Lectures of respiratiory physjology

Pulmonary Gas Exchange II

Key role of ventilation-perfusion ratio

Model showing the importance of the ventilation-perfusion ratio

Effects of changing the ventilation-perfusion ratio

Effects of changing the ventilation-perfusion ratio

Distributions of ventilation and blood flow in the upright lung

Ventilation-perfusion ratios down the upright lung

Regional differences of gas exchange

Tuberculosis in the base of the lungs in the bat

Calcification in the apices of the lungs

Cause of an alveolar-arterial PO2 difference

Ventilation-perfusion inequality must cause hypoxemia

Normal distribution of ventilation perfusion ratios

Distribution of ventilation-perfusion ratios in emphysema

Section of normal lung

Section of lung with severe emphysema

Distribution of ventilation-perfusion ratios in emphysema

Distribution of ventilation-perfusion ratios in chronic bronchitis

Stages of impairment of gas exchange

STAGES

Ventilation-perfusion inequality must cause hypoxemia

Stages of impairment of gas exchange

STAGES

How can we asses the amount of ventilationperfusion inequality in lung disease?

Suppose the arterial PO 2 is 50 and the PCO 2 is 60 mm Hg

Is ventilation-perfusion inequality present or is there just hypoventilation?

To answer this we use the alveolar gas equation

Using the alveolar gas equation to calculate the alveolar-arterial PO_{2} difference

$$
\mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}=\mathrm{PIO}_{2}-\frac{\mathrm{P}_{\mathrm{A}} \mathrm{CO}_{2}}{\mathrm{R}}+\mathrm{F}
$$

$$
\mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}=149-\frac{60}{0.8}
$$

$$
\mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}=74 \mathrm{mmHg}
$$

A - a difference $=74-50$
A -a difference $=24 \mathrm{mmHg}$

