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ABSTRACT 
 
Current clinical practice is increasingly moving in the 
direction of volumetric imaging. However, model observers 
for 3D images have been little explored so far. This study is 
investigating the task of detecting 2D signals in multi-slice 
simulated image data. We propose a novel design of a multi-
slice model observer. To evaluate it, we compare three 
different model designs of the channelized Hotelling 
observer (CHO), two multi-slice and one single-slice model. 
The multi-slice models are built as a sequence of a 2D CHO 
and 1D HO, where the CHO is used to calculate a vector of 
metrics for each slice in the planar view and the HO is used 
to calculate the final scalar statistic of the model. The 
single-slice model is a 2D CHO applied on the location of 
the lesion. Our results show that the multi-slice models 
outperform the single-slice one, and here the new model 
surpasses the existing one. 
 

Index Terms— Image classification, Medical decision-
making, Observers, Signal detection 
 
 

1. INTRODUCTION 
 
The primary goal of medical images is to assist physicians 
in the diagnostic process. Often, this diagnostic image 
reading corresponds to the task of detecting a lesion (signal) 
of interest, such as lung nodule detection in chest CT scans, 
in order to make a classification decision: normal case 
(signal-absent) or abnormal case (signal-present). In this 
respect, medical image quality may be assessed concerning 
how well the physicians, human observers, perform the task 
of signal detection. Still, such psychovisual studies are 
complex and time-consuming. Therefore, model observers 
have been developed to assist or even substitute humans in 
the detection task. 

Current clinical practice is increasingly moving in the 
direction of volumetric imaging. This tendency is widely 
observed in various anatomical as well as functional 3D 
imaging modalities including ultrasound, MRI, CT, SPECT. 
In this study, we focus on multi-slice images where the 
signal of interest is two-dimensional as it is typically the 

case in lung nodule detection in chest CT scans or 
microcalcifications detection in breast tomosynthesis. 

In past years, the study case of model observers for 
signal detection in 2D images has been widely explored. 
Specifically, a model known as the channelized Hotelling 
observer (CHO) [1] is shown to be a good estimator of the 
ideal signal detector [2]. Moreover, the CHO models are 
recognized to approximate human observer performance 
reasonably well [3], [4].  

However, the domain of 3D image data has been poorly 
explored in the sense of model observers and only few 
solutions have been proposed so far. In Ref. [5], for 
example, it has been shown that the performance of a human 
observer as well as one of the model observers is higher in 
case of multi-slice images compared to the single-slice ones. 
The 3D CHO model observers described in literature are 
usually designed to satisfy conditions of a particular clinical 
application, often in the domain of PET [6] or SPECT 
imaging [7], rather than investigate the problem in a more 
fundamental sense. Also, these studies all refer to detection 
of a 3D signal rather than a 2D one. In clinical practice, 
however, the greater distance between slices or greater 
thickness of those often results in single slice (2D) signals. 
Usually, detection of a 2D signal is a far more difficult task 
and exactly the focus of this study.  

In this study, we propose a novel multi-slice CHO 
design motivated by the assumption that human observers 
may be more likely to examine (a certain number of) 
multiple consecutive slices of a stack with a unique signal 
matched filter in mind. This is in contrast to the literature, 
which assumes humans tuning this filter to the varying 
background information thus using a separate filter for each 
individual slice in the stack. We evaluate the design on a set 
of simulated image data and compare it to one of the state-
of-the-art models proposed by Chen et al [5]. In addition, 
we compare the two multi-slice models to a single-slice 
CHO.  

The paper is organized as follows: the next section 
summarizes the essential background information about the 
model observers. In section 3, we describe the three models 
used in this study and explain the experiment setup. The 
results are presented in section 4 and discussed in section 5. 
Finally, concluding remarks are given in section 6. 
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2. MODEL OBSERVERS 
 
We consider a binary classification task in which signal 
detection theory is determined by the two hypotheses: signal 
is present (H1) or signal is absent (H0). The observer decides 
which of the two hypotheses is true. An observer is defined 
by its discriminant function, t(g), which maps an image g to 
its test statistic, t0. The decision is made by comparing t0 to a 
certain threshold.  

The ideal observer is defined as one that has full 
knowledge of the problem in terms of the conditional 
probability density functions of image data g under each 
hypothesis, pr(g|Hi), i={0,1}. The test statistic of the ideal 
observer is defined as the likelihood ratio,  = pr(g|H1) / 
pr(g|H0). In practice, it is often complicated or impossible to 
know the probabilities required to calculate . Therefore, a 
linear approximation of the ideal observer has been defined, 
with linearity referring to its discriminant function 

  , (1)

where M is the number of pixels in the image g. The 
weights, wm, m={1,…,M}, form an image w called the 
template of the observer. Thus, (1) may be written as 

  . (2)

The ideal linear observer is known as the Hotelling observer 
(HO), and its template is defined as 

 -  . (3)

Here, -  where  denotes ensemble 
average, and Kg is the average of the ensemble covariance 
matrices of the signal-absent and signal-present data: 

 , (4)

 - - , 

 . 

When the images are Gaussian random vectors, the HO 
equals the ideal observer. However, the HO requires many 
image samples to properly estimate Kg resulting in high 
dimensionality problems.  

To overcome this difficulty, the channelized Hotelling 
observer (CHO) was defined [1]. This is a linear observer. It 
may be seen as a specialization of the HO model which 
makes use of selective channels to model the human visual 
system while reducing the dimensionality of the problem. 
The channels can be seen as M-dimensional images, uj, 
j={1,…,J} where J is the number of channels. In contrast to 
the HO where all image data is used to build the template 
wHO, the CHO model only makes use of the channel outputs, 
v=Utg, where U denotes the channel matrix, U=[u1, u2, … , 
uJ]. If we denote the ensemble covariance matrix of the 
channelized data as Kv, the template of a CHO model is 

 - . (5)

Finally, the test statistic is calculated as a linear combination 
of all channel responses, tCHO(v) = wCHO

t v.  

Commonly, to select the type of the channel and the 
channel parameters we refer to prior knowledge of the 
signal and consider the purpose of the model. In this study, 
we use two types of channels: Laguerre-Gauss (LG) 
channels [2] which are known to be efficient channels in 
case of rotationally symmetrical signals, and dense 
difference-of-Gaussian (DDOG) channels [3] which in the 
two-dimensional domain are recognized as anthropomorphic 
channels. Figure 1 illustrates the first 5 LG channels and the 
first 5 DDOG channels used in the study. 

 

 
 

 
Figure 1. Images of the channels used in the study. (a) First 5 LG 
channels, the channel width is 75. (b) First 5 DDOG channels. 
               

 
Figure 2. (a) Contrast profiles of the simulated designer nodules: 
PIR={1/4, 1/8, 1/16, 1/32}. (b) An example of images used in the 
study: signal-absent image slice. 3D CLB parameters: mean 
number of clusters K=160, mean number of blobs per cluster 
N=20, Lx=3, Ly=2, Lz=3. The image size is 256x256x64 pixels. 

3. METHODS 
 
3.1. Simulated data 

We use a total of 2200 simulated images synthesized as 3D 
clustered-lumpy backgrounds (CLB) described in [8]. The 
images are of 256x256x64 pixel size, where the number of 
slices is N=64, each slice with M=2562 pixels (Figure 2b). 

Half of the backgrounds are used as signal-absent 
images. To generate signal-present images, we insert a 2D 
designer nodule signal [4] of four different intensities 
(Figure 2a) in the central slice of the remaining half of 1100 
backgrounds. We define the peak intensity ratio (PIR) as the 
relative value of maximum gray level of the designer nodule 
compared to maximum gray level of the 3D CLB.  

The image data set is used as follows: 1000 pairs 
(hereafter called trainers) of signal-present and signal-
absent images are used as training data and 100 image pairs 
(hereafter called testers) are used as test data. 
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3.2. Design of the observer models 

We compare three different designs: a single-slice model 
and two multi-slice models. The single-slice [2] observer 
model (hereafter called M1) is a 2D CHO run on the central 
slice in the stack in which the signal is inserted. The two 
multi-slice observer models are built as a sequence of 2D 
CHO and 1D HO. The CHO is used to calculate a vector of 
metrics for each slice in the planar view, tCHO,  
 tCHO  = CHOn

t n = 1,…,N,  (6)
where N denotes the number of slices in the multi-slice 
image. The tCHO is then used by the HO to calculate the final 
scalar statistic of the model, namely 

 tM tCHO = wHO
t = KtCHO

tCHO
t
tCHO , (7) 

Nevertheless, the two models differ in how they build the 
template for the CHO. Let us denote the template matrix as 

 wCHOn = Kvn
-1 vn, n = 1,…,N. (8) 

In one case (hereafter called M2), a separate 2D CHO 
template is built for each position of the slice. For example, 
to build a template for the first slice in the stack we use only 
the first slices of the trainers. Hence, in (6) there are N 
different templates, wCHOn. This approach corresponds to the 
work of Chen et al. [5] and Gifford et al. [7].  

Alternatively, we assume that humans examine multiple 
consecutive slices of a stack with a unique signal template in 
mind. To model this, we build one 2D CHO template only 
and apply it on any slice in the tester stack, independent of 
the slice position within the stack. In view of (6) this 
translates into wCHOn = wCHO, n = 1,…,N. To estimate this 
template, only the central slices from the trainer stacks are 
used. Hereafter, we refer to this design as M3. 
 
3.3. Study design 

The study is designed to evaluate the performance of three 
model observers: M1, M2 and M3. All experiments are 
performed for both LG and DDOG type of the channels, 
while PIR={1/4, 1/8, 1/16, 1/32}. 

We employ the design of fully-crossed multiple-reader 
multiple-case (MRMC) study where each reader reads each 
case. In particular, the number of readers is Nrd=5, each 
trained with an independent set of Ntr1=200 trainers, and 
each reading the same set of testers, Nts=100.

In addition, to understand how the number of trainers 
affects the performance of the model observers, we repeat 
the experiments for Ntr2=500 and Ntr3=1000 where the 
number of readers is 2 and 1, respectively. 

As is common practice in objective image quality 
assessment [9], we use the area under the ROC curve (AUC) 
and the signal to noise ratio (SNR) as figures of merit. To 
evaluate the variability associated with the results, we use 
the one-shot variance analysis proposed in [10]. Finally, to 
evaluate the influence of the number of trainers on the 
models, we calculate the efficiency of the model observers 
relative to their performance for the highest considered 

number of trainers: i = SNRNtri
2 / SNRNtr3

2, where SNRNtri 
denotes the SNR in case of Ntri trainers, i ={1,2}. 
 

4. RESULTS 
 
For all three model designs: M1, M2, and M3, the results of 
the MRMC studies and summarized in Figure 3. The results 
are arranged based on the type of 2D CHO channels, LG or 
DDOG. We note that for M3 the AUC was either very close 
to one or one, thus the variability of AUC could not be 
calculated directly using the one-shot method. Therefore, we 
restrict the analysis of M3 to AUC and SNR metrics. In case 
of DDOG channels, at the peak signal intensity level 
corresponding to PIR=1/32, all three models demonstrate 
low performance and high variability in terms of AUC, so 
we decide not to include them in further analysis. The SNR 
values, for PIR=1/16, are in the range of 0.5 to 2 for M1 and 
M2, while for M3 they increase up to 10 or even 25 in case 
of DDOG and LG channels, respectively. 

Finally, we analyze the influence of the number of 
trainers on the observer performance. For all three designs 
and both channel types, the efficiency of models built with 
fewer trainers relative to the case with the greatest number 
of trainers used in the study is presented in Table 1. 

Table 1. Efficiencies of the model observers trained with Ntr1=200 
and Ntr2=500 relative to their performance for Ntr3=1000. For both 
channel types used in the experiments (LG, DDOG) and each of 
the three model designs (M1, M2, M3), efficiency of the model is 
calculated using the SNR measurement at PIR=1/16 (the weakest 
signal detected by both LG and DDOG based models). 

Ntr 
Channel type: LG Channel type: DDOG 

M1 M2 M3 M1 M2 M3 

200 87% 78% 81% 95% 39% 41%
500 96% >100% 99% >100% 64% 55% 

 
5. DISCUSSION 

 
In order to compare different CHO designs, we examine 
model performance on the basis of three factors: signal 
intensity, type of 2D CHO channels, and number of trainers. 

To evaluate the aspect of signal intensity, we refer to 
Figure 3. Overall, we notice that M1 and M2 follow 
approximately similar trends while M3 is nearly not affected 
by the selected levels of peak signal intensities. With current 
statistical properties of the backgrounds and signals, the 
detection performance of all three models degrades 
significantly as the signal intensity is further decreased. In 
terms of the variability, we observe lower performance of 
M1 compared to M2. Comparing single-slice model (M1) to 
the multi-slice ones (M2, M3), we notice that M1 performs 
below the other two designs in terms of AUC averaged over 
readers. These observations are expected since the single-
slice model is only using the limited amount of available 
data comprised in the central slices of the stacks.  

More interestingly, we make a comparison between the 
two multi-slice models, M2 and M3. In terms of AUC 

1783



values, and even more notably the SNR values, the initial 
results from this study demonstrate considerably higher 
performance of M3 compared to M2. 

Next, we compare the model designs based on the type 
of 2D CHO channels. The results suggest that the relative 
observed rankings between M1, M2 and M3 are well 
preserved for both LG and DDOG channels. In view of the 
absolute performance measurements, the LG channels 
slightly outperform the DDOG ones. This corresponds well 
to the theory and earlier reported results in literature [3]. 

Finally, the third aspect of interest in this study is the 
degree of influence of the number of trainers on the model 
observer performance. This criterion is of exceptional 
importance for real data studies where the number of 
relevant clinical samples is usually very limited. Table 1 
compares the efficiencies of the models relative to the case 
with the greatest number of trainers considered in this study, 
Ntr=1000. Here we point out that for some models the 
performance for Ntr=500 seems to surpass the one for 
Ntr=1000 (  >100%) which indicates that in these cases the 
number Ntr=1000 of trainers is probably still too small for 
high confidence statistical analysis of the results. We notice 
that the influence is less significant for the single-slice 
model compared to the multi-slice ones, and here DDOG 
channels exhibit slightly lower dependency. In case of the 
multi-slice observer, the dependency on Ntr is much 
stronger in the case of DDOG channels for both M2 and M3 
designs. 
 

 

Figure 3. Average AUC of the three model observer designs: M1, 
M2 and M3. Number of readers in MRMC study Nrd=5, number of 
trainer image pairs per reader Ntr=200, and number of tester pairs 
Nts=100. Error bars are ± 2 standard deviations estimated by the 
"one-shot" method. (a) 2D channels are 10 LG channels with 
channel parameter a=75; PIR={1/4,1/8,1/16,1/32}. (b) 2D channels 
are 10 DDOG channels; PIR={1/4,1/8,1/16}. 

6. CONCLUSIONS 
 
To summarize, our results for all three criteria suggest that 
in the case of 2D signal detection in multi-slice images 
where the signal location is known, the new M3 model 
clearly outperforms M2. As explained above, the design of 
model M3 is motivated by our assumption that humans may 
be more likely to observe multiple consecutive slices in a 
stack with the same 'template of a signal' instead of 
changing this 'template' from one slice to another. This 
would particularly apply for high speed of stack-mode 
image browsing. However, assuming that our initial 
assumption is true (based on our experimental data), it may 
be of interest for future research to determine the number of 
consecutive slices for which the same 'template' can be used 
and how this is affected by the image content and the signal.  
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