The versal deformation of the E_{6}-singularity and a family of cubic surfaces

By Jiro SEkIGUCHI*)

(Received Feb. 12, 1993)

1. Introduction.

The purpose of this paper is to clarify the relation between the versal deformation of the E_{6}-singularity and a family of cubic surfaces originally due to A. Cayley.

We consider the cubic surface $S\left(p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}\right)$ defined by

$$
\begin{equation*}
x^{3}-2 y z^{2}-y^{2}+x\left(p_{0} w^{2}+p_{1} z w+p_{2} z^{2}\right)+q_{0} w^{3}+q_{1} z w^{2}+q_{2} z^{2} w=0 \tag{1.1}
\end{equation*}
$$

in \boldsymbol{P}^{3} with homogeneous coordinate $(x: y: z: w)$, where $p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}$, are parameters. We frequently write $p q=\left(p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}\right)$ for simplicity. If we put $w=1$, the family of surfaces $S(p q)$ is regarded as the versal deformation of the rational double point of type E_{6} :

$$
x^{3}-2 y z^{2}-y^{2}=0
$$

(cf. [SI]). On the other hand, there is a long history on the study of cubic surfaces. Among others, we recall the 4 -dimensional family of cubic surfaces due to A. Cayley (cf. [C]). Modifying his family, we introduce a family of cubic surfaces of \boldsymbol{P}^{3} with homogeneous coordinate ($X: Y: Z: W$) depending on parameters (λ, μ, ν, ρ) as follows (cf. [NS]):

$$
\begin{align*}
& \rho W\left[\lambda X^{2}+\mu Y^{2}+\nu Z^{2}+(\rho-1)^{2}(\lambda \mu \nu \rho-1)^{2} W^{2}+(\mu \nu+1) Y Z+(\lambda \nu+1) Z X\right. \tag{1.2}\\
& +(\lambda \mu+1) X Y-(\rho-1)(\lambda \mu \nu \rho-1) W\{(\lambda+1) X+(\mu+1) Y+(\nu+1) Z\}]+X Y Z=0 .
\end{align*}
$$

Since the moduli space of the cubic surfaces is 4 -dimensional, the family above has enough parameters. For this reason, writing down the defining equation (1.1) in the form (1.2), we obtain a map $\Psi: p q \rightarrow(\lambda, \mu, \nu, \rho)$ at least in principle. Since the map Ψ is multi-valued, we have to change the parameter space of $S(p q)$ to its covering space admitting a linear $W\left(E_{6}\right)$-action, where $W\left(E_{6}\right)$ is the Weyl group of type E_{6}, in order to define a single-valued map to the $(\lambda, \mu, \nu, \rho)$-space.

[^0]One of the motivations of the present study is a suggestion by M. Yoshida concerning the configuration space \boldsymbol{P}_{2}^{6} of 6 points of \boldsymbol{P}^{2} which is, roughly speaking, identified with \boldsymbol{C}^{4}. In a private communication, he pointed out the possibility of the birational action of $W\left(E_{6}\right)$ on the space \boldsymbol{P}_{2}^{6}. On the other hand, there is another realization of $W\left(E_{6}\right)$ as a group of birational transformations of \boldsymbol{C}^{4} related with the family of cubic surfaces (1.2). A conceptual explanation of an isomorphism between two realizations of $W\left(E_{6}\right)$ as groups of birational transformations of \boldsymbol{C}^{4} is given in Hunt [H] as a conjecture. The author started the present study with determining a required $W\left(E_{6}\right)$-equivariant birational map.

We are now going to explain the main result of this paper briefly. From the definition, $W\left(E_{6}\right)$ is a finite reflection group on a 6 -dimensional vector space. Let \boldsymbol{P}^{5} be the projective space associated to the 6 -dimensional linear space. Then $W\left(E_{6}\right)$ acts on \boldsymbol{P}^{5} as a projective linear transformation group. Now we recall the configuration space \boldsymbol{P}_{2}^{6} of 6 points of \boldsymbol{P}^{2}. Roughly speaking, a Zariski open subset of \boldsymbol{P}_{2}^{6} consisting of 6 points in general position is identified with a quasi-affine subset of \boldsymbol{C}^{4} (cf. section 4). To distinguish the coordinate system of \boldsymbol{C}^{4} from (λ, μ, ν, ρ), we write ($x_{1}, x_{2}, y_{1}, y_{2}$) for the coordinate of \boldsymbol{P}_{2}^{6}. There is a $W\left(E_{6}\right)$-action on \boldsymbol{P}_{2}^{6} (cf. Theorem 4.2). On the other hand, $W\left(E_{6}\right)$ is realized as a group of birational transformations on the ($\lambda, \mu, \nu, \rho)$-space which is naturally obtained from the study of the family (5.2) (cf. [NS]). Now we freely use the notation in section 1 to state the main theorem. Let t be the projective coordinate of \boldsymbol{P}^{5}. We define two maps Φ_{1} and Φ_{2} as follows. The map $\Phi_{1}: P^{5} \rightarrow C^{4}$ is given by

$$
\Phi_{1}(t)=\left(x_{1}(t), x_{2}(t), y_{1}(t), y_{2}(t)\right)
$$

where

$$
\begin{array}{ll}
x_{1}(t)=\frac{h_{24} \cdot h_{234} \cdot h_{15} \cdot h_{135}}{h_{14} \cdot h_{134} \cdot h_{25} \cdot h_{235}}, & x_{2}(t)=\frac{h_{24} \cdot h_{234} \cdot h_{16} \cdot h_{136}}{h_{14} \cdot h_{134} \cdot h_{26} \cdot h_{236}}, \\
y_{1}(t)=\frac{h_{34} \cdot h_{234} \cdot h_{15} \cdot h_{125}}{h_{14} \cdot h_{124} \cdot h_{35} \cdot h_{235}}, & y_{2}(t)=\frac{h_{34} \cdot h_{234} \cdot h_{16} \cdot h_{126}}{h_{14} \cdot h_{124} \cdot h_{36} \cdot h_{236}} .
\end{array}
$$

We note that $h, h_{i j}, h_{i j k}$ are roots of type E_{6} whose precise definition is given in section 2. On the other hand, Φ_{2} is a map from the ($x_{1}, x_{2}, y_{1}, y_{2}$)-space to the $(\lambda, \mu, \nu, \rho)$-space defined by

$$
\Phi_{2}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=(\lambda, \mu, \nu, \rho)
$$

where

$$
\begin{aligned}
\lambda & =\frac{x_{2}\left(x_{1}-1\right)\left(y_{1}-y_{2}\right)\left(y_{2}-1\right)}{y_{2}\left(x_{1}-x_{2}\right)\left(x_{2}-1\right)\left(y_{1}-1\right)}, \\
\mu & =\frac{\left\{\left(y_{1}-1\right)\left(x_{2}-y_{2}\right)-\left(y_{2}-1\right)\left(x_{1}-y_{1}\right)\right\} x_{2} y_{2}}{x_{1} x_{2} y_{1}-x_{1} x_{2} y_{2}-x_{1} y_{1} y_{2}+x_{1} y_{2}+x_{2} y_{1} y_{2}-x_{2} y_{1}},
\end{aligned}
$$

$$
\begin{aligned}
& \nu=-\frac{\left(x_{1} y_{2}-x_{2} y_{1}\right)\left(x_{2}-1\right)\left(y_{2}-1\right)}{\left(x_{1}-x_{2}\right)\left(x_{2}-y_{2}\right)\left(y_{1}-y_{2}\right)}, \\
& \rho=\frac{\left(x_{1}-x_{2}\right)\left(x_{2}-y_{2}\right)\left(y_{1}-1\right)}{\left\{\left(x_{1}-1\right)\left(x_{2}-y_{2}\right)-\left(x_{1}-y_{1}\right)\left(x_{2}-1\right)\right\}\left(y_{2}-1\right) x_{2}} .
\end{aligned}
$$

Moreover, we put $\Phi_{3}=\Phi_{2} \circ \Phi_{1}$. Then we can state the main theorem of this paper (see Theorems 4.4, 5.5).

Main Theorem. The three maps $\Phi_{j}(j=1,2,3)$ are $W\left(E_{6}\right)$-equivariant.
This in particular implies that Φ_{3} is a required modification of the multivalued map Ψ.

We start the proof of Main Theorem with determining the 45 triple tangent planes for the cubic surface $S(p q)$ with a generic parameter $p q$. To accomplish the computation, we are indebted to Shioda [Sh] in which a concrete description of 27 lines on $S(p q)$ is obtained. The triple tangent planes are given their namings in a natural manner by using three weights of a 27 dimensional irreducible representation of the Lie algebra of type E_{6}. For this reason, we give their namings: $\pi(i j), \pi\left(i_{1} i_{2} \cdot i_{3} i_{4}, i_{5} i_{6}\right)$. On the other hand, it is known by A. Cayley [C]] (see also [N], [H]) that to each triple tangent plane there associates a cross ratio which is an invariant of a given general cubic surface. Noting this, we first define a linear transformation

$$
T:(x: y: z: w) \longrightarrow(X: Y: Z: W)
$$

of \boldsymbol{P}^{3} in such a way that the namings of the 45 triple tangent planes for $S(p q)$ and those for the surface (5.2) with Shlaefli's namings (cf. section 5) are compatible. We next compute the cross ratios attached to some of triple tangent planes for $S(p q)$ and those for the surface (5.2) and last compare the cross ratios obtained in two ways. Along this idea, we can show Main Theorem.

In section 6, we will discuss a topic related with the unpublished note of B. Hunt [H] on the mapping degree of the map Ψ_{1}.

The author is indebted to Professors B. Hunt and M. Yoshida. In particular, parts of the contents are based on the communications with B. Hunt and his unpublished note [H].

2. The Weyl group of type E_{6}.

We define the notation on the root system of type E_{6} in this section basically following B. Hunt [H].

Let E_{R} be a Cartan subalgebra of a compact Lie algebra of type E_{6}, i.e. $E_{\boldsymbol{R}} \cong \boldsymbol{R}^{6}$. Let $t=\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)$ be a coordinate system of $E_{\boldsymbol{R}}$ such that the roots of type E_{6} are:

$$
\begin{aligned}
& \pm\left(t_{i} \pm t_{j}\right), \quad 1 \leqq i<j \leqq 5 \\
& \pm \frac{1}{2}\left(\delta_{1} t_{1}+\delta_{2} t_{2}+\delta_{3} t_{3}+\delta_{4} t_{4}+\delta_{5} t_{5}+\delta_{6} t_{6}\right)
\end{aligned}
$$

(where $\delta_{j}= \pm 1$ and $\Pi_{j} \delta_{j}=1$). Note that compared with the notation in [B], our variables $t_{i}=\varepsilon_{i}, i=1, \cdots, 5$, while our coordinate t_{6} is denoted $\varepsilon_{6}-\varepsilon_{7}-\varepsilon_{8}$ in [B].

We now introduce the following 36 linear forms on E_{R} :

$$
\begin{aligned}
& h=-\frac{1}{2}\left(t_{1}+\cdots+t_{6}\right), \quad h_{1 j}=-t_{j-1}+h_{0}, \quad j=2, \cdots, 6 \\
& h_{j k}=t_{j-1}-t_{k-1}, \quad 1<j<k<7, \quad h_{1 j k}=-t_{j-1}-t_{k-1}, \quad 1<j<k<7 \\
& h_{j k l}=-t_{j-1}-t_{k-1}-t_{l-1}+h_{0}, \quad 1<j<k<l<7
\end{aligned}
$$

where

$$
h_{0}=\frac{1}{2}\left(t_{1}+\cdots+t_{5}-t_{6}\right)
$$

Then the totality of $h, h_{i j}, h_{i j k}$ forms a set of positive roots of type E_{6}. (In the sequel, we frequently write

$$
h_{i j}=h_{j i}(i \neq j), \quad h_{i j k}=h_{i k j}=h_{j k i}, \quad \text { etc. } \quad(i<j<k)
$$

for simplicity.)
We introduce a positive definite quadratic form on E_{R} defined by

$$
t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}+t_{5}^{2}+\frac{1}{3} t_{6}^{2}
$$

This quadratic form defines an inner product on E_{R}. Then it is possible to define reflections with respect to hyperplanes. In particular, let s (resp. $s_{i j}$, $s_{i j k}$) be the reflection on E_{R} with respect to the hyperplane $h=0$ (resp. $h_{i j}=0$, $h_{i j k}=0$). Then the Weyl group of type E_{6} which is denoted by $W\left(E_{6}\right)$ in this note is the group generated by the 36 reflections defined above.

As a system of simple roots, we take

$$
\alpha_{1}=h_{12}, \quad \alpha_{2}=h_{123}, \quad \alpha_{3}=h_{23}, \quad \alpha_{4}=h_{34}, \quad \alpha_{5}=h_{45}, \quad \alpha_{6}=h_{56}
$$

Then the Dynkin diagram is:

Let g_{j} be the reflection on E_{R} with respect to the root $\alpha_{j}(j=1, \cdots, 6)$. Then, from the definition,

$$
g_{1}=s_{12}, \quad g_{2}=s_{123}, \quad g_{3}=s_{23}, \quad g_{4}=s_{34}, \quad g_{5}=s_{45}, \quad g_{6}=s_{56}
$$

It is easy to describe the action of g_{j} on t. In fact, the action g_{2} is the permutation between t_{1} and $-t_{2}$ and so that between t_{2} and $-t_{1}$. The action $g_{j}(j=3,4,5,6)$ is that between t_{j-1} and t_{j}. It is a little complicated to explain g_{1} on t. We give the action of g_{1} on the roots. In the below, we assume $i, j, k \in\{3,4,5,6\}$. Then

$$
\begin{aligned}
& g_{1}(h)=h, \quad g_{1}\left(h_{1 j}\right)=h_{2 j}, \quad g_{1}\left(h_{2 j}\right)=h_{1 j}, \quad g_{1}\left(h_{i j}\right)=h_{i j}, \\
& g_{1}\left(h_{1 j k}\right)=h_{2 j k}, \quad g_{1}\left(h_{2 j k}\right)=h_{1 j k}, \quad g_{1}\left(h_{i j k}\right)=h_{i j k} .
\end{aligned}
$$

Let E be the complexification of E_{R} and we extend the action of $W\left(E_{6}\right)$ on E_{R} to that on E in a natural manner. Moreover let P^{5} be the projective space associated to E. Then the $W\left(E_{6}\right)$-action on E induces a projective linear action of $W\left(E_{6}\right)$ on P^{5}.

We next define the following 27 linear forms of $t=\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)$ by

$$
\begin{aligned}
& a_{1}=-\frac{2}{3} t_{6}, \quad b_{1}=\frac{1}{2}\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}-\frac{1}{3} t_{6}\right), \\
& b_{j}=t_{j-1}+\frac{1}{3} t_{6}, \quad j=2, \cdots, 6, \quad c_{1 j}=-t_{j-1}+\frac{1}{3} t_{6}, \quad j=2, \cdots, 6, \\
& a_{j}=t_{j-1}-\frac{1}{2}\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+\frac{1}{3} t_{6}\right), \quad j=2, \cdots, 6, \\
& c_{i j}=-t_{i-1}-t_{j-1}+\frac{1}{2}\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}-\frac{1}{3} t_{6}\right), \quad 1<i<j \leqq 6 .
\end{aligned}
$$

These are just the $W\left(E_{6}\right)$ orbit of the fundamental weight $a_{1}=\left(4 \alpha_{1}+3 \alpha_{2}+5 \alpha_{3}+\right.$ $\left.6 \alpha_{4}+4 \alpha_{5}+2 \alpha_{6}\right) / 3$. For simplicity, we denote by Ω_{27} the totality of the 27 weights above.

We say that a set $\left\{\omega, \omega^{\prime}, \omega^{\prime \prime}\right\}\left(\omega, \omega^{\prime}, \omega^{\prime \prime} \in \Omega_{27}\right)$ is a tritangent triple (of weights) if they are satisfied with the condition (TP):

$$
\begin{equation*}
\omega+\omega^{\prime}+\omega^{\prime \prime}=0 \tag{TP}
\end{equation*}
$$

It is easy to show that there are 30 tritangent triples

$$
\left\{a_{i}, b_{j}, c_{i j}\right\}, \quad i \neq j
$$

and 15 tritangent triples

$$
\left\{c_{i_{1} i_{2}}, c_{i_{3} i_{4}}, c_{i_{5} i_{6}}\right\} \quad\left(\left\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right\}=\{1,2,3,4,5,6\}\right) .
$$

As a result, there are totally 45 tritangent triples and they are transitive by $W\left(E_{6}\right)$-action.

We are going to define basic $W\left(E_{6}\right)$-invariant polynomials of t. Let ε_{k} be
the k-th elementary symmetric polynomial of $a_{j}, b_{j}, c_{i j}$ and let δ_{k} be the k-th power sum of $a_{j}, b_{j}, c_{i j}$, that is,

$$
\delta_{k}=\sum_{j=1}^{6}\left(a_{j}^{k}+b_{j}^{k}\right)+\sum_{i<j} c_{i j}^{k}
$$

Then by direct computation, we obtain the following.
Lemma 2.1.

$$
\begin{aligned}
& \varepsilon_{2}=-\frac{1}{2} \delta_{2}, \quad \varepsilon_{5}=\frac{1}{5} \delta_{5}, \quad \varepsilon_{6}=-\frac{1}{96}\left(16 \delta_{6}+\delta_{2}^{3}\right) \\
& \varepsilon_{8}=-\frac{1}{8}\left(\delta_{8}-\frac{2}{3} \delta_{2} \delta_{6}-\frac{1}{576} \delta_{2}^{4}\right), \quad \varepsilon_{9}=\frac{1}{9} \delta_{9} \\
& \varepsilon_{12}=\frac{1}{16588800}\left(25 \delta_{2}^{6}-11520 \delta_{2}^{3} \delta_{6}+95040 \delta_{2}^{2} \delta_{8}+117504 \delta_{2} \delta_{5}^{2}+230400 \delta_{6}^{2}-1382400 \delta_{12}\right)
\end{aligned}
$$

Lemma 2.2. Let $\sigma_{i}=\sigma_{i}\left(t_{1}^{2}, \cdots, t_{5}^{2}\right)$ be the i-th elementary symmetric polynomial of $t_{1}^{2}, \cdots, t_{5}^{2}$ and $\sqrt{\sigma_{5}}=t_{1} \cdots t_{5}$. Then

$$
\begin{aligned}
& \delta_{2}=2 t_{6}^{2}+6 \sigma_{1}, \quad \delta_{5}=-\frac{5}{54} t_{6}^{5}+\frac{5}{9} \sigma_{1} t_{6}^{3}+\frac{5}{2}\left(\sigma_{1}^{2}-4 \sigma_{2}\right) t_{6}+60 \sqrt{\sigma_{5}}, \\
& \delta_{6}=\frac{11}{108} t_{6}^{6}+\frac{5}{12} \sigma_{1} t_{6}^{4}+\frac{5}{4}\left(\sigma_{1}^{2}-4 \sigma_{2}\right) t_{6}^{2}-60 \sqrt{\sigma_{5}} t_{6}+\frac{3}{4}\left(3 \sigma_{1}^{3}-4 \sigma_{1} \sigma_{2}+24 \sigma_{3}\right),
\end{aligned}
$$

The explicit form of δ_{5} in Lemma 2.2 is already given in Hunt [H].
It is clear the subgroup generated by $g_{2}, g_{3}, g_{4}, g_{5}$ is identified with the Weyl group $W\left(D_{4}\right)$ of type D_{4}. We put

$$
k_{1}=g_{1} g_{3} g_{4} g_{5} g_{2} g_{4} g_{3} g_{1}, \quad k_{2}=g_{6} g_{5} g_{4} g_{3} g_{2} g_{4} g_{5} g_{6}
$$

Then it is easy to show the following.
Lemma 2.3.
(i) $k_{1}^{2}=k_{2}^{2}=1$ and $k_{1} k_{2} k_{1}=k_{2} k_{1} k_{2}$.
(ii) Both k_{1}, k_{2} normalize $W\left(D_{4}\right)$.
(iii) The group generated by $W\left(D_{4}\right)$ and k_{1}, k_{2} is isomorphic to $W\left(F_{4}\right)$.

In the sequel, we always identify $W\left(F_{4}\right)$ with the group generated by $W\left(D_{4}\right)$ and k_{1}, k_{2} without any comment. It is easy to show that the isotropy of the tritangent triple $\left\{a_{1}, b_{6}, c_{16}\right\}$ is $W\left(F_{4}\right)$.

3. The construction theorem of elliptic curves due to T. Shioda.

It is known that there are 27 lines on a general cubic surface and 45 tritangent planes.

We are going to construct 45 tritangent planes for a cubic surface $S(p q)$
($p q$: generic) to each tritangent triple using the construction of 27 lines on $S(p q)$ due to T. Shioda [Sh]. Before entering into the construction, we note that the notation here is slightly different from [Sh].

We first suppose that the line L defined by

$$
\begin{equation*}
x=u z+r w, \quad y=d z+e w, \tag{3.1}
\end{equation*}
$$

lies on $S(p q)$, where u, r, d, e are constants such that

$$
\begin{equation*}
d=\left(u^{3}+u p_{2}\right) / 2, \quad e=\left(3 u^{2} r-d^{2}+u p_{1}+r p_{2}+q_{2}\right) / 2 . \tag{3.2}
\end{equation*}
$$

Let $F(x, y, z, w)$ be the polynomial in the defining equation (1.1) of $S(p q)$. Then solving the equation

$$
F(u z+r w, d z+e w, z, w)=0,
$$

we obtain the relations on r and u as shown in [Sh, Theorem $\left.\left(E_{6}\right)\right]$:

$$
\begin{gather*}
\sum_{k=0}^{27} C_{27-k}(p q) u^{k}=0, \tag{3.3}\\
r=\frac{R_{1}(p q, u)}{R_{2}(p q, u)}, \tag{3.4}
\end{gather*}
$$

where

$$
\begin{align*}
& R_{1}(p q, u)=-64 p_{0} p_{1} u-16 p_{0} p_{2}^{2} u^{2}-160 p_{0} p_{2} u^{4}-336 p_{0} u^{6}+32 p_{1}^{2} p_{2} u^{2}+176 p_{1}^{2} u^{4} \tag{3.5.1}\\
& \quad-8 p_{1} p_{2}^{2} u^{5}+32 p_{1} p_{2} q_{2} u+80 p_{1} p_{2} u^{7}-64 p_{1} q_{1}+320 p_{1} q_{2} u^{3}+88 p_{1} u^{9}-2 p_{2}^{5} u^{4} \\
& \quad-17 p_{2}^{4} u^{6}+8 p_{2}^{3} q_{2} u^{2}-72 p_{2}^{3} u^{8}-16 p_{2}^{2} q_{1} u+16 p_{2}^{2} q_{2} u^{4}-134 p_{2}^{2} u^{10}-160 p_{2} q_{1} u^{3} \\
& \quad+104 p_{2} q_{2} u^{6}-110 p_{2} u^{12}-576 q_{0} u^{2}-336 q_{1} u^{5}+144 q_{2}^{2} u^{2}+96 q_{2} u^{8}-33 u^{14},
\end{align*}
$$

$$
\begin{equation*}
R_{2}(p q, u)=8\left(48 p_{0} u^{2}+8 p_{1}^{2}-2 p_{1} p_{2}^{2} u-20 p_{1} p_{2} u^{3}-66 p_{1} u^{5}-p_{2}^{4} u^{2}-8 p_{2}^{3} u^{4}\right. \tag{3.5.2}
\end{equation*}
$$

$$
\left.-28 p_{2}^{2} u^{6}-24 p_{2} q_{2} u^{2}-60 p_{2} u^{8}-24 q_{1} u-96 q_{2} u^{4}-39 u^{10}\right),
$$

and certain polynomials $C_{j}(p q)$ of $p q$. (In [Sh], the explicit forms of $R_{1}(p q, u)$, $R_{2}(p q, u)$ were not written. But the determination of them are straightforward.)

We may take $u=a_{j}, b_{j}, c_{i j}$ as the 27 solutions of equation (3.3). Then, comparing the coefficients of (3.3) with the definition of ε_{k}, we have

$$
C_{0}(p q)=1, \quad C_{1}(p q)=C_{3}(p q)=0, \quad C_{k}(p q)=(-1)^{k} \varepsilon_{k} \quad(k=2, k>3) .
$$

Moreover, we have the following relations among $p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}$ and ε_{k} (cf. [Sh, (10.18)]):

$$
p_{2}=\frac{1}{12} \varepsilon_{2}, \quad p_{1}=\frac{1}{48} \varepsilon_{5}, \quad q_{2}=\frac{1}{96}\left(\varepsilon_{6}-168 p_{2}^{3}\right),
$$

$$
\begin{aligned}
& p_{0}=\frac{1}{480}\left(\varepsilon_{8}-294 p_{2}^{4}-528 p_{2} q_{2}\right), \quad q_{1}=\frac{1}{1344}\left(\varepsilon_{9}-1008 p_{1} p_{2}^{2}\right), \\
& q_{0}=\frac{1}{17280}\left(\varepsilon_{12}-608 p_{1}^{2} p_{2}-4768 p_{0} p_{2}^{2}-252 p_{2}^{6}-1200 p_{2}^{3} q_{2}+1248 q_{2}^{2}\right) .
\end{aligned}
$$

Stressing the dependence of r, d, e on u, we put

$$
r=r(u), \quad d=d(u), \quad e=e(u)
$$

in the sequel and let $L\left(a_{j}\right)$ (resp. $\left.L\left(b_{j}\right), L\left(c_{i_{\jmath}}\right)\right)$ be the line of \boldsymbol{P}^{3} defined by the equations

$$
x=u z+r(u) w, \quad y=d(u) z+e(u) w
$$

with the value $u=a_{\jmath}$ (resp. $b_{\jmath}, c_{2 \jmath}$).
At the present stage, we study basic properties of the function $r(u)$ of u. It follows from [Sh] that $r\left(a_{\jmath}\right), r\left(b_{\jmath}\right), r\left(c_{\imath \jmath}\right)$ are polynomials of t. In particular, we have

Lemma 3.1.

$$
\begin{aligned}
r\left(a_{1}\right)= & \frac{1}{5184}\left(81 t_{1}^{4}-54 t_{1}^{2} t_{2}^{2}-54 t_{1}^{2} t_{3}^{2}-54 t_{1}^{2} t_{4}^{2}-54 t_{1}^{2} t_{5}^{2}-90 t_{1}^{2} t_{6}^{2}+81 t_{2}^{4}-54 t_{2}^{2} t_{3}^{2}\right. \\
& -54 t_{2}^{2} t_{4}^{2}-54 t_{2}^{2} t_{5}^{2}-90 t_{2}^{2} t_{6}^{2}+81 t_{3}^{4}-54 t_{5}^{2} t_{4}^{2}-54 t_{5}^{2} t_{5}^{2}-90 t_{3}^{2} t_{6}^{2}+81 t_{4}^{4} \\
& \left.-54 t_{4}^{2} t_{5}^{2}-90 t_{4}^{2} t_{6}^{2}+81 t_{5}^{4}-9 t_{5}^{2} t_{6}^{2}+73 t_{6}^{4}\right), \\
r\left(b_{2}\right)= & \frac{1}{1296}\left(81 t_{1}^{4}+135 t_{1}^{3} t_{6}-54 t_{1}^{2} t_{2}^{2}-54 t_{1}^{2} t_{3}^{2}-54 t_{1}^{2} t_{4}^{2}-54 t_{1}^{2} t_{5}^{2}+72 t_{1}^{2} t_{6}^{2}-27 t_{1} t_{2}^{2} t_{6}\right. \\
& -27 t_{1} t_{5}^{2} t_{6}-27 t_{1} t_{4}^{2} t_{6}-27 t_{1} t_{5}^{2} t_{6}+3 t_{1} t_{6}^{3}+27 t_{2}^{2} t_{3}^{2}+27 t_{2}^{2} t_{4}^{2}+27 t_{2}^{2} t_{5}^{2}-9 t_{2}^{2} t_{6}^{2} \\
& \left.-162 t_{2} t_{3} t_{4} t_{5}+27 t_{5}^{2} t_{4}^{2}+27 t_{5}^{2} t_{5}^{2}-9 t_{5}^{2} t_{6}^{2}+27 t_{4}^{2} t_{5}^{2}-9 t_{4}^{2} t_{6}^{2}-9 t_{5}^{2} t_{6}^{2}+t_{6}^{4}\right) .
\end{aligned}
$$

Moreover, $r\left(c_{12}\right)$ is obtained from $r\left(b_{1}\right)$ by changing t_{1}, t_{2} with $-t_{1},-t_{2}$.
One way to prove this lemma is to substitute $u=a_{1}, b_{2}, c_{12}$ in $R_{1}(p q, u)$, R_{2} (pq,u) (cf. (3.4), (3.5.1), (3.5.2)) and compute the results. To accomplish this aim, the author needed a help of computer.

We now recall the definition of a tritangent plane for a general cubic surface S of P^{3}. Let $L, L^{\prime}, L^{\prime \prime}$ be three lines on S such that $L, L^{\prime}, L^{\prime \prime}$ mutually intersect each other. Then there is a plane π containing $L, L^{\prime}, L^{\prime \prime}$ called a tritangent plane. It is known that there are totally 45 tritangent planes for a given general cubic surface. We are going to determine tritangent planes for $S(p q)$.

Theorem 3.2. If $\left\{\boldsymbol{\omega}, \boldsymbol{\omega}^{\prime}, \boldsymbol{\omega}^{\prime \prime}\right\}$ is a tritangent triple, then $L(\boldsymbol{\omega}), L\left(\omega^{\prime}\right), L\left(\omega^{\prime \prime}\right)$ are contained in a same tritangent plane for $S(p q)$.

To prove this theorem, we need preparations.
We first define

$$
\varphi_{i j}=a_{i} b_{j}+a_{i} c_{i j}+b_{j} c_{i j}, \quad \psi_{i j}=a_{i} b_{j} c_{i j} .
$$

The next lemma is a direct consequence of Lemma 3.1.
Lemma 3.3.

$$
\begin{aligned}
& r\left(a_{1}\right)+r\left(b_{2}\right)+r\left(c_{12}\right)=\frac{1}{4}\left(p_{2}-\varphi_{12}\right)^{2}, \\
& a_{1} r\left(a_{1}\right)+b_{2} r\left(b_{2}\right)+c_{12} r\left(c_{12}\right)=-p_{1}+\frac{1}{2} \phi_{12}\left(p_{2}-\varphi_{12}\right), \\
& e\left(a_{1}\right)-\frac{1}{2} r\left(a_{1}\right)\left(p_{2}-\varphi_{12}\right) \\
& =\frac{1}{2}\left\{a_{1}^{2} r\left(a_{1}\right)+b_{2}^{2} r\left(b_{2}\right)+c_{12}^{2} r\left(c_{12}\right)+\frac{1}{4} \varphi_{12}\left(p_{2}-\varphi_{12}\right)^{2}-\frac{1}{4} \phi_{12}^{2}+q_{2}\right\} .
\end{aligned}
$$

Lemma 3.4. Let $\pi(12)$ be the plane defined by

$$
\begin{equation*}
y=\frac{1}{2}\left(p_{2}-\varphi_{12}\right) x+\frac{1}{2} \psi_{12} z+\tau_{12} w, \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{12}=e\left(a_{1}\right)-\frac{1}{2} r\left(a_{1}\right)\left(p_{2}-\varphi_{12}\right) . \tag{3.7}
\end{equation*}
$$

Then the three lines $L\left(a_{1}\right), L\left(b_{2}\right), L\left(c_{12}\right)$ are contained in $\pi(12)$.
Proof. Let

$$
\begin{equation*}
y=\tau_{x} x+\tau_{z} z+\tau_{w} w \tag{3.8}
\end{equation*}
$$

be a plane, where $\tau_{x}, \tau_{z}, \tau_{w}$ are constants. If the lines $L\left(a_{1}\right), L\left(b_{2}\right)$ are on the plane (3.8), we obtain

$$
\begin{array}{ll}
a_{1} \tau_{x}+\tau_{z}=d\left(a_{1}\right), & r\left(a_{1}\right) \tau_{x}+\tau_{w}=e\left(a_{1}\right), \\
b_{2} \tau_{x}+\tau_{z}=d\left(b_{2}\right), & r\left(b_{2}\right) \tau_{x}+\tau_{w}=e\left(b_{2}\right) .
\end{array}
$$

Then, noting the definition of $a_{1}, b_{2}, d\left(a_{1}\right), d\left(b_{2}\right)$, we have

$$
\tau_{x}=\frac{1}{2}\left(p_{2}-\varphi_{12}\right), \quad \tau_{z}=\frac{1}{2} \psi_{12} .
$$

These imply

$$
\tau_{w}=e\left(a_{1}\right)-r\left(a_{1}\right) \tau_{x x}=e\left(a_{1}\right)-\frac{1}{2} r\left(a_{1}\right)\left(p_{2}-\varphi_{12}\right) .
$$

The computation above combined with Lemma 3.3 shows that the two lines
$L\left(a_{1}\right)$ and $L\left(b_{2}\right)$ actually intersect and lie on the plane (3.6).
By an argument parallel to above implies that $L\left(a_{1}\right), L\left(b_{2}\right), L\left(c_{12}\right)$ lie on the plane (3.6).

Proof of Theorem 3.2. As we remarked in section 2, any tritangent triple of weights is transformed to $\left\{a_{1}, b_{2}, c_{12}\right\}$ by a certain element of $W\left(E_{6}\right)$. This combined with Lemma 3.4 implies the required statement.

Let $\pi(i j)$ be the tritangent plane containing $L\left(a_{i}\right), L\left(b_{j}\right), L\left(c_{i j}\right)$ and let $\pi\left(i_{1} i_{2}, i_{3} i_{4}, i_{5} i_{6}\right)$ be the tritangent plane containing $L\left(c_{i_{1} i_{2}}\right), L\left(c_{i_{3} i_{4}}\right), L\left(c_{i_{5} i_{6}}\right)$. Noting Lemma 3.4, we can write down the explicit forms of the defining equations for them. For this purpose, we first put

$$
\tau_{i j}=e\left(a_{i}\right)-\frac{1}{2} r\left(a_{i}\right)\left(p_{2}-\varphi_{i j}\right) .
$$

Then it is clear from Lemma 3.3 that

$$
\tau_{i j}=e\left(b_{j}\right)-\frac{1}{2} r\left(b_{j}\right)\left(p_{2}-\varphi_{i j}\right)=e\left(c_{i j}\right)-\frac{1}{2} r\left(c_{i j}\right)\left(p_{2}-\varphi_{i j}\right)
$$

and it follows from Lemma 3.4 that $\pi(i j)$ is defined by

$$
y=\frac{1}{2}\left(p_{2}-\varphi_{i j}\right) x+\frac{1}{2} \phi_{i j} z+\tau_{i j} w
$$

On the other hand, we put

$$
\begin{aligned}
& \varphi_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}}=c_{i_{3} i_{4}} c_{i_{5} i_{6}}+c_{i_{5} i_{6}} c_{i_{1}} c_{i_{2}}+c_{i_{1} i_{2}} c_{i_{3} i_{4}}, \quad \psi_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}}=c_{i_{1} i_{2}} c_{i_{3} i_{4}} c_{i_{5} i_{6}}, \\
& \tau_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{5} i_{6}}=e\left(c_{i_{1} i_{2}}\right)-\frac{1}{2} r\left(c_{i_{1} i_{2}}\right)\left(p_{2}-\varphi_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}}\right) .
\end{aligned}
$$

Then $\pi\left(i_{1} i_{2}, i_{3} i_{4}, i_{5} i_{6}\right)$ is defined by

$$
y=\frac{1}{2}\left(p_{2}-\varphi_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}}\right) x+\frac{1}{2} \psi_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}} z+\tau_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}} w .
$$

Remark 3.6. We consider the tritangent plane $\pi(16)$. Its defining equation is

$$
y=\frac{1}{2}\left(p_{2}-\varphi_{16}\right) x+\frac{1}{2} \psi_{16} z+\tau_{16} w .
$$

It follows from the definition of $W\left(F_{4}\right)$ in section 2 that $\pi(16)$ is left fixed by $W\left(F_{4}\right)$. This in particular implies that $p_{2}-\varphi_{16}, \psi_{16}, \tau_{16}$ are $W\left(F_{4}\right)$-invariant poly nomials.

We are going to define cross ratios for tritangent planes (cf. [C], [N], [H]). We take a line on the surface $S(p q)$, say, $L\left(a_{1}\right)$. Then there are five tritangent planes containing $L\left(a_{1}\right)$, in fact, $\pi(1 j)(j=2,3,4,5,6)$ are such tritangent planes. From four of the five planes, say, $\pi(1 j)(j=2,3,4,5)$, it is possible to define a
cross ratio in the following manner. Let L be a line of P^{5} and let z_{j} be the point on the line L which is the intersection of $\pi(1 j)$ with $L(j=2,3,4,5)$. We take L so that $z_{2}, z_{3}, z_{4}, z_{5}$ are mutually different. Then we can define a cross ratio from $z_{2}, z_{3}, z_{4}, z_{5}$:

$$
\begin{equation*}
\widetilde{C R}(1,6 ; 2,3,4,5)=\frac{\left(z_{2}-z_{5}\right)\left(z_{3}-z_{4}\right)}{\left(z_{2}-z_{4}\right)\left(z_{3}-z_{5}\right)} . \tag{3.9}
\end{equation*}
$$

We put $\alpha=\widetilde{C R}(1,6 ; 2,3,4,5)$ for a moment. Then, by permutations among $2,3,4,5$, we obtain $\alpha, 1-\alpha, 1 / \alpha, 1 /(1-\alpha), \alpha /(\alpha-1),(\alpha-1) / \alpha$.

Let $\left\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right\}$ be so taken that $\left\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right\}=\{1,2,3,4,5,6\}$. Then, taking $L\left(a_{i_{1}}\right), \pi\left(i_{1} i_{j}\right)(j=2,3,4,5,6)$ instead of $L\left(a_{1}\right)$ and $\pi(1 j)(j=2,3,4$, 5,6), we can define $\widetilde{C R}\left(i_{1}, i_{6} ; i_{2}, i_{3}, i_{4}, i_{5}\right)$ similarly.

We are going to compute cross ratios for some of four tritangent planes for $S(p q)$.

Definition 3.7.

$$
\begin{array}{ll}
x_{1}(t)=\widetilde{C R}(3,6 ; 1,2,4,5), & x_{2}(t)=\widetilde{C R}(3,5 ; 1,2,4,6), \\
y_{1}(t)=\widetilde{C R}(2,6 ; 1,3,4,5), & y_{2}(t)=\widetilde{C R}(2,5 ; 1,3,4,6) .
\end{array}
$$

Lemma 3.8 .

$$
\begin{array}{ll}
x_{1}(t)=\frac{h_{24} \cdot h_{234} \cdot h_{15} \cdot h_{135}}{h_{14} \cdot h_{134} \cdot h_{25} \cdot h_{235}}, & x_{2}(t)=\frac{h_{24} \cdot h_{234} \cdot h_{16} \cdot h_{136}}{h_{14} \cdot h_{134} \cdot h_{26} \cdot h_{236}}, \\
y_{1}(t)=\frac{h_{34} \cdot h_{234} \cdot h_{15} \cdot h_{125}}{h_{14} \cdot h_{124} \cdot h_{35} \cdot h_{235}}, & y_{2}(t)=\frac{h_{34} \cdot h_{234} \cdot h_{16} \cdot h_{126}}{h_{14} \cdot h_{124} \cdot h_{36} \cdot h_{236}} .
\end{array}
$$

Proof. It is possible to take $L: z=w=0$ as a generic line. Then it follows from the definition that $\pi(i j) \cap L=\left\{\left(1: \varphi_{i j}: 0: 0\right)\right\}$. Noting this, we find that

$$
\begin{array}{ll}
x_{1}(t)=\frac{\left(\varphi_{31}-\varphi_{35}\right)\left(\varphi_{32}-\varphi_{34}\right)}{\left(\varphi_{31}-\varphi_{34}\right)\left(\varphi_{32}-\varphi_{35}\right)}, & x_{2}(t)=\frac{\left(\varphi_{31}-\varphi_{36}\right)\left(\varphi_{32}-\varphi_{34}\right)}{\left(\varphi_{31}-\varphi_{34}\right)\left(\varphi_{32}-\varphi_{36}\right)}, \\
y_{1}(t)=\frac{\left(\varphi_{21}-\varphi_{25}\right)\left(\varphi_{23}-\varphi_{24}\right)}{\left(\varphi_{21}-\varphi_{24}\right)\left(\varphi_{23}-\varphi_{25}\right)}, & y_{2}(t)=\frac{\left(\varphi_{21}-\varphi_{26}\right)\left(\varphi_{23}-\varphi_{24}\right)}{\left(\varphi_{21}-\varphi_{24}\right)\left(\varphi_{23}-\varphi_{26}\right)} .
\end{array}
$$

On the other hand, it is easy to show that

$$
\varphi_{i j}-\varphi_{i k}= \pm h_{j k} \cdot h_{i j k} .
$$

These imply the lemma.
By an argument similar to the proof of Lemma 3.8, we can show the following.

Theorem 3.9. If $\left\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right\}=\{1,2,3,4,5,6\}$, then

$$
\widetilde{C R}\left(i_{3}, i_{6} ; i_{1}, i_{2}, i_{4}, i_{5}\right)= \pm \frac{h_{i_{2} i_{4}} \cdot h_{i_{2} i_{3} i_{4}} \cdot h_{i_{1} i_{5}} \cdot h_{i_{1} i_{3} i_{5}}}{h_{i_{1} i_{4}} \cdot h_{i_{1} i_{3} i_{4}} \cdot h_{i_{2} i_{5}} \cdot h_{i_{2} i_{3} i_{5}}}
$$

The following lemma will be used in the subsequent sections. Since its proof is straightforward, we omit it.

Lemma 3.10.

$$
\begin{aligned}
& x_{1}(t)-1=-\frac{h_{123} \cdot h_{345} \cdot h_{12} \cdot h_{45}}{h_{14} \cdot h_{235} \cdot h_{25} \cdot h_{134}}, \quad x_{2}(t)-1=-\frac{h_{123} \cdot h_{346} \cdot h_{12} \cdot h_{46}}{h_{14} \cdot h_{236} \cdot h_{26} \cdot h_{134}}, \\
& y_{1}(t)-1=-\frac{h_{123} \cdot h_{13} \cdot h_{245} \cdot h_{45}}{h_{14} \cdot h_{235} \cdot h_{124} \cdot h_{35}}, \quad y_{2}(t)-1=-\frac{h_{123} \cdot h_{13} \cdot h_{246} \cdot h_{46}}{h_{14} \cdot h_{236} \cdot h_{124} \cdot h_{36}}, \\
& x_{1}(t)-y_{1}(t)=\frac{h_{15} \cdot h_{234} \cdot h_{123} \cdot h_{23} \cdot h_{145} \cdot h_{45}}{h_{14} \cdot h_{235} \cdot h_{124} \cdot h_{25} \cdot h_{134} \cdot h_{35}}, \\
& x_{2}(t)-y_{2}(t)=\frac{h_{16} \cdot h_{234} \cdot h_{123} \cdot h_{23} \cdot h_{146} \cdot h_{46}}{h_{14} \cdot h_{236} \cdot h_{124} \cdot h_{26} \cdot h_{134} \cdot h_{36}}, \\
& y_{1}(t)-y_{2}(t)=\frac{h_{234} \cdot h_{123} \cdot h_{13} \cdot h_{256} \cdot h_{34} \cdot h_{56}}{h_{14} \cdot h_{235} \cdot h_{236} \cdot h_{124} \cdot h_{35} \cdot h_{36}}, \\
& x_{1}(t)-x_{2}(t)=\frac{h_{234} \cdot h_{123} \cdot h_{366} \cdot h_{12} \cdot h_{24} \cdot h_{56}}{h_{14} \cdot h_{235} \cdot h_{236} \cdot h_{25} \cdot h_{26} \cdot h_{134}} .
\end{aligned}
$$

4. The configuration space of 6 points in \boldsymbol{P}^{2}.

The purpose of this section is to define a $W\left(E_{6}\right)$-equivariant map from \boldsymbol{P}^{5} to the configuration space $\boldsymbol{P}_{2}^{\boldsymbol{\epsilon}}$ of 6 points in \boldsymbol{P}^{2} by using $x_{1}(t), x_{2}(t), y_{1}(t), y_{2}(t)$ introduced in the previous section.

For this purpose, we first introduce the linear space W of 3×6 matrices:

$$
W=\left\{X=\cdot\left(\begin{array}{llllll}
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\
x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36}
\end{array}\right) ; x_{i j} \in \boldsymbol{C}(1 \leqq i \leqq 3,1 \leqq j \leqq 6)\right\} .
$$

Then W admits a left $G L(3, \boldsymbol{C})$-action and a right $G L(6, \boldsymbol{C})$-action in a natural way. For a moment, we identify $\left(\boldsymbol{C}^{*}\right)^{6}$ with the maximal torus of $G L(6, \boldsymbol{C})$ consisting of diagonal matrices and consider the action of $G L(3, \boldsymbol{C}) \times\left(\boldsymbol{C}^{*}\right)^{6}$ on W instead of $G L(3, \boldsymbol{C}) \times G L(6, \boldsymbol{C})$.

For simplicity, we write $X=\left(X_{1}, X_{2}\right)$ for the matrix $X \in W$, where both X_{1}, X_{2} are 3×3 matrices. For any 3×3 matrix $Y=\left(y_{i j}\right)_{1 \leq i, j \leq 3}$ with the condition $y_{i j} \neq 0(1 \leqq i, j \leqq 3)$, we define a 3×3 matrix

$$
\sigma(Y)=\left(\frac{1}{y_{i j}}\right)_{1 \leq i, j \leq 3}
$$

following a suggestion of M. Yoshida. Moreover, we put

$$
D\left(i_{1}, i_{2}, i_{3}\right)=\operatorname{det}\left(\begin{array}{lll}
x_{1 i_{1}} & x_{1 i_{2}} & x_{1 i_{3}} \\
x_{2 i_{1}} & x_{2 i_{2}} & x_{2 i_{3}} \\
x_{3 i_{1}} & x_{3 i_{2}} & x_{3 i_{3}}
\end{array}\right)
$$

for a given matrix $X \in W$.
Using these notation, we define subsets W^{\prime}, W_{0} of W by

$$
\begin{aligned}
& W^{\prime}=\left\{X \in W ; D\left(i_{1}, i_{2}, i_{3}\right) \neq 0\left(1 \leqq i_{1}<i_{2}<i_{3} \leqq 6\right)\right\} \\
& W_{0}=\left\{\left(X_{1}, X_{2}\right) \in W^{\prime} ;\left(I_{3}, \operatorname{Cof}\left(X_{1}^{-1} X_{2}\right)\right),\left(I_{3}, \sigma\left(X_{1}^{-1} X_{2}\right)\right) \in W^{\prime}\right\}
\end{aligned}
$$

where $\operatorname{Cof}(Y)=(\operatorname{det} Y)^{t} Y^{-1}$ is the cofactor matrix of a given square matrix Y.
It is clear that the action of $G L(3, \boldsymbol{C}) \times\left(\boldsymbol{C}^{*}\right)^{6}$ on W naturally induces that on each of W^{\prime}, W_{0}. In the sequel, we mainly consider the quotient space of W_{0} under the action of $G L(3, \boldsymbol{C}) \times\left(\boldsymbol{C}^{*}\right)^{6}$, that is,

$$
W_{Q}=G L(3, \boldsymbol{C}) \backslash W_{0} /\left(\boldsymbol{C}^{*}\right)^{6}
$$

It is clear from the definition that for any element $X \in W_{0}$, there are (g, h) $\in G L(3, \boldsymbol{C}) \times\left(\boldsymbol{C}^{*}\right)^{6}$ and $\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in \boldsymbol{C}^{4}$ such that

$$
g X h=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & x_{1} & x_{2} \\
0 & 0 & 1 & 1 & y_{1} & y_{2}
\end{array}\right)
$$

In particular $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is uniquely determined for $X \in W_{0}$. In this sense, $W_{Q}=G L(3, \boldsymbol{C}) \backslash W_{0} /\left(\boldsymbol{C}^{*}\right)^{6}$ is identified with an open subset of \boldsymbol{C}^{4}.

Changes of column vectors of $X \in W_{0}$ induce birational transformations on C^{4} with coordinate system $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$. Let $s_{j}(1 \leqq j \leqq 5)$ be the birational transformation on C^{4} corresponding to the change of the j-th column vector and $(j+1)$-column vector of $X \in W_{0}$. Moreover W_{Q} admits an involution s_{R} induced from the action on W_{0} defined by

$$
\tilde{s}_{R}:\left(X_{1}, X_{2}\right) \longrightarrow\left(I_{3}, \sigma\left(X_{1}^{-1} X_{2}\right)\right)
$$

for any $\left(X_{1}, X_{2}\right) \in W_{0}$.
LEMMA 4.1. The birational transformations $s_{j}(1 \leqq j \leqq 5)$ and s_{R} on \boldsymbol{C}^{4} are given by

$$
\begin{aligned}
& s_{1}:\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \longrightarrow\left(\frac{1}{x_{1}}, \frac{1}{x_{2}}, \frac{y_{1}}{x_{1}}, \frac{y_{2}}{x_{2}}\right), \\
& s_{2}:\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \longrightarrow\left(y_{1}, y_{2}, x_{1}, x_{2}\right) \\
& s_{3}:\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \longrightarrow\left(\frac{x_{1}-y_{1}}{1-y_{1}}, \frac{x_{2}-y_{2}}{1-y_{2}}, \frac{y_{1}}{y_{1}-1}, \frac{y_{2}}{y_{2}-1}\right),
\end{aligned}
$$

$$
\begin{aligned}
& s_{4}:\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \longrightarrow\left(\frac{1}{x_{1}}, \frac{x_{2}}{x_{1}}, \frac{1}{y_{1}}, \frac{y_{2}}{y_{1}}\right), \\
& s_{5}:\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \longrightarrow\left(x_{2}, x_{1}, y_{2}, y_{1}\right), \\
& s_{R}:\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \longrightarrow\left(1 / x_{1}, 1 / x_{2}, 1 / y_{1}, 1 / y_{2}\right) .
\end{aligned}
$$

The proof of this lemma is straightforward.
We define 15 hypersurfaces $T_{j}: f_{j}=0(1 \leqq j \leqq 15)$, of \boldsymbol{C}^{4}, where

$$
\begin{aligned}
& f_{1}=x_{1} y_{2}-x_{2} y_{1}-x_{1}+x_{2}+y_{1}-y_{2}, \quad f_{2}=y_{1}-1, \quad f_{3}=x_{1}-1, \\
& f_{4}=y_{2}-1, \quad f_{5}=x_{2}-1, \quad f_{6}=y_{1}-y_{2}, \quad f_{7}=x_{1}-x_{2}, \quad f_{8}=x_{1}-y_{1}, \\
& f_{9}=x_{2}-y_{2}, \quad f_{10}=x_{1} y_{2}-x_{2} y_{1}, \quad f_{11}=x_{2}, \quad f_{12}=x_{1}, \quad f_{13}=y_{2}, \quad f_{14}=y_{1}, \\
& f_{15}=x_{1} y_{2}\left(1-y_{1}\right)\left(1-x_{2}\right)-x_{2} y_{1}\left(1-x_{1}\right)\left(1-y_{2}\right) .
\end{aligned}
$$

It follows from the definition that $s_{1}, \cdots, s_{5}, s_{R}$ are biregular outside the union T of the hypersurfaces $T_{j}(1 \leqq j \leqq 15)$. For a moment, let \tilde{G} be the group generated by $s_{1}, \cdots, s_{5}, s_{R}$.

The following theorem which seems known shows a concrete correspondence between $W\left(E_{6}\right)$ and the group \tilde{G} defined above.

ThEOREM 4.2. The correspondence

$$
g_{1} \longrightarrow s_{1}, \quad g_{2} \longrightarrow s_{R}, \quad g_{3} \longrightarrow s_{2}, \quad g_{4} \longrightarrow s_{3}, \quad g_{5} \longrightarrow s_{4}, \quad g_{6} \longrightarrow s_{5}
$$

induces a group isomorphism of $W\left(E_{6}\right)$ to the group \tilde{G}.
Proof. From the construction of $s_{j}, j=1,2,3,4,5$, it is easy to show the relations:

$$
s_{j} s_{k}=s_{k} s_{j}(|j-k|>1), \quad s_{j} s_{k} s_{j}=s_{k} s_{j} s_{k}(|j-k|=1) .
$$

Therefore it suffices to show

$$
s_{j} s_{R}=s_{R} s_{j}(j=1,2,4,5), \quad s_{3} s_{R} s_{3}=s_{R} s_{3} s_{R},
$$

which are easy to check.
Remark. In [D0], it is stated that there is a $W\left(E_{6}\right)$-action on W_{Q}. See also [N, Appendix], [H].

We are going to define cross ratios for 5 points in \boldsymbol{P}^{2} following [$\left.\mathbf{H}\right]$. Let $\xi_{i}=\left[\xi_{1 i}: \xi_{2 i}: \xi_{3 i}\right](1 \leqq i \leqq 5)$ be five points of \boldsymbol{P}^{2} in a general position and let l be a line of \boldsymbol{P}^{2}. We denote by $P_{i}=\left[1: z_{i}: w_{i}\right]$ the intersection of l and the line passing through the points ξ_{1} and ξ_{i}. We take l so that the four points $P_{i}(i=2,3,4,5)$ are mutually different. Then we define

$$
\begin{equation*}
C R\left(\xi_{2}, \xi_{3}, \xi_{4}, \xi_{5} ; \xi_{1}\right)=\frac{\left(z_{2}-z_{4}\right)\left(z_{3}-z_{5}\right)}{\left(z_{2}-z_{5}\right)\left(z_{3}-z_{4}\right)}, \tag{4.1}
\end{equation*}
$$

which is in fact a cross ratio of $z_{2}, z_{3}, z_{4}, z_{5}$.
Now we consider a matrix of the form

$$
X=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & x_{1} & x_{2} \\
0 & 0 & 1 & 1 & y_{1} & y_{2}
\end{array}\right)
$$

which is a representative of a point of W_{Q} as explained before. From the matrix X, we define six points $\xi_{i}(i=1, \cdots, 6)$ in P^{2} in a usual manner, that is,

$$
\begin{array}{lll}
\xi_{1}=[1: 0: 0], & \xi_{2}=[0: 1: 0], & \xi_{3}=[0: 0: 1], \\
\xi_{4}=[1: 1: 1], & \xi_{5}=\left[1: x_{1}: y_{1}\right], & \xi_{6}=\left[1: x_{2}: y_{2}\right] .
\end{array}
$$

Then we can compute $C R\left(\xi_{i_{2}}, \xi_{i_{3}}, \xi_{i_{4}}, \xi_{i_{5}} ; \boldsymbol{\xi}_{i_{1}}\right)$ explicitly for various $i_{1}, i_{2}, i_{3}, i_{4}$, i_{5}. In particular, the next lemma is a direct consequence of its definition.

Lemma 4.3.

$$
\begin{array}{ll}
x_{1}=C R\left(\xi_{2}, \xi_{1}, \xi_{4}, \xi_{5} ; \xi_{3}\right), & x_{2}=C R\left(\xi_{2}, \xi_{1}, \xi_{4}, \xi_{6} ; \xi_{3}\right), \\
y_{1}=C R\left(\xi_{1}, \xi_{3}, \xi_{4}, \xi_{5} ; \xi_{2}\right), & y_{2}=C R\left(\xi_{1}, \xi_{3}, \xi_{4}, \xi_{6} ; \xi_{2}\right) .
\end{array}
$$

From the equations.

$$
\begin{equation*}
C R\left(\xi_{i_{2}}, \xi_{i_{3}}, \xi_{i_{4}}, \xi_{i_{5}} ; \xi_{i_{1}}\right)=\widetilde{C R}\left(i_{1}, i_{6} ; i_{2}, i_{3}, i_{4}, i_{5}\right) \tag{4.2}
\end{equation*}
$$

we obtain various equalities. In particular, by computing the cases

$$
\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right)=(3,2,1,4,5,6),(3,2,1,4,6,5),(2,1,3,4,5,6),(2,1,3,4,6,5),
$$

we have

$$
\begin{equation*}
x_{1}=x_{1}(t), \quad x_{2}=x_{2}(t), \quad y_{1}=y_{1}(t), \quad y_{2}=y_{2}(t) \tag{4.3}
\end{equation*}
$$

where $x_{1}(t), x_{2}(t), y_{1}(t), y_{2}(t)$ are the functions on \boldsymbol{P}^{5} (cf. Definition 3.7).
The linear action of $W\left(E_{6}\right)$ on E defined in section 2 induces a projective linear action of $W\left(E_{6}\right)$ on \boldsymbol{P}^{5} under the identification $\boldsymbol{P}^{5}=\boldsymbol{P}(E)$. On the other hand, in virtue of Theorem 4.2, we obtain a birational action of $W\left(E_{6}\right)$ on \boldsymbol{C}^{4} with coordinate ($x_{1}, x_{2}, y_{1}, y_{2}$).

THEOREM 4.4. Let $\Phi_{1}(t)$ be a map from \boldsymbol{P}^{5} to \boldsymbol{C}^{4} with coordinate $\left(x_{1}, x_{2}, y_{1}\right.$, y_{2}) defined by

$$
\Phi_{1}(t)=\left(x_{1}(t), x_{2}(t), y_{1}(t) ; y_{2}(t)\right) .
$$

Then $\Phi_{1}(t)$ is $W\left(E_{6}\right)$-equivariant.

Proof. Noting the definition of g_{j} and that of birational transformations s_{\jmath}, s_{R}, we can check the claim. The most complicated case is the implication

$$
\Phi_{1}\left(g_{4}(t)\right)=\left(\frac{x_{1}(t)-y_{1}(t)}{1-y_{1}(t)}, \frac{x_{2}(t)-y_{2}(t)}{1-y_{2}(t)}, \frac{y_{1}(t)}{y_{1}(t)-1}, \frac{y_{2}(t)}{y_{2}(t)-1}\right),
$$

which follows from Lemma 3.10.

5. Relations with a family of cubic surfaces due to A. Cayley.

The purpose of this section is to show a relation between the versal family of the E_{6}-singularity and the family of cubic surfaces originally due to A. Cayley.

We first recall the definition of the family of cubic surfaces due to Cayley [C]:

$$
\begin{gather*}
w_{1}\left[x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+w_{1}^{2}+\left(m n+\frac{1}{m n}\right) y_{1} z_{1}+\left(n l+\frac{1}{n l}\right) z_{1} x_{1}+\left(l m+\frac{1}{l m}\right) x_{1} y_{1}\right. \tag{5.1}\\
\left.+w_{1}\left\{\left(l+\frac{1}{l}\right) x_{1}+\left(m+\frac{1}{m}\right) y_{1}+\left(n+\frac{1}{n}\right) z_{1}\right\}\right]+k x_{1} y_{1} z_{1}=0
\end{gather*}
$$

(We use the homogeneous coordinate ($x_{1}: y_{1}: z_{1}: w_{1}$) instead of $(X: Y: Z: W)$ in [C].)

Modifying his family, we introduce a family of cubic surfaces of P^{3} with homogeneous coordinate ($X: Y: Z: W$) depending on parameters $(\lambda, \mu, \nu, \rho$) as follows (cf. [NS]) :

$$
\begin{align*}
\rho W & {\left[\lambda X^{2}+\mu Y^{2}+\nu Z^{2}+(\rho-1)^{2}(\lambda \mu \nu \rho-1)^{2} W^{2}\right.} \tag{5.2}\\
& +(\mu \nu+1) Y Z+(\lambda \nu+1) Z X+(\lambda \mu+1) X Y \\
& -(\rho-1)(\lambda \mu \nu \rho-1) W\{(\lambda+1) X+(\mu+1) Y+(\nu+1) Z\}]+X Y Z=0 .
\end{align*}
$$

The relation between (5.1) and (5.2) is given as follows (cf. [NS]) :

$$
\begin{aligned}
(X, Y, Z, W) & =\left(m n x_{1}, n l y_{1}, l m z_{1},-\frac{l m n}{\rho(\rho-1)(\lambda \mu \nu \rho-1)} w_{1}\right), \\
\lambda=l^{2}, \quad \mu & =m^{2}, \quad \nu=n^{2}, \quad k=-\frac{(\rho-1)(\lambda \mu \nu \rho-1)}{\operatorname{lmn} \rho} .
\end{aligned}
$$

In [C, pp. 376-378], there is a list of the defining equations of 45 tritangent planes and their namings for the surface (5.1). (See also [N, p. 10], where those of 45 tritangents are given for (5.2).) For our purpose, we change their namings into those due to Schlaefli following Hunt [H]. For the sake of convenience, we write the list in [H]. (Below, the left-hand side is Schlaefli's notation and the right-hand side is Cayley's.)

In particular,

$$
\begin{equation*}
\text { (46): } X=0, \quad(162435): Y=0, \quad(13): Z=0, \quad(16): W=0 . \tag{5.3}
\end{equation*}
$$

We recall the surface $S(p q)$ and its 45 tritangent planes which are written by

$$
\pi(i j)(i \neq j), \quad \pi\left(i_{1} i_{2}, i_{3} i_{4}, i_{5} i_{6}\right) .
$$

Then, it follows from the definition that there is a projective linear map $T(x$: $y: z: w)=(X: Y: Z: W)$ such that T induces a transformation of the 45 tritangent planes for $S(p q)$ to those for (5.2) defined by

$$
\begin{aligned}
& \pi(i j) \longrightarrow(i j), \\
& \pi\left(i_{1} i_{2} \cdot i_{3} i_{4}, i_{5} i_{6}\right) \longrightarrow\left(i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}\right)
\end{aligned}
$$

for all ($i j$) and $\left\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right\}$. Then (5.3) implies that T is defined by

$$
\left\{\begin{array}{l}
X=c_{x}\left\{\left(p_{2}-\varphi_{46}\right) x / 2-y+\psi_{46} z / 2+\tau_{46} w\right\}, \tag{5.4}\\
Y=c_{y}\left\{\left(p_{2}-\varphi_{162435}\right) x / 2-y+\psi_{162435} z / 2+\tau_{162455} w\right\}, \\
Z=c_{z}\left\{\left(p_{2}-\varphi_{13}\right) x / 2-y+\psi_{13} z / 2+\tau_{13} w\right\}, \\
W=c_{w}\left\{\left(p_{2}-\varphi_{16}\right) x / 2-y+\psi_{16} z / 2+\tau_{16} w\right\}
\end{array}\right.
$$

for some constants $c_{x}, c_{y}, c_{z}, c_{w}$ depending on t. (Concrete expression of c_{x}, c_{y}, c_{2}, c_{w} will be given in section 7.)

By taking cross ratios for tritangents planes, we can obtain a map of \boldsymbol{P}^{5}
to the $(\lambda, \mu, \nu, \rho)$-space. We are going to determine the map in question.
For this purpose, we first recall the definitions of the tritangent planes (31), (32), (34), (35), (36), (21), (23), (24), (25), (26) (cf. [N, p. 10]):

$$
\begin{gather*}
\lambda X+\mu Y+\lambda \mu \nu \rho Z+(\lambda \mu \nu \rho-1)(\lambda \mu \rho-\lambda \rho-\mu \rho+1) W=0, \tag{21}\\
\lambda X+Y+\lambda \nu \rho Z-(\rho-1)(\lambda \mu \nu \rho-1) W=0, \tag{23}\\
\lambda \rho X+Y+\lambda \nu \rho Z-\lambda \rho(\rho-1)(\lambda \mu \nu \rho-1) W=0, \tag{24}\\
\lambda \nu \rho X+Y+\lambda \nu \rho Z-\rho(\lambda \mu \nu \rho-1)(\lambda \mu \rho-\lambda-\mu+1) W=0, \tag{25}\\
\lambda X-(\lambda \rho-1)(\lambda \mu \nu \rho-1) W=0, \tag{26}\\
X+\mu Y+\mu \nu \rho Z-(\rho-1)(\lambda \mu \nu \rho-1) W=0, \tag{31}\\
X+Y+\nu \rho Z-(\rho-1)(\mu \nu \rho+\lambda \nu \rho-\nu \rho-1) W=0, \tag{32}\\
\lambda \rho X+Y+\nu \rho Z-\rho(\rho-1)(\lambda \mu \nu \rho+\lambda \nu-\lambda-\nu) W=0, \tag{34}\\
\lambda \nu \rho X+Y+\nu \rho Z-\nu \rho(\rho-1)(\lambda \mu \nu \rho-1) W=0, \tag{35}\\
X-(\rho-1)(\mu \nu \rho-1) W=0 . \tag{36}
\end{gather*}
$$

Let L be a line of \boldsymbol{P}^{3} and we put

$$
w_{2, j}=L \cap(2 j)(j=1,3,4,5,6), \quad w_{3, j}=L \cap(3 j)(j=1,2,4,5,6) .
$$

We take L so that $w_{2, j}(j=1,3,4,5,6)$ are mutually different and that $w_{3, j}(j=$ $1,2,4,5,6$) are mutually different. Identifying L with $\boldsymbol{P}^{1}=\boldsymbol{C} \cup\{\infty\}$, we regard $w_{2, j}, w_{3, j}$ as points of $\boldsymbol{C} \cup\{\infty\}$. Then we have the following lemma.

Lemma 5.1.

$$
\begin{gather*}
\frac{\left(w_{2,1}-w_{2,5}\right)\left(w_{2,3}-w_{2,4}\right)}{\left(w_{2,1}-w_{2,4}\right)\left(w_{2,3}-w_{2,5}\right)}=\frac{(\mu \nu \rho-1)(\rho-1)}{(\mu \rho-1)(\nu \rho-1)}, \tag{5.5}\\
\frac{\left(w_{2,1}-w_{2,6}\right)\left(w_{2,3}-w_{2,4}\right)}{\left(w_{2,1}-w_{2,4}\right)\left(w_{2,3}-w_{2,6}\right)}=\frac{\mu(\rho-1)}{(\mu \rho-1)}, \tag{5.6}\\
\frac{\left(w_{3,1}-w_{3,5}\right)\left(w_{3,2}-w_{3,4}\right)}{\left(w_{3,1}-w_{3,4}\right)\left(w_{3,2}-w_{3,5}\right)}=\frac{(\lambda \rho-1)(\lambda \mu \nu \rho-1)}{(\lambda \mu \rho-1)(\lambda \nu \rho-1)}, \tag{5.7}\\
\frac{\left(w_{3,1}-w_{3,6}\right)\left(w_{3,2}-w_{3,4}\right)}{\left(w_{3,1}-w_{3,4}\right)\left(w_{3,2}-w_{3,6}\right)}=\frac{\mu(\lambda \rho-1)}{\lambda \mu \rho-1} . \tag{5.8}
\end{gather*}
$$

Proof. We may take the line $Y=Z=0$ as L and put $w_{2, j}=\left(v_{2, j}: 0: 0: 1\right)$, $w_{3, j}=\left(v_{3, j}: 0: 0: 1\right)$. Then, from the definition, we have

$$
\begin{aligned}
& v_{2,1}=-(\lambda \mu \nu \rho-1)(\lambda \mu \rho-\lambda \rho-\mu \rho+1) / \lambda, \quad v_{2,3}=(\rho-1)(\lambda \mu \nu \rho-1) / \lambda, \\
& v_{2,4}=(\rho-1)(\lambda \mu \nu \rho-1), \quad v_{2,5}=(\lambda \mu \nu \rho-1)(\lambda \mu \rho-\lambda-\mu+1) /(\lambda \nu),
\end{aligned}
$$

$$
\begin{aligned}
& v_{2,6}=(\lambda \rho-1)(\lambda \mu \nu \rho-1) / \lambda, \quad v_{3,1}=(\rho-1)(\lambda \mu \nu \rho-1), \\
& v_{3,2}=(\rho-1)(\mu \nu \rho+\lambda \nu \rho-\nu \rho-1), \quad v_{3,4}=(\rho-1)(\lambda \mu \nu \rho+\lambda \nu-\lambda-\nu) / \lambda, \\
& v_{3,5}=(\rho-1)(\lambda \mu \nu \rho-1) / \lambda, \quad v_{3,6}=(\rho-1)(\mu \nu \rho-1) .
\end{aligned}
$$

Noting these, we obtain the lemma by direct computation.
It is clear from the definition that the left-sides of (5.5), (5.6), (5.7), (5.8) are cross ratios of tritangent planes (26), (25), (36), (35), respectively. Therefore, if the map T has the required properties, we obtain the following relations:
$\widetilde{C R}(3,6 ; 1,2,4,5)=\frac{(\lambda \rho-1)(\lambda \mu \nu \rho-1)}{(\lambda \mu \rho-1)(\lambda \nu \rho-1)}, \widetilde{C R}(3,5 ; 1,2,4,6)=\frac{\mu(\lambda \rho-1)}{\lambda \mu \rho-1}$,
$\widetilde{C R}(2,6 ; 1,3,4,5)=\frac{(\mu \nu \rho-1)(\rho-1)}{(\mu \rho-1)(\nu \rho-1)}, \widetilde{C R}(2,5 ; 1,3,4,6)=\frac{\mu(\rho-1)}{(\mu \rho-1)}$.
At the present stage, we need a simple lemma to continue the discussion.
Lemma 5.2. The relations in (i) and (ii) on ($x_{1}, x_{2}, y_{1}, y_{2}$) and ($\left.\lambda, \mu, \nu, \rho\right)$ are equivalent.
(i)

$$
\begin{aligned}
\lambda & =\frac{x_{2}\left(x_{1}-1\right)\left(y_{1}-y_{2}\right)\left(y_{2}-1\right)}{y_{2}\left(x_{1}-x_{2}\right)\left(x_{2}-1\right)\left(y_{1}-1\right)} \\
\mu & =\frac{\left\{\left(y_{1}-1\right)\left(x_{2}-y_{2}\right)-\left(y_{2}-1\right)\left(x_{1}-y_{1}\right)\right\} x_{2} y_{2}}{x_{1} x_{2} y_{1}-x_{1} x_{2} y_{2}-x_{1} y_{1} y_{2}+x_{1} y_{2}+x_{2} y_{1} y_{2}-x_{2} y_{1}} \\
\nu & =-\frac{\left(x_{1} y_{2}-x_{2} y_{1}\right)\left(x_{2}-1\right)\left(y_{2}-1\right)}{\left(x_{1}-x_{2}\right)\left(x_{2}-y_{2}\right)\left(y_{1}-y_{2}\right)} \\
\rho & =\frac{\left(x_{1}-x_{2}\right)\left(x_{2}-y_{2}\right)\left(y_{1}-1\right)}{\left\{\left(x_{1}-1\right)\left(x_{2}-y_{2}\right)-\left(x_{1}-y_{1}\right)\left(x_{2}-1\right)\right\}\left(y_{2}-1\right) x_{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& x_{1}=\frac{(\lambda \rho-1)(\lambda \mu \nu \rho-1)}{(\lambda \mu \rho-1)(\lambda \nu \rho-1)}, \quad x_{2}=\frac{(\lambda \rho-1) \mu}{\lambda \mu \rho-1} \\
& y_{1}=\frac{(\mu \nu \rho-1)(\rho-1)}{(\mu \rho-1)(\nu \rho-1)}, \quad y_{2}=\frac{(\rho-1) \mu}{\mu \rho-1}
\end{aligned}
$$

Let Φ_{2} be a birational transformation of C^{4} defined by

$$
\Phi_{2}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=(\lambda, \mu, \nu, \rho)
$$

where λ, μ, ν, ρ are rational functions of $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ defined in Lemma 5.2(i). Then Lemma 5.2 shows that Φ_{2} is birational.

To continue the argument, we recall the $W\left(E_{6}\right)$-action on the family (5.2) of cubic surfaces given in [NS]. In particular, the $W\left(E_{6}\right)$-action in [NS] pre-
serves the parameter space. In fact, we define the following six birational transformations on the ($\lambda, \mu, \nu, \rho)$-space:

$$
\begin{aligned}
& \tilde{g}_{1}:\left\{\begin{array}{l}
\lambda \longrightarrow \lambda \mu \nu \rho^{2}(1-\lambda) /\left(\lambda \mu \nu \rho^{2}-1\right) \\
\mu \longrightarrow(\lambda \mu \rho-1)(\lambda \mu \nu \rho-1) /(\mu(\lambda \rho-1)(\lambda \nu \rho-1)) \\
\nu \longrightarrow(\lambda \nu \rho-1)(\lambda \mu \nu \rho-1) /(\nu(\lambda \rho-1)(\lambda \mu \rho-1)) \\
\rho \longrightarrow(\lambda \rho-1)\left(\lambda \mu \nu \rho^{2}-1\right) /(\rho(\lambda-1)(\lambda \mu \nu \rho-1))
\end{array}\right. \\
& \tilde{g}_{2}:(\lambda, \mu, \nu, \rho) \longrightarrow(\lambda, 1 / \mu, \nu, \mu \rho) \\
& \tilde{g}_{3}:(\lambda, \mu, \nu, \rho) \longrightarrow(1 / \lambda, \mu, \nu, \lambda \rho) \\
& \tilde{g}_{4}:(\lambda, \mu, \nu, \rho) \longrightarrow(\lambda \rho, \mu \rho, \nu \rho, 1 / \rho) \\
& \tilde{g}_{5}:(\lambda, \mu, \nu, \rho) \longrightarrow(\lambda, \mu, 1 / \nu, \nu \rho) \\
& \tilde{g}_{6}:\left\{\begin{array}{l}
\lambda \longrightarrow(\lambda \nu \rho-1)(\lambda \mu \nu \rho-1) /(\lambda(\nu \rho-1)(\mu \nu \rho-1)) \\
\mu \longrightarrow(\mu \nu \rho-1)(\lambda \mu \nu \rho-1) /(\mu(\nu \rho-1)(\lambda \nu \rho-1)) \\
\nu \longrightarrow \lambda \mu \nu \rho^{2}(1-\nu) /\left(\lambda \mu \nu \rho^{2}-1\right) \\
\rho \longrightarrow(\nu \rho-1)\left(\lambda \mu \nu \rho^{2}-1\right) /(\rho(\nu-1)(\lambda \mu \nu \rho-1)) .
\end{array}\right.
\end{aligned}
$$

Then the correspondence

$$
g_{j} \longrightarrow \tilde{g}_{j}, \quad j=1, \cdots, 6
$$

induces an isomorphism between $W\left(E_{6}\right)$ and the group of birational transformations on the $(\lambda, \mu, \nu, \rho)$-space generated by $\tilde{g}_{j}, j=1, \cdots, 6$. In this manner, the ($\lambda, \mu, \nu, \rho)$-space admits a $W\left(E_{6}\right)$-action.

Lemma 5.3. The map Φ_{2} is $W\left(D_{4}\right)$-equivariant.
Proof. It suffices to show the $W\left(D_{4}\right)$-equivariance Φ_{2}^{-1} whose explicit form is obtained by Lemma 5.2 (ii).

The lemma follows from Lemma 4.1 and the definition of $\tilde{g}_{2}, \tilde{g}_{3}, \tilde{g}_{4}, \tilde{g}_{5}$ given before the lemma.

We define another map Φ_{3} from \boldsymbol{P}^{5} to the $(\lambda, \mu, \nu, \rho)$-space as a composition of Φ_{1} and $\Phi_{2}: \Phi_{3}(t)=\Phi_{2}\left(\Phi_{1}(t)\right)$.

Lemma 5.4. We define $\lambda(t), \mu(t), \nu(t), \rho(t)$ by

Then

$$
\Phi_{3}(t)=(\lambda(t), \mu(t), \nu(t), \rho(t)) .
$$

$$
\lambda(t)=\frac{h_{34} \cdot h_{345} \cdot h_{26} \cdot h_{256}}{h_{24} \cdot h_{245} \cdot h_{36} \cdot h_{356}} \cdot \frac{h_{13} \cdot h_{136} \cdot h_{24} \cdot h_{246}}{h_{12} \cdot h_{126} \cdot h_{34} \cdot h_{346}},
$$

$$
\begin{aligned}
& \mu(t)=\frac{h_{456} \cdot h_{235} \cdot h_{134} \cdot h_{126}}{h \cdot h_{15} \cdot h_{24} \cdot h_{36}} \cdot \frac{h_{16} \cdot h_{136} \cdot h_{24} \cdot h_{234}}{h_{14} \cdot h_{134} \cdot h_{26} \cdot h_{236}}, \\
& \nu(t)=\frac{h_{25} \cdot h_{235} \cdot h_{46} \cdot h_{346}}{h_{24} \cdot h_{234} \cdot h_{56} \cdot h_{356}} \cdot \frac{h_{15} \cdot h_{156} \cdot h_{24} \cdot h_{246}}{h_{14} \cdot h_{146} \cdot h_{25} \cdot h_{256}}, \\
& \rho(t)=\frac{h_{24} \cdot h_{245} \cdot h_{36} \cdot h_{356}}{h_{23} \cdot h_{235} \cdot h_{46} \cdot h_{456}} \cdot \frac{h_{14} \cdot h_{146} \cdot h_{23} \cdot h_{236}}{h_{13} \cdot h_{136} \cdot h_{24} \cdot h_{246}}
\end{aligned}
$$

Proof. Since λ, μ, ν, ρ are contained in a $W\left(D_{4}\right)$-orbit, it suffices to show the formula for $\lambda(t)$. But it is easy to prove

$$
\lambda(t)=\frac{h_{34} \cdot h_{345} \cdot h_{26} \cdot h_{256}}{h_{24} \cdot h_{245} \cdot h_{36} \cdot h_{356}} \cdot \frac{h_{13} \cdot h_{136} \cdot h_{24} \cdot h_{246}}{h_{12} \cdot h_{126} \cdot h_{34} \cdot h_{346}}
$$

by using Lemma 3.10. Hence the lemma follows.
THEOREM 5.5. The maps $\Phi_{j}(j=2,3)$ are $W\left(E_{6}\right)$-equivariant.
Proof. The $W\left(E_{6}\right)$-equivariance of Φ_{2} is straightforward by using Lemma 5.2. Noting that $\Phi_{3}=\Phi_{1} \circ \Phi_{2}$, we imply the theorem.

6. A Conjecture of B. Hunt.

It is known (cf. [B]) that there is a unique $W\left(E_{6}\right)$-invariant homogeneous polynomial of $t=\left(t_{1}, \cdots, t_{6}\right)$ of degree 5 up to a constant factor. For example, we take $\delta_{5}(t)$ as such a polynomial.

Let I_{5} be the hypersurface in \boldsymbol{P}^{5} defined by $\delta_{5}(t)=0$. Since $\delta_{5}(t)$ is $W\left(E_{6}\right)$ invariant, so is I_{5}. Moreover, since $\operatorname{dim} I_{5}=4$, the restrictions $\Phi_{1}\left|I_{5}, \Phi_{3}\right| I_{5}$ are generically finite maps from I_{5} to C^{4}. In [H], B. Hunt stated conjectures on these maps which turn out to be one conjecture below.

CONJECTURE 6.1 ([H]). Both $\Phi_{1}\left|I_{5}, \Phi_{3}\right| I_{5}$ are generically bijective.
Since Φ_{2} is birational, it suffices to show Conjecture 6.1 for one of $\Phi_{1} \mid I_{5}$, $\Phi_{3} \mid I_{5}$. Noting the definition of $\Phi_{1}(t)$, we find that Conjecture 6.1 is rewritten as follows:

Problem 6.2. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be constants. At least assume that (x_{1}, x_{2}, y_{1}, y_{2}) is outside the set T (for the definition of T, see section 3). Using x_{1}, x_{2}, y_{1}, y_{2}, we define four polynomials of t by

$$
\begin{aligned}
& f_{1}=h_{24} \cdot h_{234} \cdot h_{15} \cdot h_{135}-x_{1} \cdot h_{14} \cdot h_{134} \cdot h_{25} \cdot h_{235}, \\
& f_{2}=h_{24} \cdot h_{244} \cdot h_{16} \cdot h_{136}-x_{2} \cdot h_{14} \cdot h_{134} \cdot h_{26} \cdot h_{236}, \\
& g_{1}=h_{34} \cdot h_{234} \cdot h_{15} \cdot h_{125}-y_{1} \cdot h_{14} \cdot h_{124} \cdot h_{35} \cdot h_{235}, \\
& g_{2}=h_{34} \cdot h_{234} \cdot h_{16} \cdot h_{126}-y_{2} \cdot h_{14} \cdot h_{124} \cdot h_{36} \cdot h_{236} .
\end{aligned}
$$

Then how many solutions are there for the simultaneous equations of t defined by

$$
\begin{equation*}
f_{1}=f_{2}=g_{1}=g_{2}=\delta_{5}=0 \tag{6.1}
\end{equation*}
$$

with the condition $\Phi_{1}(t) \notin T$?
Needless to say, there is a gap between Conjecture 6.1 and Problem 6.2, that is, conjecture 6.1 claims that for generic $x_{1}, x_{2}, y_{1}, y_{2}$, equation (6.1) has a unique projective solution. Since it is not clear whether Conjecture 6.1 is true or not, we reformulate it as a problem.

From now on, we are going to explain results related with Problem 6.2 and the moduli of cubic surfaces. We consider the hypersurface H in \boldsymbol{P}^{5} defined by $\lambda(t)-1=0$, that is,

$$
\begin{equation*}
P(t)=h_{345} \cdot h_{26} \cdot h_{256} \cdot h_{13} \cdot h_{136} \cdot h_{246}-h_{245} \cdot h_{36} \cdot h_{366} \cdot h_{12} \cdot h_{126} \cdot h_{346}=0 . \tag{6.2}
\end{equation*}
$$

For the polynomial $P(t)$, we have the following elementary but interesting lemma.
Lemma 6.3. The polynomial $P(t)$ of equation (6.2) is decomposed into two factors:

$$
P(t)=h_{23} \cdot P_{5}(t),
$$

where $P_{5}(t)$ is homogeneous of degree 5 and

$$
P_{5}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=-\frac{1}{60} \delta_{5}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{6},-3 t_{5}\right) .
$$

Proof. By direct computation, we have

$$
\begin{aligned}
8 P_{5}(t)= & t_{1}^{4} t_{5}-2 t_{1}^{2} t_{2}^{2} t_{5}-2 t_{1}^{2} t_{5}^{2} t_{5}-2 t_{1}^{2} t_{4}^{2} t_{5}+2 t_{1}^{2} t_{5}^{3}-2 t_{1}^{2} t_{5} t_{6}^{2}-8 t_{1} t_{2} t_{5} t_{4} t_{6}+t_{2}^{4} t_{5}-2 t_{2}^{2} t_{5}^{2} t_{5} \\
& -2 t_{2}^{2} t_{4}^{2} t_{5}+2 t_{2}^{2} t_{5}^{3}-2 t_{2}^{2} t_{5} t_{6}^{2}+t_{3}^{4} t_{5}-2 t_{3}^{2} t_{4}^{2} t_{5}+2 t_{3}^{2} t_{5}^{3}-2 t_{3}^{2} t_{5} t_{6}^{2}+t_{4}^{4} t_{5}+2 t_{4}^{2} t_{5}^{3}-2 t_{4}^{2} t_{5} t_{6}^{2} \\
& -3 t_{5}^{5}+2 t_{5}^{3} t_{6}^{2}+t_{5} t_{6}^{4} .
\end{aligned}
$$

Since this implies in particular that $P_{5}(t)$ is symmetric with respect to t_{1}, t_{2}, t_{3}, t_{4}, t_{6}, we can prove the lemma by comparing P_{5} with the definition of δ_{5}.

From this remarkable relation, we easily imply the following (cf. [H], [N]).
Proposition 6.4. (i) There are 45 hypersurfaces in \boldsymbol{P}^{5} as the $W\left(E_{6}\right)$-orbit of H. Moreover, the isotropy subgroup of H in $W\left(E_{6}\right)$ is isomorphic to the Weyl group of type F_{4}.
(ii) The intersection $H \cap I_{5}$ is decomposed into two irreducible components. One is defined by $t_{5}=t_{6}=0$ and therefore is isomorphic to \boldsymbol{P}^{3}. The other is defined by an equation of degree 24 .
(iii) If $t \in H$, then $\Phi_{2}(t)=(1,1,1,1)$, that is, $\lambda(t)=\mu(t)=\nu(t)=\rho(t)=1$.

Proof. (i) It follows from Lemma 6.3 that $P_{5}(t)$ is $W\left(D_{4}\right)$-invariant. We now recall the definition of $k_{1}, k_{2} \in W\left(E_{6}\right)$ (cf. section 2). By direct computation, we can show

$$
P_{5}\left(k_{1}(t)\right)=-P_{5}(t), \quad P_{5}\left(k_{2}(t)\right)=P_{5}(t) .
$$

Since $W\left(F_{4}\right)$ is generated by $W\left(D_{4}\right)$ and k_{1}, k_{2}, we conclude that the hypersurface I_{5} is $W\left(F_{4}\right)$-invariant. Then (i) follows.
(ii) It is clear from Lemma 2.2 and Lemma 6.3 that $t_{5}=t_{6}=0$ implies $\delta_{5}(t)$ $=P_{5}(t)=0$.

To find the second irreducible component of $I_{5} \cap H$, we assume $t_{5} \neq 0$ and erase t_{6} from the equations $\delta_{5}(t)=P_{5}(t)=0$.

Since the computation is very complicated, we only reproduce here the outline of its proof. We first introduce symmetric polynomials of $t_{1}, t_{2}, t_{3}, t_{4}$ by

$$
s_{2}=t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}, \quad s_{4}=t_{1}^{2}\left(t_{2}^{2}+t_{3}^{2}+t_{4}^{2}\right)+t_{2}^{2}\left(t_{3}^{2}+t_{4}^{2}\right)+t_{3}^{2} t_{4}^{2}, \quad s_{4}^{\prime}=t_{1} t_{2} t_{3} t_{4} .
$$

Using $s_{2}, s_{4}, s_{4}^{\prime}$, we define the polynomial $R(t)$ of degree 24 by

$$
R(t)=c_{10} t_{\overline{5}}^{20}+c_{9} t_{5}^{18}+c_{8} t_{5}^{16}+c_{7} t_{5}^{14}+c_{6} t_{5}^{12}+c_{5} t_{5}^{10}+c_{4} t_{\overline{5}}^{t_{5}^{4}}+c_{3} t_{5}^{6}+c_{2} t_{\overline{5}}^{4}+c_{1} t_{5}^{2}+c_{0},
$$

where

$$
\begin{aligned}
c_{10}= & 1728 s_{2}^{2}, \quad c_{9}=432 s_{2}\left(-21 s_{2}^{2}+20 s_{4}\right), \\
c_{8}= & 27\left(4800 s_{4}^{\prime 2}+761 s_{2}^{4}-1736 s_{2}^{2} s_{4}+400 s_{4}^{2}\right), \\
c_{7}= & 8 s_{2}\left(-46656 s_{4}^{\prime 2}-3217 s_{2}^{4}+12852 s_{2}^{2} s_{4}-10368 s_{4}^{2}\right), \\
c_{6}= & 2\left(-190080 s_{4}^{\prime 2} s_{2}^{2}-336960 s_{4}^{\prime 2} s_{4}+9251 s_{2}^{6}-55955 s_{2}^{4} s_{4}+91368 s_{2}^{2} s_{4}^{2}-28080 s_{4}^{3}\right), \\
c_{5}= & 2 s_{2}\left(825360 s_{4}^{\prime 2} s_{2}^{2}-1582848 s_{4}^{\prime 2} s_{4}-3256 s_{2}^{6}+27143 s_{2}^{4} s_{4}-72496 s_{2}^{2} s_{4}^{2}+61776 s_{4}^{3}\right), \\
c_{4}= & -59833728 s_{4}^{\prime 4}-1370994 s_{4}^{\prime 2} s_{2}^{4}+5809680 s_{4}^{\prime 2} s_{2}^{2} s_{4}-4732128 s_{4}^{\prime 2} s_{4}^{2}-193 s_{2}^{8} \\
& +3054 s_{2}^{6} s_{4}-12981 s_{2}^{4} s_{4}^{2}+10120 s_{2}^{2} s_{4}^{3}+21168 s_{4}^{4}, \\
c_{3}= & 2 s_{2}\left(-2191104 s_{4}^{\prime 4}+199476 s_{4}^{\prime 2} s_{2}^{4}-1263024 s_{4}^{\prime 2} s_{2}^{2} s_{4}+1990080 s_{4}^{\prime 2} s_{4}^{2}\right. \\
& \left.+496 s_{2}^{8}-7327 s_{2}^{6} s_{4}+40443 s_{2}^{4} s_{4}^{2}-98824 s_{2}^{2} s_{4}^{3}+90160 s_{4}^{4}\right), \\
c_{2}= & -907200 s_{4}^{\prime 4} s_{2}^{2}+2491776 s_{4}^{\prime 4} s_{4}-54714 s_{4}^{2} s_{2}^{6}+554274 s_{4}^{\prime 2} s_{2}^{4} s_{4} \\
& -1854576 s_{4}^{\prime 2} s_{2}^{2} s_{4}^{2}+2051616 s_{4}^{\prime 2} s_{4}^{3}-256 s_{2}^{10}+4640 s_{2}^{8} s_{4}-33505 s_{2}^{6} s_{4}^{2} \\
& +120460 s_{2}^{4} s_{4}^{3}-215600 s_{2}^{2} s_{4}^{4}+153664 s_{4}^{5}, \\
c_{1}= & 6 s_{4}^{\prime 2} s_{2}\left(-4968 s_{4}^{2} s_{2}^{2}+14688 s_{4}^{\prime 2} s_{4}-26 s_{2}^{6}+285 s_{2}^{4} s_{4}-1032 s_{2}^{2} s_{4}^{2}+1232 s_{4}^{3}\right), \\
c_{0}= & 27 s_{4}^{\prime 4}\left(192 s_{4}^{\prime 2}+s_{2}^{4}-8 s_{2}^{2} s_{4}+16 s_{4}^{2}\right) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
N(t)= & -2\left\{\left(5 s_{2}^{5}-1602_{2}^{4} t_{5}^{2}-34 s_{2}^{3} s_{4}+4134 s_{2}^{3} t_{5}^{4}+10037 s_{2}^{2} s_{4} t_{5}^{2}-3005 s_{2}^{2} t_{5}^{6}\right.\right. \\
& \left.+56 s_{2} s_{4}^{2}-12820 s_{2} s_{4} t_{5}^{4}+828 s_{2} t_{5}^{8}-15764 s_{4}^{2} t_{5}^{2}+1980 s_{4} t_{5}^{6}-360 t_{5}^{0}\right) t_{5}^{2} \\
& \left.-\left(s_{2}^{2}+164 s_{2} t_{5}^{2}-4 s_{4}+7368 t_{5}^{4}\right) s_{4}^{\prime 2}\right\} s_{4}^{\prime} t_{5}, \\
D(t)= & -\left\{3\left(31 s_{2}^{3}+650 s_{2}^{2} t_{5}^{2}-92 s_{2} s_{4}+2320 s_{2} t_{5}^{4}-1752 s_{4} t_{5}^{2}+5648 t_{5}^{6}\right) s_{4}^{\prime 2} t_{5}^{2}\right. \\
& +2\left(2464 s_{4}^{2}-2055 s_{4} t_{5}^{4}+187 t_{5}^{8}\right) s_{2}^{2} t_{5}^{4}-4\left(1687 s_{4}^{2}-415 s_{4} t_{5}^{4}+12 t_{5}^{8}\right) s_{2} t_{5}^{6} \\
& -\left(1465 s_{4}-1044 t_{5}^{4}\right) s_{2}^{4} t_{5}^{4}+15\left(269 s_{4}-61 t_{5}^{4}\right) s_{2}^{3} t_{5}^{6}-16 s_{4}^{4}+144 s_{2}^{6} t_{5}^{4} . \\
& \left.-599 s_{2}^{5} t_{5}^{6}-5488 s_{4}^{3} t_{5}^{4}+2072 s_{4}^{2} t_{5}^{8}-120 s_{4} t_{5}^{2}\right\} .
\end{aligned}
$$

Then assuming $t_{5} \neq 0$, from the equations

$$
P_{5}(t)=\delta_{5}(t)=0,
$$

we obtain

$$
t_{6}=N(t) / D(t), \quad R(t)=0 .
$$

The equation $R(t)=0$ defines the hypersurface of I_{5} stated in Proposition 6.4 iii).
(iii) follows from direct computation.

Remark 6.5. It follows from Proposition 6.4(i) that there is a natural 1-1 correspondence between the $W\left(E_{6}\right)$-orbit of H and the 45 exceptional divisors of Naruki's cross ratio variety [N].

If we consider the equation $\lambda-1=0$ in the ($x_{1}, x_{2}, y_{1}, y_{2}$)-space, we obtain a hypersurface H_{0} defined by

$$
\begin{equation*}
x_{2}\left(x_{1}-1\right)\left(y_{1}-y_{2}\right)\left(y_{2}-1\right)-y_{2}\left(x_{1}-x_{2}\right)\left(x_{2}-1\right)\left(y_{1}-1\right)=0 . \tag{6.3}
\end{equation*}
$$

Now we formulate a problem simplified from Problem 6.2, noting Proposition 6.4 (ii). Namely, we consider Problem 6.2 in the case $t_{5}=t_{6}=0$ and $t_{1}=1$. (The condition $t_{1}=1$ is not essential. From the homogeneity, we may assume $t_{j}=1$ for some j.)

Problem 6.2'. Define four polynomials of t_{2}, t_{3}, t_{4} by

$$
\begin{aligned}
f_{10}= & \left(t_{2}+t_{3}-t_{4}+1\right)^{2}\left(t_{2}+t_{4}\right)\left(t_{3}-1\right)-x_{1}\left(t_{2}+t_{3}\right)\left(t_{2}-t_{3}+t_{4}+1\right)^{2}\left(t_{4}-1\right), \\
f_{20}= & \left(t_{2}+t_{3}+t_{4}+1\right)\left(t_{2}+t_{3}-t_{4}+1\right)\left(t_{3}-1\right) t_{2} \\
& +x_{2}\left(t_{2}+t_{3}\right)\left(t_{2}-t_{3}+t_{4}+1\right)\left(t_{2}-t_{3}-t_{4}+1\right), \\
g_{10}= & \left(t_{2}+t_{3}-t_{4}+1\right)^{2}\left(t_{2}-t_{3}\right)\left(t_{4}+1\right)-y_{1}\left(t_{2}-t_{3}+t_{4}+1\right)^{2}\left(t_{2}-t_{4}\right)\left(t_{3}+1\right),
\end{aligned}
$$

$$
\begin{aligned}
g_{20}= & \left(t_{2}+t_{3}+t_{4}+1\right)\left(t_{2}+t_{3}-t_{4}+1\right)\left(t_{2}-t_{3}\right) \\
& -y_{2}\left(t_{2}-t_{3}+t_{4}+1\right)\left(t_{2}-t_{3}-t_{4}+1\right)\left(t_{3}+1\right) t_{2}
\end{aligned}
$$

where $x_{1}, x_{2}, y_{1}, y_{2}$ are constants with the condition (6.3) and $\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \neq T$. (In particular, we assume that x_{1} is a rational function of x_{2}, y_{1}, y_{2}.) Then how many solutions are there for equations (6.4) of t_{2}, t_{3}, t_{4} below

$$
\begin{equation*}
f_{10}=f_{20}=g_{10}=g_{20}=0 \tag{6.4}
\end{equation*}
$$

under the condition $t \notin T$?
It is possible to give an answer to Problem 6.2'. In fact, erasing t_{3}, t_{4} from (6.4), we obtain an equation for t_{2} defined by

$$
\begin{equation*}
\sum_{j=0}^{9} b_{j} t_{2}^{j}=0 \tag{6.5}
\end{equation*}
$$

where

$$
\begin{aligned}
b_{9}= & \left(x_{2} y_{1} y_{2}-x_{2} y_{2}-2 y_{1} y_{2}+y_{1}+y_{2}^{2}\right)^{2}\left(x_{2} y_{2}-2 y_{2}+1\right) y_{2}^{4}, \\
b_{8}= & 3\left(x_{2} y_{1} y_{2}-x_{2} y_{2}-2 y_{1} y_{2}+y_{1}+y_{2}^{2}\right)^{2}\left(x_{2} y_{2}-2 x_{2}+1\right) y_{2}^{4}, \\
b_{6}= & -4\left(x_{2}^{2} y_{1} y_{2}-x_{2}^{2} y_{2}+x_{2} y_{1}^{2}+x_{2} y_{1} y_{2}^{2}-4 x_{2} y_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}^{2}-y_{1}^{2} y_{2}+y_{1} y_{2}\right) \\
& \times\left(x_{2} y_{1} y_{2}-x_{2} y_{2}-2 y_{1} y_{2}+y_{1}+y_{2}^{2}\right)\left(x_{2} y_{2}-2 x_{2}+1\right) y_{2}^{3}, \\
b_{5}= & -6\left(x_{2} y_{1} y_{2}-x_{2} y_{2}-2 y_{1} y_{2}+y_{1}+y_{2}^{2}\right)\left(x_{2} y_{1}+x_{2} y_{2}^{2}-2 x_{2} y_{2}-y_{1} y_{2}+y_{2}\right) \\
& \times\left(x_{2} y_{2}-2 y_{2}+1\right) x_{2} y_{1} y_{2}^{2}, \\
b_{4}= & 6\left(x_{2} y_{1} y_{2}-x_{2} y_{2}-2 y_{1} y_{2}+y_{1}+y_{2}^{2}\right)\left(x_{2} y_{1}+x_{2} y_{2}^{2}-2 x_{2} y_{2}-y_{1} y_{2}+y_{2}\right) \\
& \times\left(x_{2} y_{2}-2 x_{2}+1\right) x_{2} y_{1} y_{2}^{2}, \\
b_{3}= & 4\left(x_{2}^{2} y_{1} y_{2}-x_{2}^{2} y_{2}+x_{2} y_{1}^{2}+x_{2} y_{1} y_{2}^{2}-4 x_{2} y_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}^{2}-y_{1}^{2} y_{2}+y_{1} y_{2}\right) \\
& \times\left(x_{2} y_{1}+x_{2} y_{2}^{2}-2 x_{2} y_{2}-y_{1} y_{2}+y_{2}\right)\left(x_{2} y_{2}-2 y_{2}+1\right) x_{2} y_{1} y_{2}, \\
b_{1}= & -3\left(x_{2} y_{1}+x_{2} y_{2}^{2}-2 x_{2} y_{2}-y_{1} y_{2}+y_{2}\right)^{2}\left(x_{2} y_{2}-2 y_{2}+1\right) x_{2}^{2} y_{1}^{2}, \\
b_{0}= & -\left(x_{2} y_{1}+x_{2} y_{2}^{2}-2 x_{2} y_{2}-y_{1} y_{2}+y_{2}\right)^{2}\left(x_{2} y_{2}-2 x_{2}+1\right) x_{2}^{2} y_{1}^{2}, \\
b_{7}= & b_{2}=0 .
\end{aligned}
$$

Moreover, if t_{2} is a solution of (6.5), t_{3}, t_{4} are uniquely determined by (6.4).
It is provable that equation (6.5) for t_{2} is irreducible of degree 9 and that for generic x_{2}, y_{1}, y_{2}, (6.5) has no multiple factor. As a consequence, we obtain the following.

THEOREM 6.6. The restriction of Φ_{1} to the subspace $t_{5}=t_{6}=0$ is generically

9 to 1.

The author is not sure whether Theorem 6.6 induces the invalidity of Conjecture 6.1 or not.

7. Miscellaneous results and concluding remarks.

7.1. After the manuscript was written up, T. Shioda pointed out that Theorem 3.2 can be proved by using his theory of Mordell-Weil lattices.

On the other hand, B. Hunt pointed out that the $W\left(E_{6}\right)$-equivariance of the map Ψ_{2} is a special case of a general result of E. Looijenga on a relation between double ratios of root systems and geometric double ratios on del Pezzo surfaces (cf. [H, p. 15]).
7.2. In section 5 , we defined a linear map T (cf. (5.4)). We are going to determine the constants $c_{x}, c_{y}, c_{z}, c_{w}$.

We first note that the tritangent plane (36) for the surface (5.2) is defined by (cf. [N])

$$
X-(\rho-1)(\mu \nu \rho-1) W=0
$$

This combined with (5.4) implies

$$
\left.\left.\begin{array}{l}
c_{x}\left\{\frac{1}{2}\left(p_{2}-\varphi_{46}\right) x-y+\frac{1}{2} \phi_{46} z+\tau_{46} w\right\} \\
\quad-(\rho-1)(\mu \nu \rho-1) c_{w}\left\{\frac{1}{2}\left(p_{2}-\varphi_{16}\right) x-y+\frac{1}{2} \psi_{16} z+\tau_{16} w\right\} \\
=c
\end{array}\right)\left\{\frac{1}{2}\left(p_{2}-\varphi_{36}\right) x-y+\frac{1}{2} \psi_{36} z+\tau_{36} w\right\}\right\}
$$

for a constant c. Comparing the coefficients of x, y, we obtain

$$
\begin{aligned}
& c_{x}\left(p_{2}-\varphi_{46}\right)-(\rho-1)(\mu \nu \rho-1) c_{w}\left(p_{2}-\varphi_{16}\right)=c\left(p_{2}-\varphi_{36}\right), \\
& c_{x}-(\rho-1)(\mu \nu \rho-1) c_{w}=c .
\end{aligned}
$$

Solving the equations above, we obtain

$$
\begin{equation*}
c_{x}=(\rho-1)(\mu \nu \rho-1) \frac{\varphi_{36}-\varphi_{16}}{\varphi_{36}-\varphi_{46}} c_{w} \tag{7.1}
\end{equation*}
$$

In the same way, we obtain

$$
\begin{gather*}
c_{y}=(\rho-1)(\lambda \nu \rho-1) \frac{\varphi_{162345}-\varphi_{16}}{\varphi_{162355}-\varphi_{162435}} c_{w}, \tag{7.2}\\
c_{2}=(\rho-1)(\lambda \mu \rho-1) \frac{\varphi_{16}-\varphi_{14}}{\varphi_{13}-\varphi_{14}} \varphi_{w} . \tag{7.3}
\end{gather*}
$$

By direct computation, we have

$$
\begin{aligned}
& \frac{\varphi_{36}-\varphi_{16}}{\varphi_{36}-\varphi_{46}}=-\frac{h_{13} \cdot h_{245}}{h_{34} \cdot h_{125}}, \frac{\varphi_{162345}-\varphi_{16}}{\varphi_{162345}-\varphi_{162435}}=-\frac{h_{236} \cdot h_{456}}{h_{25} \cdot h_{34}}, \frac{\varphi_{16}-\varphi_{14}}{\varphi_{13}-\varphi_{14}}=-\frac{h_{46} \cdot h_{146}}{h_{34} \cdot h_{134}} \\
& \rho-1=\frac{h_{23} \cdot P_{5}}{h_{245} \cdot h_{36} \cdot h_{356} \cdot h_{12} \cdot h_{126} \cdot h_{346}}, \quad \mu \nu \rho-1=\frac{h_{125} \cdot P_{5}}{h \cdot h_{13} \cdot h_{14} \cdot h_{256} \cdot h_{26} \cdot h_{56}} \\
& \lambda \nu \rho-1=\frac{h_{25} \cdot P_{5}}{h_{12} \cdot h_{126} \cdot h_{234} \cdot h_{356} \cdot h_{56} \cdot h_{456}}, \quad \lambda \mu \rho-1=\frac{h_{134} \cdot P_{5}}{h \cdot h_{12} \cdot h_{15} \cdot h_{36} \cdot h_{46} \cdot h_{346}} .
\end{aligned}
$$

(The polynomial P_{5} is the one defined in section 6.)
From these equations, it is possible to determine $c_{x}, c_{y}, c_{z}, c_{w}$. (Since T is projective linear, we may assume that $c_{w}=1$.)
7.3. The polynomial (3.3) of u is related with a 27 -dimensional irreducible representation of the Lie algebra \underline{e}_{6} of type E_{6}. By an argument parallel to [SI], the following statement seems provable.

Let (π, V) be an irreducible representation of \underline{e}_{6} such that $\operatorname{dim} V=27$. Let x be a subregular nilpotent element of \underline{e}_{6}, that is, x is nilpotent such that its centralizer $Z_{\underline{e}_{6}}(x)$ has dimension rank $\underline{e}_{6}+2=8$. Moreover, let h, y be elements of \underline{e}_{6} such that $\{x, h, y\}$ is a TDS. Let e_{1}, \cdots, e_{8} be a basis of $Z_{e_{6}}(y)$. Taking $v=\sum_{j=1}^{8} w_{j} e_{j} \in Z_{e_{6}}(y)$, we consider the characteristic polynomial

$$
\chi\left(\Lambda ; w_{1}, \cdots, w_{8}\right)=\operatorname{det}(\Lambda-\pi(x+v))
$$

Since $\operatorname{deg}_{\Lambda} \chi\left(\Lambda ; w_{1}, \cdots, w_{8}\right)=27$, we put

$$
\begin{equation*}
\chi\left(\Lambda ; w_{1}, \cdots, w_{8}\right)=\Lambda^{27}+C_{1} \Lambda^{26}+C_{2} \Lambda^{25} \cdots+C_{26} \Lambda+C_{27} \tag{7.4}
\end{equation*}
$$

for some $C_{j}(j=1,2, \cdots, 27)$. Then from (7.4), we obtain a lot of equations with respect to w_{i} and C_{j}. These equations are reduced to a unique equation which turns out to be equation (1.1) (with $w=1$) of Introduction by a certain change of variables.

In the argument above, the role of 27 weights $a_{j}, b_{j}, c_{i j}$ is clear. But what are the roles of 27 lines and 45 tritangent planes?
7.4. It is possible to give an interpretation of the 76 divisors of Naruki's cross ratio variety (cf. [N]) in terms of root system Δ of type E_{6}. We are going to explain this briefly.

We first define a linear subspace $C R(\boldsymbol{P})$ of \boldsymbol{P}^{2} with coordinate ($\xi_{1}: \xi_{2}: \xi_{3}$) defined by the equation $\xi_{1}+\xi_{2}+\xi_{3}=0$. Clearly $C R(\boldsymbol{P})$ is equal to \boldsymbol{P}^{1}, but it is convenient to use $C R(\boldsymbol{P})$ for our purpose.

Let Z be the Z ariski open subset of \boldsymbol{P}^{5} defined by

$$
h \cdot \prod_{j<k} h_{j k} \cdot \prod_{i<j<k} h_{i j k} \neq 0
$$

We first define a cross ratio map of Z to $C R(\boldsymbol{P})$ by

$$
t \longrightarrow\left(h_{j_{3} j_{5}} h_{j_{3} j_{4} j_{5}} h_{j_{2} j_{6}} h_{j_{2} j_{4} j_{6}}:-h_{j_{2} j_{5}} h_{j_{2} j_{4} j_{5}} h_{j_{3} j_{6}} h_{j_{3} j_{4} j_{6}}: h_{j_{2} j_{3}} h_{j_{2} j_{3} j_{4}} h_{j_{5} j_{6}} h_{j_{4} j_{5} j_{6}}\right) .
$$

By permutations of indices among $1,2,3,4,5,6$, we obtain 30 maps of the form above. We need another cross ratio map defined by

$$
t \longrightarrow\left(h_{j_{1} j_{3} j_{5}} h_{j_{2} j_{4} j_{5}} h_{j_{2} j_{3} j_{6}} h_{j_{1} j_{4} j_{6}}:-h_{j_{2} j_{3} j_{5}} h_{j_{1} j_{4} j_{5}} h_{j_{1} j_{3} j_{6}} h_{j_{2} j_{4} j_{6}}: h_{j_{1} j_{2}} h_{j_{3} j_{4}} h_{j_{5} j_{6}} h\right) .
$$

In this case, by permutations of indices among $1,2,3,4,5,6$, we obtain 15 maps of the form above. As a result, we obtain $45(=30+15)$ cross ratio maps of Z to $C R(\boldsymbol{P})$.

Taking the product of these maps, we define a map $c r_{E_{6}}$ of Z to $C R(\boldsymbol{P})^{45}$.
Let $C_{E_{6}}^{\prime}=c r_{E_{6}}(Z)$ and let $C_{E_{6}}$ be its Zariski closure in $C R(\boldsymbol{P})^{45}$.
Theorem 7.4.1 ([N]). (i) $C_{E_{6}}$ is 4-dimensional and non-singular.
(ii) The $W\left(E_{6}\right)$-action on $C_{E_{6}}$ is biregular.
(iii) $C_{E_{6}}-C_{E_{6}}^{\prime}$ is a divisor with normal crossings. There are 76 irreducible components of $C_{E_{6}}-C_{E_{6}}^{\prime}$ each of which is smooth.

In [N], $C_{E_{6}}$ is denoted C and $C_{E_{6}}^{\prime}$ is equal to M. The variety $C_{E_{6}}$ is called Naruki's cross ratio variety in [H].

We are now going to give a root system theoretic interpretation of the 76 divisors of $C_{E_{6}}-C_{E_{6}}^{\prime}$. Let φ be one of root forms $h, h_{j k}, h_{i j k}$. Then taking the limit $\varphi \rightarrow 0$ in $C_{E_{6}}$, we obtain a hypersurface Y_{φ} in $C_{E_{6}}$. In this way, we obtain 36 divisors of $C_{E_{6}}$. Clearly these correspond to positive roots of the root system Δ. In the sequel, such a hypersurface is called a hypersurface of the $1^{s t}$ kind. Any hypersurface of the $1^{s t}$ kind admits a biregular Σ_{6}-action induced by the $W\left(E_{6}\right)$-action and is isomorphic to the 3 -dimensional Terada model. Here the n-dimensional Terada model means the n-dimensional nonsingular variety T_{n} constructed in [T] which plays an important role in the study of AppellLauricella hypergeometric function $F_{D}\left(z_{1}, \cdots, z_{n}\right)$.

On the other hand, we take an A_{2}-subroot system of Δ, for example, $\Delta_{1}=$ $\left\{ \pm h_{12}, \pm h_{23}, \pm h_{13}\right\}$. Then, we put

$$
u=\frac{h_{23}}{h_{12}}
$$

and substitute

$$
h_{23}=u h_{12}, \quad h_{13}=(1+u) h_{12}
$$

in $C_{E_{6}}^{\prime}$. Next taking the limit $h_{12} \rightarrow 0$, we obtain a hypersurface X_{1} in $C_{E_{6}}$ which depends on the choice of the A_{2}-subroot system Δ_{1}.

There are two other A_{2}-subroot systems $\Delta_{2}=\left\{ \pm h_{45}, \pm h_{56}, \pm h_{46}\right\}, \Delta_{3}=$ $\left\{ \pm h_{123}, \pm h, \pm h_{456}\right\}$. The triple $\left\{\Delta_{1}, \Delta_{2}, \Delta_{3}\right\}$ is characterized by the properties that they are mutually orthogonal and span the linear space E. Then we can construct a hypersurface $X_{2}\left(\right.$ resp. X_{3}) of $C_{E_{6}}$ from Δ_{2} (resp. Δ_{3}) by an
argument similar to do X_{1}.
Using the notation above, we can show the following.
(i) X_{1} equals X_{2}, X_{3} and is isomorphic to $T_{1} \times T_{1} \times T_{1}$.
(ii) There are totally 40 divisors of the form X_{1} corresponding to subroot systems of Δ whose types are $A_{2}+A_{2}+A_{2}$.

A hypersurface constructed in this manner is called a hypersurface of the $2^{\text {nd }}$ kind.

In [N], hypersurfaces of the $1^{\text {st }}$ kind and hypersurfaces of the $2^{\text {nd }}$ kind are called A_{1}-divisors and non-normality divisors, respectively.

It is easy to describe the intersection relation among the 76 divisors in terms of root systems.

Since the Terada model is constructed in connection with Appell-Lauricella hypergeometric function, it is interesting to study the generalized hypergeometric function of type (3,6) as a function on Naruki's cross ratio variety (cf. [MSY]).

References

[B] N. Bourbaki, Groupes et Algèbres de Lie, Chaps. 4, 5, 6, Herman, Paris, 1968.
[C] A. Cayley, A memoir on cubic surfaces, Collected Papers VI.
[DO] 1. Dolgachev and D. Ortland, Point sets in projective spaces and theta functions, Astérisque, 165, 1988.
[H] B. Hunt, A remarkable quintic fourfold in \boldsymbol{P}^{5} and its dual variety (Update: 7.1. 1992), in preparation.
[MSY] K. Matsumoto, T. Sasaki and M. Yoshida, The monodromy of the period map of a 4-parameter family of K3 surfaces and the hypergeometric function of type $(3,6)$, International J. of Math., 3 (1992), 1-164.
[N] I. Naruki, Cross ratio variety as a moduli space of cubic surfaces, Proc. London Math. Soc., 45 (1982), 1-30.
[NS] I. Naruki and J. Sekiguchi, A modification of Cayley's family of cubic surfaces and birational action of $W\left(E_{6}\right)$ over it, Proc. Japan Acad. Ser. A, 56 (1980), 122-125.
[Se] J. Sekiguchi, The configuration space of 6 points in \boldsymbol{P}^{2}, the moduli space of cubic surfaces and the Weyl group of type $W\left(E_{6}\right)$, RIMS Kokyuroku, 848 (1993), 74-85.
[Sh] T. Shioda, Construction of elliptic curves with high rank via the invariants of the Weyl groups, J. Math. Soc. Japan, 43 (1991), 673-719.
[S1] P. Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Math., 815.
[T] T. Terada, Fonction hypergéométriques F_{1} et fonctions automorphes I, J. Math., Soc. Japan, 35 (1983), 451-475.

Jiro Sekiguchi

Department of Mathematics
University of Electro-Communications
Chofu, Tokyo 182
Japan

[^0]: *) Partially supported by Grant-in-Aid for Scientific Research (No. 04640135), the Ministry of Education, Science and Culture.

