
The Pennsylvania State University
The Graduate School

TRUSTWORTHY MACHINE LEARNING:

LEARNING UNDER SECURITY, EXPLAINABILITY AND

UNCERTAINTY CONSTRAINTS

A Dissertation in
Information Sciences and Technology

by
Thai Le

© 2022 Thai Le

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2022

The dissertation of Thai Le was reviewed and approved∗ by the following:

Dongwon Lee
Professor of College of Information Sciences and Technology
Dissertation Adviser, Chair of Committee

Suhang Wang
Assistant Professor of College of Information Sciences and Technology

Prasenjit Mitra
Professor of College of Information Sciences and Technology

S. Shyam Sundar
James P. Jimirro Professor of Media Effects
Professor of Donald P. Bellisario College of Communications

Mary Beth Rosson
Professor of College of Information Sciences and Technology
Graduate Program Chair

ii

Abstract

Trustworthy machine learning models are ones that not only have high accuracy
but also well perform under various realistic constraints, security threats, and are
transparent to users. By satisfying these constraints, machine learning models
can gain trust from their users and thus make it easier for them to be adopted in
practice. This thesis makes contributions on three aspects of trustworthy machine
learning, namely (i) learning under uncertainty–i.e., able to learn with limited
and/or noisy data, (ii) transparent to the end-users–i.e., being explainable to the
end-users, and (iii) secured and resilient machine learning–i.e., adversarial attacks
and defense from/against malicious actors. Particularly, this thesis proposes to
overcome the lack of high-quality labeled textual data that is necessary for training
effective ML classification models by directly synthesizing them in the data space
using generative neural networks. Moreover, this thesis designs a novel algorithm
that facilitates accurate and effective post-hoc explanations of neural networks’
predictions to the end-users. Furthermore, this thesis also demonstrates the vul-
nerability of a wide range of fake news detection models in the literature against a
carefully designed adversarial attack mechanism where the attackers can promote
fake news or demote real news on social media via social discourse. This thesis also
proposes a novel approach that adapts the “honeypot" concept from cybersecurity
to proactively defend against a strong universal trigger attack. Last but not least,
this thesis contributes to the adversarial text literature by proposing to study, ex-
tract and utilize not machine-generated but realistic human-written perturbations
online. Through these technical contributions, this thesis hopes to advance the
adoption of ML systems in high-stakes fields where mutual trust between humans
and machines is paramount.

iii

Table of Contents

List of Figures . ix
List of Tables . x

Acknowledgments xiv

Chapter 1
Introduction 1
1.1 Trustworthy Machine Learning . 1

1.1.1 Learning under Uncertainty 2
1.1.2 Explainable AI (XAI) for End-Users 3
1.1.3 Adversarial Attack and Defense 4

Chapter 2
Learning under Uncertainty: Synthesizing High-Quality La-

beled Texts to Improve Clickbait Detection 5
2.1 Background . 5
2.2 RQ1: Generating Synthetic Clickbaits 8

2.2.1 Crowdworkers-Generated Clickbaits C: 8
2.2.2 Student-Generated Clickbaits S: 9
2.2.3 Algorithm-Generated Clickbaits A: 10

2.3 RQ2: Assessing Synthetic Clickbaits 11
2.3.1 AQ1: Predictive Power of Synthetic Clickbaits 14
2.3.2 AQ2: NLP Feature Encapsulation 17
2.3.3 AQ3: Robustness of Synthetic Clickbaits 19
2.3.4 AQ4: Interpretability of Synthetic Clickbaits 20

2.4 RQ3: Differentiate Clickbaits per Sources 21
2.5 Discussion . 23

2.5.1 Utility of Synthetic Text. 23
2.5.2 Implications for Combating Misinformation. 24

2.6 Related Work . 25
2.6.1 Collecting, Generating Clickbaits. 25

iv

2.6.2 Postmortem: Detecting Clickbaits. 25
2.7 Limitation and Future Direction. 26
2.8 Conclusion . 26

Chapter 3
Learning with Transparency: Counterfactual Explanation for

Neural Network Classifiers 27
3.1 Background . 27
3.2 The Explanation Model . 30

3.2.1 Contrastive Explanation . 30
3.2.2 Explanation by Intervention 30
3.2.3 From Intervention to Generation 31

3.3 Objective Function . 32
3.4 GRACE: Generating Interventive Contrastive Samples for Model

Explanation . 34
3.4.1 Contrastive Sample Generation Algorithm 34
3.4.2 Entropy-Based Forward Feature Ranking 37
3.4.3 Generating Explanation Text 38
3.4.4 Complexity Analysis . 41

3.5 Experiments . 41
3.5.1 Datasets . 41
3.5.2 Compared Methods . 42
3.5.3 Evaluation of Generated Samples 44

3.5.3.1 AQ1. Fidelity . 44
3.5.3.2 AQ2. Conciseness 45
3.5.3.3 AQ3. Info-gain . 46
3.5.3.4 AQ4. Influence . 46

3.5.4 Evaluation of Generated Explanation 47
3.5.4.1 Case-study: breast-cancer diagnosis 47
3.5.4.2 User-Study 1: Intuitiveness, friendliness & com-

prehensibility . 48
3.5.4.3 User-Study 2: How much end-users indeed under-

stand the explanation? 48
3.5.5 Parameter Sensitivity Analysis 50

3.5.5.1 Effects of K . 50
3.5.5.2 Effects of entropy threshold γ 51

3.6 Related Work . 51
3.7 Limitation and Future Work . 52
3.8 Conclusion . 52

v

Chapter 4
Learning to Attack: Generating Malicious Comments to Attack

Neural Fake News Detection Models 54
4.1 Background . 54
4.2 Problem Formulation . 57
4.3 Adversarial Comments Generation 58

4.3.1 Conditional Comment Generator: G 59
4.3.2 Style Module . 59
4.3.3 Attack Module . 60
4.3.4 Objective Function of MALCOM 61
4.3.5 Implementation Details . 62

4.4 Experiments . 62
4.4.1 Set-Up . 63

4.4.1.1 Datasets . 63
4.4.1.2 Data Processing and Partitioning 64
4.4.1.3 Target Classifier 64
4.4.1.4 Compared Attack Methods 65
4.4.1.5 Evaluation Measures 66

4.4.2 AQ1. Quality, Diversity and Coherency 67
4.4.3 AQ2. Attack Performance 70

4.4.3.1 White Box Attack 70
4.4.3.2 Black Box Attack 70

4.4.4 AQ3. Attack Robust Fake News Detection 71
4.4.5 AQ4. Robustness . 73

4.5 Discussion . 74
4.5.1 Prevent Malicious Comments with Human Support 74
4.5.2 Prevent Malicious Comments with Machine Support 75
4.5.3 Real News Demotion Attack 75
4.5.4 Ablation Test . 76
4.5.5 Baselines’ Dependency on CopyCat 77

4.6 Related Work . 77
4.6.1 Fake News Detection Models 77
4.6.2 Attacking Fake News Detectors 78
4.6.3 Adversarial Text Generation 78

4.7 Limitations and Future Work . 79
4.8 Conclusion . 79

Chapter 5
Learning to Defend: Using Honeypots to Proactively Detect

Universal Trigger’s Adversarial Attacks 81

vi

5.1 Background . 81
5.2 Preliminary Analysis . 83

5.2.1 The Universal Trigger Attack 83
5.2.2 Attack Performance and Detection 84

5.3 Honeypot with Trapdoors . 84
5.3.1 The DARCY Framework . 85
5.3.2 Multiple Greedy Trapdoor Search 86

5.3.2.1 Fidelity. 86
5.3.2.2 Robustness to Varying Attacks. 87
5.3.2.3 Class-Awareness. 88
5.3.2.4 Objective Function and Optimization. 88
5.3.2.5 Computational Complexity. 89

5.4 Experiments . 89
5.4.1 Set-Up . 89

5.4.1.1 Datasets. 89
5.4.1.2 Attack Scenarios and Settings. 90
5.4.1.3 Detection Baselines. 90
5.4.1.4 Evaluation Metrics. 91

5.4.2 Results . 92
5.4.2.1 Evaluation on Novice Attack. 92
5.4.2.2 Evaluation on Advanced Attack. 93
5.4.2.3 Evaluation on Adaptive Attack. 93
5.4.2.4 Evaluation on Advanced Adaptive Attack. 96
5.4.2.5 Evaluation on Oracle Attack. 97
5.4.2.6 Evaluation under Black-Box Attack. 97

5.5 Discussion . 98
5.5.1 Advantages and Limitations of DARCY. 98
5.5.2 Case Study: Fake News Detection. 99
5.5.3 Trapdoor Detection and Removal. 100
5.5.4 Parameters Analysis. 100

5.6 Related Work . 101
5.6.1 Adversarial Text Detection. 101
5.6.2 Honeypot-based Adversarial Detection. 101

5.7 Limitation and Future Work . 101
5.8 Conclusion . 102

Chapter 6
Learning under Realistic Security Constraints: Adversarial At-

tack and Defense with Text Perturbations in the Wild 103
6.1 Background . 103

vii

6.2 Perturbations in the Wild . 106
6.2.1 Machine v.s. Human Perturbations 106
6.2.2 The SMS Property: Similar Sound, Similar Meaning, Dif-

ferent Spelling . 107
6.3 A Realistic Adversarial Attack . 108

6.3.1 Mining Perturbations in the Wild 108
6.3.1.1 Sound Encoding with Soundex++. 108
6.3.1.2 Levenshtein Distance d and Phonetic Level k as a

Semantic Preservation Proxy. 110
6.3.1.3 Mining from the Wild. 111
6.3.1.4 ANTHRO Attack. 111

6.4 Evaluation . 112
6.4.1 Attack Performance . 112

6.4.1.1 Setup. 112
6.4.1.2 Baselines. 113
6.4.1.3 Results. 115

6.4.2 Human Evaluation . 115
6.4.2.1 Human Study Design. 116
6.4.2.2 Quantitative Results. 118
6.4.2.3 Qualitative Analysis. 118

6.5 ANTHROβ Attack . 118
6.5.0.1 Attack Performance. 119
6.5.0.2 Semantic Preservation and Human-Likeness. 119

6.6 Defend ANTHRO, ANTHROβ Attack 119
6.6.1 Proposed Defense . 119
6.6.2 Results. 120

6.7 Discussion and Analysis . 121
6.7.1 Evaluation with Perspective API. 121
6.7.2 Generalization beyond Offensive Texts. 121
6.7.3 Limitation of Misspelling Correctors. 122
6.7.4 Computational Analysis . 122
6.7.5 Limitation . 123

6.8 Conclusion . 123

Chapter 7
Conclusion 124

Bibliography 125

viii

List of Figures

1.1 Three aspects of trustworthy ML. 2

2.1 Decision boundary of a trained SVM classifier on Ptrain changed
with and without different additional synthetic clickbaits. Blue
contour, green contour, and red shade depict the density of positive,
negative, and synthetic clickbaits, respectively. 15

2.2 Proportion of additional synthetic clickbaits versus absolute AUC
score improvement from baseline on Ptest 18

2.3 Proportion of additional synthetic clickbaits versus absolute AUC
score improvement from baseline on Mtest 19

3.1 GRACE with Local-Based Feature Ranking 36
3.2 Percentage of perturbed features v.s fidelity 45
3.3 Effects of K on Rfidelity and Ravg#Feats score 49
3.4 Comparison of generated explanation: GRACE v.s. Lime. Scores

are normalized to [0,1] . 50

4.1 A malicious comment generated by MALCOM misleads a neural
fake news detector to predict real news as fake. 56

4.2 MALCOM Architecture. 57
4.3 Attack Robust Fake News Detector. Top: GossipCop Dataset.

Bottom: Pheme Dataset . 71
4.4 Robustness of Intra-Attacks: White Box Setting (First Row) &

Black Box (Second-Row) on GossipCop Dataset. 72
4.5 Robustness of Inter-Attacks: White Box Setting on GossipCop

Dataset . 73

ix

5.1 An example of DARCY. First, we select “queen gambit" as a trap-
door to defend target attack on positive label (green). Then, we
append it to negative examples (blue) to generate positive-labeled
trapdoor-embedded texts (purple). Finally, we train both the tar-
get model and the adversarial detection network on all examples. . 84

5.2 Multiple Greedy Trapdoor Search 88
5.3 DARCY and SelfATK under novice attack 91
5.4 Greedy v.s. random single trapdoor with strong and weak trapdoor

injection on RNN . 95
5.5 Performance under adaptive attacks 95
5.6 Detection AUC v.s. # query attacks 95
5.7 Detection TPR v.s. # ignored tokens 96
5.8 Detection TPR v.s. # ignored tokens 96
5.9 Detection TPR under oracle attack 97

6.1 ANTHRO (Bottom) extracts and uses human-written perturba-
tions for adversarial attacks instead of proposing a specific set of
manipulation rules (Top). 104

6.2 Word-clouds of perturbations in the wild extracted by ANTHRO
for the word “amazon”, “republicans”, “democrats” and “president”. 106

6.3 Trade-off between precision and recall of extracted perturbations
for the word “president" w.r.t different k and d values. Higher k
and lower d associate with better preservation of the original meaning. 109

6.4 Semantic preservation and human-likeness 116
6.5 Trade-off among evaluation metrics 119
6.6 (Left) Precision on human-written perturbed texts synthesized by

ANTHRO and (Right) Robustness evaluation of Perspective API
under different attacks . 121

x

List of Tables

2.1 Human-written & machine-generated clickbaits 6
2.2 Statistics of five types of synthetic clickbaits 8
2.3 Experiment datasets . 9
2.4 Mean AUC scores and their relative changes (%) on Ptest using

different oversampling methods. 12
2.5 Mean AUC scores and their relative changes (%) on Mtest using

different oversampling methods. 13
2.6 NLP Features Descriptions . 14
2.7 OverlapNLP score with k = 5 of synthetic datasets on Ptrain and

Mtrain . 20
2.8 Clickbaits’ Source Verification Benchmark 22
2.9 Top distinguishing features . 22

3.1 Examples of original samples xxxi and contrastive samples x̃xxi on spam
dataset. x̃i only differs from xxxi on a few features. 28

3.2 Examples of generated contrastive samples and their explanation
texts . 40

3.3 Dataset statistics and prediction performance 41
3.4 All results are averaged across 10 different runs. The best and

second best results are highlighted in bold and underline. 43
3.5 User-study with hypothesis testing to compare explanation gener-

ated by GRACE against Lime . 48
3.6 Effects of entropy threshold γ on Rinfo−gain 51

4.1 Dataset Statistics and Details of Target Classifiers and Their Fake
News Detection Performance . 63

xi

4.2 Comparison among Attack Methods 66
4.3 Examples of Generated Malicious Comment. Spans in purple and

italics are retrieved from the train set and carefully crafted. Spans
in blue are generated in end-to-end fashion. 66

4.4 Quality, Diversity, Coherency and White Box Attack 68
4.5 Black Box Attack Performance on Different Attack Strategies and

Target Classifier Architectures (Atk%) 69
4.6 Results of User-Study on Generation Quality 74
4.7 Ablation Test . 76

5.1 Examples of the UniTrigger Attack 82
5.2 Prediction Accuracy of CNN under attacks targeting a Negative

(Neg) or Positive (Pos) Class . 83
5.3 Dataset statistics . 89
5.4 Six attack scenarios under different assumptions of (i) attackers’

accessibility to the model’s parameters (F ’s access?), (ii) if they
are aware of the embedded trapdoors (Trapdoor Existence?), (iii) if
they have access to the detection network (G’s access?) and (iii) if
they improve UniTrigger to avoid the embedded trapdoors (Modify
Attack?). 90

5.5 Average detection performance across all target labels under novice
attack . 92

5.6 Average adversarial detection performance across all target labels
under advanced attack . 94

5.7 Detection AUC and model’s accuracy (attack ACC) under black-
box attack on CNN . 98

5.8 Examples of the trapdoors found by DARCY to defend target pos-
itive and negative sentiment label on MR (K←2) and SST dataset
(K←5). 99

5.9 Changes in average readability of varied-length news articles after
UniTrigger attack using Gunning Fog (GF) score and human eval-
uation . 99

xii

5.10 Model F1 /detect AUC of CNN under trapdoor removal using
model-pruning . 100

6.1 Percentage of offensive perturbed words generated by different at-
tacks that can be observed in real human-written comments on
Reddit and online news. 107

6.2 Soundex++ can capture visually similar characters and is more
accurate in differentiating between desired (blue) and undesired
(red) perturbations. 109

6.3 Real-life datasets that are used to extract adversarial texts in the
wild, number of total examples (#Texts) and unique tokens (#To-
kens) (case-insensitive) . 110

6.4 Examples of hash table H1(k=1) curated from sentences “the demokRATs
are dirrrty" and “the democrats arre not dirty" and its utilization. . 110

6.5 Evaluation datasets Cyberbullying (CB), Toxic Comments (TC)
and Hate Speech (HS) and prediction performance in F1 score on
their test sets of BERT and RoBERTa. 112

6.6 Averaged attack success rate (Atk%↑) of different attack methods . 114
6.7 Averaged attack success rate (Atk%↑) of ANTHROβ and TextBugger 117
6.8 Top reasons in favoring ANTHRO’s perturbations as more likely

to be written by human. 118
6.9 Averaged Atk%↓ of ANTHRO and ANTHROβ against different

defense models. 120
6.10 Attack success rate (Atk%↑) of ANTHRO and ANTHROβ on

non-abusive task domains.) . 122

xiii

Acknowledgments

This material is based upon work supported by the NSF under Award No. #1742702,
#1820609, #1909702, #1915801, #1934782, #1940076, #2114824. Any opinions,
findings, and conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the agencies.

xiv

Dedication

I dedicate my dissertation work to my family and friends, especially my beautiful
wife–Ashlinn, my parents–Thu and Dung, my sister–Duong, and my mentors–
a.k.a “senior" friends–Ken, Joyce, Bob, and Marleen. I also want to dedicate
this dissertation to one of my high-school teachers–Mrs. Khanh Van, and my
college thesis advisor–Prof. Pishva Davar, who cultivated the very early research
interests in me. Finally and most importantly, I dedicate my dissertation to my
God Almighty, from whom I got all the strengths, perseverance, wisdom, and
creativity.

xv

Chapter 1 |
Introduction

1.1 Trustworthy Machine Learning
Throughout the years, machine learning (ML) models have continuously broken
their records in terms of prediction performance in a wide range of fields such as
visual objects recognition and natural language understanding. Their prediction
performances are usually evaluated by how accurately they can perform on unseen
data–i.e., often called test sets. Until recently, prediction accuracy on test data has
been a gold standard to measure the performance of ML models. However, as ML
models are prevalently integrated into every aspect of our daily lives, which can
range from cancer diagnosis to potential self-driving automobiles, answers to the
question: whether ML models are secure and reliable? are much needed. There-
fore, this thesis proposes to study the trustworthiness of ML models on three
aspects (Figure 1.1), namely (i) learning under uncertainty–i.e., able to learn with
limited and/or noisy data, (ii) explainability for end-users–i.e., being explainable
and transparent to end-users, and (iii) adversarial ML–i.e., adversarial attacks and
defense from/against malicious actors. These aspects represent several challenges
when examining the relationship between a ML model and its data source (Figure
1.1A), its end-users (Figure 1.1B) and its adversaries (Figure 1.1C), respectively.
Through technical contributions in these areas, this thesis encourages the adoption
of ML systems in high-stakes fields where mutual trust between humans and ma-
chines is paramount. Also, it provides the regulators with frameworks to assess the
security and transparency of novel ML systems. This chapter will summarize each
of the three trustworthy aspects of ML and their respective proposed technical

1

Figure 1.1: Three aspects of trustworthy ML.

contributions of the thesis.

1.1.1 Learning under Uncertainty

Supervised ML models require learning from labeled datasets. Particularly, in
classification tasks, this dataset either includes positive and negative labels–i.e.,
in binary classification such as fake-news prediction, or positive labels of different
categories–i.e., in multinomial classification such as news categorization. In many
critical domains, labeled data for training classification ML models that are cu-
rated mainly through human annotators can be limited and/or noisy. This is often
due to either the nature of a specific domain–e.g., there is less fake than real news,
and/or the discrepancy in subjective judgment among the annotators–e.g., click-
bait v.s. non-clickbait headlines. To overcome these issues, especially when there is
a lack of high-quality labels, one can easily over-sample an existing labeled dataset
using statistical methods such as SMOTE [1] on the feature space–e.g., Euclidean
space. In the natural language processing (NLP) domain, however, this approach
is limited due to possible loss of information when encoding texts from the data
space–i.e., texts, to the feature space–i.e., vectors. This also means that over-
sampled examples on the vector space do not necessarily correspond to meaningful
texts. Moreover, this does not take into account the noisiness of the input labeled

Icons of Fig. 1.1 are retrieved from pngegg.com, icon-library.com, pikpng.com, iconspng.com.

2

dataset. Thus, chapter 2 proposes to utilize generative models to over-sample la-
beled data directly on the data space or to synthesize texts [2]. My experiments on
clickbait texts show that Variational AutoEncoder (VAE)-based generative mod-
els can capture the most consistent characteristics of the input labeled texts–i.e.,
denoising, and generate synthetic clickbaits that consistently improves the accu-
racy of various ML clickbait detectors by up to 15%, outperforming even the best
solution in the Clickbait Challenge in 2017 . Especially, the generated clickbaits
are also highly overlapped with the original texts in the NLP feature space.

1.1.2 Explainable AI (XAI) for End-Users

Beyond delivering accurate predictions on unseen examples, ML models also need
to communicate to the end-users why they made such predictions. This applies
especially to large neural network models where their models’ weights are often
too complex to interpret. Although there have been several works in enabling
the interpretability of neural network models, their target audiences are often
skewed towards researchers and developers, who already have some experience in
ML/AI. Chapter 3 fills in this gap by developing a novel algorithm to explain AI
systems specifically for the end-users, who often do not have a relevant technical
background. Explaining predictions of an ML model to the end-users requires two
main components, namely the mode of the explanation–e.g., predictive strengths
of features, and how to present it. This becomes especially challenging when the
domain datasets are tabular and in high-dimensional vectorized formats. This is
because there can be hundreds or thousands of features to select to present to the
users, and presentation means such as highlighting a patch of an image or a span
of a sentence is also limited in the tabular domain. To resolve this, this thesis
borrowed two notable ideas, namely “explanation by intervention" from causality
and “explanation is contrastive" from philosophy, and proposed a novel solution,
named as Grace [3], that better explains NN models’ predictions for tabular
datasets. In particular, given a model’s prediction as label X, Grace intervenes
and generates a minimally-modified contrastive sample to be classified as Y, with
an intuitive textual explanation, answering the question of “Why X rather than
Y?" Human studies show that Grace can generate explanation texts that are not

https://webis.de/events/clickbait-challenge/

3

only more friendly and understandable but also help the users make more accurate
decisions than the strong baseline LIME [4].

1.1.3 Adversarial Attack and Defense

Similar to other technologies, ML models are not free from malicious attacks when
they are deployed in practice. This thesis investigates such an attack in the case
of ML fake-news detection models. Text commentaries play a vital role in online
discourse. They are also strongly predictive features of ML models in high-stake
domains such as fake news detection. Thus, this thesis hypothesized that the ad-
versaries can leave malicious comments on social posts, without the need to change
their original contents, to attack these ML models. As an illustration, chapter 4
introduces Malcom [5], a novel conditional text generation algorithm that can
generate high-quality and coherent adversarial comments for a given post. Once
attached to a social post, these comments can force many previously published
fake news detectors to predict it as fake or real news with over 90% accuracy on
average. This thesis also demonstrates the possibility of robustly defending against
such malicious attacks. Especially, related works often characterize and detect ad-
versarial attacks only after they happen. As in the saying “an ounce of prevention
is worth a pound of cure”, this thesis investigates to adopt the “honeypots" concept
from cybersecurity to trap potential attacks–i.e., to proactively defend against these
attacks even before they happen. To do this, chapter 5 introduces Darcy [6], a
novel algorithm that greedily searches and injects multiple trapdoors into an NN
model to “bait and catch" potential attacks with an accuracy of over 99% on aver-
age. Intuitively, these trapdoors are artificial local minimum on the target model’s
loss landscape, which makes it very attractive for the adversaries to fall in when
they try to optimize the attacks. Furthermore, previous proposals on adversar-
ial attacks often hypothesize different adversarial attack strategies based on some
known vulnerabilities of textual ML models. However, text perturbations in real-
life texts are much more diverse and nuanced–e.g., “democrats"→“demokRATs".
To derive a more realistic attack, chapter 6 proposes an inductive approach to mine
text perturbations in the wild [7]. The extracted human-written perturbations is
then utilized to derive a more realistic attack and to enhance the robustness of a
BERT classifier against noisy human-written texts online.

4

Chapter 2 |
Learning under Uncertainty: Syn-
thesizing High-Quality Labeled
Texts to Improve Clickbait De-
tection

2.1 Background
In Feb. 2018, US President Donald Trump posted on Twitter: "NEW FBI TEXTS
ARE BOMBSHELLS!", which has drawn much attention from the public and
media. This tweet exhibits many characteristics of clickbaits–i.e., catchy social
posts or sensational headlines that attempt to lure readers to click. Other examples
of clickbaits can be found in Table 2.1.

Clickbaits often hide critical information or fabricate the contents on the land-
ing pages by using exaggerated or catchy wording. Yet, social media has made
it possible for clickbaits to quickly go viral, thus a potential means of spreading
misinformation.

5

Table 2.1: Human-written & machine-generated clickbaits

Human-written clickbaits

Pregnant mother of 12 accused of keeping kids in waste-filled...
54 facts that will change the way you watch disney movies
Who, What, Why: How do dogs donate blood?
Machine-generated clickbaits (by GVAE)

5 ways criminals will try to scam you about tax this summer
We know your personality based on which cat you choose
Why you should be proud to be naked
Machine-generated clickbaits (by GinfoVAE)

43 magical moments that made game and thanksgiving
29 things every student has while in college
29 ridiculously posts about the damn disasters

Indeed, a Facebook media analysis [8] shows that a clickbait post receives more
attention via shares and comments than a non-clickbait one.

Viewed as one type of fake news in a broad sense [9],
clickbaits not only frustrate readers, but also violate the journalistic code of

ethics [10]. Scholars have argued that the current trend toward merging commer-
cial and editorial interests by means of clickbaits is severely detrimental to the
overall information ecosystem, particularly posing a threat to societal/democratic
values [11].

Therefore, it has become critically important to develop proactive solutions to
the use of clickbaits. By and large, existing approaches have tended to focus on
the “postmortem” approach–i.e., assuming that clickbaits are out there, how to
develop computational solutions to best detect them (e.g., [8,12–14]). While these
prior works are important and effective, their performance is highly dependent
on the quantity and quality of training datasets available. However, there is a
paucity of high-quality labeled training datasets that are heterogeneous in sources
and large in quantity. This is because annotating labels is expensive, and most of
existing datasets are passively collected from external sources, instead of actively
generated. To overcome this problem at large, we propose a research question:
how to generate new headlines and titles that resemble real-life clickbaits and how
to use them as additional training samples to improve clickbait detection models?

To systematically study this question, we commission various human entities
(e.g., crowdworkers and journalism students) and deep generative models in simu-

6

lated experiments to generate clickbaits from scratch. We refer to these clickbaits
that are generated under simulated intent, i.e., to generate attractive headlines
for news articles, as synthetic clickbaits. Furthermore, by simulating a similar
intent in generating attractive headlines, we hypothesize that synthetic clickbaits
might share some similarities in the use of language (e.g., writing style, word choice,
grammar patterns) with clickbaits collected in real life, which might be different
from that of non-clickbait. We tested this proposition by examining whether gener-
ated synthetic clickbaits can be used as additional training examples to strengthen
classification performance.

We also want to compare these synthetic clickbaits with synthetic data sampled
by Synthetic Minority Over-sampling Technique (SMOTE) in terms of predictabil-
ity, how they capture the original NLP features in terms of distribution, robustness,
and interpretability.

Considering that generated clickbaits can resemble various characteristics of
real clickbaits, malicious publishers might take advantage of different entities (e.g.,
machines) to generate vast amount of clickbaits to disseminate low-quality content
just to attract online traffic. As a proactive defense against this potential, we
further examine the use of Machine Learning (ML) models to verify news sources,
in order to differentiate various types of clickbaits. Formally, we propose the
following research questions:

RQ1 How do we generate synthetic clickbaits from raw training samples as ad-
ditional training samples to improve supervised-learning clickbait detection
models?

RQ2 What are the differences among synthetic clickbaits generated by humans,
generative models, and statistical method in terms of predictive power, NLP
feature encapsulation, robustness and interpretability?

RQ3 How can we differentiate clickbaits based on sources (e.g., machine versus
human-written clickbaits)?

By answering these research questions, this chapter makes the following contribu-
tions:

• Overcoming the lack of labeled training samples by exploiting human and
deep generative models, we generate diverse types of synthetic clickbaits.

7

Table 2.2: Statistics of five types of synthetic clickbaits

Statistics P M C S A

Avg # words 10.27 11.00 11.83 8.61 10.18
Std. Dev. 4.34 4.39 4.44 2.79 2.94

Avg # chars 46.81 51.95 56.6 42.32 44.69
Std. Dev. 12.61 19.96 21.12 20.32 12.48

• We demonstrate that using both raw and synthetic clickbait samples (gen-
erated from raw samples) consistently improve clickbait detection models by
up to 14.5% in AUC, even outperforming SMOTE and two top-performed
clickbait detection algorithms from Clickbait Challenge 2017.

• Leveraging deep learning models, we generate more interpretable oversam-
pling data that also better capture the distribution of NLP-based domain
knowledge from original clickbaits compared with SMOTE.

• We demonstrate that the clickbaits generated by different entities have sig-
nificant differences in features so that ML models can differentiate them with
an accuracy of 20%–39% higher than random guesses.

2.2 RQ1: Generating Synthetic Clickbaits
We begin with two raw datasets, P andM, representing two dominant sources of
clickbaits prevalent today–i.e., mainstream news media and general social media,
respectively [8]. Then, to generate synthetic clickbaits from raw datasets, we ex-
plore two types of human sources (i.e., crowdworkers as novice users and journalism
majors as domain experts) and VAE-based generative models.

Table 2.2 compares the lengths of synthetic clickbaits from all five entities.

2.2.1 Crowdworkers-Generated Clickbaits C:

To collect clickbaits generated by crowdworkers, we utilize the Amazon MTurk
(AMT) platform. From the articles used in the Clickbait Challenge 2017, we first
filtered out very short articles with less than 50 words in content. In addition,
for very long articles with more than 500 words in content, we presented only

8

Table 2.3: Experiment datasets

Dataset Description #Pos #Neg

Ptrain Training set from P 2,239 11,201
Ptest Testing set from P 960 4,800
Mtrain Training set from M 3,681 11,337
Mtest Testing set from M 1,578 4,859

C Training set from workers 778 0
S Training set from Students 785 0

AP
VAE GVAE trained on Ptrain 8,962 0
AM

VAE GVAE trained on Mtrain 7,656 0
AP

infoVAE GinfoVAE trained on Ptrain 8,962 0
AM

infoVAE GinfoVAE trained on Mtrain 7,656 0

OP SMOTE on Ptrain 8,962 0
OM SMOTE on Mtrain 7,656 0

the first 500 words to reduce the amount of reading for workers. As the first 3-
4 paragraphs of news articles often summarize the content, the first 500 words
sufficiently captured the gist of the articles. Then, we recruited AMT workers
located in US (who are more likely to be familiar with the topics of the articles)
with approval rates > 0.95.

In the MTurk task, next, we first showed a Wikipedia link with the definition
of clickbait,

but did not provide additional information that might influence the way workers
generated clickbaits. Second, for each article shown, we asked workers to read the
article and write a clickbait headline, with no more than 25 words. In the end, 85
workers generated 778 clickbait headlines for 200 selected articles. This provided
us a total of 62 articles with 3 different clickbait headlines, 113 articles with 4
clickbaits, 10 articles with 5 clickbaits, and 15 articles having 6 clickbaits.

2.2.2 Student-Generated Clickbaits S:

Another source for headline creation was undergraduate students who are being
trained to learn about the art and craft of journalistic writing and reporting. We
recruited participants from 8 different classes at a large northeastern university
in US. Participants received extra course credit for their participation. Because

https://en.wikipedia.org/wiki/Clickbait

9

we wanted to include participants with different levels of expertise, we recruited
from 3 lower-level classes and 5 upper-level classes. Participants in the lower-level
classes represent amateurs who are beginning to learn about the journalistic style
of writing, whereas those from the upper-level classes represent students who are
semi-experts and have an advanced understanding of the principles of reporting
and headline creation. A total of 125 students participated (i.e., 76.8% and 23.2%
from lower- and upper-level classes, respectively).

The design principle and articles used to generate these headlines were the
same as the ones used for AMT participants. We first provided students with a
definition of clickbait, without providing additional information, and asked them
to generate a clickbait headline, with no more than 25 words.

Each student completed an average of 6 headlines, ranging from 1 to 22. The
students generated 785 clickbaits in total.

2.2.3 Algorithm-Generated Clickbaits A:

Due to recent advancements in generative models, next, we turn to machine-
generated clickbaits. We utilize different variations of VAE-based generative mod-
els in the task of generating synthetic clickbaits. VAE-based generative models
are selected because the latent code z learned from the model appears to encap-
sulate information about the number of tokens, and their parts of speech (POS)
and topics [15], all of which are shown to be effective predictive NLP features in
differentiating clickbaits from non-clickbaits (e.g., [10, 14,16]).

We utilized the two generative models, namely VAE and infoVAE, as introduced
in [15,17] to generate synthetic clickbaits. While the first model uses original VAE
loss function [15], the second model uses Maximum Mean Discrepancy with a
Gaussian Kernel [17] to replace the original KL divergence term. We denote the
synthetic datasets generated by the two models AVAE and AinfoVAE respectively.
We refer the readers to their original papers for objective functions formulation and
as well as optimization techniques. Table 2.1 lists some the examples of clickbaits
generated by the two models trained on a subset of clickbaits drawn from M and
P .

10

2.3 RQ2: Assessing Synthetic Clickbaits
In this section, we seek to differentiate synthetic clickbaits generated by humans,
generative models, and SMOTE with four analytic questions (AQs) as follows:

AQ1 Predictive Power: How much do synthetic clickbaits help improve ML
models in detecting clickbaits?

AQ2 NLP Encapsulation: How well do synthetic clickbaits encapsulate NLP
feature distribution from the training dataset?

AQ3 Robustness: What is the minimum amount of synthetic clickbaits needed to
improve ML clickbait detection model? Is such an improvement proportional
to the increase in synthetic clickbaits?

AQ4 Interpretability: Are synthetic clickbaits interpretable to humans?

11

Table 2.4: Mean AUC scores and their relative changes (%) on Ptest using different oversampling methods.

Baseline Synthesized Supervised Learning (SSL) SMOTE
Algorithms Ptrain Ptrain ∪ C Ptrain ∪ S Ptrain ∪ AP

VAE Ptrain ∪ AP
infoVAE Ptrain ∪ OP

AdaBoost 0.88 0.88 (-0.11%) 0.88 (-0.11%) 0.91 (+2.79%) 0.90 (+1.98%) 0.89 (+1.23%)
Bagging Clf 0.88 0.89 (+0.74%) 0.89 (+0.67%) 0.91 (+3.05%) 0.90 (+1.98%) 0.88 (+0.22%)

Decision Tree 0.86 0.87 (+0.71%) 0.87 (+0.66%) 0.89 (+2.95%) 0.87 (+0.62%) 0.86 (+0.33%)
GradientBoosting 0.89 0.89 (-0.32%) 0.89 (-0.16%) 0.92 (+3.13%) 0.91 (+1.94%) 0.90 (+1.23%)
KNeighbors Clf 0.83 0.83 (+0.08%) 0.83 (+0.08%) 0.88 (+6.89%) 0.86 (+4.64%) 0.87 (+5.06%)

Logistic Regression 0.91 0.90 (-0.69%) 0.90 (-0.69%) 0.92 (+1.48%) 0.92 (+1.22%) 0.92 (+1.14%)
Naive Bayes 0.85 0.82 (-2.74%) 0.82 (-2.74%) 0.86 (+2.14%) 0.87 (+3.11%) 0.86 (+2.18%)

Random Forest 0.87 0.88 (+0.80%) 0.87 (+0.44%) 0.91 (+4.20%) 0.89 (+2.89%) 0.88 (+0.72%)
SVM 0.86 0.86 (+0.38%) 0.86 (+0.25%) 0.92 (+6.85%) 0.91 (+5.49%) 0.92 (+6.84%)

albacore (#1 in CBC) 0.95 – – 0.97 (+1.49%) 0.95 (+0.27%) –
zingel (#2 in CBC) 0.93 – – 0.95 (+1.86%) 0.94 (+1.29%) –12

Table 2.5: Mean AUC scores and their relative changes (%) on Mtest using different oversampling methods.

Baseline Synthesized Supervised Learning (SSL) SMOTE
Algorithms Mtrain Mtrain ∪ C Mtrain ∪ S Mtrain ∪ AM

VAE Mtrain ∪ AM
infoVAE Mtrain ∪ OM

AdaBoost 0.68 0.69 (+1.12%) 0.69 (+1.12%) 0.74 (+8.60%) 0.71 (+4.74%) 0.72 (+5.80%)
Bagging Clf 0.67 0.67 (+0.09%) 0.67 (+0.42%) 0.71 (+7.11%) 0.68 (+2.84%) 0.67 (+0.93%)
Decision Tree 0.64 0.65 (+1.15%) 0.65 (+1.67%) 0.67 (+3.66%) 0.66 (+3.39%) 0.65 (+1.41%)
GradientBoosting 0.69 0.69 (+0.88%) 0.69 (+0.70%) 0.74 (+7.93%) 0.71 (+3.69%) 0.71 (+3.04%)
KNeighbors Clf 0.64 0.64 (+0.35%) 0.64 (+0.40%) 0.69 (+8.11%) 0.68 (+6.22%) 0.66 (+3.72%)
Logistic Regression 0.70 0.70 (+0.04%) 0.70 (+0.04%) 0.74 (+6.02%) 0.72 (+3.15%) 0.75 (+6.66%)
Naive Bayes 0.66 0.63 (-4.74%) 0.63 (-4.74%) 0.70 (+5.64%) 0.67 (+1.02%) 0.72 (+7.96%)
Random Forest 0.65 0.66 (+0.76%) 0.66 (+0.67%) 0.71 (+9.42%) 0.69 (+6.66%) 0.65 (+0.47%)
SVM 0.65 0.66 (+1.55%) 0.66 (+1.53%) 0.75 (+14.56%) 0.71 (+8.1%) 0.75 (+14.51%)

albacore (#1 in CBC) 0.71 – – 0.77 (+8.5%) 0.75 (+6.0%) –
zingel (#2 in CBC) 0.71 – – 0.76 (+6.9%) 0.74 (+4.55%) –

13

2.3.1 AQ1: Predictive Power of Synthetic Clickbaits

We examine how much generated synthetic clickbaits described in RQ1 can improve
ML clickbait detection models. We name this process of generating a large amount
of synthetic data to enhance supervised learning tasks as Synthesized Supervised
Learning (SSL). We further compare SSL with SMOTE and top-2 performed click-
bait detectors from Clickbait Challenge 2017 (CBC).

For classical ML algorithms, we use NLP-based features as input. Since this
work does not aim to develop new features for predicting clickbaits, simply, we
have selected several features from the literature that manifests different nuances
in the use of language for writing headlines. They are selected because of their
reported effectiveness in detecting clickbait or misleading headlines across different
published works (e.g., [10,12–14,16]). Except for general POS-N-gram and Word-
N-grams features, Table 2.6 lists all of the selected features. Being deep learning
based, two top-performing models from CBC (albacore and zingel) automatically
learn feature representation from a large amount of raw text data. Due to limited
number of human-written synthetic clickbaits, we only examine this with machine-
generated clickbaits. Since SMOTE cannot over-sample on raw data space, it
is not applicable for the deep learning based detectors. We used open-source
implementations published on the CBC website for two deep learning based models.

Table 2.6: NLP Features Descriptions

Type Feature Description
Summary Statistics Average word length, Stop-words ratio

Counts of words, POS tags
Length of the longest word

Sentiment Intensity Score
Forward References Pattern: (this/these/etc.) + Noun
Linguistic Patterns Pattern: Number + Noun + That ?

Pattern: Number + Noun + Verb ?
Starting with a number, 5WH?

Informality Flesch-Kincaid score
Counts of Internet Slangs

Special Indicators ".", "!", "?", "@"; "http", "#"; "***"

We first constructed training and testing sets from P andM in the ratio of 3:1,
resulting in Ptrain,Ptest and Mtrain,Mtest respectively. Then, to see if synthetic

https://clickbait-challenge.org

14

(a) Baseline (b) GVAE

(c) GinfoVAE (d) SMOTE

Figure 2.1: Decision boundary of a trained SVM classifier on Ptrain changed with
and without different additional synthetic clickbaits. Blue contour, green contour,
and red shade depict the density of positive, negative, and synthetic clickbaits,
respectively.

clickbaits are useful to improve the detection of clickbaits, when they are added as
additional labeled training samples, we first used only the positive training data in
each of the datasets Ptrain andMtrain to train generative models GVAE and GinfoVAE

as described in RQ1. The trained models were subsequently used to generate four
respective synthetic datasets AP

VAE. AM
VAE, AP

infoVAE, AM
infoVAE. Next, we combined

these
with the original training sets, Ptrain and Mtrain, to train different predictive

models, and tested against the original testing sets, Ptest and Mtest, respectively.

15

Table 2.3 summarizes the datasets in this research.
Area-Under-the-Curve (AUC) is selected as the main evaluation measure for

their robustness toward skewed labels distribution [18] of testing sets Ptest and
Mtest, where there exist 3–5 times more non-clickbaits than clickbaits. Such im-
balanced distribution reflects real challenges, where we usually have many more
non-clickbait than clickbait text.

For each algorithm, we reported relative changes of AUC score between models
trained with and without additional synthetic clickbait datasets (baseline).

Tables 2.4 and 2.5 summarize experimental results. Numbers in Bold and
underline indicate best of each row and column respectively. We showed that our
framework helped improve on both algorithm-wise and dataset-wise. Particularly,
from the same original training set, our approach of generating and using synthetic
clickbaits was able to enhance the detection performance of both NLP-based and
deep-learning based algorithms. Especially, AP

VAE and AM
infoVAE consistently im-

proved AUC scores across all algorithms. Interestingly, performance of NLP-based
algorithms with the proposed data-enhancement approach achieved comparable
(Ptest) or even better (Mtest) than top-ranked deep learning models without the
need of collecting any additional real data. Furthermore, clickbaits generated by
generative models outperformed over-sampled data synthesized by SMOTE on all
predictive algorithms for Ptest, and 8 out of 9 cases for Mtest. Noticeable, gen-
erative models outperformed SMOTE significantly on all of the ensemble-based
classifiers across the testing sets onMtest. The proposed framework can even fur-
ther improve performance of top-ranked models from CBC by as much as 8.5%,
achieving the best performance overall in both datasets.

In summary, we demonstrated that both models GVAE and GinfoVAE could gener-
ate synthetic clickbaits (learned from training data) that, when added to training
data, significantly improved domain-engineered predictive models. The fact that
these NLP features have been built in many non-computational domains (e.g.,
journalism, communication, social science) illustrates that one may leverage the
capability of generative models to model complex natural language distribution
that reinforce our domain knowledge.

16

2.3.2 AQ2: NLP Feature Encapsulation

From the strong results reported in AQ1, we then examine whether synthetic
clickbaits share the same distribution of NLP features as real positive clickbaits.
We achieved this by both (1) visual examination and (2) analytic testing. For visual
examination, we used P as an illustration. We first trained an Isomap dimension
reduction model [19] on Ptrain, and used the trained model to project the features
extracted from AVAEP , AinfoVAEP and OP into a 2D feature space. Next, we trained
an SVM classifier with new features and plotted its decision boundary between
two class samples, resulting in Figure 2.1. Even though SMOTE over-sampled
data directly on NLP features space, many new samples are mis-located in the
original negative samples’ area. In fact, without directly learning from feature set,
NLP feature distributions of AVAEP and AinfoVAEP are highly overlapped with the
original positive samples. Especially, that of AVAEP neatly concentrated around
the center of original positive samples, while that of AinfoVAEP is located near the
boundary between two original classes. Therefore, we can see that Figure 2.1
confirms predictive results of SVM on Ptest in Table 2.4.

To analytically test, next, for each clickbait xi in a synthetic dataset Q, we
extracted different NLP features listed in Table 2.6 and used a K Nearest-Neighbor
(KNN) searching model to find its k nearest samples from the original training set
T (NNT (k, xi)) in the feature space, and calculated the ratio between the number
of positive samples found over k. For each generated synthetic dataset, we averaged
all the ratios to total N number of data points in Q to calculate a statistic:

OverlapNLP(k,Q, T) = 1
N

∑
xi∈Q

|NNT (k, xi) ∩ Tpos|
k

. (2.1)

This statistic captures on average how likely generated samples of a synthetic
dataset Q will be close to original positive clickbaits in the feature space. We
calculated such measure for each generated synthetic dataset and illustrated the
result in Table 2.7. This result shows that GVAE-generated clickbaits are the one
most overlapping with the original positive samples in the features space, which
coincides with our visual examination in Figure 2.1. Overall, even though SMOTE
directly generated data on the set of NLP predictive features, both GVAE and
GinfoVAE were better in capturing similar NLP structures of original clickbait data,
resulting in better prediction of ML models than those NLP features, as reported

17

in AQ1.

(a) GVAE

(b) GinfoVAE

(c) SMOTE

Figure 2.2: Proportion of additional synthetic clickbaits versus absolute AUC score
improvement from baseline on Ptest

18

(a) GVAE

(b) GinfoVAE

(c) SMOTE

Figure 2.3: Proportion of additional synthetic clickbaits versus absolute AUC score
improvement from baseline on Mtest

2.3.3 AQ3: Robustness of Synthetic Clickbaits

In AQ2, we illustrated that different types of synthetic clickbaits improved clickbait
detection models to different extents. In this section, we examine the robustness19

Table 2.7: OverlapNLP score with k = 5 of synthetic datasets on Ptrain andMtrain

Statistic AVAE AinfoVAE S C SMOTE

Ptrain 0.7 0.44 0.49 0.49 0.4

Mtrain 0.5 0.44 0.38 0.38 0.35

of them.
Because of limited data samples generated by human users, we focus on the

comparison between generative models and SMOTE. We only demonstrate on
NLP-based models due to limited computational resources. We measure the ro-
bustness of an oversampling method by answering: (1) does a method improve
predictive models with a small amount of additional generated samples? and (2)
is such an improvement consistent as more data is added to the training set?

Figures 2.2 and 2.3 plot the relations between the amount of additional positive
clickbait samples generated by GVAE, GinfoVAE, SMOTE, and their improvements
in absolute AUC for all of the examined algorithms.

Regarding the performance on Ptest, generative models only needed 20% of to-
tal additional training data until balanced to outperform the baseline across all of
the algorithms, while SMOTE needed as much as 25% to achieve the same result.
However, such performance of generative models showed a much larger improve-
ment margin compared to SMOTE. Especially, as we add more synthetic clickbaits
generated by GVAE, the improvement was more consistent, showing smoother im-
provement lines in absolute AUC, compared to the cases of GinfoVAE and SMOTE.
The same outcome was also observed in the case of Mtest. In fact, only 30% of
total clickbaits generated by GVAE was needed to outperform 100% of data sampled
by SMOTE (balanced training set) in most algorithms in both datasets.

Overall, generative algorithms generated more robust synthetic clickbaits than
SMOTE, showing consistent and continuous improvements while adding more
training data.

2.3.4 AQ4: Interpretability of Synthetic Clickbaits

Humans and deep generative models, GVAE and GinfoVAE, clearly have advantages
over SMOTE in terms of interpretability. Algorithms-wise, SMOTE samples data
only on feature space, i.e., numerical features extracted from text domain, the

20

results of which cannot be converted back to the data space, i.e., natural text.
However, GVAE and GinfoVAE learn and generate natural sentences that are inter-
pretable to humans (e.g., Table 2.1). This shows that while the samples generated
by SMOTE are task-independent, i.e., they are represented only on a pre-defined
set of features, the sentences produced by generated models can transfer to other
tasks or domains such as misinformation analysis.

2.4 RQ3: Differentiate Clickbaits per Sources
Next, we ask if entity-cross differences among synthetic clickbaits are consistent
and identifiable by ML models. This type of study can be also useful in a security
scenario–e.g., malicious publishers take an advantage of different entities to gener-
ate clickbaits to propagate low-quality news content, or to attract more traffic. A
demo system such as Click-O-Tron and Link Bait Title Generator illustrates the
possibility of such an attack scenario to mass-generate clickbaity headlines with
malevolent intents.

From the synthetic clickbait datasets in Table 2.3, we aim to achieve the fol-
lowing specific objectives:

Obj1 Can we distinguish among clickbaits in P , M, C, S, A?

Obj2 Can we distinguish among clickbaits by trained writers (P∪S), general public
(M∪ C), and machine (A)?

Obj3 Can we distinguish clickbaits by humans (P ∪M∪C ∪S) vs. machine (A)?

These tasks can be modeled as three different multinomial classification prob-
lems. Since the nature of these tasks is similar to the ones in the previous section,
we re-use some of the introduced algorithms by changing the ground-truth labels
accordingly. From analysis in section RQ2, we select AVAE as the representative
synthetic clickbait set generated by machine A because it better captures charac-
teristics of real clickbaits than AinfoVAE.

Table 2.8 summarizes the experimental results, where baselines (i.e., random
guess) have accuracies of 20% for Obj1 in differentiating clickbaits of five different

http://clickotron.com/
http://www.contentrow.com/tools/link-bait-title-generator

21

Table 2.8: Clickbaits’ Source Verification Benchmark

Alg Obj1 Obj2 Obj3
Acc F1_avg Acc F1_avg Acc F1_avg

LogReg 0.54 0.54 0.59 0.58 0.61 0.62
NBayes 0.52 0.50 0.56 0.54 0.57 0.59
DTree 0.47 0.47 0.50 0.50 0.61 0.61
RForest 0.54 0.53 0.56 0.55 0.67 0.65
XGBoost 0.58 0.52 0.61 0.55 0.70 0.59
AdaBoost 0.55 0.50 0.59 0.55 0.70 0.62
SVM 0.57 0.56 0.60 0.58 0.61 0.57
GradBoost 0.59 0.55 0.61 0.56 0.70 0.60
Bagging 0.54 0.53 0.57 0.56 0.66 0.64
KNeighbor 0.51 0.49 0.53 0.51 0.66 0.64

Table 2.9: Top distinguishing features

Top Obj1 Obj2 Obj3
1 avg word length # of end mark # of end mark
2 # of words avg word length avg word length
3 % of stop words # of words % of stop words
4 # of end mark % of stop words # of POS tags
5 # of POS tags start with number? # of JJ-NN

entities, 33.3% for Obj2 in distinguishing between trained writers, general public
and machine, and 50% for Obj3 in classifying between human-written and machine-
generated clickbaits. Note that all three objectives can be achieved with accuracy
as high as 59%, 61% and 70%, all of them considerably higher than those of
baselines.

Overall, while it is challenging to differentiate clickbaits written by different
sources, we achieve reasonable results on accuracy and average F1 score measures.
It is especially encouraging that we can distinguish clickbaits generated by machine
from those generated by human with as high as 65% in averaged F1 score. This
further demonstrates the utility of our synthetic clickbaits in developing models
that have strong potential for empirical use.

Table 2.9 illustrates top predictive features resulting from the Gradient Boost-
ing classifier trained for the three objectives. Since we are grouping some entities
in Obj1 to examine Obj2 and Obj3, the result shows many repeated top features
across all three tasks. Among the five groups of clickbait headlines, average word
length is the most distinguishable feature. Journalism students use longer words in

22

their clickbaits compared to other entities. We find that crowdworkers and students
use significantly lower number of Wh-determiners (which, that, etc. as determin-
ers) in their headlines compared to other sources. Also, professional writers use
personal pronouns (I, you, he, she, etc.) much more often than other entities. We
also see differences in other writing strategies among the five entities. Specifically,
professional writers are more likely to start their clickbaits with numbers (e.g. "20
things to do before 20"), and media users are more more likely to use question and
exclamation marks and more than single sentence in their headlines.

Despite the fact that the generative algorithms can be biased towards the type
of clickbaits having the majority of training samples (professional writers), the fact
that it still generates clickbaits that simulate human behaviors, which eventually
makes it very challenging for us to differentiate, is intriguing. As indicated in
Table 2.9, many of the features that best distinguish the two groups of clickbaits
are counts of various POS tags and their combinations. The generative algorithm’s
strategy might have been learning to replicate different collocations from human-
written clickbaits. Moreover, it also learns the relative position of those phrases.

2.5 Discussion

2.5.1 Utility of Synthetic Text.

There have been prior works in generating natural-looking, realistic, and human-
readable synthetic text (e.g., [?, 20, 21]). However, few of them have explored the
characteristics and utility of synthetic text for downstream machine learning tasks
such as prediction and clustering. In fact, to perform well in these machine learning
tasks, synthetic text does not have to be realistic and coherent, but must capture
certain characteristics or domain knowledge of original text. By using clickbait
domain as a case study, in this work, we have demonstrated that synthetic text
(generated by diverse methods) can help improve classification tasks and introduce
insights into domain specific problems. Generalizing the findings to other domains
and applications will be our future work.

23

2.5.2 Implications for Combating Misinformation.

Our findings highlight the promise in using generative algorithms to detect misin-
formation (spam, fake news, etc.), a domain that usually lacks high-quality labeled
data. RQ2 illustrates that the aggregation of synthetic clickbaity text by both hu-
mans and machines can be beneficial to improve clickbait detection accuracy by
as much as 14.5% in AUC scores. Moreover, machine-generated clickbaits (RQ1)
can be used to develop a defense mechanism to battle against mass propagation of
false information initiated by malicious bots in social networks, which would help
human fact-checkers focus more on detecting intentional misinformation.

This chapter suggests features that are useful not only for developing algorithms
that both effectively detect and discriminate various types of clickbaits, but also for
training humans to become more aware and sensitive to potential misinformation
by attaching a source label to flagged clickbaits. The outcomes also provide insights
on the potential presentation of clickbaity headlines. To illustrate, RQ1 shows
that formally-trained journalism students often present clickbaity headlines with
political context even for non-political target content, while such behaviors are not
observed among social media users. Similar behavior and its influence has been
studied in detail by [22,23]

Similar behavior was also observed in the case of “Syrian social bot" on Twitter,
which spread Syrian civil war related hashtags with contents that are not war
related [22]. Interestingly, Geer and Kha [23] show that alternations in topics
of headlines actually result in more influence than the slant of a specific issue.
This further emphasizes that fact checkers should pay attention to the source of
news, as different publishers might target different “cultures of communications
such as readers’ cognitive styles, reading proficiency, and interest" [24]. This also
implies that clickbaits or rumor detection algorithms that are customized for a
specific topic (e.g., political election) should take the associated article’s context
into consideration.

24

2.6 Related Work

2.6.1 Collecting, Generating Clickbaits.

Researchers have attempted to collect and build labeled clickbait datasets, by
using the following approach. First, recognizing that certain online news media
outlets frequently use catchy headlines, researchers collect headlines from such sites
as candidate clickbaits. Second, as the definition of clickbaits is often fuzzy and
subjective, researchers tend to rely on the voted labels of candidate clickbaits from
human judges or crowdworkers (e.g. [12,14,25]).

However, the generation aspect of clickbaits was never a focus in these works.
A recent attempt to “generate” clickbaits is found in Click-O-Tron that trains the
RNN with millions of articles from sites such as BuzzFeed, Huffington Post, and
Upworthy. Algorithmically, this line of work can be derived from the task of lan-
guage modeling and text generation in AI. There has been considerable progress
in generating realistic text, either in randomized (e.g., [26]) or controllable fashion
(e.g., [?, 21]). Leveraging these developments, this work adopts VAE-based gener-
ative models [15, 17] to demonstrate the generation of realistic clickbaits. Unlike
these works, however, in Section RQ1, we also illustrate experimental designs to
generate clickbaits by different human creators (e.g., crowdworkers and journalism
students). Throughout this chapter, we adopt the two public datasets curated
by [14] collected from Professional publishing websites, and by [12] collected from
Social Media Twitter as datasets P and M respectively.

2.6.2 Postmortem: Detecting Clickbaits.

Clickbait detection has attracted increasing attention in recent years. Most of
existing clickbait detection approaches explore engineering features in a supervised
ML framework (e.g. [14, 16, 27]). More recently, researchers have employed the
deep neural framework to automatically learn latent features from clickbaits (e.g.
[8, 25, 28]).

Many of these attempts focus on extracting different features and building a
predictive model to approach the problem, yet they are bounded by the availabil-

http://clickotron.com/

25

ity and quality of existing labeled training datasets. Note that this chapter is
not aiming at directly comparing against these existing works. Rather, our ideas
in RQ1 explore the potentials of generating synthetic clickbaits and utilizing them
in improving detection models further.

2.7 Limitation and Future Direction.
A more thorough study of text generation as an oversampling method by other
models (e.g., GAN-based) is of future interest. Insights gained therefrom will
enable us to frame a better oversampling method that can better generate useful
samples. Even though we are not trying to generate realistic text clickbaits, we
plan to carry out a field survey to analyze and compare how users would perceive
and react to synthetic clickbaits generated by different entities, and to answer the
question: “how clickbaity are they?" Finally, we plan to apply the framework in
other domains where collecting training data is either challenging or limited (e.g.,
rumor detection, writing-based Alzheimer detection).

2.8 Conclusion
We explored the utility of synthetically generated text in the context of clickbaits,
and demonstrated that synthetic clickbaits can be useful as additional labeled
training samples to train regular ML models to detect clickbaits better, by as
high as 14.5% in AUC. We showed that VAE-based generative algorithms can
generate high quality text that captures the most similar NLP feature distribution
as the real ones among all synthetic sources. Even though such an overlap in NLP
feature distribution does not directly make synthetic clickbaits as meaningful as
real clickbaits, the outcomes demonstrated a promising track in using machines
to generate realistic text in general. This framework can, thus, present a novel
direction toward solving the problem of insufficient training data in supervised
learning.

26

Chapter 3 |
Learning with Transparency: Coun-
terfactual Explanation for Neu-
ral Network Classifiers

3.1 Background
Tabular data is one of the most commonly used data formats. Even though tabular
data receives far less attention than computer vision and NLP data in neural
networks literature, recent efforts (e.g., [29–32]) have shown that neural networks,
deep learning in particular, can also achieve superior performance on this type
of data. Yet, there is still a lack of interpretability that results in the distrust
of neural networks trained on general tabular data domains. This obstructs the
wide adoption of such models in many high-stakes scenarios in which tabular data
is prominent–e.g., healthcare [33, 34], finance [35, 36], social science [37, 38], and
cybersecurity [39, 40]. Moreover, the majority of explanation algorithms (e.g.,
[?, 4, 41–45]) are designed for models trained on images or texts, while insufficient
efforts have been made to explain the prediction results of neural models that take
tabular data formats as input. Furthermore, most of the previous explanation
approaches are geared for professional users such as ML researchers and developers
rather than lay users and ML consumers.

This situation calls for a novel approach to provide end-users with the intuitive
explanation of neural networks trained on tabular data. However, developing such
an approach poses several challenges. Challenges. First, tabular data used in

27

Table 3.1: Examples of original samples xxxi and contrastive samples x̃xxi on spam
dataset. x̃i only differs from xxxi on a few features.

Feat freq_now freq_credit freq_!!! freq_! class
xxx1 0.1 0.0 0.0 0.0 Ham
x̃1 0.1 0.0 0.3 0.453 Spam

Feat freq_you freq_direct avg_longest_capital class
xxx2 0.68 0.34 158.0 Spam
x̃2 0.68 0.34 1.0 Ham

neural network models sometimes have high-dimensional inter-correlated features.
Therefore, presenting feature importance scores for top-k or all features (e.g., [4])
can induce both information overload and redundancy, causing confusion to end-
users.

In fact, for a data instance, a complex model can focus on just a few key features
in making its prediction. To illustrate, Table 3.1 shows that for two emails xxx1 and
xxx2, the model can focus on two different sets of features, freq_!, freq_!!! or
avg_longest_capital, respectively, to predict if an email is a spam or ham. While
explanation constructed only from these features is much more concise, providing
both freq_! and freq_!!! (frequency of “!" and “!!!" within an email content) in the
first example produces redundancy. In this case, we also want to replace freq_!
with another key feature to make the explanation more informative. Thus, we
need to find a subset of instance-dependent key features that are both concise and
informative to explain the model’s prediction.

Second, for images or texts, highlighting a patch of an image (e.g., [41, 44, 45])
or a phrase of a sentence (e.g., [?]) usually gives a clear understanding of what a
model is focusing on and why a model gives such prediction.

However, in tabular data, such visualization does not provide much insight into
the chosen model. For instance, in the second example in Table 3.1, the model pre-
dicts xxx2 as spam and the important feature used by the model is avg_longest_capital.
However, simply providing this feature to end-users does not give an easy-to-
understand explanation. Since we often justify our decision verbally [46], in this
case, an explanation written in text can help end-users understand the prediction
better.

Third, approximating the decision boundaries does not necessarily provide a
clear understanding on the decision-making of a model to end-users, who usually

28

lack ML background. Instead, such lay users are usually more interested in the
contrastive explanation, i.e., why X rather than Y . For example, Table 3.1
shows in the second example that "had avg_longest_capital (i.e., the average
length of the longest capitalized words) been about 150 characters shorter, the
email would have been classified as ham rather than spam". Hence, we need to
come up with a new explanation model such as contrastive explanation to better
explain a model’s prediction to lay end-users.
Overview. To sum up, the effort towards generating an explanation that is easy
for end-users to understand is challenging, yet also in great demand. Therefore,
we propose a novel algorithm, GRACE (GeneRAting Constrastive samplEs), which
generates and provides end-users with intuitive and informative explanations for
neural networks trained on general tabular data. Inspired from Database (DB) lit-
erature [47–49], GRACE borrows the idea of “explanation by intervention" from
causality [?, 50] to come up with contrastive explanation–i.e., why a prediction is
classified as X rather than Y . Specifically, for each prediction instance, GRACE
generates an explainable sample and its contrastive label by selecting and modi-
fying a few instance-dependent key features under both fidelity, conciseness and
informativeness constraints. Then, GRACE aims to provide a friendly text ex-
planation of why X rather than Y based on the newly generated sample.

The main contributions of the chapter are:

• We introduce an explanation concept for ML by marrying “contrastive expla-
nation" and “explanation by intervention", then extend it to a novel problem of
generating contrastive sample to explain why a neural network model predicts
X rather than Y for data instances of tabular format;

• We develop a novel framework, GRACE, which finds key features of a sample,
generates contrastive sample based on these features, and provides an explana-
tion text on why the given model predicts X rather than Y with the generated
sample; and

• We conduct extensive experiments using eleven real-world datasets to demon-
strate the quality of generated contrastive samples and the effectiveness of the
final explanation. Our user-studies show that our generated explanation texts
are more intuitive and easy-to-understand, and enables lay users to make as
much as 60% more accurate post-explanation decisions than that of Lime.

29

3.2 The Explanation Model

3.2.1 Contrastive Explanation

Understanding the answer to the question "Why?" is crucial in many practical set-
tings, e.g., in determining why a patient is diagnosed as benign, why a banking
customer should be approved for a housing loan, etc. The answers to these "Why?"
questions can be really answered by studying causality, which depicts the relation-
ship between an event and an outcome. The event is a cause if the outcome is the
consequence of the event ([48, 50]). However, causality can only be established
under a controlled environment, in which one alters a single input while keeping
others constant, and observes the change of the output. Bringing causality into
data-based studies such as DB or ML is a very challenging task since causality
cannot be achieved by using data alone ([48]). As the first step to understand
causality in data-intensive applications, DB and ML researchers have tried to lower
the bar of explanation, aiming to find the subset of variables that are best cor-
related with the output. Specifically, DB literature aims to provide explanations
for a complex query’s outputs given all tuples stored in a database, while ML
researcher is keen on explaining the predictions of learned, complex models.

3.2.2 Explanation by Intervention

By borrowing the notion of intervention from causality literature, in particular,
DB researchers have come up with a practical way of explaining the results of
a database query by searching for an explainable predicate P . Specifically, P
is an explanation of outputs X if the removal of tuples satisfying predicate P
also changes X while keeping other tuples unchanged ([47–49]). Similarly, by
utilizing the same perspective, we want to formulate a definition of explanation by
intervention for ML models at instance-level as follows.

Definition 1 (Contrastive Explanation (in ML) by Intervention) A pred-
icate P of subset of features is an explanation of a prediction outcome X, if
changes of features satisfying the predicate P also changes the prediction outcome
to Y(̸= X), while keeping other features unchanged.

30

For example, possible predicates to explain a spam detector are shown in Table
3.1. Particularly, predicate P2 : ”avg_longest_capital = 1.0” explains why sample
xxx2 is classified as spam rather than ham. Given a prediction of a neural network
model on an input, there will be possibly many predicates P satisfying Def. 1.
Hence, it is necessary to have a measure to describe and compare how much influ-
ence predicate(s) P have on the final explanation. Following the related literature
of explanation from the DB domain [47], we also formally define a scoring function
inflλ(P) as the measure on the influence of P on the explanation with a tolerance
level λ as.

Definition 2 (Influence Scoring Function)

inflλ(P) = 1(Y ̸= X)
(Number of features in P)λ

(3.1)

where 1(·) is an indicator function, X and Y are predicted labels before and after
intervention, respectively.

The larger the score is, the more influential P has on the explanation. Hence,
λ = 0 would imply infinite tolerance on the number of features in P , λ > 0 would
prefer a small size of P and λ < 0 would prefer a large size of P . In practice, λ > 0
is preferable because a predicate P containing too many features would adversely
affect the comprehension of the explanation. For example, infl1(P2) = 1.0

3.2.3 From Intervention to Generation

Searching for P is a non-trivial problem. From Def. 1, we want to approach this
problem from a generation perspective. Particularly, given an arbitrary sample
classified as X by a neural network, we want to intervene and modify a small
subset of its features to generate a new sample that crosses the decision boundary
of the model to class Y. This subset of features and their new values will result in
a predicate P . This newly generated sample will help answer the question “Why
X rather than Y?". To illustrate, Table 3.1 shows that x̃2 is generated samples
that correspond to predicate P2 : ”avg_longest_capital = 1.0”. Using P2, we
can generate an explanation text to present to the users such as "Had the average

31

length of the longest capitalized words been 1.0, the message would have been
classified as ham rather than spam".

3.3 Objective Function
f (·) be a neural network model that we aim to give instance-level explanation.
Denote X ∈ RN×M = {x1, x2, ..xn}, Y = {y1, y2, ..yn} as the features and ground-
truth labels of data on which f (xxx) is trained, where N, M is the number of samples
and features, respectively. X i and X j are the i-th and j-th feature, respectively,
in features set X . xxxi and xxxj are the i-th and j-th feature of xxx, respectively. First,
we want to generate samples that are contrastive. We define such characteristic as
follows.

Definition 3 (Contrastive Sample) Given an arbitrary xxx ∈ X , X ∈ RN×M

and neural network model f (·), x̃ is called contrastive or contrastive sample of xxx

when:
min

x̃xx
dist(xxx, x̃xx) s.t. argmax(f(xxx)) ̸= argmax(f(x̃xx)) (3.2)

Then, formally, we study the following problem:

Problem: Given xxx and neural network model f (·), our goal is to generate new
contrastive sample x̃ to provide concise and informative explanation for the pre-
diction f (xxx).

Existing works on adversarial example generation [51,52] usually define dist(x̃xx,xxx)
as ∥xxx − x̃∥2

2, which allows all features to be changed to generate x̃xx. Though such
approaches can generate realistic labeled contrastive samples, they are not ap-
propriate for generating instance-level explanation that are easy to understand
because all features are changed.

Instead, we aim to generate x̃ labeled ỹ such that it is minimally different
from original input xxx in terms of only a few important features instead of all
features. Specifically, we desire to explain “Why X rather than Y?" by presenting
a concise explanation in which only a few features are corrected, e.g., the first
example of Table 3.1 shows if only frequency of ’!’ is increased to 45.3%, while
keeping other features unchanged, the email will be classified as “Spam" rather than

32

“Ham". Hence, the less the number of features need to change from xxx to generate
x̃, the more “concise" the explanation becomes. To achieve this goal, we add the
constraint as

|S| ≤ K (3.3)

where S is the feature set of xxx that are perturbed to generate x̃xx, hence making
|S| the number of features changed, i.e.,

|S| =
M∑

m=1
1(xm ̸= x̃m) (3.4)

We not only want to change a minimum number of features, but also want those
features to be informative. For example, the explanation “Had the frequency of
‘!’ and ‘!!!’ is more than 0.3, the email would be classified as spam rather than
ham" is not as informative as “Had the frequency of ‘!’ and ‘wonder’ is more than
0.3, the email would be classified as spam rather than ham." Hence, we want S
to contain a list of perturbed features such that any pairwise mutual information
among them is within an upper-bound γ. Thus, we add the constraint:

SU(X i ,X j) ≤ γ ∀i, j ∈ S (3.5)

where SU(·) is Symmetrical Uncertainty function, a normalized form of mutual
information, to be introduced in Section 3.4.2.

Finally, we also need to ensure that the final predicate P is realistic. For
example, the age feature should be a positive integer). Therefore, we want to
generate x̃ such that it conforms to features domain constraints of the dataset:

x̃ ∈ dom(X) (3.6)

Newly introduced constraints are novel from previous adversarial literature,
which focus more on minimizing the difference ∥xxx − x̃∥p. However, minimizing
such a distance alone will not necessarily make x̃ more self-explanatory to users.
Instead, we propose that as long as the constraints on the maximum number of
perturbed features, i.e., Eq. (3.3), their entropy, i.e., Eq. (3.5), and domain, i.e.,
Eq. (3.6), is satisfied, we can generate more concise and informative explainable

33

contrastive samples. From the above analysis, we formalize the objective function
as follows.

Objective Function: Given xxx, hyperparameter K , γ, our goal is to generate
new contrastive sample x̃ to explain the prediction f (xxx) by solving the objective
function:

min
x̃xx

dist(x̃xx,xxx)

s.t. argmax(f(xxx)) ̸= argmax(f(x̃xx)), |S| ≤ K

SU(X i ,X j) ≤ γ ∀i, j ∈ S, x̃ ∈ dom(X)

(3.7)

3.4 GRACE: Generating Interventive Contrastive Sam-
ples for Model Explanation
This section describes how to solve the objective function and gives details GRACE.
Figure 3.1 gives an illustration of the framework. It consists of three steps: (i)
entropy-based forward features ranking, which aims at finding instance-dependent
features satisfying the constraint; (ii) generate contrastive samples with the se-
lected features; and (iii) create an explanation text based on generated sample x̃xx.
Alg. 1 describes GRACE algorithm.

3.4.1 Contrastive Sample Generation Algorithm

Before introducing how to obtain a list of potential features to perturb, in this
section, we first describe our contrastive sample generation algorithm by assuming
that the ordered feature list U∗ is given. To solve x̃xx such that Eq. (3.2) is satisfied,
we can continuously perturb x̃xx by projecting itself on the decision hyperplane
separating it with the nearest contrastive class v. Particularly, at each time-step
i, we project x̃xx with orthogonal projection vector rv:

rv = |fv(x̃xxi−1)− fC(xxx)|
∥∇fv(x̃xxi−1)−∇fC(xxx)∥2

2

(
∇fv(x̃xxi−1)−∇fC(xxx)

)
(3.8)

34

Algorithm 1 GRACE

Input: f ,xxx, K , γ, X
Output: x̃xx, ỹ

1: Initialize: x̃xx←− xxx, j ←− 1
2: U ←− WGradient(f ,xxx) OR WLocal(f ,xxx)
3: U∗ ←− WEntropy(X ,U , γ)
4: while argmax(f (x̃xx)) = argmax(f (xxx)) AND k ≤ K do
5: x̃xx←− GenerateContrastiveSample(f ,xxx,U∗[: k])
6: k ←− k + 1
7: end while
8: ỹ←− argmax(f (x̃xx))
9: Return x̃xx, ỹ

where fv(x̃xxi−1) is the confidence of f on x̃xxi−1 being classified as class v. C ←−
argmax(f (xxx)) is the current prediction label, and contrastive class vvv can be in-
ferred with Alg. 2, Ln. 2. Intuitively, vvv is the contrastive class across the closest
hyperplane of the decision boundary from xxx.

Algorithm 2 GenerateContrastiveSample

Input: f ,xxx, S
Output: x̃xx

1: Initialize: x̃0 ←− xxx, i←− 0, C ←− argmax(f (xxx))
2: v ←− argminc ̸=C

|fc(xxx)−fC(xxx)|
||∇fc(xxx)−∇fC(xxx)||2

3: while argmax(f (x̃xxi)) = argmax(f (xxx)) AND i < STEPS do
4: rv = |fv(x̃xxi−1)−fC(xxx)|

∥∇fv(x̃xxi−1)−∇fC(xxx)∥2
2

(∇fv(x̃xxi−1)−∇fC(xxx))
5: x̃xxi+1[S]←− x̃xxi[S] + rrrv[S]
6: x̃xxi+1 ←− P(x̃xxi+1, dom(X))
7: i←− i + 1
8: end while
9: Return x̃xx

To address constraint Eq. (3.3), instead of perturbing all of the features, we
update x̃xx only on the first k ≤ K features from an ordered list U∗, which will be
introduced later, at each time step i until it crosses the decision boundary:

S ←− U∗[: k], x̃xxi[S]←− x̃xxi−1[S] + rv[S] (3.9)

35

Figure 3.1: GRACE with Local-Based Feature Ranking

Since feature perturbation based on rv does not always guarantee that resulted x̃xxi

still maintains in the original feature space, to address constraint Eq. (3.6), we
project those adjusted features back on to the original domain of X :

x̃xxi ←− P(x̃xxi, dom(X)) (3.10)

where P is a projection which ensures that final x̃ looks more real (e.g., age feature
should be a whole number and > 0). The domain space dom(X) can include the
maximum, minimum, and data types (e.g., int, float, etc.) of each feature. These
can be either calculated from the original training set or manually set by domain
experts.

With a fixed k, Eq. (3.10) does not guarantee that x̃xx will always cross the
decision boundary to class vvv. Hence, we gradually increase k −→ K until a con-
trastive sample is successfully generated, i.e., argmax(f(xxx)) ̸= argmax(f(x̃xxi)) or
when k == K . Alg. 2 illustrates the steps to generate contrastive samples.

One obvious challenge is how to come up with the ordered list U∗ of features
to perturb. Next, we will describe this in detail.

36

3.4.2 Entropy-Based Forward Feature Ranking

As different xxx might require a different subset of features to perturb, the first
challenge is how to prioritize features that are highly vulnerable to the contrastive
class vvv. To do this, we rank all features of xxx according to their predictive power
w.r.t prediction f (xxx), resulting in an ordered list U :

U ←−W (f ,xxx) (3.11)

where W (·) is a feature ranking function. The most straight forward way is to
rank all features according to their gradients w.r.t the nearest contrastive class vvv

that back-propagates through f (xxx), resulting in WGradient(f ,xxx) that returns the
ranking of the following set:

{∇fvvv(xxx1),∇fvvv(xxx2), ..∇fvvv(xxxM)} (3.12)

While this method is straightforward, these gradients capture a global view of fea-
ture rankings, rather than being customized to a local vicinity of decision boundary
around xxx. To overcome this limitation, we introduce WLocal(f ,xxx) to return the
ranking of the following set:

{w1
g(xxx), w2

g(xxx), ...wM
g(xxx)} (3.13)

with wj
g(xxx) is the feature importance score of the j-th feature returned from an

interpretable ML model g(xxx) (e.g., feature weights for logistic regression, Gini-score
for decision tree, etc.). g(·) is trained on a subset of data points Q surrounding xxx

(Figure 3.1a) with maximum likelihood estimation (MLE) as the loss function:

min
θg(x)

1
|Q|

∑
xxx∈Q

f (xxx) log(g(xxx)) (3.14)

If the prediction of g(xxx) on Q is very close to that of f (xxx), important features from
g(xxx) are more prone to change in f (xxx). Q can be collected by sampling q nearest
data points to xxx from each of the predicted classes by f (xxx) on the training set using
NearestNeighbors(NN) search algorithm with different distance functions. We set
q = 4 and use Euclidean distance throughout all experiments.

37

In the aforementioned variants of W (·), each feature is treated independently
with each other. However, if a pair of selected features are highly dependent on
each other (e.g., frequency of "!" and "!!"), the final generated samples will be
less informative. Because of this, also to address constraint Eq.(3.5), we want to
generate a new ordered list U∗ as follows:

U∗ ←−WEntropy(X ,U) (3.15)

where WEntropy is a forward-based selection approach, which will iteratively add
each feature from U (from the most to least predictive) to U∗ one by one such that
the mutual information of any pairs of features in U∗ is within a upper-bound γ:

SU(X i , X j) ≤ γ ∀i, j ∈ U∗ (3.16)

where SU ∈ [0, 1] is an entropy-based Symmetrical Uncertainty [53] function that
measures the mutual information between the i-th and j-th feature of X as:

SU(X i , X j) = 2
[

IG(X i | X j)
H(X i) + H(X j)

]
(3.17)

where IG(X i | X j) is the information gain of X i given X j , and H(X i), H(X j) is
empirical entropy of X i and X j , respectively. A value SU = 1 indicates that X i

completely predicts the value of X j [54]. In implementation, we apply SU(·) with
normalized X to consider the difference in scales across all feature values. Alg. 3
describes function WEntropy in details. One obvious challenge is how to come up
with the ordered list U∗ of features to perturb. The next section will describe this
in detail.

3.4.3 Generating Explanation Text

After generating contrastive sample x̃xx, we take a further step and generate an
explanation in natural text. Table 3.2 shows generated contrastive samples and
the corresponding explanation for various datasets with K = 5. To do this, for a
specific prediction f (x) and generated contrastive sample x̃, we first calculate their
feature differences, resulting in predicate P as defined in Def. 1. Then, we can
translate P to text by using condition-based text templates such as ... is classified

38

Algorithm 3 Feature Selection with Entropy: WEntropy

Input: X ,U , γ
Output: Ordered list of features U∗

1: Initialize: U∗ ←− {}, X̂ ←− normalize(X)
2: for i in U do
3: to_add←− True
4: for j in U∗ do
5: if SU(X̂ i, X̂ j) > γ then

to_add←− False
6: end if
7: end for
8: if to_add = True then

U∗ ←− U∗ ∪ {i}
9: end if

10: end for
11: Return U∗

as X RATHER THAN Y because ..., or had..., it would have been classified as
X RATHER THAN Y (Figure 3.1c). Different text templates can be selected
randomly to induce diversity in explanation text. The difference in features values
can be described in three different degrees of obscurity from (i) extract value (e.g.,
0.007 point lower), to (ii) magnitude comparison (e.g., twice as frequent), or (iii)
relative comparison (e.g., higher, lower). Which degree of detail to best use is
highly dependent on the specific feature, domain, and the choice of end-users, and
they do not need to be consistent among perturbed features in a single explanation
text.

39

Table 3.2: Examples of generated contrastive samples and their explanation texts

Dataset Features/Prediction Type Original Generated Changes Explanation Text

cancer95

bare_nuclei int 1 10 ↑ 9 "if there were 9 more bare
nucleus, the patient would be
classified as malignant
RATHER THAN benign"

diagnosis benign malignant

spam

word_freq_credit float 0.470 0.225 ↓ 0.245 "The message is classified as
spam RATHER THAN ham
because the word ’credit’ and
’money’ is used twice as
frequent as that of ham
message"

word_freq_money float 0.470 0.190 ↓ 0.280
class Spam Ham

40

Table 3.3: Dataset statistics and prediction performance

Size Dataset #Class #Feat. #Data Acc.∗ F1∗

small

eegeye 2 14 14980 0.858 0.858
diabetes 2 8 768 0.779 0.777
cancer95 2 9 699 0.963 0.963
phoneme 2 5 5404 0.774 0.772
segment 7 19 2310 0.836 0.817
magic 2 10 19020 0.862 0.859

medium
biodeg 2 41 1055 0.853 0.851
spam 2 57 4601 0.932 0.932
cancer92 2 30 569 0.958 0.958

large mfeat 10 216 2000 0.943 0.936
musk 2 166 476 0.783 0.789

(*) Accuracy and F1 scores are averaged across 10 different runs.

3.4.4 Complexity Analysis

According to Alg. 1, we analyze the time complexity of GRACE on each prediction
instance as follows. The predictive feature ranking step using WGradient takes
O(M log M) with Quick Sort. Reordering the ranked list of features with WEntropy

takes O(M). Generating contrastive sample step takes O(M) + ZV with K ≪M ,
where Z is total number of classes to predict, and V is the time complexity of
forward and backward pass of f (xxx). Generating an explanation text then takes
another O(M). To sum up, the overall time complexity of GRACE to generate
an explanation for each prediction instance is O(M log M) + ZV with K ≪ M

(excluding the overhead of training g(·) and searching for Q in case of WLocal).

3.5 Experiments
In this section, we conduct experiments to verify the effectiveness of GRACE.
Specifically, we want to answer two questions: (i) how good are the generated
interventive contrastive samples? and (ii) how good are the generated explanation?

3.5.1 Datasets

We select 11 publicly available datasets of different domains and scales from [55]
to fully evaluate and understand how well GRACE works with neural networks
trained on data with varied properties (Table.5.3). As shown in Table.5.3, the

41

datasets are grouped into three scale levels according to the number of features.
Each dataset is split into training, validation, and test set with a ratio of 8:1:1,
respectively.

3.5.2 Compared Methods

Since our proposed framework combines the best of both worlds: adversarial gen-
eration and neural network model explanation, we select various relevant baselines
from two aspects.

• NearestCT: Instead of generating synthetic contrastive sample for explana-
tion for data point xxx, this approach selects the nearest contrastive samples of xxx

from the training set to provide contrastive explanation for the prediction f(xxx).

• DeepFool [51]: An effective approach that was originally proposed for un-
targeted attack by generating adversarial samples. Even though DeepFool is
not designed for generating samples to explain predictions, we consider this as
a baseline that intervenes on all features to generate contrastive samples.

• Lime [4]: A local interpretable model-agnostic explanation approach that pro-
vides explanation for individual prediction. This approach replies on visual-
ization of feature importance scores (for text and tabular data), and feature
heat-map (for image data) to deliver explanation. We use an out-of-the-box
toolkit to run experiments for comparison. Lime is selected mainly due to its
popularity as a baseline for ML explanation approach.

• GRACE-Gradient and GRACE-Local (ours): GRACE with predictive
feature ranking function W as WGradient and WLocal, respectively.

https://github.com/marcotcr/lime

42

Table 3.4: All results are averaged across 10 different runs. The best and second best results are highlighted in bold
and underline.

Statistics Dataset # Features < 30 30 ≤ # Features < 100 100 ≤ # Features

eegeye diabetes cancer95 phoneme segment magic biodeg spam cancer92 mfeat musk

Ravg#Feats

NearestCT 13.56 6.93 5.92 4.82 16.10 9.97 20.53 17.50 29.97 204.22 147.86
DeepFool 14.00 8.00 9.00 5.00 19.00 10.00 41.00 57.00 30.00 216.00 166.00

GRACE-Local 1.15 1.55 2.7 1.25 2.42 1.68 3.07 2.95 3.95 3.28 3.74
GRACE-Gradient 1.0 1.96 2.66 1.3 3.84 1.6 1.93 1.09 4.5 2.76 2.85

R∗
info−gain

NearestCT 0.69 0.44 0.64 0.12 0.19 0.04 0.44 0.62 0.02 0.58 0.28
DeepFool 0.7 0.41 0.62 0.12 0.33 0.05 0.58 0.53 0.01 0.59 0.29

GRACE-Local 0.64 0.79 0.49 0.81 0.55 0.67 0.46 0.47 0.13 0.34 0.3
GRACE-Gradient 0.64 0.62 0.52 0.78 0.23 0.71 0.76 0.95 0.04 0.50 0.4

Rinfluence

NearestCT 0.05 0.06 0.11 0.03 0.01 0.00 0.02 0.04 0.00 0.00 0.00
DeepFool 0.05 0.05 0.07 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.00

GRACE-Local 0.55 0.52 0.18 0.65 0.23 0.4 0.15 0.16 0.04 0.1 0.08
GRACE-Gradient 0.64 0.33 0.2 0.61 0.06 0.45 0.4 0.88 0.01 0.18 0.14

43

3.5.3 Evaluation of Generated Samples

In this section, we want to examine the quality of generated contrastive samples.
Since DeepFool, NearestCT and GRACE generate intermediate samples to
explain predictions, while Lime is not, we compare and analyze Lime separately
in Section 3.5.4 to evaluate final generated explanation.

For each dataset, we train a neural network model f (·) using the training set.
We tune it using the validation set together with early-stopping strategy to pre-
vent overfitting and report its performance on the test set. Table 5.3 reports the
averaged performance across 10 different runs. We set K = 5, γ = 0.5, and gener-
ate x̃xx to explain predictions f (xxx) of all samples in test set, resulting in the set of
generated contrastive samples X̃ .

To thoroughly examine the proposed approach, we come up with the following
analytical questions (AQs).

AQ1 Fidelity: How accurate are the generated contrastive samples’ labels, i.e.,
whether they can cross neural network model’s decision boundary as ex-
pected?

AQ2 Conciseness: How concise are generated samples, i.e., how many features
needed to be perturbed to successfully generate contrastive samples?

AQ3 Info-gain: How informative are generated samples?
AQ4 Influence: Derived from Def. 2, how well do the generated samples answer

the question Why X rather than Y?.

3.5.3.1 AQ1. Fidelity

Fidelity, measured by Rfidelity, shows how accurately contrastive samples are gen-
erated according to the neural network model’s boundary, i.e., the accuracy of
generated samples’ labels w.r.t their predictions by the neural network model:

Rfidelity = 1
|X̃ |

∑
(x̃,ỹ)∈X̃

1(ỹ = argmax(f (x̃))) (3.18)

Different from the two baselines, two variants of GRACE have to satisfy the
domain constraints, minimize the number of features, and their entropy, all at
the same time. Nevertheless, with K = 5, our method shows an average Rfidelity

44

of around 0.8 for both GRACE-Gradient and GRACE-Local. As the # of
perturbed features increases, the Fidelity scores for both GRACE-Gradient and
GRACE-Local also increase, which satisfies the expectation (Figure 3.2).

Figure 3.2: Percentage of perturbed features v.s fidelity

3.5.3.2 AQ2. Conciseness

We not only want to generate samples with high fidelity, but also want to perturb as
few features as possible. Thus, we introduce conciseness that measures the ability
to generate x̃xx by changing as few features as possible. To do this, we want to see
how fidelity correlates with the average number of perturbed features, denoted as
Ravg#Feats:

Ravg#Feats = 1
|X̃ |

∑
x̃∈X̃

|Sx̃xx| (3.19)

where Sx̃xx returns the list of features to perturb in xxx to generate x̃xx.
Table 3.4 shows that our GRACE framework dominates the two baselines

DeepFool and NearestCT on Ravg#Feats by large margin. Specifically, with
K = 5, our approach is able to generate contrastive samples with much less number
of perturbed features, averaging around less than 2.5 features across all datasets.
Interestingly, GRACE-Gradient was able to change on average less than 3 out of
a total of 216 and 166 features in the case of mfeat and musk dataset, respectively.

Moreover, while our method only needs to use as few as 12.5% of total # of
features to achieve fidelity of around 0.95 (Figure 3.2), DeepFool and Near-
estCT baseline needs to change almost 100% of the total # of features to achieve
a similar score.

45

3.5.3.3 AQ3. Info-gain

Since we want to generate samples that are informative, we hope to minimize the
averaged mutual information of all pairs of selected features across all samples in X̃ .
Hence, we formulate Rinfo−gain to measure such characteristic of being informative
as follows:

Rinfo−gain = 1− 1
|X̃ |

∑
x̃∈X̃

∑
i∈Sx̃

∑
j∈Sx̃

SU (X i ,X j)
|Sx̃|2

(3.20)

To be fair with other baselines, we instead report R∗
info−gain = Rinfo−gain×Rfidelity

to take into account the fidelity score. Even so, thanks to the entropy-aware feature
selection mechanism, GRACE is able to generate contrastive samples that are
much more informative compared to DeepFool’s in most of the datasets (Table
3.4). This shows that samples generated by our framework are not only contrastive
but also informative to the final explanation.

3.5.3.4 AQ4. Influence

Extended from influence score with tolerance parameter λ = 1 (Def. 2), we aim
to measure how well the generated samples can influence the explanation of a
specific prediction. Denoted by Rinfluence, the influence score first captures whether
generated samples are still within the original domain space, or Rdomain as follows:

Rdomain = 1
|X̃ |

∑
x̃̃x̃x∈X̃

1(x̃̃x̃x ∈ dom(X)) (3.21)

Moreover, the influence score is also proportional to how faithful generated sam-
ples are to the neural network model’s decision boundary (Rfidelity), how informa-
tive they are (Rinfo−gain), how concise in terms of number of perturbed features
(Ravg#Feats), resulting in a Rinfluence calculated as follows:

Rinfluence = Rfidelity ×Rinfo−gain ×Rdomain

Ravg#Feats
(3.22)

Intuitively, Rinfluence describes the capability to generate new contrastive samples
that are both informative, concise, and valid within the original domain space.
Hence, the larger the score, the better.

Regarding Rdomain, experiments show that DeepFool performs worst on Rdomain,

46

averaged about 0.86, since the generation might move x̃ much further away from
the original distribution, while other methods always ensure that generated sam-
ples are within the original domain space. As regards as Rinfluence, GRACE is
able to generate highly more influential contrastive samples than DeepFool and
NearestCT even when taking Rfidelity into account, which is the strongest point
of both two baselines.

3.5.4 Evaluation of Generated Explanation

In this section, we want to compare GRACE with Lime [4] from end-users’ per-
spectives on their generated explanation. Before introducing user-studies to com-
pare between two methods, we first draw some observations in a case-study below.

3.5.4.1 Case-study: breast-cancer diagnosis

We select cancer95 dataset to experiment. Following the same experimental set-
ting in Section 3.5, we apply Lime and GRACE on the trained neural network
model to explain its predictions on the test set. Figure ?? depicts explanation
produced by Lime on a patient diagnosed as malignant by the model. Follow-
ing guideline published by Lime’s author , explanation for each feature can be
interpreted as follows: "if bare_nuclei is less than or equal 6.0, on average, this
prediction would be 0.15 less malignant". With the same prediction, GRACE
generates an explanation text as follows:"Had bare_nuclei been 7.0 point lower
and clump_thickness been 9.0 point lower, the patient would have been diagnosed
as benign rather than malignant"

Method wise, both are instance-based explanation algorithms, or to explain
individual predictions. From Figure ??, by presenting top-k important features,
Lime does not convince if and how a single or combinations of features are vulner-
able to the contrastive class, but this is very vivid and concise in case of GRACE.
Moreover, while both methods provide some intuition on decisive thresholds at
which the prediction would change its direction, the thresholds provided by Lime
is only only a local approximation of the neural network model, while that provided
by GRACE (e.g., 7.0 point lower for bare_nuclei) is faithful to the neural net-
work model (fidelity score is 1.0). Overall, the explanation generated by GRACE

https://github.com/marcotcr/lime

47

Table 3.5: User-study with hypothesis testing to compare explanation generated
by GRACE against Lime

Alternative Hypothesis t-stats p-value df
H1 GRACE is more intuitive and friendly 2.3115 0.0104* 42
H2 GRACE is more comprehensible 3.0176 0.0013** 42
H3 GRACE leads to more accurate actions 4.4875 3.39e−5** 37
*reject Null hypothesis with p-value<0.05 (95% CI) on one-tailed t-test
**reject Null hypothesis with p-value<0.0 1 (99% CI) on one-tailed t-test

is more concise and faithful to the decision boundary of the neural network model.

3.5.4.2 User-Study 1: Intuitiveness, friendliness & comprehensibility

: We have recruited participants on Amazon Mechanical Turk (AMT) and asked
them to compare two explanation methods: Lime and GRACE. Without assum-
ing or requiring any ML background on the participants, we want to test two
alternative hypothesises: explanation generated by GRACE is (H1) more intu-
itive and friendly, and (H2) more comprehensible than that generated by Lime
to general users. To test these, using the same prediction instance, we first gen-
erate explanation text by Lime and GRACE. While by default Lime returned
explanation for top 10 features, we limit only 5 features that are the most signif-
icant. On the contrary, GRACE only needs 2 features for generating contrastive
explanation. Since Lime method originally does not generate explanation text, we
then translate its result to text interpretation as described in previous case-study.
Finally, we ask the participants to rank on a scale from 1 to 10 for each question
(i) and (ii). We did the surveys for each method separately.

From Table 3.5 and Figure 3.4, it is significant (p-value ≤ 0.05) that GRACE
is able to generate more intuitive, friendly (H1, 6.35 v.s. 4.76 in mean ranking),
and more comprehensible (H2, 7.35 v.s. 5.52 in mean ranking) explanation than
Lime for general users.

3.5.4.3 User-Study 2: How much end-users indeed understand the ex-
planation?

In practice, ML models usually play the role of assisting human to make informa-
tive decisions [46]. Therefore, extending from previous experiment, we hypothesize
that a good explanation should not only be comprehensible, but should also help

48

Figure 3.3: Effects of K on Rfidelity and Ravg#Feats score

materialize in accurate decision. Here we want to test workers’ actual understand-
ing from the explanation with alternative hypothesis (H3): users who are provided
with explanation generated by GRACE are better at making post-explanation de-
cision than those provided with explanation generated by Lime. To test this, we
first present the same prediction scenario from previous user-study, then ask each
participant to analyze the explanation and adjust the sample’s feature values such
that the model would change its prediction (e.g., from malignant to benign). This
task requires the worker to recognize from the explanation hints of both (i) what
the key features are and (ii) how the changes of those features affect the model’s
prediction. To ensure the quality of the workers, we only select workers with “US
Graduate Degree" as a qualification provided by AMT. We use the trained model
to validate the responses and report the average accuracy.

From Table 3.5 and Figure 3.4, it is highly significant (p-value ≤ 0.01) that
workers who provided with explanation generated by GRACE have more accurate
answers than those provided with explanation generated by Lime (H3), showing
0.75 v.s 0.16 of average accuracy, respectively. In other words, explanation gener-
ated by GRACE is more effective in supporting users to make tangible decisions,
such as suggesting an alternative scenarios when dealing with neural network mod-
els.

49

Figure 3.4: Comparison of generated explanation: GRACE v.s. Lime. Scores are
normalized to [0,1]

3.5.5 Parameter Sensitivity Analysis

3.5.5.1 Effects of K

One of the important factors that largely affect the explainability of GRACE is
the value of parameter K, or the maximum number of features to change during
the contrastive samples generation process.

While a small K is more preferable, it would become more challenging for
GRACE to ensure perturbed samples to cross the decision boundary. This will
eventually hurt Rfidelity. Here we want to see how different K values affect the
generated samples’ fidelity and the number of perturbed features. For each dataset,
we next train a neural network model and test this model with all values of K =
{1, 2, 3,.. 10} and plot it against respective Rfidelity and Ravg#Feats.

Figure 3.3 reports two distinctive patterns between GRACE-Gradient and
GRACE-Local: (i) both approaches witness gradual increment in Rfidelity and
Ravg#Feats, with neither one of them dominates the performance (e.g., cancer95
dataset), or (ii) one of them greatly out-weights the other (e.g., spam dataset).
Overall, by increasing K, generated samples are more faithful to the neural network
model’ decision boundary, yet the average number of features needed to change to
achieve so also increases, hence eventually reduce explainability.

50

Table 3.6: Effects of entropy threshold γ on Rinfo−gain

Dataset Method 1.0 0.7 0.5 0.3

musk GRACE-Gradient 0.51 0.51 0.58 0.58
GRACE-Local 0.36 0.36 0.54 0.54

segment GRACE-Gradient 0.57 0.57 0.59 0.59
GRACE-Local 0.79 0.79 0.84 0.84

3.5.5.2 Effects of entropy threshold γ

Entropy threshold γ is set to ensure that no pairs out of selected features are
conveying very similar information, hence making generated samples more infor-
mative to users. Similar to the previous experiment, we keep other parameters the
same while vary γ as {1.0, 0.7, 0.5, 0.3}. The results are shown in Table 3.6. We
observed that γ is not very sensitive, showing the best value of γ ≤ 0.5, which can
be explained that the pair of features are usually more or less predictable given
the other at a specific level. However, by setting γ = 0.5, we can observe larger
improvement in case of musk and segment dataset.

3.6 Related Work
Regarding explanation by intervention, our Def. 1 relates to Quantitative Input
Influence [56], a general framework to quantify the influence of a set of inputs
on the prediction outcomes. The framework follows a two-step approach: (i) it
first changes each individual feature by replacing it with a random value, and then
(ii) observes how the outcome, i.e., prediction, changes accordingly. However, we
propose a more systematic way by generating a new sample at once by directly
conditioning it on a contrastive outcome (X rather than Y). A few prior works
(e.g., [52, 57, 58]) also propose to generate contrastive samples with (i) minimal
corrections from its original input by minimizing the distance: δ = ∥xxx − x̃∥p and
with (ii) minimal number of features needed to change to achieve such corrections.
While Wachter et al. [57] use δ with ℓ1 norm to induce sparsity with the hope to
achieve (ii), Zhang et al. [58] approach the problem in a reverse fashion, in which
they try to search for minimal δ w.r.t to a pre-defined number of features to be
changed. Regardless, without considering the mutual information among pair-wise
of features, it does not always guarantee that generated samples are informative to

51

end-users. The work [59] also proposes a method to use decision trees to search for a
decisive threshold of feature’s values at which the prediction will change, and utilize
such threshold to generate explanations for neural network model’ predictions.
While sounds similar to our approach, this method shares a similar dis-merit with
Lime [4] since the generated explanation is only an approximation and not faithful
to the model. In this chapter, we take a novel approach to generate contrastive
samples that are not only contrastive but also faithful to the neural network model
and “informative" to end-users.

As regards as features selection, we employ a forward-based approach together
with Symmetrical Uncertainty (SU) and the approximation of features importance
according to the neural network model. While there are other algorithms for
ranking or selecting features (e.g., submodularity [60], ℓ1 [57], tree-based ([59],
etc.), our proposed method is selected because of it is both effective (high fidelity
and informative scores as a result) and easy to implement, not to mention that SU
can work with continuous features, and it also considers the bias effects in which
one feature might have many diverse values than the other [54].

3.7 Limitation and Future Work
There are several Interesting future directions. First, in this chapter, we intervene
a selected subset of features without considering conditional dependencies among
all variables after such intervention. This might create undesirable samples that
are unrealistic (e.g., “‘a pregnant man"). Thus, we plan to address interactions
among the features to generate samples that are more realistic. Second, in this
work, we assume a white-box setting that we can access the gradients of the model.
We want to extend GRACE for other black-box settings, gradients of which are
not accessible. Since our method works exclusively for multinomial classification
task, we also plan to apply it on other ML tasks such as regression, clustering, etc.

3.8 Conclusion
In this chapter, we borrow “contrastive explanation" and “explanation by interven-
tion" concepts from previous literature and develop a generative-based approach
to explain neural network models’ predictions. We introduce GRACE, a novel

52

instance-based algorithm that provides end-users with simple natural text explain-
ing neural network models’ predictions in a contrastive “Why X rather than Y"
fashion. To facilitate such an explanation, GRACE extends adversarial perturba-
tion literature with various conditions and constraints, and generates contrastive
samples that are concise, informative and faithful to the neural network model’s
specific prediction. User-studies and quantitative experiments on several datasets
of varied scales and domains have demonstrated the effectiveness of the proposed
approach.

53

Chapter 4 |
Learning to Attack: Generat-
ing Malicious Comments to At-
tack Neural Fake News Detec-
tion Models

4.1 Background
Circulation of fake news, i.e., false or misleading pieces of information, on social
media is not only detrimental to individuals’ knowledge but is also creating an
erosion of trust in society. Fake news has been promoted with deliberate intention
to widen political divides, to undermine citizens’ confidence in public figures, and
even to create confusion and doubts among communities [61]. Hence, any quantity
of fake news is intolerable and should be carefully examined and combated [62].
Due to the high-stakes of fake news detection in practice, therefore, tremendous
efforts have been taken to develop fake news detection models that can auto-detect
fake news with high accuracies [63–66]. Figure ?? (on top) shows an example of
a typical news article posted on the social media channels such as Twitter and
Facebook. A fake news detection model then uses different features of the article
(e.g., headline and news content) and outputs a prediction on whether such an
article is real or fake. Further, recent research has shown that users’ engagement
(e.g., user comments or replies) on public news channels on which these articles
are shared become a critical signal to flag questionable news [64]. Hence, some

54

of the state-of-the-art (SOTA) fake news detection models [64–67] have exploited
these user engagement features into their prediction models with great successes.

Despite the good performances, the majority of SOTA detectors are deep learn-
ing based, and thus become vulnerable to the recent advancement in adversarial
attacks [68]. As suggested by [69], for instance, a careful manipulation of the title
or content of a news article can mislead the SOTA detectors to predict fake news
as real news and vice versa. [70] also shows that hiding questionable content in an
article or replacing the source of fake news to that of real news can also achieve
the same effect. However, these existing attack methods suffer from three key
limitations: (i) unless an attacker is also the publisher of fake news, she cannot
exercise post-publish attacks, i.e., once an article is published, the attacker can-
not change its title or content; (ii) an attacker generates adversarial texts either
by marginally tampering certain words or characters using pre-defined templates
(e.g., “hello" → “he11o", “fake" → “f@ke" [71]), appending short random phrases
(e.g., “zoning tapping fiennes") to the original text [72], or flipping a vulnerable
character or word (e.g. “opposition" → “oBposition") [73], all of which can be
easily detected by a careful examination with naked eyes; and (iii) they largely
focus on the vulnerabilities found in the title and content, leaving social responses,
i.e., comments and replies, unexplored.

Since many SOTA neural fake news detectors exploit users’ comments to im-
prove fake news detection, this makes them highly vulnerable from attacks via
adversarial comments. Figure ?? shows an example of such an attack. Before the
attack, a fake news detector correctly identifies a real article as real. However,
using a malicious comment as part of its inputs, the same detector is misled to
predict the article as fake instead. Compared with manipulating news title or con-
tent, an attack by adversarial comments have several advantages: (i) accessibility:
as it does not require an ownership over the target article, an attacker can easily
create a fake user profile and post malicious comments on any social media news
posts; (ii) vulnerability: it is less vulnerable than attacking via an article’s title or
content, as the comments written by general users often have a higher tolerance in
their writing quality (e.g., using more informal language, slang, or abbreviations is
acceptable in user comments) compared to that of an article’s title or content. This
makes any efforts to detect adversarial comments more challenging. Despite these
advantages, to our best knowledge, there exist few studies on the vulnerability of

55

Real Comment: admitting i’m not going to read this
(...)MALCOM: he’s a conservative from a few months ago
Prediction Change: Real News −→ Fake News

Figure 4.1: A malicious comment generated by MALCOM misleads a neural fake
news detector to predict real news as fake.

neural fake news detectors via malicious comments.
Therefore, in this chapter, I formulate a novel problem of adversarial comment

generation to fool fake news detectors. Generating adversarial comments is non-
trivial because adversarial comments that are misspelled or irrelevant to the news
can raise a red flag by a defense system and be filtered out before it has a chance
to fool fake news detector. Thus, we are faced with two challenges: (i) how to
generate adversarial comments that can fool various cutting-edge fake news detec-
tors to predict target class?; and (ii) how to simultaneously generate adversarial
comments that are realistic and relevant to the article’s content; In an attempt
to solve these challenges, we propose MALCOM, a novel framework that can
generate realistic and relevant comments in an end-to-end fashion to attack fake
news detection models, that works for both black box and white box attacks. The
main contributions are:

• This is the first work proposing an attack model against neural fake news de-
tectors, in which adversaries can post malicious comments toward news articles

56

Figure 4.2: MALCOM Architecture.

to mislead cutting-edge fake news detectors.

• Different from prior adversarial literature, our work generates adversarial texts
(e.g., comments, replies) with high quality and relevancy at the sentence level
in an end-to-end fashion (instead of the manipulation at the character or word
level).

• Our model can fool five top-notch neural fake news detectors to always output
real news and fake news 94% and 93.5% of the time on average. Moreover, our
model can mislead black-box classifiers to always output real news 90% of the
time on average.

4.2 Problem Formulation
We propose to attack fake news detectors with three phrases. Phrase I: identifying
target articles to attack. Phrase II: generating malicious comments. Phrase III:
appending generated comments on the target articles. In this chapter, I focus on
the phrase II of the attack, which is formally defined as follows. Let f (·) be a
target neural network fake news classifier. Denote X = {xxxi, Ci}N

i=1, Y = {yi}N
i=1 as

the features of articles and their ground-truth labels (e.g., fake news or real news)
of a dataset D on which f (·) is trained, with N being the total number of articles.
Let xxxtitle

i , xxxcontent
i , Ci be the title, content, and a list of all comments of xxxi, respec-

tively. Then, we want to train a generator G such that, given an unseen article
{xxx, C} ̸∈ X and a target prediction label L∗, G generates a set of M malicious
comments Cadv to achieve the following objectives:

Objective 1: High quality in writing and relevancy: Cadv needs to mimic real
comments both in writing quality and relevancy to xxx’s content. This will pre-
vent them from being detected by a robust adversarial text defense system (e.g.,

57

[74, 75]). Even though generating realistic comments [76] is not the main goal of
our paper, it is a necessary condition for successful attacks in practice.

Objective 2: Successful attacks: This is the main objective of the attacker. The
attacker contaminates a set of an article’s existing comments C by appending
Cadv such that f : xxx, C∗ 7→ L∗, where C∗ ←− C ⊕ Cadv with ⊕ denoting concate-
nating, and L∗ is the target prediction label. When L∗ ← 0, Cadv ensures that,
after posted, an article xxx will not be detected by f as fake (and not to be removed
from the news channels). When L∗ ← 1, Cadv helps demote real news as fake news
(and be removed from the news channels). There are two types of attacks: (i)
white box and (ii) black box attack. In a white box attack, we assume that the
attacker has access to the parameters of f . In a black box attack, on the other
hand, the f ’s architecture and parameters are unknown to adversaries. This leads
to the next objective below.

Objective 3: Transferability: Cadv needs to be transferable across different fake
news detectors. In a black box setting, the attacker uses a surrogate white box
fake news classifier f ∗ to generate Cadv and transfer Cadv to attack other black box
models f . Since fake news detectors are high-stack models, we impose a stricter
assumption compared to previous literature (e.g., [71]) where public APIs to target
fake news classifiers are inaccessible. In practice, the training dataset of an unseen
black box model will be different from that of a white box model, yet they can
be highly overlapped. Since fake news with reliable labels are scarce and usually
encouraged to be publicized to educate the general public (e.g., via fact-check
sites), fake news defenders have incentives to include those in the training dataset
to improve the performance of their detection models. To simplify this, we assume
that both white box and black box models share the same training dataset.

4.3 Adversarial Comments Generation
In this chapter, I propose MALCOM, an end-to-end Malicious Comment Gen-
eration Framework, to attack fake news detection models. Figure 5.1 depicts the
MALCOM framework. Given an article, MALCOM generates a set of malicious
comments using a conditional text generator G. We train G together with Style

58

and Attack modules. While the Style module gradually improves the writing
styles and relevancy of the generated comments, the Attack module ensures to
fool the target classifier.

4.3.1 Conditional Comment Generator: G

G(xxx, z) is a conditional sequential text generation model that generates malicious
comment c∗ by sampling one token at a time, conditioned on (i) previously gen-
erated words, (ii) article xxx, and (iii) a random latent variable z. Each token is
sequentially sampled according to conditional probability function:

p(c∗|xxx; θG) =
T∏

t=1
p(c∗

t |c∗
t−1, c∗

t−2, . . . , c∗
1;xxx; z) (4.1)

where c∗
t is a token sampled at time-step t, T is the maximum generated sequence

length, and θG is the parameters of G to be learned. G can also be considered as
a conditional language model, and can be trained using MLE with the teacher-
forcing [77] by maximizing the negative log-likelihood (NLL) for all comments
conditioned on the respective articles in X . We want to optimize the objective
function:

min
θG

LMLE
G = −

N∑
i=1

ci log p(c∗
i |xxxi; θG) (4.2)

4.3.2 Style Module

Both writing style and topic coherency are crucial for a successful attack. Due to
its high-stake, a fake news detector can be self-guarded by a robust system where
misspelled comments or ones that are off-topic from the article’s content can be
flagged and deleted. To overcome this, we introduce the Style module to fine-
tune G such that it generates comments with (i) high quality in writing and (ii)
high coherency to an article’s content.

First, we utilize the GAN [78] and employ a comment style discriminator D

to co-train with G in an adversarial training schema. We use Relativistic GAN
(RSGAN) [79] instead of standard GAN loss [78]. In RSGAN, the generator G aims
to generate realistic comments to fool a discriminator D, while the discriminator
D aims to discriminate whether the comment c is more realistic than randomly

59

sampled fake data generated by G. Specifically, we alternately optimize D and G

with the following two objective functions:

min
θG

LD
G = −E(x,c)∼pD(X);z∼pz [log(σ(D(c)−D(G(xxx, z)))]

min
θD

LD = −E(x,c)∼pD(X);z∼pz [log(σ(D(G(xxx, z))−D(c)))]
(4.3)

where σ is a sigmoid function, θG is the parameters of G and θD is the parameters
of D. By using D, we want to generate comments that are free from misspellings
while resembling realistic commenting styles.

Second, to enhance the relevancy between the generated comments and the
article, we minimize the mutual information gap between comments generated by
G and the article’s titles. Specifically, we use maximum mean discrepancy (MMD),
which has been shown to be effective in enforcing mutual information. The loss
function can be written as:

min
θG

LH
G = MMD(X title, G(X))

=
[
Exxx,x′x′x′∼pD(X)k(xxxtitle,x′x′x′title)

+ Exxx∼pD(X);c∗,c∗′ ∼G(xxx,z)k(c∗, c∗′)

− 2Exxx∼pD(X),c∗∼G(xxx,z)k(xxxtitle, c∗)
] 1

2

(4.4)

where the MMD compares the distribution X title of real articles’ titles and that of
generated comments G(X) by projecting them into Hilbert spaces (RKHS) using a
Gaussian kernel k. Intuitively, we want to minimize the information gap between
the real titles and the generated comments. Moreover, we use xxxtitle (i.e., the title
of xxx) instead of xxxcontent (i.e., the content of xxx) because: (i) an article’s content is
usually much longer, hence requiring more computation, (ii) an article’s title is a
summary of the article’s content, and (iii) prior studies (e.g., [80]) show that social
media users actually rely more on the headlines rather than the actual content for
commenting, sharing, and liking.

4.3.3 Attack Module

This module guides G to generate comments that can fool the target classifier.
In a white box setting, the fake news classifier can be directly used to guide the

60

Algorithm 4 Generating Adversarial Comments Algorithm
1: Pre-train G with teacher-forcing and MLE using Eq. (4.2) with train set.
2: Pre-train a surrogate fake news classifier f using Eq. (4.3.3) with train set.
3: repeat
4: Training G with D using Eq. (4.3) in mini-batch from train set.
5: Training G using Eq. (4.4) in mini-batch from train set.
6: Training G with f using Eq. (4.5) in mini-batch from train set.
7: until convergence

learning of G. In a black box setting, a surrogate fake news classifier can be
used to generate and transfer malicious comments to unseen fake news detectors.
We denote f (xxxi, Ci) parameterized by θf as the surrogate white box classifier,
predicting whether or not xxxi is fake news. f can be trained using binary-cross-
entropy loss over D as:

min
θf

Lf = − 1
N

N∑
i

(yilog(f (xxxi, Ci))) + (1− yi)log(1− f (xxxi, Ci))

To use this trained model f to guide G, we use signals back-propagated from f

to force G to generate a new comment c∗ such that f (xxxi, C∗
i) (where C∗

i ←− Ci ⊕
{c∗}) outputs a target prediction label L∗ ∈ {0, 1} for the article xxxi. Specifically,
we want to optimize the objective function:

min
θG

Lf(L∗)
G = − 1

N

N∑
i

(L∗log(f (xxxi, C∗
i))) + (1− L∗)log(1− f (xxxi, C∗

i)) (4.5)

One obvious attack scenario is for an attacker to promote fake news, i.e., to generate
comments to mislead the target classifier to classify fake news as real news (L∗ ←−
0). Adversely, an attacker might also want to fool the target classifier to classify
real news as fake news (L∗ ←− 1).

4.3.4 Objective Function of MALCOM

At the end, an attacker aims to generate realistic and relevant comments to attack
a target fake news classifier by optimizing objective functions as follows.

min
θf

Lf ; min
θD

LD; min
θG

(LMLE
G + LD

G + LH
G + Lf(L∗)

G) (4.6)

61

where each term in Eq. (4.6) equally contributes to the final loss function. We use
Adam [81] to optimize the objective functions with a mini-batch training approach.
Alg. 4 shows the overall training algorithm.

4.3.5 Implementation Details

Training with Discrete Data: We need to back-propagate the gradients of the loss
in Eq. (4.3, 4.4, 4.5) through discrete tokens sampled by G from the multinomial
distribution c∗

t at each time-step t. Since this sampling process is not differentiable,
we employ Gumbell-Softmax [82] relaxation trick with a τ parameter (i.e., gener-
ation temperature) to overcome this. We refer interested readers on the elaborate
discussion of the Gumbell-Softmax technique and the effects of τ on generation
quality and diversity to [82,83].

Generation Strategy: For each article xxx, we generate new comment c ←−
G(xxx, z) where z ∼ N (0, 1). To minimize the risk of being detected by a de-
fender, an attacker desires to select the best set of comments to attack, especially
those that are highly relevant to the target article. Hence, for each article xxx, we
sample different z to generate different malicious comments and select c that is the
most coherent to the article. To measure such the coherency, we derive function
Tk(c,xxxtitle) which will be introduced in Sec. (4.4.1.5).

Architectures and Parameters Setting: We employ Relational Memory Recur-
rent Network (LMRN) [83,84] and multi discriminative representations (MDR) [83]
as the corner-stone of G and D architecture. We also observe that D with a CNN-
based architecture works very well in our case. The LMRN model is adapted from
the sonnet model. The MDR implementation is publicly available .

4.4 Experiments
In this section, we evaluate the effectiveness of MALCOM and try to answer the
following analytical questions (AQs):

AQ1 Quality, Diversity, and Coherency: How realistic are the generated com-
ments in terms of their writing styles and as well as coherency to the original

https://github.com/deepmind/sonnet
https://github.com/williamSYSU/TextGAN-PyTorch

62

Table 4.1: Dataset Statistics and Details of Target Classifiers and Their Fake News
Detection Performance

Dataset #articles #comments #fake #real
GossipCop 4,792 116,308 1,894 2,898
Pheme 5,476 52,612 1,980 3,486

Classifier GossipCop Pheme
Accuracy F1 Accuracy F1

fCNN 0.74 0.74 0.77 0.77
fRNN 0.70 0.69 0.71 0.71
CSI\t [64] 0.65 0.70 0.61 0.61
textCNN [?] 0.68 0.68 0.76 0.76
dEFEND [65] 0.76 0.76 0.78 0.78

articles’ contents?

AQ2 Attack Performance: How effective are generated comments in attacking
white box and black box detectors?

AQ3 Attack Robust Fake News Detectors: How effective are generated com-
ments in attacking fake news detectors safe-guarded by a robust comments
filtering feature?

AQ4 Robustness: How many malicious comments do we need and how early can
they effectively attack the detectors?

I plan to release all datasets, codes, and parameters used in our experiments.

4.4.1 Set-Up

4.4.1.1 Datasets

We experiment with two popular public benchmark datasets, i.e., GossipCop [85]
and Pheme [?]. GossipCop is a dataset of fake and real news collected from a
fact-checking website, GossipCop, whereas Pheme is a dataset of rumors and
non-rumors relating to nine different breaking events. These datasets are selected
because they include both veracity label and relevant social media discourse content
on Twitter.

We exclude another popular dataset, PolitiFact, also from [85] because it is much smaller
and less diverse in terms of topics

63

4.4.1.2 Data Processing and Partitioning

For each dataset, we first clean all of the comments (e.g., remove mentions, hash-
tags, URLs, etc.). We also remove non-English comments, and we only select
comments that have length from 5 and 20. We split the original dataset into train
and test set with a split ratio of 9:1. Since Pheme dataset does not include ar-
ticles’ contents, we use their titles as alternatives. Table 4.1 shows the statistics
of the post-processed datasets. We use the train set to train both G and target
fake news classifiers f . All the experiments are done only on the test set, i.e., we
evaluate quality and attack performance of generated comments on unseen articles
and their ground-truth comments.

4.4.1.3 Target Classifier

.
We experiment MALCOM with SOTA and representative fake news classifiers,

which are summarized in Table 4.1. Note that both datasets are challenging ones
as SOTA methods can only achieve 0.76 and 0.78 in F1 using the first 10 comments
of each article. These classifiers are selected because they cover a variety of neural
architectures to learn representations of each article and its comments, which is
eventually input to a softmax layer for prediction. In all of the following classifiers,
we encode the article’s content into a feature vector of R512 by using Universal
Sentence Encoder (USE) [72], followed by a fully-connected-network (FCN) layer.

• fffCNNCNNCNN : This classifier uses CNN layers to encode each comment into a vector.
Then, it concatenates the average of all encoded comments with the feature
vector of the article’s content as the article’s final representation.

• fffRNNRNNRNN : This classifier uses a RNN layer to model the sequential dependency
among its comments, output of which is then concatenated with the vectorized
form of the article’s content as the article’s final representation. We utilize Gated
Recurrent Unit (GRU) as the RNN architecture because it has been widely
adopted in previous fake news detection literatures (e.g., [64, 65]).

• textCNN [?]: textCNN uses a CNN architecture to encode the mean of vector
representations of all of its comments. The output vector is then concatenated
with the article’s content vector as the article’s final representation.

64

• CSI\t [64]: CSI uses GRU to model the sequential dependency of textual
features of user comments and the network features among users participating
in an article’s discourse to detect fake news. Different from fRNN , this model
does not use an article’s content as an input. We use a modified version, denoted
as CSI\t, that does not use the network features as such information is not
available in both datasets.

• dEFEND [65]: Given an article, this algorithm utilizes a co-attention layer
between an article’s content and comments as input to make a final prediction.

Other methods are surveyed but not included in the experiments because: (i)
overall, their accuracies were reported inferior to those of dEFEND, CSI, (ii)
SAME [66] only uses extracted sentiments of the comments, not the whole text
as input, (iii) FAKEDETECTOR [86] mainly uses graph-based features, which
is not within our scope of study, and (iv) TCNN-URG [67] focuses only on early
fake news detection.

4.4.1.4 Compared Attack Methods

We compared MALCOM with representative and SOTA adversarial text generators
(Table 4.2).

• Copycat Attack: We created this method as a trivial attack baseline. Copy-
Cat randomly retrieves a comment from a relevant article in the train set which
has the target label. We use USE to facilitate semantic comparison among
articles’ contents.

• HotFlip Attack [73]: This attack finds the most critical word in a sentence and
replaces it with a similar one to fool the target classifier. Since HotFlip does
not generate a whole sentence but make modifications on an existing one, we
first use the comment retrieved by CopyCat as the initial malicious comment.

• Universal Trigger (UniTrigger) Attack [72]: It searches and appends a
fixed and universal phrase to the end of an existing sentence to fool a text
classifier. In this case, we want to find an universal topic-dependent prefix
to prepend to every comment retrieved by CopyCat to attack. For a fair

https://github.com/Eric-Wallace/universal-triggers

65

Table 4.2: Comparison among Attack Methods

Method end-to-end generalization level
generation via learning of attack

CopyCat # # sentence
HotFlip # # character/word
UniTrigger # multi-level
TextBugger # # character/word
MALCOM sentence

Table 4.3: Examples of Generated Malicious Comment. Spans in purple and italics
are retrieved from the train set and carefully crafted. Spans in blue are generated
in end-to-end fashion.

Title why hollywood won’t cast renee zellweger anymore
Content so exactly what led renée zellweger, an oscar (...)
CopyCat her dad gave her a great smile
+HotFlip her dad gave got her a great smile
+UniTrigger edit season edit her dad gave her a great smile
+TextBugger her dad gave ga ve her a great smile
MALCOM why do we need to ruin this season

comparison and to ensure the coherency with the target article’s content, we
restrict replacement candidates to the top q=30 words (for GossipCop dataset)
and q=30 words (for Pheme dataset) representing the article’s topic. q is chosen
such that replacement candidates are distinctive enough among different topics.
These words and topics are retrieved from a topic modeling function LDAk(·).

• TextBugger Attack [71]: This method generates “bugs", i.e., carefully crafted
tokens, to replace words of a sentence to fool text classifiers. This attack also
requires an existing comment to attack. Therefore, we first use CopyCat to
retrieve an initial text to attack. Next, we search for “bugs" using one of the
following strategies insert, delete, swap, substitute-c, substitute-w as described
in [71] to replace one of the words in a comment that achieves the attack goal.

4.4.1.5 Evaluation Measures

1. Success Attack Rate (Atk%): This quantifies the effectiveness of the at-
tack. For example, a target-real attack on f with Atk% score of 80% indicates
that an attacker can fool f to predict real news 80% of the time on all news
articles that F should have otherwise predicted correctly.

66

2. Quality and Diversity: We use BLEU and negative-log-likelihood loss (NLL_gen)
scores to evaluate how well generated comments are in terms of both quality
and diversity, both of which are widely adopted by previous text generation
literature (e.g., [83,87,88]). While BLEU scores depict the quality of the gener-
ated text compared with an out-of-sample test set of human-written sentences
(the higher the better), NLL_gen signals how diverse generated sentences are
(the lower the better).

3. Topic Coherency: We derive a topic coherency score of a set of arbitrary
comments C and its respective set of articles X of size N as follows: Tk(X, C) =
1
N

∑N
i=0[1− cos(LDAk(xxxcontent

i), LDAk(ci))], where cos(·) is a cosine similarity
function. LDAk(·) is a Latent Dirichlet Allocation (LDA) model that returns
the distribution of k different topics of a piece of text. We train LDAk on all of
the articles’ contents using unsupervised learning with hyper-parameter k. The
larger the score is, the more topic-coherent the comment gets to the article.
Because different comments generation algorithms work well with different
values of k, for a fair comparison, we report the averaged topic coherency
across different values of k as the final Coherency score: Coherency =∑

k∈K Tk(X, C). We select k ∈ K such that the averaged entropy of topic
assignment of each article is minimized, i.e., to ensure that the topic assigned
to each article is distinctive enough to have meaningful evaluation.

4.4.2 AQ1. Quality, Diversity and Coherency

Tables 4.3 and 4.4 show the examples of the generated comments by all attacks and
their evaluation results on the quality, diversity, and topic coherency. MALCOM
generates comments with high quality in writing and topic coherency. However, we
do not discount the quality of human-written comments. The reason why BLEU
scores of real comments, i.e., CopyCat, are lower than that of MALCOM is
because they use a more diverse vocabulary and hence reduce n-gram matching
chances with reference text in the test set. The user-study in Sec. 4.5.1 will later
show that it is also not trivial to differentiate between MALCOM-generated and
human-written comments even for human users.

Different from all recent attacks, MALCOM is an end-to-end generation frame-
work, and can control the trade-off between quality and diversity by adjusting the

67

Table 4.4: Quality, Diversity, Coherency and White Box Attack

Model GossipCop Dataset
↑Quality ↓Diversity ↑Coherency ↑Atk%

CopyCat 0.650 - 0.585 0.497
+HotFlip 0.618 - 0.565 0.803
+UniTrigger 0.545 - 0.725 0.929
+TextBugger 0.643 - 0.561 0.749
Malcom\Style 0.740 2.639 0.659 0.986
Malcom 0.759 2.520 0.730 0.981

Model Pheme Dataset
↑Quality ↓Diversity ↑Coherency ↑Atk

CopyCat 0.697 - 0.578 0.784
+HotFlip 0.657 - 0.530 0.958
+UniTrigger 0.608 - 0.595 0.951
+TextBugger 0.617 - 0.528 0.975
Malcom\Style 0.517 2.399 0.732 1.000
Malcom 0.776 1.917 0.812 0.966
"-": NLLgen cannot be computed for retrieval-based method
All experiments are averaged across 3 different runs

τ parameter accordingly (Sec. 4.3.5). Thus, by using a less diverse set of words
that are highly relevant to an article, MALCOM can focus on generating comments
with both high quality and coherency. The Style module significantly improves
the writing style and boosts the relevancy of generated comments. Without the
Style module, we observe that a model trained with only the Attack module
will quickly trade in writing style for attack performance, and eventually become
stuck in mode-collapse, i.e., when the model outputs only a few words repeat-
edly. We also observe that the Style module helps strike a balance between topic
coherency and attack performance.

68

Table 4.5: Black Box Attack Performance on Different Attack Strategies and Target Classifier Architectures (Atk%)

Attack/Model GossipCop Dataset Pheme Dataset
f ∗
RNN fRNN fCNN CSI\t textCNN dEFEND f ∗

RNN fRNN fCNN CSI\t textCNN dEFEND
Baseline 0.416 0.509 0.499 0.516 0.548 0.652 0.533 0.514 0.498 0.606 0.537 0.543
CopyCat 0.497 0.689 0.688 0.670 0.774 0.802 0.784 0.783 0.766 0.821 0.716 0.644
+HotFlip 0.803 0.813 0.765 0.820 0.838 0.866 0.958 0.850 0.845 0.879 0.811 0.711
+UniTrigger 0.929 0.763 0.722 0.803 0.745 0.817 0.951 0.783 0.782 0.783 0.781 0.730
+TextBugger 0.749 0.736 0.742 0.742 0.784 0.832 0.975 0.832 0.852 0.872 0.823 0.705
Malcom\Style 0.986 0.973 0.939 0.875 0.888 0.930 1.000 0.959 0.965 0.880 0.963 0.865
Malcom 0.981 0.963 0.941 0.911 0.876 0.912 0.966 0.893 0.893 0.888 0.889 0.760
(*) indicates white box attacks. All experiments are averaged across 3 different runs. Malcom\Style: MALCOM without the Style module.

69

4.4.3 AQ2. Attack Performance

In this section, we evaluate Atk% of all attack methods under the most optimistic
scenario where the target article is just published and contains no comments. We
will evaluate their attack robustness under other scenarios in later sections.

4.4.3.1 White Box Attack

We experiment a white box attack with fRNN target classifier. RNN architecture
is selected as the white box attack due to its prevalent adoption in various fake
news and rumors detection models. Table 4.5 describes white box attack in the
first column of each dataset. We can observe that MALCOM is very effective
at attacking white box models (98% Atk% and 97% Atk% in GossipCop and
Pheme dataset). Especially, MALCOM\Style is able to achieve near perfect
Atk% scores. Comparable to MALCOM are UniTrigger and TextBugger.
While other attacks such as TextBugger only performs well in one dataset,
MALCOM and UniTrigger perform consistently across the two datasets with
a very diverse writing styles. This is thanks to the “learning" process that helps
them to generate malicious comments from not only a single but a set of training
instances. On the contrary, TextBugger for example, only exploits a specific pre-
defined weakness of the target classifier (e.g. the vulnerability where misspellings
are usually encoded as unknown tokens [71]) and requires no further learning.

4.4.3.2 Black Box Attack

Let’s use a surrogate fRNN model as a proxy target classifier to generate malicious
comments to attack black box models. We test their transferability to black box
attacks to five unseen fake news classifiers described in Sec. 4.4.1.3. Table 4.5
shows that comments generated by MALCOM does not only perform well on
white box but also on black box attacks, achieving the best transferability across
all types of black box models. Our method is especially able to attack well-known
models such as CSI\t and dEFEND with an average of 91% and 85% of Atk% in
GossipCop and Pheme dataset. However, other strong white box attacks such
as UniTrigger, TextBugger and HotFlip witness a significant drop in Atk%
with black box target classifiers. Particularly, UniTrigger experiences the worst
transferability, with its Atk% drops from an average of 94% to merely over 77%

70

Figure 4.3: Attack Robust Fake News Detector. Top: GossipCop Dataset. Bot-
tom: Pheme Dataset

across all models in both datasets. On the other hand, MALCOM performs as
much as 90% Atk% across all black box evaluations. This shows that our method
generalizes well not only on fake news detector trained with different set of inputs
(e.g., with or without title), but also with different modeling variants (e.g., with or
without modeling dependency among comments) and architectures (RNN, CNN,
Attention).

4.4.4 AQ3. Attack Robust Fake News Detection

This section evaluates attack performance of all methods under a post training
defense. This defense comes after the target classifier has already been trained.
Before prediction, we use a robust word recognizer called ScRNN [74] to measure
the number of misspellings and detect manipulations in the comments. We also
use the Coherency (Sec. 4.4.1.5) to measure the topic relevancy and set a topic
coherency threshold between comments and the target article to filter-out irrelevant
comments. We remove any comment that either has more than one suspicious
word or have Coherency lower than that of the article’s title with an allowance
margin of 0.05. This defense system is selected because it does not make any

https://github.com/danishpruthi/Adversarial-Misspellings

71

Figure 4.4: Robustness of Intra-Attacks: White Box Setting (First Row) & Black
Box (Second-Row) on GossipCop Dataset.

assumption on any specific attack methods, hence it is both general and practical.
We measure both Atk% and the filter-out rate, i.e., the percentage of comments
that are removed by the defense system, for all of the attack methods.

Figure 4.3 shows that our method achieves the best Atk% even under a rigorous
defense in both datasets. While Atk% of HotFlip and TextBugger drop sig-
nificantly (around ↓66% and ↓68%) under the defense, that of MALCOM\Style
decreases to only 0.64% from a nearly perfect Atk%. This confirms that the Style
module is crucial for generating stealthy comments. Figure 4.3 also shows that
MALCOM is the best to bypass the defense system, achieving better, i.e., lower,
filter-out rate in terms of misspellings compared with real comments retrieved by
CopyCat method. This is because MALCOM emphasizes writing quality over
diversity to be more stealthy under a robust defense algorithm. Moreover, around
1/3 of real comments selected by CopyCat are filtered-out by ScRNN. This con-
firms that real comments written on social media are messy and not always free
from grammatical errors.

72

Figure 4.5: Robustness of Inter-Attacks: White Box Setting on GossipCop
Dataset

4.4.5 AQ4. Robustness

There is always a trade-off between the # of comments collected for prediction
and how early to detect fake news. This section evaluates Atk% w.r.t different #
of existing comments for early fake news detection. We evaluate on GossipCop
dataset as an example. We assume that the target classifier only has access to a
few existing comments, a maximum of 20 in this case. First, we define the attack
ratio as the ratio of # of malicious comments over # of existing comments. Next,
we evaluate the robustness among all attack methods in two categories, namely
Inter- and Intra-Comparison.

Inter-Comparison: How attack methods perform differently with the same at-
tack ratio? Figure 4.5 shows that MALCOM outperforms other baselines under
all attack ratios. Moreover, our method consistently maintains Atk% of at least
80% under a different # of existing comments with an attack ratio as low as 40%.
On the contrary, to achieve the same performance, UniTrigger, the second-best
attack in terms of robustness, would require a 100% attack ratio.

Intra-Comparison: For each method, how many malicious comments are needed
for an effective attack performance under different # of existing comments? Figure
4.4 shows the results on white box and black box attacks. Under the white box
attack, all methods display more or less the same performance with more than
1 malicious comment. However, the black box setting observes more variance
across different attack ratios. Specifically, MALCOM’s performance continuously
improves as the # of existing comments increases under any attack ratios ≥ 40%.
On the contrary, existing attacks show little improvement even with an increasing
of malicious comments.

73

Table 4.6: Results of User-Study on Generation Quality

Hypothesis z-score p-value Accuracy #response

H1 1.4940 0.0676 0.6087 46
H2 1.2189 0.1114 0.5818 56
H3 0.9122 0.1808 0.5416 120

4.5 Discussion

4.5.1 Prevent Malicious Comments with Human Support

We examine whether malicious comments generated by MALCOM can be eas-
ily flagged by human, i.e., the Turing Test. We use Amazon Mechanical Turk
(AMT) to recruit over 100 users to distinguish comments generated by MAL-
COM (machine-generated) and human. We examine the following alternative
hypothesises using one-tailed statistical testing.

1. H1: Given a comment, the users can correctly detect if the comment is gener-
ated by machine (not by human).

2. H2: Given a comment, the users can correctly detect if the comment is gener-
ated by human (not by machine).

3. H3: Given a machine-generated and a human-written comment, the users can
correctly identify the machine-generated.

For quality assurance, we recruit only the users with 95% approval rate, randomly
swap the choices and discard responses taking less than 30 seconds. We test on
comments generated for 187 unseen and unique articles in the Pheme dataset’s
test set. Table 4.6 shows that we fail to reject the null-hypothesises of both H1,H2

and H3 (p-value > 0.05). While comments generated by MALCOM is not per-
fectly stealthy (accuracy of H1 > 0.5), it is still very challenging to distinguish
between human-written and MALCOM-generated comments. In fact, human-
written comments on social media are usually messy, which lead users to be un-
able to distinguish between machine-generated ones (accuracy of H2 < 0.6). Thus,
even if human are employed to filter out suspicious or auto-generated comments
with a mean accuracy of 60% (H1), MALCOM can still effectively achieve over

74

80% Atk% on average with a remaining 40% of the malicious comments (see Sec.
4.4.5). Hence, we need to equip human workers with intensive training to better
identify malicious comments. Nevertheless, this can be labor intensive and costly
due to a large amount of comments published everyday.

4.5.2 Prevent Malicious Comments with Machine Support

One advantage of the defense system introduced in Sec. 4.4.4 is that filtering out
comments based on misspellings and topic coherency does not make any assump-
tion on any specific attack methods, hence it is both general and practical. In the
most optimistic scenario where we expects only attacks from MALCOM, we can
train a ML model to detect MALCOM-generated comments. We use LIWC [89]
dictionary to extract 91 psycholinguistics features and use them to train a Ran-
dom Forest classifier to differentiate between human-written, i.e., CopyCat, and
MALCOM-generated comments based on their linguistic patterns. The 5-fold
cross-validation accuracy is 0.68(+/− 0.1), which means around 70% and 30% of
MALCOM-generated and human-written comments will be flagged and removed
by the classifier. From Figure 4.4, if the initial attack ratio of 100%, one can then
effectively put an upper-bound of around 80% Atk% rate on MALCOM (new
attack ratio of 40%).

Other ways to defend against MALCOM is to only allow users with verified
identifications to publish or engage in discussion threads, or to utilize a fake account
detection system (e.g., [90]) to weed out suspicious user accounts. We can also
exercise adversarial learning [91] and train a target fake news classifier together
with malicious comments generated by potential attack methods. Social platforms
should also develop their own proprietary fake news training dataset and rely less
on public datasets or fact-checking resources such as GossipCop and PolitiFact.
While this may adversely limit the pool of training instances, it will help raise the
bar for potential attacks.

4.5.3 Real News Demotion Attack

An attacker can be paid to either promote fake news or demote real news. By
demoting real news, in particular, not only can the attacker cause great distrust
among communities, but the attacker can also undermine the credibility of news

75

Table 4.7: Ablation Test

Models GossipCop Dataset
↑Quality ↓Diversity ↑Coherency ↑Atk%

\Style\Attack 0.645 1.664 0.727 0.392
\Attack 0.741 2.032 0.769 0.434
\Style 0.740 2.639 0.659 0.986
MALCOM 0.759 2.520 0.730 0.981

Models Pheme Dataset
↑Quality ↓Diversity ↑Coherency ↑Atk%

\Style\Attack 0.759 1.273 0.845 0.519
\Attack 0.741 0.786 1.431 0.850
\Style 0.517 2.399 0.732 1.000
MALCOM 0.776 1.917 0.812 0.966
\Style, \Attack: MALCOM with the Style, Attack module removed.

organizations and public figures who publish and share the news. In fact, MAL-
COM can also facilitate such an attack, i.e., to fool fake news detectors to classify
real news as fake news, by simply specifying the target label L∗ ←− 1 (Sec. 4.3.3).
Our experiments show that MALCOM can achieve a real news demotion white box
attack with Atk% of around 92% and 95% in GossipCop and Pheme datasets.
Figure ?? shows an example of a real news demotion attack. The real news article
was posted by The Guardian, a reputable news source, on Twitter on June 4, 2018.
The article is first correctly predicted as real news by a RNN -based fake news clas-
sifier. However, the attacker can post a malicious yet realistic-looking comment
“he’s a conservative from a few months ago" to successfully fool the classifier to
predict the article as fake instead.

4.5.4 Ablation Test

This section carries out ablation test to show the effectiveness of Style and At-
tack component of MALCOM. Specifically, we valuate the quality, diversity, co-
herency and as well as white box attack performance of different variants of MAL-
COM. Figure 4.7 demonstrates that Style module enhances the writing quality
and coherency by large margin from the model without Style module. Espe-
cially, Style module is crucial in improving topic coherency score, which then
makes generated comments more stealthy under robust fake news defense system
(Sec. 4.4.4). Figure 4.7 also shows that Attack module is critical in improving
attack performance. While Style and Attack each trades off quality, coherency

76

with attack success rate and vice versa, the full MALCOM achieves a balanced
performance between a good writing style and high attack success. This makes
our framework both powerful and practical.

4.5.5 Baselines’ Dependency on CopyCat

Compared to MALCOM, one disadvantage of HotFlip, UniTrigger and TextBug-
ger is that they all require an initial comment to manipulate. In theory, manually
crafting an initial comment is feasible, yet demands a great labor cost. In prac-
tice, an attacker can directly use the target’s title or an existing comment as the
initial comment to begin the attack. Instead, in this chapter, we use CopyCat to
retrieve the initial comment. CopyCat considers both the topic of the target ar-
ticle and the target label into consideration. Hence, it can help complement other
baseline attacks in terms of both Atk% and topic coherency. Our experiments
show that attacks using comments retrieved by CopyCat achieve much better
averaged Atk% across both white box and black box attacks (89% Atk%), com-
pared to the ones using the title (75% Atk%) or a single existing comment (78%
Atk%) of the target article. This further justifies the use of CopyCat together
with other baseline attacks in our experiments.

4.6 Related Work

4.6.1 Fake News Detection Models

In terms of computation, the majority of works focus on developing machine
learning (ML) based solutions to automatically detect fake news. Feature wise,
most models use an article’s title, news content, its social responses (e.g., user
comments or replies) [65], relationships between subjects and publishers [86] or
any combinations of them [64]. Specifically, social responses have been widely
adopted and proven to be strong predictive features for the accurate detection of
fake news [64, 65]. Architecture wise, most detectors use recurrent neural network
(RNN) [64, 65] or convolutional neural network (CNN) [67] to encode either the
news content (i.e., article’s content or micro-blog posts) or the sequential depen-
dency among social comments and replies. Other complex architecture includes

77

the use of co-attention layers [92] to model the interactions between an article’s
content and its social comments (e.g., dEFEND [65]) and the adoption of vari-
ational auto-encoder to generate synthetic social responses to support early fake
news detection (e.g., TCNN-URG [67]).

4.6.2 Attacking Fake News Detectors

Even though there have been several works on general adversarial attacks, very
few addressed on the attack and defense of fake news detectors. [69] argues that
fake news models purely based on natural language processing (NLP) features are
vulnerable to attacks caused by small fact distortions in the article’s content. Thus,
they propose to use a fact-based knowledge graph curated from crowdsourcing to
augment a classifier. In a similar effort, [70] examines three possible attacks to
fake news detectors. They are hiding questionable content, replacing features of
fake news by that of real news, and blocking the classifiers to collect more training
samples. The majority of proposed attacks leverage an article’s title, content, or
source. They assume that the attacker has a full ownership over the fake news
publication (thus can change title or content). This, however, is not always the
case. In this chapter, therefore, I assume a stricter attack scenario where the
attacker has no control over the article’s source or content, particularly in the
case where the attacker is different from the fake news writer. Moreover, we
also conjecture that the attacker can be hired to either: (i) promote fake news
as real news and (ii) demote real news as fake news to create confusion among
the community [61]. To achieve this, instead of focusing on attacking an article’s
content or source, we propose to generate and inject new malicious comments on
the article to fool fake news detectors.

4.6.3 Adversarial Text Generation

Text generation is notoriously a complex problem mainly due to the discrete nature
of text. Previous literature in text generation include generating clickbaits [2,76],
text with sentiment [93], user responses [67], and fake news [94]. Generating text
under adversarial setting, i.e., to attack ML classifiers, is more challenging [88]. Yet
there have been tireless efforts to construct adversarial samples to attack text-based
ML models [71,73,95]. Most of them focus on making marginal modifications (e.g.,

78

addition, removal, replacement, etc.) in character [71,73] or word level [73,95] of a
span of text, either through a set of predefined templates [71] or through a searching
mechanism with constraints [73, 95]. Even though these methods have achieved
some degree of success, they are only designed for attacking static features such as
the title and content of an article. They are not developed for dynamic sequential
input like comments where new text can be added over time. Adversarial text
generated by previous methods are usually misspelled ("f@ke" v.s. "fake", "lo ve"
v.s. "love") [71], or distorted from the original context or meaning (e.g., [71], [73]).
Hence, these attacks can easily be filter-out by a robust word recognizer (e.g. [74])
or even by manual visual examination. Because of this, we propose an end-to-end
framework to generate stealthy and context-dependent adversarial comments that
achieve a high attack performance.

4.7 Limitations and Future Work
In this work, we assume that the attacker and the model provider share the same
training dataset. In practice, their training datasets might be overlapped but
not exactly the same. Moreover, whether or not comments generated using one
sub-domain (e.g., political fake news) can be transferable to another (e.g., health
fake news) is also out of scope of this work. Hence, we leave the investigation
on the proposed attack’s transferability across different datasets for future work.
Moreover, we also plan to extend our method to attack graph-based fake news
detectors (e.g., [67]), and evaluate our model with other defense mechanisms such
as adversarial learning, i.e., to train the target fake news classifier with both real
and malicious comments to make it more robust. We also want to exploit similar
attack strategy in areas that utilize sequential dependency among text using ML
such as fake reviews detection.

4.8 Conclusion
To our best knowledge, this work is the first attempt to attack existing neural
fake news detectors via malicious comments. Our method does not require ad-
versaries to have an ownership over the target article, hence becomes a practical
attack. We also introduce MALCOM, an end-to-end malicious comments gener-

79

ation framework that can generate realistic and relevant adversarial comments to
fool five of most popular neural fake news detectors to predict fake news as real
news with attack success rates of 94% and 90% for a white box and black box
settings. Not only achieving significantly better attack performances than other
baselines, MALCOM is shown to be more robust even under the condition when
a rigorous defense system works against malicious comments. We also show that
MALCOM is capable of not only promoting fake news but also demoting real news.
Due to the high-stakes of detecting fake news in practice, in future, we hope that
this work will attract more attention from the community towards developing fake
news detection models that are accurate yet resilient against potential attacks.

80

Chapter 5 |
Learning to Defend: Using Hon-
eypots to Proactively Detect Uni-
versal Trigger’s Adversarial At-
tacks

5.1 Background
Adversarial examples in NLP refer to carefully crafted texts that can fool predictive
machine learning (ML) models. Thus, malicious actors, i.e., attackers, can exploit
such adversarial examples to force ML models to output desired predictions. There
are several adversarial example generation algorithms, most of which perturb an
original text at either character (e.g., [71,96]), word (e.g., [?,73,95–97], or sentence
level (e.g., [5, 98,99]).

Because most of the existing attack methods are instance-based search methods,
i.e., searching an adversarial example for each specific input, they do not usually
involve any learning mechanisms. A few learning-based algorithms, such as the
Universal Trigger (UniTrigger) [95], MALCOM [5], Seq2Sick [99] and Paraphrase
Network [98], “learn" to generate adversarial examples that can be effectively gen-
eralized to not a specific but a wide range of unseen inputs.

In general, learning-based attacks are more attractive to attackers for several
reasons. First, they achieve high attack success rates. For example, UniTrigger
can drop the prediction accuracy of an NN model to near zero just by appending

81

Table 5.1: Examples of the UniTrigger Attack

Original: this movie is awesome
Attack: zoning zoombie this movie is awesome
Prediction: Positive −→ Negative

Original: this movie is such a waste!
Attack: charming this movie is such a waste!
Prediction: Negative −→ Positive

a learned adversarial phrase of only two tokens to any inputs (Tables 5.1 and 5.2).
This is achieved through an optimization process over an entire dataset, exploiting
potential weak points of a model as a whole, not aiming at any specific inputs.
Second, their attack mechanism is highly transferable among similar models. To
illustrate, both adversarial examples generated by UniTrigger and MALCOM to
attack a white-box NN model are also effective in fooling unseen black-box models
of different architectures [5, 95]. Third, thanks to their generalization to unseen
inputs, learning-based adversarial generation algorithms can facilitate mass at-
tacks with significantly reduced computational cost compared to instance-based
methods.

Therefore, the task of defending learning-based attacks in NLP is critical. Thus,
in this chapter, we propose a novel approach, named as DARCY, to defend ad-
versarial examples created by UniTrigger, a strong representative learning-based
attack (see Sec. 5.2.2). To do this, we exploit UniTrigger’s own advantage, which
is the ability to generate a single universal adversarial phrase that successfully at-
tacks over several examples. Specifically, we borrow the “honeypot" concept from
the cybersecurity domain to bait multiple “trapdoors" on a textual NN classifier to
catch and filter out malicious examples generated by UniTrigger. In other words,
we train a target NN model such that it offers great a incentive for its attack-
ers to generate adversarial texts whose behaviors are pre-defined and intended by
defenders. Our contributions are as follows:

• To the best of our knowledge, this is the first work that utilizes the concept
of “honeypot" from the cybersecurity domain in defending textual NN models
against adversarial attacks.

• We propose DARCY, a framework that i) searches and injects multiple trap-
doors into a textual NN, and ii) can detect UniTrigger’s attacks with over 99%

82

Table 5.2: Prediction Accuracy of CNN under attacks targeting a Negative (Neg)
or Positive (Pos) Class

Attack MR SST

Neg Pos Neg Pos

HotFlip 91.9 48.8 90.1 60.3
TextFooler 70.4 25.9 65.5 34.3
TextBugger 91.9 46.7 87.9 63.8

UniTrigger 1.7 0.4 2.8 0.2
UniTrigger* 29.2 28.3 30.0 28.1
(*) Performance after being filtered by USE

TPR and less than 2% FPR while maintaining a similar performance on benign
examples in most cases across four public datasets.

5.2 Preliminary Analysis

5.2.1 The Universal Trigger Attack

Let F(x, θ), parameterized by θ, be a target NN that is trained on a dataset
Dtrain ← {x, y}N

i with yi, drawn from a set C of class labels, is the ground-truth
label of the text xi. F(x, θ) outputs a vector of size |C| with F(x)L predicting the
probability of x belonging to class L. UniTrigger [95] generates a fixed phrase S

consisting of K tokens, i.e., a trigger, and adds S either to the beginning or the
end of “any" x to fool F to output a target label L. To search for S, UniTrigger
optimizes the following objective function on an attack dataset Dattack:

minS LL = −
∑

i,yi ̸=L

log(f(S ⊕ xi, θ)L) (5.1)

where ⊕ is a token-wise concatenation. To optimize Eq. (5.1), the attacker first
initializes the trigger to be a neutral phrase (e.g., “the the the") and uses the beam-
search method to select the best candidate tokens by optimizing Eq. (5.1) on a
mini-batch randomly sampled from Dattack. The top tokens are then initialized to
find the next best ones until LL converges. The final set of tokens are selected as
the universal trigger [95].

83

Figure 5.1: An example of DARCY. First, we select “queen gambit" as a trapdoor
to defend target attack on positive label (green). Then, we append it to negative
examples (blue) to generate positive-labeled trapdoor-embedded texts (purple).
Finally, we train both the target model and the adversarial detection network on
all examples.

5.2.2 Attack Performance and Detection

Table 5.2 shows the prediction accuracy of CNN [?] under different attacks on the
MR [100] and SST [101] datasets. Both datasets are class-balanced. We limit
of perturbed tokens per sentence to two. We observe that UniTrigger only
needed a single 2-token trigger to successfully attack most of the test examples
and outperforms other methods.

All those methods, including not only UniTrigger but also other attacks such
as HotFlip [73], TextFooler [?] and TextBugger [71], can ensure that the semantic
similarity of an input text before and after perturbations is within a threshold.
Such a similarity can be calculated as the cosine-similarity between two vector-
ized representations of the pair of texts returned from Universal Sentence Encoder
(USE) [72].

However, even after we detect and remove adversarial examples using the same
USE threshold applied to TextFooler and TextBugger, UniTrigger still drops the
prediction accuracy of CNN to 28-30%, which significantly outperforms other at-
tack methods (Table 5.2). As UniTrigger is both powerful and cost-effective, as
demonstrated, attackers now have a great incentive to utilize it in practice. Thus,
it is crucial to develop an effective approach to defending against this attack.

5.3 Honeypot with Trapdoors
To attack F , UniTrigger relies on Eq. (5.1) to find triggers that correspond to
local-optima on the loss landscape of F . To safeguard F , we bait multiple optima
on the loss landscape of F , i.e., honeypots, such that Eq. (5.1) can conveniently

84

converge to one of them. Specifically, we inject different trapdoors (i.e., a set of
pre-defined tokens) into F using three steps: (1) searching trapdoors, (2) injecting
trapdoors and (3) detecting trapdoors. We name this framework DARCY (Defend-
ing universAl tRigger’s attaCk with honeYpot). Fig. 5.1 illustrates an example of
DARCY.

5.3.1 The DARCY Framework

STEP 1: Searching Trapdoors. To defend attacks on a target label L, we
select K trapdoors S∗

L = {w1, w2, ..., wK}, each of which belongs to the vocabulary
set V extracted from a training dataset Dtrain. Let H(·) be a trapdoor selection
function: S∗

L ←− H(K,Dtrain, L). Fig. 5.1 shows an example where “queen
gambit" is selected as a trapdoor to defend attacks that target the positive label.
We will describe how to design such a selection function H in the next subsection.
STEP 2: Injecting Trapdoors. To inject S∗

L on F and allure attackers, we first
populate a set of trapdoor-embedded examples as follows:

DL
trap ←− {(S∗

L ⊕ x, L) : (x, y) ∈ Dy ̸=L}, (5.2)

where Dy ̸=L ←− {Dtrain : y ̸= L}. Then, we can bait S∗
L into F by training F

together with all the injected examples of all target labels L ∈ C by minimizing
the objective function:

min
θ
LF = LDtrain

F + γLDtrap
F , (5.3)

where Dtrap ←− {DL
trap|L ∈ C}, LD

F is the Negative Log-Likelihood (NLL) loss of F
on the datasetD. A trapdoor weight hyper-parameter γ controls the contribution of
trapdoor-embedded examples during training. By optimizing Eq. (5.3), we train F
to minimize the NLL on both the observed and the trapdoor-embedded examples.
This generates “traps" or convenient convergence points (e.g., local optima) when
attackers search for a set of triggers using Eq. (5.1). Moreover, we can also control
the strength of the trapdoor. By synthesizing DL

trap with all examples from Dy ̸=L

(Eq. (5.2)), we want to inject “strong" trapdoors into the model. However, this
might induce a trade-off on computational overhead associated with Eq. (5.3).
Thus, we sample DL

trap based a trapdoor ratio hyper-parameter ϵ← |DL
trap|/|Dy ̸=L|

85

to help control this trade-off.
STEP 3: Detecting Trapdoors. Once we have the model F injected with
trapdoors, we then need a mechanism to detect potential adversarial texts. To
do this, we train a binary classifier G(·), parameterized by θG, to predict the
probability that x includes a universal trigger using the output from F ’s last layer
(denoted as F∗(x)) following G(x, θG) : F∗(x) 7→ [0, 1]. G is more preferable than
a trivial string comparison because Eq. (5.1) can converge to not exactly but only
a neighbor of S∗

L. We train G(·) using the binary NLL loss:

min
θG
LG =

∑
x∈Dtrain
x′∈Dtrap

−log(G(x))− log(1− G(x′)). (5.4)

5.3.2 Multiple Greedy Trapdoor Search

Searching trapdoors is the most important step in our DARCY framework. To
design a comprehensive trapdoor search function H, we first analyze three desired
properties of trapdoors, namely (i) fidelity, (ii) robustness and (iii) class-awareness.
Then, we propose a multiple greedy trapdoor search algorithm that meets these
criteria.

5.3.2.1 Fidelity.

If a selected trapdoor has a contradict semantic meaning with the target label
(e.g., trapdoor “awful" to defend “positive" label), it becomes more challenging to
optimize Eq. (5.3). Hence, H should select each token w ∈ S∗

L to defend a target
label L such that it locates as far as possible to other contrasting classes from L

according to F ’s decision boundary when appended to examples of Dy ̸=L in Eq.
(5.2). Specifically, we want to optimize the fidelity loss as follows.

min
w∈S∗

L

LL
fidelity =

∑
x∈Dy ̸=L

∑
L′ ̸=L

d(F∗(w ⊕ x), CF
L′) (5.5)

where d(·) is a similarity function (e.g., cosine similarity), CF
L′ ←− 1

|DL′ |
∑

x∈DL′ F∗(x)
is the centroid of all outputs on the last layer of F when predicting examples of a
contrastive class L′.

86

Algorithm 5 Greedy Trapdoor Search
1: Input: Dtrain, V , K, α, β, γ, T
2: Output: {S∗

L|L ∈ C}
3: Initialize: F , S∗ ←− {}
4: WARM_UP(F , Dtrain)
5: for L in C do
6: OL ← CENTROID(F , Dy=L)
7: end for
8: for i in [1..K] do
9: for L in C do

10: Q ← Q∪ NEIGHBOR(S∗
L, α)

11: Q ← Q\NEIGHBOR({S∗
L′ ̸=L|L′ ∈ C}, β)

12: Cand ← RANDOM_SELECT(Q, T)
13: dbest ← 0,wbest ← Cand[0]
14: for w in Cand do
15: Ww ← CENTROID(F , Dy ̸=L)
16: d← ∑

L′ ̸=L SIMILARITY(Ww,OL′)
17: if dbest ≥ d then
18: dbest ← d, wbest ← w
19: end if
20: end for
21: S∗

L ← S∗
L ∪ {wbest}

22: end for
23: end for
24: return {S∗

L|L ∈ C}

5.3.2.2 Robustness to Varying Attacks.

Even though a single strong trapdoor, i.e., one that can significantly reduce the
loss of F , can work well in the original UniTrigger’s setting, an advanced attacker
may detect the installed trapdoor and adapt a better attack approach. Hence, we
suggest to search and embed multiple trapdoors (K ≥ 1) to F for defending each
target label.

d(ewi
, ewj

) ≤ α ∀wi, wj ∈ S∗
L, L ∈ C

d(ewi
, ewj

) ≥ β ∀wi ∈ S∗
L, wj ∈ S∗

Q ̸=L, L, Q ∈ C
(5.6)

87

Figure 5.2: Multiple Greedy Trapdoor Search

5.3.2.3 Class-Awareness.

Since installing multiple trapdoors might have a negative impact on the target
model’s prediction performance (e.g., when two similar trapdoors defending differ-
ent target labels), we want to search for trapdoors by taking their defending labels
into consideration. Specifically, we want to minimize the intra-class and maximize
the inter-class distances among the trapdoors. Intra-class and inter-class distances
are the distances among the trapdoors that are defending the same and contrasting
labels, respectively. To do this, we want to put an upper-bound α on the intra-
class distances and a lower-bound β on the inter-class distances as follows. Let ew

denote the embedding of token w, then we have:

5.3.2.4 Objective Function and Optimization.

Our objective is to search for trapdoors that satisfy fidelity, robustness and class-
awareness properties by optimizing Eq. (5.5) subject to Eq. (5.6) and K ≥ 1. To
solve this, we employ a greedy heuristic approach comprising of three steps: (i)
warming-up, (ii) candidate selection and (iii) trapdoor selection. Alg. 5 and Fig.
5.2 describe the algorithm in detail.

88

Dataset Acronym # Class Vocabulary Size # Words # Data

Subjectivity SJ 2 20K 24 10K
Movie Reviews MR 2 19K 21 11K
Sentiment Treebank SST 2 16K 19 101K
AG News AG 4 71K 38 120K

Table 5.3: Dataset statistics

The first step (Ln.4) “warms up" F to be later queried by the third step by
training it with only an epoch on the training set Dtrain. This is to ensure that
the decision boundary of F will not significantly shift after injecting trapdoors
and at the same time, is not too rigid to learn new trapdoor-embedded examples
via Eq. (5.3). While the second step (Ln.10–12, Fig. 5.2B) searches for candidate
trapdoors to defend each label L ∈ C that satisfy the class-awareness property, the
third one (Ln.14–20, Fig. 5.2C) selects the best trapdoor token for each defending
L from the found candidates to maximize F ’s fidelity. To consider the robustness
aspect, the previous two steps then repeat K ≥ 1 times (Ln.8–23). To reduce
the computational cost, we randomly sample a small portion (T≪|V| tokens) of
candidate trapdoors, found in the first step (Ln.12), as inputs to the second step.

5.3.2.5 Computational Complexity.

The complexity of Alg. (5) is dominated by the iterative process of Ln.8–23, which
is O(K|C||V|log|V|) (T≪|V|). Given a fixed dataset, i.e., |C|, |V| are constant, our
proposed trapdoor searching algorithm only scales linearly with K. This shows that
there is a trade-off between the complexity and robustness of our defense method.

5.4 Experiments

5.4.1 Set-Up

5.4.1.1 Datasets.

Table 5.3 shows the statistics of all datasets of varying scales and # of classes:
Subjectivity (SJ) [102], Movie Reviews (MR) [100], Binary Sentiment Treebank
(SST) [101] and AG News (AG) [103]. We split each dataset into Dtrain, Dattack and

89

Table 5.4: Six attack scenarios under different assumptions of (i) attackers’ ac-
cessibility to the model’s parameters (F ’s access?), (ii) if they are aware of the
embedded trapdoors (Trapdoor Existence?), (iii) if they have access to the de-
tection network (G’s access?) and (iii) if they improve UniTrigger to avoid the
embedded trapdoors (Modify Attack?).

Attack Scenario F Trapdoor G Modify
Access? Existence? Access? Attack?

Novice ✓ - - -
Advanced ✓ - - ✓
Adaptive ✓ ✓ - -
Advanced Adaptive ✓ ✓ - ✓
Oracle ✓ ✓ ✓ -

Black-Box - - - -

Dtest set with the ratio of 8:1:1 whenever standard public splits are not available.
All datasets are relatively balanced across classes.

5.4.1.2 Attack Scenarios and Settings.

We defend RNN, CNN [?] and BERT [104] based classifiers under six attack sce-
narios (Table 5.4). Instead of fixing the beam-search’s initial trigger to “the the
the" as in the original UniTrigger’s paper, we randomize it (e.g., “gem queen shoe")
for each run. We report the average results on Dtest over at least 3 iterations. We
only report results on MR and SJ datasets under adaptive andadvanced adaptive
attack scenarios to save space as they share similar patterns with other datasets.

5.4.1.3 Detection Baselines.

We compare DARCY with five adversarial detection algorithms below.
• OOD Detection (OOD) [105] assumes that adversarial examples locate far away

from the distribution of training examples, i.e., out-of-distribution (OOD). It
then considers examples whose predictions have high uncertainty, i.e., high en-
tropy, as adversarial examples.

• Self Attack (SelfATK) uses UniTrigger to attack itself for several times and
trains a network to detect the generated triggers as adversarial texts.

• Local Intrinsic Dimensionality (LID) [106] characterizes adversarial regions of a
NN model using LID and uses this as a feature to detect adversarial examples.

90

Figure 5.3: DARCY and SelfATK under novice attack

• Robust Word Recognizer (ScRNN) [74] detects potential adversarial perturba-
tions or misspellings in sentences.

• Semantics Preservation (USE) calculates the drift in semantic scores returned
by USE [72] between the input and itself without the first K potential malicious
tokens.

• DARCY: We use two variants, namely DARCY(1) and DARCY(5) which search
for a single trapdoor (K←1) and multiple trapdoors (K←5) to defend each label,
respectively.

5.4.1.4 Evaluation Metrics.

We consider the following metrics. (1) Fidelity (Model F1): We report the F1
score of F ’s prediction performance on clean unseen examples after being trained
with trapdoors; (2) Detection Performance (Detection AUC): We report the AUC
(Area Under the Curve) score on how well a method can distinguish between benign
and adversarial examples; (3) True Positive Rate (TPR) and False Positive Rate
(FPR): While TPR is the rate that an algorithm correctly identifies adversarial
examples, FPT is the rate that such algorithm incorrectly detects benign inputs
as adversarial examples. We desire a high Model F1, Detection AUC, TPR, and a
low FPR.

91

Method
RNN CNN BERT

Clean Detection Clean Detection Clean Detection

F1 AUC FPR TPR F1 AUC FPR TPR F1 AUC FPR TPR

OOD 76.5 47.3 49.0 51.0 78.9 82.3 23.5 78.4 84.7 38.4 61.3 50.7
ScRNN - 55.1 43.1 53.7 - 54.7 43.1 53.1 - 52.0 52.3 55.1

M USE - 64.8 46.1 77.7 - 64.8 45.3 74.6 - 49.5 57.3 60.7
R SelfATK - 96.5 0.8 93.9 - 97.0 0.1 94.1 - 93.4 4.0 87.5

LID - 53.2 44.1 50.6 - 66.2 42.5 74.9 - 55.4 51.5 61.9

GRACE(1) 75.9 99.9 0.2 100.0 74.6 98.4 0.5 97.3 85.0 91.7 3.9 84.0
GRACE(5) 78.0 99.1 1.0 99.5 77.3 99.4 1.1 100.0 84.2 100.0 4.0 100.0

OOD 88.5 34.3 64.9 47.1 90.1 82.6 23.6 79.9 95.8 20.9 76.3 42.1
ScRNN - 53.6 47.8 55.6 - 59.8 43.9 59.7 - 53.4 53.6 58.6

S USE - 65.2 45.2 77.0 - 74.6 37.5 83.8 - 62.5 50.8 75.7
J SelfATK - 98.5 1.9 98.9 - 98.5 0.1 97.1 - 98.8 6.2 97.9

LID - 48.9 53.0 50.8 - 71.7 29.2 72.7 - 61.9 56.0 78.4

GRACE(1) 89.5 99.5 0.3 99.2 88.1 97.6 0.8 95.9 96.1 100.0 6.1 100.0
GRACE(5) 89.8 97.4 1.2 96.0 89.6 99.2 1.5 100.0 96.0 100.0 6.2 100.0

OOD 84.4 50.8 47.3 51.8 81.1 86.1 19.4 81.6 93.5 33.3 63.6 43.4
ScRNN - 54.4 19.1 27.8 - 55.1 19.1 29.3 - 50.2 50.6 51.2

S USE - 58.1 51.3 68.7 - 51.0 58.5 67.8 - 55.7 51.2 62.6
S SelfATK - 67.1 2.9 37.1 - 83.8 0.2 67.8 - 82.6 1.6 65.7
T LID - 50.0 41.3 41.3 - 71.1 20.9 63.2 - 48.6 43.8 40.9

GRACE(1) 83.5 96.6 6.8 99.9 77.4 98.1 0.4 96.7 94.2 91.6 1.6 83.6
GRACE(5) 82.6 99.6 0.8 100.0 79.3 98.5 2.4 99.3 93.9 100.0 1.6 100.0

OOD 91.0 44.4 51.5 47.7 89.6 67.3 34.7 61.9 93.2 27.5 69.8 41.9
ScRNN - 53.1 48.4 52.9 - 53.6 47.7 52.8 - 51.7 50.6 53.2

A USE - 81.6 29.6 86.9 - 67.2 44.0 78.1 - 57.6 52.8 70.0
G SelfATK - 92.6 4.3 89.5 - 93.2 3.9 90.4 - 99.8 0.1 99.6

+LID - 55.5 45.3 56.3 - 79.8 23.1 82.6 - 48.5 54.7 51.6

GRACE(1) 89.7 97.2 5.4 99.8 88.2 98.9 2.0 99.7 93.9 89.3 0.1 78.7
GRACE(5) 89.9 96.5 6.8 99.8 88.8 94.5 11.0 100.0 93.3 97.6 0.1 95.4

Table 5.5: Average detection performance across all target labels under novice
attack

5.4.2 Results

5.4.2.1 Evaluation on Novice Attack.

A novice attacker does not know the existence of trapdoors. Overall, table 5.5
shows the full results. We observe that DARCY significantly outperforms other

92

defensive baselines, achieving a detection AUC of 99% in most cases, with a FPR
less than 1% on average. Also, DARCY observes a 0.34% improvement in average
fidelity (model F1) thanks to the regularization effects from additional training
data Dtrap. Among the baselines, SelfATK achieves a similar performance with
DARCY in all except the SST dataset with a detection AUC of around 75% on
average (Fig. 5.3). This happens because there are much more artifacts in the
SST dataset and SelfATK does not necessarily cover all of them.

We also experiment with selecting trapdoors randomly. Fig. 5.4 shows that
greedy search produces stable results regardless of training F with a high (ϵ←1.0,
“strong" trapdoors) or a low (ϵ←0.1, “weak" trapdoors) trapdoor ratio ϵ. Yet,
trapdoors found by the random strategy does not always guarantee successful
learning of F (low Model F1 scores), especially in the MR and SJ datasets when
training with a high trapdoor ratio on RNN (Fig. 5.4). Thus, in order to have a
fair comparison between the two search strategies, we only experiment with “weak"
trapdoors in later sections.

5.4.2.2 Evaluation on Advanced Attack.

Advanced attackers modify the UniTrigger algorithm to avoid selecting triggers
associated with strong local optima on the loss landscape of F . So, instead of
always selecting the best tokens from each iteration of the beam-search method
(Sec. 5.2.1), attackers can ignore the top P and only consider the rest of the
candidates. Table 5.6 shows the benefits of multiple trapdoors. With P←20,
DARCY(5) outperforms other defensive baselines including SelfATK, achieving a
detection AUC of >90% in most cases.

5.4.2.3 Evaluation on Adaptive Attack.

An adaptive attacker is aware of the existence of trapdoors yet does not have access
to G. Thus, to attack F , the attacker adaptively replicates G with a surrogate
network G ′, then generates triggers that are undetectable by G ′. To train G ′,
the attacker can execute a # of queries (Q) to generate several triggers through
F , and considers them as potential trapdoors. Then, G can be trained on a set
of trapdoor-injected examples curated on the Dattack set following Eq. (5.2) and

AG dataset is omitted due to computational limit

93

Table 5.6: Average adversarial detection performance across all target labels under
advanced attack

Method
RNN BERT

Clean Detection Clean Detection

F1 AUC FPR TPR F1 AUC FPR TPR
OOD 75.2 52.5 45.9 55.7 84.7 35.6 63.9 48.2
ScRNN - 51.9 43.0 47.0 - 51.8 52.3 54.9

M USE - 62.9 48.1 75.9 - 53.1 55.1 64.1
R SelfATK - 92.3 0.6 85.1 - 97.5 4.1 95.2

LID - 51.3 45.8 48.4 - 54.2 51.5 59.6

DARCY(1) 77.8 74.8 0.8 50.4 84.7 74.3 3.9 50.7
DARCY(5) 78.1 92.3 2.9 87.6 84.3 92.3 4.0 85.3
OOD 89.4 34.5 62.5 43.1 96.1 21.9 74.6 43.6
ScRNN - 57.6 51.1 65.7 - 53.1 53.6 58.1

S USE - 70.7 41.4 81.6 - 65.7 48.5 74.4
J SelfATK - 80.7 8.0 69.3 - 96.8 6.2 94.0

LID - 50.7 54.3 55.7 - 62.2 56.1 79.0

DARCY(1) 89.4 71.7 0.6 43.9 96.2 68.6 6.1 41.0
DARCY(5) 88.9 92.7 2.4 87.9 96.1 100.0 6.2 100.0
OOD 79.0 50.6 48.8 52.5 93.6 31.3 67.1 45.7
ScRNN - 53.8 19.2 26.8 - 53.2 50.3 54.9

S USE - 60.8 50.1 72.2 - 51.0 57.7 63.7
S SelfATK - 66.1 3.7 35.9 - 91.1 1.7 82.5
T LID - 49.9 62.2 61.9 - 46.2 42.6 35.1

DARCY(1) 82.9 69.7 0.2 39.6 94.2 50.0 1.6 1.6
DARCY(5) 83.3 93.1 3.2 89.4 94.1 94.6 1.6 89.4
OOD 90.9 40.5 56.3 46.9 93.1 26.9 69.2 40.7
ScRNN - 56.0 46.1 54.7 - 54.4 46.4 52.6

A USE - 88.6 22.7 90.5 - 60.0 50.3 70.8
G SelfATK - 88.4 6.2 83.1 - 92.0 0.1 84.0

LID - 54.3 45.9 54.6 - 48.3 52.9 49.4

DARCY(1) 87.4 54.0 80.4 88.4 93.9 70.3 0.1 40.7
DARCY(5) 89.7 95.2 9.3 99.8 93.3 97.0 0.1 94.0

(5.4).
Fig. 5.5 shows the relationship between # of trapdoors K and DARCY’s

performance given a fixed # of attack queries (Q←10). An adaptive attacker can
drop the average TPR to nearly zero when F is injected with only one trapdoor for
each label (K←1). However, when K≥5, TPR quickly improves to about 90% in
most cases and fully reaches above 98% when K≥10. This confirms the robustness
of DARCY as described in Sec. 5.3.2. Moreover, TPR of both greedy and random

94

Figure 5.4: Greedy v.s. random single trapdoor with strong and weak trapdoor
injection on RNN

Figure 5.5: Performance under adaptive attacks

Figure 5.6: Detection AUC v.s. # query attacks

95

Figure 5.7: Detection TPR v.s. # ignored tokens

Figure 5.8: Detection TPR v.s. # ignored tokens

search converge as we increase # of trapdoors.
However, Fig. 5.5 shows that the greedy search results in a much less % of true

trapdoors being revealed, i.e., revealed ratio, by the attack on CNN. Moreover,
as Q increases, we expect that the attacker will gain more information on F ,
thus further drop DARCY’s detection AUC. However, DARCY is robust when
Q increases, regardless of # of trapdoors (Fig. 5.6). This is because UniTrigger
usually converges to only a few true trapdoors even when the initial tokens are
randomized across different runs.

5.4.2.4 Evaluation on Advanced Adaptive Attack.

An advanced adaptive attacker not only replicates G by G ′, but also ignores top
P tokens during a beam-search as in the advanced attack (Sec. 5.4.2.2) to both
maximize the loss of F and minimize the detection chance of G ′. Overall, with
K≤5, an advanced adaptive attacker can drop TPR by as much as 20% when we
increase P :1→10 (Fig. 5.7). However, with K←15, DARCY becomes fully robust
against the attack. Overall, Fig. 5.7 also illustrates that DARCY with a greedy

96

Figure 5.9: Detection TPR under oracle attack

trapdoor search is much more robust than the random strategy especially when
K≤3. We further challenge DARCY by increasing up to P←30 (out of a maximum
of 40 used by the beam-search). Fig. 5.8 shows that the more trapdoors embedded
into F , the more robust the DARCY will become. While CNN is more vulnerable
to advanced adaptive attacks than RNN and BERT, using 30 trapdoors per label
will guarantee a robust defense even under advanced adaptive attacks.

5.4.2.5 Evaluation on Oracle Attack.

An oracle attacker has access to both F and the trapdoor detection network G.
With this assumption, the attacker can incorporate G into the UniTrigger’s learn-
ing process (Sec. 5.2.1) to generate triggers that are undetectable by G. Fig. 5.9
shows the detection results under the oracle attack. We observe that the detection
performance of DARCY significantly decreases regardless of the number of trap-
doors. Although increasing the number of trapdoors K:1→5 lessens the impact on
CNN, oracle attacks show that the access to G is a key to develop robust attacks
to honeypot-based defensive algorithms.

5.4.2.6 Evaluation under Black-Box Attack.

Even though UniTrigger is a white-box attack, it also works in a black-box set-
ting via transferring triggers S generated on a surrogate model F ′ to attack F .
As several methods (e.g., [107]) have been proposed to steal, i.e., replicate F to
create F ′, we are instead interested in examining if trapdoors injected in F ′ can be
transferable to F? To answer this question, we use the model stealing method pro-
posed by [107] to replicate F using Dattack. Our experiments show that injected

97

Table 5.7: Detection AUC and model’s accuracy (attack ACC) under black-box
attack on CNN

Adaptive Random

Detect Attack Detect Attack
AUC↑ ACC↓ AUC↑ ACC↓

MR 74.24 4.6 85.3 3.77
SJ 87.19 0.34 76.78 2.86

SST 58.81 19.77 49.75 18.96
AG 67.88 55.87 53.25 75.25
Red: not transferable

trapdoors are transferable to a black-box CNN model to some degree across all
datasets except SST. Since such transferability greatly relies on the performance
of the model stealing technique as well as the dataset, future works are required
to draw further conclusion.

5.5 Discussion

5.5.1 Advantages and Limitations of DARCY.

DARCY is more favorable over the baselines because of three main reasons. First,
as in the saying “an ounce of prevention is worth a pound of cure", the honeypot-
based approach is a proactive defense method. Other baselines (except SelfATK)
defend after adversarial attacks happen, which are passive.

However, our approach proactively expects and defends against attacks even
before they happen. Second, it actively places traps that are carefully defined and
enforced (Table 5.8), while SelfATK relies on “random" artifacts in the dataset.
Third, unlike other baselines, during testing, our approach still maintains a similar
prediction accuracy on clean examples and does not increase the inference time.
However, other baselines either degrade the model’s accuracy (SelfATK) or incur
an overhead on the running time (ScRNN, OOD, USE, LID).

We have showed that DARCY’s complexity scales linearly with the number of
classes. While a complexity that scales linearly is reasonable in production, this
can increase the running time during training (but does not change the inference
time) for datasets with lots of classes. This can be resolved by assigning same trap-

98

Table 5.8: Examples of the trapdoors found by DARCY to defend target positive
and negative sentiment label on MR (K←2) and SST dataset (K←5).

Positive Negative

MR (reactive, utilizing) (cherry, time-vaulting)
(reveal, hard-to-swallow, (well-made, kilt-wearing,

SST as-nasty, clarke-williams, twenty-some, tv-cops,
overmanipulative) boy-meets-girl)

Table 5.9: Changes in average readability of varied-length news articles after Uni-
Trigger attack using Gunning Fog (GF) score and human evaluation

Length 50 words 100 words 250 words 500 words

GF↓ 12 → 13 16→17 23→23 26→26

Human↑ 7.5→7.8 8.2→7.5 7.4→7.4 7.4→7.0

doors for every K semantically-similar classes, bringing the complexity to O(K)
(K<<|C|). Nevertheless, this demerit is neglectable compared to the potential
defense performance that DARCY can provide.

5.5.2 Case Study: Fake News Detection.

UniTrigger can help fool fake news detectors. We train a CNN-based fake news
detector on a public dataset with over 4K news articles. The model achieves 75%
accuracy on the test set. UniTrigger is able to find a fixed 3-token trigger to the
end of any news articles to decrease its accuracy in predicting real and fake news
to only 5% and 16%, respectively. In a user study on Amazon Mechanical Turk,
we instructed 78 users to spend at least 1 minute reading a news article and give
a score from 1 to 10 on its readability. Using the Gunning Fog (GF) [108] score
and the user study, we observe that the generated trigger only slightly reduces
the readability of news articles (Table 5.9). This shows that UniTrigger is a very
strong and practical attack. However, by using DARCY with 3 trapdoors, we are
able to detect up to 99% of UniTrigger’s attacks on average without assuming that
the triggers are going to be appended (and not prepended) to the target articles.

truthdiscoverykdd2020.github.io/

99

Table 5.10: Model F1 /detect AUC of CNN under trapdoor removal using model-
pruning

Pruning% MR SJ SST AG

F1 AUC F1 AUC F1 AUC F1 AUC

20% 64.9 99.3 80.0 99.2 37.3 68.2 17.1 98.5
50% 51.3 91.9 82.6 99.4 66.6 50.3 11.9 87.3

5.5.3 Trapdoor Detection and Removal.

The attackers may employ various backdoor detection techniques [109–111] to de-
tect if F contains trapdoors. However, these are built only for images and do not
work well when a majority of labels have trapdoors [112] as in the case of DARCY.
Recently, a few works proposed to detect backdoors in texts. However, they either
assume access to the training dataset [113], which is not always available, or not
applicable to the trapdoor detection [114].

Attackers may also use a model-pruning method to remove installed trapdoors
from F as suggested by [115]. However, by dropping up to 50% of the trapdoor-
embedded F ’s parameters with the lowest L1-norm [116], we observe that F ’s F1
significantly drops by 30.5% on average. Except for the SST dataset, however, the
Detection AUC still remains 93% on average (Table 5.10).

5.5.4 Parameters Analysis.

Regarding the trapdoor-ratio ϵ, a large value (e.g., ϵ←1.0) can undesirably result in
a detector network G that “memorizes" the embedded trapdoors instead of learning
its semantic meanings. A smaller value of ϵ≤0.15 generally works well across all
experiments. Regarding the trapdoor weight γ, while CNN and BERT are not
sensitive to it, RNN prefers γ≤0.75. Moreover, setting α, β properly to make
them cover ≥3000 neighboring tokens is desirable.

100

5.6 Related Work

5.6.1 Adversarial Text Detection.

Adversarial detection on NLP is rather limited. Most of the current detection-
based adversarial text defensive methods focus on detecting typos, misspellings
[71, 74, 96] or synonym substitutions [117]. Though there are several uncertainty-
based adversarial detection methods [105, 118, 119] that work well with computer
vision, how effective they are on the NLP domain remains an open question.

5.6.2 Honeypot-based Adversarial Detection.

[112] adopts the “honeypot" concept to images. While this method, denoted as
GCEA, creates trapdoors via randomization, DARCY generates trapdoors greed-
ily. Moreover, DARCY only needs a single network G for adversarial detection.
In contrast, GCEA records a separate neural signature (e.g., a neural activation
pattern in the last layer) for each trapdoor. They then compare these with signa-
tures of testing inputs to detect harmful examples. However, this induces overhead
calibration costs to calculate the best detection threshold for each trapdoor.

Furthermore, while [112] and [120] show that true trapdoors can be revealed and
clustered by attackers after several queries on F , this is not the case when we use
DARCY to defend against adaptive UniTrigger attacks (Sec. 5.4.2.3). Regardless
of initial tokens (e.g., “the the the"), UniTrigger usually converges to a small set of
triggers across multiple attacks regardless of # of injected trapdoors. Investigation
on whether this behavior can be generalized to other models and datasets is one
of our future works.

5.7 Limitation and Future Work
DARCY only focuses on defending against UniTrigger and might not be applicable
to other adversarial attack methods. Thus, I hope to further extend DARCY to
safeguard other NLP adversarial generation algorithms in the future.

101

5.8 Conclusion
This chapter proposes DARCY, an algorithm that greedily injects multiple trap-
doors, i.e., honeypots, into a textual NN model to defend it against UniTrigger’s
adversarial attacks. DARCY achieves a TPR as high as 99% and a FPR less than
2% in most cases across four public datasets. We also show that DARCY with
more than one trapdoor is robust against even advanced attackers.

102

Chapter 6 |
Learning under Realistic Secu-
rity Constraints: Adversarial At-
tack and Defense with Text Per-
turbations in the Wild

6.1 Background
Machine learning (ML) models trained to optimize only the prediction performance
are often vulnerable to adversarial attacks [68,121]. In the text domain, especially,
a character-based adversarial attacker aims to fool a target ML model by gener-
ating an adversarial text x∗ from an original text x by manipulating characters
of different words in x, such that some properties of x are preserved [71, 96, 122].
We characterize strong and practical adversarial attacks as three criteria: (1) at-
tack performance, as measured by the ability to flip a target model’s predictions,
(2) semantic preservation, as measured by the ability to preserve the meaning of
an original text, and (3) stealthiness, as measured by how unlikely it is detected
as machine-manipulation and removed by defense systems or human examiners
(Figure 6.1). While the first two criteria are natural derivation from adversarial
literature [68], stealthiness is also important to be a practical attack under a mass-
manipulation scenario. In fact, adversarial text generation remains a challenging
task under practical settings.

Previously proposed character-based attacks follow a deductive approach where

103

Figure 6.1: ANTHRO (Bottom) extracts and uses human-written perturbations
for adversarial attacks instead of proposing a specific set of manipulation rules
(Top).

the researchers hypothesize a set of text manipulation strategies that exploit some
vulnerabilities of textual ML models (Figure 6.1). Although these deductively
derived techniques can demonstrate superior attack performance, there is no guar-
antee that they also perform well with regard to semantic preservation and stealth-
iness. We first analyze why enforcing these properties are challenging especially
for character-based attacks.

To preserve the semantic meanings, an attacker can minimize the distance
between representative vectors learned from a large pre-trained model–e.g., Uni-
versal Sentence Encoder [72] of the two sentences. However, this is only applicable
in word- or sentence-based attacks, not in character-based attacks. It is because
character-based manipulated tokens are more prone to become out-of-distribution–
e.g., morons→mor0ns, from what is observed in a typical training corpus where the
correct use of English is often assumed. In fact, existing character-based attacks
such as TextBugger [71], VIPER [122] and DeepWordBug [96] generally assume
that the meaning of the original sentence is preserved without further evaluations.

In addition, a robust ML pipeline is often equipped to detect and remove po-
tential adversarial perturbations either via automatic software [74,123], or human-
in-the-loop [5]. Such detection is feasible especially when the perturbed texts
are curated using a set of fixed rules that can be easily re-purposed for defense.
Thus, attackers such as VIPER and DeepWordBug, which map each Latin-based
character to either non-English accents (e.g., ė, ā, d̃), or homoglyphs (characters

104

of similar shape), fall into this category and can be easily detected under sim-
ple normalization techniques (Sec. 6.4.1). TextBugger circumvents this weakness
by utilizing a set of more general character-editing strategies–e.g., replacing and
swapping nearby characters to synthesize human-written typos and misspellings.
Although texts perturbed by such strategies become less likely to be detected, many
of them may distort the meaning of the original text (e.g., “garbage"→“gabrage",
“dumb"→“dub") and can be easily flagged as machine-generated by human ex-
aminers. Therefore, we argue that generating perturbations that both preserve
original meanings and are indistinguishable from human-written texts be a criti-
cally important yet challenging task.

To overcome these challenges, we introduce ANTHRO, a novel algorithm that
inductively finds and extracts text perturbations in the wild. As shown in Figure
6.1, our method relies on human-written sentences in the Web in their raw form.
We then use them to develop a character-based adversarial attack that is not only
effective and realistic but is also helpful in training ML models that are more
robust against a wide variety of human-written perturbations. Distinguished from
previous research, our work considers both spellings and phonetic features (how
a word sounds), to characterize text perturbations. Furthermore, we conducted
user studies to quantitatively evaluate semantic preservation and stealthiness of
adversarial texts. This chapter’s contributions are as follows.

• ANTHRO extracts over 600K case-sensitive character-based “real" perturba-
tions from human-written texts.

• ANTHRO facilitates black-box adversarial attacks with an average of 82.7% and
90.7% attack success rates on BERT and RoBERTa, and drops the Perspective
API ’s precision to only 12%.

• ANTHRO outperforms the TextBugger baseline by over 50% in semantic preser-
vation and 40% in stealthiness in human subject studies.

• ANTHRO combined with adversarial training also enables BERT classifier to
achieve 3%–14% improvement in precision over Perspective API in understand-
ing human-written perturbations.

105

Figure 6.2: Word-clouds of perturbations in the wild extracted by ANTHRO for
the word “amazon”, “republicans”, “democrats” and “president”.

6.2 Perturbations in the Wild

6.2.1 Machine v.s. Human Perturbations

Perturbations that are neither natural-looking nor resembling human-written texts
are more likely to be detected by defense systems (thus not a practical attack from
adversaries’ perspective). However, some existing character-based perturbation
strategies, including TextBugger, VIPER and DeepWordBug, follow a deductive
approach and their generated texts often do not resemble human-written texts.
Qualitatively, however, we find that humans express much more diverse and cre-
ative [124] perturbations (Figure 6.2) than ones generated by such deductive ap-
proaches. For example, humans frequently (1) capitalize and change the parts of a
word to emphasize distorted meanings (e.g.,“democrats“→“democRATs", “republicans"→“republiCUNTs"),
(2) hyphenate a word (e.g., “depression"→“de-pres-sion"), (3) use emoticons to
emphasize meaning (e.g., “shit"→“sht"), (4) repeat particular characters (e.g.,
“dirty"→“diiirty", “porn"→“pooorn"), or (5) insert phonetically similar charac-
ters (e.g., “nigger"→“nighger"). Human-written perturbations do not manifest
any fixed rules and often require some context understanding. Moreover, one
can generate a new meaningful perturbation simply by repeating a character–
e.g., “porn"→“pooorn". Thus, it is challenging to systematically generate all such

106

Attacker Reddit Comts. News Comts.
#texts, #tokens (»5B, N/A) (34M, 11M)

TextBugger 51.6% (126/244) 7.10% (11K/152K)
VIPER 3.2% (1/31) 0.13% (25/19K)
DeepWordBug 0% (0/31) 0.27% (51/19K)

ANTHRO 82.4% (266/323) 55.7% (16K/29K)

Table 6.1: Percentage of offensive perturbed words generated by different attacks
that can be observed in real human-written comments on Reddit and online news.

perturbations, if not impossible. Moreover, it is very difficult for spell-checkers,
which usually rely on a fixed set of common spelling mistakes and an edit-distance
threshold, to correct and detect all human-written perturbations.

We later show that human examiners rely on personal exposure from Reddit or
YouTube comments to decide if a word choice looks natural (Sec. 6.4.2). Quantita-
tively, we discover that not all the perturbations generated by deductive methods
are observed on the Web (Table 6.1). To analyze this, we first use each attack to
generate all possible perturbations of either (1) a list of over 3K unique offensive
words or (2) a set of the top 5 offensive words (“c*nt”, “b*tch”, “m*therf***er”,
“bast*rd”, “d*ck”). Then, we calculate how many of the perturbed words are
present in a dataset of over 34M online news comments or are used by at least
50 unique commentators on Reddit, respectively. Even though TextBugger was
well-known to simulate human-written typos as adversarial texts, merely 51.6%
and 7.1% of its perturbations are observed on Reddit and online news comments,
implying TextBugger ’s generated adversarial texts being “unnatural" and “easily-
detectable" by human-in-the-loop defense systems.

6.2.2 The SMS Property: Similar Sound, Similar Meaning, Dif-
ferent Spelling

The existence of a non-arbitrary relationship between sounds and meanings has
been proven by a life-long research establishment [125–127]. In fact, blasi2016sound
analyzed over 6K languages and discovered a high correlation between a word’s
sound and meaning both inter- and intra-cultures. aryani2020affective found that
how a word sounds links to an individual’s emotion. This motivates us to hy-
pothesize that words spelled differently yet have the same meanings such as text

107

perturbations will also have similar sounds.
Figure 6.2 displays several perturbations that are found from real-life texts.

Even though these perturbations are spelled differently from the original word,
they all preserve similar meanings when perceived by humans. Such semantic
preservation is feasible because humans perceive these variations phonetically sim-
ilar to the respective original words [128]. For example, both “republican" and
“republikan" sound similar when read by humans. Therefore, given the surround-
ing context of a perturbed sentence–e.g., “President Trump is a republikan”, and
the phonetic similarity of “republican” and “republikan”, end-users are more likely
to interpret the perturbed sentence as “President Trump is a republican”. We call
these characteristics of text perturbations the SMS property: “similar Sound, sim-
ilar Meaning, different Spellings”. Noticeably, the SMS characterization includes
a subset of “visually similar" property of perturbations as studied in previous ad-
versarial attacks such as TextBugger (e.g., “hello” sounds similar with “he11o”),
VIPER and DeepWordBug. However, two words that look very similar sometimes
carry different meanings–e.g., “garbage”→“gabrage”. Moreover, our characteriza-
tion is also distinguished from homophones (e.g., “to” and “two”) which describe
words with similar sound yet different meaning.

6.3 A Realistic Adversarial Attack
Given the above analysis, we now derive our proposed ANTHRO adversarial at-
tack. We first share how to systematically encode the sound–i.e., phonetic feature,
of any given words and use it to search for their human-written perturbations that
satisfy the SMS property. Then, we introduce an iterative algorithm that utilizes
the extracted perturbations to attack textual ML models.

6.3.1 Mining Perturbations in the Wild

6.3.1.1 Sound Encoding with Soundex++.

To capture the sound of a word, we adopt and extend the case-insensitive Soundex
algorithm. Soundex helps index a word based on how it sounds rather than
how it is spelled [129]. Given a word, Soundex first keeps the 1st character.
Then, it removes all vowels and matches the remaining characters one by one to a

108

Word Soundex Soundex++ (Ours)

porn P650 P650 (k=0), PO650 (k=1)
p0rn P065(✗) (same as above)

lesbian L215 L245 (k=0), LE245 (k=1)
lesbbi@n L21@(✗) (same as above)
losbian L215(✗) L245 (k=0), LO245 (k=1)
(✗): Incorrect encoding

Table 6.2: Soundex++ can capture visually similar characters and is more accu-
rate in differentiating between desired (blue) and undesired (red) perturbations.

Figure 6.3: Trade-off between precision and recall of extracted perturbations for
the word “president" w.r.t different k and d values. Higher k and lower d associate
with better preservation of the original meaning.

digit following a set of predefined rules–e.g., “B”, “F”→1, “D”, “T”→3 [129]. For
example, “Smith” and “Smyth” are both encoded as S530.

As the Soundex system was designed mainly for encoding surnames, it does
not necessarily work for texts in the wild. For example, it cannot recognize visually-
similar perturbations such as “l"→“1", “a"→“@" and “O"→“0". Moreover, it always
fixes the 1st character as part of the final encodes. This rule is too rigid and can
result in words that are entirely different yet encoded the same (Table 6.2). To
solve these issues, we propose a new Soundex++ algorithm. Soundex++ is
equipped to both recognize visually-similar characters and encode the sound of
a word at different hierarchical levels k (Table 6.2). Particularly, at level k=0,
Soundex++ works similar to Soundex by fixing the first character. At level
k≥1, Soundex++ instead fixes the first k+1 characters and encodes the rest.

109

Dataset #Texts #Tokens

List of Bad Words 1.9K 1.9K
Rumours (Twitter) [131] 99K 159K
Hate Memes (Twitter) [132] 150K 328K
Personal Atks (Wiki.) [133] 116K 454K
Toxic Comments (Wiki.) (Kaggle, 2019) 2M 1.6M
Malignant Texts (Reddit) (Kaggle, 2021) 313K 857K
Hateful Comments (Reddit) (Kaggle, 2021) 1.7M 1M

Sensitive Query (Search Engine, Private) 1.2M 314K
Hateful Comments (Online News, Private) 12.7M 7M

Total texts used to extract ANTHRO 18.3M -

Table 6.3: Real-life datasets that are used to extract adversarial texts in the wild,
number of total examples (#Texts) and unique tokens (#Tokens) (case-insensitive)

Key TH000 DE5263 AR000 DI630 NO300

Value the democrats are dirty not
(Set) demokRATs arre dirrrty

ANTHRO(democrats,k=1,d=1)→{democrats, demokRATs}
ANTHRO(dirty,k=1,d=2)→{dirty, dirrrty}

Table 6.4: Examples of hash table H1(k=1) curated from sentences “the
demokRATs are dirrrty" and “the democrats arre not dirty" and its utilization.

6.3.1.2 Levenshtein Distance d and Phonetic Level k as a Semantic
Preservation Proxy.

Since Soundex++ is not designed to capture a word’s semantic meaning, we
utilize both phonetic parameter k and Levenshtein distance d [130] as a heuristic
approximation to measure the semantic preservation between two words. Intu-
itively, the higher the phonetic level (k≥1) at which two words share the same
Soundex++ code and the smaller the Levenshtein distance d to transform one
word to another, the more likely human associate them with the meaning. In
other words, k and d are hyper-parameters that help control the trade-off between
precision and recall when retrieving perturbations of a given word such that they
satisfy the SMS property (Figure 6.3). We will later carry out a human study to
evaluate how well our extracted perturbations can preserve the semantic meanings
in practice.

110

6.3.1.3 Mining from the Wild.

To mine all human-written perturbations, we first collect a large corpus D of over
18M sentences written by netizens from 9 different datasets (Table 6.3). We select
these datasets because they include offensive texts such as hate speech, sensitive
search queries, etc., and hence very likely to include text perturbations. Next,
for each phonetic level k≤K, we curate different hash tables {H}K

0 that maps a
unique Soundex++ code c to a set of its matching unique case-sensitive tokens
that share the same encoding c as follows:

Hk : c 7→ {wj|S(wi, k) = S(wj, k) = c

∀wi, wj ∈ D, wi ̸= wj},
(6.1)

where S(w, k) returns the Soundex++ code of token w at phonetic level k, K is
the largest phonetic level we want to encode. With {H}K

0 , k and d, we can now
search for the set of perturbations Gd

k(w∗) of a specific target token w∗ as follows:

Gd
k(w∗)←{wj|wj∈Hk[S(w∗, k)], Lev(w∗, wj)≤d} (6.2)

where Lev(w∗, wj) returns the Levenshtein distance between w∗ and wj. Notice-
ably, we only extract {H}K

0 once from D via Eq. (6.1), then we can use Eq. (6.2)
to retrieve all perturbations for a given word during deployment. We name this
method of mining and retrieving human-written text perturbations in the wild as
ANTHRO, aka human-like perturbations:

ANTHRO : w∗, k, d, {H}K
0 7−→ Gd

k(w∗) (6.3)

6.3.1.4 ANTHRO Attack.

To utilize ANTHRO for adversarial attack on model f(x), we propose the AN-
THRO attack algorithm (Alg. 6). We use the same iterative mechanism (Ln.9–13)
that is common among other black-box attacks. This process replaces the most
vulnerable word in sentence x, which is evaluated with the support of Score)(·)
function (Ln. 5), with the perturbation that best drops the prediction probability
f(x) on the correct label. Unlike the other methods, ANTHRO inclusively draws

111

Algorithm 6 ANTHRO Attack Algorithm
1: Input: {H}K

0 , k, d
2: Input: target classifier f , original sentence x
3: Output: perturbed sentence x∗

4: Initialize: x∗ ← x
5: for word xi in x do: si←Score(xi, f)
6: Worder←Sort(x1, x2, ..xm) according to si

7: for xi in Worder do:
8: P←ANTHRO(xi, k, d, {H}K

0) // Eq.(6.3)
9: x∗← replace xi ∈ x with the best w ∈ P

10: if f(x∗)̸=f(x) then return x∗

11: return None

Dataset #Total BERT RoBERTa

CB [133] 449K 0.84 0.84
TC (Kaggle, 2018) 160K 0.85 0.85
HS [134] 25K 0.91 0.97

Table 6.5: Evaluation datasets Cyberbullying (CB), Toxic Comments (TC) and
Hate Speech (HS) and prediction performance in F1 score on their test sets of
BERT and RoBERTa.

from perturbations extracted from human-written texts captured in {H}K
0 (Ln.

10). We adopt the Score(·) from TextBugger.

6.4 Evaluation
We evaluate ANTHRO by: (1) attack performance, (2) semantic preservation,
and (3) human-likeness–i.e., how likely an attack message is spotted as machine-
generated by human examiners.

6.4.1 Attack Performance

6.4.1.1 Setup.

We use BERT (case-insensitive) [?] and RoBERTa (case-sensitive) [135] as target
classifiers to attack. We evaluate on three public tasks, namely detecting toxic com-
ments ((TC) dataset, Kaggle 2018), hate speech ((HS) dataset [134]), and online
cyberbullying texts ((CB) dataset [133]). We split each dataset to train, validation

112

and test set with the 8:1:1 ratio. Then, we use the train set to fine-tune BERT and
RoBERTa with a maximum of 3 epochs and select the best checkpoint using the
validation set. BERT and RoBERTa achieve around 0.85–0.97 in F1 score on the
test sets (Table 6.5). We evaluate with targeted attack (change positive→negative
label) since it is more practical. We randomly sample 200 examples from each test
set and use them as initial sentences to attack. We repeat the process 3 times with
unique random seeds and report the results. We use the attack success rate (Atk%)
metric–i.e., the number of examples whose labels are flipped by an attacker over
the total number of texts that are correctly predicted pre-attack. We use the 3rd
party open-source OpenAttack [136] framework to run all evaluations.

6.4.1.2 Baselines.

We compare ANTHRO with three baselines, namely TextBugger [71], VIPER [122]
and DeepWordBug [96]. These attackers utilize different character-based manipu-
lations to craft their adversarial texts as described in Sec. 6.1. From the analysis
in Sec. 6.3.1 and Figure 6.3, we set k←1 and d←1 for ANTHRO to achieve a
balanced trade-off between precision and recall on the SMS property. We examine
all attackers under several combinations of different normalization layers. They are
(1) Accents normalization (A) and (2) Homoglyph normalization (H), which con-
verts non-English accents and homoglyphs to their corresponding ascii characters,
(3) Perturbation normalization (P), which normalizes potential character-based
perturbations using the SOTA misspelling correction model Neuspell [123]. These
normalizers are selected as counteracts against the perturbation strategies em-
ployed by VIPER (uses non-English accents), DeepWordBug (uses homoglyphs)
and TextBugger, ANTHRO (based on misspelling and typos), respectively.

https://github.com/codebox/homoglyph

113

Attacker Normalizer
BERT (case-insensitive) RoBERTa (case-sensitive)

Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech Cyberbullying

TextBugger - 0.76±0.02 0.94±0.01 0.78±0.03 0.77±0.06 0.87±0.01 0.72±0.01
DeepWordBug - 0.56±0.04 0.68±0.01 0.50±0.02 0.52±0.01 0.42±0.04 0.38±0.04
VIPER - 0.08±0.03 0.01±0.01 0.13±0.02 1.00±0.00 1.00±0.00 0.99±0.01
ANTHRO - 0.72±0.02 0.82±0.01 0.71±0.02 0.84±0.00 0.93±0.01 0.78±0.01

TextBugger A - - - 0.72±0.02 0.92±0.00 0.74±0.02
DeepWordBug A - - - 0.43±0.02 0.59±0.03 0.43±0.01
VIPER A - - - 0.09±0.01 0.05±0.01 0.17±0.02
ANTHRO A - - - 0.77±0.02 0.94±0.02 0.84±0.02

TextBugger A+H 0.78±0.03 0.85±0.00 0.79±0.00 0.74±0.02 0.93±0.01 0.77±0.03
DeepWordBug A+H 0.04±0.00 0.06±0.02 0.01±0.01 0.03±0.01 0.01±0.01 0.06±0.02
VIPER A+H 0.07±0.00 0.01±0.01 0.10±0.00 0.13±0.02 0.07±0.01 0.17±0.01
ANTHRO A+H 0.76±0.02 0.77±0.03 0.73±0.05 0.82±0.02 0.97±0.00 0.82±0.02

TextBugger A+H+P 0.73±0.02 0.64±0.06 0.70±0.04 0.68±0.06 0.57±0.03 0.66±0.04
DeepWordBug A+H+P 0.02±0.01 0.04±0.02 0.01±0.01 0.02±0.01 0.01±0.01 0.02±0.01
VIPER A+H+P 0.12±0.01 0.04±0.01 0.17±0.03 0.11±0.02 0.05±0.01 0.18±0.01
ANTHRO A+H+P 0.65±0.04 0.64±0.01 0.60±0.05 0.80±0.02 0.91±0.03 0.82±0.02
(-) BERT already has the accents normalization (A normalizer) by default, (Red): Poor performance (Atk%<0.15)

Table 6.6: Averaged attack success rate (Atk%↑) of different attack methods

114

6.4.1.3 Results.

Overall, both ANTHRO and TextBugger perform the best. Being case-sensitive,
ANTHRO performs significantly better on RoBERTa and is competitive on BERT
when compared to TextBugger (Table 6.6). This makes ANTHRO more practical
since many of popular commercial APIs such as the Perspective API are case-
sensitive–i.e., “democrats" ̸=“democRATs". VIPER achieves a near perfect score
on RoBERTa, yet it is ineffective on BERT because RoBERTa uses the accent Ġ
as a part of its byte-level BPE encoding [135] while BERT by default removes all
such accents. Since VIPER exclusively utilizes accents, its attacks can be easily
corrected by the accents normalizer (Table 6.6). Similarly, DeepWordBug perturbs
texts with homoglyph characters, most of which can also be normalized using a
3rd party homoglyph detector (Table 6.6).

In contrast, even under all normalizers–i.e., A+H+P, TextBugger and AN-
THRO still achieves 66.3% and 73.7% in Atk% on average across all evaluations.
Although Neuspell [123] drops TextBugger ’s Atk% 14.7% across all runs, it can only
reduce the Atk% of ANTHRO a mere 7.5% on average. This is because TextBug-
ger and Neuspell or other dictionary-based typo correctors rely on fixed deductive
rules–e.g., swapped, replaced by neighbor letters, for attack and defense. How-
ever, ANTHRO utilizes human-written perturbations which are greatly varied,
hence less likely to be systematically detected. We further discuss the limitation
of misspelling correctors such as NeuSpell in Sec. 6.7.

6.4.2 Human Evaluation

Since ANTHRO and TextBugger are the top two effective attacks, this section
will focus on evaluating their ability in semantic preservation and human-likeness.
Given an original sentence x and its adversarial text x∗ generated by either one
of the attacks, we design a human study to directly compare ANTHRO with
TextBugger. Specifically, two alternative hypotheses for our validation are (1)
HSemantics: x∗ generated by ANTHRO preserves the original meanings of x better
than that generated by TextBugger and (2) HHuman: x∗ generated by ANTHRO
is more likely to be perceived as a human-written text (and not machine) than
that generated by TextBugger.

115

Figure 6.4: Semantic preservation and human-likeness

6.4.2.1 Human Study Design.

We use the two attackers to generate adversarial texts targeting BERT model on
200 examples sampled from the TC dataset’s test set. We then gather examples
that are successfully attacked by both ANTHRO and TextBugger. Next, we
present a pair of texts, one generated by ANTHRO and one by TextBugger,
together with the original sentence to human subjects. We then ask them to select
(1) which text better preserves the meaning of the original sentence and (2) which
text is more likely to be written by human. To reduce noise and bias, we also
provide a “Cannot decide" option when quality of both texts are equally good or
bad, and present the two questions in two separate tasks. Since the definition of
semantic preservation can be subjective, we recruit human subjects as both (1)
Amazon Mechanical Turk (MTurk) workers and (2) professional data annotators
at a company with extended experience in annotating texts in domain such as
toxic and hate speech.

We recruit MTurk workers who are 18 years or older residing in North America.
MTurk workers are recruited using the following qualifications provided by AMT,
namely (1) recognized as “master” workers by AMT system, (2) have done at
least 5K HITs and (3) have historical HITs approval rate of at least 98%. These
qualifications are also more conservative than previous human studies we found in
previous literature. We pay each worker on average around $10 an hour or higher
(federal minimum wage was $7.25 in 2021 when we carried out our study). To
limit abusive behaviors, we impose a minimum attention span of 30 seconds for
the workers to complete each task. Our human subject study with MTurk workers
was IRB-approved.

116

Attacker Normalizer
BERT (case-insensitive) RoBERTa (case-sensitive)

Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech Cyberbullying

TextBugger - 0.76±0.02 0.94±0.01 0.78±0.03 0.77±0.06 0.87±0.01 0.72±0.01
ANTHROβ - 0.82±0.01 0.97±0.01 0.88±0.04 0.91±0.02 0.97±0.01 0.89±0.02

TextBugger A+H+P 0.73±0.02 0.64±0.06 0.70±0.04 0.68±0.06 0.57±0.03 0.66±0.04
ANTHROβ A+H+P 0.85±0.04 0.79±0.02 0.84±0.03 0.88±0.04 0.93±0.01 0.91±0.01

Table 6.7: Averaged attack success rate (Atk%↑) of ANTHROβ and TextBugger

117

Reason Favorable Unfavorable
From GRACE From TextBugger

Genuine Typos stuupid, but, Faoggt sutpid, burt, Foggat
Intelligible faiilure faioure
Sound Preserv. shytty, crp shtty, crsp
Meaning Preserv. ga-y, ashole, dummb bay, alshose, dub
High Search Results sodmized, kiills Smdooized, klils
Personal Exposure ign0rant, gaarbage ignorajt, garage
Word Selection morons→mor0ns edited→ewited

Table 6.8: Top reasons in favoring ANTHRO’s perturbations as more likely to be
written by human.

6.4.2.2 Quantitative Results.

Experiments show that it is statistically significant (p-value≤0.05) to reject the null
hypotheses of both HSemantics and HHuman. Overall, adversarial texts generated
by perturbations mined in the wild are much better at preserving the original
semantics and also at resembling human-written texts than those generated by
TextBugger (Figure 6.4, Left).

6.4.2.3 Qualitative Analysis.

Table 6.8 summarizes the top reasons why they favor ANTHRO over TextBugger
in terms of human-likeness. ANTHRO’s perturbations are perceived similar to
genuine typos and more intelligible. They also better preserve both meanings
and sounds. Moreover, some annotators also rely on personal exposure on Reddit,
YouTube comments, or the frequency of word use via the search function on Reddit
to decide if a word-choice is human-written.

6.5 ANTHROβ Attack
We examine if perturbations inductively extracted from the wild help improve the
deductive TextBugger attack. Hence, we introduce ANTHROβ, which considers
the perturbation candidates from both ANTHRO and TextBugger in Ln. 10 of
Alg. 6. Alg. 6 still selects the perturbation that best flip the target model’s
prediction.

118

Figure 6.5: Trade-off among evaluation metrics

6.5.0.1 Attack Performance.

Even though ANTHRO comes second after TextBugger when attacking BERT
model, Table 6.7 shows that when combined with TextBugger–i.e., ANTHROβ,
it consistently achieves superior performance with an average of 82.7% and 90.7%
in Atk% on BERT and RoBERTa even under all normalizers (A+H+P).

6.5.0.2 Semantic Preservation and Human-Likeness.

ANTHROβ improves TextBugger ’s Atk%, semantic preservation and human-likeness
score with an increase of over 8%, 32% and 42% (from 0.5 threshold) on average
(Table 6.7, 6.4, Right), respectively. The presence of only a few human-like per-
turbations generated by ANTHRO is sufficient to signal whether or not the whole
sentence is written by humans, while only one unreasonable perturbation generated
by TextBugger can adversely affect its meaning. This explains the performance
drop in terms of semantic preservation but not in human-likeness when indirectly
comparing ANTHROβ with ANTHRO. Overall, ANTHROβ also has the best
trade-off between Atk% and human evaluation–i.e., positioning at top right corners
in Figure 6.5, with a noticeable superior Atk%.

6.6 Defend ANTHRO, ANTHROβ Attack

6.6.1 Proposed Defense

We suggest two countermeasures against ANTHRO attack. They are (i) Sound-
Invariant Model (SoundCNN): When the defender do not have access to {H}K

0

119

Model ANTHRO ANTHROβ

TC↓ HS↓ CB↓ TC↓ HS↓ CB↓

BERT 0.72 0.82 0.71 0.82 0.97 0.88
BERT+A+H+P 0.65 0.65 0.60 0.85 0.79 0.84

Adv.Train 0.41 0.30 0.35 0.72 0.72 0.67
SoundCNN 0.14 0.02 0.15 0.86 0.84 0.92

Table 6.9: Averaged Atk%↓ of ANTHRO and ANTHROβ against different de-
fense models.

learned by the attacker, the defender trains a generic model that encodes not the
spellings but the phonetic features of a text for prediction. Here we train a CNN
model [137] on top of a embeddings layer for discrete Soundex++ encodings of
each token in a sentence; (ii) Adversarial Training (Adv.Train): To overcome
the lack of access to {H}K

0 , the defender extracts his/her perturbations in the
wild from a separate corpus D∗ where D∗∩D=∅ and uses them to augment the
training examples–i.e., via self-attack with ratio 1:1, to fine-tune a more robust
BERT model. We use D∗ as a corpus of 34M general comments from online news.

6.6.2 Results.

We compare the two defenses against BERT and BERT combined with 3 layers
of normalization A+H+P. BERT is selected as it is better than RoBERTa at de-
fending against ANTHRO (Table 6.6). Table 6.9 shows that both SoundCNN
and Adv.Train are robust against ANTHRO attack, while Adv.Train per-
forms best when defending ANTHROβ. Since SoundCNN is strictly based on
phonetic features, it is vulnerable against ANTHROβ whenever TextBugger ’s per-
turbations are selected. Table 6.9 also underscores that ANTHROβ is a strong
and practical attack, defense against which is thus an important future direction.

120

Figure 6.6: (Left) Precision on human-written perturbed texts synthesized by
ANTHRO and (Right) Robustness evaluation of Perspective API under different
attacks

6.7 Discussion and Analysis

6.7.1 Evaluation with Perspective API.

We evaluate if ANTHRO and ANTHROβ can successfully attack the popular
Perspective API , which has been adopted in various publishers–e.g., NYTimes,
and platforms–e.g., Disqus, Reddit, to detect toxicity. We evaluate on 200 toxic
texts randomly sampled from the TC dataset. Figure 6.6 (Left) shows that the
API provides superior performance compared to a self fine-tuned BERT classifier,
yet its precision deteriorates quickly from 0.95 to only 0.9 and 0.82 when 25%–
50% of a sentence are randomly perturbed using human-written perturbations.
However, the Adv.Train (Sec. 6.6) model achieves fairly consistent precision in
the same setting. This shows that ANTHRO is not only a powerful and realistic
attack, but also can help develop more robust text classifiers in practice. The API
is also vulnerable against both direct (Alg. 6) and transfer ANTHRO attacks
through an intermediate BERT classifier, with its precision dropped to only 0.12
when evaluated against ANTHROβ.

6.7.2 Generalization beyond Offensive Texts.

Although ANTHRO extracts perturbations from abusive data, the majority of
them are non-abusive texts. Thus, ANTHRO learns perturbations for non-abusive

https://www.perspectiveapi.com/

121

Task Sentiment Analysis Categorization

ANTHRO 0.80 0.93
ANTHROβ 0.86 1.00

Table 6.10: Attack success rate (Atk%↑) of ANTHRO and ANTHROβ on non-
abusive task domains.)

English words–e.g., hilarious->Hi-Larious, shot->sh•t. We also make no assump-
tion on the task domains that ANTHRO can attack. Evidently, ANTHRO and
ANTHROβ achieves 80%, 86% Atk% and 90%, 100% Atk% on fooling Google’s
sentiment analysis API (untargeted attack using 200 randomly selected texts of
the SST dataset [138]) and text categorization API (untargeted attack on 50 ran-
domly selected news with original label of “SPORT" from the BBC News dataset
(Table 6.10).

6.7.3 Limitation of Misspelling Correctors.

Similar to other spell-checkers such as pyspellchecker and symspell, the SOTA
NeuSpell depends on a fixed dictionary of common misspellings, or synthetic mis-
spellings generated by random permutation of characters [123]. These checkers
often assume perturbations are within an edit-distance threshold from the original
words. This makes them exclusive since one can easily generate new perturbations
by repeating a specific character–e.g., “porn"→“pooorn". Also, due to the iterative
attack mechanism (Alg. 6) where each token in a sentence is replaced by many
candidates until the correct label’s prediction probability drops, ANTHRO only
needs a single good perturbation that is not detected by NeuSpell for a successful
replacement. Thus, by formulating perturbations by not only their spellings but
also their sounds, ANTHRO is able to mine perturbations that can circumvent
NeuSpell.

6.7.4 Computational Analysis

The one-time extraction of {H}K
0 via Eq. (6.1) has O(|D|L) where |D|, L is the

of tokens and the length of longest token in D (hash-map operations cost O(1)).

https://cloud.google.com/natural-language
https://www.kaggle.com/c/learn-ai-bbc/

122

Given a word w and k, d, GRACE retrieves a list of perturbation candidates via
Eq. (6.2) with O(|w|max(Hk)) where |w| is the length of w and max(Hk) is the
size of the largest set of tokens sharing the same Soundex++ encoding in Hk.
Since max(Hk) is constant, the upper-bound then becomes O(|w|).

6.7.5 Limitation

The perturbation candidate retrieval operation (Eq. (6.2)) has a higher compu-
tational complexity than that of other methods–i.e., O(|w|) v.s. O(1) where |w|
is the length of an input token w. This can prolong the running time, especially
when attacking long documents. However, we can overcome this by storing all the
perturbations (given k, d) of the top frequently used offensive and non-offensive
English words. We can then expect the operation to have an average complex-
ity close to O(1). The current Soundex++ algorithm is designed for English
texts and might not be applicable in other languages. Thus, we plan to extend
ANTHRO to a multilingual setting.

6.8 Conclusion
We propose ANTHRO, a character-based attack algorithm that extracts human-
written perturbations in the wild and then utilizes them for adversarial text genera-
tion. Our approach yields the best trade-off between attack performance, semantic
preservation and stealthiness under both empirical experiments and human stud-
ies. A BERT classifier trained with examples augmented by ANTHRO can also
better understand human-written texts.

123

Chapter 7 |
Conclusion

This thesis introduces the concept of trustworthy machine learning as ML models
that do not only make accurate predictions on unseen examples but are also robust
under several practical constraints such as effective learning under limited labeled
data, transparent and explainable to the end-users, and robust against adversarial
attacks. Specifically, this thesis proposes to use VAE-based generative models to
synthesize clickbaits as additional positive examples to train better clickbait, detec-
tion models. Moreover, it introduces Grace, a novel algorithm that enables any
neural network models to effectively generate useful explanation texts for their pre-
dictions. Furthermore, the thesis also proposes Malcom, a neural network-based
conditional text generator that can synthesize high-quality malicious comments to
attack a wide range of white-box and black-box fake news detectors. Furthermore,
this thesis explores the use of “honeypot", a concept from cybersecurity, to bait and
trap potential malicious universal trigger attacks in the NLP domain. Last but not
least, this thesis proposes an inductive approach to mine text perturbations in the
wild [7]. The extracted human-written perturbations are then utilized to derive
a more realistic textual attack and defense. Although all of the technical contri-
butions of this thesis specifically focus on various classification tasks in the text
domain, their motivation and intuition are also applicable in other NLP tasks–e.g.,
natural language generation, and domains–e.g., computer vision. Especially, this
thesis also lays a foundation for several later works in the area of security ML such
as attack-invariant adversarial defense [139], multi-goals adversarial attacks [140].
Through these technical contributions, this thesis also hopes to contribute to the
adoption of ML systems in high-stakes fields where mutual trust between humans
and machines is paramount.

124

Bibliography

[1] Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer
(2002) “SMOTE: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, 16, pp. 321–357.

[2] Le, T., K. Shu, M. D. Molina, D. Lee, S. S. Sundar, and H. Liu
“5 Sources of Clickbaits You Should Know! Using Synthetic Clickbaits to
Improve Prediction and Distinguish between Bot-Generated and Human-
Written Headlines,” IEEE/ACM ASONAM’19.

[3] Le, T., S. Wang, and D. Lee “GRACE: Generating Concise and Infor-
mative Contrastive Sample to Explain Neural Network Model’s Prediction,”
KDD’20.

[4] Ribeiro, M. T., S. Singh, and C. Guestrin (2016) “"Why Should I Trust
You?": Explaining the Predictions of Any Classifier,” in Proceedings of the
22nd ACM SIGKDD/KDD, San Francisco, CA, USA, August 13-17, 2016,
pp. 1135–1144.

[5] Le, T., S. Wang, and D. Lee “MALCOM: Generating Malicious Com-
ments to Attack Neural Fake News Detection Models,” in ICDM’20.

[6] Le, T., N. Park, and D. Lee “A Sweet Rabbit Hole by DARCY: Using
Honeypots to Detect Universal Trigger’s Adversarial Attacks,” in ACL’21.

[7] Le, T., J. Lee, K. Yen, Y. Hu, and D. Lee “Perturbations in the Wild:
Leveraging Human-Written Text Perturbations for Realistic Adversarial At-
tack and Defense,” ACL’22 (Findings).

[8] Rony, M. M. U., N. Hassan, and M. Yousuf (2017) “Diving Deep into
Clickbaits: Who Use Them to What Extents in Which Topics with What
Effects?” in IEEE/ACM ASONAM 2017, pp. 232–239.

[9] Chen, Y., N. J. Conroy, and V. L. Rubin (2015) “Misleading Online
Content: Recognizing Clickbait As "False News",” in ACM WMDD 2015,
New York, NY, USA, pp. 15–19.

125

[10] Cao, X., T. Le, Jason, and Zhang (2017) “Machine Learning Based De-
tection of Clickbait Posts in Social Media,” arXiv preprint arXiv:1710.01977,
1710.01977.

[11] Couldry, N. and J. Turow (2014) “Big Data, Big Questions| Advertis-
ing, Big Data and the Clearance of the Public Realm: Marketers’ New Ap-
proaches to the Content Subsidy,” International Journal of Communication,
8(0), pp. 1710–1726.

[12] Potthast, M., S. Köpsel, B. Stein, and M. Hagen (2016) “Clickbait
detection,” in European Conference on Information Retrieval, Springer, pp.
810–817.

[13] Wei, W. and X. Wan (2017) “Learning to Identify Ambiguous and Mis-
leading News Headlines,” in IJCAI 2017, AAAI Press, pp. 4172–4178.

[14] Chakraborty, A., B. Paranjape, S. Kakarla, and N. Ganguly
(2016) “Stop clickbait: Detecting and preventing clickbaits in online news
media,” in IEEE/ACM ASONAM 2016, pp. 9–16.

[15] Bowman, S. R., L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz,
and S. Bengio (2015) “Generating Sentences from a Continuous Space,”
CoRR, abs/1511.06349.

[16] Biyani, P., K. Tsioutsiouliklis, and J. Blackmer (2016) “" 8 Amaz-
ing Secrets for Getting More Clicks": Detecting Clickbaits in News Streams
Using Article Informality.” in AAAI, pp. 94–100.

[17] Zhao, S., J. Song, and S. Ermon (2017) “InfoVAE: Information Maxi-
mizing Variational Autoencoders,” arXiv preprint arXiv:1706.02262, 1706.
02262.

[18] Jeni, L. A., J. F. Cohn, and F. De La Torre (2013) “Facing imbal-
anced data–recommendations for the use of performance metrics,” in Affec-
tive Computing and Intelligent Interaction (ACII), 2013 Humaine Associa-
tion Conference on, IEEE, pp. 245–251.

[19] Tenenbaum, J. B., V. de Silva, and J. C. Langford (2000) “A
global geometric framework for non linear dimensionality reduction,” Sci-
ence, 290(5500), pp. 2319–2323.

[20] Miao, Y. and P. Blunsom (2016) “Language as a Latent Variable: Discrete
Generative Models for Sentence Compression,” in EMNLP 2016, pp. 319–
328.

126

[21] Hu, Z., Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing (2017)
“Controllable text generation,” arXiv preprint arXiv:1703.00955.

[22] Abokhodair, N., D. Yoo, and D. W. McDonald (2015) “Dissecting a
Social Botnet: Growth, Content and Influence in Twitter,” in ACM CSCW
2015, New York, NY, USA, pp. 839–851.

[23] Geer, J. G. and K. F. Kahn (1993) “Grabbing attention: An experimen-
tal investigation of headlines during campaigns,” Political Communication,
10(2), pp. 175–191.

[24] Dor, D. (2003) “On newspaper headlines as relevance optimizers,” Journal
of Pragmatics, 35(5), pp. 695–721.

[25] Agrawal, A. (2016) “Clickbait detection using deep learning,” in 2016
2nd International Conference on Next Generation Computing Technologies
(NGCT), IEEE, pp. 268–272.

[26] Miao, Y., L. Yu, and P. Blunsom (2016) “Neural variational inference
for text processing,” in ICML 2016, pp. 1727–1736.

[27] Elyashar, A., J. Bendahan, and R. Puzis (2017) “Detecting Clickbait
in Online Social Media: You Won’t Believe How We Did It,” arXiv preprint
arXiv:1710.06699.

[28] Gairola, S., Y. K. Lal, V. Kumar, and D. Khattar (2017) “A Neural
Clickbait Detection Engine,” arXiv preprint arXiv:1710.01507.

[29] Shavitt, I. and E. Segal (2018) “Regularization learning networks: deep
learning for tabular datasets,” in 2018 NIPS, pp. 1379–1389.

[30] Arik, S. O. and T. Pfister (2019) “TabNet: Attentive Interpretable Tab-
ular Learning,” arXiv preprint arXiv:1908.07442.

[31] Barz, B. and J. Denzler (2019) “Deep Learning on Small Datasets with-
out Pre-Training using Cosine Loss,” arXiv preprint arXiv:1901.09054.

[32] Marais, J. A. (2019) Deep learning for tabular data: an exploratory study,
Ph.D. thesis, Stellenbosch: Stellenbosch University.

[33] Ravì, D., C. Wong, F. Deligianni, M. Berthelot, J. Andreu-
Perez, B. Lo, and G.-Z. Yang (2016) “Deep learning for health infor-
matics,” IEEE journal of biomedical and health informatics, 21(1), pp. 4–21.

127

[34] Bejnordi, B. E., M. Veta, P. J. Van Diest, B. Van Ginneken,
N. Karssemeijer, G. Litjens, J. A. Van Der Laak, M. Hermsen,
Q. F. Manson, M. Balkenhol, et al. (2017) “Diagnostic assessment of
deep learning algorithms for detection of lymph node metastases in women
with breast cancer,” Jama, 318(22), pp. 2199–2210.

[35] Fischer, T. and C. Krauss (2018) “Deep learning with long short-term
memory networks for financial market predictions,” European Journal of Op-
erational Research, 270(2), pp. 654–669.

[36] Dixon, M. F., N. G. Polson, and V. O. Sokolov (2019) “Deep learn-
ing for spatio-temporal modeling: Dynamic traffic flows and high frequency
trading,” Applied Stochastic Models in Business and Industry, 35(3), pp.
788–807.

[37] Kosinski, M., D. Stillwell, and T. Graepel (2013) “Private traits and
attributes are predictable from digital records of human behavior,” Proceed-
ings of the national academy of sciences, 110(15), pp. 5802–5805.

[38] Zizzo, D. J., D. Sgroi, et al. (2000) Bounded-rational behavior by neural
networks in normal form games, Nuffield College.

[39] Mahdavifar, S. and A. A. Ghorbani (2019) “Application of deep learn-
ing to cybersecurity: A survey,” Neurocomputing, 347, pp. 149–176.

[40] Xu, X., C. Liu, Q. Feng, H. Yin, L. Song, and D. Song (2017) “Neural
network-based graph embedding for cross-platform binary code similarity
detection,” in Proceedings of the 2017 ACM SIGSAC CCS, pp. 363–376.

[41] Zeiler, M. D. and R. Fergus (2014) “Visualizing and understanding con-
volutional networks,” in European conference on computer vision, Springer,
pp. 818–833.

[42] Simonyan, K., A. Vedaldi, and A. Zisserman (2013) “Deep inside con-
volutional networks: Visualising image classification models and saliency
maps,” arXiv preprint arXiv:1312.6034.

[43] Petsiuk, V., A. Das, and K. Saenko (2018) “Rise: Randomized input
sampling for explanation of black-box models,” in BMVC.

[44] Li, J., X. Chen, E. Hovy, and D. Jurafsky (2015) “Visualizing and
understanding neural models in nlp,” arXiv preprint arXiv:1506.01066.

[45] Chu, L., X. Hu, J. Hu, L. Wang, and J. Pei (2018) “Exact and consistent
interpretation for piecewise linear neural networks: A closed form solution,”
in Proceedings of the 24th ACM SIGKDD/KDD, ACM, pp. 1244–1253.

128

[46] Lipton, Z. C. (2018) “The mythos of model interpretability,” Queue, 16(3).

[47] Wu, E. and S. Madden (2013) “Scorpion: Explaining away outliers in
aggregate queries,” Proceedings of the VLDB Endowment, 6(8), pp. 553–564.

[48] Meliou, A., S. Roy, and D. Suciu (2014) “Causality and explanations in
databases,” Proceedings of the VLDB Endowment, 7(13), pp. 1715–1716.

[49] Roy, S. and D. Suciu (2014) “A formal approach to finding explanations
for database queries,” in Proceedings of the 2014 ACM SIGMOD/PODS,
ACM, pp. 1579–1590.

[50] Silverstein, C., S. Brin, R. Motwani, and J. Ullman (2000) “Scal-
able techniques for mining causal structures,” Data Mining and Knowledge
Discovery, 4(2-3), pp. 163–192.

[51] Moosavi-Dezfooli, S.-M., A. Fawzi, and P. Frossard (2016) “Deep-
fool: a simple and accurate method to fool deep neural networks,” in Pro-
ceedings of the 2016 IEEE CVPR, pp. 2574–2582.

[52] Mao, X., Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley
(2017) “Least squares generative adversarial networks,” in Proceedings of the
IEEE International Conference on Computer Vision, pp. 2794–2802.

[53] Flannery, B. P., S. A. Teukolsky, W. H. Press, and W. T. Vetter-
ling (1988) Numerical recipes in C: The art of scientific computing, vol. 2,
Cambridge University Press.

[54] Yu, L. and H. Liu (2003) “Feature selection for high-dimensional data: A
fast correlation-based filter solution,” in Proceedings of the 20th ICML, pp.
856–863.

[55] Dua, D. and C. Graff (2017), “UCI Machine Learning Repository,” .
URL http://archive.ics.uci.edu/ml

[56] Datta, A., S. Sen, and Y. Zick (2016) “Algorithmic transparency via
quantitative input influence: Theory and experiments with learning sys-
tems,” in 2016 IEEE symposium on security and privacy (SP), IEEE, pp.
598–617.

[57] Wachter, S., B. Mittelstadt, and C. Russell (2017) “Counterfactual
Explanations without Opening the Black Box: Automated Decisions and the
GPDR,” Harv. JL & Tech., 31, p. 841.

[58] Zhang, X., A. Solar-Lezama, and R. Singh (2018) “Interpreting neu-
ral network judgments via minimal, stable, and symbolic corrections,” in
Advances in Neural Information Processing Systems, pp. 4874–4885.

129

[59] van der Waa, J., M. Robeer, J. van Diggelen, M. Brinkhuis, and
M. Neerincx (2018) “Contrastive explanations with local foil trees,” arXiv
preprint arXiv:1806.07470.

[60] Khanna, R., E. Elenberg, A. G. Dimakis, S. Negahban, and
J. Ghosh (2017) “Scalable greedy feature selection via weak submodular-
ity,” .

[61] Hindman, M. and V. Barash (2018) “Disinformation, and Influence Cam-
paigns on Twitter,” Knight Foundation: George Washington University.

[62] Allen, J., B. Howland, M. Mobius, D. Rothschild, and D. J. Watts
(2020) “Evaluating the fake news problem at the scale of the information
ecosystem,” Science Advances, 6(14), p. eaay3539.

[63] Aldwairi, M. and A. Alwahedi (2018) “Detecting fake news in social
media networks,” Procedia Computer Science, 141, pp. 215–222.

[64] Ruchansky, N., S. Seo, and Y. Liu (2017) “Csi: A hybrid deep model
for fake news detection,” in CIKM’17, ACM, pp. 797–806.

[65] Shu, K., L. Cui, S. Wang, D. Lee, and H. Liu “dEFEND: Explainable
Fake News Detection,” .

[66] Cui, L. and S. W. D. Lee “SAME: Sentiment-Aware Multi-Modal Embed-
ding for Detecting Fake News,” .

[67] Qian, F., C. Gong, K. Sharma, and Y. Liu (2018) “Neural User Re-
sponse Generator: Fake News Detection with Collective User Intelligence.”
in IJCAI’18, pp. 3834–3840.

[68] Papernot, N., P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami (2016) “The limitations of deep learning in adversarial set-
tings,” in EuroS&P’16, IEEE, pp. 372–387.

[69] Zhou, Z., H. Guan, M. M. Bhat, and J. Hsu “Fake News Detection via
NLP is Vulnerable to Adversarial Attacks,” in ICAART’19, SciTePress.

[70] Horne, B. D., J. Nørregaard, and S. Adali “Robust Fake News De-
tection Over Time and Attack,” ACM TIST’9.

[71] Li, J., S. Ji, T. Du, B. Li, and T. Wang (2018) “TextBugger: Generating
Adversarial Text Against Real-world Applications,” NDSS’18.

[72] Cer, D., Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John,
N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar, et al.
(2018) “Universal sentence encoder,” EMNLP’18, Demo.

130

[73] Ebrahimi, J., A. Rao, D. Lowd, and D. Dou “HotFlip: White-Box
Adversarial Examples for Text Classification,” in ACL’18.

[74] Pruthi, D., B. Dhingra, and Z. C. Lipton (2019) “Combating Adver-
sarial Misspellings with Robust Word Recognition,” in ACL’19.

[75] Wang, Z., H. Liu, J. Tang, S. Yang, G. Y. Huang, and Z. Liu (2019)
“Learning Multi-level Dependencies for Robust Word Recognition,” arXiv
preprint arXiv:1911.09789.

[76] Shu, K., S. Wang, T. Le, D. Lee, and H. Liu (2018) “Deep headline
generation for clickbait detection,” in ICDM’18), IEEE, pp. 467–476.

[77] Lamb, A. M., A. G. A. P. Goyal, Y. Zhang, S. Zhang, A. C.
Courville, and Y. Bengio (2016) “Professor forcing: A new algorithm
for training recurrent networks,” in NIPS’16.

[78] Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio (2014) “Generative
adversarial networks,” NIPS’14, pp. 2672–2680.

[79] Jolicoeur-Martineau, A. (2018) “The relativistic discriminator: a key
element missing from standard GAN,” ICLR’19.

[80] Gabielkov, M., A. Ramachandran, A. Chaintreau, and A. Legout
(2016) “Social Clicks: What and Who Gets Read on Twitter?” .
URL https://hal.inria.fr/hal-01281190

[81] Goodfellow, I., Y. Bengio, and A. Courville (2016) Deep learning,
MIT press.

[82] Jang, E., S. Gu, and B. Poole (2016) “Categorical reparameterization
with gumbel-softmax,” ICLR’17.

[83] Nie, W., N. Narodytska, and A. Patel (2019) “RelGAN: Relational
Generative Adversarial Networks for Text Generation,” in ICLR’19.

[84] Santoro, A., R. Faulkner, D. Raposo, J. Rae, M. Chrzanowski,
T. Weber, D. Wierstra, O. Vinyals, R. Pascanu, and T. Lillicrap
(2018) “Relational recurrent neural networks,” in NIPS’18, pp. 7299–7310.

[85] Shu, K., D. Mahudeswaran, S. Wang, D. Lee, and H. Liu (2018) “Fak-
eNewsNet: A Data Repository with News Content, Social Context and Dy-
namic Information for Studying Fake News on Social Media,” arXiv preprint
arXiv:1809.01286.

131

[86] Zhang, J., B. Dong, and P. Yu “FAKEDETECTOR: Effective fake news
detection with deep diffusive neural network,” in ICDE’20.

[87] Yu, L., W. Zhang, J. Wang, and Y. Yu (2017) “Seqgan: Sequence
generative adversarial nets with policy gradient,” in AAAI’17.

[88] Guo, B., H. Wang, Y. Ding, S. Hao, Y. Sun, and Z. Yu (2019), “c-
TextGen: Conditional Text Generation for Harmonious Human-Machine In-
teraction,” 1909.03409.

[89] Pennebaker, J. W., R. L. Boyd, K. Jordan, and K. Blackburn
(2015) “The development and psychometric properties of LIWC2015,” .
URL https://eprints.lancs.ac.uk/id/eprint/134191

[90] Yuan, D., Y. Miao, N. Z. Gong, Z. Yang, Q. Li, D. Song, Q. Wang,
and X. Liang (2019) “Detecting Fake Accounts in Online Social Networks
at the Time of Registrations,” in CCS’19, pp. 1423–1438.

[91] Goodfellow, I., J. Shlens, and C. Szegedy “Explaining and Harnessing
Adversarial Examples,” in ICLR’15.

[92] Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin (2017) “Attention is all you need,”
in NIPS’17, pp. 5998–6008.

[93] Hu, Z., Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing (2017)
“Toward controlled generation of text,” in ICML’17, JMLR. org, pp. 1587–
1596.

[94] Zellers, R., A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi,
F. Roesner, and Y. Choi (2019) “Defending Against Neural Fake News,”
arXiv preprint arXiv:1905.12616.

[95] Wallace, E., S. Feng, N. Kandpal, M. Gardner, and S. Singh “Uni-
versal Adversarial Triggers for Attacking and Analyzing NLP,” in EMNLP-
IJCNLP’19.

[96] Gao, J., J. Lanchantin, M. L. Soffa, and Y. Qi (2018) “Black-box
generation of adversarial text sequences to evade deep learning classifiers,”
in SPW’18, IEEE, pp. 50–56.

[97] Garg, S. and G. Ramakrishnan (2020) “BAE: BERT-based Adversarial
Examples for Text Classification,” EMNLP’20.

[98] Gan, W. C. and H. T. Ng “Improving the robustness of question answering
systems to question paraphrasing,” in ACL’19.

132

[99] Cheng, M., J. Yi, P.-Y. Chen, H. Zhang, and C.-J. Hsieh “Seq2sick:
Evaluating the robustness of sequence-to-sequence models with adversarial
examples,” in AAAI’20.

[100] Pang, B. and L. Lee (2005) “Seeing Stars: Exploiting Class Relationships
for Sentiment Categorization with Respect to Rating Scales,” in ACL’05.

[101] Wang, A., A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bow-
man (2019) “GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding,” in ICLR’19.

[102] Pang, B. and L. Lee (2004) “A Sentimental Education: Sentiment Analysis
Using Subjectivity,” in ACL’04, pp. 271–278.

[103] Zhang, X., J. Zhao, and Y. LeCun “Character-level convolutional net-
works for text classification,” in NIPS’15.

[104] Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding,”
in NAACL-HLT’19.

[105] Smith, L. and Y. Gal (2018) “Understanding measures of uncertainty for
adversarial example detection,” arXiv preprint arXiv:1803.08533.

[106] Ma, X., B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema,
G. Schoenebeck, D. Song, M. E. Houle, and J. Bailey (2018)
“Characterizing adversarial subspaces using local intrinsic dimensionality,”
ICLR’18.

[107] Papernot, N., P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami “Practical black-box attacks against machine learning,” in
ASIACCS’17.

[108] Gunning, R. et al. (1952) Technique of clear writing, McGraw-Hill.

[109] Wang, B., Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao (2019) “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” in EuroS&P’19, IEEE, pp. 707–723.

[110] Liu, Y., W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang (2019)
“ABS: Scanning neural networks for back-doors by artificial brain stimula-
tion,” in CCS’19.

[111] Qiao, X., Y. Yang, and H. Li (2019) “Defending neural backdoors via
generative distribution modeling,” in NIPS’19, pp. 14004–14013.

133

[112] Shan, S., E. Wenger, B. Wang, B. Li, H. Zheng, and B. Y. Zhao
(2019) “Using Honeypots to Catch Adversarial Attacks on Neural Networks,”
CCS’20.

[113] Chen, C. and J. Dai (2020) “Mitigating backdoor attacks in LSTM-based
Text Classification Systems by Backdoor Keyword Identification,” arXiv
preprint arXiv:2007.12070.

[114] Qi, F., Y. Chen, M. Li, Z. Liu, and M. Sun (2020) “ONION: A Simple
and Effective Defense Against Textual Backdoor Attacks,” arXiv preprint
arXiv:2011.10369.

[115] Liu, K., B. Dolan-Gavitt, and S. Garg (2018) “Fine-pruning: Defend-
ing against backdooring attacks on deep neural networks,” in International
Symposium on Research in Attacks, Intrusions, and Defenses, Springer, pp.
273–294.

[116] Paganini, M. and J. Forde (2020) “Streamlining Tensor and Network
Pruning in PyTorch,” arXiv preprint arXiv:2004.13770.

[117] Wang, X., H. Jin, and K. He (2019) “Natural language adversarial attacks
and defenses in word level,” arXiv preprint arXiv:1909.06723.

[118] Sheikholeslami, F., S. Jain, and G. B. Giannakis (2020) “Minimum
uncertainty based detection of adversaries in deep neural networks,” in 2020
Information Theory and Applications Workshop (ITA), IEEE, pp. 1–16.

[119] Pang, T., C. Du, Y. Dong, and J. Zhu (2018) “Towards robust detection
of adversarial examples,” in NIPS’18, pp. 4579–4589.

[120] Carlini, N. (2020) “A Partial Break of the Honeypots Defense to Catch
Adversarial Attacks,” arXiv preprint arXiv:2009.10975.

[121] Wang, W., L. Wang, R. Wang, Z. Wang, and A. Ye (2019) “To-
wards a Robust Deep Neural Network in Texts: A Survey,” arXiv preprint
arXiv:1902.07285.

[122] Eger, S., G. G. Şahin, A. Rücklé, J.-U. Lee, C. Schulz, M. Mesgar,
K. Swarnkar, E. Simpson, and I. Gurevych “Text Processing Like
Humans Do: Visually Attacking and Shielding NLP Systems,” in NAACL’19.

[123] Jayanthi, S. M., D. Pruthi, and G. Neubig “NeuSpell: A Neural
Spelling Correction Toolkit,” in EMNLP’20, Demo.

[124] Tagg, C. (2011) “Wot did he say 01" could u not c him 4 dust?: Written and
Spoken Creativity in Text Messaging,” Transforming literacies and language:
Multimodality and literacy in the new media age, 223.

134

[125] Köhler, W. (1967) “Gestalt psychology,” Psychologische Forschung, 31(1),
pp. XVIII–XXX.

[126] Jared, D. and M. S. Seidenberg (1991) “Does word identification pro-
ceed from spelling to sound to meaning?” Journal of Experimental Psychol-
ogy: General, 120(4), p. 358.

[127] Gough, P. B., J. Kavanagh, and I. Mattingly (1972) “One second of
reading,” Cambridge: MIT Press, pp. 331–358.

[128] Van Orden, G. C. (1987) “A ROWS is a ROSE: Spelling, sound, and
reading,” Memory & cognition, 15(3), pp. 181–198.

[129] Stephenson, C. (1980) “The methodology of historical census record link-
age: A user’s guide to the Soundex,” Journal of Family History, 5(1), pp.
112–115.

[130] Levenshtein, V. I. et al. (1966) “Binary codes capable of correcting
deletions, insertions, and reversals,” in Soviet physics doklady, vol. 10, Soviet
Union, pp. 707–710.

[131] Kochkina, E., M. Liakata, and A. Zubiaga “All-in-one: Multi-task
Learning for Rumour Verification,” in ACL’18.

[132] Gomez, R., J. Gibert, L. Gomez, and D. Karatzas (2020) “Exploring
hate speech detection in multimodal publications,” in WACV’20, pp. 1470–
1478.

[133] Wulczyn, E., N. Thain, and L. Dixon (2017), “Wikipedia Talk Labels:
Personal Attacks,” .
URL https://figshare.com/articles/dataset/Wikipedia_Talk_
Labels_Personal_Attacks/4054689/6

[134] Davidson, T., D. Warmsley, M. Macy, and I. Weber “Auto-
mated Hate Speech Detection and the Problem of Offensive Language,” in
ICWSM’17.

[135] Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov (2019)
“Roberta: A robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692.

[136] Zeng, G., F. Qi, Q. Zhou, T. Zhang, B. Hou, Y. Zang, Z. Liu,
and M. Sun (2021) “Openattack: An open-source textual adversarial attack
toolkit,” in ACL’21, Demo, pp. 363–371.

135

[137] Kim, Y. (2014) “Convolutional Neural Networks for Sentence Classification,”
in EMNLP’14, Doha, Qatar, pp. 1746–1751.

[138] Socher, R., A. Perelygin, J. Wu, J. Chuang, C. D. Manning,
A. Ng, and C. Potts (2013) “Recursive Deep Models for Semantic Com-
positionality Over a Sentiment Treebank,” in EMNLP’13.

[139] Le, T., N. Park, and D. Lee “SHIELD: Defending Textual Neural Net-
works against Black-Box Adversarial Attacks with Stochastic Multi-Expert
Patcher,” ACL’22.

[140] Le, T., L.-T. Tran, and D. Lee “Socialbots on Fire: Modeling Adver-
sarial Behaviors of Socialbots via Multi-Agent Hierarchical Reinforcement
Learning,” WWW’22.

136

Vita
Thai Le

Education
Aug 2017 – May 2022 The Pennsylvania State University (USA, PA) - P.h.D
in Information Sciences & Technology
Aug 2021 – Apr 2015 Ritsumeikan Asia Pacific University (Japan, Oita) -
B.S, International Management

Publication
[1] [ACL’22a] Thai Le, Noseong Park, Dongwon Lee. (2022). SHIELD: Defending

Textual Neural Networks against Black-Box Adversarial Attacks with Stochastic
Multi-Expert Patcher. 60th Annual Meeting of the Association for Computational
Linguistics (ACL).

[2] [ACL’22b] Thai Le, Jooyoung Lee, Kevin Yen, Yifan Hu, Dongwon Lee. (2022).
Perturbations in the Wild: Leveraging Human-Written Text Perturbations for
Realistic Adversarial Attack and Defense. 60th Annual Meeting of the Association
for Computational Linguistics (ACL) (Findings).

[3] [WWW’22] Thai Le, Long-Thanh Tran, Dongwon Lee (2022). Socialbots on
Fire: Modeling Adversarial Behaviors of Socialbots via Multi-Agent Hierarchical
Reinforcement Learning. The Web Conference (WWW).

[4] [ACL’21] Thai Le, Noseong Park, Dongwon Lee. (2021). A Sweet Rabbit Hole
by DARCY: Using Honeypots to Detect Universal Trigger’s Adversarial Attacks.
59th Annual Meeting of the Association for Computational Linguistics (ACL).

[5] [ICDM’20] Thai Le, Suhang Wang, Dongwon Lee. (2020). MALCOM: Gener-
ating Malicious Comments to Attack Neural Fake News Detection Models. 20th
IEEE International Conference on Data Mining (ICDM).

[6] [KDD’20] Thai Le, Suhang Wang, Dongwon Lee. (2020). GRACE: Generating
Concise and Informative Contrastive Sample to Explain Neural Network Model’s
Prediction. 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining (KDD).

[7] [ASONAM’19] Thai Le, Shu Kai, Maria Molina, Dongwon Lee, Shaym Sun-
dar, Huan Liu. (2019). 5 Sources of Clickbaits You Should Know! Using Syn-
thetic Clickbaits to Improve Prediction and Distinguish between Bot-Generated
and Human-Written Headlines. In IEEE/ACM Int’l Conf. on Social Networks
Analysis and Mining (ASONAM).

