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1. Introduction

In this paper we consider the discriminant problem with two groups Hl

and Π2 in nonparametric case. Let X be a p-dimensional random vector
with density function fθ(x) given θ. Here the distribution of θ is defined by

where gjs satisfy q{ + q2 = 1- Suppose that we want to estimate the state
θeθ = {1, 2} based on a sample Zn = {(Xl9 Θ1),...,(XΛ9 θn)} of size n on (X, θ),
where (Xi9 fy), i = 1, 2,...,n are i.i.d., and for each ί, A\ has density /β.(x). Let

C(j\i) be the cost of misclassifying an observation from Π; as from HJ9 where

C(i|ί) = 0 and C(ί|7') > 0 for 1^7. We can write a discriminant procedure
as θ(x);

where f/ί's are two disjoint subsets in Rp satisfying H 1 ( j H 2 = Rp, i = 1, 2. Let
P(7'|i) be the probability of misclassifying an observation from Γ^ as from ΠJ9

which is given by

Then an optimum procedure is defined as the one minimizing the expected

cost of misclassification (ECM)

(1.1)

where q± = qίC(2\\) and q2 = q2C(l\2).

If <h> ^2»/ι(χ) and ΛW are completely known, we can obtain an optimal
discriminant procedure called Bayes procedure (see, e.g., Anderson [1]):
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where

D(x) = ^1/1 (x) — <?2/2M (1-2)

Then the minimum ECM, i.e., Bayes ECM, is

f2(x)dx
1

c, (1.3)

where

H = {x; D(x) > 0}, HC = RP- H.

In general, qί9 q 2 9 f 1 ( x ) and ΛW are unknown, and consequently, D(x) is so.
Wolverton and Wagner [8] introduced an asymptotical optimal discriminant
function based on a nonparametrical kernel density estimation. Z. D. Bai [2]
obtained an improvement on the conditions of [8]. However, the conditions
in their results are too strong to have practical application.

In this paper, we consider the discriminant procedure based on a nearest
neighbor density estimator of fι(x), i = 1, 2. It is shown that the procedure
is asymptotically optimal in the sense that under an appropriate condition its
ECM converges to the one of Bayes procedure. The new discriminant
procedure may be more interesting to the practical application because it is
more directly, and possess a weaker condition.

2. Main Result

At first, we give the definition of nearest neighbor estimator. Let X be
a /^-dimensional random vector with an unknown probability density function
/(x). Suppose we want to estimate /(x), based on a random sample
{Xl9 X2,...,Xn} of size n on X.

DEFINITION: (Rao [7]). Let kn be a nondecreasing sequence of positive
integers such that

Λ-* 00

and
lim kn = oo (2.1)

lim kjn = 0. (2.2)
n-* oo

Then, a nearest neighbor estimator (N. N. estimator) of /(x) is defined by

|i(x)|, (2.3)
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where an(x) is the random distance from x to the feπ-th nearest among

X19 X29...9XΛ, Sx,an(x) = {y: \\y - x\\ < απ(x)}, \\x\\ = ( £ x?)1/2, and \S\ is the

volume of 5 in Rp.

Now suppose that kn. and an.(x) satisfy

lim knί/n = 0, i = 1, 2 (2.4)
π-> oo

and

lim fcjlog n( = 00, i = 1, 2, (2.5)
H— * 00

where nί + w2 = «, 2 < /cπι + feΠ2 < n. Let ^fwί = n f/n, i = 1, 2 be the frequence

estimators of gf based on the nt observations on the group Π^ Let

fni = (kni/ni)\SXiani(X)\

be the N. N. estimators of /f(x), i = 1, 2. Then we get an estimator Dn(x) of

D(x) as

β.(x) = 5.ιΛιW-$.2/»2W (2-6)

where ^πl = gπ lC(2|l) and ^w2

 = 4n2C(l|2). Now, a discriminant procedure

is defined as

ifDB(x)<0.

The ECM of g(x) with given Z" is

L.(ff(x), Z ) = 9^(211, Z") + ί2P(l|2, Z")

= 9!- D(x)ίHn(x)dx, (2.7)
J RP

where

Hπ = {x;Dn(x)>0}, HnUHc

n = R".

THEOREM : Suppose that (2.4) and (2.5) ΛoW, αnrf

fi2(x)dx < co, i = l,2. (2.8)
JRRP

Then

From this theorem, we can see that by using the N. N. estimator in our
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discriminant procedure, the condition for ft(x) may be only for the quadratic
integrability not for the Lipschitz condition or absolute continuity. The
conditions required for the N. N. estimator itself are also mild, and it is also

easier for simulation.

3. The Proof of Theorem

For the proof of the theorem, we use the following two lemmas. Let
Xl9...,Xn be i.i.d. random vectors with values in Rp and with an unknown
density function /(x).

LEMMA 3.1 (Devroye and Wagner [3]). Let fn(x) be a N. N. density
estimator of f(x) and kn, a positive integer satisfying (2.1), (2.2) and

lim kn/logn = oo, (3.1)
w-»oo

Then

sup \fn(x) - /(x)| > 0, a.s. (3.2)
X

LEMMA 3.2 (Zhao [9]). Suppose that a density function f(x) satisfies

fk(x)dx < oo, for some k > 2. (3.3)
P

Further, kn<n, n = 1, 2,..., satisfy (2.2) and (3.1). Then

)-f(x)\kdx-^0 a.s. (3.4)
J RP

where fn(x) is a N. N. estimator of f(x) formed as (2.3).

On the other side, it is seen that if (3.4) is true, then so are (3.3), (2.1)
and (2.2).

The proof of theorem:
For any ε > 0, we can choose a bounded set B c: Rp such as

L f(x)dx<ε, (3.5)
JB

Then, from (1.3) and (2.7):

0 < Ln(g(x), Z") -R*=f D(x) [/H(x) - /H>

JRP
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= f D(x)lIB(x)-IBn(x)lIB(x)dx
J RP

Γ

J«p * "X ""X BcX

< f φ(χ)-D.(χ))(/β(χ)-/aιl(χ))/B(χ)dχ
JRP

+ f D(x)(IB(x)-IBΛ(x))IB.(x)dx.
J RP

Here the last inequality is obtained by using

- ί Dn(x)(IH(x) - IHn(x)) IB(x) dx > 0.
JRP

Noting that

we have

0 < LΛte(x), Z") - K* < I \Dn(x) - D(x)\IB(x)dx
JRP

\D(x)\IBC(x)dxf \
J RP

< ί \DH(x)-D(x)\IB(x)dx + e.
JRP

From Holder inequality, we have

Γ / Γ V / 2

\D(x)-DΛ(x)\IB(x)dxz[ lD(x)-Dn(x)γdx)
JRP \JRP /

where |B| is the volume of the bounded set B. Further

ί (D(x)-Dn(x))2dx<2(Jal

RP

where

and

ι = ί l«.ι/.ιW-ίι/ι
J RP
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=
JRRP

Since

ι= l«,,ιΛι(*)-9ι/ι(*)l2<k
JΛP

ί |/nl(x) -Mxtfdx + (qnl - if) f Λ2

JRP JRPIRP

by lemma 3.1, lemma 3.2 and (2.8), we obtain

JΛl >0 a.s.

Similarly we can show

Jn2—>0 a.s.

Therefore

ί, (Da(x)-D(x))2dx—*0 a.s.
RP

which implies

L.foM.Z")—+X* a.s.

In the proof, we ignore the discussion about the mean and variance of
fn(x) and emphasize a direct establishement of (2.9). As a matter of fact, we

are concerned only with the convergence of the discriminant procedure formed
from training samples Zn and the N. N. density estimator of unknown
conditional density function/ f(x) to a Bayes discrimination. Consequently, it
is not essential whether E { f n ( x ) } or var {/„(*)} could be established or not
as in [5].
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