 3.10

=
L

2

�
1 +

512mL2ε

81�2π5

�
.

Here, we see that the perturbation leads to a positive correction to
the ground state x expectation. The mean position of the particle
in shifted to the right of the center of the box. This is because the
perturbation is positive, and it is localized to the left side of the box.
The perturbation repels the particle to the right side of the box. Had
ε been negative, the expectation of x would be shifted to the left -
the perturbation would attract the particle, rather than repel.

Example 6.2. Consider an electron in a one dimensional box of width, L, subject to the
perturbation,

H(1) = Eex.
This is the interaction energy of the electron in a box, subject to electric
field E. This is the Stark effect for an electron in a box.

(a) What is the first order correction to the energy levels due to the
electric field?
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(b) What is the largest first order correction to the ground state due
to the electric field? Does the sign of the correction make sense?
Where is the electron most likely to be found, when in the ground
state?

Solution 6.2.

(a) The first order correction to the n th energy level is

E(1)n =
�
ψ(0)n

���H(1)ψ(0)n




= Ee
�
ψ(0)n

���xψ(0)n




= EeL
2
.

The first order correction reflects the expectation value of the posi-
tion, x. We found, in chapter 3, that the position expectation is L/2
for all states. The first order Stark effect for a electron in a box is
just the classical electric potential energy of the electron is the center
of the box. This correction is not zero because the electric potential
is zero at x = 0, rather than the center of the box. The electric po-
tential energy of an electron in the box is positive because the force
on a negatively charged electron is to the left when the electric field
is positive - the left side of the box has the lowest electric potential
energy.

(b) The first order correction to the ground state is a sum over ex-
cited states with coefficients proportional to the matrix element,�
ψ(0)n

���xψ(0)1


, and inversely proportional to the zero order energy

difference, E
(0)
n −E(0)1 . In Chapter 3, we evaluated this matrix ele-

ment and found that only the even n elements are nonzero. By far,
the largest matrix elements are for ∆n = ±1. Thus, the largest -

and only significant - first order correction to ψ
(0)
1 is from n = 2;

ψ1 ∼= ψ
(0)
1 −

�
ψ
(0)
2

���H(1)ψ
(0)
1




E
(0)
2 −E(0)1

= ψ
(0)
1 −

Ee
�
ψ
(0)
2

���xψ(0)1



4�2π2

2meL2
− �2π2

2meL2

ψ
(0)
2

= ψ
(0)
1 +

Ee16L9π2

4�2π2

2meL2
− �2π2

2meL2

ψ
(0)
2 see Eq. 3.10

= ψ
(0)
1 +

32EemeL3

27�2π4
ψ
(0)
2 .
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The sign of the correction is positive. Thus, ψ
(0)
1 and ψ

(0)
2 interfere

constructively for x < L/2, and destructively for x > L/2. The po-
sition probability distribution of the corrected ground state is skewed
to the left side of the box where the electric potential energy of the
electron is lowest.

6.2 Anharmonicity

In Chapter 4, using a Taylor expansion of the vibrational potential, we obtained
the harmonic oscillator as a model of molecular vibration, by only keeping terms
up to x2. The latter series has only one term, since we took V (req) to be zero
(sets the energy reference value), and dV (r) /dr = 0 at req where it has a mini-
mum. The higher order terms in the Taylor series are generally not zero. They
can be included using perturbation theory beause they constitute a perturba-
tion to the harmonic oscillator Hamiltonian, and the harmonic oscillator system
is completely solved.

Suppose the vibrational potential energy is approximated to fourth order in
deviations from the equilibrium geometry - i.e., as a Taylor series in x up to the
x4 term. The vibrational Hamiltonian takes the form,

Ĥ =
p̂2

2m
+
k

2
x2 − γx3 + δx4,

where the coefficient of x3 is made explicitly negative (γ > 0) as the potential
well typically becomes wider than the harmonic well for large positive x values.

Figure 6.1 shows a typical vibrational potential energy, together with the
harmonic (quadratic) approximation. The realistic diatomic vibrational poten-
tial well is wider (than the harmonic well) for positive x, narrower for negative
x, and it reaches an asymptotic value - the equilibrium dissociation energy,
Deq = D0 + �ω/2. The bond dissociation energy, D0, is Deq minus the zero
point energy.
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The Morse potential (solid line) for 1H35Cl. This is a more realistic model of
a diatomic vibration potential than the harmonic potential (dashed line). The
well depth here is De = 446 kJ mol−1. The displacement is given in units of

�
2De

mω2

�1/2
= 54 pm for 1H35Cl.

Here, we consider the effect of anharmonicity at third and fourth order.
These terms determine a perturbation of the harmonic oscillator Hamiltonian -
the zero order Hamiltonian. To first order, the energy shift of the υ th state is
given by

E(1)υ =
�
ψ(0)υ

���Ĥ(1)ψ(0)υ




=
�
ψ(0)υ

���
�
−γx3 + δx4

�
ψ(0)υ




= −γ
�
ψ(0)υ

���x3ψ(0)υ



+ δ

�
ψ(0)υ

���x4ψ(0)υ



.

We know that x can be written as a lowering operator plus a raising opera-
tor. x3 consists of the eight possible combinations of raising or lowering three
times, in succession. Since it is impossible to return to quantum number υ with

an odd number of raising or lowerings, the matrix element
�
ψ(0)υ

���x3ψ(0)υ



= 0

and no first order shift results from the third order anharmonicity. Third order
anharmonicity does produce a second order shift in energy. This result is ratio-
nalized by noting that, while the third order anharmonicity widens the well on
the right, it narrows the well on the left. The two effects partly balance, making
the effect on energy more subtle. In contrast, the fourth order anharmonicity
produces a first order correction to energy. This is because x4 includes terms
with two raising and two lowering operators, taking ψ(0)υ back to ψ(0)υ in order

to give non-zero contributions to the ψ(0)υ expectation value of x4. There are
six such terms. The expectation value is positive for all υ. So the sign of the
shift in energy is controlled by δ. Specifically, if δ < 0, then the energy shift is
negative. This corresponds to a perturbation that widens the well on both the
left and right. If δ > 0, then the energy shift is positive. This corresponds to
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a perturbation that narrows the well.

E(1)υ = δ
�
ψ(0)υ

���x4ψ(0)υ




= α4δ
�
ψ(0)υ

���y4ψ(0)υ




=
α4δ

4

�
ψ(0)υ

���
�
â+ â†

�4
ψ(0)υ




=
α4δ

4

�
(υ + 1) (υ + 2) + (υ + 1)2 + (υ + 1)υ + υ (υ + 1) + υ2 + υ (υ − 1)

�

=
α4δ

4

�
6υ2 + 6υ + 3

�
.

As realistic diatomic potentials widen faster than the associated harmonic
approximation, the energy level spacings get smaller as υ increases. Moreover,
there is always a dissociation threshold energy, Deq , where the bond breaks.
Consequently, the number of bound states is finite - with energies only up to
Deq . For the Morse potential, the energy levels are given - in wavenumbers -
by

Ēvib, υ =
Evib, υ
hc

=

�
υ +

1

2

�
ν̄vib −

�
υ +

1

2

�2
xeq ν̄vib ,

for

υ = 1, 2, . . . , υmax =

1
1

2xeq

2
,

where

xeq =
ν̄vib
4D̄eq

is called the anharmonicity constant. For example, xeq = 0.020 for 1H35Cl,
and the Morse model predicts 25 bound vibrational states. Because the spac-
ings are decreasing, hot bands appear at lower frequency than the fundamental
transition, υ = 0 to 1. In fact, the shift to lower frequency allows extraction of
the anharmonicity constant from spectral data.

Anharmonicity also generally results in a shift in the mean bond distance -
i.e., expectation of r - it increases with increasing υ. This increases the moment
of inertia, decreasing the spacing between levels. Hot bands thus have narrower
spacings between lines.

6.3 Rotational Zeeman and Stark effects

Here we consider a diatomic molecule in the gas phase. The temperature is
such that excited vibrational states have negligible excitation. The diatomic
molecule is essentially a rigid rotor. Two perturbations are considered; the
interaction with a constant magnetic field - resulting in the rotational Zeeman
effect - and the interaction with a constant electric field - resulting in the rota-
tional Stark effect.
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The unperturbed system here is the rigid rotor, with energy eigenstates given
by the spherical harmonics, YJ,MJ

, with associated eigenvalues, BrotJ (J + 1);
i.e.,

Ĥ(0)YJ ,MJ =
1

2Ieq
Ĵ2YJ,MJ

= BrotJ (J + 1)YJ,MJ .

The J > 0 energy levels are degenerate. In general, degenerate perturbation
theory is required for these level. First, we consider the Zeeman effect.

When a diatomic molecule rotates, the nuclear charges and the electron
charges rotate. The resulting positive and negative current loops have magnetic
moments. Because of the breakdown in the separation of motion of the electrons
and the nuclei, and because of diamagnetic currents in the electron density
induced by the magnetic field, there is a net rotational magnetic dipole moment,

µ̂m = grotµm,N

Ĵ

�
,

where

µm,N =
e�

2mp

is the nuclear magneton - the natural atomic unit of magnetic moment for nuclei.
It corresponds to the rotation of two protons about their center of mass with
an angular momentum of �. The rotational g-factor of the molecule, grot , is
just the magnetic dipole moment of the molecule, due to rotation, expressed
in nuclear magnetons. If the molecule is closed shell - i.e., it has no unpaired
electrons - there is no electron spin magnetic dipole moment. The electron
spin magnetic moment would otherwise be the dominant component of total
molecular magnetic moment. There can also be nuclear spin magnetic moments
- see Sec. XX. Here, we consider only the interaction of the applied magnetic
field, B, with the rotational magnetic dipole - i.e., the rotational Zeeman effect,

Ĥ(1) = −µ̂m·B = −µ̂m,zBz

= −Bzgrotµm,N

Ĵz
�
,

where we choose the z axis to be the direction of the electric field, B.
The rigid rotor Hamiltonian is just

Ĥ(0) = Ĵ2/2Ieq .

Since Ĵ2 and Ĵz commute, Ĥ
(0) and Ĥ(1) commute, and have a common set of

eigenfunctions. These are just the spherical harmonics. In this case, first order
perturbation theory is exact. The degeneracy of the J > 0 energy levels of the
rigid rotor can be ignored because all off-diagonal matrix elements connecting
distinct MJ states are zero;

�YJ,MJ

���Ĥ(1)YJ,M ′

J



= 0 if M ′

J �=MJ .
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The energy eigenvalues are shifted by the expectation value of the Zeeman
interaction,

E
(1)
rot,J,MJ

= �YJ,MJ

���Ĥ(1)YJ,MJ




= −
Bzgrotµm,N

�
�YJ,MJ

���ĴzYJ,MJ




= −
Bzgrotµm,N

�
�YJ,MJ |MJ�YJ,MJ 	 YJ,MJ is an eigenfunction of Ĵz

= −Bzgrotµm,NMJ�YJ,MJ
|YJ,MJ

	
=1

= −Bzgrotµm,NMJ .

Altogether,

Erot,J,MJ = E
(0)
rot,J,MJ

+E
(1)
rot,J,MJ

=
�
2

2Ieq
J (J + 1)−Bzgrotµm,NMJ .

The magnetic field lifts the degeneracy associated with the MJ quantum num-
ber. For each J , there are 2J + 1 levels with equal spacing, Bzgrotµm,N . The
lowest of these levels is the MJ = J level. The highest is the MJ = −J level.
Transitions between these states are induced by radio frequency pulses such that
the associated oscillating magnetic field is in the x y plane - suppose it is along
x. The Zeeman interaction of the molecular magnetic dipole with this oscillat-

ing field introduces the operator Ĵx =
�
Ĵ+ + Ĵ−

�
/2, which produces magnetic

dipole transitions with the selection rule,

∆MJ = ±1.

The interaction of the rigid rotor with an electric field - the Stark effect - is
given by

Ĥ(1) = −µ̂e·E = −µ̂e,zEz
= −Ezµe,eq cos θ,

where the electric field, E, is along the z axis. This effect requires that the
molecule have a permanent electric dipole moment, µe,eq . Since this operator
affects only functions of θ, it cannot connect distinct MJ states. Degenerate
perturbation is again unnecessary for the J > 0 levels. First consider the first
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order correction of the 0, 0 level. Specifically,

E
(1)
0,0 =

�
ψ
(0)
0,0

���Ĥ(1)ψ
(0)
0,0




= �Y0,0
��Ezµe,eq cos θY0,0

�

= Ezµe,eq �Θ0,0 |cos θΘ0,0	 �Φ0 |Φ0	
=1

= Ezµe,eq
� π

0

cos θ

�
1√
2

�2
sin θ dθ Θ0,0 =

1√
2

=
Ezµe,eq

4

� π

0

sin 2θ dθ

=
Ezµe,eq

8
[− cos 2θ]π0

= 0.

There is no first order energy correction for the 0, 0 level. In fact, all first
order energy corrections are zero. This is proven by noting that the YJ,MJ are
eigenfunctions of reflection through the x y plane. This follows because the
rigid rotor Hamiltonian commutes with the reflection operator. Since applying
the reflection operator twice is just the identity operator, the eigenvalues of the
reflection operator are +1 and −1; i.e., YJ,MJ are either even or odd with respect
to reflection through the x y plane. The sign of the reflection eigenvalue is called
the parity of YJ,MJ

. In terms of spherical coordinates, reflection through the x y
plane corresponds to the the transformation θ→ π−θ. Since ΘJ,MJ

(θ) has well
defined parity under, θ → π − θ, its square is even under this transformation.
The remaining factor in the integrand of the θ integral, that contributes to

E
(1)
J,MJ

, is cos θ sin θ. This function is odd (it reverses sign) under θ → π − θ.
Thus, the integrand of the θ integral is odd, and the θ integral is zero - the 0 to
π/2 portion of the integral cancels the π/2 to π portion.

The Stark effect is second order - i.e., the leading correction to the energy
eigenvalues is the second order correction. Here, we evaluate the second order
energy correction for the ground and first excited states. We also determine the
first order corrected eigenstates - note that a second order perturbation such as
the Stark effect still has first order corrections to the eigenstates.

For the Stark effect in the z direction, being considered here, the energy
levels remain independent ofMJ - they retain their degeneracy. This is because
all matrix elements of the perturbation connecting distinct MJ states are zero.
The second order corrected rotational Stark effect ground state energy is (see
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Eq. 6.7)

Erot,0 ∼= E
(0)
rot,0 +E

(2)
rot,0

= 0−
�

J>0

����YJ,0
���Ĥ(1)Y0,0


���
2

Erot, J −Erot, 0

= −E2zµ2e,eq
�

J>0

|�YJ,0 |cos θY0,0	|2
BrotJ (J + 1)− 0

= −
E2zµ2e,eq
Brot

�

J>0

|�YJ,0 |cos θY0,0	|2
J (J + 1)

.

Since
Y0,0 (θ, φ) = (4π)−1/2

and

Y1,0 (θ, φ) =

�
4π

3

�−1/2
cos θ,

cos θY0,0 (θ, φ) = (4π)−1/2 cos θ

= 3−1/2Y1,0 (θ, φ) .

Thus, only the J,MJ = 1, 0 term contributes to the sum, and

E0,0 ∼= −
E2zµ2e,eq
Brot

|�Y1,0 |cos θY0,0	|2
1 (1 + 1)

= −
E2zµ2e,eq
2Brot

����Y1,0
���3−1/2Y1,0 (θ, φ)


���
2

= −
E2zµ2e,eq
6Brot

.

The ground state energy is lowered in proportion to the square of the electric
field.

The associated first order corrected eigenfunction is (see Eq. 6.6)

ψ0,0 (θ, φ) ∼= Y0,0 (θ, φ)−
�Y1,0

���Ĥ(1)Y0,0




Erot, 1 −Erot, 0
Y1,0 (θ, φ)

= Y0,0 (θ, φ) +
Ezµe,eq
2Brot

�Y1,0 |cos θY0,0	Y1,0 (θ, φ)

= Y0,0 (θ, φ) +
Ezµe,eq

31/22Brot
Y1,0 (θ, φ) .

The ground state eigenstate is perturbed in proportion to the ratio of the electric
dipole interaction energy and the energy spacing between the first two levels.
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It acquires a Y1,0 (θ, φ) component. Y0,0 is everywhere positive, while Y1,0
is positive along the positive z axis and negative along the negative z axis.
Consequently, the two components of ψ0,0 interfere constructively along the
positive z axis, and destructively along the negative z axis. The ground state
probability distribution for the orientation of the molecule is shifted towards
alignment with the electric field.

Since

Y2,0 (θ, φ) =

�
16π

5

�−1/2 �
3 cos2 θ − 1

�
,

cos θY1,0 (θ, φ)

=

�
4π

3

�−1/2
cos2 θ

=
1

3

�
5

12

�−1/2�
16π

5

�−1/2 �
3 cos2 θ − 1

�
+

1

3

�
5

12

�−1/2�
16π

5

�−1/2

=

�
4

15

�1/2
Y2,0 (θ, φ) + 31/2Y0,0 (θ, φ)

is a linear combination of Y2,0 and Y0,0, there are two contributions to the
second order energy and first order eigenstate corrections for the 1, 0 state -
matrix elements with any other YJ,MJ

are zero.

E
(2)
1,0

∼= −
E2zµ2e,eq
Brot

�
|�Y0,0 |cos θY1,0	|2

0− 1 (1 + 1)
+

|�Y2,0 |cos θY1,0	|2
2 (2 + 1)− 1 (1 + 1)

�

= −
E2zµ2e,eq
Brot




−

��31/2
��2

2
+

���
�
4
15

�1/2���
2

4






=
E2zµ2e,eq
Brot

�
3

2
− 1

15

�
=

43E2zµ2e,eq
30Brot

.

The 1, 0 state is shifted to higher energy because of the coupling to 0, 0. The
0, 0 level is lowered, while the 1, 0 level is raised.

The 1, 0 excited state is

ψ1,0 (θ, φ)

∼= Y1,0 (θ, φ)−
�Y0,0

���Ĥ(1)Y1,0



Erot, 0 −Erot, 1
Y0,0 (θ, φ)−

�Y2,0
���Ĥ(1)Y1,0




Erot, 2 −Erot, 1
Y2,0 (θ, φ)

= Y1,0 (θ, φ)−
Ezµe,eq
Brot

��Y0,0 |cos θY1,0	Y0,0 (θ, φ)
2

− �Y2,0 |cos θY1,0	Y2,0 (θ, φ)
4

�

= Y1,0 (θ, φ)−
Ezµe,eq
2Brot

�
31/2Y0,0 (θ, φ)− 15−1/2Y2,0 (θ, φ)

�
.



6.4. TIME DEPENDENT PERTURBATION THEORY 173

The state is shifted away from alignment with the electric field.
For the 1, 1 excited state, since

Y1,1 (θ, φ) = −
�

8π

3

�−1/2
sin θ exp (iφ)

and

Y2,1 (θ, φ) = −
�

8π

15

�−1/2
sin θ cos θ exp (iφ) ,

we have

cos θY1,1 (θ, φ) =
1

51/2
Y2,1 (θ, φ)

and

E
(2)
1,1

∼= −
E2zµ2e,eq
Brot

|�Y2,1 |cos θY1,1	|2
2 (2 + 1)− 1 (1 + 1)

= −
E2zµ2e,eq
Brot

��� 1
51/2

��2

4

�

= −
E2zµ2e,eq
20Brot

.

The 1, 1 level is lowered in energy - by a much smaller amount than 0, 0. The
1,−1 level is lowered by the same amount. Here we see that the electric field
partially lefts the MJ degeneracy. In general, the energy depends upon J and
|MJ |. Levels with MJ �= 0 are doubly degenerate.

There is a general recursion formula that gives all of the spherical harmonic
matrix elements of cos θ. It shows that cos θ only connects J states with
∆J = ±1. This is the origin of the selection rule for rotational spectroscopy - see
Sec. 5.3 - that arises when the electric field is oscillating. Had we considered an
electric field in the x or y directions, the perturbation would be proportional to
sin θ cosφ or sin θ sinφ. The sin θ operator connects only states with ∆J = ±1,
just like cos θ. The cosφ or sinφ operator connects states with ∆MJ = ±1,
since the trigonometric functions are plus and minus combinations of exp (iφ)
and exp (−iφ). These operators act as raising and lowering operators for ΦMJ

functions. This is the origin of the ∆MJ = 0,±1 selection rule. It accounts for
electric fields in all directions, since incident light can have have different angle
of incidence and polarization - i.e., different electric field directions.

6.4 Time Dependent Perturbation Theory

Perturbation theory can also be adapted to the solution of the time dependent
Schrödinger equation. This is how we accommodate an oscillating time depen-
dent electric field and explain light induced transitions.

Suppose that a system is governed by a Hamiltonian, Ĥ(0), with know eigen-
values and eigenfunctions (possibly generated numerically - the system need not
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be solvable analytically). If the system is initially (i.e., at t = 0) in state ψn (x),
an eigenstate of Ĥ(0), then the solution to the time dependent Schrödinger equa-
tion is just

Ψ(0) (x, t) = exp

�−iEnt

�

�
ψn (x) ,

where En is the energy eigenvalue associated with ψn (x), and x is the system
coordinate - or set of coordinates. Here, we see that the wavefunction changes
with time only via a phase factor. In this case, observable properties of the
system do not change with time. Eigenstates of the system Hamiltonian are
called stationary states.

Now consider a time dependent perturbation, Ĥ(1) (t), of the above system.
The perturbation is applied (turned on) at t = 0, when the system state is just
ψn (x). As time progresses, the perturbation can cause the state of the system
to spread over other eigenstates of the unperturbed system. The spreading
is made explicit by expressing the time dependent wavefunction as a sum over
unperturbed system eigenstates,

Ψ(x, t) =
�

n′

cn′ (t)ψn′ (x) ,

with time dependent expansion coefficients. This expression is completely gen-
eral. It does not depend on the perturbation being small. The set of ψn′ (x)
eigenstates provide a complete basis - any wavefunction can be expanded in
terms of these basis functions.

Substituting the above equation into the time dependent Schrödinger equa-
tion gives

i�
∂Ψ(x, t)

∂t
= Ĥ (t)Ψ (x, t)

=
�
Ĥ(0) + Ĥ(1) (t)

�
Ψ(x, t)

i�
∂

∂t

�

n′

cn′ (t)ψn′ (x) =
�
Ĥ(0) + Ĥ(1) (t)

��

n′

cn′ (t)ψn′ (x)

i�
�

n′

∂cn′ (t)

∂t
ψn′ (x) =

�

n′

cn′ (t)
�
Ĥ(0) + Ĥ(1) (t)

�
ψn′ (x)

=
�

n′

cn′ (t)
�
En′ + Ĥ

(1) (t)
�
ψn′ (x) .



6.4. TIME DEPENDENT PERTURBATION THEORY 175

Take the inner product of both sides of the last line with ψn (x). The result is

i�
�

n′

∂cn′ (t)

∂t
�ψn |ψn′	

= 1 if n′= n
= 0 otherwise

=
�

n′

cn′ (t) �ψn

���
�
En′ + Ĥ

(1) (t)
�
ψn′




i�
∂cn (t)

∂t
=

�

n′

cn′ (t)
�
En′ �ψn |ψn′	+ �ψn

���Ĥ(1) (t)ψn′


�

= Encn (t) +
�

n′

�ψn

���Ĥ(1) (t)ψn′



cn′ (t) . (6.8)

The TDSE becomes a set of coupled differential equations for the time dependent
expansion coefficients. These equations are further illuminated by introducing
the coefficients, bn (t), such that

cn (t) = exp

�−iEnt

�

�
bn (t) .

These new coefficients capture any deviation from the unperturbed system time
evolution. Substituting the above expression for the coefficients into the right
side of Eq. 6.8 gives

i�
∂

∂t

�
exp

�−iEnt

�

�
bn (t)

�
= i�

��−iEn

�

�
bn (t) +

∂bn (t)

∂t

�
exp

�−iEnt

�

�
.

The left side takes the form,

En exp

�−iEnt

�

�
bn (t) +

�

n′

�ψn

���Ĥ(1) (t)ψn′



exp

�−iEn′t

�

�
bn′ (t)

Multiplying both sides of Eq. 6.8 by exp
�
iEnt
�

�
gives

i�

��−iEn

�

�
bn (t) +

∂bn (t)

∂t

�
= Enbn (t) +

�

n′

�ψn

���Ĥ(1) (t)ψn′



exp

�
i (En −En′) t

�

�
bn′ (t)

Enbn (t) + i�
∂bn (t)

∂t
= Enbn (t) +

�

n′

�ψn

���Ĥ(1) (t)ψn′



exp (iωn,n′t) bn′ (t) ,

or

i�
∂bn (t)

∂t
=
�

n′

�ψn

���Ĥ(1) (t)ψn′



exp (iωn,n′t) bn′ (t) , (6.9)

where

ωn,n′ =
En −En′

�
= 2π

∆En,n′

h

is the angular transition frequency for n′ to n transitions. It is 2π× the fre-
quency of light with photon energy that matches the change in energy associated
with the transition. These equations can be solved numerically for any time
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dependent perturbation. However, it is instructive to construct a perturbative
solution with successive higher order corrections. In the time dependent case,
the perturbation order parameter is time itself - the longer the perturbation
acts, the greater its effect. With this in mind, we solve Eq. 6.9 iteratively.

Integrating Eq. 6.9 from 0 to t gives

i�

� t

0

∂bn (t′)

∂t′
dt′ =

� t

0

�

n′

�ψn

���Ĥ(1) (t′)ψn′



exp (iωn,n′t

′) bn′ (t
′) dt′

i� (bn (t)− bn (0)) =
�

n′

� t

0

�ψn

���Ĥ(1) (t′)ψn′



exp (iωn,n′t

′) bn′ (t
′) dt′,

or

bn (t) = bn (0)− i

�

�

n′

� t

0

�ψn

���Ĥ(1) (t′)ψn′



exp (iωn,n′t

′) bn′ (t
′) dt′.

The first term on the right in the above equation constitutes the zero order
approximation - wherein the bn coefficients do not change with time. The first
order approximation is obtained if the zero order approximation of bn (t′) is used
in the integrand - i.e., let bn (t′) = bn (0) (note that t′ < t) The result is

b(1)n (t) = bn (0)− i

�

�

n′

� t

0

�ψn

���Ĥ(1) (t′)ψn′



exp (iωn,n′t

′) bn′ (0) dt
′

= bn (0)− i

�

�

n′

� t

0

�ψn

���Ĥ(1) (t′)ψn′



exp (iωn,n′t

′) dt′bn′ (0) .(6.10)

The second order approximation results if the first order approximation is sub-
stituted into the integral - and so forth.

6.4.1 Electric dipole transitions

We consider the first order approximation to the expansion coefficients in case
of incident light - i.e., an electromagnetic field - interacting with the electric
dipole, µ̂, of the system. The time dependent perturbation is the interaction
energy,

Ĥ(1) (t) = µ̂e·E (t) = µ̂e,zEz (t) ,

where we choose the z axis to be the direction of the time dependent electric
field, E (t), associated with the incident electromagnetic radiation. The electric
field oscillates with angular frequency, ω = 2πν;

Ez (t) = Ez (0) cos (ωt)

=
1

2
Ez (0) (exp (iωt) + exp (−iωt)) .
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Consider just the second of the two complex exponential terms. Substituting
the associated time dependent perturbation into Eq. 6.10 gives

b(1)n (t) = bn (0)− i

�

�

n′

� t

0

�ψn

����
1

2
Ez (0) exp (−iωt′) µ̂e,zψn′

�
exp (iωn,n′t

′) dt′bn′ (0)

= bn (0)− i

�

1

2
Ez (0)

�

n′

�ψn

��µ̂e,zψn′
� � t

0

exp (i (ωn,n′ − ω) t′) dt′bn′ (0)

= bn (0)− i

�

1

2
Ez (0)

�

n′

�ψn

��µ̂e,zψn′
� �exp (i (ωn,n′ − ω) t′)

i (ωn,n′ − ω)

�t

0

bn′ (0)

= bn (0)− 1

�

1

2
Ez (0)

�

n′

�ψn

��µ̂e,zψn′
� �exp (i (ωn,n′ − ω) t)− 1

ωn,n′ − ω

�
bn′ (0)

= bn (0)− 1

�

1

2
Ez (0)

�

n′

�ψn

��µ̂e,zψn′
�
Fn,n′ (t) bn′ (0)

The factor in square brackets, Fn,n′ (t), oscillates with time at high frequency,
unless ω is close to ωn,n′ . Suppose we tune the frequency offset, ∆ω =
(ωn,n′ − ω), close to zero for some n and n′, such that all other frequency offsets,
∆ω′, are much larger. If ∆ω is very small, then exp (i∆ωt) ∼= 1 + i∆ωt, for t
up to some fraction of ∆ω−1, and

exp (i∆ωt)− 1

∆ω
∼= i∆ωt

∆ω
= it.

This term increases with time - it is the resonant transition term. The other
terms do not increase with time. They oscillate rapidly, and they are much
smaller than the resonant term. This includes terms that arise from the
exp (iωt) component of the electric field that we left out. for nonresonant
terms, |Fn,n′′ (t)| oscillates between 0 and 2/ |ωn,n′′ − ω| ∼= 2/ |ωn,n′′ − ωn,n′ |.
Henceforth, we consider only the much larger resonant term in the above equa-
tion. Specifically,

bn (t) ∼= bn (0)− 1

�

Fn,n′ (t)

2
Ez (0) �ψn

��µ̂e,zψn′
�
bn′ (0) .

If the system is initially in state, ψn′ - i.e.,

bn′ (0) = 1

and
bn (0) = 0

- then at time t,

bn (t) = − i
�

Fn,n′ (t)

2
Ez (0) �ψn

��µ̂e,zψn′
�

(6.11)

If t < 1/∆ω,

bn (t) = − t

2�
Ez (0) �ψn

��µ̂e,zψn′
�
,
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and the coefficient of ψn grows linearly with rate,

r = − i

2�
Ez (0) �ψn

��µ̂e,zψn′
�
,

until the time approaches 1/∆ω (at and beyond this time, the above linear ap-
proximation for the exponential is not valid). The probability that a transition

occurs is given by |bn (t)|2. For t < 1/∆ω,

|bn (t)|2 =
t2

4�2
E2z (0)

���ψn

��µ̂e,zψn′
���2 .

E2z (0) is proportional to the energy density of the incident light - i.e., the light
intensity.

The above analysis applies for near resonant light with a precise frequency.
In pactice, light sources have a distribution of frequencies. In realizable monochro-
matic light, the energy density is actually spread out over a narrow band of
frequencies. The above analysis is adapted to this case by including - on the
right side of Eq. ?? - an integral over ω (which easily converts to an integral
over ∆ω), across the associated band of frequencies. After quadratic growth at
short times, the transition probability grows linearly with time with rate given
by Fermi’s golden rule. Specifically,

|bn (t)|2 =
2π

�
ρ (ωn,n′)

���ψn

��µ̂e,zψn′
���2 t, (6.12)

where ρ (ωn,n′) is the density of light energy - per unit frequency - evaluated
at the transition frequency. The transition probability grows with a constant
rate,

2π

�
ρ (ωn,n′)

���ψn

��µ̂e,zψn′
���2 .

Fermi’s golden rule, Eq. 6.12 , is valid only up to first order in time depen-
dent perturbation theory. Specifically, it is valid only as long as the transition
probability is small. For low powered lasers, or ordinary ambient light, first or-
der perturbation theory is widely applicable to induced transitions. Transitions
with low probability are seen because there are large number of molecules. For
high powered lasers, the above coupled differential equations must be solved
for the coefficients. Accurate calcuations might also require higher order -
quadrupolar, octapolar, etc. - terms, beyond the electric dipole interaction.

The above analysis does not depend upon the sign of ωn′,n. It describes
absorption transitions, when n′ labels the lower energy level, and stimulated
emission when n′ labels the higher state.



Chapter 7

Electronic structure of

atoms

7.1 The hydrogen atom

The hydrogen atom, or hydrogen-like ion (He+, Li2+,...), is the simplest atom
(ion) with only one electron. It is a two body problem just like the diatomic
molecule. Like the diatomic molecule, the six degrees of freedom separate into
three center of mass coordinates and three relative coordinates. The difference
here is that the nucleus is much heavier than the electron (e.g., proton mass is
1836× electron mass). As such the center of mass is very close to the nucleus
and the center of mass motion looks very much like the motion of the nucleus.
At the same time, the reduced mass is very close to the electron mass, and the
relative motion is almost the motion of the electron. It is thus convenient to
think of the relative motion as the motion of the electron - though accurate
calculations require using the correct reduced masss. Just as in the diatomic
molecule case, the relative motion further separates into rotational and radial
motion. The radial TISE takes the form,

�
− �

2

2m

�
∂2

∂r2
+

2

r

∂

∂r

�
+ V (r) +

1

2mr2
L̂2
�
R (r) = ER (r) ,

where
L̂2Yℓ,mℓ

(θ, φ) = ℓ (ℓ+ 1)�2Yℓ,mℓ
(θ, φ) ,

and

V (r) = − 1

4πǫ0

Ze2

r

is the Coulombic attraction between the electron and nucleus - the latter with
charge +Ze to include hydrogen-like ions. The complete relative motion wave-
function is the product,

R (r)Yℓ,mℓ
. (θ, φ) .
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As in the treatment of diatomic molecule vibrations, we transform into radial
TISE into the TISE of a particle in one dimension. Specifically,

R (r) =
1

r
ϕ (r) ,

gives �
− �

2

2me

d2

dr2
− 1

4πǫ0

Ze2

r
+
ℓ (ℓ+ 1)�2

2mer2

�
ϕ (r) = Eϕ (r) .

Here, we approximate the reduced mass as the mass of an electron. The solu-
tions we get are more useful as starting points in the treatment of many electron
atoms and molecules in Chapter 8.

The Coulomb potential does not limit the range of motion to a narrow
interval about some equilibrium value. Instead, V (r) is pure attractive right
to r = 0. As such, radial motion extends over a wide range. The rigid rotor
approximation is not relevant here - i.e., the centrifugal potential cannot be
treated as independent of r. As a result, we must solve the radial TISE with
r−1 and r−2 potential terms,

�
− �

2

2me

d2

dr2
− 1

4πǫ0

Ze2

r
+
ℓ (ℓ+ 1)�2

2mer2

�
ϕ (r) = Eϕ (r)

or

�
−1

2

d2

dr2
− mee

2

4πǫ0�2
Z

r
+
ℓ (ℓ+ 1)

2r2

�
ϕ (r) =

meE

�2
ϕ (r)

�
−1

2

d2

dr2
− 1

a0

Z

r
+
ℓ (ℓ+ 1)

2r2

�
ϕ (r) =

meE

�2
ϕ (r) ,

where

a0 =
4πǫ0�

2

mee2
= 52.918 pm

is called the Bohr radius - it is radius of the ground state orbit in the Bohr
model of the hydrogen atom.

The radial TISE is now expressed in terms of scaled distance,

u =
r

a0
,

and scaled energy,

ǫ =
E

Eh
,

where

Eh =
�
2

mea20
=

mee4

16πǫ0�2
= 27.211386 eV = 4.359744× 10−18 J
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is the called the Hartree - it is twice the ionization energy of a hydrogen atom
(see below). Specifcally, since

d2

dr2
=

�
du

dr

�2
d2

du2
=

1

a20

d2

du2
,

we get
�
−1

2

d2

du2
− Z
u

+
ℓ (ℓ+ 1)

2u2

�
ϕ (u) =

mea
2
0E

�2
ϕ (u)

= ǫϕ (u) .

Note that using scaled distance and energy coordinates, is equivalent to using a0
and Eh as distance and energy units. Consequently, we revert to the original
variables, r and E, with the understanding that they are expressed in these
units. The Bohr radius, a0, and the Hartree are the distance and energy units
in the atomic units system of units.

In atomic units, the TISE takes the form
�
−1

2

d2

dr2
− Z
r

+
ℓ (ℓ+ 1)

2r2

�
ϕ (r) = Eϕ (r) . (7.1)

It is instructive to examine the behavior of the solutions to this equation near
the boundary radius values - specifically, r → 0 and r →∞. Both cases begin
by re-writing the above equation in the form,

d2

dr2
ϕ (r) = 2

�
−Z
r

+
ℓ (ℓ+ 1)

2r2
−E

�
ϕ (r) . (7.2)

Small radius: For small r there are two possibilities: ℓ > 0 and ℓ = 0.

(a) If ℓ > 0, the centrifugal potential term is much larger than the other
two terms inside the parentheses. Consequently, the solution to the
above equation must be close to the solution of

d2

dr2
ϕ (r) =

ℓ (ℓ+ 1)

r2
ϕ (r) .

This equation is clearly solved by Crℓ+1. There is another solution,
C′r−ℓ, but it blows up as r → 0. Since R = ϕ/r also blows up in
this case, this solution is inadmissable. Consequently,

ϕ (r) ∼= Crℓ+1 r close to 0

and
R (r) ∼= Crℓ. r close to 0.

For ℓ > 0, the electron is excluded from the nucleus - the radial
wavefunction goes to zero as r → 0. The decay to zero is in ac-
cord with a power law, rℓ. The exclusion of the electron from the
nucleus is stronger with increasing ℓ, consistent with the increasing
centrifugal repulsion.
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(b) If ℓ = 0, there is no centrifugal repulsion - angular momentum is zero.
In this case, R (r) extends right to r = 0. It is a constant, C > 0, in
the vicinity of the nucleus. This is consistent with the above radial
wavefunction, with ℓ = 0, even though the analysis only applies to
ℓ > 0. Below, we solve the radial TISE for ℓ = 0 and verify this
result.

Large radius: For large r, the Coulomb and centrifugal potentials approach zero. All
that is left is the equation of a free particle in one dimension; i.e., the
TISE reduces to

d2

dr2
ϕ (r) = −2Eϕ (r) .

Since the energy of bound states must be negative (E = 0 corresponds to
the ionization threshold), the solutions to this equation are

A exp
�√
−2Er

�

and

B exp
�
−
√
−2Er

�
.

The first of these solutions blows up as r →∞, and is inadmissable. The
remaining solution, exponential decay as r →∞, applies equally to R (r),
at large r. The actual solutions consist of polynomials (of successively
higher order) multiplying the above exponential function. The rate of
exponential decay is given by

√
−2E. This rate decreases as the bound

state energy increases toward zero. Consequently, higher energy orbitals
extend to larger r values.

It is possible to construct raising and lowering operators for the hydrogen
atom. Since there is a distinct radial TISE for each ℓ value, there is a ladder of
states - and raising and lowering operators - for each ℓ value. We will investigate
the ℓ = 0 ladder of states without constructing raising and lowering operators.
The ℓ = 0 ladder has the lowest energy state - the ground state - since it has no
angular energy. The lowest energy state has the longest possible wavelength.
We know that ϕ (r) = Cr, for small r, and that it decays exponentially for large
r. The simplest function satisfying these requirements is

ϕ (r) = Cr exp
�
−r
a

�
,

where a characterizes the relative width of the radial distribution, |ϕ (r)|2. Here,
we let the equations give us the relationship between a and E. Substituting
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the above expression into the radial TISE, for ℓ = 0, gives

d2

dr2
Cr exp

�
− r
a

�
= 2

�
−Z
r
−E

�
Cr exp

�
−r
a

�
C cancels

d

dr

�
exp

�
− r
a

�
− r
a

exp
�
− r
a

��
= 2 (−Z −Er) exp

�
− r
a

�

�
−1

a
− 1

a
+
r

a2

�
exp

�
− r
a

�
= 2 (−Z −Er) exp

�
− r
a

�
exp

�
− r
a

�
cancels

−2

a
+
r

a2
= −2Z − 2Er.

Both the constant and the coefficient of r must be equal - this is an equation of
functions. Therefore,

a =
1

Z

and
1

a2
= −2E

or

E = − 1

2a2
= −Z

2

2
.

For the hydrogen atom, Z = 1, and the ground state energy is

EH, g.s. = E1 = −1

2
= −13.605693 eV.

This is the ionization of hydrogen (hydrogen in its ground state). The associated
radial wavefunction is

R1,0 (r) = C exp (−Zr) .
The coefficient C is determined by normalization. The normalization condition
for R1,0 (r) is � ∞

0

|R1,0 (r)|2 r2dr = 1,

which gives

|C|2 =
1"∞

0 r2 exp (−2Zr) dr

=
1

(2Z)−3
"∞
0
ρ2 exp (−ρ) dρ

=
8Z3

2
= 4Z3

and
R1,0 (r) = 2Z3/2 exp (−Zr) .

The next state in the ℓ = 0 ladder is found by replacing Cr by C1r+C2r
2 to

get the next higher order polynomial prefactor of the exponential decay function.
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Equating the distinct functional forms, on the left and right of the equation
resulting from the radial TISE, gives the next energy level. On the left side,
we have

d2

dr2
�
C1r +C2r

2
�
exp

�
− r
a

�

=
d

dr

�

(C1 + 2C2r) exp
�
−r
a

�
−
�
C1r +C2r

2
�

a
exp

�
−r
a

��

=

�

2C2 − 2
(C1 + 2C2r)

a
+

�
C1r +C2r

2
�

a2

�

exp
�
−r
a

�

=

�
2

�
C2 −

C1
a

�
−
�

4C2
a
− C1
a2

�
r +

C2
a2
r2
�

exp
�
− r
a

�
.

On the right side,

2

�
−Z
r
−E

��
C1r +C2r

2
�
exp

�
−r
a

�

= −2
�
C1Z + (C2Z +C1E) r +C2Er

2
�
exp

�
−r
a

�
.

Equating these functions gives three equations:

C2 −
C1
a

= −C1Z,

4C2
a
− C1
a2

= 2 (C2Z +C1E)

and
C2
a2

= −2C2E

or

E = − 1

2a2
.

The last equation of the three equations gives the energy in terms of a. The
second last now takes the form,

4C2
a
− C1
a2

= 2C2Z −
C1
a2

4C2a−C1 = 2C2Za
2 −C1

2 = Za.

So,

a =
2

Z
and

E2 = − 1

2a2

= − Z2

2× 22
= −Z

2

8
.
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The first of the three equations gives C2 in terms of C1:

C2 = C1

�
1

a
− Z

�

= −Z
2
C1.

Therefore,

R2,0 (r) = C1

�
1− Z

2
r

�
exp

�
−Z

2
r

�
.

Normalization determines C1.

|C1|2 =
1

"∞
0

�
1− Z

2 r
�2
r2 exp (−Zr) dr

=
1

Z−3
"∞
0

�
ρ2 − ρ3 + 1

4ρ
4
�
exp (−ρ) dρ

=
Z3

2!− 3! + 1
44!

=
Z3

2
,

and

R2,0 (r) = 2−1/2Z3/2
�
1− Z

2
r

�
exp

�
−Z

2
r

�
.

The integrals needed to get the normalization follow from the standard integral,
� ∞

0

ρk exp (−ρ) dρ = (−1)k
dk

dλk
I (λ)

����
λ=1

,

where

I (λ) =

� ∞

0

exp (−λρ) dρ

= λ−1
� ∞

0

exp (−u) du

= λ−1.

Therefore, � ∞

0

ρk exp (−ρ) dρ = 1× 2× . . .× k = k!. (7.3)

Continuing the above procedure for n = 3, 4, . . . determines the entire ℓ = 0
ladder of states, and the associated energy levels. The procedure for the n th
state requires equating coefficients of an n th order polynomial on either side
of an equation that results from the radial TISE. To get the n th energy level,
it is sufficient to consider only the coefficients of rn and rn−1. Specically, the
radial TISE for the n th state can be written

d2

dr2
�
Pn−2 (r) +Cn−1r

n−1 +Cnr
n
�
exp

�
− r
a

�

= 2

�
−Z
r
−E

��
Pn−2 (r) +Cn−1r

n−1 +Cnr
n
�
exp

�
− r
a

�
,
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where Pn−2 (r) is a polynomial of order n−2. After the derivatives are evaluated
on the left of this equation, the coefficient of rn on the left is Cn/a2. The
corresponding coefficient on the right is −2ECn. Therefore,

−2E =
1

a2
,

and

E = − 1

2a2
.

This is true for all the states. a is determined from equating the coefficients of
rn−1. This gives

Cn−1
a2

− 2
nCn

a
= −2ECn−1 − 2ZCn

Cn−1
a2

− 2
nCn

a
=

Cn−1
a2

− 2ZCn

n

a
= Z

or
a =

n

Z
,

and

En = − Z
2

2n2
= −Er

Z2

n2
,

where Er = Eh/2 is the Rydberg energy. These are all the energy levels of the
hydrogen atom (or hydrogen-like ions). Because of the spherical symmetry of
the hydrogen atom, the energy level spectrum is highly degenerate. The ladder
of states for each successive ℓ value has energy levels that completely overlap
with the ℓ = 0 energy levels - except that the ℓ ladder begins with n = ℓ + 1.
Thus, the energy levels of the ℓ = 0 ladder begin with n = 1, while the energy
levels of the ℓ = 1 ladder begin with n = 2, and so on. Alternatively, we say
that for n = 1, there is only an state (s means ℓ = 0) - this is the 1s orbital.
For n = 2, there are s and p states (p means ℓ = 1). There is only one 2s state.
But, there are three 2p states (mℓ = 1, 0 and −1). For n = 3 there are s, p
and d states (d means ℓ = 2). The various ladders are well known to chemistry
students. The energy levels of hydrogen, with associated orbitals indicated by
short horizontal lines.

To see how every ℓ ladder of states shares the same energy levels, we consider
the radial TISE for ℓ > 0 ladder of states. The lowest energy eigenstate must
have the form,

ϕ (r) = Crℓ+1 exp
�
−r
a

�
.

The k th state in the ladder, k = 1, 2, . . ., has the form,

ϕk (r) =
�
C1r

ℓ+1 + . . .+Ck−1r
ℓ+k−1 +Ckr

ℓ+k
�
exp

�
−r
a

�

=
�
Pk−3 (r) r

ℓ+1 +Ck−1r
ℓ+k−1 +Ckr

ℓ+k
�
exp

�
− r
a

�
,
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Figure 7.1: The energy levels of hydrogen, with associated orbitals indicated.
The inset shows the subshell structure of each shell, up to n = 4.

where Pk−3 (r) is a polynomial of order k− 3. Substituing the above form into
Eq. 7.2 gives

d2

dr2
�
Pk−3 (r) r

ℓ+1 +Ck−1r
ℓ+k−1 +Ckr

ℓ+k
�
exp

�
− r
a

�

= 2

�
−Z
r

+
ℓ (ℓ+ 1)

2r2
−E

��
Pk−3 (r) r

ℓ+1 +Ck−1r
ℓ+k−1 +Ckr

ℓ+k
�
exp

�
− r
a

�
.

After the derivatives are evaluated, equating the coefficients of rℓ+k gives

Ck

a2
= −2ECk

which gives the same relationship,

E = − 1

2a2
,

seen for ℓ = 0. Equating the coefficients of rℓ+k−1 gives

Ck−1
a2

− 2 (ℓ+ k)
Ck

a
= −2ZCk − 2ECk−1

Ck−1
a2

− 2 (ℓ+ k)
Ck

a
= −2ZCk +

Ck−1
a2

which leads to

a =
ℓ+ k

Z
, k = 1, 2, . . .

=
n

Z
n = ℓ+ 1, ℓ+ 2, . . .
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If we label the states by n = ℓ + k, instead of k, the ℓ > 0 energy levels
are the same as those of ℓ = 0, except that they start at n = ℓ + 1. This
means the largest ℓ consistent with principle quantum number, n, is n − 1.
The centrifugal potential term does not contribute to the determination of E
and a above because it lowers the power of r by 2. It contributes only to
the coefficients of the polynomial - determined by equating the lower order
coefficients.

Energy is labeled by a single quantum number, n, which varies from 1 to
∞. For each n - i.e., for each energy level - the angular momentum quantum
number varies from ℓ = 0 to ℓ = n−1. For each n and ℓ values, mℓ varies from
mℓ = −ℓ to mℓ = ℓ. The wavefunctions that represent these states have the
form,

Rn,ℓ (r)Yℓ,mℓ (θ, φ) = Pn,ℓ

�
2Zr

n

��
2Zr

n

�ℓ

exp

�
−Zr
n

�
Yℓ,mℓ (θ, φ)

mℓ = −ℓ, . . . , ℓ
ℓ = 0, . . . , n− 1.

Here, Pn,ℓ (ρn) is a n−ℓ th order polynomial.
�
Pn,ℓ (ρn) ρ

ℓ
n exp

�
−ρn

2

��
n=ℓ+1,ℓ+2,...

is the ladder of radial eigenfunctions for the angular momentum, ℓ, radial TISE.
ρn = 2Zr/n.

The angular functions are the spherical harmonics - the same functions that
represent the rotations of diatomic molecules. The radial functions are indexed
by n−ℓ since the first radial state of the hydrogen atom for angular momentum
quantum number, ℓ, has the same energy as the n = ℓ + 1 th radial state for
zero angular momentum arising from the radial TISE It is instructive to derive
the familiar shapes of p and d orbitals from the spherical harmonics with ℓ = 1
and 2.

The p orbitals, Y1,mℓ (θ, φ), are given as follows:

mℓ Y1,mℓ
(θ, φ) rY1,mℓ

(θ, φ)

1 p1 = (2πI1)
−1/2 sin θ exp (iφ) (2πI1)

−1/2 (x+ iy)

0 p0 = pz = (4πI1)
−1/2 2 cos θ (4πI1)

−1/2 2z

−1 p−1 = − (2πI1)
−1/2

sin θ exp (−iφ) − (2πI1)
−1/2

(x− iy)
Real p orbitals are obtained from plus and minus combinations of the p1 and

p−1 orbitals:

px =
1√
2

�
p1 − p−1

�
= (4πI1)

−1/2 2x

and

py =
1

i
√

2

�
p1 + p−1

�
= (4πI1)

−1/2 2y.

The 1/
√

2 factors are to ensure normalized orbitals. Dividing the sum of any
two orthogonal, normalized orbitals by

√
2 gives a normalized orbital.

The d orbitals, Y2,mℓ
(θ, φ), are given as follows:
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mℓ Y2,mℓ (θ, φ) r2Y2,mℓ (θ, φ)

2 d2 = (2πI2)
−1/2 sin2 θ exp (2iφ)

(2πI2)
−1/2 (x+ iy)2

= (2πI2)
−1/2 �x2 − y2 + 2ixy

�

1 d1 = − (2πI2)
−1/2

2 sin θ cos θ exp (iφ) − (2πI2)
−1/2

2 (x+ iy) z

0 d0 = dz2 = (3πI2)
−1/2 �3 cos2 θ − 1

�
(3πI2)

−1/2 �3z2 − r2
�

−1 d−1 = (2πI2)
−1/2 2 sin θ cos θ exp (−iφ) (2πI2)

−1/2 2 (x− iy) z

−2 d−2 = (2πI2)
−1/2

sin θ exp (−2iφ)
(2πI2)

−1/2 (x− iy)2
= (2πI2)

−1/2 �x2 − y2 − 2ixy
�

Real d orbitals are obtained from plus and minus combinations of the d2 and
d−2 and, separately, the d1 and d−1 orbitals:

dx2−y2 =
1√
2
(d2 + d−2) = (4πI1)

−1/2 2
�
x2 − y2

�
,

dxy =
1

i
√

2
(d2 − d−2) = (4πI1)

−1/2 4xy,

dxz =
1√
2

(−d1 + d−1) = (4πI1)
−1/2 4xz

and

dyz =
1

i
√

2
(−d1 − d−1) = (4πI1)

−1/2 4yz.

The first few radial wavefunctions of hydrogen-like ions - in atomic units and
expressed in terms of ρ = 2Zr/n - are tabulated as follows:

n Z−3/2Rn,0 (r) Z−3/2Rn,1 (r) Z−3/2Rn,2 (r)
3 243−1/2

�
6− 6ρ+ ρ2

�
exp

�
−ρ
2

�
486−1/2 (4− ρ) ρ exp

�
−ρ
2

�
2430−1/2ρ2 exp

�
−ρ
2

�

2 8−1/2 (2− ρ) exp
�
−ρ
2

�
24−1/2ρ exp

�
−ρ
2

�

1 2 exp
�
−ρ
2

�

The polynomial prefactors of exp
�
−ρ
2

�
for ℓ = 0 are the Laguerre polyno-

mials. For ℓ > 0, they are associated Laguerre polynomials.

Example 7.1. Expectation values of r for hydrogen atom energy eigenstates.

(a) Determine the expectation value of r for a hydrogen atom in its
ground state. How does this compare with the most probable radius?

(b) Determine the expectation value of r for a hydrogen atom in the 2s
and 2p states.

(c) What is the probability that a 2s electron is found to be within the
first radial lobe? Use wolfram alpha to get the required integral.

Solution 7.1.
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(a) The expectation of r, for the ground state, 1s, is

�ψ1s |rψ1s	 = �R1,0 |rR1,0	 �Y0,0 |Y0,0	
=1

=

� ∞

0

rR21,0 (r) r
2dr

= 2−4
� ∞

0

�
2 exp

�
−ρ

2

��2
ρ3dρ, ρ = 2r

= 2−2
� ∞

0

exp (−ρ) ρ3dρ

= 2−2 × 3! =
3

2
.

The mean radial position of the electron in the ground state is 1.5
Bohr = 79.377 pm. The most probable radius is given by finding
the maximum of

R21,0 (r) r
2 = exp (−ρ) ρ2.

Set

d

dρ
ρ2 exp (−ρ) = 0

�
2ρ− ρ2

�
exp (−ρ) = 0 ,

which gives
ρ = 2

and
r = 1.

The Bohr radius is the most probable radius of the ground state of the
hydrogen atom. It is smaller than the mean radius, the expectation
value, because the distribution extends to infinity - it is asymmetric
about its peak at r = 1.

(b) For the 2s state,

�ψ2s |rψ2s	 = �R2,0 |rR2,0	

=

� ∞

0

R22,0 (r) r
3dr

=

� ∞

0

�
8−1/2 (2− ρ) exp

�
−ρ

2

��2
ρ3dρ, ρ = r

= 8−1
� ∞

0

exp (−ρ)
�
4ρ3 − 4ρ4 + ρ5

�
dρ

= 8−1 (4× 3!− 4× 4! + 5!)

= 8−1 (24− 96 + 120)

=
48

8
= 6.
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For the 2p state,

�
ψ2p

��rψ2p
�

= �R2,1 |rR2,1	

=

� ∞

0

R22,1 (r) r
3dr

=

� ∞

0

�
24−1/2ρ exp

�
−ρ

2

��2
ρ3dρ, ρ = r

= 24−1
� ∞

0

exp (−ρ) ρ5 dρ

= 24−1 × 5!

= 5.

(c) The first lobe of the 2s state is in the interval, zero to the node in
R2s (r). The node occurs where r = 2. The probability that r is less
than 2 is the probability that the electron is in the first lobe. This
probability is given by

� 2

0

R22,0 (r) r
2dr

=

� 2

0

�
8−1/2 (2− ρ) exp

�
−ρ

2

��2
ρ2dρ

= 8−1
� 2

0

�
4ρ2 − 4ρ3 + ρ4

�
exp (−ρ) dρ

= 0.0527. using wolfram alpha

The electron is about 95% likely to be in the outer lobe.

Example 7.2. Potential and kinetic energy expectations for hydrogen-like ion energy
eigenstates.

(a) What is the expectation value of the Coulomb potential energy for the
1s state of He+? What is the relationship between this expectation
value and the total energy of the 1s state?

(b) What is the expectation value of the kinetic energy for the 1s state
of He+? You can use the function ϕ1,0 (r), for which the radial inner
product has no r2 factor in the integrand, and the radial kinetic en-
ergy is simply −1

2d
2/dr2. The 1s state has only radial kinetic energy.

You can also use the result of part a, and the known total energy.
What is the relationship between the kinetic energy expectation and
the total energy?

Solution 7.2.
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(a) The expectation of the Coulomb potential energy for He+ is

�ψ1s
����

�
−2

r

�
ψ1s

�
=

� ∞

0

�
−2

r

�
R21,0 (r) r

2dr

= −8−1
� ∞

0

�
23/22 exp

�
−ρ

2

��2
ρ dρ, ρ = 4r

= −4

� ∞

0

exp (−ρ) ρdρ

= −4

= 2×
�
−22

2

�
= 2E1.

The expectation value of potential energy is twice the total energy,
for the 1s state. This is true for all states. It is a consequence of
the virial theorem.

(b) The expectation of the radial kinetic energy, K̂r, for He+ is

�ψ1s
���K̂rψ1s



=

�
ϕ1,0

����

�
−1

2

d2

dr2

�
ϕ1,0

�
�Y1,0 |Y1,0	

=1

=

� ∞

0

23/22r exp (−2r)

�
−1

2

d2

dr2

�
23/22r exp (−2r) dr

=
1

2

� ∞

0

ρ exp
�
−ρ

2

��
−8

d2

dρ2

�
ρ exp

�
−ρ

2

�
dρ ρ = 4r

= −4

� ∞

0

ρ exp
�
−ρ

2

� d

dρ

�
1− ρ

2

�
exp

�
−ρ

2

�
dρ

= −4

� ∞

0

ρ exp
�
−ρ

2

��
−1

2
− 1

2

�
1− ρ

2

��
exp

�
−ρ

2

�
dρ

= −4

� ∞

0

�
−ρ+

ρ2

4

�
exp (−ρ) dρ

= −4

�
−1 +

2

4

�
= 2 = −E1.

The expectation of kinetic energy is just minus the total energy. This
also follows from the virial theorm. The expectation of kinetic energy
could also be determined from

�ψ1s
���K̂ψ1s



= �ψ1s

���
�
Ĥ − V̂

�
ψ1s




= �ψ1s
���Ĥψ1s



− �ψ1s

���V̂ ψ1s



= E1 − (−4) from part a

= −2 + 4 = 2.
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7.2 Transitions of the hydrogen atom.

Hydrogen atom transitions are subject to the same transition rule as rotations
of a diatomic molecule - namely, ∆ℓ = ±1 and ∆mℓ = 0 or ±1. This is because
the angular dependence of the dipole operator has the same form in both cases
- it is cos θ (sin θ cosφ for ∆mℓ = ±1 transitions). The radial transitions of the
hydrogen atom are not subject to the selection rule of the diatomic vibrational
transitions. The latter transitions are harmonic oscillator transitions. The
transition integrals of radial transitions of the hydrogen atom,

� ∞

0

Rn′,ℓ±1 (r) rRn,ℓ (r) r
2dr,

are non-zero for all n′ and n.
Because the energy level spacings in hydrogen decrease dramatically with

increasing n, the transitions of hydrogen are labeled according to the lower level
involved. For example, transitions to or from n = 1 levels are called Lyman
transitions - the observed lines constitute the Lyman series. Transitions to
or from n = 2 (except involving n = 1) are Balmer transitions, and so on
(Paschen, Brackett, ...). The Lyman series lines are all in the UV portion of
the EM spectrum. The Balmer lines are visible transitions. The other series
are in the infrared, and beyond. After the Balmer series, the other series begin
to overlap - increasingly so with larger smallest n.

7.3 Electron spin

Otto Stern and Walther Gerlach demonstrated the splitting of a beam of silver
atoms into two beams by an inhomogeneous magnetic field, in 1922. In 1927,
T.E. Phipps and J.B. Taylor split a beam of 1s hydrogen atoms into two beams
with the same inhomogeneous magnetic field. These experiments reveal the
existence of spin - since these atoms have no net orbital angular momentum.
Excited states of hydrogen reveal the distinct mℓ states through splitting into
additional beams. In the absence of a magnetic field, all the distinct mℓ states
of an n, ℓ subshell have the same energy, En. When a magnetic field is applied,
states with different mℓ have different energy - the Zeeman effect. It arises
because of the interaction of the magnetic field and the magnetic dipole of the
electron "orbiting" the nucleus. An orbiting electron has a magnetic dipole
associated with its orbital angular momentum,

µ̂m,orb = − e

2me
L̂.

The interaction energy - the orbital Zeeman energy - is given by

Ĥ
(1)
orb, Z = −µ̂m,orb ·B,
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where B is the magnetic field - in Tesla (SI units) Choose the magnetic field
to be along the z axis. In this case,

Ĥ
(1)
orb, Z =

e

2me
BL̂z.

The eigenstates of this operator are the eigenstates of L̂z - i.e., the distinct mℓ

states of hydrogen. The Zeeman energy shifts are the eigenvalues of Ĥ
(1)
orb, Z ,

given by

E
(1)
orb, Z, mℓ

=
e�

2me
Bmℓ

= µBBmℓ,

where

µB =
e�

2me
= 5.7883818066(38)× 10−5 eV T−1

is called the Bohr magneton - it is the atomic unit of magnetic dipole moment.
Subshells split into a set of distinct energy levels (with plus or minus energy
shift in accord with the sign of mℓ) that are detected by the associated splitting
of spectral lines when hydrogen is in a magnetic field. Spectral lines appear
subject to the selection rules, ∆mℓ = 0 or ±1. The associated frequencies
are proportional to the applied magnetic field. This is the origin of the term
magnetic quantum number, and the mℓ notation. However, in addition to the
orbital Zeeman splitting experiments show splitting due to electron spin and
nuclear spin.

An electron beam in an inhomogeneous magnetic field (plus a transverse
electric field to counter the Lorentz force that causes the electrons to spiral)
splits into two beams, This shows that electrons have two spin states, which
corresponds to a spin angular momentum quantum number, s = 1/2. s is
analogous to the orbital quantum number, ℓ . One key difference (other than
the half-integral nature of s) is that there is only this one s state. The Zeeman
interaction energy, accounting for both orbital and spin contributions, is

ĤZ = −
�
µ̂orb, z + µ̂spin, z

�
B

=
�µB
�
L̂z +

geµB
�
Ŝz
�
B,

where ge = 2.002319304361(53) is called the electron g-factor. Its value is
known to extraordinary precision with experiment and theory in lock step. Clas-
sical relativity theory predicts a value of 2. Quantum electrodynamics predicts
the correction as shown - in agreement with experiment. The eigenvalues of
the Zeeman Hamiltonian are

EZ ,mℓ ,ms = µBB (mℓ + gems) ,

where ms (= 1/2 or −1/2) labels the two eigenstates of Ŝz (called α and β,
respectively) in the same way mℓ labels the eigenstates of L̂z. Nuclear spin
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contributes an additional level of splitting sensitive to the MI quantum number
associated with the z component of nuclear spin angular momentum, Îz. How-
ever, this splitting is orders of magnitude smaller. Nevertheless, the nuclear
spin Zeeman splitting is the basis for nuclear magnetic resonance (NMR) spec-
troscopy and magnetic resonance imaging (MRI). The electron orbital and spin
Zeeman splittings are the basis for electron spin resonance (ESR) spectroscopy
(a.k.a. electron paramagnetic resonance - EPR - spectroscopy).

Example 7.3. Determine all Zeeman energies for an ℓ = 1 electron.

Solution 7.3. For ℓ = 1,mℓ = −1, 0, 1. Also,ms = ±1
2 . The energy levels are tabulated

as follows:

mℓ ms EZ ,mℓ ,ms EZ ,mℓ ,ms ge = 2
1 1

2 µBB
�
1 + ge

2

�
2µBB

0 1
2 µBB

ge
2 µBB

−1 1
2 µBB

�
−1 + ge

2

�
0

1 −1
2 µBB

�
1− ge

2

�
0

0 −1
2 −µBB ge

2 −µBB
−1 −1

2 µBB
�
−1− ge

2

�
−2µBB

.

Since ge/2 is so close to 1, the energy levels are very close to the orbital
Zeeman (i.e., with spin left out) energy levels of an ℓ = 2 electron - except
that the zero energy state is doubly degenerate.

7.4 The helium atom and the Pauli principle

The helium atom has two electrons. Both electrons interact with the nucleus
in same fashion as the one electron in He+. If the electrons did not interact,
the energy eigenstates of the two electron helium atom would be the product
of two one electron wavefunctions - one for each electron. The one electron
states would be the energy eigenstates of He+. There is one twist to this story,
however. Electrons are identical particles - one electron is exactly like another.
More than that, they are indistinguishable. The significance of this property
is best understood by considering a product wavefunction for two electrons.

For example,
(1s↑) (1) (1s↓) (2)

is the ground state of a fictictious helium atom with no electron-electron re-
pulsion and distinguishable electrons. Here, (1s↑)(1) is the wavefunction for
electron 1 in the 1s orbital, with spin up (ms = +1/2). The argument, 1,
represents all the coordinates (spatial and spin) of electron 1. Electron 2 is in
the 1s orbital with spin down. (1s↑) and (1s↓) are called spin-orbitals - they
specify the complete state (orbital and spin) of one electron. Since the electrons
are indistinguishable, they cannot be labeled. However, states of particles that
cannot be labeled must be written in terms of states with labeled electrons - like
the one above. The state of two indistinguishable particles must be such that
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if we measure an observable property of particle 1 it must yield the same result
as the measurement of the same property of particle 2. This means that if we
exchange the two particle labels, in the state of the system, the wavefunction
can change - at most - by a phase factor, eiσ. Wavefunctions differing only by
a phase factor - i.e.,

ψ = eiσϕ

- produce the same measurement outcomes.

Let P̂1,2 be the particle 1 and 2 exchange operator. Its effect on the above
two particle product state is given by

P̂1,2(1s↑) (1) (1s↓) (2) = (1s↑) (2) (1s↓) (1) .

The product state is not an eigenfunction of the exchange operator. In the
resultant state electron 1 is spin down and electron 2 is spin up. Admissable
wavefunctions of a two indistinguishable particle system are eigenfunctions of
P̂1,2, and the eigenvalues must be phase factors - i.e., they must have modulus

1. Since applying P̂1,2 twice returns the wavefunction to its initial form, we
must have e2iσ = 1 for the admissable phase factors. Thus, eiσ = 1 or −1,
and there are two kinds of indistinguishable particles. Particles whose many
particle wavefunctions are eigenfunctions of the exchange operator (for any pair
of particles) associated with eigenvalue 1 are called bosons, while those with
eigenvalue −1 are called fermions. Electrons, and all the other elementary
particles of matter, are fermions. They are antisymmetric with respect to
exchange of two particles - the exchange eigenvalue is −1 for electrons. This is
called the Pauli principle.

Antisymmetric wavefunctions can be constructed from product states like
the one above. We define the antisymmetrizer operator, Â, for an n electron
system as the sum over all permutation operators, P̂ , weighted by −1 if they

have odd order, p
�
P̂
�
. p

�
P̂
�
is the number of exchanges required to represent

the permutation as a product of exchanges.

Â =
1√
n!

�

P̂

(−1)
p(P̂) P̂ .

The 1/
√
n! is needed to give a normalized result when Â is applied to a product

of orthogonal one electron states occupied by different electrons. For a two
electron system, there are only two permutations: the identity, represented here
by the multiplication operator, 1, and the 1,2 exchange operator, P̂1,2. In this
case,

Â =
1√
2

�
1− P̂1,2

�
.

Applying the antisymmetrizer to the above product state gives a properly nor-
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malized, antisymmetric state of a helium atom;

Â(1s↑) (1) (1s↓) (2) =
1√
2

�
1− P̂1,2

�
(1s↑) (1) (1s↓) (2)

=
1√
2

�
(1s↑) (1) (1s↓) (2)− (1s↑) (2) (1s↓) (1)

�
.

This state is an approximation to the ground state of helium - one that neglects
the electron-electron repulsion. Note that either the two orbitals or the two
spin states had to be different. Otherwise, the antisymmetrizer would have
given zero when applied to the product state. Because electrons are fermions,
no two electrons can occupy the same one electron state (spin-orbital). This
gives rise to the Aufbau principle, and the shell structure of the ground state
electron configurations of all the elements - i.e., the periodic table.

The above spin-orbitals are products of orbital and spin states;

(1s↑) (1) = (1s) (1)α (1)

and
(1s↓) (1) = (1s) (1)β (1) .

Consequently, the above approximate ground state of helium takes the form,

ψ
(0)
He g.s. =

1√
2
((1s) (1) (1s) (2)α (1)β (2)− (1s) (2) (1s) (1)α (2)β (1))

= (1s) (1) (1s) (2)
1√
2
(α (1)β (2)− α (2)β (1))

= (1s) (1) (1s) (2)χ0,0 (1, 2) ,

where χ0,0 (1, 2) is the two spin singlet state wherein the electrons have opposite
spin and the total spin angular momentum is zero. The total spin quantum
numbers are (S,MS) = (0, 0). This state factors into an orbital part - both
electrons in the 1s orbital - and a spin part - the two spin singlet state. The
orbital part is symmetric with respect to exchange of the electrons, while the
spin part is antisymmetric. The Pauli principle insists that the total two elec-
tron state be antisymmetric with repsect to exchange. When the two electron
state splits into orbital and spin factors, either the two spin state or the two
orbital state is antisymmetric, while the other is symmetric - to give an overall
antisymmetric state. A many electron state factors into orbital and spin parts
whenever spin-orbit coupling can be neglected. Spin-orbit coupling is small for
light atoms. It is not small for inner shell electrons of heavy atoms. These
electrons travel at relativistic speeds for which energy transfers between spin
and orbital states.

Since helium (or any atom) has spherical symmetry, the total angular mo-
mentum - the sum of total spin and orbital angular momenta of the two elec-
trons - must be conserved. This is because there is no net torque on the atom.
Conservation of angular momentum, in quantum mechanics, means that total



198 CHAPTER 7. ELECTRONIC STRUCTURE OF ATOMS

angular momentum operator, Ĵ = L̂+ Ŝ, commutes with the Hamiltonian, and
the energy eigenstates can be labeled by the quantum numbers that label the
eigenstates of Ĵ2 and Ĵz; namely, J andMJ . These quantum numbers are called
good quantum numbers. Note that these are not diatomic rotational quantum
numbers. Ĵ is used for both total electronic angular momentum and molecular
rotational angular momentum.

Since spin-orbit coupling is very small for helium (and all the light elements),
total orbital and spin angular momenta of the atom are separately conserved.
In this case, L, ML, S and MS are also good quantum numbers. This case
is called Russell-Saunders coupling. Here, the total orbital and spin quantum
numbers are good, whereas the individual electron orbital and spin quantum
numbers are not. Electron-electron interactions are strong. They couple the
orbital states of the two electrons, and (separately) their spin states. The above
approximate helium ground state has (L,ML) = (0, 0).

With the above approximate ground state for helium, we can approximate
the ground state energy by forming the expectation value of the helium Hamil-
tonian, including the electron-electron repulsion. Since the above state is an
eigenstate of the Hamiltonian of the two electron Hamiltonian without electron-
electron repulsion, this estimate corresponds to a first-order-perturbation-theory
corrected (with respect to electron-electron repulsion) of the helium ground state
energy. The helium Hamiltonian can be written (in atomic units) as

Ĥ = Ĥ1 + Ĥ2 +
1

r12
.

This Hamiltonian does not affect spin states. The ground state, ψ
(0)
He g.s., con-

sequently factors into orbital and spin parts. The expectation value of the
Hamiltonian for a helium atom in this state correspondingly factors into space
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and spin inner products,

E
(0 & 1)
He g.s.

=
�
ψ
(0)
He g.s.

���Ĥψ(0)He g.s.



total inner product for 2 e−s, space and spin

= �(1s) (1) (1s) (2)
���Ĥ(1s) (1) (1s) (2)




this is a spatial inner product for 2 e−s
a six dimensional integral

�
χ0,0 (1, 2)

��χ0,0 (1, 2)
�

this is a spin inner product for 2 e−s

=1, χ0,0(1,2) is normalized

= �(1s) (1) (1s) (2)
����

�
Ĥ1 + Ĥ2 +

1

r12

�
(1s) (1) (1s) (2)

�

= �(1s) (1)
���Ĥ1(1s) (1)



�(1s) (2) |(1s) (2)	+ �(1s) (1) |(1s) (1)	 �(1s) (2)

���Ĥ2(1s) (2)



+ �(1s) (1) (1s) (2)
����

1

r12
(1s) (1) (1s) (2)

�

= − 22

2× 12
1s e− in He+

− 22

2× 12
1s e− in He+

+ J1s,1s

= −4 + J1s,1s,

where J1s,1s > 0 is called the 1s-1s Coulomb integral - it gives the repulsion
energy of the two 1s electrons. Here, we see that the ground state energy of
He is somewhat higher than −4 Hartree (the energy without electron-electron
repulsion). The Coulomb integral,

J1s,1s =

�
(1s)2 (x1) (1s)

2 (x2)

r12
dx1dx2,

is the six dimensional integral over the coordinates of electron 1 and electron 2.
The integrand consists of the product of the 1s orbital probability density, (1s)2,
for both electron 1 and electron 2, divided by the distance, r12 = �x1 − x2�,
separating the electrons. The integrals can be evaluated analytically. The
result is

J1s,1s =
5

4
Hartree (remember, we are in atomic units).

The first order perturbation theory estimate of the ground state energy is

E
(0 & 1)
He g.s. = −4 + 1.25 = −2.75 Hartree = −74.83 eV

The true ground state energy of helium is

EHe g.s. = −2.9036 Hartree = −79.01 eV.

7.4.1 The variational principle

Our first order perturbation theory estimate of the ground state energy is higher
than the true value. It is easy to prove that the expectation value of the Hamil-
tonian is a minimum when the state is the true ground state. Thus, any other
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state produces higher value - this is called the variational principle. We can
estimate the ground state energy of a system by minimizing the expectation
value of the Hamiltonian with respect to parameters that define the state. For
example, the Coulomb integral defined above is quite large, making the ground
state energy estimate too high. This is because the electrons partially shield
each other from the nucleus - there is an effective nuclear charge, Zeff , which
is less than Z = 2 for helium. Consequently, if we replace the Z that appears
in exponential portion of the radial wavefunction, exp (−Zr), and in the nor-
malization constant, by variable Zeff , then the above expectation value can be
minimized with respect to Zeff to give a better estimate of the ground state
energy. We also get a better estimate of the ground state itself, and a "best"
effective nuclear charge value for 1s2 electrons.

7.4.2 The ionization energy of helium

The ionization energy of helium is the change in energy change of the process,

He→ He+ + e−,

where the free electron on the right has zero kinetic energy. The ionization of
helium is thus

IHe = EHe+ g.s. −EHe g.s.
= −2− (−2.9036)

= 0.9036 Hartree = 24.59 eV.

Using our first order perturbation theory estimate for the ground state of He,
the ionization energy is approximated as

Eg.s. He+ −E(0 & 1)
g.s. He

= −2− (−2.75)

= 0.75 Hartree = 20.41 eV.

7.5 Excited states of helium

The excited states of helium are similarly approximated as antisymmetrized
product states. For example, consider the 1s12s1 electron configuration. Here,
there are two different orbitals, 1s and 2s, as well as two different spin states.
Now, the two-orbital state can be either symmetric or antisymmetric (with re-
spect to exchange). In the symmetric case, the spin state will be antisymmetric
as in the ground state. However, if the two-orbital state is antisymmetric, the
spin state must be symmetric. This corresponds to the three spin states,

χ1,1 (1, 2) = α (1)α (2) ,

χ1,0 (1, 2) =
1√
2
(α (1)β (2) + α (2)β (1))
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and

χ1,−1 (1, 2) = β (1)β (2) .

These two-spin states are eigenstates of the total spin operators, Ŝ2 and Ŝz,
where

Ŝ = Ŝ1 + Ŝ2,

associated with the quantum numbers, S and MS, listed in the two-spin state
subscripts. All of the two-orbital states mentioned so far,

ψ
(0)
He g.s. = (1s) (1) (1s) (2) , goes with singlet spin state - S = 0

ψ
(0)
He 1st sing =

1√
2
((1s) (1) (2s) (2) + (1s) (2) (2s) (2)) goes with singlet spin state - S = 0

= B̂(1s) (1) (2s) (2)
B̂ is the symmetrizer operator

= 2−1/2
�
1 + P̂1,2

�

and

ψ
(0)
He 1st trip =

1√
2

((1s) (1) (2s) (2)− (1s) (2) (2s) (2)) goes with triplet spin state - S = 1

= Â(1s) (1) (2s) (2)

have zero orbital angular momentum, and total orbital angular momentum
quantum numbers, L = 0 andML = 0. Of these, the antisymmetric two-orbital
state has the lowest energy. This can be seen by evaluating the expectation
value of the Hamiltonian for helium atoms in these two states. First consider
the symmetric two-orbital state which pairs with the antisymmetric spin state
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- the singlet state.

E
(0 & 1)
He 1st sing

=
�
ψ
(0)
He 1st sing.

���Ĥψ(0)He 1st sing



=
�
B̂(1s) (1) (2s) (2)

����

�
Ĥ1 + Ĥ2 +

1

r12

�
B̂(1s) (1) (2s) (2)

�
two-spin state is normalized

= �(1s) (1) (2s) (2)
����B̂

�
Ĥ1 + Ĥ2 +

1

r12

�
B̂(1s) (1) (2s) (2)

�
B̂ is Hermitian

= �(1s) (1) (2s) (2)
����

�
Ĥ1 + Ĥ2 +

1

r12

�
B̂2(1s) (1) (2s) (2)

�
B̂ commutes with Ĥ

= �(1s) (1) (2s) (2)
����

�
Ĥ1 + Ĥ2 +

1

r12

�√
2B̂(1s) (1) (2s) (2)

�
B̂2 =

√
2B̂

= �(1s) (1) (2s) (2)
����

�
Ĥ1 + Ĥ2 +

1

r12

�
((1s) (1) (2s) (2) + (1s) (2) (2s) (2))

�

= − 22

2× 12
1s e− in He+

− 22

2× 22
2s e− in He+

+ J1s,2s +K1s,2s

= −5

2
+ J1s,2s +K1s,2s ,

where J1s,2s and K1s,2s are the 1s-2s Coulomb and exchange integrals:

J1s,2s =

�
(1s)2 (x1) (2s)

2 (x2)

r12
dx1dx2

and

K1s,2s =

�
(1s) (x1) (2s) (x1) (1s) (x2) (2s) (x2)

r12
dx1dx2.

Whereas the Coulomb integral can be viewed as the electrostatic repulsion of
two classical spherical charge distributions, the exchange integral has no classical
analogue. Both of these terms are positive. The singlet state is shifted up by
both Coulomb and exchange integrals.

When we construct the expectation value of the Hamiltonian with the first
triplet state, the result is

�
ψ
(0)
He 1st trip.

���Ĥψ(0)He 1st trip



= −5

2
+ J1s,2s −K1s,2s.

Here, the exchange energy enters with a minus sign. This means the triplet
state has lower energy than the singlet state. This is an example of the first
of Hund’s rules: The states with highest spin multiplicity (2S + 1, largest for
largest S) have the lowest energy.

Evaluating the Coulomb and exchange integrals for the 1s12s1 configuration
gives

J1s,2s = 0.420
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and

K1s,2s = 0.044.

The triplet and singlet state energies are estimated to be

E
(0 & 1)
He 1st trip. = −2.5 + 0.420− 0.044

= −2.124 Hartree = −57.80 eV

E
(0 & 1)
He 1st sing. = −2.5 + 0.420 + 0.044

= −2.036 Hartree = −55.40 eV.

The true values are −2.176 and −2.147 Hartree, respectively.

The next excited states of helium are the triplet and singlet states associated
with the 1s12p1 electron configuration. These states have total orbital angular
momentum quantum number, L = 1. There are three distinct, degenerate
triplet and singlet states, associated with the three 2p orbitals, 2p1, 2p0 and
2p−1. The total degeneracy of these states is (2S + 1) (2L+ 1) = 9 for the
S = 1 (triplet) states, and 3 for the S = 0 (singlet) states. These states are
higher in energy than the 1s12s1 states because the Coulomb integral is larger for
these states. This energy difference is often attributed to the inner lobe of the
2s penetrating the 1s shell, and experiencing a larger effective nuclear charge.
Here, the energy difference is attributed to J1s,2s < J1s,2p . This inequality, can
be understood in terms of the two radial lobes of the 2s orbital as follows:

Figure 7.2 shows the radial electron density for the 1s, 2s and 2p orbitals:
r2 |R1,0|2 (solid), r2 |R2,0|2 (dashed) and r2 |R2,1|2 (dotted), respectively. We
see that because of the inner lobe of 2s, the outer lobe is further from the nucleus
and does not overlap the 1s electron density very much. The overlap of the 2p
electron density with 1s is greater. It is in the overlapping regions where the
electron-electron repulsion, 1/r12, is greatest. Note that the traditional first
year explanation - that the inner lobe of 2s gives 2s a greater effective nuclear
charge - becomes evident if we do a variational calculation. Specifically, if we
minimized the expectation value of the Hamiltonian with respect to Z (use sep-
arate Z’s in the exponential portion of the orbital radial functions), we would
find that both 2s and 2p are pushed further from the nucleus (they have smaller
effective nuclear charges than 1s), with 2p pushed further in order to avoid the
overlap with 1s. This larger shift, to larger r, of 2p gives its a higher energy
than 2s.
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The radial probability density, |ϕ (r)|2 = r2 |R (r)|2, for the 1s orbital (solid),
the 2s orbital (dashed) and the 2p orbital (dotted). The units of r are Bohr =

52.918 pm.

Example 7.4. Consider the hydride ion, H−.

(a) Write down an approximate ground state for H−, with the indepen-
dent electron approximation.

(b) Estimate the ground state energy of H− using first order perturbation
theory. Use J1s,1s = 5

4 , for He, to get J1s,1s for H
−. [Hint: write

the Coulomb integral in terms of universal hydrogen-like ion orbitals
and make the Z dependence explicit.

(c) Estimate the electron affinity of hydrogen.

Solution 7.4.

(a) The independent-electron ground state is identical to that of He,
except that the orbitals are for Z = 1 rather than Z = 2.

ψ
(0)

H− g.s.
= (1s) (1) (1s) (2)

1√
2
(α (1)β (2)− α (2) β (1))

= (1s) (1) (1s) (2)χ0,0 (1, 2) .

These are H atom 1s orbitals with Z = 1.

(b) This calculation is identical to the calculation above of the ground
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state energy of helium, except for the value of Z. Specifically,

E
(0 & 1)

H− g.s.

=
�
ψ
(0)

H− g.s.

���Ĥψ(0)H− g.s.




total inner product for 2 e−s, space and spin

= �(1s) (1) (1s) (2)
���Ĥ(1s) (1) (1s) (2)




this is a spatial inner product for 2 e−s

a six dimensional integral

�
χ0,0 (1, 2)

��χ0,0 (1, 2)
�

this is a spin inner product for 2 e−s

=1, χ0,0(1,2) is normalized

= �(1s) (1) (1s) (2)
����

�
Ĥ1 + Ĥ2 +

1

r12

�
(1s) (1) (1s) (2)

�

= �(1s) (1)
���Ĥ1(1s) (1)



�(1s) (2) |(1s) (2)	+ �(1s) (1) |(1s) (1)	 �(1s) (2)

���Ĥ2(1s) (2)



+ �(1s) (1) (1s) (2)
����

1

r12
(1s) (1) (1s) (2)

�

= − 12

2× 12
1s e− in H

− 12

2× 12
1s e− in H

+ J1s,1s

= −1 + J1s,1s.

The Coulomb integral, J1s,1s , depends implicitly on Z. We can make
the dependence explicit by noting that the hydrogen-like orbitals are
universal when expressed in terms of radial coordinate, ρ = 2Zr/n.
This corresponds to a scaling of both coordinates, y1 = 2Zx1 and
y2 = 2Zx2, for 1s orbitals. Therefore,

J1s,1s; Z =

�
(1s)2 (y1) (1s)

2 (y2)

(2Z)−1 ρ12
dy1dy2

= 2Z

�
(1s)2 (y1) (1s)

2 (y2)

ρ12
dy1dy2

= ZJ1s,1s; 1,

where these are universal 1s orbitals. Note that factors introduced,
upon change of variables, in the volume elements are absorbed into
the normalization constant of the universal 1s orbitals. Since J1s,1s =
5/4 for He,

J1s,1s; 2 =
5

4
= 2J1s,1s; 1.

Therefore,

J1s,1s; 1 =
5

8

is the Coulomb integral for H−, and

E
(0 & 1)

H− g.s.
= −1 + 0.625 = −0.375 Hartree = −10.2 eV.
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The true value is −0.52728 Hartree = −14.348 eV. This estimate is
not too bad.

(c) The electron affinity is the energy change in the process,

H+ e− → H−,

where the free electron on the left has zero kinetic energy. The
electron affinity of hydrogen is thus

AH = EH− g.s. −EH g.s.

= −0.52728−
�
−1

2

�

= −0.02728 Hartree

= −0.7423 eV

= −71.6 kJ mol−1.

There electron is weakly bound. There is only one bound state of
H−. All excited states are above the threshold for ejection of the
electron. These states appears as resonances which decay with a
characteristic rate - allowing them to exist for a time.

7.6 Many electron atoms - term symbols

For many electron atoms, the distinct states are found first by identifying the
various possible electron configurations, then by identifying the term symbols
associated with each electron configuration. A term symbol corresponds to a
set of states with specific L, S and J . For a given L and S, each distinct J value
corresponds to 2J + 1 degenerate states which are different in energy from the
other J states due to spin-orbit coupling. Since spin-orbit coupling is small for
light elements, the distinct J states are very close in energy. The term symbol
consists of a letter specifying the L value: S (L = 0), P (L = 1), D (L = 2),
F (L = 3), G (L = 4), H (L = 5), I (L = 6), K (L = 7), L (L = 8), M (L = 10),
..., a left superscript giving the spin multiplicity, 2S + 1, and a right subscript
giving the J value. For example, 2D5/2 corresponds to L = 2, S = 1/2 and
J = L+ S = 5/2. 2D3/2 is the other term symbol associated with L = 2 and
S = 1/2. The term symbol letters (the first five are well known by chemistry
students) can be remembered using the mnemonic, "Sober physicists don’t find
giraffes hiding in kitchens like mine".

The spin and orbital angular momenta are vectors that can add to make
longer or shorter vectors as long as |L− S| ≤ J ≤ L+ S. All J values subject
to this constraint occur; i.e., J = |L− S| , |L− S| + 1, . . . L + S. The term
symbols of the states of helium discussed above are 1S0 for the ground state,
3S1 and

1S0 for the triplet and singlet states associated with the 1s
12s1 electron

configuration, and 3P (= 3P2,
3P1 and

3P0) and
1P1 for the triplet and singlet

states associated with the 1s12p1 electron configuration. The term symbols are
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easy to deduce for these electron configurations. However, for configurations
like 2p2 or 3d2 many term symbols arise. This is because there are three
p orbitals and 5 d orbitals which can be occupied by two electrons in many
different ways.

To get the term symbols (just get the L and S values - distinct J term
symbols can be found after all the L and S values are identified) associated
with an electron configuration, one must consider all the ways the electrons can
occupy the given orbitals without violating the Pauli principle - i.e., all the box
diagrams. For each box diagram, add up the individual electron mℓ values to
getML, and thems values to getMS. Since everyML < 0 state is accompanied
by a −ML state, it is sufficient to consider only states with ML ≥ 0. Similarly,
we can restrict ourselves to MS ≥ 0. Consider the p2 electron configuration
box diagrams:

p1 p0 p−1 ML MS
1D ↑↓ 2 0
1D ↑↓ 0 0
3P ↑ ↑ 1 1
3P ↑ ↑ 0 1
1D ↑ ↓ 1 0
3P ↑ ↓ 0 0
1S ↓ ↑ 0 0
3P ↓ ↑ 1 0

The next step is to identify the largest ML value (and the largest MS value
that comes with that ML value). Here, the largest ML value is +2. The
largest MS value with ML = 2 is 0. This means that there is a 1D term
(specifically, 1D2). Cross out the rows that come with this symbol - three rows
with ML = 2, 1, 0 (all with MS = 0). These rows are labeled on the left with
1D. Repeat the process with the remaining rows - i.e., find the next largestML

and MS, identify the term symbol and cross out the rows that come with this
symbol. Here, we find ML = 1 and MS = 1 give the next term symbol found -
namely, 3P. This symbol corresponds toML = 1 and 0 rows for each ofMS = 1
and 0 - four rows are crossed out. The last remaining row has ML = 0 and
MS = 0. It is the 1S term. Thus, p2 = 1D + 3P + 1S = 1D2 +

3P0 +
3P1 +

3P2 +
1S0.

The p4 electron configuration produces the same terms as p2. To see this,
simply replace every row in a completed p2 table with a filled p subshell, p6,
then remove an electron from each orbital with an electron in the p2 table (spin
up or down as in the p2 table). This produces a table identical to the p2 table
except that the signs of ML and MS are reversed. This sign reversal has no
impact on the identification of terms since each term has both plus and minus
(or zero)ML andMS values. Similarly, the p5 configuration produces the same
terms as p1 - namely, 2P (= 2P1/2 and

2P3/2).

If the two electrons are in different subshells, it is easy to get the terms in
this case. All

(2L1 + 1) (2L2 + 1) (2S1 + 1) (2S2 + 1)
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states of the two electron system are admissable. For example, the 2p13p1

electron configuration has term symbols, 1D, 3D,1P, 3P,1S, 3S. These are the
possible term symbols with L = |1− 1| = 0 to 1 + 1 = 2, and S =

�� 1
2 − 1

2

�� = 0
to 1

2 + 1
2 = 1. The number of states represented by each of these term symbols

is 5× 1, 5× 3, 3× 1, 3× 3, 1× 1 and 1× 3, respectively. The total number of
states is

5 + 15 + 3 + 9 + 1 + 3 = 36

= 3× 3× 2× 2

in this case. The second line verifies that all states are taken into account.
Once the term symbols are determined, Hund’s rules determine the ordering

of the term symbols in energy.

Rule 1. Terms are ordered according to spin multiplicity, with the highest multi-
plicity terms having the lowest energy.

Rule 2. Terms with the same multiplicity are ordered according to orbital angular
momentum, with the highest L states having the lowest energy.

Rule 3. The J levels within each term are ordered with (a) the lowest J giving the
lowest energy, if the outermost subshell is half-filled or less, and (b) the
highest J giving the lowest energy, if the outermost subshell is more than
half-filled.

The first rule is a generalization of the effect seen above for the excited states
of helium. The triplet was the lowest energy excited state because the exchange
integral appeared with a minus sign. This resulted because the orbital state was
antisymmetric. An antisymmetric orbital state is small whenever the electrons
are near. The electrons are generally further apart in the anitsymmetric orbital
state, and consequently have reduced Coulomb repulsion. Higher multiplicity
terms have more unpaired electrons. The orbital state must be antisymmetric
with respect to the exchange of any two unpaired electrons. Higher multiplic-
ity terms have orbital states that are more highly antisymmetric, with greater
associated reduction in repulsion energy. This is the origin of Hund’s rule 1.
Hund’s rule 2 results because the electrons are more spread out when they have
a larger orbital angular momentum. This reduces the repulsion energy. Dif-
ferent electron repulsion is the only difference in energy between terms with the
same electron configuration. Hund’s rule 3 is more subtle.

For many electron atoms, the electron configuration can be very complex.
However, the ground state and lowest excited states involve electron config-
urations with subshells closed as much as possible. Each closed subshell is
equivalent to an empty subshell (with respect to term symbols), and has only
the term, 1S. This corresponds to zero orbital and spin angular momentum.
Thus, in compound electron configurations, closed shells can be ignored when
determining term symbols. For example, consider the ground state electron
configuration of nitrogen, 1s22s22p3. Only the 2p subshell is not closed. The
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allowed term symbols are those of the p3 electron configuration, determined by
the following table. Rows are crossed out by attributing them to a term symbol
in the order specified by the rules - the term symbol is indicated on the left.

p1 p0 p−1 ML MS
2D ↑↓ ↑ 2 1

2
2D ↑↓ ↑ 1 1

2
2P ↑ ↑↓ 1 1

2
4S ↑ ↑ ↑ 0 3

2
2D ↑ ↑ ↓ 0 1

2
2P ↑ ↓ ↑ 0 1

2
4S ↓ ↑ ↑ 0 1

2

The table shows that p3 = 2D + 2P + 4S. Hund’s rules identify the 4S
term as the ground state. Specifically, the ground state consists of the four
degenerate S = 3/2 states, with L = 0. The ground state of nitrogen is a
quartet state. The first excited state is 2D, while 2P gives the next excited
state. The first excited quartet state is associated with an excited electron
configuration. Ordering the excited states, and computing their energies, per-
mits the assignment of atomic emission spectra - subject to the electric dipole
selection rules. In the case of Russell-Saunders coupling, the selection rules are
∆ℓ = ±1,∆L = 0,±1,∆J = 0,±1 (except not J = 0 to J = 0) and ∆S = 0.
Here, the electron configuration must change with a transition of one electron
with ∆ℓ = ±1. After that, because the photon either adds or removes a
quantum of angular momentum, both the orbital and total angular momentum
quantum numbers cannot change by more than 1.

Atomic emission spectroscopy is routinely used to do elemental analysis of
metals. The metal is vaporized by a high voltage arc. Atoms in the arc
emit characteristic frequencies of light, in characteristic proportions. Light
from each element can be quantified to give the composition of the sample -
to ensure desired component elements and impurities have abundances within
specifications.

Example 7.5. Find the terms associated with the following electron configurations. Or-
der them with increasing energy, according to Hund’s rules. Determine
the total number of states, and break it down according to the number of
states in each term.

(a) pd

(b) d8

Solution 7.5.

(a) The two electrons are in different subshells. All

(2L1 + 1) (2L2 + 1) = 3× 5 = 15

orbital states of the two electron system are admissable, for all

(2S1 + 1) (2S2 + 1) = 2× 2 = 4
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spin states. Thus, L varies from |L1 − L2| = 1 to L1 +L2 = 3. For
each L value, S varies from |S1 − S2| = 0 to S1 + S2 = 1. Conse-
quently, the terms are 3F2,

3F3,
3F4,

1F3,
3D1,

3D2,
3D3,

1D2,
3P0,

3P1,
3P2 and

1P - listed in order of increasing energy according to
Hund’s rule’s. The total number of states is 15× 4 = 60. We will
check that this number emerges when we tally states for each term.
For the 3F, 1F, 3D and 1D terms, there are 3 × 7 = 21, 1 × 7 = 7,
3 × 5 = 15, 1× 5 = 5, 3 × 3 = 9 and 1 × 3 = 3 states, respectively.
These numbers add up to 60. The 21 states of 3F are further broken
into 5 + 7 + 9 states, with these numbers corresponding to the three
subterms, J = 2, 3 and 4. The other terms have similar breakdowns
into subterms.

(b) The d8 configuration is the same as d2, except for the energy ordering
of subterms - Hund’s rule 3. The two electrons are in the same
subshell. The d2 electron configuration box diagrams:

d2 d1 d0 d−1 d−2 ML MS
1G ↑↓ 4 0
1G ↑ ↓ 3 0
3F ↓ ↑ 3 0
1G ↑ ↓ 2 0
3F ↓ ↑ 2 0
1G ↑ ↓ 1 0
3F ↓ ↑ 1 0
1G ↑ ↓ 0 0
3F ↓ ↑ 0 0
1D ↑↓ 2 0
1D ↑ ↓ 1 0
3P ↓ ↑ 1 0
1D ↑ ↓ 0 0
3P ↓ ↑ 0 0
1S ↑↓ 0 0
3F ↑ ↑ 3 1
3F ↑ ↑ 2 1
3F ↑ ↑ 1 1
3F ↑ ↑ 0 1
3P ↑ ↑ 1 1
3P ↑ ↑ 0 1

Following the rules, we identify the terms in the following order: 1G, 3F,
1D, 3P and 1S. Hund’s rules orders these terms (and subterms), according
to increasing energy, as follows: 3F4 < 3F3 < 3F2 < 3P2 < 3P1 < 3P0
< 1G4 <

1D2 <
1S0. The number of states for these symbols is 9, 7, 5,

5, 5, 3, 1, 9, 5, 1. These add up to 45. By considering only Ml > 0
and MS > 0, we cannot simply tally the number of rows in the table.
The total number of states is more easily ascertained from the terms - not
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subterms. The terms, 3F, 3P, 1G, 1D and 1S have 3×7, 3×3, 1×9, 1×5
and 1× 1 states, respectively. These add up to 45.
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Chapter 8

Electronic structure of

molecules

8.1 The hydrogen molecule

Atoms form covalent bonds with shared valence electrons. The simplest molecule
is H+2 , with only one electron, held together by the attraction of the electron to
the two nuclei. We begin with the next simplest molecule, H2.

Consider two hydrogen atoms, in their ground states, approaching each
other. The electron in each atom experiences Coulombic attraction to the
other nucleus. There are also repulsions between the nuclei, and between the
electrons. At large distance, the net effect is always attractive - each atom is an
electric dipole, and dipole-dipole interactions lower energy. At distance below
the bond length, the net force is repulsive. The bond length is the equilibrium
distance where the energy is a minimum.

To model the H2 molecule using quantum mechanics, we introduce molecular
orbitals - orbitals spread over two or more atoms. We use atomic orbitals as
basis functions in which to expand the molecular orbitals. This approach is
called LCAO - linear combination of atomic orbitals. Thus,

ψ+ (1) = N−1/2 ((1s)A (1) + (1s)B (1)) ,

is a molecular orbital constructed as the superposition of states (1s)A and (1s)B
- the (1s) states of atoms A and B, respectively. The normalization constant
here is not 2 because (1s)A and (1s)B are not orthogonal when the atoms are
not far apart. Instead,

�
ψ+

��ψ+
�

= 1

= N−1 �(1s)A + (1s)B |(1s)A + (1s)B	

= N−1
�
�(1s)A |(1s)A	

=1

+ 2�(1s)A |(1s)B	
=u

+ �(1s)B |(1s)B	
=1

�

= N−1 (2 + 2u) ,

213
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where

u = �(1s)A |(1s)B	

is called the overlap integral, and

N = 2 (1 + u) .

To get the ground state of H2, we use the independent electron approxima-
tion, and write the two electron wavefunction as the product of the symmetric
orbital state, ψ (1)ψ (2), and the antisymmetric singlet spin state, χ0,0 (1, 2).
Here, ψ is some appropriate lowest energy molecular orbital.

ψH2 g.s. (1, 2) = ψ (1)ψ (2)χ0,0 (1, 2) .

The molecular orbital, ψ, is written as

ψ (1) = c1(1s)A (1) + c2(1s)B (1) .

The coefficients are determined by substituting this expression into the expec-
tation value of the Hamiltonian, and minimizing with respect to variations in
the coefficients. This gives the best possible wavefunction of this form. The
Hamiltonian for H2 is

Ĥ = Ĥ1 + Ĥ2 +
1

rA, B
+

1

r12
(8.1)

= ĤA, 1 −
1

rB, 1
+ ĤB, 2 −

1

rA, 2
+

1

rA, B
+

1

r12
.

In the first line, Ĥ is expressed as the sum of one electron Hamiltonians, Ĥ1
and Ĥ2 - one for each electron. In the second line, Ĥ1 is written as the H atom
Hamiltonian for electron 1 in atom A, ĤA, 1, plus the attraction to nucleus B.
Similarly, electron 2 is associated with atom B, with the other - equivalent -
attraction written separately. rB, 1 is the distance from nucleus B to electron

1, and similarly for rA, 2. Ĥ1 and Ĥ2 can also be written with electron 1
associated with atom B and electron 2 associated with atom A. We will use
which ever way is most convenient.
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The expectation value of the Hamiltonian is given by

�
ψH2 g.s.

���ĤψH2 g.s.



=
�
ψ (1)ψ (2)χ0,0 (1, 2)

���Ĥψ (1)ψ (2)χ0,0 (1, 2)



= �ψ (1)ψ (2)
���Ĥψ (1)ψ (2)




= �ψ (1)ψ (2)

����

�
Ĥ1 + Ĥ2 +

1

rA, B
+

1

r12

�
ψ (1)ψ (2)

�

= �ψ (1)ψ (2)
���Ĥ1ψ (1)ψ (2)



+ �ψ (1)ψ (2)

���Ĥ2ψ (1)ψ (2)



+�ψ (1)ψ (2)

����
1

rA, B
ψ (1)ψ (2)

�

= 1
rA , B

�ψ(1)ψ(2) |ψ(1)ψ(2)�= 1
rA , B

+ �ψ (1)ψ (2)

����
1

r12
ψ (1)ψ (2)

�

= �ψ (1)
���Ĥ1ψ (1)



�ψ (2) |ψ (2)	

=1

+�ψ (1) |ψ (1)	
=1

�ψ (2)
���Ĥ2ψ (2)



+

1

rA, B
+ Jψ,ψ

= �ψ (1)
���Ĥ1ψ (1)



+ �ψ (2)

���Ĥ2ψ (2)



= �ψ (1)
���Ĥ1ψ (1)




only the electron label is different

+
1

rA, B
+ Jψ,ψ

= 2
�
c1 c2

�



�(1s)A

���Ĥ1(1s)A



�(1s)A
���Ĥ1(1s)B




�(1s)B
���Ĥ1(1s)A



�(1s)B

���Ĥ1(1s)B






�
c1
c2

�

+
1

rA, B
+ Jψ,ψ. (8.2)

For now, we neglect Jψ,ψ. It can be put back into the energy - in approximate
fashion - using first perturbation.

The expectation value is written above as a quadratic form. When the
molecular orbital is written as a linear combination of the two atomic orbitals,
it is given a two dimensional vector representation - the two coefficients are
expressed here as a column vector. The one electron Hamiltonians become the
same 2× 2 matrix in this representation.
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Consider the matrix representation of Ĥ1 (or Ĥ2)




�(1s)A

���Ĥ1(1s)A



�(1s)A
���Ĥ1(1s)B




�(1s)B
���Ĥ1(1s)A



�(1s)B

���Ĥ1(1s)B







=




�(1s)A

���
�
ĤA, 1 − 1

rB , 1

�
(1s)A



�(1s)A

���
�
ĤB, 1 − 1

rA , 1

�
(1s)B




�(1s)B
���
�
ĤA, 1 − 1

rB , 1

�
(1s)A



�(1s)B

���
�
ĤB, 1 − 1

rA , 1

�
(1s)B








=




�(1s)A

���ĤA, 1(1s)A



+ �(1s)A
��� −1rB , 1

(1s)A



�(1s)A

���ĤB, 1(1s)B



+ �(1s)A
��� −1rA , 1

(1s)B




�(1s)B
���ĤA, 1(1s)A



+ �(1s)B

��� −1rB , 1
(1s)A



�(1s)B

���ĤB, 1(1s)B



+ �(1s)A
��� −1rA , 1

(1s)B








=

�
E
(0)
1 + αA,B E

(0)
1 u+ βB,A

E
(0)
1 u+ βA,B E

(0)
1 + αB,A

�

=

�
−1
2 + αA,B −1

2u+ βA,B
−1
2u+ βA,B −1

2 + αA,B

�
αB,A = αA,B and βB,A = βA,B
both atoms are H atoms

=

�
α′ β′

β′ α′

�
.

The expectation value of the Hamiltonian - with electron repulsion neglected -
takes the form,

�
ψH2 g.s.

���Ĥ(0)ψH2 g.s.




= 2
�
c1 c2

�� α′ β′

β′ α′

��
c1
c2

�
+

1

rA, B

= 2
�
c1 c2

�� α′ β′

β′ α′

��
c1
c2

�
+

1

rA, B

= 2cTH′c+
1

rA, B
(8.3)

Since 1/rA, B is a constant, it can be left out of the minimization, then put back
into the total energy at the end. Our task is to find the vector which minimizes
2cTH′c, subject to the constraint that the molecular orbital be normalized. The
constraint has the form,

1 =
�
c1 c2

�� �(1s)A |(1s)A	 �(1s)A |(1s)B	
�(1s)B |(1s)A	 �(1s)B |(1s)B	

��
c1
c2

�

=
�
c1 c2

�� 1 u
u 1

��
c1
c2

�

= cTUc

Matrix U is called the overlap matrix.
The constrained minimization problem is solved using the method of La-

grange multipliers. Since there is one constraint, we introduce one multiplier,
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λ. The method works by minimizing

F = 2cTH′c+λ
�
1− cTUc

�

= 2
2�

j=1

2�

k=1

cjH
′
j,kck + λ



1−
2�

j=1

2�

k=1

cjUj,kck





with respect to variation of c and λ. Setting ∂F/∂λ = 0 returns the constraint
equation. Setting ∂F/∂cn = 0 gives

0 = 2
2�

j=1

2�

k=1

�
δj,nH

′
j,kck + cjH

′
j,kδk,n

�
− λ

2�

j=1

2�

k=1

(δj,nUj,kck + cjUj,kδk,n)

= 2




2�

k=1

H
′
n,kck +

2�

j=1

cjH
′
j,n



− λ




2�

k=1

Un,kck +
2�

j=1

cjUj,n





= 4
2�

k=1

H
′
n,kck − 2λ

2�

k=1

Un,kck H
′ and U are symmetric

where

δk,n =

	
1, k = n
0, k �= n .

Writing the above equation in vector notation - n = 1, 2 - gives

0 = 2H′c− λUc,

or

H
′c =

λ

2
Uc.

This is called a generalized eigenvalue equation. λ/2 is the eigenvalue. It can
be converted into an eigenvalue equation by letting

b = U
1/2c,

and finding

H
′
U
−1/2b =

λ

2
U
1/2b,

or

U
−1/2

H
′
U
−1/2b =

λ

2
b

Hb = ǫb,

where

H = U
−1/2

H
′
U
−1/2

=

�
α β
β α

�
.
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Hb = ǫb is a regular eigenvalue equation. Here, ǫ = λ/2 is an eigenvalue of
H, the one electron Hamiltonian with U−1/2 on either side. U−1/2 exists because
U is positive definite (all its eigenvalues are greater than zero). λ = 2ǫ is the
energy of two electrons in the associated molecular orbital - neglecting electron
repulsion. Substituting eigenvector b1, associated with lowest eigenvalue ǫ1,
into the Ĥ(0) expectation - including the constant 1/rA, B term gives

E
(0)
H2 g.s.

∼=
�
ψH2 g.s.

���Ĥ(0)ψH2 g.s.




= 2bT1 Hb1 +
1

rA, B

= 2ǫ1 +
1

rA, B
,

the minimum expectation value possible with the atomic basis set of two states.
The ground state of H2 has two electrons in the lowest energy molecular orbital.

The molecular orbital energy levels are the eigenvalues of H. The associated
determinantal equation is

0 =

����
α− ǫ β
β α− ǫ

����

= (α− ǫ)2 − β2

or

α− ǫ = ±β
which gives

ǫ1 = α+ β

and

ǫ2 = α− β.
ǫ1 is the lowest energy because α and β are both negative.

The eigenvector associated with eigenvalue, ǫ, is given from the first row of
the eigenvalue equation,

�
α− ǫ β
β α− ǫ

��
b1
b2

�
=

�
0
0

�
;

i.e.,

(α− ǫ) b1 + βb2 = 0,

or

b1 =
β

ǫ− αb2.

For the lowest energy eigenvalue,

b1,1 = b2,1,
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and the normalized eigenvector is

�
b1,1
b2,1

�
=

1√
2

�
1
1

�
.

To get the associated molecular orbital, we must apply U−1/2 to get the atomic
orbital coefficients. Specifically,

c1 = U
−1/2b1.

However, in this case, the eigenvectors of H are also eigenvectors U. This is
because U and H have the same structure. U corresponds to replacing α by 1
and β by u, in H. The eigenvalues of U associated with b1 and b2 are 1 + u
and 1− u. Consequently,

c1 = (1 + u)−1/2 b1

and

c2 = (1− u)−1/2 b2.
Applying U−1/2, in this case, simply corrects the normalization, accounting for
the non-zero overlap of the basis functions. Otherwise, the c vectors are the
same as the b vectors.

In general, when there are more atomic orbitals, and - in particular - differ-
ent atomic orbitals, the c vectors will be different from the b vectors. However,
aside from correcting the normalization, U−1/2 only mixes coefficents of over-
lapping (i.e., neighboring) orbitals. In particular, each b unit vector is the
superposition of the associated c unit vector with small amounts of the c unit
vectors associated with the overlapping orbitals. In practice, we work with the
b vectors, and interpret them as though they were the coefficients of the atomic
orbitals.

The lowest energy molecular orbital found above,

ψ1 (1) = (σ1s) (1) = (2 (1 + u))−1/2 ((1s)A (1) + (1s)B (1)) , (8.4)

is the σ1s molecular orbital. It is a bonding molecular orbital which has con-
structive interference, between the two atomic orbitals, in the space between
the atoms. It is a σ orbital because there is zero orbital angular momentum
about the axis of the molecule. Diatomic molecules are not spherically symmet-
ric. However, they are cylindrically symmetric. Consequently, the quantum
number associated with the angular momentum component along the molecular
axis is a good quantum number. This quantum number is called Λ. States
of the diatomic molecular are labeled as Σ, Π, ∆, . . . , for Λ = 0, 1, 2, and
so on. The quantum number specific to individual molecular orbitals is given
the associated lower case Greek letter: σ, π, δ, . . . . σ bonds are formed from
atomic orbitals with zero angular momentum about the molecular axis - they
are both cylindrically symmetric.
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The other molecular orbital,

ψ2 (1) = (σ∗1s) (1) = (2 (1− u))−1/2 ((1s)A (1)− (1s)B (1)) , (8.5)

is the σ∗1s antibonding molecular orbital - here, * does not represent complex
conjugation. The two atomic orbitals destructively interfere between the atoms,
and the energy associated with this orbital, ǫ2 = α−β, is higher than the energy
of either atomic orbital. Note that α is the expectation value of H associated
with unit b vectors, bT = (1, 0) or (0, 1). To the extent that these vectors
correspond to the atomic orbitals, we interpret α as the 1s orbital energy. This
is a reference energy. The energy of the σ1s orbital, ǫ1 = α+β, is lower than α.
An electron in a bonding orbital is stabilized relative to the atomic orbitals. In
contrast, an electron in an antibonding bonding orbital is destabilized relative
to the atomic orbitals. The destabilization of the antibonding orbital equals
the stabilization of the bonding orbital.

Since σ1s has capacity for two electrons, and H2 has two electrons, the
ground state electron configuration of H2 is (σ1s)2.

The orbital energy parameters, α and β, were introduced in a series of steps
above. In terms of the matrix elements of the attraction of a hydrogen atom
electron to a second nucleus, αA,B and βA,B, we have

α =
−1
2 + αA,B −

�
−1
2u+ βA,B

�
u

1− u2

β =
−
�
−1
2 + αA,B

�
u− 1

2u+ βA,B

1− u2 .

With electron repulsion neglected, the ground state energy of the hydrogen
molecule is approximated by

E
(0)
H2 g.s.

= 2ǫ1 +
1

rA, B

= 2 (α+ β) +
1

rA, B

=
−
�
1− u2

�
+ 2 (1− u)

�
αA,B + βA,B

�

1− u2 +
1

rA, B

= −1 +
2
�
αA,B + βA,B

�

1 + u
+

1

rA, B
, (8.6)

The matrix elements, αA,B and βA,B, are three dimensional integrals that can
be evaluated using elliptic coordinates. The result depends upon the distance
between the nuclei. We obtain a better estimate of the ground state energy if
we instead use hydrogen-like ion orbitals with a Z dependence. The integrals
are evaluated in the Appendix, Sec. 8.7. There, the ground state energy is
minimized with respect to Z to obtain the best ground state energy estimate
with this type of orbital - in accord with the variational principle. The result,
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EH2 g.s. (rA, B), is the potential energy for the vibrational nuclear motion. Min-
imizing this energy with respect to rA, B gives the equilibrium bond distance.

In Sec. 8.7, the ground state energy estimate is shown to take the form,

E
(0)
H2 g.s.

(r) = min
Z

�

−Z2 + 2
Z2 − Z − r−1 + (1 + Zr)

�
Z (Z − 2) e−Zr + r−1e−2Zr

�

1 + (1 + Zr + Z2r2/3) e−Zr
+

1

r

 

.

Minimizing this energy, with respect to Z, requires numerical solution of ∂E
(0)
H2 g.s.

/∂Z =
0. The optimal Z value varies with r. For large r, terms with exponential
factors can be neglected;

E
(0)
H2 g.s.

(r) = min
Z

�
Z2 − 2Z − 1

r

�

= −1− 1

r
Z = 1 is optimal

= 2EH g.s. −
1

r
.

Adding back the electron repulsion - essentially 1/r - gives the energy of two
hydrogen atoms. For small r, the exponential factors approach one, and terms
with positive powers of r can be neglected. The ground state energy becomes

E
(0)
H2 g.s.

(r)

= min
Z

�
−Z2 + Z2 − Z − r−1 + (1 + Zr)

�
Z (Z − 2) (1− Zr) + (1 + Zr) r−1 (1− 2Zr)

�
+

1

r

�

= min
Z

�
Z2 − 4Z +

1

r

�

= −4 +
1

r
Z = 2 is optimal

= E
(0)
He g.s.

1

r
becomes part of nuclear energy.

Here, we get the energy of a helium atom with electron repulsion neglected.

Putting the elecMinimizingE
(0)
H2 g.s.

(r)with respect to r gives the equilibrium

bond distance of H+2 which has no electron repulsionThe ground state energy
decreasesestimates - let rB, A = req = 71.14 pm (this must be converted to
Bohr). Include electron repulsion at the level of first order perturbation theory.
Estimate the equilibrium dissociation energy, Deq , of H2 by comparing your
result with the energy of two isolated hydrogen atoms, in their ground states.
The bond dissociation energy, D0, is given by

D0 = Deq −
�ω

2
,

where �ω/2 is the zero point vibrational energy. The ground state of H2 has
zero point vibrational energy which makes the dissociation energy a little smaller
than Deq . The vibrational wavenumber of 1H2 is 4400 cm

−1. Estimate the
bond dissociation energy for H2.
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Solution 8.3. The ground state energy of H2, without electron repulsion, is justThe
energy of two isolated hydrogen atoms, in their ground states, is

2×
�
−1

2

�
= −1.

The equilibrium dissociation energy of H2 the energy change for the pro-
cess,

H2(g)→ 2 H(g);

i.e.,

Deq (H-H) ∼= −1−
�
−1− 5

3

1

req

�

=
5

3

1

req
.

Thus, in spite of the nuclear repulsion, the attraction of two electrons to
the two nuclei makes bond formation favorable. The bond dissociation
energy is positive - energy is required to break the bond. Here, req is
units of Bohr;

req = 71.14 pm× 0.01889726 Bohr pm−1

= 1.344 Bohr.

We get

Deq (H-H) ∼= 5

3

1

1.344
= 1.24 Hartree.

To get the bond dissociation energy, we need the zero point energy,

�ω

2
=

hν

2
=
hcν̄

2

=
6.626× 10−34 J s× 2.998× 1010 cm s−1 × 4400 cm−1

2
= 4.370× 10−20 J

= 4.370× 10−20 J×
�
4.359744× 10−18 J Hartree−1

�−1

= 0.01002 Hartree.

Therefore,

D0 (H-H) = Deq (H-H)− �ω
2

= 1.23 Hartree

= 5.36× 10−18 J

= 3228 kJ mol−1
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Example 8.1. Consider H2 in its ground state. If atom is centered at the origin, while the
other is centered at (x, y, z) = (0, 0, req), the probability that an electron
is between the two atoms is the expectation value of

θ0<z<re q (x, y, z) =

	
1, 0 < z < req
0, otherwise

,

for the orbital the electron occupies. This probability can be evaluated
for H2 orbitals, with the following reasonable approximations: Neglect
(1s)A (x) for z > req , and (1s)B (x) for z < 0. This means that all overlap
between the orbitals comes from 0 < z < req ; i.e., from between the two
atoms, as defined above.

(a) What is the probability an electron in σ1s is between the two atoms?
What is the enhancement of this value compared to the same prob-
ability for an electron in either (1s)A or (1s)B?

(b) What is the probability an electron in σ∗1s is between the two atoms?
What is the depletion of this value compared to the same probability
for an electron in either (1s)A or (1s)B?

Solution 8.1.

(a) The expectation of θ0<z<re q (x, y, z) for an electron in σ1s is given
by

P =

�

0<z<re q

|(σ1s) (x)|2 dx

=
1

2 (1 + u)

�

0<z<re q

((1s)A (x) + (1s)B (x))2 dx

=
1

2 (1 + u)

��

0<z<re q

((1s)A (x))2 dx+

�

0<z<re q

((1s)B (x))2 dx

+2

�

0<z<re q

(1s)A (x) (1s)B (x) dx

�

=
1

2 (1 + u)





�

0<z

((1s)A (x))2 dx

=1/2

+

�

z<re q

((1s)B (x))2 dx

=1/2

+2

�
(1s)A (x) (1s)B (x) dx

=u





=
1 + 2u

2 (1 + u)
=

1

2
+

u

1 + u
.

The enhancement of this probability for the bonding orbital is u/ (1 + u).
The probability for an electron in either (1s)A or (1s)B is 1/2.
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(b) The expectation of θ0<z<re q (x, y, z) for an electron in σ∗1s is given
by

P =

�

0<z<re q

|(σ∗1s) (x)|2 dx

=
1

2 (1− u)

�

0<z<re q

((1s)A (x)− (1s)B (x))2 dx

=
1

2 (1− u)





�

0<z

((1s)A (x))2 dx

=1/2

+

�

z<re q

((1s)B (x))2 dx

=1/2

−2

�
(1s)A (x) (1s)B (x) dx

=u





=
1− 2u

2 (1− u) =
1

2
− u

1− u.

The depletion of this probability for the bonding orbital is u/ (1− u).
Note that, since u > 0, electron density in the region between the
atoms is depleted more in the antibonding orbital, than it is enhanced
in the bonding orbital.

Example 8.2. Estimate the lowest electronic transition frequency for H2 in terms α and
β.

Solution 8.2. The first excited electronic state of H2 corresponds to the electron con-
figuration, (σ1s)1(σ∗1s)1. The difference in energy between excited state
and ground state is

EH2 e.s. −EH2 g.s.

= ǫ1 + ǫ2 +
1

rA, B
−
�
2ǫ1 +

1

rA, B

�

= ǫ2 − ǫ1
= α− β − (α+ β)

= −2β;

i.e., it is the spacing between bonding and antibonding orbital energies,
−2β.

8.2 Diatomic molecules

More general diatomic molecules can be understood in terms of what we learned
above about the hydrogen molecule. The first step is to consider the case where
two inequivalent atomic orbitals are used. The simplest diatomic of this sort is
HeH+. This system is identical to H2, except that that the two 1s orbitals are
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inequivalent. The analysis proceeds as above with the one electron Hamiltonian
matrix,

H =

�
α1 β
β α2

�
,

where α1 and α2 are effectively the energies of an electron in the He 1s and H
1s orbitals, respectively.

The determinantal equation for the eigenvalues of H is

0 =

����
α1 − ǫ β
β α2 − ǫ

����

= (α1 − ǫ) (α2 − ǫ)− β2

= ǫ2 − (α1 + α2) ǫ+ α1α2 − β2.

The molecular orbitial energies - the eigenvalues of H - are given by

ǫ =
α1 + α2 ±

�
(α1 + α2)

2 − 4
�
α1α2 − β2

��1/2

2

=
α1 + α2 ±

�
α21 + 2α1α2 + α22 − 4α1α2 + 4β2

�1/2

2

=
α1 + α2 ±

�
(α1 − α2)2 + 4β2

�1/2

2

=
α1 + α2

2
±
��

α1 − α2
2

�2
+ β2

�1/2

We consider two extremes. If the energy separation, |α1 − α2|, is much
smaller than the coupling, |β|, then
��

α1 − α2
2

�2
+ β2

�1/2
= β

�

1 +
1

β2

�
α1 − α2

2

�2�1/2

∼= β

�

1 +
1

2β2

�
α1 − α2

2

�2�

α1 − α2 ≪ β

= β +
1

2β

�
α1 − α2

2

�2
.

In this case,

ǫ =
α1 + α2

2
±
�

β +
1

2β

�
α1 − α2

2

�2�

=
α1 + α2

2
± β ± 1

2β

�
α2 − α1

2

�2
.
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The lowest energy eigenvalue is

ǫ1 =
α1 + α2

2
+ β +

1

2β

�
α2 − α1

2

�2

= α1 + β +
α2 − α1

2
+

1

2β

�
α2 − α1

2

�2

= α1 + β +

�
α2 − α1

2

��
1 +

1

2β

�
α2 − α1

2

��
, (8.7)

where α1 < α2. Similarly, the highest energy energy eigenvalue is

ǫ2 =
α1 + α2

2
− β − 1

2β

�
α2 − α1

2

�2

= α2 − β −
α2 − α1

2
− 1

2β

�
α2 − α1

2

�2

= α2 − β −
�
α2 − α1

2

��
1 +

1

2β

�
α2 − α1

2

��
. (8.8)

These results are similar to the case of equivalent orbitals. ǫ1 = α1 + β, with a
small positive correction less than (α2 − α1) /2. Remember that β < 0. ǫ2 =
α2−β, with a small negative correction with magnitude less than (α2 − α1) /2.

The above results are interpreted as follows. The lower atomic orbital energy
- here, the first - is lowered in energy by an amount less than |β| to give the
energy of the bonding molecular orbital. The higher atomic orbital energy is
raised by an amount less than |β| to give the energy of the antibonding molecular
orbital. The energy mismatch reduces the splitting energy of the orbitals. 2 |β|
is the maximum splitting, which is seen in case of equivalent orbitals.

Now consider the case of |α1 − α2| ≫ |β|. The eigenvalues are given by

ǫ =
α1 + α2

2
±
��

α2 − α1
2

�2
+ β2

�1/2

=
α1 + α2

2
±
�
α2 − α1

2

��

1 +

�
2β

α2 − α1

�2�1/2

∼= α1 + α2
2

±
�
α2 − α1

2

��

1 +
1

2

�
2β

α2 − α1

�2�

=
α1 + α2

2
±
�
α2 − α1

2

�
± 1

2

2β2

α2 − α1

=

%
α2 + β2

α2−α1

α1 − β2

α2−α1

.

In this case, the eigenvalues are only slightly shifted by the bonding. The lower
orbital energy is shifted lower, and the higher orbital energy is shifted higher.
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The shifts are smaller than |β| by the factor, |β| / (α2 − α1)≪ 1. Specifically,

ǫ1 = α1 −
β2

α2 − α1
(8.9)

and

ǫ2 = α2 +
β2

α2 − α1
. (8.10)

The overall conclusion is that bonding is strongest when the energies of the
atomic orbitals are well matched. Atomic orbitals well separated in energy
show little stabilization due to bonding.

In the case of the ground state of HeH+, the atomic orbitals are not well
matched in energy. The nuclear charge on He is twice that of H. Also, since
these are 1s orbitals, the lowest energy orbitals, energy differences are greatest.
The H 1s orbital energy matches better with second shell orbital energies in
period two atoms. Because of the large energy mismatch in HeH+, the bond
is very weak. HeH+ is beyond a superacid - it could only exist not exposed to
anything else.

The above sets the frame work for bonding between atoms with many elec-
trons. Atomic orbitals on the two atoms form molecular orbitals, when there
is good coupling - |β| is not too small, or zero due to symmetry - and the
atomic orbital energies are matched. We consider elements from the second
period. The inner shell 1s orbitals on the two atoms are very low in energy -
with greater mismatches between elements. These orbitals have little overlap
- and associated coupling - because each is close to its own nucleus, and the
distance between nuclei must accommodate the valence shells of the two atoms.
To the extent that these orbitals split, the bonding and antibonding molecular
orbitals formed are very low in energy, and are both filled in the ground state
electron configuration of the molecule. There is no net bonding because the
stabilization of the bonding electrons is canceled by the destabilization of the
anitbonding electrons. Thus, the inner shell orbitals do not form bonds. Bond-
ing is the sharing of valence shell electrons, as only valence shell orbitals have
good overlap. This is a cornerstone of chemistry.

The next step is to group atomic orbitals according to angular momentum
about the molecular axis. For second period elements, this means the 2s and
2p orbitals. Orbitals 2s and 2pz have zero angular momentum about the z axis,
and form σ bonds. Orbitals 2px and 2py have mℓ = ±1, and form π bonds.
These groups of atomic orbitals can be considered separately. Coupling between
σ and π-type atomic orbitals is zero due to symmetry. The σ-type orbitals do
not vary with angle about the molecular axis, whereas π-type orbitals have one
node. Since Ĥ commutes with L̂z, applying Ĥ to an orbital does not change
its symmetry. The inner product of σ and π-type wavefunctions is the integral
of a function with π symmetry - it integrates to zero. Consequently, H matrix
elements between such orbitals are zero.
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8.2.1 The σ system

Since the 2s and 2pz orbitals both have σ symmetry, there are four atomic
orbitals that can form σ bonds. However, there is limited room between the
atoms, and the these orbitals have density on the wrong side of each atom, as
well as between them. The σ system is constructed in two stages. First,
consider the two atoms approaching each other - but, not yet bonded. Each
atom acts as a perturbation on the other atom. Because the perturbation is
localized to one side of the atom, the atom no longer has spherical symmetry.
The perturbation couples 2s and 2pz. Since the two orbitals are on the same
atom, they are already orthogonal; U = 1 and U−1/2 = 1. The eigenvectors of
the 2 × 2 H matrix, associated with 2s and 2pz, provide new atomic orbitals -
hybrid orbitals - that account for the presence of the approaching other atom.
When the other atom is far, the coupling is small and the the hybrid orbitals are
much like the 2s and 2pz. The lower energy hybrid orbital is a superposition
of mostly 2s, with a little of +2pz.

(2spc) =
1√

1 + c2
((2s)+ c(2pz))

The constructive interference, on the side of the incoming atom, polarizes 2s
so that it is shifted toward the incoming atom. This enhances the lowering of
energy due to the incoming atom. The higher energy hybrid orbital is mostly
2pz, with a little of −2s. This orbital polarizes in the direction opposite to that
of the incoming atom, and increases in energy.

When the incoming atom approaches more closely, a covalent bond forms - if
the atoms do not already have closed shells. The two 2spc orbitals, which face
each other, overlap and have a negative (i.e., favorable) energy coupling. These
orbitals split into bonding and antibonding orbitals. The remaining twist is
to note that the energy is optimized when the overlap between the two 2spc
orbitals is optimized. We determine the value of c that produces the greatest
polarization of the 2spc orbital.

The probability that an electron in the 2spc orbital has positive z coordinate
is given by

Pz>0 =

�

R3N

(2spc) (x) θz>0 (x) (2spc) (x) dx

= �(2spc) |θz>0(2spc)	

=
1

1 + c2
�(2s)+ c(2pz) |θz>0 ((2s)+ c(2pz))	

=
1

1 + c2
�
�(2s) |θz>0(2s)	+ c2 �(2pz) |θz>0(2pz)	+ 2c �(2s) |θz>0(2pz)	

�

=
1

1 + c2

�
1

2
+ c2

1

2
+ 2cη

�

=
1

2
+

2cη

1 + c2
. (8.11)
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Due to symmetry of the 2s orbital under reflection through the the x y plane
(i.e., z → −z), �(2s) |θz<0(2s)	 = �(2s) |θz>0(2s)	. Since the sum of these two
probabilities is 1, they must both equal 1/2. This was used in the second last
line above for the 2s and 2pz orbitals. The probability, Pz>0, is a maximum
when

d

dc

2cη

1 + c2
= 0

2η
�
1 + c2

�
− 4c2η

(1 + c2)
2 = 0

or

2η
�
1 + c2

�
− 4c2η = 0

1 + c2 − 2c2 = 0

c2 = 1

c = ±1.

c = +1 gives the maximum polarization. c = −1 gives the maximum polariza-
tion in the opposite direction - Pz>0 is a minimum. These are the 2sp hybrid
orbitals, the hybridization adopted by bonding atoms. The 2sp orbitals facing
each other, on the two bonding atoms, form bonding and antibonding molecular
orbitals. The magnitude of the coupling is largest for sp atomic orbitals - larger
than unhybridized s and p orbitals. The two 2sp orbitals that face away from
the other atom have little coupling. They are non-bonding orbitals on their
respective atoms.

In summary, the σ system consists of bonding and anitbonding orbitals, σ2sp
and σ∗2sp, and the two non-bonding orbitals, both n2sp. For homonuclear
diatomics, the orbital energies of the two bonding 2sp orbitals are the same,
and the orbital splitting is greatest. Energy mismatch reduces stabilization of
the bonding orbital, and destabilization of the antibonding orbital.

8.2.2 The π system

The π system consists of the two 2px and two 2py orbitals on the bonding atoms
- four orbitals in total. However, these orbitals come in two pairs. The 2px
orbitals are anitsymmetric with to reflection through the y z plane (x → −x).
The 2py orbitals are symmetric with to this reflection. Since the Hamiltonian
commutes with the associated reflection operator, it does not couple symmetric
and antisymmetric states. The 2px and 2py orbitals form two independent π
systems, orthogonal to each other. Each π system has two atomic orbitals that
split into a bonding and antibonding pair. π bonding is weaker than σ bonding
because the atomic 2px and 2py orbitals do not overlap as much - along the z
direction - and have weaker couplings.
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Figure 8.1: A schematic molecular orbital diagram for the ground state of N2.
There are non-bonding electron pairs on both atoms, and three bonding pairs -
one σ and two π. Nitrogen has a triple bond.

8.2.3 Molecular orbital diagrams

Approximate diatomic molecule ground states can be constructed by filling the
bonding, non-bonding and antibonding orbitals described above, with lower
energy orbitals filled first. Figure 8.1 shows a schematic molecular orbital
diagram for the ground state of N2. The nitrogen molecule has ten valence
electrons - five from each nitrogen atom. Four of these electrons remain in
non-bonding - two electrons in each of the non-bonding 2sp orbitals. The other
six electrons occupy the σ and two π orbitals, in pairs. The nitrogen molecule
has a triple bond.

In the case of F2 there are fourteen valence electrons. In this case, the
two π∗ orbitals are doubly occupied. The destabilization of these π∗ electrons
cancels the stabilization of the π electrons, and there are no net π bonds. Since
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oxygen on right

O 2sp

sp and p orbitals of 
oxygen on left

σ

O 2px and 2py

σ
∗

π
∗

π

O-O σ bond and 

one net  π bond

π

π
∗

O 2px and 2py

n n

Figure 8.2: A schematic molecular orbital diagram for the ground state of oxy-
gen. The ground state is the triplet state with the unpaired electron spins in
the degenerate π∗ orbitals.

the higher energy σ∗ orbital is unoccupied, there is a net σ bond. The fluorine
molecule has a single bond. Oxygen molecules have twelve valence electrons.
In this case, the two π∗ orbitals are singly occupied. In accord with Hund’s
rule 1 for atomic ground states, the ground state of the oxygen molecule is the
triplet state with the two π∗ electrons in the same spin state. Figure 8.2 shows
the molecular orbital diagram for O2.

The singlet state of O2 is its first electronic excited state. Singlet O2 is very
reactive. Photodynamic therapy (PDT) uses the targeted production of singlet
oxygen in cancer tissue to kill cancer cells. In the first step, a photosensitizer
is administered to the patient. The photosensitizer is a nontoxic chromophore
which can be targeted to cancer tissues. It absorbs light to produce an excited
state that transfers energy to neighboring triplet oxygen (present in all living
tissues) to produce singlet oxygen. The singlet oxygen reacts rapidly with
neighboring molecules, damaging chromosomes and crippling the life processes
of cells. The light is introduced externally for near the surface tissues (e.g.,
skin cancer, or acne - PDT also kills bacteria), or through narrow fiber optic
cables.
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In the case of heteronuclear diatomics, the σ-σ∗ and π-π∗ splittings are not
as large - because of orbital energy mismatch. This is depicted in Figure 8.3.
Nevertheless, the bond dissociation energy of CO (1076 kJ mol−1) is higher than
that of N2 (945 kJ mol

−1). However, there is no inconsistency. If we tally the
electron energy differences for

N2(g)→ N(g) + N(g)

and
CO(g)→ C(g) + O(g),

we get
∆E (N2) = −4βπ (N2)− 2βσ (N2)

for N2 and

∆E (CO) = −4βπ (CO)− 2βσ (CO) + 2 (α2p (C)− α2p (O)) .

Here, we assume |βπ (CO)| is smaller than α2p (C) − α2p (O), so that the π
bond stabilization is still 2βπ (CO) per π orbital. The extra stabilization of
the carbon 2px and 2py electrons can compensate for the smaller values of
|βπ (CO)| and |βσ (CO)|, the respective couplings of the π and σ orbitals. In
general, more accurate quantum chemistry calculations are required to reliably
account for bond dissociation energies.

Excited state electron configurations can be generated from the above molec-
ular orbital diagrams by considering specific excitations of one (or more) elec-
trons. Except in cases of multiple terms associated with the ground state
electron configuration (e.g., oxygen triplet and singlet), the first excited state is
associated with the HOMO to LUMO transition of a single electron. HOMO
is the highest occupied molecular orbital, and LUMO is the lowest unoccupied
molecular orbital. In the case of nitrogen, the HOMO to LUMO transition is a π
to π∗ transition. Measuring the associated transition energy, via spectroscopy,
provides a means of determining βπ - the transition energy is estimated to be
2 |βπ|.

8.3 Polyatomic molecules

Electron configurations of polyatomic molecules can be constructed by simple
extensions of the diatomic case. First, consider two atoms approaching a single
atom, A. As before, the atom polarizes. However, the polarization depends on
the angle between the lines of approach of the two atoms. The optimal angle
between these lines depends on the number of electrons in the valence shell of A.
The atom must accommodate non-bonding electrons, and the atoms approach.
This gives rise to the valence shell electron pair repulsion theory (VSEPR)
rules for predicting approximate molecular geometries. Applying VSEPR to
each atom determines a geometry for the whole molecule - subject to steric
constraints, and other non-bonding interactions (e.g., hydrogen bonding).
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Figure 8.3: A schematic molecular orbital diagram for CO. The atomic orbital
energies in oxygen are lower than those of carbon because oxygen has a larger
effective nuclear charge.
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VSEPR theory predicts linear, trigonal planar and tetrahedral geometries
about second period atoms. In the case of the linear geometry, the optimal
angle between the lines of approach of the two approaching atoms is 180◦.
Atom A forms two sp orbitals that form σ bonds with orbitals from the two
approaching atoms. Additional π bonds are formed with one or both of the
approaching atoms, depending on the occupation of the π and π∗ orbitals.

When the geometry is trigonal planar, the optimal hybridization for σ bond-
ing is sp2. The three sp2 orbitals are given by

(sp
2
) =






1√
3

�
(s)+

√
2(pz)

�

1√
3

�
(s)+

!
3
2(py)−

!
1
2(pz)

�

1√
3

�
(s)−

!
3
2(py)−

!
1
2(pz)

� (8.12)

They are orthogonal. Each one has 1/3 s character and 2/3 p character. The
associated probability densities are concentrated in directions pointing to the
vertices of an equilateral triangle in the y z plane - with one vertex along the
+z axis. Rotating the coordinate system, about the x axis, by 120◦ maps each
orbital to the one below - with the last mapping to the first. These orbitals
are optimal for forming two or three bonds σ bonds, with the case of two bonds
arising when the third sp2 orbital is occupied by non-bonding electrons. There
is one remaining p orbital which can produce a π bond with one of the σ-bonded
atoms - depending on the occupation of π and π∗.

When the geometry is tetrahedral the hybridization is sp3. The sp3 orbitals
are given by

(sp3) =


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1
2

�
(s)−

√
2(px)−

!
2
3(py)−

!
1
3(pz)

�
. (8.13)

Each one of these has 1/4 s character and 3/4 p character. These orbitals are
optimal for forming two, three or four bonds - with two, one or zero non-bonding
electron pairs, respectively.

The trigonal bipyramidal and octahedral geometries associated with sp3d
and sp3d2 hydrid orbitals.

8.4 Hartree-Fock theory

So far, we have neglected the electron repulsion term in the Hamiltonian, except
to say that we could include its effect via perturbation theory. Here, we refer
back to Eq. 8.2 which included the electron repulsion term for the ground state
of H2, and consider the more general case of a molecular (or atomic) system with
n electrons. Hartee-Fock theory provides the best orbital-based description of
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a molecular or atomic system. In the most general formulation, one begins
with the antisymmetrizer for n electrons acting on a product of spin-orbitals -
a spin-orbital is a product of orbital and spin functions. If spin-orbit coupling
is negligible, the many electron wavefunction factors into the product of orbital
and spin wavefunctions. In the case of closed shell systems, where all orbitals
are doubly occupied, restricted Hartree-Fock arises. In this case, spin up and
spin down electrons occupy the same orbitals. In the open shell case, there are
unpaired electrons, and the spin up orbitals will be slightly different from the
spin down orbitals - due to different antisymmetrizations for the different spin
state orbitals.

In the case of closed shells, in the independent electron approximation, the
orbital part of the many electron wavefunction takes the form,

ψ (1, 2, . . . , n) = ÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n) ,

where Âα is the antisymmetrizer for the spin up electrons - those with odd index
- and Âβ is the anitsymmetrizer for the spin down electrons - those with even
index. The n/2 molecular orbitals are orthogonal and normalized one electron
wavefunctions.

The Hamiltonian for the n electron system is

Ĥ = −1

2

n�

j=1

�

∇2 −
N�

a=1

Za

rj,a

�

+
�
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1
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ZaZb
ra,b

=
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j=1

Ĥj +
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j<k

1

rj,k
+
�

a<b

ZaZb

ra,b

where a and b label the N nuclei in the system, while j and k label the electrons.
The expectation value of the Hamiltonian for the above wavefunction is

�ψ
���Ĥψ




=
�
ÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n)
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antisymmetrizers are Hermitian
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���ĤÂ2αÂ
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antisymmetrizers commute with Hamiltonian
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���ĤÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n)


.

In the last line, we used the formula

Â2 =
√
n!Â, (8.14)

where

Â =
1√
n!

�

P̂

(−1)p(P̂) P̂
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is the antisymmetrizer for n electrons. The antisymmetrizers above are for n/2
electrons.

To prove Eq. 8.14, note that

Â2 =
1

n!

�

P̂
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p(P̂) P̂

�
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The product of any two permutations is another permutation. The parity of a
product of permutations is the sum of the parities. Therefore,
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=
√
n!Â.

In the second line, we note that the sum over all P̂ ′ can be written as the sum
over all P̂ P̂ ′, since each distinct permutation is counted only once in the sum
over P̂ P̂ ′. The product, P̂ P̂ ′, can then be relabeled as P̂ ′. The sum over P̂
accounts for the n! factor which cancels the prefactor.

The expectation of the Hamiltonian is expressed as the sum of three terms
- the expectation value of the three terms in the Hamiltonian.
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

 ÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

The third term is straightforward. The repulsions between nuclear appear here
as a constant term. The associated matrix element is just a matrix element
of the product of antisymmetrizers. Since any permutation of the n electron
wavefunction produces an orthogonal n electron wavefunction, only the P̂α =
P̂β = 1 term produces a non-zero inner product. For example, consider a simple
exchange operator of electrons 1 and 3. This yields the inner product,

�
ψ1 (1)ψ1 (2)ψ2 (3) . . . ψn/2 (n)

���ψ1 (3)ψ1 (2)ψ2 (1) . . . ψn/2 (n)



= �ψ1 (1) |ψ2 (1)	
=0

�ψ1 (2) |ψ1 (2)	
=1

�ψ2 (3) |ψ1 (3)	
=0

. . .
�
ψn/2 (n)

���ψn/2 (2)



=1

= 0.
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Altogether,

�n
2

�
!
�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

�����

�

a<b

ZaZb

ra,b
ÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

=
�

a<b

ZaZb
ra,b

�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

������

�

P̂α

(−1)
p(P̂α)

P̂α
�

P̂β

(−1)p(P̂β) P̂βψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

=
�

a<b

ZaZb
ra,b

.

The first term in Eq. 8.15 is

�n
2

�
!
�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

������

n�

j=1

ĤjÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

=
n�

j=1

�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

���

������
Ĥj

�

P̂α

(−1)p(P̂α) P̂α
�

P̂β

(−1)p(P̂β) P̂βψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

=
n�

j=1

�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

���

������

�

P̂α

(−1)
p(P̂α) P̂α

�

P̂β

(−1)
p(P̂β) P̂βψ1 (1)ψ1 (2) . . . Ĥjψ⌈ j2⌉ (j) . . . ψn/2 (n)

(

This is a sum of inner products between a product state, ψ1 (1)ψ1 (2) . . . ψn/2 (n),

and a permuted product state with the j the factor replaced by Ĥjψ⌈ j2⌉ (j).
This is the only factor that is not orthogonal to the other factors. Thus, any
permutation of the product state on the right of the inner product produces a
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zero inner product, and this one electron term becomes

n�

j=1

�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

���ψ1 (1)ψ1 (2) . . . Ĥjψ⌈ j2⌉ (j) . . . ψn/2 (n)



=
n�

j=1

�ψ1 (1) |ψ1 (1)	
=1

�ψ1 (2) |ψ1 (2)	
=1

. . .

�
ψ⌈ j2⌉ (j)

���Ĥjψ⌈ j2⌉ (j)



=

*

ψ⌈ j2⌉(1)
�����
Ĥ1ψ⌈ j2⌉(1)

(
. . .

�
ψn/2 (n)

���ψn/2 (n)



=1

=
n�

j=1

�
ψ⌈ j2⌉ (1)

���Ĥ1ψ⌈ j2⌉ (1)



= 2

n/2�

m=1

�ψm (1)
���Ĥ1ψm (1)



.

Finally, we consider the second term in the expectation value of Ĥ.

�n
2

�
!
�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

������

�

j<k

1

rj,k
ÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

=
�

j<k

�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

���

������

1

rj,k

�

P̂α

(−1)p(P̂α) P̂α
�

P̂β

(−1)p(P̂β) P̂βψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

.

In this case, the operator 1/rj,k depends only on the coordinates of electrons j
and k. Permutations which exchange any other indices produce a zero inner
product. The only allowed permutations are the identity and the exchange of
j and k. There are two cases. If electrons j and k have opposite spin, there
is no permutation that exchanges j and k. If electrons j and k have the same
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spin, then there is an exchange term. Specifically„

�n
2

�
!
�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

������

�

j<k

1

rj,k
ÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

=
�

j<k
opposite spin

�
ψ⌈ j2⌉ (j)ψ⌈ k2 ⌉ (k)

����
1

rj,k
ψ⌈ j2⌉ (j)ψ⌈ k2 ⌉ (k)

�

+
�

j<k
same spin

�
ψ⌈ j2⌉ (j)ψ⌈ k2 ⌉ (k)

����
1

rj,k

�
1− P̂j,k

�
ψ⌈ j2⌉ (j)ψ⌈ k2 ⌉ (k)

�

=
�

j<k
opposite spin

�
ψ⌈ j2⌉ (1)ψ⌈k2 ⌉ (2)

����
1

r1,2
ψ⌈ j2⌉ (1)ψ⌈ k2 ⌉ (2)

�
(8.16)

+
�

j<k
same spin

�
ψ⌈ j2⌉ (1)ψ⌈k2 ⌉ (2)

����
1

r1,2

�
1− P̂1,2

�
ψ⌈ j2⌉ (1)ψ⌈k2 ⌉ (2)

�
.

The first sum in Eq. 8.16 has terms, (j, k) = (1, 2) , (1, 4) , (1, 6) , . . . , (2, 3) , (2, 5) , . . . ,
(3, 4) , (3, 6) , . . .. These electron indices correspond to orbital indices, (m,m′) =
(1, 1) , (1, 2) , (1, 3) , . . . , (1, 2) , (1, 3) , . . . , (2, 2) , (2, 3) , . . ., respectively. The
m = m′ pairs appear once, while the m < m′ pairs appear twice. This arises
because there are two spin states. The second sum in Eq. 8.16 includes only
m < m′ pairs, which also appear twice. The result is

�n
2

�
!
�
ψ1 (1)ψ1 (2) . . . ψn/2 (n)

������

�

j<k

1

rj,k
ÂαÂβψ1 (1)ψ1 (2) . . . ψn/2 (n)

(

=
�

m

�ψm (1)ψm (2)

����
1

r1,2
ψm (1)ψm (2)

�
+ 2

�

m<m′

�ψm (1)ψm′ (2)

����
1

r1,2
ψm (1)ψm′ (2)

�

+2
�

m<m′

�ψm (1)ψm′ (2)

����
1

r1,2

�
1− P̂1,2

�
ψm (1)ψm′ (2)

�

=
�

m

�ψm (1)ψm (2)

������

1

r1,2

�
2− P̂1,2

�
ψm (1)ψm (2)

=ψm(1)ψm(2)

(

+2
�

m<m′

�ψm (1)ψm′ (2)

����
1

r1,2

�
2− P̂1,2

�
ψm (1)ψm′ (2)

�

symmetric with respect to swapping m and m′

=

n/2�

m=1

n/2�

m′=1

�ψm (1)ψm′ (2)

����
1

r1,2

�
2− P̂1,2

�
ψm (1)ψm′ (2)

�

=

n/2�

m=1

n/2�

m′=1

(2Jm,m′ −Km,m′) .
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where Jm,m′ is the Coulomb integral and Km,m′ is the exchange integral. The
Coulomb integral,

Jm,m′ = �ψm (1)ψm′ (2)

����
1

r1,2
ψm (1)ψm′ (2)

�

=

� �
1

r1,2
|ψm (1)|2 |ψm′ (2)|2 dx1dx2,

is the repulsion energy experienced by one electron in orbitalm due to another in
orbital,m′. It is the repulsion energy averaged over the two electron probability
distribution. The exchange integral,

Km,m′ = �ψm (1)ψm′ (2)

����
1

r1,2
ψm (2)ψm′ (1)

�

=

� �
1

r1,2
ψ∗m (1)ψm′ (1)ψm (2)ψ∗m′ (2) dx1dx2,

does not have a classical interpretation - the distribution, ψ∗m (1)ψm′ (1), is
not always positive, and cannot be interpreted as a probability distribution.
Equation 8.15 now takes the form,

�ψ
���Ĥψ




= 2

n/2�

m=1

�ψm (1)
���Ĥ1ψm (1)



+

n/2�

m=1

n/2�

m′=1

(2Jm,m′ −Km,m′) +
�

a<b

ZaZb

ra,b

=

n/2�

m=1

�ψm (1)

������



2Ĥ1 +

n/2�

m′=1

�
2Ĵm′ − K̂m′

�


ψm (1)

(

+
�

a<b

ZaZb
ra,b

= 2

n/2�

m=1

�ψm (1)
���ĤHFψm (1)



−

n/2�

m=1

n/2�

m′=1

(2Jm,m′ −Km,m′) (8.17)

+
�

a<b

ZaZb
ra,b

where

ĤHF = Ĥ1 +

n/2�

m′=1

�
2Ĵm′ − K̂m′

�

is the Hartree-Fock operator,

Ĵm′ψm (1) =

��
1

r1,2
|ψm′ (2)|2 dx2

�
ψm (1)

is the Coulomb operator, and

K̂m′ψm (1) =

��
1

r1,2
ψm (2)ψ∗m′ (2) dx2

�
ψm′ (1)
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is the exchange operator.

Minimizing �ψ
���Ĥψ



with respect to variations in the molecular orbitals,

ψm (1), subject to the constraint that the orbitals be orthogonal leads to the
eigenvalue equation for ĤHF ,

ĤHFψm (1) = ǫmψm (1) .

The best ground state, in the independent electron approximation, is the wave-
function constructed with double occupation of the n/2 lowest energy molecular
orbitals. The energy of this state is given by twice (the orbitals are doubly oc-
cupied) the sum of the orbital energies, ǫm, minus the electron repulsion term.

2

n/2�

m=1

ǫm −
n/2�

m=1

n/2�

m′=1

(2Jm,m′ −Km,m′) +
�

a<b

ZaZb

ra,b

The sum of the electron energies (the first term) counts the electron repulsion
term twice. So, the electron repulsion term must be subtracted out to correct
the overcounting.

The Hartree-Fock operator is a one electron operator which is represented
by a matrix when a basis is chosen for the ψm (1). Finding the eigenvalues
and eigenvectors of a one electron matrix is a managable computation. The
only twist here is that the Coulomb and exchange operators depend upon the
occupied molecular orbitals. To do the computation, one must start with
a reasonable guess for the molecular orbitals - perhaps the orbitals obtained
with electron repulsion neglected. The guessed molecular orbitals are used
to construct the Coulomb and exchange operators. The eigenvectors of the
associated Hartree-Fock operator then provide the next guess for the molecular
orbitals. The process is repeated until the molecular orbitals stop changing. In
practice, a more elaborate iteration is required to quickly obtain self-consistent
molecular orbitals. In Hartree-Fock theory, electron repulsion is treated as a
self-consistent mean field.

The next step is to introduce an atomic orbital basis set. In practice, Z
is replaced by Zeff , specific to each orbital, with Zeff determined by minimizing
energy with respect to variation of Zeff . More generally, superpositions of
atomic orbitals with multiple Zeff values are used. For example, when three
different exponentially decaying terms are used, the basis is called a triple zeta
basis. In any case, the molecular orbitals are written as linear combinations of
some set of primitive basis functions which, in general, is not orthogonal.

ψ (1) =
d�

j=1

cjϕj (1) ,

where d is the number of basis functions.

To obtain the minimum total energy, we minimize the expectation value of
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ĤHF with respect to variations in the coefficients.

�ψ (1)
���ĤHFψ (1)




=

*
d�

j1=1

cj1ϕj1 (1)

������
Ĥ1

d�

j2=1

cj2ϕj2 (1)

(

+

n/2�

m′=1

*
�

j1

cj1ϕj1 (1)ψm′ (2)

������

1

r1,2

�
2− P̂1,2

��

j2

cj2ϕj2 (1)ψm′ (2)

(

=
�

j1,j2

c∗j1cj2
�
ϕj1 (1)

���Ĥ1ϕj2 (1)



+
�

j1,j2

c∗j1cj2

n/2�

m′=1

(2Jm′,j1,j2 −Km′,j1,j2)

= cT



h+

n/2�

m′=1

(2Jm′ − Km′)



 c. c is real (8.18)

Minimizing the above quadratic form subject to the constraint that the
molecular orbital be normalized gives rise to the generalized eigenvalue problem,



h+

n/2�

m=1

(2Jm − Km)



 c = ǫUc,

where U is the overlap matrix. These equations (there is an equation for each
eigenvector) are called the Roothaan equations. The eigenvector, c1, associated
with the lowest orbital energy, ǫ1, produces the minimum expectation of ĤHF .
The next lowest energy eigenvector, c2, produces the minimum expectation of
ĤHF among vectors, c, such that

cT1 Uc = 0;

i.e., c represents molecular orbitals orthogonal to ψ1 (1). This continues until
there are enough molecular orbitals to accommodate all of the electrons.

In summary, one finds enough molecular orbitals to accommodate all the
electrons. These orbitals are then used to construct new Coulomb and ex-
change operators. The new generalized eigenvalue equation is then solved for
new molecular orbitals, and so. This procedure is iterated to convergence to
self-consistent molecular orbitals. In practice, convergence of the iteration is
accelerated by using the results of some number of successive steps to construct
a quasi-Newton iteration (an approximate Newton-Rhaphson iteration in a low
dimensional subspace).

Hartree-Fock excited states can also be constructed. The procedure is the
same, except that the orbitals are occupied with an excited electron configu-
ration. For example, an electron from one of the doubly occupied orbitals
of the ground state is placed in a ground state unoccupied orbital. Iterating
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the Roothaan equations, starting with Jm and Km computed with these dif-
ferent occupations, produces the molecular orbitals for the associated atomic
or molecular electronic excited state. Excited states with one electron excited
are generally the lowest energy excited states. These are the excited states
accessible in electronic spectroscopy. Excited states with two or more elec-
tron excitations produce higher energy excited states. To observe two electron
excitations with spectroscopy requires high intensity light.

The ionization, electron affinity and absorption frequencies are estimated
using Hartree-Fock orbital energies, if we neglect the changes in Jm and Km that
result from removal of an electron, addition of an electron, or the excitation of
an electron. For ionization energy, the result is

IHF, 0 = −ǫHOMO .

This is called Koopman’s theorem. Additional higher energy ionization thresh-
olds - observable in photoelectron spectra - correspond to −ǫm, for lower energy
orbital. Photoelectron spectroscopy resolves ejected electrons according to ki-
netic energy. Multiple peaks are observed, corresponding to all orbitals with
ionization energy below the photon energy of the light source. Ionization from
lower energy orbitals gives electrons with lower kinetic energy.

Electron affinity is similarly approximated.

AHF, 0 = −ǫLUMO .

Electronic transition frequencies are approximated by

ν =
ǫm′ − ǫm

h
,

where ψm is an occupied orbital and ψm′ is an unoccupied orbital. Of course,
transitions are subject to selection rules. Selection rules are generally associated
with symmetry, and are derived using group theory.

8.5 Configuration interaction

The Hartree-Fock approximation provides a valuable benchmark for electronic
computations. But, it neglects electron correlation. Electrons in molecules
are not independent - i.e., molecular electronic wavefunctions are not antisym-
metrized products one one electron functions. The most straightforward way to
account for electron correlation is to generate a number of Hartree-Fock states.
In addition to the Hartree-Fock ground state, Hartree-Fock excited states are
constructed with excited electron configurations with single, double or even
triple electron excitations. For example, one can consider all single and double
electron excitations up to a maximum orbital energy, ǫmax . Having constructed
a suitable set of Hartree-Fock states, the matrix representation of the n electron
Hamiltonian is computed for this basis. The eigenvalues of this matrix are the
energy levels of the molecule. The associated eigenvectors provide coefficients
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for the expansion of the eigenstates of the molecule in terms of the Hartree-
Fock states. The states of the system are expressed here as superpositions of
Hartree-Fock states, each with a specific electron configuration. States which
have more than one significant Hartree-Fock state component are said to exhibit
configuration interaction.

Converged configuration interaction computations quickly become computa-
tionally intractable. The computation time scales as n!, and quickly gets out of
hand. Consequently, many other methods have been developed to account for
electron exchange with more tractable scaling with number of electrons. Den-
sity functional theory provides the lowest cost methods that accounts for some
electron correlation. It can give good results for ground states when well cali-
brated. Density functional theory is generally semi-empirical, with parameters
chosen to fit known data. More expensive methods include coupled cluster
theory and density matrix renormalization group theory. These methods scale
exponentially with number of electrons rather than factorially - the scaling of
configuration interaction.

8.6 Hückel theory

Historically, it was important to simplify the computation of Hartree-Fock or-
bitals, via various approximations, to make the computations tractable. Some-
times these simplified approaches also provide a clearer view of electronic struc-
ture. This simplest approach is Hückel theory. Orginally, it was developed
to describe only the π system of a molecule. Extended Hückel theory provides
a full calculation including all the atomic orbitals. Here, we conisder only π
systems.

While π bonding is weaker than σ bonding, it has the unique ability to form
bonding networks over many atoms. σ bonds form with atomic orbitals pointing
directly at each other. This makes σ bonds localized between two atoms. A
p orbital on an atom overlaps equally well with the p orbitals on neighboring
atoms in all directions, within the plane perpendicular to the p orbital. This
allows the formation of bonding networks, and gives rise to the special stability
of aromatic compounds.

The Hückel method starts with an empirical one electron Hamiltonian. It
can be viewed as an empirical Hartree-Fock Hamiltonian, except that in Hückel
theory the sum of the electron energies is not corrected for overcounting of
electron repulsion. Electron repulsion with the σ system is not overcounted
- it can be viewed as included in the the empirical parameters of the Hückel
Hamiltonian. Electron repulsion between π electrons is essentially treated at
the level of first order perturbation - it is included only in the diagonal elements
of the Hückel Hamiltonian. No correction for overcounting is required because
the electron repulsion energy is considered to be split between the electrons.

Polyenes, aromatic compounds, nucleic acids and other compounds have π
systems arising from a planar σ system constructed from pairs of atomic 2sp2

orbitals (or 2sp2 and hydrogen 1s). The 2px orbitals orthogonal to the molecular
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plane provide the atomic basis for the π system. The Hückel Hamiltonian is
a matrix whose diagonal elements are the energies of electrons occupying the
2px orbitals. These diagonal elements are denoted by α. Subscripts are used
to distinguish different types of 2px orbital - e.g., on different types of atom.
The off—diagonal elements - the couplings between the orbitals - are zero unless
the atoms are directly bonded. Couplings decrease dramatically with distance,
so we can neglect couplings of atoms two or more bonds apart. The couplings
between bonded atoms are denoted by β, with subscripts distinguishing different
types of bonds. Since the basis of 2px orbitals is non-orthogonal, there is a non-
trivial overlap matrix U - i.e., it is not just the identity matrix. We suppose that
the Hamiltonian constructed with α and β values, as just described, has already
been transformed - i.e., H → U

−1/2
HU

−1/2 - to act on the b vectors which give
the molecular orbital expansion coefficients, in terms of orthogonalized basis
functions. Each orthogonalized basis function is a superposition of a 2px orbital
and small amounts of neighboring 2px orbitals. We ignore this distinction
and talk about the eigenvectors of the Hückel Hamiltonian, as though they
were expansion coefficients in terms of atomic orbitals. The α and β values
are ultimately empirical values which are chosen to give binding energies and
absorption frequencies in accord with experiment.

The simplest Hückel treatments consider unsaturated hydrocarbons, and
use a single α value for all the carbon 2px orbitals, and a single β value for
every carbon-carbon π bond. The problem is simply to find the eigenvalues
and eigenvectors of the Hückel Hamiltonian. In the π system for the ground
state, electrons occupy the π molecular orbitals - in pairs - from the lowest
energy orbital to HOMO. HOMO is determined by the total number of π
electrons. The advantage of all the simplfying assumptions of Hückel theory
becomes apparent when one considers examples.

8.6.1 Butadiene

1,3-Butadiene is the simplest molecule that demonstrates stabilization due to
conjugation of double bonds. The Hückel Hamiltonian is the 4× 4 matrix,

H =






α β 0 0
β α β 0
0 β α β
0 0 β α




 ,

showing the connectivity of atoms - atom 1 is connected to 2, 2 to 3, and 3 to
4. The eigenvectors of this matrix do not depend on the values of α and β.
Only the associated eigenvalues depend on α and β. This is because H can be
written as

H = α1+ β






0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0




 .
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The α1 simply shifts the eigenvalues of the other term by α. The molecular
orbitals of butadiene are the eigenvectors of






0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0




 .

The associated eigenvalues are scaled by β, and added to α, to give the molecular
orbitals energies.

The Hückel eigenvalues and unnormalized eigenvectors for butadiene are
tabulated as follows:

m 1 2 3 4

ǫm α+
√
5+1
2 β α+

√
5−1
2 β α−

√
5−1
2 β α−

√
5+1
2 β

bm

1√
5+1
2√
5+1
2
1

−1
−
√
5+1
2√
5−1
2
1

1
−
√
5+1
2

−
√
5+1
2
1

−1√
5+1
2

−
√
5−1
2
1

The ground π state of butadiene is given by putting two electrons in each of
b1 and b2. The associated π energy is

Eπ g.s. = 2

�

α+

√
5 + 1

2
β

�

+ 2

�

α+

√
5− 1

2
β

�

= 4α+ 2
√

5β

= 4α+ 4.472β.

The π bonding energy is 4.472β. It is the stabilization of the π system relative
to the four electrons isolated in 2px orbitals. To better appreciate this energy,
we constrast it with the energy of two isolated C-C π bonds - i.e., as in ethene.
The π bonding energy in this case is 4β. The additional 0.472β of binding
energy in butadiene is the conjugation energy of the two double bonds.

The molecular orbitals of butadiene are shown in Figure 8.4.

8.6.2 Allyl radical, cation and anion

The allyl radical π system is even simpler than that of 1,3-butadiene. Since
there are only three π electrons, it is a radical system. The Lewis structure
of the radical shows an isolated 2px electron next to a double bond. Chemists
say that resonance structures stabilize the 2px electron, stabilizing the radical.
We demonstrate this effect using Hückel theory.

The Hückel Hamiltonian for the allyl radical is

H =




α β 0
β α β
0 β α



 .

The eigenvalues and normalized eigenvectors for allyl are tabulated as follows:
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Figure 8.4: Hückel theory molecular orbitals for 1,3-butadiene. Orbital coef-
ficients are repesented by circles with radius in proportion to |bm,j |. A green
circle corresponds to a coefficient with the same sign as the first coefficient on
the left. Otherwise, the circle is red.



248 CHAPTER 8. ELECTRONIC STRUCTURE OF MOLECULES

m 1 2 3
ǫm α+

√
2β α α−

√
2β

bm

1
2√
2
2
1
2

1√
2

0
− 1√

2

1
2

−
√
2
2
1
2

The ground state π energy of the allyl radical, in Hückel theory, is

Eπ g.s. = 2
�
α+

√
2β
�

+ α

= 3α+ 2
√

2β

= 3α+ 2.828β.

An isolated π bond and isolated 2px electron have energy, 3α + 2β. The
additional 0.828β is the stabilization of the radical due to the neighboring π
bond. In the calculation, the unpaired electron still has energy α. It is the
energy of the two π bond electrons that is stabilized. This stabilizes the allyl
radical, allowing it to form more readily than an alkyl radical.

If we subtract one electron, we get the allyl cation. The electron comes
from ψ2 of the π system - the highest energy occupied orbital. The cation π
energy is 2α + 2

√
2β, which is lower than the π energy of an isolated double

bond, 2α + 2β, by 0.828β. The allyl cation is stabilized relative to an alkyl
cation by the stabilization of the π bonding electrons. Above, we see that the
two bonding electrons are spread over all three 2px orbitals - the increased space
for these electrons lowers their energy.

If we add one electron, we get the allyl anion. The π bonding energy is
again stabilized by 0.828β, with the effect of stabilizing the allyl anion relative
to an alkyl carbanion.

8.6.3 Benzene and aromaticity

The Hückel Hamiltonian for benzene is the 6× 6 matrix,

H =






α β 0 0 0 β
β α β 0 0 0
0 β α β 0 0
0 0 β α β 0
0 0 0 β α β
β 0 0 0 β α






.

The unnormalized molecular orbitals and associated energies are tabulated as
follows:
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m 1 2 3 4 5 6
ǫm α+ 2β α+ β α+ β α− β α− β α− 2β

bm

1
1
1
1
1
1

0
1
1
0
−1
−1

2
1
−1
−2
−1
1

0
1
−1
0
1
−1

−2
1
1
−2
1
1

−1
1
−1
1
−1
1

The six-fold rotational symmetry gives rise to simple molecular orbitals, and
degeneracy of the middle two orbital energies: ǫ2 = ǫ3 = α + β and ǫ4 = ǫ5 =
α− β. In fact, we could have used symmetry - group theory - to split the six
dimensional vector space into the four distinct eigenspaces - two of them two
dimensional.

The π energy of benzene is given by

2 (α+ 2β) + 4 (α+ β) = 6α+ 8β.

This is lower than the π energy of three isolated double bonds, 6α + 6β, by
2β. Benzene exhibits significant stability, in comparison with alkenes. It is the
first member of the class of aromatic compounds - cyclic and polycyclic polyene
compounds that have significant stabilization, and undergo different types of
reactions than alkenes.

The molecular orbitals of butadiene are shown in Figure 8.5.
Consider the case of cyclobutadiene, with molecular orbitals and energies

given by
m 1 2 3 4
ǫm α+ 2β α α α− 2β

bm

1
1
1
1

1
0
−1
0

0
−1
0
1

−1
1
−1
1

The ground state π energy is

2 (α+ 2β) + 2α = 4α+ 4β.

This is the same π energy as two isolated bonds. Cyclobutadiene has no
stabilization due to conjugation. Cyclobutadiene is not a planar molecule - it is
puckered. No stabilization results from combining the two π bonds into a single
π system. It puckers to relieve strain. Cyclobutadiene is antiaromatic. At the
same time, cyclobutadiene is highly strained. It is forced to use non-optimal
hybridization to form the σ bonds with 90◦ bond angles. Consequently, its σ
bonds are weaker than σ bonds with optimal bond angles.

We have seen that benzene has special stability, whereas cyclobutadiene has
reduced stability. The difference results from the orbital energies, and their
occupation. Cyclobutadiene has one pair of degenerate non-bonding orbitals
that are both singly occupied in its ground state. The associated energy is
α. Only the two lowest energy electrons in cyclobutadiene experience bonding
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Figure 8.5: The molecular orbitals of benzene. The bottom two panels give
the two degenerate HOMO states, while the middle two panels give the two
degenerate LUMO states.
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Figure 8.6: The energy levels - vertical axis - of cyclic π systems with four to
eight atoms.

stabilization. Benzene has two pairs of degenerate orbitals. The two energies
are split above and below α. However, only the lower energy orbitals are
occupied (both doubly occupied) in neutral benzene. All electrons in benzene
experience bonding stabilization. The two lowest energy π electrons experience
extra stabilization - it is the source of the special stability of benzene.

Examing the eigenvalues of many cyclic π systems leads to the following
observations: The lowest orbital energy of a cyclic π system is always non-
degenerate. The associated molecular orbital has equal coefficients for all the
atomic orbitals. Successive orbital energies are doubly degenerate. If the num-
ber of atoms in the ring is even, then the top orbital energy is non-degenerate.
The energy levels of four to eight atom rings are shown in Fig. 8.6. The energies
are the y coordinates of the vertices of a regular polygon arranged symmetrically
about a vertical axis with a vertex at the bottom.

The stability of these species depends upon the orbital occupation. Stable
species are formed when there are only closed shells. This means that the
lowest energy molecular orbital and some number of subsequent shells - each
shell consisting of two orbitals - are occupied. This corresponds with 4n + 2
electrons, n = 0, 1, 2, . . .. (n = 0 corresponds to the cyclopropenyl cation.)
This is the origin of Hückel’s rule for aromaticity. Cyclic π systems with 4n+2
electrons have special stability - they are aromatic. Odd numbered electron
systems are radicals. The other possibility is 4n electrons. These systems
are diradicals, and no experience aromatic stabilization - they are antiaromatic.
The two electrons at the highest energy are in non-bonding orbitals (even num-
bered rings), or weakly bonding orbitals (odd numbered rings). Note that odd
numbered rings form form aromatic anions or cations - an electron must be
added or removed to achieve 4n+ 2 electrons.

8.6.4 Atomic charge distribution

Hückel theory provides more than just molecular orbitals and associated en-
ergies. Most notably, one can determine the charge distribution within the
molecule. The atomic cores, and the σ system, determine a molecular skeleton
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consisting of atoms with net core charge, qcore, k equal to one or two - two for
oxygen atoms with two σ bonds, and nitrogen atoms with three σ bonds. The π
system adds electron density to this skeleton. The total number of π electrons
determines the net charge on the species. In Hückel theory, this charge can
be broken into atomic components - i.e., we compute the net charge on each
atom. Here, n resumes its role as the number of electrons (i.e., as opposed to
the Hückel number introduced above). The net charge on atom, k, is

qk = qcore, k −
n�

m=1

nm |bm,k|2 ,

where bm,k is the coefficient associated with atom k in the m th molecular
orbital. nm is the occupation of the m th molecular orbital. The charge on
the atom is expressed as the core charge plus the negative π electron charge.
The latter equals the sum, over occupied orbital contributions, of the product
of minus the orbital occupation and the probability a ψm electron is found at
atom k. This formula can be applied to ground state or excited state electron
configurations by changing the occupations.

For the ground state of neutral polyenes, qk = 0 for all atoms - the charge
is evenly spread throughout the molecule. When there are electronegative
heteroatoms (e.g., O or N), the lower associated α values gives these atoms
more electron density. This arises because the low α orbitals are featured
more prominantly in the lower energy orbitals. This produces polarized ground
state charge distributions, with negative charge accumulated onto heteroatoms
(unless they have core charge two which is generally not completely canceled).
Polarized charge distributions also arise in polycyclic systems with only carbon
atoms.

The charge distribution of the ground state allyl radical is given by

q1 = 1−
�

2

�
1

2

�2
+

�
1√
2

�2�

= 0

q2 = 1−



2

�√
2

2

�2
+ (0)

2



 = 0

q3 = 1−
�

2

�
1

2

�2
+

�
− 1√

2

�2�

= 0.

The electron density is spread evenly across the allyl radical. However, the
π electron density of the middle atom comes entirely from bonding electrons.
The higher energy non-bonding electron is shared equally by the first and third
atoms - i.e., these atoms equally share the radical character of allyl. These
atoms will be the sites of reactivity.
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In the case of the allyl cation,

q1 = 1− 2

�
1

2

�2
=

1

2

q2 = 1− 2

√
2

2

2

= 0

q3 = 1− 2

�
1

2

�2
=

1

2
.

The +1 charge is shared equally by the outer two atoms. The allyl cation acts
as an electrophile at these sites.

In the case of the allyl anion,

q1 = 1−
�

2

�
1

2

�2
+ 2

�
1√
2

�2�

= −1

2

q2 = 1−



2

�√
2

2

�2
+ 2 (0)2



 = 0

q3 = 1−
�

2

�
1

2

�2
+ 2

�
− 1√

2

�2�

= −1

2
.

The −1 charge is shared equally by the outer two atoms. The allyl anion acts
as a nucleophile at these sites. The charge distributions for the allyl cation and
anion are consistent with the principle of like charge separation. In a conductor,
any net charge repels itself into the surface of the conductor, so as to maximize
the distance between like charges.

In the case of ethenoxide, CH2CHO−, the Hückel Hamiltonian is the same
as that of allyl, except that the α value for 2px on oxygen is lower - oxygen
is more electronegative. - and the C-O bond has a different β value. Using
α (C) = −6.5, α (O) = −11.9, β (C-C) = −2.7 and β (C-O) = −2.16 (all in eV),
we get

m 1 2 3
ǫm −12.806 −8.586 −3.508

bm

0.1634
0.3816
0.9098

−0.7351
−0.5680
0.3702

0.6580
−0.7292
0.1877

and

q1 = 1−
�
2 (0.1634)2 + 2 (−0.7351)2

�
= −0.134

q2 = 1−
�
2 (0.3816)2 + 2 (−0.5680)2

�
= 0.064

q3 = 1−
�
2 (0.9098)

2
+ 2 (0.3702)

2
�

= −0.930.
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The core charge on oxygen, and the number of π electrons it contributes, can
be deduced from the Lewis structure of CH2CHO−. In that structure, oxygen
has one σ bond, and three lone pairs - one in a 2sp orbital, one in 2py, and one
in 2px. Subtracting the π system 2px electrons from oxygen gives it a formal
charge of +1. This is the core charge of oxygen. Since oxygen contributes two
electrons to the π system, while each carbon atom contributes one, there are
four π electrons in total.

As expected, the −1 charge of ethenoxide is mostly on the oxygen atom.
However, some of the charge is shared with the first carbon atom. Moreover,
the minus charge on oxygen polarizes the C-C π bond such that the carbon
next to the oxygen has a net positive charge. This puts more negative charge
at the first carbon atom. The negative charge on the first carbon is consistent
with ethenoxide acting as a nucleophile at this carbon atom - ethenoxide has
carbanion character.

8.6.5 Self-consistent Hückel theory

The above calculations reveal a limitation of Hückel theory. The same α value
is used for a neutral atom, and atoms with net positive or negative charge.
Differences in electron repulsion of the π electrons on the atom are neglected.
The simplest improvement of Hückel theory is to treat the electron repulsion on
each atom at the level of first order perturbation theory - i.e., it affects only the
diagonal elements of the Hamiltonian matrix. Thus, we let αk depend on the
charge on atom k. This simplest dependence is linear. Specifically,

αk = α
(0)
k − λkqk, λk > 0.

αk = α
(0)
k for a neutral atom. If the charge is positive, αk is reduced by λk, per

unit charge. If the charge is negative, αk is larger than the neutral reference
value. This charge dependence of the αk requires an iteration to yield self-
consistent solutions - i.e., the charges used to get the αk are the same as those
produced by the αk. This is self-consistent Hückel theory.

Applying self-consistent Hückel theory with λk = 3.78 for all three atoms
gives molecular orbitals and energies tabulated as follows:

m 1 2 3
ǫm −10.55 −7.47 −3.10

bm

0.362
0.611
0.704

−0.662
−0.364
0.656

0.657
−0.703
0.272

The associated self-consistent charge distribution is

q1 = −0.14

q2 = −0.01

q3 = −0.85.
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The negative charge is shared to a greater extent with the carbon atoms,
than in the previous calculation. Here, we account for electron repulsion on
an oxygen atom with charge near −1. This raises the α value of oxygen closer
to that of the carbon atoms, and reduces accumulation of negative charge on
oxygen. Again, we see that the minus charge is primarily shared by the first
carbon atom, consistent with reactivity at carbon atom - as a nucleophile.

8.7 Appendix: ground state energy estimate for

H+
2 and H2

In Sec. 8.1 - see Eq. 8.6 - the ground state energy of H2 was estimated to be the
energy of two H atoms plus interaction energies expressed in terms of matrix
elements of 1/rB . Here, we evaluate the matrix elements using hydrogen-like
ion orbitals with a Z dependence, so that the effective nuclear charge can be
adjusted to give the best possible energy estimate - in accord with the variational
principle.

With electron repulsion neglected, the ground state energy of H2 in the
approximate ground state, provided by Eq. 8.4 , has the form,

EH2 g.s. = 2 (αZ + βZ) +
1

rA, B
,

where

αZ

=
�(1s)A

���ĤA, 1(1s)A



+ �(1s)A
��� −1rB , 1

(1s)A



−
�
�(1s)A

���ĤB, 1(1s)B



+ �(1s)B
��� −1rB , 1

(1s)A


�
u

1− u2
βZ

=
−
�
�(1s)A

���ĤA, 1(1s)A



+ �(1s)A
��� −1rB , 1

(1s)A


�
u+ �(1s)A

���ĤB, 1(1s)B



+ �(1s)B
��� −1rB , 1

(1s)A




1− u2 .

Thus,

EH2 g.s.

= 2
�(1s)A

���ĤA, 1(1s)A



+ �(1s)A
��� −1rB , 1

(1s)A



+ �(1s)A

���ĤB, 1(1s)B



+ �(1s)B
��� −1rB , 1

(1s)A




1 + u
+

1

rA, B

In Sec. 8.1, the atomic Hamiltonian expectations simplified because the
atomic orbitals were eigenfunctions of the atomic Hamiltonians. Here, the 1s
orbitals have variable atomic number, Z. They are eigenfunctions of hydrogen-
like ion Hamiltonians. We write

ĤA, 1 = −∇
2
1

2
− 1

rA, 1

= −∇
2
1

2
− Z

rA, 1
+
Z − 1

rA, 1
,
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and note that

�(1s)A
���ĤA, 1(1s)A




= �(1s)A
����

�
−∇

2
1

2
− Z

rA, 1

�
(1s)A +

Z − 1

rA, 1
(1s)A

�

= �(1s)A
����

�
−Z

2

2

�
(1s)A +

Z − 1

rA, 1
(1s)A

�

= −Z
2

2
�(1s)A |(1s)A	

=1

+ (Z − 1) �(1s)A
����

1

rA, 1
(1s)A

�

= −Z
2

2
+ (Z − 1) �(1s)A

����
1

rA, 1
(1s)A

�
. (8.19)

Similarly,

�(1s)A
���ĤB, 1(1s)B




= �(1s)A
����

�
−∇

2
1

2
− Z

rB, 1

�
(1s)B +

Z − 1

rB, 1
(1s)B

�

= �(1s)A
����

�
−Z

2

2

�
(1s)B +

Z − 1

rB, 1
(1s)B

�

= −Z
2

2
�(1s)A |(1s)B	

=u

+ (Z − 1) �(1s)A
����

1

rB, 1
(1s)B

�

= −Z
2

2
u+ (Z − 1) �(1s)A

����
1

rB, 1
(1s)B

�
. (8.20)

The 1/rA, 1 expectation value in Eq. 8.19 can be evaluated using spherical
coordinates;

�(1s)A
����

1

rA, 1
(1s)A

�

= Z3π−1
� 2π

0

� π

0

� ∞

0

1

r1
exp (−2Zr1) r

2
1 sin θ1 dr1dθ1dφ1

= 4Z3
� ∞

0

r exp (−2Zr) dr

= Z

� ∞

0

ρ exp (−ρ) dρ

= Z [(−ρ− 1) exp (−ρ)]∞0
= Z.

The remaining matrix elements are evaluated using elliptic coordinates.
These coordinates include an angle, φ, that varies from 0 to 2π. A change
in φ is a rotation about the z axis - the bond axis - . It is essentially the same
as the angle φ of spherical coordinates. The other two coordinates have the
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following ranges: 1 < ξ < ∞ and −1 < η < 1. The lines of constant ξ and φ
are ellipses with focal points at the two nuclei. Lines of constant η and φ are
hyperbolas with the same two focal points. We do not need all the details of
the elliptic coordinates. We need only the volume element,

dxdydz =
r3A,B
8

�
ξ2 − η2

�
dξdηdφ,

and the distances to the nuclei,

rA, 1 =
rA,B
2

(ξ − η)

and
rB, 1 =

rA,B
2

(ξ + η) .

In terms of elliptic coordinates, the orbitals take the form,

(1s)A (1) = Z3/2π−1/2 exp

�
−ZrA,B

2
(ξ1 − η1)

�

and

(1s)B (1) = Z3/2π−1/2 exp

�
−ZrA,B

2
(ξ1 + η1)

�
.

Therefore,
(1s)A (1) (1s)B (1) = Z3π−1 exp (−ZrA,Bξ1)

and

u = �(1s)A |(1s)B	

= Z3π−1
� 2π

0

� 1

−1

� ∞

1

r3A,B
8

�
ξ21 − η21

�
exp (−ZrA,Bξ1) dξ1dη1dφ1

=
Z3r3A,B

4

� 1

−1

� ∞

1

�
ξ2 − η2

�
exp (−ZrA,Bξ) dξdη

=
Z3r3A,B

4

� ∞

1

� 1

−1

�
ξ2 − η2

�
dη exp (−ZrA,Bξ) dξ

=
1

4

� ∞

ZrA ,B

� ZrA ,B

−ZrA ,B

�
x2 − y2

�
dy exp (−x) dx

=
1

4

� ∞

ZrA ,B

�

2ZrA,Bx
2 −

2Z3r3A,B
3

�

exp (−x) dx

=
ZrA,B

2

��
�
−x2 − 2x− 2

�
+
Z2r2A,B

3

�

exp (−x)
 ∞

ZrA ,B

=

�
Z2r2A,B

3
+ ZrA,B + 1

�

exp (−ZrA,B) .
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The remaining matrix elements are

�(1s)A
����

1

rB, 1
(1s)A

�

= Z3π−1
� 2π

0

� 1

−1

� ∞

1

r3A,B
8

�
ξ21 − η21

�

rA ,B
2 (ξ1 + η1)

exp (−ZrA,B (ξ1 − η1)) dξ1dη1dφ1

=
Z3r3A,B
2rA,B

� 1

−1

� ∞

1

(ξ − η) exp (−ZrA,B (ξ − η)) dξdη

=
1

2rA,B

� ZrA ,B

−ZrA ,B

� ∞

ZrA ,B

(x− y) exp (−x+ y) dxdy

=
1

2rA,B

� ZrA ,B

−ZrA ,B

[(−x− 1 + y) exp (−x)]∞ZrA ,B
exp (y) dy

=
exp (−ZrA,B)

2rA,B

� ZrA ,B

−ZrA ,B

(ZrA,B + 1− y) exp (y) dy

=
exp (−ZrA,B)

2rA,B
[(ZrA,B + 1− y + 1) exp (y)]ZrA ,B

−ZrA ,B

=
exp (−ZrA,B)

2rA,B
2 (exp (ZrA,B)− (1 + ZrA,B) exp (−ZrA,B))

=
1

rA,B
(1− (1 + ZrA,B) exp (−2ZrA,B))

and

�(1s)B
����

1

rB, 1
(1s)A

�
= �(1s)A

����
1

rB, 1
(1s)B

�

= Z3π−1
� 2π

0

� 1

−1

� ∞

1

r3A,B
8

�
ξ21 − η21

�

rA ,B
2 (ξ1 + η1)

exp (−ZrA,Bξ1) dξ1dη1dφ1

=
Z3r3A,B
2rA,B

� 1

−1

� ∞

1

(ξ − η) exp (−ZrA,Bξ) dξdη

=
1

2rA,B

� ZrA ,B

−ZrA ,B

� ∞

ZrA ,B

(x− y) exp (−x) dxdy

=
1

2rA,B

� ZrA ,B

−ZrA ,B

[(−x− 1 + y) exp (−x)]∞ZrA ,B
dy

=
exp (−ZrA,B)

2rA,B

� ZrA ,B

−ZrA ,B

(ZrA,B + 1− y) dy

=
exp (−ZrA,B)

2rA,B

�
(ZrA,B + 1) y − y

2

2

�ZrA ,B

−ZrA ,B

=
exp (−ZrA,B)

2rA,B
2 (ZrA,B + 1)ZrA,B

= Z (1 + ZrA,B) exp (−ZrA,B) .
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Altogether, with r = rA, B ,

EH2 g.s.

=
2

1 + u

�
−Z

2

2
+ (Z − 1)Z − 1

r
(1− (1 + Zr) exp (−2Zr))

−Z
2

2
u+ (Z − 2)Z (1 + Zr) exp (−Zr)

�
+

1

r

= −Z2 +
2

1 + u

�
Z (Z − 1)− 1

r
(1− (1 + Zr) exp (−2Zr))

+Z (Z − 2) (1 + Zr) exp (−Zr)) +
1

r

= −Z2 +
1

r

+2
Z (Z − 1)− 1

r (1− (1 + Zr) exp (−2Zr)) + Z (Z − 2) (1 + Zr) exp (−Zr)
1 +

�
1 + Zr + Z2r2

3

�
exp (−Zr)

and
Consider the two limiting cases, r →∞ and r → 0 (the united atom limit).

If the two atoms are far apart (r→∞), exp (−Zr) ∼= 0, and

EH2 g.s.
∼= −Z2 +

1

r
+ 2

�
Z (Z − 1)− 1

r

�

= Z2 − 2Z − 1

r
.

The optimal Z value is the solution to

2Z − 2 = 0;

i.e., Z = 1 . The optimal ground state energy estimate is

EH2 g.s.
∼= −1− 1

r
.

When the electron repulsion is added, the net −1/r attraction is canceled and
the we get the energy of two hydrogen atoms.

If the two atoms are close together (r → 0), exp (−Zr) ∼= 1 − Zr, positive
powers of r can be neglected and

EH2 g.s.

∼= −Z2 +
1

r
+ 2

Z (Z − 1)− 1
r (1− (1 + Zr) (1− 2Zr)) + Z (Z − 2) (1 + Zr) (1− Zr)

2

∼= −Z2 +
1

r
+ Z (Z − 1)− Z + Z (Z − 2)

= Z2 − 4Z +
1

r
.
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Here, the optimal Z value solves

2Z − 4 = 0;

i.e., Z = 2. The optimal ground state energy estimate is

EH2 g.s. ∼= −4 +
1

r
.

If, instead of two hydrogen atoms, we had two deuterium atoms, then when the
nuclei come together they can form a helium nucleus. The +1/r repulsion is
part of the nuclear energy. It is more than canceled by the released binding
energy resulting from the formation of helium from two deuterium nuclei. The
remaining energy, −4, is the energy of helium with electron repulsion neglected.


