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1. Introduction. Let Q(z) be an analytic function of the complex variable z

in a domain. In the following we shall be concerned with the differential equa-

tion

(1) — + Q(z) W = 0 .
dz2

Only those solutions W ( z ) of (1) which are distinct from the trivial solution

( Ξ O ) shall be considered.

For a real-valued continuous solution y(x) 4 0 of the differential equation

d2y
(2) _ ! + f{χ) y = 0,

dx2

where f(x) is a real-valued piecewise continuous function of the real variable

x for 0 < x < oo, N. Levinson [l] has shown that the rapidity with which γ{x)

can grow, and the rapidity with which it can tend to zero, both depend on the

growth of GC(Λ ), where

(3) α U ) = fQ

X I / U ) -a\ dx,

and a is a real positive constant. More precisely, he showed that

(4) y U ) = θ ί e x p | - a~ι/2 OL(x)\j,

a n d t h a t if 0i{x) - 0{x) a s x — > oo, t h e n

( 5 ) l i r a s u p | v ( x ) | e x p — a~ι/2 O L { X ) \ > 0 .
x -* oc ' L 2 J

If there exists a positive constant a such that <X(x) converges as x—> oo, then
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from (4) it follows that every solution y (x) of (2) is bounded as x—>oo. Levinson

also showed that (4) and (5) are the best possible results of their types*

Along any line of the z-plane, for instance the real axis, the differential

equation (1) has the form

d2W
(6) + Q{χ) W = 0 ,

dx

where x is real. Along a line, the growth of the solutions W (x) of (6) also

depends on the growth of a function similar to that in (3), and they also sεitisfy

two relations like (4) and (5)* These relations will be established in §2. From

these results, we can obtain sufficient conditions for the boundedness of the

solutions of (1) on a line, or on certain regions of the z-plane.

In §3 we shall investigate the asymptotic behavior of the solutions of (6)

when they are bounded. In §6 we shall give a relation of the boundedness of

the solutions of a self-adjoint differential equation of the third order and a dif-

ferential equation of the second order*

2. Growth of the solutions along the real axis. We now consider equation (6)

w h e r e x i s r e a l . L e t qx (x) and q2 (x) b e , r e s p e c t i v e l y , t h e r e a l and i m a g i n a r y

p a r t s of Q(x). If

( 7 ) φ ( x ) = fQ

X l \ a - q χ ( x ) \ + \ q 2 ( x ) \ ] d x ,

where a is a positive constant, then φ{x) determines not only how large a

solution ΪF(Λ ) of (6) can become, but also determines how small it can become.

These results are contained in the following two theorems.

THEOREM 1. / /

(a) W(x) is a solution of (6),

(b) φ(x) is defined as in (7),

then

(8) W(x) = () ' Λ ™ ' — - ~ 1 / 2 ^ ί v J l Ί / ' ί v 1 ! _ n L v . L . "1/2- α~1/2 φ(x)}\ W\x) = 0 ίexp [- α

An immediate consequence of this theorem is the following corollary.

COROLLARY 1.1. Every solution W(x) of the equation (6) and its derivative

W (x) are bounded as x —> co provided there exists a positive constant a such

that φ{x) converges as x —> co.

In Theorem 1 we cannot expect to replace φ(x) by a more symmetric form
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/ [\a - q ι ( x ) \ + | i - q 2 ( x ) \ ] d x ,

where 6 ^ 0 and is real, and a > 0. A counter-example is the differential equation

d2W
— T + ( l + ί) W = o,

ax

which has solutions unbounded as x—> oo.

THEOREM 2. / /

(a) W (x) is a solution of (6) ,

(b) φ(x) = 0{x) as x —> oo, where φ(x) is defined as in (7),

then

(9) lim sup \W(x)\ exp — a~ι/2 φ{x)\ > 0 .
x-* °° L2 J

C l e a r l y lim s u p | I F ( Λ ; ) | > 0 a s %—> oo if φ {x) i s convergent .

T h a t (8) and (9) are the b e s t p o s s i b l e r e s u l t s follows from the fact t h a t (4)

a n d (5) are the b e s t p o s s i b l e r e s u l t s .

We sha l l now prove Theorem 1 and 2.

Proof of Theorem 1. L e t the r e a l and imaginary p a r t s of a s o l u t i o n W (x) of

(6) be u{x) and v(x)9 r e s p e c t i v e l y . Separa t ing the rea l and imaginary part of

(6), we obta in

(10) M " + q γ ( x ) u - q 2 ( x ) v = 0 ,

(11) υ" + q2ix) u + qχ{x) v = 0 .

Suppose a > 0, and let

(12) H ( x ) = \ W ' { x ) \ 2 + a \ W { x ) \ 2 = u ' 2 ( x ) + v ' 2 { x ) + a [ u 2 { x ) + i ; 2 ( Λ ) ] .

Then using (10) and (11), we have

iτj

(13) = 2(M'M / / + t ' i ;") + 2a(uu' + υv')

dx

= 2 [α - ςrL (Λ; ) ] ( M M ' + vv') + 2q2(x) {u'v - uυ') .

Using the following inequalities,

2uW < a~ί/2{au2 + u ' 2 ) , 2 w < α ~ 1 / 2 ( α ί ; 2 + V2 ) ,
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2u'v <a~ϊ/2(u'2 +aυ2), 2uV < α " 1 / 2 ( v'2 + au2),

and (13), we see that

( 1 4 ) — < a~ι/2[\a - q ( x ) \ + \ q Λ x ) \ \ U ' 2 + V2 + au2 + a v 2 )
d x

= α " 1 / 2 ( | α - q ι ( x ) \ + \ q 2 ( x ) \ ) U.

Since // > 0, we have

Integrating (15) from 0 to x9 we obtain

(16) tl(x) < / / ( 0 ) e x p [ α " 1 / 2 φ(x)].

In view of the definition of H{x)9 the expression in (6) is equivalent to the two

in (8). This completes the proof of Theorem 1.

Proof of Theorem 2. In nuch the same way as in the proof of Theorem 1, it

is easy to show that

I — > - β " 1 / 2 [ | α - 9 ι ( x ) | + I < 7 2 U ) | ]
// dx

Consequently, we have

(17) H ( x ) = \ W ' ( x ) \ 2 + a \ W ( x ) \ 2 > C e x p [ - α " ι / 2 φ { x ) ] .

For each positive integer n, let xn> x^, x" be points in the interval n < x < n + 1

such that

I y'( # Λ ) I = max | ^ ( x ) | , I u'(x^) \ = min | z / ' ( % ) | , l ^ ' ί ^ ' ) ! = min | v'( x) \

in the interval n < x < n + 1. Integrating (10) from x^ to xn and (11) from x'ή to

xn, we obtain

n n Jχ^ I 2

< | u ' ( % ' ) | + I I^ 'CΛ;^ ) I f n ( \ q Λ χ ) \ + | ^ ( ^ ) | ) d x 9

( 1 9 ) υ>{xn) = v'(xp + /«" V-qΛx) u(x) - qAx) v(x)] dx
xn
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Since

\ W ' { x Λ ) \ < \ u ' { x H ) \ + \ v ' { x n ) \ ,

(18) and (19) yield

(20) \w(xn)\ < \w{x'n)\ + | ι W * ; ' ) |

+ 2\W(χn)\ fn

n+l ί\qι(χ)\ + \q2ix)\] dx.

Clearly either | u'(x' ) | = 0 or u'(x) does not change sign in n < x < n + 1. If

u'(x) does not change sign in n < x < n + 1, we have

(21) 2 max | n ( * ) | > \u(n + 1) - α ( n ) | = | / ^ + l u'(x) dx\ > \u'{x')\ .
n±x±n+ι n

Obviously (21) holds if | u'{x^) \ = 0. So (21) is always true. Hence

(22) 2\W(xn)\>2 max | u(x) | > | u'{x') | .
n <_ x £ n+ l

Similarly,

(23) 2 | 3 P U n ) | > | » ' ( < ) | .

Substitution of (22) and (23) into (20) yields

(24) \ V ' ( x n ) \ < \ W { x n ) \ 1 4 + 2 j Γ ^ ' t l ^ ί * ) ! + \ q 2 ( x ) \ ] d x l

Frora (17) and (24), we obtain

(25) \ W ( x n ) \ 2 ί ( 4 + 2 / Λ + 1 [ | ? . ( * ) | + \ q Λ x ) \ ) d x \ 2 + a ϊ

> C e x p [ - c Γ 1 / 2 φ{χn)].

Since φ( x) = O(x) asrc —> oo, it is easy to show that, for an infinite number oί

n,

/ π + 1 U ^ U ) ! + k 2 ( * ) | ] dx

is bounded. Thus for an infinite number of n, we have the inequality

(26) \W(xn)\2 e x p [ α " ι / 2 φ(xn)] > C,

for some positive constant Cx. Consequently (26) yields the result
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lim sup \W{x)\ exp — α " ι / 2 φ{x)\ > 0 .
x -*oc L 2 J

This completes the proof of Theorem 2.

3. Asymptotic behavior of the solutions. If φ(x) converges as x —> oo, the

solutions W(x) of (6) are not only bounded, but also resemble the solutions of

the differential equation

d2 w
(27) -t aW = 0 .

dx2

This result is proved in the following theorem.

T H E O R E M 3. //

(a) W (x ) is a solution of (6),

(b) φ(x), defined as in (7), converges as x—> oo,

then for some complex constants A and By

(28) l i m [ W ( x ) - {A s i n y j ϋ x + B c o s v ^ x ) } - U .
% —»ofc

Proof of Theorem 3 . L e t y {x) a n d γ^ (x) be two l i n e a r l y i n d e p e n d e n t s o -

l u t i o n s of the e q u a t i o n (27.) s u c h t h a t

(29) y^O) = 0, y i ' ( 0 ) = , l ; y i ( 0 ) = l , y 2 ' ( 0 ) = 0 .

Rewrite (6) in the form

d'2W
(30) + aW = \a-Q(x)] W.

dx2

T h e n a s o l u t i o n W (x) of (30) c a n be e x p r e s s e d a s

(31) W ( x ) = A 7 ι ( x ) + B y 2 ( x )

+ f~ [a- Q{t)} W ( t ) [ y 2 { x ) Y ι i t ) - Y ι ( x ) γ 2 ( t ) } d t

for some complex constants A and ii, where the integral is convergent since

φ{x) is convergent, W{x) is bounded, and

yίix) = α ~ l / 2 sin \[~a x, y2(x) = cos yf~ά x

(31) can be obtained by the method of variation of constants. Hence the absolute

value of the integral in (31) can be arbitrarily small if x is large enough. In other
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words,

lim {W(x) - [A yΛx) + B yΛx)]\ = 0.

X —» OO

This completes the proof.

Differentiating (31) clearly yields

l i m IW'(x) - [A v ' U ) + B y'(x)]\ = 0 .
X -»oo

4. Boundedness of the solutions in certain regions. In this section we shall

apply the results of Theorem 1 to obtain sufficient conditions for the bounded-

ness of the solutions of the equation (1) in certain regions of the z-plane.

Let R be the region

(32) z = x + iy, 0 < Λ; < oo, α < γ < β.

On a half line L(yQ ), z = x + iy , in R, the differential equation (1) becomes

d2W

(33) + Q(x + iyQ) W = 0 .
dx2

Denoting the real and imaginary part of Q(x + iy ) by ςr {x, y ) and q {x, y ) ,

respectively, we see that according to Theorem 1, the growth of a solution W(x)

of (1) on L (y ) depends on the growth of

(34) Φ(χ,yo) = fo

xί\a - ? 1 U , y 0 ) | + k 2 U y 0 ) | ] ώ ,

where a is a positive constant. If φ{x, y ) is convergent for some positive

constant α, then W {z) and W'(z) are bounded on L (yQ), and

l i m [W{x + iy ) - (A s i n \fa x + B c o s > / α x ) ] = 0
% - » o o

for some complex constants /4 and B. Let

(35) Φ U , y 0 ) = f X \ a - Q ( x + i y o ) \ d x .

Clearly the convergence of Φ{x9 y ) implies the convergence of φ{x, y ). Let

Φ(x, yQ ) be uniformly bounded in R in the sense that for each yQ ((X < yQ < β),

there exists a positive constant a such that sup a is finite and inf a is positive,

and Φ(x, yQ ) < /¥, M being some constant, for all x in 0 < x < oo and all yQ in
α < 7 < β; then by applying (16) on each L (y ), it is easy to see that W(z)

and W'(z) are bounded in R. If the condition that sup a is finite is removed,
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c l e a r l y we s t i l l h a v e W (z) bounded in R. T h i s p r o v e s the fol lowing t h e o r e m .

THEOREM 4. //

(a) R is a region defined as in (32),

(b) Φ(x, y ), defined as in (35), is uniformly bounded in R in the sense

defined above,

then each solution W(z) of (1) and its derivative W'(z) are bounded in R.

Consider another region /?,

(36) z = x + reiθ° , 0 < r < oo, α < x < β,

where θ0 is a real constant. On a half line L (x0 ), z = x0 + r exp (iθ0 ), in

R, the equation (1) reduces to

d2W
(37) + P(r,x0) W = 0 ,

dr2

w h e r e P(r9x0) = Q[xQ + r e x p (iθΌ)] e x p (2iθ0).

THEOREM 5. //

(a) R is a region defined as in (36),

(b) for each x0, (X < x0 < β, there exists a positive constant a such that

sup a is finite and inf a is positive and

f j \a - P ( r , x o ) \ dr <M,

M being some constant, for all r in 0 < r < oo and all x0 in (X < x < β ,

then each solution W (z) of (1) and its derivative W'{z) are bounded in R.

The proofs of this theorem and of the following Theorem 6 are similar to

that of Theorem 4.

Denote by S the sector

(38) z = reiθ, 0 < r < o o , a < θ < β.

On a fixed ray 0 - θ0 in S, equation (1) reduces to

(39) — + T(r,θ0) W = 0 ,
dr

where Γ ( r , 0O ) = Q(r exp(iθ0)) exp ( 2 £ 0 O ) . We have the following result .
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T H E O R E M 6. / /

(a) S is a region defined as in (38),

(b) for each ΘQ9 CC < θ0 < β, there exists a positive constant a such that

sup a is finite and inf a is positive and

f r \ a - Γ ( r , θ o ) \ dr < hi,

M being some constant, for all r in 0 < r < GO and all θ0 in Gί < 0 < β ,

then each solution W (z) of (1) and its derivative W'{z) are bounded in S.

5. Extension. Let C be an analytic curve [ 2, p. 702]

(40) x =-- f i t ) , y = g i t ) ,

where t is real. Along C the equation (1) has the form

d2 W AW

(41) - — + A ( t ) d± + B ( t ) IΓ = 0 .
dt2 dt

It is well known that equation (41) can be reduced to the form of (6). It follows

that our results apply to the solutions along a line or in regions bounded by

lines as well as to the solutions along an analytic curve or in regions bounded

by analytic curves.

6. A self-adjoint differential equation of the third order. Let Y (z) be a

solution of the self-adjoint differential equation

d2 Y dY 1 dQiz)
(42) + Qiz) — + « Y = 0 ,

^ 3 dz 2 dz

where Qiz) is analytic in a region R. Let If' ( z ) be a solution of

d2Ψ 1
(43) + - Q(z) W = 0 .

dz2 4

In Theorem 7 we shall prove that every solution Y ( z ) of (42) i s bounded in R

if and only if every solution Ψ/iz) of (43) is bounded in R. In fact the growth

of the solutions of (43) determines and is determined by the growth of the so-

lutions of (42).

THEOREM 7. Every solution Y(z) of (42) is bounded in R if and only if

every solution W ( z ) of (43) is bounded in R.

Proof. L e t Wtiz) and W2iz) be a n y t w o l i n e a r l y i n d e p e n d e n t s o l u t i o n s of
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( 4 3 ) . T h e t h e o r e m f o l l o w s from t h e f a c t t h a t W2

ι(z)f Wi{z) W2(z) a n d W2 ( z )

a r e t h r e e l i n e a r l y i n d e p e n d e n t s o l u t i o n s of ( 4 2 ) . T h a t W\{z), W{ (z) W2 (z ) a n d

ψ\(z) a r e s o l u t i o n s of ( 4 2 ) c a n b e v e r i f i e d b y s u b s t i t u t i o n . We n o w s h o w t h a t

t h e y a r e l i n e a r l y i n d e p e n d e n t . If A, B, C a r e c o n s t a n t s , a n d if

( 4 4 ) AW^iz) + BWι(z)W2(z) + CW2

2{z) Ξ 0 ,

then by factoring (44) we get

(45) [AWχ { z ) + b W 2 ( z ) ] ί c W i ( z ) + dW2 U ) ] = 0 ,

where α, 6, c and d depend on A9 B and C. Hence at least on the factors in (45)

iβ identically zero. It follows that either α = 6 = 0 o r c = ί / = 0. Consequently

A = B = C = 0. This completes the proof.

7. Added in proof. With the aid of the Phragme"n-Lindelόf theorems [ see 3],

the results o! § 4 can he greatly improved.

For example, let R be the region defined as in (32), with β - 0ί = πh~ι. Let

there be a positive constant a such that as x —> 00,

(46) φix,y) = O(ekx),

where k < h, uniformly for y in α < βf and that

(47) φ(x, 0C) = O ( l ) , 0 U , β ) = O Q ) .

Then, by Corollary 1.1, any solution W(z) ot ( 1 ) is bounded o n L ( α ) and on

L (β), fcind so is bounded on these l ines and on the segment x = 0 in R. From

( 4 6 ) and Theorem 1, we have

W(z) = 0{eMekX)

uniformly in y, where M i s some positive constant. By a theorem of Phragmen-

Lindelόf, W(z) i s then bounded in R. Similarly W'{z) is bounded in R.

U s i n g Theorem 3, from ( 4 7 ) , we see that

(48) W(z) - (Ax sin ai/2 z + Bx cos α 1 / 2 z)

tends to zero as z —» 00 on L ( OL ) for some constants Aί and S 1 # Similarly ( 4 8 )

tends to zero on L ( β ) if A x and B ι are replaced, respectively, by some con-

s t a n t s A2 and B2. Write

Fi(z) = Aι sin α 1 / 2 2 + β, cos α 1 / 2 2 , ( i = 1, 2 ) .
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Then

[ W ( z ) - f \ ( z ) } [ W { z ) - F 2 ( z ) ]

tends to zero as z —> oo on L ( α ) and on L (β ); and since it is bounded in il9

by another theorem of Phragmen-Lindelδf, it tends uniformly to zero as z —> oo.

Thus to any 6 there corresponds a segment z = x0 + iγ in R on which

(49) \ W ( z ) - F^z)] \ W ( z ) - F 2 ( z ) | < € .

At every point of this segment either

\ W ( z ) - F ι ( z ) \ < e1'2 o r \ W { z ) - F 2 ( z ) \ < e 1 / 2 ( o r b o t h ) ,

and we may suppose that the former inequality holds at γ — (X, the latter at y =

β; let y0 be the upper bound of values of y for which the former holds; then yQ

is either a point where the latter holds, or a limit of such points; hence, since

both factors on the left side of (49) are continuous, both inequalities hold at

y 0. At z — xQ + iy0, we then have

(50) \ F x ( z ) ~ F 2 ( z ) \ < \ W ( z ) - F x ( z ) \ f \ W ( z ) - F 2 ( z ) \ < 2 e i / 2 .

On the other hand, (49) holds on every segment z - %γ + iy if xγ is large enough,

and there is a point z = xί + iyx at which (50) holds. Consider an arbitary seg-

ment z — x2 + iy Since Fι (z ) — F2 ( z ) is a periodic function in x9 there is a

point on this segment at which (50) holds. But Fι(z) — F2(z) is continuous

and 6 is arbitary, so that Fι ( z ) - F2 ( z ) = 0 at some point on this segment, and

therefore on every segment. If these points have a limit-point inside l{ , then

Fι(z)-F2(z) in R; otherwise there is a segment on y = α or y = β in which

F l ( z ) - F 2 { z ) = 0 9 t h e n A x = A 2 , B x = B 2 , a n d h e n c e F x { z ) = F 2 ( z ) i n R .

Thus as z—> oo the function (48) tends to zero on L ( Cί ) and on L(/3), and

since it is bounded in /?, by a theorem of Phragmen-Lindelδf, it tends to zero

uniformly in α < y < β .

Similarly, as z —> oo, we see that

W'(z) - ai/2(Λί c o s α 1 / 2 z - Bx sin aί/2 z)

tends to zero uniformly in Ot < y < β .
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