J-GROUPS OF SUSPENSIONS OF STUNTED LENS SPACES MOD 4

Dedicated to Professor Shôrô Araki on his 60th birthday

Susumu KÔNO and Akie TAMAMURA

(Received August 5, 1988)

1. Introduction

Let $L^{n}(q)=S^{2 n+1} / Z_{q}$ be the $(2 n+1)$-dimensional standard lens space $\bmod q$. As difined in [7], we set

$$
\begin{align*}
& L_{q}^{2 n+1}=L^{n}(q), \\
& L_{q}^{2 n}=\left\{\left[z_{0}, \cdots, z_{n}\right] \in L^{n}(q) \mid z_{n} \text { is real } \geqq 0\right\} \tag{1.1}
\end{align*}
$$

In the previous paper [15], we determined the $K O$-groups $\widetilde{K O}\left(S^{j}\left(L_{q}^{m} / L_{q}^{n}\right)\right)$ of the suspensions of the stunted lens spacs L_{q}^{m} / L_{q}^{n} for $j \equiv 1(\bmod 2)$. For primes p, the J-groups $\widetilde{J}\left(S^{j}\left(L_{p}^{m} \mid L_{p}^{n}\right)\right.$) have been determined (cf. [11] for $p=2$ and [12] for odd primes p). The purpose of this paper is to determine the $K O$ - and J-groups of suspensions of stunted lens spaces mod 4.

This paper is organized as follows. In section 2 we state the main theorems: the structures of $\tilde{J}\left(S^{j}\left(L_{2 q}^{m} / L_{2 q}^{n}\right)\right)$ for $j \equiv 1(\bmod 2)$ are given in Theorem 1 , the proof of which is similar to that for the case $q=1$ (cf. [11]) and omitted, the structures of $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ and $\widetilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ for $j \equiv 0(\bmod 2)$ are given in Theorems 2 and 3 respectively. In section 3 we prepare some lemmas and recall known results in [8], [10] and [13]. By virtue of the results in [8], the proofs of Theorem 2 and 3 for the case $j \equiv 0(\bmod 4)$ are given in section 4. Applying the method used in the corresponding parts of [8], we prove Theorems 2 and 3 for the case $j \equiv 2(\bmod 4)$ in the final section.

The authors would like to express their gratitude to Professor T. Kobayashi and Professor H. Ōshima for helpful suggestions.

2. Satement of results

Let $\nu_{p}(s)$ denote the exponent of the prime p in the prime power decomposition of s, and $\mathfrak{m}(s)$ the function defined on positive integers as follows (cf. [3]):

$$
\nu_{p}(\mathfrak{m}(s))= \begin{cases}0 & (p \neq 2 \text { and } s \equiv 0(\bmod (p-1))) \\ 1+\nu_{p}(s) & (p \neq 2 \text { and } s \equiv 0(\bmod (p-1))) \\ 1 & (p=2 \text { and } s \equiv 0(\bmod 2)) \\ 2+\nu_{2}(s) & (p=2 \text { and } s \equiv 0(\bmod 2))\end{cases}
$$

Let \boldsymbol{Z} / k denote the cyclic group $\boldsymbol{Z} \mid k \boldsymbol{Z}$ of order k. For an integer $n, A(n)$ denotes the group defined by

$$
A(n)= \begin{cases}\boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (n \equiv 0(\bmod 8)) \tag{2.1}\\ \boldsymbol{Z} / 2 & (n \equiv 1 \operatorname{or} 7(\bmod 8)) \\ 0 & (\text { otherwise })\end{cases}
$$

If $j \equiv 1(\bmod 2)$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{2 q}^{m} / L_{2 q}^{n}\right)\right) \cong \widetilde{K O}\left(S^{j}(R P(m) / R P(n))\right)
$$

(cf. [15, Remark 4]), and the proof of the following theorem is similar to that for the corresponding part of the theorem in [11].

Theorem 1. Let q, j, m and n be non-negative integers with $q \geqq 1$ and $m \geqq n+2$.
(1) If $j \equiv 1(\bmod 4)$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{2 q}^{m} / L_{2 q}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / \mathfrak{m}((m+j) / 2) \oplus A(n+j) & (m \equiv 3(\bmod 4)) \\ A(n+j) & (\text { otherwise })\end{cases}
$$

(2) If $j \equiv 3(\bmod 4)$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{2 q}^{m} / L_{2 q}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / \mathfrak{m}((m+j) / 2) & (m \equiv 1(\bmod 4)) \\ \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (m+j \equiv 2(\bmod 8)) \\ \boldsymbol{Z} / 2 & (m+j \equiv 1 \text { or } 3(\bmod 8)) \\ 0 & (\text { otherwise }) .\end{cases}
$$

Remark. (1) In the case $m=n+1, S^{j}\left(L_{q}^{n+1} / L_{q}^{n}\right)$ is homeomorphic to the sphere S^{n+j+1}, and J-groups of the spheres are well-known:

$$
\tilde{J}\left(S^{k}\right) \cong \begin{cases}\boldsymbol{Z} / \mathfrak{m}(k / 2) & (k \equiv 0(\bmod 4)) \\ \boldsymbol{Z} / 2 & (k \equiv 1 \text { or } 2(\bmod 8)) \\ 0 & (\text { otherwise })\end{cases}
$$

(2) If $j \equiv 1(\bmod 2)$, then the above theorem and [11] imply

$$
\widetilde{J}\left(S^{j}\left(L_{2 q}^{m} / L_{2 q}^{n}\right)\right) \cong \tilde{J}\left(S^{j}(R P(m) / R P(n))\right)
$$

for any q.
In order to state the next theorem, we prepare functions h_{1}, h_{2}, a_{1} and b_{1} defined by

$$
\begin{align*}
& \left\{\begin{array}{l}
h_{1}(n)=[n / 4]+[(n+7) / 8]+[(n+4) / 8] \\
h_{2}(n)=[n / 8]+[(n+6) / 8] .
\end{array}\right. \tag{2.2}\\
& \left\{\begin{array}{l}
a_{1}(m, n)=h_{1}(m)-[(n+1) / 4]-[(n+1) / 8]-[(n+6) / 8] \\
b_{1}(m, n)=h_{2}(m)-[(n+7) / 8]-[(n+5) / 8] .
\end{array}\right. \tag{2.3}
\end{align*}
$$

We denote the direct sum $\boldsymbol{Z} / n_{1} \oplus \cdots \oplus \boldsymbol{Z} / n_{i}$ by $\left(n_{1}, \cdots, n_{i}\right)$, and \boldsymbol{Z} by (∞).
Theorem 2. Let j, m and n be non-negative integers with $m>n$.
(1) Suppose $j \equiv 0(\bmod 4)$.
i) If $n \neq 3(\bmod 4)$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 2^{a_{1}(m+j, n+j)} \oplus \boldsymbol{Z} / 2^{b_{1}(m+j, n+j)} & \left(b_{1}(m+j, n+j) \geqq 0\right) \\ 0 & \left(b_{1}(m+j, n+j)<0\right)\end{cases}
$$

ii) If $n \equiv 3(\bmod 4)$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} \oplus \boldsymbol{Z} / 2^{a_{1}(m+j, n+j)} \oplus \boldsymbol{Z} / 2^{b_{1}(m+j, n+j)} & \left(b_{1}(m+j, n+j) \geqq 0\right) \\ \boldsymbol{Z} & \left(b_{1}(m+j, n+j)<0\right)\end{cases}
$$

(2) Suppose $j \equiv 2(\bmod 4)$.
i) If $m \geqq n+9$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \boldsymbol{Z} / 2^{[(m+j) / 4]-[(n+j+1) / 4]} \oplus A(m+j-1) \oplus B(n+j),
$$

where $A(m)$ is the group difined by (2.1), and $B(n)$ is the group defined by

$$
B(n)= \begin{cases}\boldsymbol{Z} & (n \equiv 3(\bmod 4)) \\ \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (n \equiv 1(\bmod 8)) \\ \boldsymbol{Z} / 2 & (n \equiv 0 \operatorname{or} 2(\bmod 8)) \\ 0 & (\text { otherwise })\end{cases}
$$

ii) If $n+8 \geqq m>n$, then the groups $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ are isomorphic to the corresponding groups in the following table:

$n+j(\bmod 8)$	1	2	3	4	5	6	7	8
0	(2)	$(2,2)$	(2)	$(2,2)$	$(2,2)$	$(2,2)$	$(2,2)$	$(4,2,2)$
1	(2)	(2)	$(4,2)$	$(4,2)$	$(4,2)$	$(4,2)$	$(4,4,2)$	$(4,4,2,2)$
2	0	(4)	(4)	(4)	(4)	$(4,4)$	$(4,4,2)$	$(4,2,2)$
3	(∞)	(∞)	(∞)	(∞)	$(\infty, 4)$	$(\infty, 4,2)$	$(\infty, 2,2)$	$(\infty, 2)$
4	0	0	0	(4)	$(4,2)$	$(2,2)$	(2)	(4)
5	0	0	(4)	$(4,2)$	$(2,2)$	(2)	(4)	(4)
6	0	(4)	$(4,2)$	$(2,2)$	(2)	(4)	(4)	(4)
7	(∞)	$(\infty, 2)$	$(\infty, 2)$	(∞)	$(\infty, 2)$	$(\infty, 2)$	$(\infty, 2)$	$(\infty, 2)$

Remark. (1) Combining this theorem with [15, Theorem 2], we obtain the complete results for the groups $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{\eta}\right)\right)$.
(2) The partial results for the case $n=0$ of this theorem have been obtained in [8].

In order to state the next theorem, we set

$$
\begin{cases}a(j, m, n) & = \begin{cases}a_{1}(m, n) & (j=0) \\ \min \left\{\nu_{2}(j)+1, a_{1}(m+j, n+j)\right\} & (j>0)\end{cases} \tag{2.4}\\ b(j, m, n)= \begin{cases}b_{1}(m, n) & (j=0) \\ \min \left\{\nu_{2}(j)+1, b_{1}(m+j, n+j)\right\} & (j>0)\end{cases} \end{cases}
$$

Main result is the following theorem.
Theorem 3. Let j, m and n be non-negative integers with $m>n$.
(1) Suppose $j \equiv 0(\bmod 4)$.
i) If $n \neq 3(\bmod 4)$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / 2^{a(j, m, n)} \oplus \boldsymbol{Z} / 2^{b(j, m, n)} & (b(j, m, n) \geqq 0) \\ 0 & (b(j, m, n)<0)\end{cases}
$$

ii) In the case $n \equiv 3(\bmod 4)$, we have

$$
\widetilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \begin{cases}\boldsymbol{Z} / \mathfrak{m}((n+j+1) / 2) \cdot 2^{c} \oplus \boldsymbol{Z} / 2^{d+i} \oplus \boldsymbol{Z} / 2^{k} & (b(j, m, n) \geqq 0) \\ \boldsymbol{Z} / \mathfrak{m}((n+j+1) / 2) & (b(j, m, n)<0)\end{cases}
$$

where i, k, c and d are integers defined by

$$
\begin{cases}i & = \begin{cases}\min \left\{\nu_{2}(n+1)-1, a(j, m, n)\right\} & (n+j \equiv 7(\bmod 8)) \\ \min \left\{\nu_{2}(n+1), a(j, m, n)\right\} & (n+j \equiv 3(\bmod 8))\end{cases} \tag{2.5}\\ k=\min \left\{\nu_{2}(n+1)-1, b(j, m, n)\right\} \\ c=\max \{a(j, m, n)-i, b(j, m, n)-k\} \\ d=\min \{a(j, m, n)-i, b(j, m, n)-k\}\end{cases}
$$

(2) Suppose $j \equiv 2(\bmod 4)$.
i) If $m \geqq n+9$, then we have

$$
\tilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong A(m+j-1) \oplus C(n+j),
$$

where $A(m)$ is the group defined by (2.1), and $C(n)$ is the group defined by

$$
C(n)= \begin{cases}\boldsymbol{Z} / 2 \mathfrak{m}((n+1) / 2) \oplus \boldsymbol{Z} / 2 & (n \equiv 3(\bmod 4)) \\ \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (n \equiv 1(\bmod 8)) \\ \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2 & (n \equiv 0 \text { or } 2(\bmod 8)) \\ \boldsymbol{Z} / 4 & (\text { otherwise }) .\end{cases}
$$

ii) If $n+8 \geqq m>n$, then the groups $J\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ are isomorphic to the corresponding groups in the following table, where M denotes the integer $\mathfrak{m}((n+j+1) / 2)$:

$n+j(\bmod 8)$	1	2	3	4	5	6	7	8
0	(2)	$(2,2)$	(2)	$(2,2)$	$(2,2)$	$(2,2)$	$(2,2)$	$(4,2,2)$
1	(2)	(2)	$(4,2)$	$(4,2)$	$(4,2)$	$(4,2)$	$(4,4,2)$	$(4,4,2,2)$
2	0	(4)	(4)	(4)	(4)	$(4,4)$	$(4,4,2)$	$(4,2,2)$
3	(M)	(M)	(M)	(M)	$(M, 4)$	$(M, 4,2)$	$(M, 2,2)$	$(M, 2)$
4	0	0	0	(4)	$(4,2)$	$(2,2)$	(2)	(4)
5	0	0	(4)	$(4,2)$	$(2,2)$	(2)	(4)	(4)
6	0	(4)	$(4,2)$	$(2,2)$	(2)	(4)	(4)	(4)
7	(M)	$(M, 2)$	$(M, 2)$	(M)	$(M, 2)$	$(M, 2)$	$(M, 2)$	$(M, 2)$

Remark. (1) Combining this theorem with Theorem 1, we obtain the complete results for the groups $\widetilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$.
(2) The partial results for the case $j=n=0$ of this theorem have been obtained in [9].

3. Preliminaries

In this section we prepare some lemmas and recall known results which are needed to prove Theorems 2 and 3.

Lemma 3.1. Let j be a positive integer with $j \equiv 0(\bmod 2)$ and k be an odd integer. Then we have

$$
k^{j}-1 \equiv\left(k^{2}-1\right)(j / 2) \quad\left(\bmod 2^{\nu_{2}(j)+4}\right) .
$$

Proof. Since $k^{2} \equiv 1(\bmod 8)$, we have

$$
\begin{aligned}
k^{j}-1 & =\left(k^{2}-1\right)\left(\left(k^{2}\right)^{(j / 2)-1}+\left(k^{2}\right)^{(j / 2)-2}+\cdots+1\right) \\
& \equiv\left(k^{2}-1\right)(j / 2) \quad\left(\bmod 2^{6}\right) .
\end{aligned}
$$

This proves the lemma for the case $\nu_{2}(j)=1$. Assume that

$$
k^{j}-1 \equiv\left(k^{2}-1\right)(j / 2) \quad\left(\bmod 2^{v_{2}(j)+4}\right)
$$

Then we have

$$
\begin{aligned}
k^{2 j}-1 & =\left(k^{j}-1\right)\left(k^{j}+1\right) & & \\
& \equiv\left(k^{2}-1\right)(j / 2)\left(k^{j}+1\right) & & \left(\bmod 2^{\nu_{2}(j)+5}\right) \\
& \equiv\left(k^{2}-1\right)(j / 2)\left(2+\left(k^{2}-1\right)(j / 2)\right) & & \left(\bmod 2^{2 v_{2}(j)+6}\right) \\
& \equiv\left(k^{2}-1\right)(2 j / 2) & & \left(\bmod 2^{2 v_{2}(j)+4}\right)
\end{aligned}
$$

Since $\nu_{2}(j) \geqq 1$, this implies

$$
k^{2 j}-1 \equiv\left(k^{2}-1\right)(2 j / 2) \quad\left(\bmod 2^{v_{2}(2 j)+4}\right)
$$

Thus the lemma is proved by the induction with respect to $\nu_{2}(j)$.
q.e.d.

Considering the $\boldsymbol{Z} / 4$-action on $S^{2 n+1} \times \boldsymbol{C}$ given by

$$
\exp (2 \pi \sqrt{-1} / 4)(z, u)=(z \cdot \exp (2 \pi \sqrt{-1} / 4), u \cdot \exp (2 \pi \sqrt{-1} / 4))
$$

for $(z, u) \in S^{2 n+1} \times C$, we have a complex line bundle

$$
\eta:\left(S^{2 n+1} \times C\right) /(Z / 4) \rightarrow L_{4}^{2 n+1}
$$

Then we have the following elements

$$
\left\{\begin{array}{l}
\sigma=\eta-1 \in \tilde{K}\left(L_{4}^{2 n+1}\right) \tag{3.2}\\
\sigma(1)=\eta^{2}-1 \in \tilde{K}\left(L_{4}^{2 n+1}\right) .
\end{array}\right.
$$

The following proposition is well known.

Proposition 3.3. If $m \geqq 2$, then we have

(1) (Mahammed [13]) The ring $K\left(L_{4}^{m}\right)$ is isomorphic to the truncated polynomial ring

$$
\boldsymbol{Z}[\sigma] /\left(\sigma^{[m / 2]+1},(\sigma+1)^{4}-1\right),
$$

where $\left(\sigma^{[m / 2]+1},(\sigma+1)^{4}-1\right)$ means the ideal of $\boldsymbol{Z}[\sigma]$ generated by $\sigma^{[m / 2]+1}$ and $(\sigma+1)^{4}-1$.
(2) (Kobayashi and Sugawara [10]) The group $\tilde{K}\left(L_{4}^{m}\right)$ is isomorphic to the direct sum of cyclic groups of order $2^{[m / 2]+1}, 2^{[m / 4]}$ and $2^{[(m-2) / 4]}$ generated by $\sigma, \sigma(1)+$ $2^{[m / 4]+1} \sigma$ and $\sigma(1) \sigma+2^{[(m+2) / 4]+1} \sigma$ respectively. That is,

$$
\tilde{K}\left(L_{4}^{m}\right) \cong\langle\{\sigma, \sigma(1), \sigma(1) \sigma\}\rangle \mid\left\langle\left\{X_{1}, X_{2}, X_{3}\right\}\right\rangle,
$$

where $\quad X_{1}=2^{[m / 2]+1} \sigma, \quad X_{2}=2^{[m / 4]} \sigma(1)+2^{2[m / 4]+1} \sigma \quad$ and $\quad X_{3}=2^{[(m-2) / 4]} \sigma(1) \sigma+$ $2^{2[(m+2) / 4]} \sigma$.

The following lemma is obtained by the above proposition.
Lemma 3.4. Let u be a positive integer. Then, in $K\left(L_{4}^{m}\right)$,

$$
\sigma^{u}=a_{u} \sigma+b_{u} \sigma(1)+c_{u} \sigma(1) \sigma,
$$

where a_{u}, b_{u} and c_{u} are integers defined by

$$
\begin{aligned}
a_{u} & =(-2)^{u-1}, \\
b_{u} & = \begin{cases}2(-4)^{(u / 4)-1} & (u \equiv 0(\bmod 4)) \\
0 & (u \equiv 1(\bmod 4)) \\
(-4)^{(u-2) / 4} & (u \equiv 2(\bmod 4)) \\
-2(-4)^{(u-3) / 4} & (u \equiv 3(\bmod 4))\end{cases}
\end{aligned}
$$

and

$$
c_{u}= \begin{cases}-2^{u-2} & (u \equiv 0(\bmod 4)) \\ 2^{u-2}+2(-4)^{(u-5) / 4} & (u \equiv 1(\bmod 4)) \\ -2^{u-2}+(-4)^{(u-2) / 4} & (u \equiv 2(\bmod 4)) \\ 2^{u-2}-(-4)^{(u-3) / 4} & (u \equiv 3(\bmod 4)) .\end{cases}
$$

Proof. By making use of the relation $(\sigma+1)^{4}=1$, we obtain equalities

$$
\begin{aligned}
& a_{u+1}=-2 a_{u} \\
& b_{u+1}=a_{u}-2 c_{u}
\end{aligned}
$$

and

$$
c_{u+1}=b_{u}-2 c_{u}
$$

where $a_{1}=1, b_{1}=0$, and $c_{1}=0$. Thus the lemma is proved by the induction with respect to u.
q.e.d.

For each integer n with $0 \leqq n<m$, we denote the inclusion map of L_{4}^{n} into L_{4}^{m} by i_{n}^{m}, and denote the kernel of the homomorphism

$$
\left(i_{n}^{m}\right)^{\prime}: \tilde{K}\left(L_{4}^{m}\right) \rightarrow \tilde{K}\left(L_{4}^{n}\right)
$$

by V_{n}. Then by Proposition 3.3 and Lemma 3.4, we obtain the following lemma.
Lemma 3.5. Let u be a positive integer with $2 u<m$. Then we have

$$
\sigma^{u} \equiv \begin{cases}\sigma & (u=1) \\ \sigma(1)-2 \sigma & (u=2) \\ (-1)^{(u-1) / 2}\left(2^{(u-3) / 2} \sigma(1) \sigma+2^{u-1} \sigma\right) & (u \equiv 1(\bmod 2) \text { and } u>1) \\ (-1)^{(u-2) / 2}\left(2^{(u-2) / 2} \sigma(1)+2^{u-1} \sigma\right) & (u \equiv 0(\bmod 2) \text { and } u>2)\end{cases}
$$

modulo the subgroup $V_{2 u}$.
Considering the $\boldsymbol{Z} / 4$-action on $S^{2 n+1} \times \boldsymbol{R}$ given by

$$
\exp (2 \pi \sqrt{-1} / 4)(z, v)=(z \cdot \exp (2 \pi \sqrt{-1} / 4),-v)
$$

for $(z, v) \in S^{2 n+1} \times \boldsymbol{R}$, we have a real line bundle

$$
\nu:\left(S^{2 n+1} \times \boldsymbol{R}\right) /(\boldsymbol{Z} / 4) \rightarrow L_{4}^{2 n+1}
$$

We set

$$
\kappa=\nu-1 \in \widetilde{K O}\left(L_{4}^{2 n+1}\right)
$$

It is easy to see that

$$
\left\{\begin{array}{l}
c(\kappa)=\sigma(1) \tag{3.6}\\
r(\sigma(1))=2 \kappa
\end{array}\right.
$$

where $c: K O \rightarrow K$ is the complexification and $r: K \rightarrow K O$ is the real restriction. Let

$$
I: \tilde{K}(X) \rightarrow \tilde{K}\left(S^{2} X\right)
$$

and

$$
I_{R} ; \widetilde{K O}(X) \rightarrow \widetilde{K O}\left(S^{8} X\right)
$$

be the Bott periodicity isomorphisms for K - and $K O$-theory respectively. Then we have the following proposition.

Proposition 3.7. (1) (Kobayashi and Sugawara [10]) If $j \equiv 0(\bmod 8)$ and $m \geqq 2$, then $\widetilde{K O}\left(S^{j}\left(L_{4}^{m}\right)\right)$ is isomorphic to the dierct sum of the cyclic groups of order $2^{h_{1}(m)}$ and $2^{h_{2}(m)}$ generated by $r\left(I^{j / 2}(\sigma)\right)$ and $I_{R}^{j / 8}(\kappa)+2^{[m / 4]} r\left(I^{j / 2}(\sigma)\right)$ respectively. That is,

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m}\right)\right) \cong\left\langle\left\{r\left(I^{j / 2}(\sigma)\right), I_{R}^{j / 8}(\kappa)\right\}\right\rangle\left\langle\left\langle\left\{Y_{1}, Y_{2}\right\}\right\rangle\right.
$$

where $Y_{1}=2^{h_{1}(m)} r\left(I^{j / 2}(\sigma)\right)$ and $Y_{2}=2^{h_{2}(m)} I_{R}^{j / 8}(\kappa)+2^{h_{2}(m)+[m / 4]} r\left(I^{j / 2}(\sigma)\right)$.
In the case $j \equiv 0(\bmod 8)$ and $m=1$, the group $\widetilde{K O}\left(S^{j} L_{4}^{1}\right) \cong \widetilde{K O}\left(S^{j+1}\right)$ is isomorphic to $\boldsymbol{Z} / 2$ generated by $I_{R}^{j / 8}(\kappa)$.
(2) (Kobayashi [8]) If $j \equiv 4(\bmod 8)$ and $m \geqq 4$, then the group $\widetilde{K O}\left(S^{j}\left(L_{4}^{m}\right)\right)$ is isomorphic to the direct sum of the cyclic groups of order $2^{h_{1}(m+4)-2}$ and $2^{h_{2}(m+4)-2}$ generated by $r\left(I^{j / 2}(\sigma)\right)$ and $r\left(I^{j / 2}\left(\sigma(1)+2^{[m / 4]+1} \sigma\right)\right)$ respectively. That is,

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m}\right)\right) \cong\left\langle\left\{r\left(I^{j / 2}(\sigma)\right), r\left(I^{j / 2}(\sigma(1))\right)\right\}\right\rangle\left\langle\left\{Y_{1}, Y_{2}\right\}\right\rangle
$$

where $Y_{1}=2^{h_{1}(m+4)-2} r\left(I^{j / 2}(\sigma)\right)$ and

$$
Y_{2}=2^{h_{2}(m+4)-2} r\left(I^{j / 2}(\sigma(1))\right)+2^{h_{2}(m+4)+[m / 4]-1} r\left(I^{j / 2}(\sigma)\right)
$$

If $j \equiv 4(\bmod 8)$ and $1 \leqq m<4$, then we have $\widetilde{K O}\left(S^{j}\left(L_{4}^{m}\right)\right) \cong 0$.

4. Proof for the case $\boldsymbol{j} \equiv \mathbf{0}(\bmod 4)$

In this section we prove the parts (1) of Theorems 2 and 3. Throughout this section, j denotes a non-negative integer with $j \equiv 0(\bmod 4)$.

We consider the elements y_{1} and y_{2} of $\widetilde{K O}\left(S^{j} L_{4}^{m}\right)$ defined by

$$
\begin{cases}y_{1}=r\left(I^{j / 2}(\sigma)\right) \tag{4.1}\\ y_{2}= \begin{cases}I_{R}^{j / 8}(\kappa) & (j \equiv 0(\bmod 8)) \\ r\left(I^{j / 2}(\sigma(1))\right) & (j \equiv 4(\bmod 8))\end{cases} \end{cases}
$$

According to [1] and [4], we have the following lemma.

Lemma 4.2. The Adams operations are given by the following formulae.
(1) $\quad \psi^{k}\left(y_{1}\right)= \begin{cases}k^{j / 2} y_{1} & (k \equiv 1(\bmod 2)) \\ 2 k^{j / 2} y_{2} & (j \equiv 0(\bmod 8) \text { and } k \equiv 2(\bmod 4)) \\ k^{j / 2} y_{2} & (j \equiv 4(\bmod 8) \text { and } k \equiv 2(\bmod 4)) \\ 0 & (k \equiv 0(\bmod 4)) \text {. }\end{cases}$
(2) $\psi^{k}\left(y_{2}\right)= \begin{cases}k^{j / 2} y_{2} & (k \equiv 1(\bmod 2)) \\ 0 & (k \equiv 0(\bmod 2)) .\end{cases}$

For each integer n with $0 \leqq n<m$, we denote the kernel of the homomorphism

$$
\left(i_{n}^{m}\right)^{!}: \widetilde{K O}\left(S^{j} L_{4}^{m}\right) \rightarrow \widetilde{K O}\left(S^{j} L_{4}^{n}\right)
$$

by $V O_{m, n}^{j}$.
Lemma 4.3. If $0 \leqq n<m$, then we have

$$
V O_{m, n}^{j} \cong\left\{\begin{aligned}
\boldsymbol{Z} / 2^{h_{1}(m+j)-h_{2}(n+j)-[(n+j) / 4]} \oplus & \boldsymbol{Z} / 2^{h_{2}(m+j)-h_{1}(n+j)+[(n+j) / 4]} \\
& \left(h_{2}(m+j) \geqq h_{1}(n+j)-[(n+j) / 4]\right) \\
0 & \left(h_{2}(m+j)<h_{1}(n+j)-[(n+j) / 4]\right) .
\end{aligned}\right.
$$

Proof. By Proposition 3.7, $V O_{m, n}^{j}$ is the subgroup of $\widetilde{K O}\left(S^{j} L_{4}^{m}\right)$ generated by Y_{1} and Y_{2}, where

$$
Y_{1}= \begin{cases}y_{1} & (1-4[j / 8]+j / 2 \geqq n) \\ 2^{h_{1}(n)} y_{1} & (j \equiv 0(\bmod 8) \text { and } n \geqq 2) \\ 2^{k_{1}(n+4)-2} y_{1} & (j \equiv 4(\bmod 8) \text { and } n \geqq 4)\end{cases}
$$

and

$$
Y_{2}= \begin{cases}2 y_{2} & (j \equiv 0(\bmod 8) \text { and } n=1) \\ y_{2} & (j \equiv 4(\bmod 8) \text { and } 4>n \geqq 0) \\ 2^{h_{2}(n)}\left(y_{2}+2^{[n / 4]} y_{1}\right) & (j \equiv 0(\bmod 8) \text { and } n \neq 1) \\ 2^{h_{2}(n+4)-2}\left(y_{2}+2^{n n / 4]+1} y_{1}\right) & (j \equiv 4(\bmod 8) \text { and } n \geqq 4) .\end{cases}
$$

Consider the case $h_{2}(m+j) \geqq h_{1}(n+j)-[(n+j) / 4]$. Suppose that $[(m+j) / 4]+$ $h_{2}(n+j) \geqq h_{1}(n+j)$ and $m \geqq 2$. Then we have the relations $A_{i}=0(i=1,2)$, where

$$
A_{1}= \begin{cases}2^{h_{1}(m)} Y_{1} & (j \equiv 0(\bmod 8) \text { and } n=1) \\ 2^{h_{1}(m+4)-2} Y_{1} & (j \equiv 4(\bmod 8) \text { and } 4>n \geqq 0) \\ 2^{h_{1}(m+j)-h_{1}(n+j)} Y_{1} & (\text { otherwise })\end{cases}
$$

and

$$
A_{2}= \begin{cases}2^{h_{2}(m)}\left(y_{2}+2^{[m / 4]} y_{1}\right) & (j \equiv 0(\bmod 8)) \\ 2^{h_{2}(m+4)-2}\left(y_{2}+2^{[m / 4]+1} y_{1}\right) & (j \equiv 4(\bmod 8))\end{cases}
$$

Setting

$$
\begin{aligned}
& A_{3}=\left\{\begin{array}{lrl}
A_{1} & (1-4[j / 8]+j / 2 \geqq n \geqq 1+2[j / 8]-j / 4) \\
A_{1}+2^{h_{1}(m+j)-h_{2}(m+j)-[(n+j) / 4]} A_{2} & \text { (otherwise) },
\end{array}\right. \\
& u_{1}= \begin{cases}Y_{1} & (1-4[j / 8]+j / 2 \geqq n \geqq 1+2[j / 8]-j / 4) \\
Y_{2}+2^{h_{2}(n+j)-h_{1}(n+j)+[(m+j) / 4]} Y_{1} & \text { (otherwise) }\end{cases}
\end{aligned}
$$

and

$$
u_{2}=\left\{\begin{array}{lr}
Y_{2}+2^{[m / 4]+1} Y_{1} \quad(1-4[j / 8]+j / 2 \geqq n \geqq 1+2[j / 8]-j / 4) \\
\left(2^{[m / 4]-[n / 4]}-1\right) Y_{1}+2^{h_{1}(n+j)-h_{2}(n+j)-[(n+j) / 4]} Y_{2} \quad \text { (otherwise) },
\end{array}\right.
$$

we have

$$
A_{3}=2^{h_{1}(m+j)-h_{2}(n+j)-[(n+j) / 4]} u_{1}
$$

and

$$
A_{2}=2^{h_{2}(m+j)-h_{1}(n+j)+[(n+j) / 4]} u_{2}
$$

Noting that

$$
\begin{aligned}
& A_{1}=\left\{\begin{array}{lr}
A_{3} & (1-4[j / 8]+j / 2 \geqq n \geqq 1+2[j / 8]-j / 4) \\
A_{3}-2^{h_{1}(m+j)-h_{2}(m+j)-[(n+j) / 4]} A_{2} & \text { (otherwise) },
\end{array}\right. \\
& Y_{1}=\left\{\begin{array}{lll}
u_{1} & (1-4[j / 8]+j / 2 \geqq n \geqq 1+2[j / 8]-j / 4) \\
2^{h_{1}(n+j)-h_{2}(n+j)-[(n+j) / 4]} u_{1}-u_{2} & \text { (otherwise) }
\end{array}\right.
\end{aligned}
$$

and

$$
Y_{2}=\left\{\begin{array}{lr}
-2^{[m / 4]+1} u_{1}+u_{2} \quad(1-4[j / 8]+j / 2 \geqq n \geqq 1+2[j / 8]-j / 4) \\
\left(1-2^{[m / 4]-[n / 4]}\right) u_{1}+2^{h_{2}(n+j)-h_{1}(n+j)+[(m+j) / 4]} u_{2} \quad \text { (otherwise) },
\end{array}\right.
$$

we see that $V O_{m, n}^{j}$ is isomorphic to the group generated by u_{1} and u_{2} with relations $A_{i}=0(i=2,3)$. This implies the lemma for the case $[(m+j) / 4]+h_{2}(n+j)$ $\geqq h_{1}(n+j)$ and $m \geqq 2$.

Suppose that $h_{2}(m+j)+[(n+j) / 4] \geqq h_{1}(n+j)>[(m+j) / 4]+h_{2}(n+j)$ and $n \neq 1$. Then we have $n+j \equiv 1(\bmod 8), n+2 \geqq m>n$ and $V O_{m, n}^{j} \cong \boldsymbol{Z} / 2$ generated by Y_{2}. If $n=1$ and $2 \leqq m \leqq 3$, then we have $V O_{m, n}^{j} \cong \boldsymbol{Z} / 2$ generated by Y_{1}. If $n=0$, the lemma follows from Proposition 3.7. Thus the proof of the lemma for the case $h_{2}(m+j) \geqq h_{1}(n+j)-[(n+j) / 4]$ is completed.

If $h_{2}(m+j)<h_{1}(n+j)-[(n+j) / 4]$, then we have $[(m+j) / 8]=[(n+j-4) / 8]$. This implies $h_{1}(m+j)=h_{1}(n+j), h_{2}(m+j)=h_{2}(n+j)$ and $[(m+j) / 4]=[(n+j) / 4]$. Hence we have $V O_{m, n}^{j} \cong 0$.

Thus the proof of the lemma is completed.

Suppose that $n \neq 3(\bmod 4)$. Then we have

$$
a_{1}(m+j, n+j)=h_{1}(m+j)-h_{2}(n+j)-[(n+j) / 4]
$$

and

$$
b_{1}(m+j, n+j)=h_{2}(m+j)-h_{1}(n+j)+[(n+j) / 4] .
$$

Thus the part i) of (1) of Theorem 2 is proved by making use of [15, Corollary 3] and Lemma 4.3.

Proof of the part i) of (1) of Thoerem 3. We set

$$
\begin{equation*}
U O_{m, n}^{j}=\sum_{k}\left(\cap_{e} k^{e}\left(\psi^{k}-1\right) V O_{m, n}^{j}\right) \tag{4.4}
\end{equation*}
$$

Since the order of $V O_{m, n}^{j}$ is equal to a power of 2 , we have

$$
U O_{m, n}^{j}=\sum_{k: \text { odd }}\left(\psi^{k}-1\right) V O_{m, n}^{j}=\sum_{k: \text { odd }}\left(k^{j / 2}-1\right) V O_{m, n}^{j}=2^{v_{2}(j)+1} V O_{m, n}^{j}
$$

by Lemma 4.2 and Lemma 3.1. Since the order of $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ is finite, we have

$$
\tilde{f}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong V O_{m, n}^{j} / U O_{m, n}^{j}=V O_{m, n}^{j} / 2^{v_{2}(j)+1} V O_{m, n}^{j} .
$$

Thus the part i) of (1) of Theorem 3 is proved by making use of Lemma 4.3. q.e.d.

Now, we turn to the case $n \equiv 3(\bmod 4)$. In the rest of this section, n denotes a positive integer with $n \equiv 3(\bmod 4)$. It follows from [15] that we have the commutative diagram

of exact sequences. Since $\widetilde{K O}\left(S^{j+n+1}\right)$ is isomorphic to \boldsymbol{Z}, the upper row of (4.5) splits. Choose $y \in \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ such that $\beta=f_{2}(y)$ generates the group $\widetilde{K O}\left(S^{j+n+1}\right)$. Then we have an isomorphism

$$
f: V O_{m, n+1}^{j} \oplus \widetilde{K O}\left(S^{j+n+1}\right) \rightarrow \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)
$$

defined by $f(x, k \beta)=f_{1}(x)+k y$ for every $(x, k) \in V O_{m, n+1}^{j} \oplus \boldsymbol{Z}$. This proves the
part ii) of (1) of Theorem 2. Moreover, we have the following lemma.
Lemma 4.6. If $j \equiv 0(\bmod 4)$ and $n \equiv 3(\bmod 4)$, then there is an element $y \in \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ which satisfies the following conditions.
(1) $\beta=f_{2}(y)$ generates the group $\widetilde{K O}\left(S^{j+n+1}\right)$.
(2) $f_{3}(y)= \begin{cases}2^{(n-1) / 2} y_{1} & (n+j+1 \equiv 4(\bmod 8)) \\ 2^{(n-3) / 4} y_{2}+2^{(n-3) / 2} y_{1} & (n+1 \equiv j \equiv 0(\bmod 8)) \\ 2^{(n-7) / 4} y_{2}+2^{(n-3) / 2} y_{1} & (n+1 \equiv j \equiv 4(\bmod 8) \text { and } n>3) \\ y_{1} & (j \equiv 4(\bmod 8) \text { and } n=3) .\end{cases}$

Proof. Suppose that $j \equiv 0(\bmod 8)$ and $n \equiv 7(\bmod 8)$. By the proof of Lemma 4.3, we have

$$
V O_{m, n+1}^{j}=\left\langle\left\{2^{(n+1) / 2} y_{1}, 2^{(n+1) / 4} y_{2}\right\}\right\rangle
$$

and

$$
V O_{m, n-1}^{j}=\left\langle\left\{2^{(n-1) / 2} y_{1}, 2^{(n-3) / 4} y_{2}+2^{(n-3) / 2} y_{1}\right\}\right\rangle
$$

Hence

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{n+1} / L_{4}^{n-1}\right)\right) \cong V O_{m, n-1}^{j} / V O_{m, n+1}^{j} \cong Z / 4
$$

and the first group is generated by $f_{4}\left(2^{(n-3) / 4} y_{2}+2^{(n-3) / 2} y_{1}\right)$. It follows from the commutativity of the diagram (4.5) that the element y can be chosen to satisfy $f_{3}(y)=2^{(n-3) / 4} y_{2}+2^{(n-3) / 2} y_{1}$. The proofs for the other cases are similar. q.e.d.

In the rest of this section, we fix an element $y \in \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ which satisfies the conditions of Lemma 4.6.

Lemma 4.7. If k is an odd integer, then the Adams operation ψ^{k} is given by

$$
\psi^{k}(y)=k^{(n+j+1) / 2} y+\left(\left(k^{j / 2}-k^{(n+j+1) / 2}\right) / 4\right) f_{1}\left(4 f_{3}(y)\right)
$$

Proof. We necessarily have

$$
\psi^{k}(y)=u y+f_{1}(x)
$$

for some integer u and an element $x \in V O_{m, n+1}^{j}$. By using the ψ-map f_{2}, we see that $u=k^{(n+j+1) / 2}$. Under $f_{3}, f_{1}(x)$ maps into x and y maps into $f_{3}(y)$, and we see that

$$
\psi^{k}\left(f_{3}(y)\right)=k^{(n+j+1) / 2} f_{3}(y)+x .
$$

It follows from Lemma 4.2 that

$$
k^{j / 2} f_{3}(y)=k^{(n+j+1) / 2} f_{3}(y)+x .
$$

This implies that

$$
x=\left(\left(k^{j / 2}-k^{(n+j+1) / 2}\right) / 4\right)\left(4 f_{3}(y)\right)
$$

and

$$
\begin{align*}
\psi^{k}(y) & =k^{(n+j+1) / 2} y+f_{1}(x) \\
& =k^{(n+j+1) / 2} y+\left(\left(k^{j / 2}-k^{(n+j+1) / 2}\right) / 4\right) f_{1}\left(4 f_{3}(y)\right) .
\end{align*}
$$

We now recall some definition in [3]. Set $Y=\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ and let f be a function which assigns to each integer k a non-negative integer $f(k)$. Given such a function f, we define Y_{f} to be the subgroup of Y generated by

$$
\left\{k^{f(k)}\left(\psi^{k}-1\right)(y) \mid k \in Z, y \in Y\right\} ;
$$

that is,

$$
Y_{f}=\left\langle\left\{k^{f(k)}\left(\psi^{k}-1\right)(y) \mid k \in Z, y \in Y\right\}\right\rangle .
$$

Then the kernel of the homomorphism $J^{\prime \prime}: Y \rightarrow J^{\prime \prime}(Y)$ coincides with $\bigcap_{f} Y_{f}$, where the intersection runs over all functions f.

Suppose that f satisfies
(4.8) $\quad f(k) \geqq m+\max \left\{\nu_{p}(\mathfrak{m}((n+j+1) / 2)) \mid p\right.$ is a prime divisor of $\left.k\right\}$
for every $k \in \boldsymbol{Z}$. For each odd integer $i, N(i)$ denotes the integer chosen to satisfy the property

$$
\begin{equation*}
i N(i) \equiv 1 \quad\left(\bmod 2^{m}\right) . \tag{4.9}
\end{equation*}
$$

In the following calculation we put $(n+j+1) / 2=u$ for the sake of simplicity. From Lemmas 3.1 and 4.7, we have

$$
\begin{aligned}
& k^{f(k)}\left(\psi^{k}-1\right)(y) \\
& =k^{f(k)}\left(k^{u}-1\right) y+k^{f(k)}\left(\left(k^{j / 2}-k^{u}\right) / 4\right) f_{1}\left(4 f_{3}(y)\right) \\
& =k^{f(k)}\left(k^{u}-1\right) y+k^{f(k)} N\left(u / 2^{v_{2}(u)}\right)\left(\left(u\left(k^{j / 2}-1\right)-u\left(k^{u}-1\right)\right) / 2^{v_{2}(u)+2}\right) f_{1}\left(4 f_{3}(y)\right) \\
& \equiv k^{f(k)}\left(k^{u}-1\right) y+k^{f(k)} N\left(u / 2^{v_{2}(u)}\right)\left(\left((j / 2)\left(k^{u}-1\right)-u\left(k^{u}-1\right)\right) / 2^{\nu_{2}(u)+2}\right) f_{1}\left(4 f_{3}(y)\right) \\
& \quad\left(\bmod f_{1}\left(U O_{m, n+1}^{j}\right)\right) \\
& =\left(k^{f(k)}\left(k^{u}-1\right) / 2^{v_{2}(u)+2}\right)\left(2^{v_{2}(u)+2} y-N\left(u / 2^{v_{2}(u)}\right)((n+1) / 2) f_{1}\left(4 f_{3}(y)\right)\right) .
\end{aligned}
$$

By virtue of [3; II, Theorem (2.7) and Lemma (2.12)], we have

$$
\begin{aligned}
& \left\langle f_{1}\left(U O_{m, n+1}^{j}\right) \cup\left\{k^{f(k)}\left(\psi^{k}-1\right)(y) \mid k \in \boldsymbol{Z}\right\}\right\rangle \\
& \quad=\left\langle f_{1}\left(U O_{m, n+1}^{j}\right) \cup\left\{\mathfrak{m}(u) / 2^{v_{2}(u)+2}\left(2^{v_{2}(u)+2} y-N\left(u / 2^{v_{2}(u)}\right)((n+1) / 2) f_{1}\left(4 f_{3}(y)\right)\right)\right\}\right\rangle
\end{aligned}
$$

Therefore,

$$
Y_{f}=\left\langle f_{1}\left(U O_{m, n+1}^{j}\right) \cup\left\{\mathfrak{m}((n+j+1) / 2) y-M f_{1}\left(4 f_{3}(y)\right)\right\}\right\rangle
$$

where $M=\left(\mathfrak{m}((n+j+1) / 2) / 2^{\nu_{2}(n+j+1)+1}\right) N\left((n+j+1) / 2^{\nu_{2}(n+j+1)}\right)((n+1) / 2)$. Since this is true for every function f which satisfies (4.8), we have

$$
\begin{equation*}
J^{\prime \prime}(Y) \cong Y /\left\langle f_{1}\left(U O_{m, n+1}^{j}\right) \cup\left\{\mathfrak{m}((n+j+1) / 2) y-M f_{1}\left(4 f_{3}(y)\right)\right\}\right\rangle \tag{4.10}
\end{equation*}
$$

Suppose that $b(j, m, n) \geqq 0$. It follows from the proof of Lemma 4.3 that $V O_{m, n+1}^{j} \simeq \boldsymbol{Z} / 2^{a_{1}(m+j, n+j)} \oplus \boldsymbol{Z} / 2^{b_{1}(m+j, n+j)}$ is generated by

$$
u_{1}= \begin{cases}2^{(n+1) / 4} y_{2}+\left(2^{[(m+n+1) / 4]}+2^{(n+1) / 2}\right) y_{1} & (j \equiv 0(\bmod 8)) \\ 2^{(n-3) / 4} y_{2}+\left(2^{[(m+n+1) / 4]}+2^{(n+1) / 2}\right) y_{1} & (j \equiv 4(\bmod 8))\end{cases}
$$

and

$$
u_{2}= \begin{cases}2^{(n+5) / 4} y_{2}+2^{[(m+n+5) / 4]} y_{1} & (j \equiv n-3 \equiv 0(\bmod 8)) \\ 2^{(n+1) / 4} y_{2}+2^{[(m+n+5) / 4]} y_{1} & (j \equiv n-3 \equiv 4(\bmod 8)) \\ 2^{(n+1) / 4} y_{2}+2^{[(m+n+1) / 4]} y_{1} & (j \equiv n+1 \equiv 0(\bmod 8)) \\ 2^{(n-3) / 4} y_{2}+2^{[(m+n+1) / 4]} y_{1} & (j \equiv n+1 \equiv 4(\bmod 8)) .\end{cases}
$$

By Lemma 4.6, we have

$$
4 f_{3}(y)=\left\{\begin{array}{ll}
2 u_{1}-u_{2} & (n+j \equiv 3(\bmod 8)) \\
u_{1}-u_{2} & (j \equiv 4(\bmod 8) \text { and } n=3) \\
\left(1-2^{[(m-n+3) / 4]}\right) u_{1}+\left(1+2^{[(m-n+3) / 4]}\right) u_{2}
\end{array} \quad \text { (otherwise) } .\right.
$$

Therefore

$$
J^{\prime \prime}(Y) \cong\left\langle y, u_{1}, u_{2}\right\rangle\left\langle\left\langle\left\{M_{0} y+M_{1} u_{1}+M_{2} u_{2}, 2^{a(j, m, n)} u_{1}, 2^{b(j, m, n)} u_{2}\right\}\right\rangle\right.
$$

where

$$
\begin{aligned}
& M_{0}=\mathfrak{m}((n+j+1) / 2), \\
& M_{1}= \begin{cases}-2 M & (n+j \equiv 3(\bmod 8)) \\
-M & (j \equiv 4(\bmod 8) \text { and } n=3) \\
-\left(1-2^{[(m-n+3) / 4]}\right) M & (\text { otherwise })\end{cases}
\end{aligned}
$$

and

$$
M_{2}= \begin{cases}-\left(1+2^{[(m-n+3) / 4]}\right) M & (n+j \equiv 7(\bmod 8) \text { and } n>3) \\ M & (\text { otherwise })\end{cases}
$$

Set

$$
i= \begin{cases}\min \left\{a(j, m, n), \nu_{2}(n+1)\right\} & (n+j \equiv 3(\bmod 8)) \\ \min \left\{a(j, m, n), \nu_{2}(n+1)-1\right\} & (n+j \equiv 7(\bmod 8))\end{cases}
$$

and

$$
k=\min \left\{b(j, m, n), \nu_{2}(n+1)-1\right\}
$$

Since $\nu_{2}(M)=\nu_{2}(n+1)-1$, the greatest common divisor of M_{1} and $2^{a(j, m, n)}$ is equal to 2^{i}, and the greatest common divisor of M_{2} and $2^{b(j, m, n)}$ is equal to 2^{k}. Choose integers e_{1}, e_{2}, e_{3} and e_{4} with

$$
e_{1} 2^{a(j, m, n)}+e_{2} M_{1}=2^{i}
$$

and

$$
e_{3} 2^{b(j, m, n)}+e_{4} M_{2}=2^{k}
$$

For the sake of simplicity, we put $a=a(j, m, n)$ and $b=b(j, m, n)$ in the following calculation. If $a-i \geqq b-k$, then we have

$$
A\left(\begin{array}{c}
M_{0} y+M_{1} u_{1}+M_{2} u_{2} \\
2^{a} u_{1} \\
2^{b} u_{2}
\end{array}\right)=\left(\begin{array}{c}
2^{a-i} M_{0} y \\
2^{b-k+i}\left(\left(e_{2} M_{0} / 2^{i}\right) y+u_{1}\right) \\
2^{k}\left(\left(e_{4} M_{0} / 2^{k}\right) y+\left(e_{4} M_{1} / 2^{k}\right) u_{1}+u_{2}\right)
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{ccc}
2^{a-i} & -M_{1} / 2^{i} & -\left(M_{2} / 2^{k}\right) 2^{a-b-i+k} \\
e_{2} 2^{b-k} & e_{1} 2^{b-k} & -e_{2} M_{2} / 2^{k} \\
e_{4} & 0 & e_{3}
\end{array}\right)
$$

and $\operatorname{det} A=1$. This implies that

$$
J^{\prime \prime}(Y) \cong \boldsymbol{Z} / 2^{a-i} M_{0} \oplus \boldsymbol{Z} / 2^{b-k+i} \oplus \boldsymbol{Z} / 2^{k}
$$

On the other hand, if $b-k>a-i$, then we have

$$
B\left(\begin{array}{c}
M_{0} y+M_{1} u_{1}+M_{2} u_{2} \\
2^{a} u_{1} \\
2^{b} u_{2}
\end{array}\right)=\left(\begin{array}{c}
2^{b-k} M_{0} y \\
2^{a} u_{1} \\
2^{k}\left(\left(e_{4} M_{0} / 2^{k}\right) y+\left(e_{4} M_{1} / 2^{k}\right) u_{1}+u_{2}\right)!
\end{array}\right)
$$

where

$$
B=\left(\begin{array}{ccc}
2^{b-k} & -\left(M_{1} / 2^{i}\right) 2^{-a+b+i-k} & -M_{2} / 2^{k} \\
0 & 1 & 0 \\
e_{4} & 0 & e_{3}
\end{array}\right)
$$

and $\operatorname{det} B=1$. This implies that

$$
J^{\prime \prime}(Y) \cong \boldsymbol{Z} / 2^{b-k} M_{0} \oplus \boldsymbol{Z} / 2^{a} \oplus \boldsymbol{Z} / 2^{k}
$$

Thus we have
(4.11) If $j \equiv 0(\bmod 4), n \equiv 3(\bmod 4)$ and $b(j, m, n) \geqq 0$, then we have

$$
\mathcal{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \boldsymbol{Z} / \mathfrak{m}((n+j+1) / 2) \cdot 2^{c} \oplus \boldsymbol{Z} / 2^{d+i} \oplus \boldsymbol{Z} / 2^{k}
$$

where i, k, c and d are integers defined by (2.5).
Next suppose that $b(j, m, n)<0$. It follows from Lemma 4.3 that we have $V O_{m, n+1}^{j} \cong 0$. This implies that the homomorphism f_{2} in the diagram (4.5) is an isomorphism of ψ-groups. Thus we obtain
(4.12) If $j \equiv 0(\bmod 4), n \equiv 3(\bmod 4)$ and $b(j, m, n)<0$ then we have

$$
\tilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong Z / \mathfrak{m}((n+j+1) / 2)
$$

Now, combining (4.11) and (4.12) we obtain the part ii) of (1) of Theorem 3. Thus the proof for the case $j \equiv 0(\bmod 4)$ is completed.

5. Proof for the case $\boldsymbol{j} \equiv \mathbf{2}(\bmod 4)$

In this section we prove the parts (2) of Theorems 2 and 3. Throughout this section j denotes a positive integer with $j \equiv 2(\bmod 4)$. Consider the elements x_{1}, x_{2} and x_{3} of $\tilde{K}\left(S^{j} L_{4}^{m}\right)$ defined by

$$
\left\{\begin{array}{l}
x_{1}=I^{j / 2} \sigma \tag{5.1}\\
x_{2}=I^{j / 2} \sigma(1) \\
x_{3}=I^{j / 2}(\sigma(1) \sigma)
\end{array}\right.
$$

According to [1], we have the following lemma.
Lemma 5.2. The Adams operations are given by the following formulae.
(1) $\psi^{k}\left(x_{1}\right)= \begin{cases}k^{j / 2}\left(x_{1}+x_{2}+x_{3}\right) & (k \equiv 3(\bmod 4)) \\ k^{j / 2} x_{1} & (k \equiv 1(\bmod 4)) \\ k^{j / 2} x_{2} & (k \equiv 2(\bmod 4)) \\ 0 & (k \equiv 0(\bmod 4)) .\end{cases}$
(2) $\psi^{k}\left(x_{2}\right)= \begin{cases}k^{j / 2} x_{2} & (k \equiv 1(\bmod 2)) \\ 0 & (k \equiv 0(\bmod 2)) .\end{cases}$
$\psi^{k}\left(x_{3}\right)= \begin{cases}k^{j / 2}\left(-x_{3}-2 x_{2}\right) & (k \equiv 3(\bmod 4)) \\ k^{j / 2} x_{3} & (k \equiv 1(\bmod 4)) \\ 0 & (k \equiv 0(\bmod 2))\end{cases}$
Consider the elements X_{1}, X_{2} and X_{3} of $\widetilde{K}\left(S^{j} L_{4}^{m}\right)$ defined by

$$
\left\{\begin{align*}
X_{1} & = \begin{cases}2^{[n+3) / 2]} x_{1} & (n \geqq 1) \\
x_{3} & (n=0)\end{cases} \tag{5.3}\\
X_{2} & = \begin{cases}2^{[(n+1) / 4]} x_{2} & (n \equiv 0 \text { or } 3(\bmod 4)) \\
2^{[(n+1) / 4]} x_{2}+2^{[(n+1) / 2]} x_{1} & (n \equiv 1 \text { or } 2(\bmod 4))\end{cases} \\
X_{3} & = \begin{cases}2^{[n-1) / 4]} x_{3} & (n \equiv 1 \text { or } 2(\bmod 4)) \\
2^{[(n-1) / 4]} x_{3}+2^{[(n+1) / 2]} x_{1} & (n \equiv 0 \text { or } 3(\bmod 4) \text { and } n \geqq 3) \\
x_{1} & (n=0)\end{cases}
\end{align*}\right.
$$

For each integer n with $0 \leqq n \leqq m$, we denote the kernel of the homomorphism

$$
\left(i_{n}^{m}\right)^{1}: \tilde{K}\left(S^{j} L_{4}^{m}\right) \rightarrow \tilde{K}\left(S^{j} L_{4}^{n}\right)
$$

by $V_{m, n}^{j}$. Then by Proposition 3.3, we have

$$
\begin{equation*}
V_{m, 2[(n+1) / 2]}^{j}=\left\langle\left\{X_{1}, X_{2}, X_{3}\right\}\right\rangle \tag{5.4}
\end{equation*}
$$

Consider the Bott exact sequence (cf. [5] and [6, (12.2)])

$$
\begin{equation*}
\rightarrow \widetilde{K O}\left(S^{j+2} X\right) \xrightarrow{c} \tilde{K}\left(S^{j+2} X\right) \xrightarrow{r I^{-1}} \widetilde{K O}\left(S^{j} X\right) \xrightarrow{\partial} \widetilde{K O}\left(S^{j+1} X\right) \rightarrow \tag{5.5}
\end{equation*}
$$

for $X=L_{4}^{m} / L_{4}^{n}$, where ∂ is the homomorphism defined by the exterior product with the generator of $\widetilde{K O}\left(S^{1}\right)$. Using the isomorphisms

$$
V O_{m, 2[(n+1) / 2]}^{j+2} \cong \widetilde{K O}\left(S^{j+2}\left(L_{4}^{m} / L_{4}^{2(n+1) / 2]}\right)\right)
$$

and

$$
V_{m, 2[(n+1) / 2]}^{j} \cong \tilde{K}\left(S^{j}\left(L_{4}^{m} / L_{4}^{2[(n+1) / 2]}\right)\right),
$$

we obtain the exact sequence

$$
\begin{equation*}
\rightarrow V O_{m, 2 u}^{j+2} \xrightarrow{I^{-1} \circ c} V_{m, 2 u}^{j} \xrightarrow{r_{1}} \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{2 u}\right)\right) \xrightarrow{\partial} G \rightarrow 0, \tag{5.6}
\end{equation*}
$$

where $u=[(n+1) / 2]$ and

$$
G= \begin{cases}\widetilde{K O}\left(S^{j+1}\left(L_{4}^{m} / L_{4}^{2 u}\right)\right) & (m+j \equiv 0,1 \text { or } 2(\bmod 8)) \\ 0 & \text { (otherwise) }\end{cases}
$$

Consider the generators y_{1} and y_{2} of $\widetilde{K O}\left(S^{j+2} L_{4}^{m}\right)$ defined by (4.1).
Lemma 5.7. (1) $I^{-1} \circ c\left(y_{1}\right)=2 x_{1}+x_{2}+x_{3}$.
(2) $\quad I^{-1} \circ c\left(y_{2}\right)= \begin{cases}x_{2} & (j \equiv 6(\bmod 8)) \\ 2 x_{2} & (j \equiv 2(\bmod 8)) .\end{cases}$

Proof. (1) By (4.1), we have

$$
\begin{aligned}
I^{-1} \circ c\left(y_{1}\right) & =I^{-1}\left(c \circ r\left(I^{(j+2) / 2}(\sigma)\right)\right)=I^{j / 2}((1+t)(\sigma)) \\
& =I^{j / 2}(2 \sigma+\sigma(1)+\sigma(1) \sigma)=2 x_{1}+x_{2}+x_{3} .
\end{aligned}
$$

(2) If $j \equiv 6(\bmod 8)$, then by (3.6) we have

$$
I^{-1} \circ c\left(y_{2}\right)=I^{-1}\left(I^{(j+2) / 2}(c(\kappa))\right)=I^{j / 2}(\sigma(1))=x_{2}
$$

If $j \equiv 2(\bmod 8)$, then we have

$$
\begin{aligned}
I^{-1} \circ c\left(y_{2}\right) & =I^{-1}\left(I^{(j+2) / 2}(\operatorname{cor}(\sigma(1)))\right)=I^{j / 2}((1+t)(\sigma(1))) \\
& =I^{j / 2}(2 \sigma(1))=2 x_{2}
\end{aligned} \quad \text { q.e.d. }
$$

5.1. Proof for the case $\boldsymbol{n} \equiv \mathbf{0}(\bmod 2) . \quad$ By Proposition 3.7 and (5.4), we have

$$
V O_{m, n}^{j+2}= \begin{cases}\left\langle\left\{2^{h_{1}(n)} y_{1}, 2^{h_{2}(n)}\left(y_{2}+2^{[n / 4]} y_{1}\right)\right\}\right\rangle & (j \equiv 6(\bmod 8)) \\ \left\langle\left\{2^{h_{1}(n+4)-2} y_{1}, 2^{h_{2}(n+4)-2}\left(y_{2}+2^{[n / 4]+1} y_{1}\right)\right\}\right\rangle \\ & (j \equiv 2(\bmod 8) \text { and } n \geqq 4) \\ \left\langle\left\{y_{1}, y_{2}\right\}\right\rangle & (j \equiv 2(\bmod 8) \text { and } 0 \leqq n \leqq 2)\end{cases}
$$

and $V_{m, n}^{j}=\left\langle\left\{X_{1}, X_{2}, X_{3}\right\}\right\rangle$. Using Lemma 5.7, we obtain
(5.8) For the homomorphism r_{1} in the exact sequence (5.6), we have

$$
\text { Ker } r_{1}= \begin{cases}\left\langle\left\{2 X_{2},\left(1-2^{n / 4}\right) X_{1}+X_{2}+2^{(n+4) / 4} X_{3}\right\}\right\rangle & (n+j \equiv 2(\bmod 8) \text { and } n \geqq 4) \\ \left\langle\left\{2 X_{2}, X_{1}+X_{2}+2 X_{3}\right\}\right\rangle & (j \equiv 2(\bmod 8) \text { and } n=0) \\ \left\langle\left\{X_{2},\left(1-2^{n / 4}\right) X_{1}+2^{(n+4) / 4} X_{3}\right\}\right\rangle & (n+j \equiv 6(\bmod 8) \text { and } n \geqq 4) \\ \left\langle\left\{X_{2}, X_{1}+2 X_{3}\right\}\right\rangle & (j \equiv 6(\bmod 8) \text { and } n=0) \\ \left\langle\left\{2 X_{2}-X_{1}, 2^{(n+2) / 4} X_{3}+2 X_{2}\right\}\right\rangle & (n+j \equiv 0(\bmod 8)) \\ \left\langle\left\langle 2 X_{2}-X_{1}, 2^{(n-2) / 4} X_{3}+X_{2}\right\}\right\rangle & (n+j \equiv 4(\bmod 8)) .\end{cases}
$$

If $m \geqq n+2$, then $\operatorname{Im} r_{1}$ is isomorphic to the group generated by $\left\{X_{1}, X_{2}, X_{3}\right\}$ with relations $A_{i}=0(1 \leqq i \leqq 5)$, where

$$
\begin{aligned}
& A_{1}= \begin{cases}2 X_{2} & (n+j \equiv 2(\bmod 8)) \\
X_{2} & (n+j \equiv 6(\bmod 8)) \\
2 X_{2}-X_{1} & (n \equiv 2(\bmod 4)),\end{cases} \\
& A_{2}= \begin{cases}\left(1-2^{n / 4}\right) X_{1}+X_{2}+2^{(n+4) / 4} X_{3} & (4 \leqq n \equiv 0(\bmod 4)) \\
X_{1}+X_{2}+2 X_{3} & (n=0) \\
2^{(n+2) / 4} X_{3}+2 X_{2} & (n+j \equiv 0(\bmod 8)) \\
2^{(n-2) / 4} X_{3}+X_{2} & (n+j \equiv 4(\bmod 8))\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& A_{3}= \begin{cases}2^{[(m-n+2) / 4]} X_{3}+2^{[(m-n-2) / 4]}\left(2^{[(m-n+2) / 4]}-1\right) X_{1} & (4 \leqq n \equiv 0(\bmod 4)) \\
2^{[(m-2) / 4]} X_{1}+2^{2[(m+2) / 4]} X_{3} & (n \equiv 0) \\
2^{[(m-n) / 4]} X_{3}+2^{2[(m-n) / 4]} X_{1} & (n \equiv 2(\bmod 4)),\end{cases} \\
& A_{4}= \begin{cases}2^{[(m-n) / 4]} X_{2}+2^{2[(m-n) / 4]} X_{1} & (4 \leqq n \equiv 0(\bmod 4)) \\
2^{[m / 4]} X_{2}+2^{2[m / 4]+1} X_{3} & (n=0) \\
2^{[(m-n-2) / 4]}\left(2 X_{2}+\left(2^{[(m-n+2) / 4]}-1\right) X_{1}\right) & (n \equiv 2(\bmod 4))\end{cases}
\end{aligned}
$$

and

$$
A_{5}=\left\{\begin{array}{l}
{ }^{[[(m+2) / 2]} X_{3} \\
2^{[(m-n) / 2]} X_{1}
\end{array}\right.
$$

$$
(n=0)
$$

(otherwise) .

Thus we obtain
where $B_{3}=2^{[(m+j) / 4]-[(n+j) / 4]} X_{3}$,

$$
A_{1}= \begin{cases}2 X_{2} & (n+j \equiv 2(\bmod 8)) \\ X_{2} & (n+j \equiv 6(\bmod 8)) \\ 2 X_{2}-X_{1} & (n \equiv 2(\bmod 8))\end{cases}
$$

and

$$
A_{2}= \begin{cases}2^{(n+4) / 4} X_{3}+X_{2}+\left(1-2^{n / 4}\right) X_{1} & (4 \leqq n \equiv 0(\bmod 4)) \\ 2 X_{3}+X_{2}+X_{1} & (n=0) \\ 2^{(n+2) / 4} X_{3}+2 X_{2} & (n+j \equiv 0(\bmod 8)) \\ 2^{(n-2) / 4} X_{3}+X_{2} & (n+j \equiv 4(\bmod 8))\end{cases}
$$

If $n+j \equiv 2(\bmod 8)$ and $n+5 \geqq m \geqq n+2$, then we have

$$
r_{1}\left(V_{m, n}^{j}\right) \cong\left\langle\left\{X_{1}, X_{2}, X_{3}\right\}\right\rangle /\left\langle\left\{B_{1}, X_{2}-2 X_{3}, 4 X_{3}\right\}\right\rangle \cong Z / 4
$$

where

$$
B_{1}= \begin{cases}X_{1}+2 X_{3} & (n \geqq 4) \\ X_{1} & (n=0)\end{cases}
$$

In the case $m=n+1$, we have $r_{1}\left(V_{m, n}^{\dot{j}}\right) \cong 0$.
By Lemma 5.2 and (5.8), we obtain the following.
(5.10) The Adams operations are given by the following formulae.

$$
\begin{align*}
& \text { If } m+j-2 \geqq n+j \equiv 2(\bmod 8) \text { or } m+j-6 \geqq n+j \equiv 2(\bmod 8) \text {, then we have } \tag{5.9}\\
& r_{1}\left(V_{m, n}^{j}\right) \cong\left\langle\left\{X_{1}, X_{2}, X_{3}\right\}\right\rangle /\left\langle\left\{A_{1}, A_{2}, B_{3}\right\}\right\rangle \\
& \cong \begin{cases}\boldsymbol{Z} / 2^{[(m+j) / 4]-[(n+j) / 4]} \oplus \boldsymbol{Z} / 2 & (n+j \equiv 0 \text { or } 2(\bmod 8)) \\
\boldsymbol{Z} / 2^{[(m+j) / 4]-[(n+j) / 4]} & (n+j \equiv 4 \text { or } 6(\bmod 8)),\end{cases}
\end{align*}
$$

(1) $\quad \psi^{k}\left(r_{1}\left(X_{3}\right)\right)= \begin{cases}k^{j / 2} r_{1}\left(X_{3}\right) & (k \equiv 1(\bmod 4)) \\ -k^{j / 2} r_{1}\left(X_{3}\right) & (k \equiv 3(\bmod 4)) \\ 0 & (k \equiv 0(\bmod 2)) .\end{cases}$
(2) $\quad \psi^{k}\left(r_{1}\left(X_{2}\right)\right)= \begin{cases}r_{1}\left(X_{2}\right) & (n \equiv 0(\bmod 4) \text { and } k \equiv 1(\bmod 2)) \\ 0 & (n \equiv 0(\bmod 4) \text { and } k \equiv 0(\bmod 2))\end{cases}$
(3) $\psi^{k}\left(r_{1}\left(2^{(n-2) / 4} X_{3}+X_{2}\right)\right)$

$$
= \begin{cases}r_{1}\left(2^{(n-2) / 4} X_{3}+X_{2}\right) & (n \equiv 2(\bmod 4) \text { and } k \equiv 1(\bmod 2)) \\ 0 & (n \equiv 2(\bmod 4) \text { and } k \equiv 0(\bmod 2)) .\end{cases}
$$

By Lemma 3.1, (5.6), (5.9) and (5.10), we obtain the results for the cases $j \equiv 2(\bmod 4), n \equiv 0(\bmod 2)$ and $m+j \equiv 3,4,5,6$ or $7(\bmod 8)$.

We now turn to the case $m+j \equiv 1(\bmod 8)$. Suppose that $m \geqq n+3$, and consider the commutative diagram

of exact sequences, where $\left.\partial_{1}: \widetilde{K O}\left(S^{m+j}\right) \rightarrow \widetilde{K O(} S^{m+j+1}\right)$ is an isomorphism. We denote the generators of $\widetilde{K O}\left(S^{m+j}\right)$ and $\widetilde{K O}\left(S^{m+j+1}\right)$ by ω_{1} and ω_{2} respectively. Since $\widetilde{K O}\left(S^{m+j}\right) \cong \boldsymbol{Z} / 2$, Lemma 3.5 implies that $\tilde{K}\left(S^{m+j-1}\right) \cong \boldsymbol{Z}$ has a generator γ with

$$
f(\gamma)= \begin{cases}2^{(m-7) / 4} x_{3}+2^{(m-3) / 2} x_{1} & (m \geqq 7) \\ x_{1} & (m=3)\end{cases}
$$

and $r_{2}(\gamma)=2 \beta$, where β is a generator of the group $\widetilde{K O}\left(S^{m+j-1}\right) \cong \boldsymbol{Z}$. It follows from (5.9) that we have

$$
\begin{aligned}
2 g(\beta) & =r_{1}(f(\gamma)) \\
& = \begin{cases}r_{1}\left(2^{(m-7) / 4} x_{3}+2^{(m-3) / 2} x_{1}\right) & (m \geqq 7) \\
r_{1}\left(x_{1}\right) & (m=3)\end{cases}
\end{aligned}
$$

$$
= \begin{cases}2^{(m-n-3) / 4} r_{1}\left(X_{3}\right)+2^{(m-n-7) / 4} r_{1}\left(X_{2}\right) & (n+j \equiv 2(\bmod 8)) \\ 2^{(m-n-3) / 4} r_{1}\left(X_{3}\right) & (n+j \equiv 6(\bmod 8)) \\ 2^{(m-n-5) / 4} r_{1}\left(X_{3}\right) & (n \equiv 2(\bmod 4)) .\end{cases}
$$

If $m \geqq n+7$, we set $\alpha=g(\beta)-2^{((m-7) / 4)-[(n+2) / 4]} r_{1}\left(X_{3}\right)$. Then we have $\partial(\alpha)=h\left(\omega_{1}\right)$, and

$$
2 \alpha= \begin{cases}0 & (m \geqq n+9) \\ r_{1}\left(X_{2}\right) & (m=n+7)\end{cases}
$$

By (5.10) and the fact $4 g(\beta)=0$, we have

$$
\begin{aligned}
\psi^{k}(\alpha) & =k^{(m+j-1) / 2} g(\beta)-\psi^{k}\left(2^{((m-7) / 4)-[(n+2) / 4]} r_{1}\left(X_{3}\right)\right) \\
& = \begin{cases}\alpha & (k: \text { odd }) \\
0 & (k: \text { even }) .\end{cases}
\end{aligned}
$$

According to [3, II], we have

$$
\psi^{k}\left(\omega_{i}\right)= \begin{cases}\omega_{i} & (k: \text { odd }) \\ 0 & (k: \text { even })\end{cases}
$$

($i=1,2$). If $m \geqq n+9$, then the short exact sequence

$$
0 \rightarrow r_{1}\left(V_{m, n}^{j}\right) \rightarrow \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \rightarrow \widetilde{K O}\left(S^{j+1}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \rightarrow 0
$$

of ψ-groups splits. Hence

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong r_{1}\left(V_{m, n}^{j}\right) \oplus \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2
$$

and

$$
\tilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong J^{\prime \prime}\left(r_{1}\left(V_{m, n}^{j}\right)\right) \oplus \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2
$$

If $m=n+7$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)=\left\langle r_{1}\left(V_{m, n}^{j}\right) \cup\left\{\alpha, g\left(\omega_{1}\right)\right\}\right\rangle=\left\langle\left\{r_{1}\left(X_{3}\right), \alpha, g\left(\omega_{1}\right)\right\}\right\rangle .
$$

Since ord $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} \mid L_{4}^{n}\right)\right)=32$ by [15], ord $\left\langle r_{1}\left(X_{3}\right)\right\rangle=\operatorname{ord}\langle\alpha\rangle=4$ and $\operatorname{ord}\left\langle g\left(\omega_{1}\right)\right\rangle$ $=2$, we have

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \tilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 4 \oplus \boldsymbol{Z} / 2
$$

If $m=n+5$ or $n+3$, then we have

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)=\left\langle\left\{g(\beta), g\left(\omega_{1}\right)\right\}\right\rangle
$$

Since ord $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)=8$ by [15], ord $\langle g(\beta)\rangle=4$ and $\operatorname{ord}\left\langle g\left(\omega_{1}\right)\right\rangle=2$, we have

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \widetilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong Z / 4 \oplus Z / 2
$$

Thus we obtain the results for the case $j \equiv 2(\bmod 4), n \equiv 0(\bmod 2)$ and $m+j \equiv 1$ $(\bmod 8)$.

The proof for the case $j \equiv 2(\bmod 4), n \equiv 0(\bmod 2)$ and $m+j \equiv 0(\bmod 8)$ is similar to that for the above case, so we omit it.

Finally we consider the case $m+j \equiv 2(\bmod 8)$. Inspect the commutative diagram

of exact sequences. Since

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{m-2}\right)\right) \cong \widetilde{K O}\left(S^{j+m-2} L_{4}^{2}\right) \cong \boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2
$$

by Proposition 3.7, and

$$
r\left(\tilde{K}\left(S^{j}\left(L_{4}^{m} / L_{4}^{m-2}\right)\right)\right) \cong \widetilde{K O}\left(S^{j+1}\left(L_{4}^{m} / L_{4}^{m-2}\right)\right) \cong \boldsymbol{Z} / 2
$$

the short exact sequence

$$
0 \rightarrow r\left(\tilde{K}\left(S^{j}\left(L_{4}^{m} / L_{4}^{m-2}\right)\right)\right) \rightarrow \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{m-2}\right)\right) \rightarrow \widetilde{K O}\left(S^{j+1}\left(L_{4}^{m} / L_{4}^{m-2}\right)\right) \rightarrow 0
$$

splits. The Adams operations on $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{m-2}\right)\right)$ or $\widetilde{K O}\left(S^{j+1}\left(L_{4}^{m} / L_{4}^{m-2}\right)\right)$ are given by

$$
\psi^{k}= \begin{cases}1 & (k: \text { odd }) \\ 0 & (k: \text { even })\end{cases}
$$

Hence the short exact sequence

$$
0 \rightarrow r_{1}\left(V_{m, n}^{j}\right) \rightarrow \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \rightarrow \widetilde{K O}\left(S^{j+1}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \rightarrow 0
$$

of ψ-groups splits. Thus we obtain the result for the case $j \equiv 2(\bmod 4), n \equiv 0$ $(\bmod 2)$ and $m+j \equiv 2(\bmod 8)$.

Thus the proof for the case $j \equiv 2(\bmod 4)$ and $n \equiv 0(\bmod 2)$ is completed.
5.2. Proof for the case $n \equiv 3(\bmod 4)$. Consider the following commutative diagram, in which the row is exact.

By Lemma 3.5, we can choose an element $x \in \tilde{K}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ such that $f_{2}(x)$ generates the group $\tilde{K}\left(S^{n+j+1}\right) \simeq \boldsymbol{Z}$ and

$$
f_{3}(x)=2^{(n-1) / 2} x_{1}+2^{(n-3) / 4} x_{2}+2^{(n-3) / 2} x_{3} .
$$

Applying the method used in the proof of Lemma 4.7 to x, we obtain the following result by Lemma 5.2.
(5.11) The Adams operations are given by

$$
\psi^{k}(x)= \begin{cases}k^{u} x+\left(\left(k^{j / 2}-k^{u}\right) / 4\right) f_{1}\left(4 f_{3}(x)\right) & (k \equiv 1(\bmod 2)) \\ k^{u} x-\left(k^{u} / 4\right) f_{1}\left(4 f_{3}(x)\right) & (k \equiv 0(\bmod 4)) \\ k^{u} x+f_{1}\left(k^{j / 2} 2^{(n-3) / 4} X_{2}-k^{u} f_{3}(x)\right) & (k \equiv 2(\bmod 4)),\end{cases}
$$

where $u=(n+j+1) / 2$.
This implies that $\operatorname{cor}(x)=\left(1+\psi^{-1}\right)(x)=0$. By (5.8), we have

$$
r_{1}\left(4 f_{3}(x)\right)=r_{1}\left(\left(1-2^{(n+1) / 4}\right) X_{1}+2 X_{2}+2^{(n+5) / 4} X_{3}\right)=r_{1}\left(X_{2}\right) .
$$

Thus we obtain

$$
\begin{equation*}
\text { (1) } 2 r(x)=r(\operatorname{cor}(x))=0 \text {. } \tag{5.12}
\end{equation*}
$$

(2) $\psi^{k}(r(x))=k^{(n+j+1) / 2} r(x)= \begin{cases}r(x) & (k \equiv 1(\bmod 2)) \\ 0 & (k \equiv 0(\bmod 2)) .\end{cases}$

Inspect the following commutative diagram

of exact sequences. Since

$$
\widetilde{K O}\left(S^{n+j+1}\right) \cong \begin{cases}\boldsymbol{Z} / 2 & (n+j \equiv 1(\bmod 8)) \\ 0 & (n+j \equiv 5(\bmod 8))\end{cases}
$$

using (5.12) we see that the short exact sequence

$$
0 \rightarrow \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n+1}\right)\right) \rightarrow \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \rightarrow \widetilde{K O}\left(S^{n+j+1}\right) \rightarrow 0
$$

of ψ-groups splits. This implies that

$$
\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n+1}\right)\right) \oplus \widetilde{K O}\left(S^{n+j+1}\right)
$$

and

$$
\tilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \tilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n+1}\right)\right) \oplus \tilde{J}\left(S^{n+j+1}\right) .
$$

Thus, results of the case $j \equiv 2(\bmod 4)$ and $n \equiv 3(\bmod 4)$ follow from those of the case $j \equiv 2(\bmod 4)$ and $n \equiv 0(\bmod 4)$.
5.3. Proof for the case $\boldsymbol{n} \equiv 1(\bmod 4)$. Consider the following commutative diagram, in which the row is exact.

By Lemma 3.5, we can choose an element $x \in \widetilde{K}\left(S^{j}\left(L_{4}^{m} / L_{4}^{*}\right)\right)$ such that $f_{2}(x)$ generates the group $\tilde{K}\left(S^{n+j+1}\right) \cong Z$ and

$$
f_{3}(x)= \begin{cases}2^{(n-5) / 4} x_{3}+2^{(n-1) / 2} x_{1} & (n \geqq 5) \\ x_{1} & (n=1)\end{cases}
$$

Applying the method used in the proof of Lemma 4.7 to x, we obtain the following result by Lemma 5.2.
(5.13) The Adams operations are given by

$$
\psi^{k}(x)=\left\{\begin{array}{lc}
k^{u} x+\left(\left(k^{j / 2}-k^{u}\right) / 4\right) f_{1}\left(4 f_{3}(x)\right) & (k \equiv 1(\bmod 4)) \\
k^{u} x-\left(\left(k^{j / 2}+k^{u}\right) / 4\right) f_{1}\left(4 f_{3}(x)\right)+k^{j / 2} f_{1}\left(2^{(n-5) / 4}\left(2 X_{2}+2 X_{3}-X_{1}\right)+X_{1}-X_{2}\right) \\
k^{u} x-\left(\left(k^{j / 2}+k^{u}\right) / 4\right) f_{1}\left(4 f_{3}(x)\right)+k^{j / 2} f_{1}\left(X_{2}+X_{3}\right) \\
& (k \equiv 3(\bmod 4) \text { and } n \geqq 5) \\
k^{u} x-\left(k^{u} / 4\right) f_{1}\left(4 f_{3}(x)\right)+\left(k^{j / 2} / 2\right) 2^{(n-1) / 4} f_{1}\left(2 X_{2}-X_{1}\right) \\
& (k \equiv 2(\bmod 4)) \\
k^{u} x-\left(k^{u} / 4\right) f_{1}\left(4 f_{3}(x)\right) & (k \equiv 0(\bmod 4)),
\end{array}\right.
$$

where $u=(n+j+1) / 2$.
Inspect the following commutative diagram

of exact sequences. By Proposition 3.7, we have

$$
V O_{m, n}^{j+2}= \begin{cases}\left\langle\left\{2^{(n+1) / 2} y_{1}, 2^{(n-5) / 4} y_{2}+2^{(n-1) / 2} y_{1}\right\}\right\rangle & (j \equiv 2(\bmod 8) \text { and } n \geqq 5) \\ \left\langle\left\{2^{(n+1) / 2} y_{1}, 2^{(n-1) / 4} y_{2}+2^{(n-1) / 2} y_{1}\right\}\right\rangle & (j \equiv 6(\bmod 8) \text { and } n \geqq 5) \\ \left\langle\left\{y_{1}, 2 y_{2}\right\}\right\rangle & (j \equiv 6(\bmod 8) \text { and } n=1) \\ \left\langle\left\{y_{1}, y_{2}\right\}\right\rangle & (j \equiv 2(\bmod 8) \text { and } n=1)\end{cases}
$$

Using Lemma 5.7, we obtain

$$
\begin{equation*}
\text { Ker } r_{2}=\left\langle\left\{f_{1}\left(2 X_{2}-X_{1}\right), f_{1}\left(2^{(n-1) / 4} X_{3}+X_{2}\right)\right\}\right\rangle \tag{5.14}
\end{equation*}
$$

If $m \geqq n+3$, then we have

$$
\begin{aligned}
\text { Coker } g_{2} & \cong \widetilde{K O}\left(S^{n+j+2}\right) \\
& \cong \begin{cases}Z / 2 & (n+j \equiv 7(\bmod 8)) \\
0 & (n+j \equiv 3(\bmod 8)),\end{cases}
\end{aligned}
$$

and hence

$$
\begin{aligned}
r\left(\tilde{K}\left(S^{n+j+1}\right)\right) & =g_{2}\left(\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)\right) \\
& = \begin{cases}2 \widetilde{K O}\left(S^{n+j+1}\right) & (n+j \equiv 7(\bmod 8)) \\
\widetilde{K O}\left(S^{n+j+1}\right) & (n+j \equiv 3(\bmod 8))\end{cases}
\end{aligned}
$$

Since h_{1} is a monomorphism, we have $\operatorname{Ker} g_{1} \subset r_{1}\left(V_{m, n+1}^{j}\right)$. Thus we obtain a split short exact sequence

$$
0 \rightarrow \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n+1}\right)\right) / \operatorname{Ker} g_{1} \xrightarrow{\bar{g}_{1}} \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \xrightarrow{g_{2}} Z \rightarrow 0
$$

where

$$
\operatorname{Ker} g_{1}=\left\langle r_{1}\left(2^{(n-1) / 4} X_{3}+X_{2}\right)\right\rangle
$$

By (5.9), we obtain
(5.15) If $m \geqq n+3$, then we have

$$
r_{1}\left(V_{m, n+1}^{j}\right) / \operatorname{Ker} g_{1} \simeq\left\langle\left\{X_{1}, X_{2}, X_{3}\right\}\right\rangle\left\langle\left\{A_{1}, B_{2}, B_{3}\right\}\right\rangle,
$$

where $A_{1}=2 X_{2}-X_{1}, B_{2}=2^{(n-1) / 4} X_{3}+X_{2}$ and $B_{3}=2^{[(m-n-1) / 4]} X_{3}$.
Thus the group $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ is determined by using results of the case $j \equiv 2(\bmod 4)$ and $n \equiv 2(\bmod 4)$. In order to determine the group $\boldsymbol{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right.$, we use the following fact which is obtained from (5.13) and (5.14).
(5.16) The Adams operations are given by
$\psi^{k}\left(r_{2}(x)\right)= \begin{cases}k^{(n+j+1) / 2} r_{2}(x)+\left(\left(k^{j / 2}-k^{(n+j+1) / 2}\right) / 4\right) r_{2}\left(f_{1}\left(4 f_{3}(x)\right)\right) & (k \equiv 1(\bmod 4)) \\ k^{(n+j+1) / 2} r_{2}(x)-\left(\left(k^{j / 2}+k^{(n+j+1) / 2}\right) / 4\right) r_{2}\left(f_{1}\left(4 f_{3}(x)\right)\right) & (k \equiv 3(\bmod 4)) \\ k^{(n+j+1) / 2} r_{2}(x)-\left(k^{(n+j+1) / 2} / 4\right) r_{2}\left(f_{1}\left(4 f_{3}(x)\right)\right) & (k \equiv 0(\bmod 2))\end{cases}$
Set $U=\sum_{k: \text { odd }}\left(\psi^{k}-1\right) \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n+1}\right)\right) . \quad$ By Lemma 3.1 and (5.9), we have $U=\left\langle 4 r_{1}\left(X_{3}\right)\right\rangle$. If $k \equiv \varepsilon(\bmod 4)(\varepsilon= \pm 1)$, then we have

$$
\begin{array}{ll}
\left(\left(\varepsilon k^{j / 2}-k^{(n+j+1) / 2}\right) / 4\right) r_{2}\left(f_{1}\left(4 f_{3}(x)\right)\right. & \\
\quad \equiv\left(\left(\varepsilon k^{j / 2}-k^{(n+j+1) / 2}\right) / 2\right) g_{1}\left(r_{1}\left(X_{3}\right)\right) & \left(\bmod g_{1}(U)\right) \\
\equiv((k-\varepsilon) / 2) g_{1}\left(r_{1}\left(X_{3}\right)\right) & \left(\bmod g_{1}(U)\right) \\
\equiv\left(\left(k^{(n+j+1) / 2}-1\right) / 2^{22_{2}^{(n+j+1)}}\right) g_{1}\left(r_{1}\left(X_{3}\right)\right) & \left(\bmod g_{1}(U)\right) .
\end{array}
$$

Thus we have $\widetilde{J}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong \widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) / U_{1}$, where U_{1} is the subgroup of $\widetilde{K O}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right)$ generated by $4 g_{1}\left(r_{1}\left(X_{3}\right)\right)$ and $\mathfrak{m}((n+j+1) / 2) r_{2}(x)-2 g_{1}\left(r_{1}\left(X_{3}\right)\right)$.

Suppose $m+j \equiv 3,4,5,6$ or $7(\bmod 8)$. Then we have

$$
J^{\prime}\left(S^{j}\left(L_{4}^{m} / L_{4}^{n}\right)\right) \cong\left\langle\left\{r_{2}(x), g_{1}\left(r_{1}\left(X_{3}\right)\right)\right\}\right\rangle\left\langle\left\{A_{1}, A_{2}\right\}\right\rangle,
$$

where $A_{1}=\mathfrak{m}((n+j+1) / 2) r_{2}(x)-2 g_{1}\left(r_{1}\left(X_{3}\right)\right)$ and

$$
A_{2}= \begin{cases}4 g_{1}\left(r_{1}\left(X_{3}\right)\right) & (m \geqq n+9) \\ 2 g_{1}\left(r_{1}\left(X_{3}\right)\right) & (n+8 \geqq m \geqq n+5) \\ g_{1}\left(r_{1}\left(X_{3}\right)\right) & (n+4 \geqq m \equiv n+3)\end{cases}
$$

Thus we obtain the results of the cases $j \equiv 2(\bmod 4), n \equiv 1(\bmod 4)$ and $m+j \equiv$ $3,4,5,6$ or $7(\bmod 8)$.

Since $\operatorname{Ker} g_{1}=r_{1}\left(\left\langle 2^{(n-1) / 4} X_{3}+X_{2}\right\rangle\right)$, the rest of the proof is similar to that for the case $j \equiv 2(\bmod 4)$ and $n \equiv 2(\bmod 4)$.

References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] J.F. Adams: On the groups $J(X)$-I, Topology 2 (1963), 181-195.
[3] J.F. Adams: On the groups $J(X)$-II, -III, Topology 3 (1965), 137-171, 193-222.
[4] J.F. Adams and G. Walker: On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 61 (1965), 81-103.
[5] D.W. Anderson: A new cohomology theory, Thesis, Univ. of Calfornia, Berkeley, 1964.
[6] R. Bott: Lectures on K(X), Benjamin, 1969.
[7] K. Fujii, T. Kobayashi and M. Sugawara: Stable homotopy types of stunted lens spaces, Mem. Fac. Sci. Kochi Univ. (Math.) 3 (1982), 21-27.
[8] T. Kobayashi: KO-cohomology of the lens space mod 4, Mem. Fac. Sci. Kochi Univ. (Math.) 6 (1985), 45-63.
[9] T. Kobayashi and M. Sugawara: On stable homotopy types of stunted lens spaces, Hiroshima Math. J. 1 (1971), 287-304.
[10] T. Kobayashi and M. Sugawara: $K_{\Lambda}-$ rings of the lens spaces $L^{n}(4)$, Hiroshima Math. J. 1 (1971), 253-271.
[11] S. Kôno and A. Tamamura: On J-groups of $S^{l}(R P(t-l) / R P(n-l))$, Math. J. Okayama Univ. 24 (1982), 45-51.
[12] S. Kôno and A. Tamamura: J-groups of the suspensions of the stunted lens spases $\bmod p$, Osaka J. Math. 24 (1987), 481-498.
[13] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C.R. Acad. Sc. Paris 271 (1970), 639-642.
[14] D. Quillen: The Adams conjecture, Topology 10 (1971), 67-80.
[15] A. Tamamura and S. Kôno: On the KO-cohomologies of the stunted lens spaces, Math. J. Okayama Univ. 29 (1987), 233-244.

Susumu Kôno
Department of Mathematics
Osaka University
Toyonaka, Osaka 560, Japan
Akie Tamamura
Department of Applied Mathematics
Okayama University of Science
Ridai, Okayama 700, Japan

