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Abstract. Let C be a smooth plane quartic curve defined over a field k and kðCÞ the

rational function field of C. Let pP be the projection from C to a line l with a center

P A C. Then pP induces an extension of fields; kðCÞ=kðlÞ. Let ~CC be a nonsingular

model of the Galois closure of the extension, which we call the Galois closure curve of

kðCÞ=kðlÞ. We give an answer to the problem for the genus of the Galois closure

curve of quartic curve [2].

1. Introduction

In [2] Miura and Yoshihara defined Galois points and several related

notions for plane curves. We recall the definitions briefly. Let k be an

algebraically closed field of characteristic zero. We fix k as a ground field of

our discussions. Let C be a smooth plane curve of degree d ðb 4Þ and

pP : C ! lGP1 be the projection from C to a line l with a center P A C.

Then pP induces the field extension p�
P : kðlÞG kðP1Þ ,! kðCÞ. We put

K ¼ kðCÞ. The extension does not depend on l but on P. So we denote

the function field kðlÞ by KP.

Definition 1. The point P A P2 is called a Galois point for C if K=KP is

a Galois extension.

Let LP be the Galois closure for K=KP and let ~CCP be the nonsingular

model of LP. Moreover let ~ppP : ~CCP ! C be the covering map induced by

kðCÞ ,! LP. We call ~CCP the Galois closure curve of pP : C ! P1 ([3]). Let

gðPÞ denote the genus of ~CCP.

Miura and Yoshihara [2] obtained the following results for plane quartic

curves.

Theorem 2. For any smooth plane quartic curve C and any point P A C,

we have that gðPÞ ¼ 3; 6; 7; 8; 9, or 10. If P is a general point of C, then

gðPÞ ¼ 10. On the contrary, gðPÞ ¼ 3 if and only if P is a Galois point.
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For a point Q A C we denote by TQ the tangent line to C at Q. Let

IQðC;TQÞ denote the intersection number of C and TQ at Q.

Definition 3. The point Q A C is called a 1-flex [resp. 2-flex], if

IQðC;TQÞ ¼ 3 [resp. 4].

As we have seen in Theorem 2 we have the examples with gðPÞ ¼ 3 and

10. On the other hand, we can easily find examples with gðPÞ ¼ 9 and 8 as

follows.

Remark 4. If P satisfies the following condition (i) or (ii), then gðPÞa 9.

( i ) P is a 2-flex.

(ii) fPg ¼ ðC VTQÞnfQg, where TQ is the tangent line to C at a 1-flex Q.

This is easy to see from [2]. In fact, let C be the quartic Fermat curve

x4 þ y4 ¼ 1. Then, for any 2-flex P we have gðPÞ ¼ 9. But if P is not a 2-

flex, then gðPÞ ¼ 10. On the other hand, if C is the curve x4 � y4 þ x2 þ
y2 þ y ¼ 0 and P ¼ ð0; 0Þ, then gðPÞ ¼ 8.

The existence of quartic curves C with a point P such that gðPÞ ¼ 6 or 7

has not been known for several years. In this note we will solve the above

problems, i.e., we will show the existence of such curves.

2. Statement of results

Let ðX : Y : ZÞ be the homogeneous coordinates on P2 and ðx; yÞ A A2 be

coordinates of the a‰ne part of P2 where x ¼ X=Z, y ¼ Y=Z. Let f ðx; yÞ ¼ 0

be the defining equation of (the a‰ne part of ) C, and suppose P ¼ ð0; 0Þ A C.

Theorem 5. Suppose gðPÞ ¼ 7. Then f ðx; yÞ can be expressed as one

of the following equations (a), (b), or (c) by taking suitable projective trans-

formations.

f ðx; yÞ ¼ xðxþ ayÞðx2 þ bxyþ cy2 þ yÞ þ y: ðaÞ

f ðx; yÞ ¼ xðx2 þ axyþ by2Þðcxþ dyþ 1Þ þ y: ðbÞ

f ðx; yÞ ¼ ðx2 þ axyþ 3by2Þ cx2 þ exyþ b2

3
y2 þ dxþ byþ 1

� �
þ y: ðcÞ

Theorem 6. Suppose gðPÞ ¼ 6. Then f ðx; yÞ can be expressed as the

following equation by taking suitable projective transformations.

f ðx; yÞ ¼ ðx2 þ axyþ 3by2Þ
(
cx2 þ acþ 2

3
bd � 3cd � 1

3
ad 2 þ d 3

� �
xy

þ b2

3
y2 þ dxþ byþ 1

)
þ y: ðdÞ
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For concrete examples, we have the following.

Example 7. An example of quartic curve with gðPÞ ¼ 7 is given as

follows:

f ðx; yÞ ¼ xðx2 � y2Þ 1

3
yþ 1

� �
þ y:

Example 8. An example of quartic curve with gðPÞ ¼ 6 is given as

follows:

f ðx; yÞ ¼ ðx2 � 3y2Þ 1

3
xyþ 1

3
y2 þ x� yþ 1

� �
þ y:

By using projective transformations, we can produce many distinct defining

equations for one curve. So it seems important to consider the equation such

that the number of independent coe‰cients is the least one. Then we obtain

the result.

Corollary 9. If gðPÞ ¼ 6, then P is not a flex and the number of

independent coe‰cients of such curves is at most four.

Consider the set

SðdÞ ¼ fgðPÞ jC is a smooth curve of degree d and P A Cg:

We have proved Sð4Þ ¼ f3; 6; 7; 8; 9; 10g, however we have the following

assertion.

Proposition 10. For a quartic curve C, consider the set

SðCÞ ¼ fgðPÞ jP A Cg:

Then SðCÞ cannot be equal to f3; 6; 7; 8; 9; 10g.

In the next section, we follow the method used in the proofs in [2]. By

taking suitable coordinates, we can assume the following conditions, which are

used only in this section.

(1) P ¼ ð0; 0Þ.
(2) The line X ¼ 0 and C meet transversally.

(3) The line y ¼ 0 is the tangent line to C at P.

Let lt be the line y ¼ tx. Then we may assume that the projection is

defined as pPðC V ltÞ ¼ t. In the a‰ne plane ðx; tÞ A A2, let ĈC be the curve

defined by

f̂f ðx; tÞ ¼ f ðx; txÞ=x:
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Let cðtÞ be the discriminant of f̂f ðx; tÞ A k½t�½x� with respect to x. Then it

is easy to see that the degree of cðtÞ is 10.

Thanks to Lemma 3.2, [2], we have the following lemma.

Lemma 11. If ðt� aÞn is a factor of cðtÞ, then n ¼ 1 or 2. Suppose that

a0 0. Then n ¼ 2 [resp. n ¼ 1] if and only if the line la becomes a tangent

line to C at a 1-flex [resp. a non-flex]. On the contrary, suppose that a ¼ 0.

Then, n ¼ 2 if and only if P is a 2-flex; n ¼ 1 if and only if P is a 1-flex or l0 is

a bitangent line.

Let a and b be the numbers of simple and double factors of cðtÞ
respectively. Then we obtain the following lemma by the Riemann-Hurwitz

formula for the covering ~ppP : ~CCP ! C (Lemma 3.3, [2]).

Lemma 12. If P is not a Galois point, then gðPÞ ¼ 10� b, where

0a ba 4.

Let Q1; . . . ;QN denote the 1-flexes other than P such that the tangent line

to C at the point passes through P. By Lemmas 11 and 12, we obtain the

following results.

(a) Suppose gðPÞ ¼ 7, then

(a1) If P is a 2-flex, then N ¼ 2.

(a2) If P is not a 2-flex, then N ¼ 3.

(b) Suppose gðPÞ ¼ 6, then

(b1) If P is a 2-flex, then N ¼ 3.

(b2) If P is not a 2-flex, then N ¼ 4.

3. Proofs

Proof of Theorem 5. The conditions (a1) and (a2) do not depend on the

choice of coordinate systems. By using these facts, we write down the defining

equation f ðx; yÞ.
(i) Suppose P is a 2-flex. By taking suitable coordinates, we can assume

that

ð1 0Þ P ¼ ð0; 0Þ.
ð2 0Þ Q1 ¼ ð0 : 1 : 0Þ.
ð3 0Þ The line y ¼ 0 is the tangent line to C at P.

ð4 0Þ The point Q2 is on the line at infinity.

Then f ðx; yÞ can be expressed as follows:

f ðx; yÞ ¼ xðaxþ byÞðpx2 þ qxyþ ry2 þ cyÞ þ dy:

By dividing above equation by d, we can express f ðx; yÞ as follows:
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f ðx; yÞ ¼ xða 0xþ b 0yÞðp 0x2 þ q 0xyþ r 0y2 þ c 0yÞ þ y:

If a 0 ¼ 0 or p 0 ¼ 0, then f ðx; yÞ is reducible. Moreover, if c 0 ¼ 0, then P

is a Galois point (Prop. 3.7, [2]). Hence we can assume that a 0 ¼ p 0 ¼ c 0 ¼ 1

by using the projective transformation

TðX ;Y ;ZÞ ¼ ðða 0p 0Þ�1=4
X ; ðc 0Þ�3=2ðp 0=a 0Þ3=4Y ; ðc 0Þ1=2ða 0=p 0Þ1=4ZÞ:

Rewriting the variables, we can express f ðx; yÞ as follows:

f ðx; yÞ ¼ xðxþ ayÞðx2 þ bxyþ cy2 þ yÞ þ y: ðaÞ

(ii) Suppose P is a 1-flex. By taking suitable coordinates, we can assume

that

ð1 0Þ P ¼ ð0; 0Þ.
ð2 0Þ Q1 is on the line X ¼ 0.

ð3 0Þ The line y ¼ 0 is the tangent line to C at P.

ð4 0Þ The points Q2 and Q3 are on the line at infinity.

Then f ðx; yÞ can be expressed as follows:

f ðx; yÞ ¼ ðax2 þ bxyþ cy2Þðpx2 þ qxyþ ry2 þ dxþ eyÞ þ y:

By the conditions ð2 0Þ and ð4 0Þ,

f ð0; yÞ ¼ cry4 þ cey3 þ y ¼ yðlyþ mÞ3; c0 0:

Then we obtain e ¼ r ¼ 0, and f ðx; yÞ can be expressed as follows:

f ðx; yÞ ¼ xðax2 þ bxyþ cy2Þðpxþ qyþ dÞ þ y:

If a ¼ 0, then f ðx; yÞ is reducible. Moreover, if d ¼ 0 then P is a Galois

point. Hence we can assume that a ¼ d ¼ 1 by using the projective trans-

formation TðX ;Y ;ZÞ ¼ ða�1=4X ; a3=4d 3Y ; a�1=4Z=dÞ. Rewriting the variables,

we can express f ðx; yÞ as follows:

f ðx; yÞ ¼ xðx2 þ axyþ by2Þðcxþ dyþ 1Þ þ y: ðbÞ

From equation ðbÞ, if P is a 1-flex, then Q1, Q2, and Q3 are collinear.

(iii) Suppose P is not a flex. By taking suitable coordinates, we can

assume that

ð1 0Þ P ¼ ð0; 0Þ.
ð2 0Þ Q1 is on the line X ¼ 0.

ð3 0Þ The line y ¼ 0 is the tangent line to C at P.

ð4 0Þ The points Q2 and Q3 are on the line at infinity.

Then f ðx; yÞ can be expressed as follows:

f ðx; yÞ ¼ ðax2 þ bxyþ cy2Þðpx2 þ qxyþ ry2 þ sxþ dyþ eÞ þ y:
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If a ¼ 0, then f ðx; yÞ is reducible. Moreover we can assume

f ð0; yÞ ¼ cry4 þ cdy3 þ cey2 þ y ¼ yðlyþ 1Þ3; c0 0

by the conditions ð2 0Þ and ð4 0Þ. Since P is not a flex, then e0 0 and l0 0.

Therefore, we can assume a ¼ e ¼ 1 by using the projective transformation

TðX ;Y ;ZÞ ¼ ða�1=4X ; a3=4e3=2Y ; a�1=4e�1=2ZÞ. Then f ðx; yÞ can be expressed

as follows:

f ðx; yÞ ¼ ðx2 þ b 0xyþ c 0y2Þðp 0x2 þ q 0xyþ r 0y2 þ s 0xþ d 0yþ 1Þ þ y:

f ð0; yÞ ¼ c 0r 0y4 þ c 0d 0y3 þ c 0y2 þ y ¼ yðl 0yþ 1Þ3; l 0 0 0:

So we obtain c 0 ¼ 3l 0, r 0 ¼ l 02=3, and d 0 ¼ l 0. Rewriting the variables,

we can express f ðx; yÞ as follows:

f ðx; yÞ ¼ ðx2 þ axyþ 3by2Þ cx2 þ exyþ b2

3
y2 þ dxþ byþ 1

� �
þ y: ðcÞ

We infer from simple calculations that gðPÞ ¼ 7 for general curves defined

by the equations (a), (b), and (c).

We prove the following lemma before the proof of Theorem 6.

Lemma 13. If N ¼ 4 and three points of Q1; . . . ;Q4 are collinear, then P is

a Galois point.

Proof. Suppose Q1, Q2, and Q3 are collinear. By taking suitable

coordinates, we can assume that

ð1 0Þ P ¼ ð0; 0Þ.
ð2 0Þ Q4 is on the line X ¼ 0.

ð3 0Þ The line y ¼ 0 is the tangent line to C at P.

ð4 0Þ The points Q1, Q2, and Q3 are on the line at infinity.

Then f ðx; yÞ can be expressed as follows:

f ðx; yÞ ¼ ðx3 þ ax2yþ bxy2 þ cy3Þðpxþ qyþ rÞ þ y:

By the conditions ð2 0Þ and ð4 0Þ,

f ð0; yÞ ¼ cqy4 þ cry3 þ y ¼ yðlyþ mÞ3; c0 0:

Then we obtain q ¼ r ¼ 0. Therefore P is a Galois point. r

Proof of Theorem 6. This proof is done similarly as above, but for the

sake of completeness we do not omit it. The conditions (b1) and (b2) do not

depend on the choice of coordinate systems, too. By using these facts, we give

the defining equation f ðx; yÞ of C.

130 Shingo Watanabe



If P is a 2-flex, then C satisfies the following conditions after taking

suitable coordinates.

ð1 0Þ P ¼ ð0; 0Þ.
ð2 0Þ Q1 is on the line X ¼ 0.

ð3 0Þ The line y ¼ 0 is the tangent line to C at P.

ð4 0Þ The points Q2 and Q3 are on the line at infinity.

By the conditions ð1 0Þ, ð3 0Þ, and ð4 0Þ, f ðx; yÞ must be expressed as follows:

f ðx; yÞ ¼ ðx2 þ axyþ by2Þðx2 þ cxyþ dy2 þ eyÞ þ y:

However we see that f ðx; yÞ does not satisfy the condition ð2 0Þ by simple

calculations. Hence P is not a 2-flex.

If P is a 1-flex, then C satisfies the same conditions ð1 0Þ, ð2 0Þ, ð3 0Þ, and ð4 0Þ
as previous argument (ii) in our proof of Theorem 5. By the conditions ð1 0Þ,
ð3 0Þ, and ð4 0Þ, f ðx; yÞ must be expressed as follows:

f ðx; yÞ ¼ ðx3 þ ax2yþ bxy2 þ cy3Þðpxþ qyþ rÞ þ y:

Moreover,

f ð0; yÞ ¼ cqy4 þ cry3 þ y ¼ yðlyþ mÞ3; c0 0

by the condition ð2 0Þ. Then q ¼ r ¼ 0 and P is a Galois point by lemma 13.

Hence P is not a 1-flex.

If P is not a flex, then f ðx; yÞ can be expressed as follows:

f ðx; yÞ ¼ ðx2 þ axyþ 3by2Þ cx2 þ exyþ b2

3
y2 þ dxþ byþ 1

� �
þ y

by the previous argument (iii) in our proof of Theorem 5. Then the degree of

cðtÞ and the number of double factors of cðtÞ become 8 and 3 respectively.

Because P is not a flex, there exists a 1-flex Q4 in A2 by Lemma 13 such that

y ¼ ax is a tangent line to C at Q4 by Lemma 11. Let u and v be the

coordinates with Q4 ¼ ðu; vÞ. Since

f̂f ðx; aÞ ¼ Aðx� uÞ3;

where A is a rational function of a, b, c, d, and e, we have the following

equations:

q2 f̂f

qx2
ðu; aÞ ¼ qf̂f

qx
ðu; aÞ ¼ f̂f ðu; aÞ ¼ 0:

Hence we obtain that

e ¼ ð3acþ 2bd � 9cd � ad 2 þ 3d 3Þ=3;

and we obtain the following equation:
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f ðx; yÞ ¼ ðx2 þ axyþ 3by2Þ
(
cx2 þ acþ 2

3
bd � 3cd � 1

3
ad 2 þ d 3

� �
xy

þ b2

3
y2 þ dxþ byþ 1

)
þ y: ðdÞ

It is easy to see from the above equation (d) that the assertion of Corollary

9 hold true.

If C is nonsingular, then gðPÞ ¼ 6. However, there may be curves with

singular points depending on the choices of a, b, c, and d. We infer from the

defining equations f ðx; yÞ and cðtÞ that the following conditions are necessary

and su‰cient by long and tedious calculations:

ðiÞ a� 3d0 0; b0 0;

ðiiÞ bþ 9c� 3d 2 0 0;

ðiiiÞ b� ad þ 3d 2 0 0;

ðivÞ bþ 9c� ad0 0;

ðvÞ a2 � 12b0 0; 3c� d 2 0 0;

ðviÞ b2 � 3a2cþ 18bcþ 81c2 � abd þ 9acd

þ a2d 2 � 3bd 2 � 54cd 2 � 3ad 2 þ 9d 4 0 0:

8>>>>>>>>>><
>>>>>>>>>>:

So we obtain that

ðu; v; aÞ ¼ �aþ 3d

�bþ ad � 3d 2
;

1

�bþ ad � 3d 2
;

1

�aþ 3d

� �
:

Finally we prove Proposition 10. We put

WðCÞ ¼
X
Q AC

fIQðC;TQÞ � 2g:

Then we have the following lemma by [1].

Lemma 14. WðCÞ ¼ 24.

We fix a point P A C. Let L be the set of lines l passing through P.

We put

L 0 ¼ L if P is not a 1-flex:

LnfTPg if P is a 1-flex:

�

Now we define

IC V lðC; lÞ ¼ max
Q ACVl

IQðC; lÞ

where IQðC; lÞ is the intersection number at Q, and
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WðC;PÞ ¼
X
l AL 0

maxf0; IC V lðC; lÞ � 2g:

Then we see that
P

P AC WðC;PÞ ¼ 24. We obtain the following results

by Theorem 6, Lemma 11 and Proposition 3.7 in [2].

Lemma 15.

WðC;PÞ ¼ 6 if gðPÞ ¼ 3:

WðC;PÞ ¼ 4 if gðPÞ ¼ 6:

WðC;PÞ ¼ 3 or 4 if gðPÞ ¼ 7:

WðC;PÞ ¼ 2 or 3 if gðPÞ ¼ 8:

WðC;PÞ ¼ 1 or 2 if gðPÞ ¼ 9:

WðC;PÞ ¼ 0 if gðPÞ ¼ 10:

8>>>>>>>><
>>>>>>>>:

If there exist a Galois point in C, then C can be expressed as f ðx; yÞ ¼
yþ gðx; yÞ, where gðx; yÞ is a homogeneous polynomial of degree four with

no multiple factor and gðx; 0Þ0 0 (Prop. 3.7, [2]). Moreover the projective

transformation Cðx; yÞ ¼ ðox;oyÞ induces an automorphism on C, where o is

a primitive cubic root of unity. Hence, if Q0 ð0; 0Þ A C, then we have

gðQÞ ¼ gðCðQÞÞ ¼ gðCðCðQÞÞÞ

and

WðC;QÞ ¼ WðC;CðQÞÞ ¼ WðC;CðCðQÞÞÞ: ðeÞ

Suppose that SðCÞ ¼ f3; 6; 7; 8; 9; 10g. Then, from Lemma 15 and above

equation ðeÞ, we obtain that

X
P AC

WðC;PÞb 6þ 3ð4þ 3þ 2þ 1Þ ¼ 36 > WðCÞ:

This is a contradiction. Therefore, SðCÞ is a proper subset of

f3; 6; 7; 8; 9; 10g for each quartic curve C. Thus we complete the proofs.
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