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ON SUPERCONVERGENCE RESULTS
AND NEGATIVE NORM ESTIMATES FOR
PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

AMIYA K. PANI AND RAJEN K. SINHA

ABSTRACT. The purpose of this paper is to show how
known negative norm estimates and superconvergence results
applied to parabolic equations can be carried over to integro-
differential equations of parabolic type. A quasi projection
technique introduced earlier by Douglas, Dupont and Wheeler
is modified to establish negative norm estimates in several
space variables. Further, in a single space variable, knot su-
perconvergence is also established. Finally, interior supercon-
vergence estimates are also derived.

1. Introduction. In this paper, we discuss some superconvergence
results and negative norm estimates for the following parabolic integro-
differential equation

ur + A(t)u = /t B(t,7)u(t)dr + f in QxJ,
0

(1.1) u=0 on N x J,
u(-,0) =up in .

Here, v = u(z,t) and f = f(z,t) are real valued functions in Q X J,
where  is a bounded domain in R? with smooth boundary 9%, J =
(0,7), T < oo and uy = Qu/0t. Further, A(t) is a selfadjoint, uniformly
positive definite second order elliptic partial differential operator of the
form

d
Z 6137] <aij(x,t)aimi> + ap(z, )1,
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and B(t,7) is a general second-order partial differential operator

d

B(t,r)=->_ %(bij(%tﬁ)%>

i,j=1

d
0
+ ;bj(ac;t,r)a—xj + by (z;t, 7)1

The nonhomogeneous term f and the coefficients of A(t) and B(t,T)
are assumed to be smooth.

Let H}(Q) = {ve HY(Q)|v=0o0n0Q}. Further, let A(t;-,)
and B(t,;-,-) be bilinear forms on H}(Q2) x H}(Q) corresponding to
operators A(t) and B(t, 1), i.e.,

d

ou Ov
A(t; = . -
(t; u,v) /Q <”z=:1 a;j(z,t) 5, O, + amw) dz
and

d Ou(r) Ov
B ; = . -
(t, 75 u(T),v) /Q (i;:jl bis(itm) = - .

d Ou(r)

+ Z bj (l'; t, T) —895 v+ bo(m; t, T)U(T)’U> dzx.
j=1 J

The weak formulation of the problem (1.1) may be stated as: Find
u:J — H}(Q) such that

(e, 0) + A(t; 0, 0) = /0 B(t, 75 u(r), v) dr

1.2
(12) +(f,v), YveH}Q), telJ,
u(0) = up.
Here and below, we denote (,-) and || - || by L? inner product and the

induced norm on L? = L?(2). The error analysis will be carried out in
usual Sobolev spaces W*P((), s a nonnegative integer and 1 < p < oo,
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with H* = H*() denoting W*?%(2). The normed dual of H*(2),
denoted by H*(2). We shall use the notation || - ||, o, for norm in
the Hilbert space H*(Q2). If a norm is taken over the entire domain
we suppress the subscript Q in H*(Q). Sometimes we shall use the
notation H instead of Hg ().

Let S, 0 < h < 1, be a family of finite dimensional subspaces of H*

with the following approximation property: For a given integer r > 1
(1.3)

16115 {llv=x|| +hllv—=x];} < CR®|jv|s, veH(Q), 1<s<r+1l.
X€Sh

Now, setting Sy = S, N HE, (1.3) holds for v € H* N H}.

The standard semidiscrete finite element approximation is then de-
fined as a function up, : J — 52 such that

t
(uh¢,X)+—A(tuﬁ,X)::j/ B(t, 75 un (), X) dr
0

+(f,X), VxeS), teJ,

un(0) = uo,n,

(1.4)

where ug 4, is a suitable approximation of ug in Sg.

Earlier, Douglas, Dupont and Wheeler [5] have introduced quasi-
projection technique for parabolic and hyperbolic equations in several
space variables and have derived optimal negative norm estimates. In
case of a single space variable, they have also established the knot
superconvergence results with initial approximation for the Galerkin
solution obtained through a sequence of elliptic projections. Recently,
Thomée [12] has discussed superconvergence results for ¢ > § > 0
with initial data being the L?-projection of u. For further references
related to knot superconvergence, see Arnold and Douglas [1] for
quasilinear parabolic problems, and Jones and Pani [6] for nonlinear
Stefan problems.

More recently, considerable attention has been devoted to the optimal
error analysis for partial integro-differential equations, see, for example,
Yanik and Fairweather [16], Cannon and Lin [3, 4], Lin et al. [7], Pani
et al. [11], Pani and Peterson [9], Thomée and Zhang [15] and Zhang
[17]. The main tool used for parabolic integro-differential equations
is the Ritz-Volterra projection as against Ritz or elliptic projection



68 A.K. PANI AND R.K. SINHA

for parabolic equations. In this paper, based on a sequence of Ritz-
Volterra projections the quasi-projection technique is employed to
derive knot superconvergence results for parabolic integro-differential
equation in one space dimension. Moreover, in case of several space
variables optimal negative norm estimates are also established. Finally,
following Bramble and Schatz [2] an averaging operator is introduced
and estimates on difference quotients are derived. These estimates
then imply interior superconvergence estimates for the post-processed
approximations.

The layout of this paper is as follows. In Section 2, the quasi-
projection technique is introduced and its related estimates are ex-
plored. Optimal order negative norm estimates for the error in the
Galerkin solution are derived in Section 3. In Section 4, the quasi-
projection is applied to derive knot superconvergence of order O(h?")
in the case of a single space variable. Finally, Section 5 is devoted to
interior superconvergence estimates.

Throughout this paper C denotes a generic constant whose depen-
dence can be traced easily from the proofs.

2. Quasi-projection technique and related estimates. The
purpose of this paper is to discuss to what extent known negative
norm estimates and superconvergence results for the case of parabolic
differential equation, i.e., B(t,s) = 0 (Thomée [14]) carry over to the
present situation. A principal tool used in [7] was a generalization
of elliptic or Ritz projection called Ritz-Volterra projection Wy
C(J,H}(Q)) — C(J, Sp) defined by

t
2.1) Aty (Whu — u)(t),X) = / B(t,m; (Whu — u)(7),X) dr,
. 0
Vxes) tel.
We recall the following lemma from Arnold and Douglas [1], which
will be used in our subsequent analysis.

Lemma 2.1. Let there be given a linear functional F : H}(Q) — R
and numbers My > My > -+ > Mgy1, 0 < g <r, with

[F(n)| < Myllnll,, VneHP(QNH;(Q), p=12...,¢+L
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Suppose ® € H}(Q) satisfies
A(t;®,x) = F(x), YxeS).
Then, for s =—-1,0,...,q—1,

J@ll_, <C[(My+ inf ||@ = X|1)h" + Myys].
xesy

We have the following estimate for Ritz-Volterra projection.

Theorem 2.1. Let k >0, 1< ¢ <r+1, and let 0*u/0tF € H1(Q),
forte J. Then, forp=Wpu—u and -1 < s<r—1,

).

Proof. We now apply Lemma 2.1 with ® = p and F(n) =
[y B(t, 75 p(r),n) dr. Note that

#wi< o [ ol ar ) nl

wnz\AEmmbuﬂmdr
<o [ 1ol )l

where B*(t,7) is the adjoint of B(t,7). Setting M; = C (fot lplly dT)

< Ch5+‘1<

H otk 8t1

—S

and

and M, o = (fo lo(T)]|_, d ), we therefore obtain, using approxi-

mation property,

t t
lloll s < Chs“(/o llolly dT+hq‘IIIU(t)IIq> +C/O lpll s dr.
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Hence, by Gronwall’s lemma the desired estimate for k£ = 0 follows. For
k =1, we differentiate (2.1) to have

. f(t%x) —Ault; p,X) + B(t, £ p(t),X)

t
+/Bﬁmmmmm,
0

where A; and By correspond to the operator obtained by differentiating
the coefficients of A and B, respectively, with respect to the first
variable ¢. Let F(n) be given by the righthand side (2.2). Further,
an application of Lemma 2.1 with ® = 0p/0t yields

ou

)

ap
ot

t
SOW“QMM+AIMMW+h“1

—S

t
+Cloll_+C [ ol dr
0

The proof is now completed by treating higher order temporal deriva-
tives in a similar way. u]

We shall modify the usual initial values in order to achieve supercon-

vergence result. For this, let us define below the quasi projections.

Let pg = Whu—u = p, 8p = up, — Whu. Then it is easy to verify from
(1.1), (1.4) and (2.1) that

00
<8t0 >+At90, /BtTHO,

0
—<5;° X> X €S9

Define maps p; : J — SP with j > 1, recursively by

(2.3)

(2.4) A(t; pj, X /BtTp], dT—(apa]tl, >, X € Sy.
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Differentiating (2.4) k times with respect to time, we obtain

Fp; N _ N[k " "p;
) £l

i=1
k-1 k—i—1
2.5 k 9 Pi
(25) + 3 () (0 G )
i=0
t k+1
0" pj1
+/(; Btk(taT;pjvx)dT_ <W—:l’x>’

where A;: and By: are obtained by differentiating the coefficients of the
operator A;i—1 and By:i—1, respectively, with respect to the first variable
t.

We shall now have the following lemma to estimate p; along with its
temporal derivatives in negative norms.

Theorem 2.2. Let j,k >0,1<q<r+1, and let 3 TFu/0tIT*
H1(Q), fort € J. Then, for -1 <s+2j <r-—1,

0% p; +s+2j 0| o ' |0
< qTsTza) _ i
‘ S 7S_Ch (; =5 /2; o7 > teld

Proof. The case j = 0 is covered by Theorem 2.1. The rest of
the proof is completed by induction on j. For j > 1 and k = 0, let

F(n) = [y B(t,7;pj,n) dr — (9pj—1/0t,7). Then
)nnnl
—1

¢ opj—
ww <o [ o+ 2
0
)il
—s5—2

<o [nlar+ |22

and
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The inductive hypotheses imply that F' fulfills the hypotheses of Lemma
2.1 with ® = p; and g = r — 2j. Therefore,
(2.6)

¢ 0pj—
o< [ toslhar+ %
0

+ inf ||p; — x|, |p°T!
. X652||p] ||1>

t
+ [ ol ar
—s—2 0

Choose X = 0% p;/0t* in (2.5); then we find easily

Ipj-1

+H ot

9% p; AR d'pj-1 “N10pj-1
< - .
1o o215 L] L)

On substituting the above estimate for £ = 0 in (2.6), an application
of Gronwall’s lemma yields

Opj—1 "||9pj-1
; < DL — =1 d hs+1
O (e IRV by I
opj—1 ¢ Opj 1
+H; +/ I dr.
ot ||_on Jo Il 0t |_.

Apply induction on j and Theorem 2.1 to obtain an estimate for p;. For
the time derivatives of p;, we use (2.5) and follow the proof of Theorem
2.1 to obtain the desired estimates. This completes the proof. a

3. Optimal negative norm estimates. Set u; = Wpu+p1 +---+
pj, 3 > 1, and define 6; = up —u;, 7 > 1. A simple induction argument
using (2.3) and (2.4) shows that

00; ¢
< 7,X> + A(t;0;,X) :/ B(t,1;6;,X)dr
0

(3.1) ot ,
- <ﬂ,x>, X e S

ot
The estimates of Theorem 2.2 can be applied to (3.1) to bound 6;

after a choice of the initial value is made. Now we have the following
theorem in order to estimate 6;.
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Theorem 3.1. For 2k <r —1, let
(3.2) uh(O) = uk(O) = Whu(O) + p1 (0) + 4 pr (0)
Then there is a constant C' independent of h such that

k+1

10kl Lo (12 () SCth“mi“(?kJrl,r—l)(Z
i=0

ot

L5k

’L

ot

)

1<g<r+1.

Proof. Choose X = 0, in (3.1) to obtain

Opk
g lont® + atonl < ([ 10wty ar Jiout + 22wt

Here « is the coercivity constant of A. Integrating both side from 0 to
t, and using the inequality ab < a?/e + eb? with 6;(0) = 0, we have

t t T , 2 ,
||ek||2+2a/0 uekn?drscs// ||0k(r)||1dr ar
+0/ r +s/ 164 dr-

Choose ¢ appropriately, apply Gronwall’s lemma and Theorem 2.2 to
complete the rest of the proof. i

3Pk

Theorem 3.2. Let 1 < q < r+ 1. Further, let up(0) be defined by
(3.2). Then 0y, satisfies

105l e 2 )

Chq+2k(zf:01 _|_ f(;' d‘r)’ 2]{: S r—l, T Odd,
Chq+2k+1(zf:02 | + fo | dr), 2k <r-—2,r even.
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Proof. Setting X = 00),/0t in (3.1), and integrating both sides from
0 to t to obtain

(3.3) )
/Ot o0y,

t
dr + lA(t;Ok,Ok) :/ B(taT;ek(T)vek(t)) dr
ot 2 0

- /tB(T,T;ek(T),ek(T))dT
// Bu(r, 73 0u(7), 0(7)) dr dr

-1 / Au(t; 60,60 d
B / Op. 00 ir
o \ ot ot
Using coercivity condition for A and inequality ab < a?/2 + b%/2, it

follows that

90, ||*
ot

t T 2y,
d¢+a||9k\|§go// 160} dr dr

0
+c/ (neknl H i )dr

An application of Gronwall’s lemma with Theorem 2.2 for s = 0 now

yields
/ dT> ,

provided 2k < r—1. This completes the proof of the first estimate. For
odd r, the choice 2k = r —1 and q¢ = r + 1 produces an O(h*") estimate
for 0 in H'(Q2). However, if 7 is even, only an O(h?"!) estimate can
be obtained from (3.4). But the following arguments regain an O(h?")
estimate in H'(Q). Now integrate the last term on the righthand side
of (3.3) by parts with respect to time to have

0
ot < [ fouliar+o(| %2

u

ot

k+1
(34) ||0k:||L°°(H1(Q)) < Chq+2k < 8251

32Pk
ot2

+
-1

dr)wknl-
1



SUPERCONVERGENCE RESULTS 75

An application of the inequality ab < a?/e+¢eb? with Gronwall’s lemma

yields
6 2
1802 SO(H P df)-
—1

The second inequality now follows from Theorem 2.2 provided 2k <
r—2. O

0 pr,
ot?

O |
ot

dr +

-1 —1

Finally, we have the following theorem for the error estimates of
e = up — u in negative norms.

Theorem 3.3. Let u and up be the solution of (1.1) and (1.4),
respectively. Further, let up(0) be given by (3.2). Then for 2k <r —1
and 1 < q <r+1, the following negative norm estimate

k+1 61’(,1, k z
s+
llun — u||L°°(H s(@) = Ch q(; ot / z; ot >

holds for 0 < s < min(2k + 1,7 — 1).

Proof. We write error e with W), defined by (2.1) as

e=up —u = (up, — Whu) + (Whu — u)
k
=0+ pi.
i=0

The rest of the proof is an immediate consequence of Theorem 2.2,
Theorem 3.1 and the following imbedding result

(3.5)

10kl oo (m-2(0)) < CllOkll Lo (£2(02))-
This completes the proof of the theorem. i
4. Knot superconvergence results. We now consider the case

when Q@ =7=(0,1). Let 0 =29 < z; < --- <z, = 1 be a partition of
I with max(z; — z;_1) = h, and let

S?L = {v € C(I)| v|(1171171) € PT;v(O) = U(l) = O}'
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The elements of Sg are assumed to be CPi functions, 0 < p; <
r. However, at any knot at which superconvergence is sought, the
smoothness constraint on 52 reduces to simple continuity.

Let € (0,1) be a nodal point (knot) in each of the partitions, i.e.,
for each h there exists i(h) so that T = z;(,). For s > 0, we define the

space H* as
s = {u : u|(07i) S HS((O,E)), u\(i’l) S HS((Q_?, 1))},
and norm on H* by

ull 2 = e o,y + 1l e 2.1))-

The following lemma will be useful to produce a superconvergence
result for p; at any knot point ;).

Lemma 4.1. Let ® € H} satisfy
A(t; @,Xx) = F(X), X€Sp,

where F is a linear functional on HE. Further, let there exist constants
My > My > - > Mgiq, with 0 < g <r, such that

|F(®)] < M||®|ll,, ®€H"NH;, p=12...q+1
Then for0 < s <r—1,

®(z)| < C[(Ml + inf [|® — x|1)h"t + Ms+2].
xesy

Proof. Let ¥ € H*, s > 0, be the solution of the following problem

AT =0 inI/{z},

=0 z=0,1,
(4.1)
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The solution ¥ of (4.1) satisfies the following regularity condition
(4.2) I[¥[l542 < C,

where the constant C' is independent of the position of Z. Multiply
equation (4.1) by ® € H* N C(I), and integrate by parts to obtain

z+0
0= (®,A(t)¥) = A(t; &, ) + (aua—i ><1>(gz).
z—0

Use of jump condition at z = Z yields
o(z) = A(t; @, ),
and therefore,

9(2)| = [ A5, ¥ =) + F(x — ¥) + F(¥)
< C||®||; inf ¥ -
< Clel, jf, 1% - x|,

+ My inf ||® — x|, + Myio||| 9], .
1 inf, 9 =Xy + Mo 9],

From Lemma 2.1, we have

], < C(My + inf | —X]|,),
xes?
and an application of (1.3) and (4.2) now completes the proof. o

Below, we shall discuss superconvergence results for p; at nodal points

Z.

Theorem 4.1. Let 5> 0,1 <qg<r+1land0<s<r—25—1.

Then
3kpj(:f t) kg O'u t 2| &u
Z PR < Oopstat2i i /
otk - ; ot ZO ot
In particular, for the choice s=r —2j —1,
ok p;(z,t) ) ot || o
— L < opatrt : /
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Proof Take j = 0 and k = 0. Apply Lemma 4.1 with & = p and
fo (t,7; p(T),n) dT to have

Fal=o( [ Iolar )l
Fwi=c( [ Iol_adr) ..

Now setting My = C(fot llpll, d7), and Myio = fo llpll_, d) together
with the approximation property (1.3), we obtain

and

t t
p(w,mso( / ||p|1dr+hq1|u<t>|q)h5“+o / loll_, dr.

Further, using Theorem 2.1 for j = 0 and k& = 0, we obtain the required
estimate. For j = 0 and k = 1, we differentiate (2.1) to have (2.2). Let
F(n) now be given by the righthand side of this equation. Then, apply
Lemma 4.1 with ® = 0p/0t and finally Theorem 2.1 to obtain the
desired estimate for dp/0¢t. Similarly, the estimates for higher order
time derivatives of p can be easily derived. For 7 > 0 and k = 0, we
use Lemma 4.1 with ® = p; and

t 0pi_
F(n):/ B(th;pjan)dT_< /Z;tl,n)‘
0

Then induction argument on j can be repeated to obtain the estimate
for p;. Apply Lemma 4.1 with ® = 9p;/0t and

F() Attpjv )+B(ttp]7n)

0?p;_
/BttTp] )d'r_< 6p;217U>7

to complete the proof for j > 0 and k£ = 1. The proof of the theorem
is completed by treating higher order time derivatives in a similar way.
O

The following theorem shows the superconvergence results for the
error e = up — u at the nodal points z = Z.
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Theorem 4.2. Let 1 < g < 7+ 1, and up(0) be defined by (3.2).

Then
k ; t k i
0*u 0'u
_ +r—1
(un — u)(, )] < Ch? (}Z | 2|5 M>+Q,
=0 q i=0 q
where
k=41 iy t k N
Chq+2k(2i;ro %ti |q + [0, %ti |qd7-), 2k <r-—1,
_ r odd,
k+2 ) 0iu t 5k fu
Chq_.—2k+1(zi:0 gti ||q + fo Zi:O | aati ||q dT)7 2k S r—= 2’
r even.

Proof. Now, write up — u in the form

k

(un = u)(Z,t) = 0(Z,0) + ) pj(,1).

=0

Since |0k (Z,t)| < ||6k(2)]|,, the desired result now follows from Theorem
3.2 and Theorem 4.1. |

Remark. If 2k = r — 1 for r odd and 2k = r — 2 for r even, then for
g=r+1
|(un — u)(z,t)| = O(R™").

This yields a superconvergence result for r > 2.
In the rest of this section, the superconvergence results for the flux

at the nodal point © = T are discussed. For this purpose, let us define
a Galerkin approximation wy, : J — S} as a solution of

(4.3)

t
(wmm+Mm%m=/immwm%MM+mm
0
ou
+a117—X

! ¢ Ou
_ et
ozr |, /0 < 1 amx>

X€ES, 0<t<T,

1

dr,
0
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where wy (0) is a suitably chosen initial condition. Denote the corre-
sponding quasi projection

wk:Whu+yl+"'+yka

where W), satisfies (2.1) and y;,5 = 1,... , k, satisfies (2.4) now with
X € S, instead of X € S.

Lemma 4.2. Let pj =y; —pj;, 5 =0,...,k. Then there is a positive
constant C' independent of h such that

m+j

0™ _ 0'u ENUY
< Cprtat . / ted
H otm ||, — <; ot z; ot S
Proof. Observe that
(4.4) A(t; o, X / B(t, 75 po(7),x)dr, X €S},
and
At pj, X / B(t, T u; (1), X) dr
(4.5) o
< a’tl,x>, xesd j=1 k

Choose X = po — y0(0,t)(1 — z) — yo(1,t)z in (4.4) and obtain
alluoll} < A(t; no, o)

SCMNMN+MOMDOMM+AHMMW>

t
+C(A|muﬂh)m¢r

Now, using the inequality ab < a?/e + eb? and with an appropriate
choice of ¢, it follows that

t
luolly < Clyo(0, )" + lyo(L,)[*) + C/O ol dr.
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Then, an application of Gronwall’s lemma yields
luolly < Clyo(0,8)% + [yo(L, 1))

+CAOm@ﬂP+MGJWMr

Finally, use of Theorem 4.1 completes the proof for j = 0 and m = 0.

For time derivatives of pg, differentiate (4.4) m times and choose

A A T SR Sk Ty

T otm otm otm

in the resulting equation. Then use Theorem 4.1 to obtain

" (] dty Oy
()

i=0

(9mﬂ0
otm

+Ahmmw»Hm@ﬂnm}

).

Similarly, for j > 1 and m = 0 choose X = p; —y;(0,¢)(1—x)—y;(1,¢)x

n (4.5) to have
)+c/nmmm

)

' 2 2 Opj—1
€ [ (0P + P+ | %2
0

S ChrJrqfl (

8#

op
sl < € (s 00 + s, + | 2=

An application of Gronwall’s lemma yields

Opj—
sl < € (s 00 + iy, + | 22

2
> dr.
1

Again differentiate (4.5) m times with respect to time, and choose

_ 0™y 0™y, 3
X=Zm = Gm 001 -2) -

(1)

otm
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in the resulting equation. Finally, use Theorem 4.1 to obtain

0" (|9 2|0y 2
H otm 1 — [;( 6ti (Ovt) + 6ti (]-at)
m+1 6111 L t , ,
+ 2 | [ 0.0 b1, b
1 0
Opj—1
[ 1P ]
5 1 m+j 6iu t J 1
< r+q-
(.Z | L3 5m] )
m—+1 t 2
8:“1 1 / Opj—1
+CZ o |, +C | o 1d7‘.

Now, apply inductlon on j to complete the rest of the proof. ]

For flux superconvergence result at nodal points Z € [0, 1], we first
discuss this for Z = 1.

Theorem 4.3. Let up : J — SY be the solution of (1.4) and (3.2),
and define

T1(t) = (une,x) + A(t; up, x)

t

—/ B(t, 75 un(r),2) dr — (f,), te .
0

If 1<qg<r+1and2k<r—1, then

Ty (t) - <angx>(1 0 +/0t <b112u>(1,7) dr
<e[(Z]5,+ [2

(4.6)

)hq+r1

ot atl
k+1 k+2
d'u d'u
i <Z or O 2|5
g+min(2k,r—1)
/ 3# d7'> h ] .
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In particular, if r is odd and 2k =1 — 1 or if r is even and 2k =r,

Ty (t) — <angm>(1 t) + /Ot (bu%)(l,r) dr

B+ iy, B2 g0 t k1l gig
< hq+r71 '
sC (;} 6t’(0)q+z ot 0; ot )

Proof. Choose X = z in (4.3) to have

(4.7) <a11%>(1 £ - /Ot (bngz>(1,r)dr

wht, )+A(t Wh, T )
/Btrwh 2)dr — (f,2).

The function wy, in (4.7) is not computable. But wy, and the Galerkin
approximation u with the Dirichlet data are very nearly the same. To
analyze the error in the approximation of the flux, we write £ = up, —w,.
Then, from (4.6)—(4.7), we have

Ty (t) - Kan%) (1) — /Ot (bugZ)(l,T) dT]
= (&, ) + A(t; € 2) — /OtB(t,T;f(T),x) dr.

Here,
A(t,f,x) = (57 (_a’lll + a()il?)) + a11£|(1)

and
B(t,m;¢,2) = (&, —(b1z + b11)’ + box) + bu1 &y + zbi&lo-

Using Schwarz’s inequality, it follows that

Iy (t) - Kan%)(u)—/ot <bug >(1 " dT}

< Ol + €l + 1600, )] + €L, )
" / el dr + / (€0, 7)] + |E(L, 7)) dr].

(4.8)
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For the estimation of ¢ in (4.8), set ¥y = wr — wp, and O = up — up.
Hence, write

k
§ = — Ok — po — Y fy-
1

Using Theorem 3.1 and Lemma 4.2, we obtain
k

lell < Oh‘I*“(Z / Z

k+1
+ Chq+min(2k+1,rfl) (

’L

ott

/ )

The estimation of ¢/t requires the estimation of 9y, /0t and 90y, /0t.
From (3.1) with 94(0) = 6;(0) = 0, it follows that

ott

s

at’ at’

5ol |5 o] <«(|3 o]+ [3o])
k+1
< g+min(2k,r—1)
<anrmenn (3 |G )

Now, differentiate (3.1) with respect to time and then choose X =
00}, /0t to obtain

00 (t) aek, 0% pi,
150, = (5ol +15%])
) k+1 aiu
(4.10) éChq+m‘“(2’°”‘1’(Z o)
=0 q
8;1.1 @ d7'>.
=0 ot q ot q
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A similar estimate is valid for 0y, / Ot. Hence,

k+1 S
q+r—1
H H [( o / o dT>h
k+1 k+2
O'u d'u
4.11 - -
(4.11) +<ZO aﬁ“’)q*Z ot
t k ’L
g+min(2k,r—1)
/ Z ot )h }
=0
Since ¢(z,t) = —wp(z,t) and uj(x) = yj(x) for = 0 and 1, an

application of Theorem 4.1 with p; replaced by y; yields,
(4.12)

< q+r—1 u
0,01 +16(L,0)] < Ch ( -~ / 5 dT)
k+1 ou k+1 diu
g+min(2k,r—1) -
i=0 q 1=0
u
- dT>.
att ||,

Combine the inequalities (4.8)—(4.12) to complete the rest of the proof.
]

Remark. For the superconvergence of flux at = 0, choose X =1—=x
n (4.3) instead of x and make necessary changes in the proof of
Theorem 4.3.

The flux superconvergence of an order O(h*") can be obtained at an
interior knot Z of I. Let

Fi(t) = j_1{(uh,tax)i + Ai‘(ta Uh, l‘)
t
_/0 Bi(taT;uh(T)ax) dT - (f7 m)i}a t € J7

where the subsript Z indicates that the integrals are to be taken over
the interval (0, Z). Define

Shz ={v | vljo,z € Sn}.
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Let wy, : J — Sh 7 satisfy

z
dr,
0

t
(dm.1, X)z + As (£ o, X) = / Ba(t, mion(7), X) dr + (f,X)s
0
ou |*
+ a1 =—X

oz |, 0 "

X€Shz 0<t<T,

where @,(0) is a suitably chosen initial condition on (0,Z). An
approximation to (ai;0u/0x)(Z,t) — fot (b110u/0z) (Z,7)dr can be
evaluated by choosing X = z. The error in the approximation of
the flux, ie., |T'z(t) — (a110u/0z)(Z,t) + fg(buau/é)x)(j,T) dr| can
be easily proved in a similar way by replacing the function wy, by wy,
in Theorem 4.3. So we will not pursue it further.

5. Interior superconvergence estimates. In this Section,
the estimates for difference quotients of p;, j > 0, in the interior
Qo cC Q C R? will be carried out. These estimates will then be
used to prove interior superconvergence results. For this purpose, we
shall assume that the finite dimensional subspaces are based on uniform
partitions in a specific sense in some interior domain Qy CC Q C R¢.
We shall not describe the uniformity assumption here, but for a detailed
description we refer to Nitsche and Schatz [8]. For any domain ; C Q,

0
let Sp(1) = {v € Sp(Q) : suppv C A1 }.

We shall use the following notations for the rest of this Section. For
a linear functional F', define

| (n)]
[[[F][|-1,0, =  sup :
0#£n€H} (Q1) ||77||1791

Further, we shall denote for an integer s

®,n
el eny = sup 2
o#neHs (@) |1Mls,0,

Below, we shall state two lemmas without proof. The proof can be
easily found modifying the analysis of Nitsche and Schatz [8, Lemma
4.2 and Lemma 5.1]. For a detailed proof, see Pani and Sinha [10].
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Lemma 5.1. For Qy cC Q' CC Q) C Q, let w € C°(R) be such
that w =1 on Q. Let F : H} (1) — R be a bounded linear functional
satisfying

|F(w?n)] < Mgllnllg.e,, V0 € H (Qu)NHy(), 2<q<r+1

Further, let ® satisfy

0
Alt; @,X) = F(X), VX € Sh(€).
Then for 0 < s <r —1, we have

@Ml 5.0, < lNw®lll_ q,
< Cl(I@lly,q, + IF|-1.0,)h" "
+ Moo + ||l 10,]-

Lemma 5.2. For QyC cQ'C CQ, let w € C(Q') be such that
w=1onQ. Let F: HY(Q1) — R be a bounded linear functional
satisfying

|F(wn)] < Millnllig,, VneH Q)N Hy(Q), i€{1,2}

Further, let @y, € Sy, satisfy

0
At;®n,X) = F(X), VX € Sp().
Then

19411 0 < I®ally 0, SCIR(IPAlL g, +[I1F]-10,)
+ My + M+ [|[@n]l] o, ]-

Although the argument of Pani and Sinha [10] can be easily modified
to prove the interior estimates of 9% pi/ Ot*, but for clarity we prefer to
present below a short proof.
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Lemma 5.3. Let k> 0,1 < qg<r+1andp > 0 be a fixred but
arbitrary integer. Set p_1 = 0. Then for QoC CQ C CQ;,0<s<r—1
andj > 0, we have

81pJ

akpa
otk

=[(x151..

Opj—_1
+/ (np || +\—J
0 J11,04 ot

7SYQO

> dr
—1,0:

k+1

ai/’j—l
Z =2 hs+1
+Z o 1
=1 i1
k+1 : t
8’p- 1 / 8p'_1
+ v + : dr
Z ot —5—2,0 0 ot —5—2,Q;
d'p; ¢
+Z o PRt

Proof. To apply Lemma 5.1, let F(x) be the righthand side of the
0
equation (2.4) with x € S,(Q1). Note that

¢ ¢ ,
|F(w2n)| = ‘/ B(t,T;ij,wn)dT+/ I dr + (apajt_l,wznﬂ
0 0
t
< [ Vs, B (. ryun) dr
t 8p‘71
+/ I dT-l—‘(—J ,w277> ,
o ol ot

where I} = fﬂlpj[ i.j=1(=0/0%;)(bij (0w /0z j)wn) — bij(Ow/0z;)
(0(wn)/0x;)) — 2?21 b;j(0w/0x;)(wn)|dz. Therefore,

t
[P (w’n)] < C(/O (Nwnilll—e 0, + o5lll _azy,) @7

)|||n|||s+2,91-

Opj—1

I

—S—Z,Ql
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. t
Setting ||| Fll| 1,00 < CUL 1ol g, dr+1118p5—1 /0tl]]_y g,), and Moy =

t
C(JoUllwpslll_y g, + Npslll sy q,) dm + 10p;-1/0l]]_,_5 q,), apPly
Lemma 5.1 with & = p; to obtain
>hs+1
—-1,Q1

¢
0pj—1
|||u;/0j|‘|,syg1 < C[<||Pj|1,91+/0 H'ojHl,ﬂl dr + H 8]25

|

el 10,
—S—Q,Ql

t
+Anmmﬂ4ﬂﬂﬁ+cl|wmmmmm

An application of Gronwall’s lemma yields

(5.2)
t
Opj—1
leill-so, < €[ (Ioshn, + [ (loslaan+|| 22| )ar
-1,
el
-1,
t
Opj—
o I
—5—2,0 0 ot —s—2,0

t
Hlloslecnn + [ 1pll-ocs, ]

Let Qy = Q°C cQlc Cc---C CcQ? = Q; be a sequence of domains.
Apply estimate (5.2) to the subdomains Q! and Q'*! to obtain

t
HmmﬂmsOmemm+Anmmwa

N e T
it Jo ot |l|_y g
0pi_ 1 Hps_
+H—p” L +/ ‘—pf L dr
ot —s5—2,Qlt1 0 ot —s5—2,Qit1

t
+mmmslﬂﬂ+lnmuslﬂﬁw]

Starting with [ = 0 iterating p times and a repeated application of
the estimate (5.2) to the last two terms of the above equation we
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obtain the required estimate for ¥ = 0. For £ = 1, let F(X) be

0
given by the righthand side of (2.5) with X € Sx(€1). Replacing
X by w?n, apply Lemma 5.1 with & = 8&’ and (5.2) (by taking an
intermediate subdomain) to obtain the desired result. The higher order
time derivatives of p; can be treated in a similar way, and this completes

the rest of the proof. O

Below, we shall discuss an estimate of 8kpj /0t*. Using Lemma 5.2,
and the analysis of Nitsche and Schatz [8, Lemma 5.1 and Theorem 5.2]
with appropriate modifications, we have the following error estimate.

Lemma 5.4. Let QoC CQ, k>0,1<qg<r+1andp >0 bea
fized but arbitrary integer. Then for j =0

t
{[Z + / lulg.01 dr] pa!
=0 g, 0

5.

ott
k Z t
: +/|||p|||_ dT},
Z0 8t —p, 0 i
and for j > 1
{r [5,
+ —_— dT hq_l
k ; t
9'p; /
. + [ ol g, dr b

Proof. Let QyC CQyC CQC Cy C Q, and let w € C’O (Q;) be such

that w = 1 on €. For j > 1, set p; = wpj. Let Tpp; € Sh(Ql) be the
unique solution of

¢
A(t;Thﬁj,X):/ B(t,7; Thpj, X) dr
(5.3) 0

6"'._ 0
_(%7X)7 VXESh(Ql)-
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(5.4) 12illy,00 < llps = Trpjlly g + 1Thosll1 -

0 ’
Since the equation (2.4) and (5.3) holds for all x € S,(Qp), on
subtraction we have

t 0 ,
A(t;pj — Thﬁj,X) = / B(t,T;p]’ — Thﬁj,X) dr, VX € Sh(Q).
0

Let F(wn) be as in the right hand side of the above equation with
replacing X by wn. Set 7, = p; —Thp;. Apply Lemma 5.2 with &, = 7,
to have

t
Il <€ [ (Il oy + [l g 0r)
t
il s + [ s, 0]
0

For the last two terms, again apply Lemma 5.1 and then take a sequence
of subdomains between Qg and 2, and use inverse estimate (see Nitsche
and Schatz [8, Lemma 5.2]) to obtain

t
a0 < c>(|rhn|zﬂﬂg+-/g |hh|nplﬂ)dr),

where p is an arbitrary and fixed integer. With triangle inequality and
imbedding result

7nll ey = lles = Thiilll -y
< Moslll_pgy + NTRA g
< Clloslll_pq, + ITuhi s 0,)-

Therefore, (5.4) becomes
¢
il < (1Tl 0, + [ Wil g, 0

(5.5) ‘
sty + [ 1Ay, 07 )
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To estimate ||Txg;|l1, choose X = Tpp; in (5.3), and use Cauchy-
Schwarz’s inequality and Gronwall’s lemma to have
d7'>.
—1,Q1

t
/
—1,Q1 0

Combining (5.5)—(5.6) and an induction on j, the desired estimate for
k =0 and j > 1 follows. Differentiating (2.4) and (5.3) with respect to
t, the proof for £ > 1 can be easily derived in a similar way.

- 0pj—
56) Tl n, < (||| %%

Opj—1
ot

Now it remains to estimate for 7 = 0. For 7 = 0, we note the following

0
changes in the arguments. Set @ = wu and let T4 € S,(£21) be an
auxiliary projection defined by

t 0
(5.7)  A(t Tt — @, X) = / B(t, 7 This — @, X) dr, X € Sn().
0

Instead of (5.4), we have now
loll0e < [Whu = Thilly o, + 1 Thi — all; o,
where Wju is the Ritz-Volterra projection defined by (2.1) with x €
0
Sh(€1). Subtracting (2.1) and (5.7), it follows that

t o,
A(t; Whu — Thti, X) = / B(t, 7; Whu — Th@, X) dr, X € Sp(Qy).
0

Repeating the arguments as in case of j > 1, we obtain the desired
estimates, and this completes the proof. ]

We now shall prove the following theorem.

Theorem 5.1. Let k,7 > 0 and 1 < q < r+ 1. Further, let

OFtiu/othti € H1(Qy). Then for QoC CQy C Q and0 < s+25 < r—1,

we have
k+j i t J i
" p; ‘ [( O'u 0'u ) :
<c : +/ : dr h5+q+23
H ot* —5,Q0 ; ot q,{1 0 ; ot a8
k ; t
0'p;
+ 3 [52) k[ Chlpar]
ol Jo
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Proof. Let pC CQBC CQy. With j =0, apply (5.1) to subdomains

Q0C CQ, to have
k t
, s+1
(1], )

t
£y A
i=0 —s—p,{h 0

Note that for any nonnegative integer [

o

—S,QO
0'p
ott

(5.8) ol -0, < Clléll-i.

The desired estimate for j = 0 follows from Lemma 5.4, and estimate
(5.8). Similarly, for j > 1, use Lemmas 5.3-5.4 with estimate (5.8) to
obtain

ko k+1
2l A%
ot 5. — 8t “1.9)
t
Opi_
+/ Finl dr>hs+1
0 8t 71’96
k+1 ; k ]
d'pj—1 d'pj
+ ‘ Ji + 7:.7
Z ot 2,0 ; ot Csep
Opj—1
(]2 4l dr].
—5-2,Q,

An induction on j and Theorem 2.2 now complete the rest of the proof.
]

Let p = (p1,-..,1q) be a multi-integer, and let the translation
operator T} be defined by

T/'v(z) = v(z + ph).
Set the forward difference quotient as

ahd'v = h_l(T’fj — I)’U,
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where e; is the unit vector in the direction of x;, and I is the identity
operator. For an arbitrary multi-index «, write

a _ qo _ 9oy g
Op =0% =04 0%

In the following theorem, the estimate for the difference quotients of
9k p; /0t%, k,j > 0, will be discussed.

Theorem 5.2. Let QyC CQ,C CQ, 0FHiu/0thti ¢ HItlel(Qy),
k,j >0, a a multi-indez and 1 < q < r+1. Suppose that the equations
(2.1) and (2.4) are satisfied. Then for 0 < s+2j <r —1 and small h,
we have

a%-)H <‘”f‘ g
(5| =X %
‘ 6tk —5,Q0 =0 6t g+,
ti 0'u +q+2j
+/ - d7->hs a+2j
0o 110t llgtiale,
8’p
+2 |57 / lol-pdr.

i=

Proof. We shall prove the result using induction. For j = 0, and

0
k = 0,1, now from equation (2.1) with X in S, () we form an equation
in 0%p and obtain using Lemmas 5.1-5.2, as in Theorem 5.1

t
0%l o, < 0[(|u||q+a,ﬂl [ ol dr) peta

t
ol + / loll_, dr],

100y < €| (Il tcg, + Tl 1100,

t
+ /0 el o dT> poa

t
+loll -y + el + [ ol dT},

and
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where p is an arbitrary but fixed integer. The higher order time
derivatives for j = 0 can be derived analogously. For j > 1, the proof
will follow similarly as in the case of p and by induction on j. In this
case using Lemma 5.2 with (5.8), it is easy to show that

0*p; - &' pj—1
[ < [e4
()=l )

) -1,
t 8p‘71
)]
(5.9) 0 ot —1,0
k i t
8’p]-
Iy ool ]

Let QoC CQE)C CQ;C C$2;. Apply Theorem 5.1 with appropriate
changes and replacing o%p; 0tk by 9%(8%p;/0t*) (replacing Qo by Q
and Q; by ), and use (5.9) to obtain

oF P
otk

k+j t I | iu )
2 [<z LR,
i=0 g+al,Q) 0 i 110 llg4iare;
k
dip;
e / ol dr
k i
+ZZ aﬁ( S+ L e or]
i=0 B<a 0 B<a

An induction argument on o now completes the proof of the theorem.
O

We shall conclude this Section by showing the interior superconver-
gence error estimate by considering certain averages of uj as an approx-
imation to u. More precisely, the averages are formed by computing
Ky, x up, where the kernel K}, is defined as follows: For t real, let

1, [t <1/2,
t) =
x() {o, 1> 1/2,
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and for an integer [, set ¢§l)(t) = X#*X* -+ %X, le., convolution [ — 1
times of X. The function ’I/JY) is in fact a one-dimensional B-spline basis
of order [. For z € R? and [ = r — 1 define K}, by
d r—1
K@ =TI ( X e 0 e -)).
m=1 *j=—(r—1)

where the constants ¢ are given by ¢y = ¢o and for 1 < j < r — 1,

c_; =c} =cj/y. Here c;, 0 < j <r — 1, are determined as the unique

solution of the linear system of algebraic equations
r—1
ch/ VW) +5) " dy = dom, 0<m <r—1.
j=0 'R

We shall recall the following known estimates from Bramble and
Schatz [2] for our future use. For QoC C£); C £, it is known that
for h sufficiently small, (see Lemmas 5.2-5.3 in [2])

1 Kp * v — v, < C’hq||v||q791, 0<¢g<2r, weHI(Y),
and for any fixed integer s and v € H*(4)
(5.10) [1D*(En *v)l[s,0, < CllO%0[|; g,
where D® = 912l /(92" - - - 925*) and 0 is the corresponding difference
operator with step size h. Further, let s be an arbitrary but fixed

nonnegative integer. Then there is a constant C' such that (see Lemma
4.2 in [2])

(5.11) ollg, <€ D ID*0lll_y g,
| <s

Finally, we shall prove the main result of this Section.

Theorem 5.3. Let u and up be the solution of (1.1) and (1.4)
respectively. Further, let OFu/0tk € H* (Q;) N H™1(Q), 2k < r — L.
Then for QyC Cy C Q and small h, we have

r+1>

k . .
o'u o'u
-K < Ch*r : :
o= Kvunlog, <08 | S (|5H] |
N H O'u
2’!‘,91 atl

t k i
0'u
+/ Z(H '
0 = ot

)
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Proof. By triangle inequality
lu = Kp *unlly g, < llu— Knxullgq, + [|1Kn*ellyq,-

Since |lu — Kp * ully g, < Oh*"||ully,. g, it is sufficient to estimate the
last term. From (3.5), (5.10) and (5.11) with s =7 — 2j — 1 we write

k
15 * ello,gy < 1K * Olloay + D I1Kn * pillg g
i=0
Jk
< OO0k + Z Z D (En * o)l (r—25-1),0,
ja<r—17=0
k
< C|10k|l + Z Z|||3Q(Pj)|||7(r72j71),91'
|a|<r—1j=0

Use Theorems 3.1 and 5.2 withs =r—2j—1,q=r+landp =r—2j5-1
with estimate of p; from Theorem 2.2 to complete the proof. O
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