EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE FOURTEEN: GENERAL LIE GROUPS

WILLIAM FULTON
NOTES BY DAVE ANDERSON

1

Let G be a complex semisimple linear algebraic group, with a Borel (i.e., maximal solvable) subgroup B, and maximal torus $T \subset B$. Our goal in this lecture is to describe $H_{T}^{*}(G / B)$ and $H_{T}^{*}(G / P)$, for $G \supset P \supset B$ a paraboloic subgroup.

We will need the language of roots and weights. The roots are the weights of T on the Lie algebra \mathfrak{g} of G, so

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\beta \in R} \mathfrak{g}_{\beta}
$$

where \mathfrak{h} is the Lie algebra of T, and \mathfrak{g}_{β} is the one-dimensional subspace of weight β. The positive roots are those occurring in the Lie algebra \mathfrak{b} of B, so

$$
\mathfrak{b}=\mathfrak{h} \oplus \bigoplus_{\beta \in R^{+}} \mathfrak{g}_{\beta}
$$

Then $R=R^{+} \cup R^{-}$, where the negative roots are $R^{-}=\left\{\alpha \mid-\alpha \in R^{+}\right\}$. The roots lie in M, and span the vector space $M_{\mathbb{R}}$.

The simple roots are the positive roots that are not positive sums of more than one positive root; there are n of them, forming a basis for $M_{\mathbb{R}}$. Let $S \subset R^{+}$be the set of simple roots. Any positive root β has a unique expression

$$
\begin{equation*}
\beta=\sum_{\alpha \in S} n_{\beta \alpha} \alpha \tag{1}
\end{equation*}
$$

for nonnegative integers $n_{\beta \alpha}$.
Each root β corresponds to a unipotent subgroup U_{β} of G, whose Lie algebra is \mathfrak{g}_{β}. There is an isomorphism of the additive Lie group $\mathbb{G}_{a} \cong \mathbb{C}$ with U_{β}; this is T-equivariant, with multiplication by $\beta(t)$ on \mathbb{C} corresponding to conjugation by t on $U_{\beta}\left(u \mapsto t u t^{-1}\right)$. The product of the groups U_{β} for $\beta \in R^{+}$forms a unipotent group U, isomorphic to \mathbb{C}^{N}, with $N=\# R^{+}$, and $B=T \cdot U$ is a semidirect product.

[^0]The Weyl group $W=N(T) / T$ acts on M, with the class w of $n_{w} \in N(T)$ taking a weight λ to the weight $w(\lambda)$ defined by

$$
w(\lambda)(t)=\lambda\left(n_{w}^{-1} t n_{w}\right) .
$$

(One verifies this is independent of the choice of n_{w}.) This determines an embedding of W in the automorphism group of M, and an inner product $($,$) on M_{\mathbb{R}}$ that is invariant under W.

Each root β determines an element $s_{\beta} \in W$, acting on $M_{\mathbb{R}}$ by the reflection

$$
s_{\beta}(v)=v-\frac{2(v, \beta)}{(\beta, \beta)} \beta .
$$

The reflections s_{α}, for simple roots α, generate W. The length $\ell(w)$ of $w \in W$ is the minimum ℓ such that w can be written as a product $s_{\alpha_{1}} \cdots s_{\alpha_{\ell}}$, for $\alpha_{1}, \ldots, \alpha_{\ell} \in S$. Such an expression $w=s_{\alpha_{1}} \cdots s_{\alpha_{\ell}}$, with $\ell=\ell(w)$, is called a reduced decomposition, and $\alpha_{1} \cdots \alpha_{\ell}$ is a reduced word for w.

There is a unique longest element w_{0}, whose length is $N=\# R^{+}$. The opposite Borel subgroup B^{-}is $w_{0} B w_{0}$. Its Lie algebra is

$$
\mathfrak{b}^{-}=\mathfrak{h} \oplus \bigoplus_{\beta \in R^{-}} \mathfrak{g}_{\beta} .
$$

2
Let $X=G / B$; this is a smooth variety of dimension N. The T-fixed points are the points $e(w)=n_{w} B / B$, for any lift n_{w} of w to $N(T)$.

The B-orbits are denoted $X^{o}(w)=B e(w)$, and isomorphic to an affine space of dimension $\ell(w)$. The closure $B e(w)$ is the Schubert variety corresponding to w, denoted $X(w)$; these are B-invariant subvarieties of X. Each $X(w)$ is a disjoint union of orbits $X^{o}(v)$, and one writes $v \leq w$ for those $X^{o}(v)$ that occur. That is, $v \leq w$ if and only if $X(v) \subseteq X(w)$. The filtration

$$
F_{0} \subset F_{1} \subset \cdots \subset F_{N}=X
$$

with $F_{p}=\bigcup_{\ell(w) \leq p} X(w)$, has $F_{p} \backslash F_{p-1}$ a union of affine spaces of dimension p. It follows that the classes $[X(w)]$ of these Schubert varieties form a basis for $H^{*} X$. Since each $X(w)$ is T-invariant, the classes

$$
x(w):=[X(w)]^{T}
$$

form a basis of $H_{T}^{*} X$ over Λ. Note that $x(w) \in H_{T}^{2(N-\ell(w))} X$.
Similarly, there are B^{-}-orbits $Y^{o}(w)=B^{-} e(w)$, and $Y(w)=\overline{Y^{o}(w)}$. The dimension of $Y(w)$ is $N-\ell(w)$. The classes

$$
y(w):=[Y(w)]^{T}
$$

also form a basis for $H_{T}^{*} X$, with $y(w) \in H_{T}^{2 \ell(w)} X$.
It is an important general fact that $v \leq w$ (i.e., $X(v) \subseteq X(w)$) if and only if $Y(v) \supseteq Y(w)$ [Che94, Prop. 5].

The tangent space to X at $e(i d)$ is $\bigoplus_{\beta \in R^{-}} \mathfrak{g}_{\beta}$. Translating by w (or n_{w}), we have

$$
T_{e(w)} X=\bigoplus_{\beta \in w\left(R^{-}\right)} \mathfrak{g}_{\beta} .
$$

The Schubert varieties $X(w)$ and $Y(w)$ are nonsingular at their central points $e(w)$, with

$$
\begin{aligned}
T_{e(w)} X(w) & =\bigoplus_{\beta \in w\left(R^{-}\right) \cap R^{+}} \mathfrak{g}_{\beta}, \text { and } \\
T_{e(w)} Y(w) & =\bigoplus_{\beta \in w\left(R^{-}\right) \cap R^{-}} \mathfrak{g}_{\beta} .
\end{aligned}
$$

In particular, $X(w)$ and $Y(w)$ meet transversally at the point $e(w)$.
Proposition 2.1. The bases $\{x(w)\}_{w \in W}$ and $\{y(w)\}_{w \in W}$ are Poincaré dual bases of $H_{T}^{*} X$. That is,

$$
\rho_{*}(x(u) \cdot y(v))=\delta_{u v} \in \Lambda .
$$

Proof. If $X(u) \cap Y(v)$ is not empty, then it has a T-fixed point $e(w)$. Then $X(w) \subset X(u)$ and $Y(w) \subset Y(v)$, so $v \leq w \leq u$. If $v \neq u$, this implies $\ell(v)<\ell(u)$, so codim $X(u)+\operatorname{codim} Y(v)>N$, and $\rho_{*}(x(u) \cdot y(v))=0$ for dimension reasons. If $v=u$, then transversality implies $x(u) \cdot y(u)=[e(u)]^{T}$, so $\rho_{*}(x(u) \cdot y(u))=1$. Finally, if $X(u) \cap Y(v)$ is empty, then $x(u) \cdot y(v)=$ 0 .

Corollary 2.2. Let $y(u) \cdot y(v)=\sum p_{u v}^{w} y(w)$, with $p_{u v}^{w} \in \Lambda$. Then $p_{u v}^{w}$ is in $\mathbb{Z}_{\geq 0}\left[\alpha_{1}, \ldots, \alpha_{n}\right]$, where $\alpha_{1}, \ldots, \alpha_{n}$ are the simple roots.

Proof. This is a special case of Graham's theorem, since the $y(w)$ are classes of B^{-}-invariant subvarieties.

3
Subgroups P with $G \supset P \supset B$ are called parabolic subgroups. There is a parabolic subgroup P_{J} for each subset of simple roots $J \subset S$. This P_{J} is generated by B and the groups $U_{-\beta}$ for β in the set R_{J}^{+}of positive roots which are sums of simple roots in J; its Lie algebra is

$$
\mathfrak{p}_{J}=\mathfrak{b} \oplus \bigoplus_{\beta \in R_{J}^{+}} \mathfrak{g}_{-\beta} .
$$

The associated Weyl group is $W_{P}=N_{P}(T) / T$, the subgroup of W generated by the simple reflections s_{α} for $\alpha \in J$.

For each parabolic subgroup $P=P_{J}$, every element (coset) in W / W_{P} has a unique representative w of minimal (resp., maximal) length, characterized by the property that $w(\alpha)$ is a positive (resp., negative) root for all $\alpha \in J$. We often write $[w]$ for the coset $w W_{P} / W_{P}$ determined by $w \in W$, and call
w a minimal (resp., maximal) representative if it has minimal (resp., maximal) length.

For $P=P_{J}$ paraboloic, the homogeneous variety $X_{J}=G / P$ has T-fixed points $e[w]$, with $[w] \in W / W_{P}$, where $e[w]=n_{w} P / P$. One has corresponding Schubert varieties $X[w]=\overline{B e[w]}$ and $Y[w]=\overline{B^{-} e[w]}$, with classes $x[w]=[X[w]]^{T}$ and $y[w]=[Y[w]]^{T}$ in $H_{T}^{*}\left(X_{J}\right)$.

Let R_{J}^{+}be as above, and let $R_{J}^{-}=\left\{\beta \in R^{-} \mid-\beta \in R_{J}^{+}\right\}$. The dimension of X_{J} is the number of positive roots not in R_{J}^{+}.

Let $\pi=\pi_{J}$ be the projection from $X=G / B$ onto $X_{J}=G / P$; this is G-equivariant. One has corresponding descriptions of the tangent spaces:

$$
\begin{aligned}
T_{e[w]} X_{J} & =\bigoplus_{\beta \in w\left(R^{-} \backslash R_{J}^{-}\right)} \mathfrak{g}_{\beta}, \\
T_{e[w]} X[w] & =\bigoplus_{\beta \in w\left(R^{-} \backslash R_{J}^{-}\right) \cap R^{+}} \mathfrak{g}_{\beta}, \text { and } \\
T_{e[w]} Y[w] & =\bigoplus_{\beta \in w\left(R^{-} \backslash R_{J}^{-}\right) \cap R^{-}} \mathfrak{g}_{\beta} .
\end{aligned}
$$

The dimension of $X[w]$ is the minimal length of a representative of $[w]$, and the codimension of $Y[w]$ is the minimal length of a representative of $[w]$. In fact, for w minimal, $X(w) \rightarrow X[w]$ determines an isomorphism $T_{e(w)} X(w) \rightarrow T_{e[w]} X[w]$ (since $w\left(R_{J}^{-}\right) \cap R^{+}=\emptyset$), so it gives an isomorphism from $X^{o}(w)$ to $X^{o}[w]=B e[w]$. In particular,

$$
\pi_{*}(x(w))=x[w] \text { for } w \text { minimal. }
$$

Similarly, we have an isomorphism $T_{e(w)} Y(w) \rightarrow T_{e[w]} Y[w]$ for w maximal, so

$$
\pi_{*}(y(w))=y[w] \text { for } w \text { maximal. }
$$

On the other hand, for w maximal, we have $\pi^{-1}(X[w])=X(w)$; notice that this set-theoretic equality is also scheme-theoretic, since π is a smooth morphism and these varieties are irreducible. Hence

$$
\pi^{*}(x[w])=x(w) \text { for } w \text { maximal, }
$$

and similarly,

$$
\pi^{*}(y[w])=y(w) \text { for } w \text { minimal. }
$$

As in the case of G / B, the sets $\{x[w]\}$ and $\{y[w]\}$ form bases for $H_{T}^{*}(G / P)$, as $[w]$ varies in W / W_{P}.

Exercise 3.1. Show that these are Poincaré dual bases. (Solution: For $\eta: G / P \rightarrow p t$, and w and v maximal representatives of $[w]$ and $[v]$, we have $\eta_{*}(x[w] \cdot y[v])=\eta_{*}\left(x[w] \cdot \pi_{*}(y(v))\right)=\eta_{*} \pi_{*}\left(\pi^{*} x[w] \cdot y(v)\right)=\rho_{*}(x(w) \cdot y(v))=$ $\left.\delta_{w v}.\right)$

Let $D_{J}: H_{T}^{*} X \rightarrow H_{T}^{*} X$ be the Λ-linear map defined by

$$
D_{J}=\left(\pi_{J}\right)^{*} \circ\left(\pi_{J}\right)_{*} .
$$

This lowers degree by twice the codimension, i.e., by $2 \#\left(R_{J}^{+}\right)$.
Lemma 3.2. (1) If w^{-}is the minimal representative of its coset in W / W_{P}, then

$$
D_{J}\left(x\left(w^{-}\right)\right)=x\left(w^{+}\right),
$$

where w^{+}is the maximal representative of the coset. If w is not minimal in its coset, then $D_{J}(x(w))=0$.
(2) If w^{+}is the maximal representative of its coset, then

$$
D_{J}\left(y\left(w^{+}\right)\right)=y\left(w^{-}\right)
$$

where w^{-}is the minimal representative. If w is not maximal in its coset, then $D_{J}(y(w))=0$.
Proof. This follows from the preceding discussion. Note that if w is not minimal, then $X(w)$ has larger dimension than its image $X[w]$, so $\pi_{*}[X(w)]^{T}=0$, and similarly for $Y(w)$ if w is not maximal.

We will use these operators primarily when J consists of one simple root α, so P_{J} is a minimal parabolic subgroup. In this case, W_{J} is the group of order two generated by s_{α}, and each coset has two representatives, w and $w s_{\alpha}$, whose lengths differ by 1 . If $\ell\left(w s_{\alpha}\right)=\ell(w)+1$, then for $D_{\alpha}=D_{\{\alpha\}}$, we have

$$
\begin{array}{ll}
D_{\alpha}(x(w))=x\left(w s_{\alpha}\right), & D_{\alpha}\left(x\left(w s_{\alpha}\right)\right)=0 ; \\
D_{\alpha}\left(y\left(w s_{\alpha}\right)\right)=y(w), & D_{\alpha}(y(w))=0 .
\end{array}
$$

Exercise 3.3. If α is a simple root, and $u, v \in W$ with $\ell\left(u s_{\alpha}\right)>\ell(u)$ and $\ell\left(v s_{\alpha}\right)<\ell(v)$, then

$$
D_{\alpha}(y(u) \cdot y(v))=y(u) \cdot y\left(v s_{\alpha}\right)
$$

(Solution: Write $D_{\alpha}=\left(\pi_{\alpha}\right)^{*} \circ\left(\pi_{\alpha}\right)_{*}, y(u)=\pi_{\alpha}^{*} y[u],\left(\pi_{\alpha}\right)_{*} y(v)=y[v]$, and $\pi_{\alpha}^{*} y[v]=y\left(v s_{\alpha}\right)$, so

$$
\begin{aligned}
D_{\alpha}(y(u) \cdot y(v)) & =\pi_{\alpha}^{*}\left(\left(\pi_{\alpha}\right)_{*}\left(\pi_{\alpha}^{*} y[u] \cdot y(v)\right)\right) \\
& =\pi_{\alpha}^{*}\left(y[u] \cdot\left(\pi_{\alpha}\right)_{*} y(v)\right) \\
& =\pi_{\alpha}^{*}(y[u] \cdot y[v]) \\
& \left.=\pi_{\alpha}^{*} y[u] \cdot \pi_{\alpha}^{*} y[v] .\right)
\end{aligned}
$$

For any sequence $\alpha_{1}, \ldots, \alpha_{\ell}$ of simple roots, we have the composition

$$
D_{\alpha_{1}} \circ \cdots \circ D_{\alpha_{\ell}}: H_{T}^{*}(X) \rightarrow H_{T}^{*-2 \ell}(X) .
$$

This takes $y(w)$ to $y\left(w s_{\alpha_{1}} \cdots s_{\alpha_{\ell}}\right)$ if $\ell\left(w s_{\alpha_{1}} \cdots s_{\alpha_{\ell}}\right)=\ell(w)-\ell$, and takes $y(w)$ to 0 otherwise; and similarly for the $x(w)$'s. Since the classes $y(w)$ form a basis for $H_{T}^{*} X$, it follows that if the length of $s_{\alpha_{1}} \cdots s_{\alpha_{\ell}}$ is less than ℓ, then $D_{\alpha_{1}} \circ \cdots \circ D_{\alpha_{\ell}}=0$; on the other hand, if $s_{\alpha_{1}} \cdots s_{\alpha_{\ell}}$ is a reduced decomposition
for v, then $D_{\alpha_{1}} \circ \cdots \circ D_{\alpha_{\ell}}$ depends only on v, and can be denoted D_{v}. Indeed, $D_{v}(y(w))=y(w v)$ if $\ell(w v)=\ell(w)+\ell(v)$, and $D_{v}(y(w))=0$ otherwise. In addition, $D_{u} \circ D_{v}=D_{u v}$ if $\ell(u v)=\ell(u)+\ell(v)$, and $D_{u} \circ D_{v}=0$ otherwise.

It follows from the preceding discussion that π^{*} embeds $H_{T}^{*}(G / P)$ in $H_{T}^{*}(G / B)$, taking Schubert classes to Schubert classes.

Remark 3.4. As in [Ber-Gel-Gel73] and [Dem74] (cf. [Ara89, §3.7]), the operators D_{w} can be defined via a correspondence: Let $Z(w) \subset X \times X$ be the closure of $G \cdot(e(i d) \times e(w))$, with G acting diagonally. Then D_{w} is $\left(p_{1}\right)_{*} \circ\left(p_{2}\right)^{*}$, where p_{1} and p_{2} are the projections from $Z(w)$ to X. In particular, $Z\left(s_{i}\right)=X \times_{X_{i}} X$, where $X_{i}=X_{\left\{\alpha_{i}\right\}}$. For $w=s_{i} v$, with $\ell(w)=$ $\ell(v)+1$, we have a diagram

The map $\widetilde{Z}(w) \rightarrow Z(w)$ (by the projection p_{13}) is birational and surjective, from which it follows that $D_{w}=D_{s_{i}} \circ D_{v}$.

Remark 3.5. The literature also contains operators $\mathscr{L}_{w}: H_{T}^{*} X \rightarrow \Lambda$ (cf. [Ara86], [Ara89]). In our language, $\mathscr{L}_{w}(x)=\rho_{*}(x \cdot x(w))$. Equivalently, by Poincaré duality, $\mathscr{L}_{w}(x)$ is the coefficient of $y(w)$ in the expansion of x; i.e.,

$$
x=\sum \mathscr{L}_{w}(x) y(w) .
$$

4
Let Q be the quotient field of Λ, and let $F(W, Q)$ be the Q-algebra of functions from W to Q. We know that the localization map

$$
H_{T}^{*} X \rightarrow H_{T}^{*} X^{T}=\bigoplus_{w \in W} H_{T}^{*}(e(w))
$$

embeds $H_{T}^{*} X$ in the space $F(W, \Lambda)$ of functions from W to Λ, by $x \mapsto(w \mapsto$ $\left.\left.x\right|_{w}\right)$, and hence $H_{T}^{*} X \hookrightarrow F(W, Q)$.

For a simple root α, define the Q-linear map $A_{\alpha}: F(W, Q) \rightarrow F(W, Q)$ by the formula

$$
\left(A_{\alpha} \psi\right)(w)=\frac{\psi\left(w s_{\alpha}\right)-\psi(w)}{w(\alpha)} .
$$

Proposition 4.1. The diagram

commutes.
Proof. Since the inclusion $H_{T}^{*} X^{T} \rightarrow H_{T}^{*} X$ given by the Gysin map is an isomorphism after tensoring with Q (over Λ), it suffices to show that the two paths around the diagram agree on elements of the form $x=\left(\iota_{v}\right)_{*}(1)$, where $\iota_{v}:\{e(v)\} \rightarrow X$ is the inclusion. Such an x localizes to the function ψ_{v}, defined by

$$
\psi_{v}(v)=\left(\iota_{v}\right)^{*}\left(\iota_{v}\right)_{*}(1)=c_{t o p}^{T}\left(T_{e(v)} X\right)=\prod_{\beta \in v\left(R^{-}\right)} \beta
$$

and $\psi_{v}(w)=0$ for $w \neq v$.
Then

$$
\begin{aligned}
A_{\alpha}\left(\psi_{v}\right)(v) & =-\frac{\psi_{v}(v)}{v(\alpha)} \\
A_{\alpha}\left(\psi_{v}\right)\left(v s_{\alpha}\right) & =\frac{\psi_{v}(v)}{v s_{\alpha}(\alpha)}=-\frac{\psi_{v}(v)}{v(\alpha)}
\end{aligned}
$$

and $A_{\alpha}\left(\psi_{v}\right)(w)=0$ for $w \notin\left\{v, v s_{\alpha}\right\}$.
Going the other way around the diagram, we have $D_{\alpha}(x)=\left(\pi_{\alpha}\right)^{*}\left(\pi_{\alpha}\right)_{*}\left(\iota_{v}\right)_{*}(1)$. Then $\left.D_{\alpha}(x)\right|_{w}=\iota_{w}^{*}\left(\pi_{\alpha}\right)^{*}\left(\pi_{\alpha}\right)_{*}\left(\iota_{v}\right)_{*}(1)=\left(\iota_{[w]}\right)^{*}\left(\iota_{[v]}\right)_{*}(1)$, where $\iota_{[w]}=\iota_{w} \circ \pi_{\alpha}$ is the inclusion of the point $e[w]$ in $X_{\alpha}=G / P_{\alpha}$. (Here $e(w)$ and $e[w]$ are identified.) Therefore $\left.D_{\alpha}(x)\right|_{w}=0$ if $[w] \neq[v]$, and

$$
\left.D_{\alpha}(x)\right|_{v s_{\alpha}}=\left.D_{\alpha}(x)\right|_{v}=c_{t o p}^{T}\left(T_{e[v]} X_{\alpha}\right)
$$

But

$$
T_{e[v]} X_{\alpha}=\bigoplus_{\beta \in v\left(R^{-} \backslash\{-\alpha\}\right)} g_{\beta}
$$

so $c_{\text {top }}^{T}\left(T_{e[v]} X_{\alpha}\right)$ is equal to $c_{\text {top }}^{T}\left(T_{e(v)} X\right) /(-v(\alpha))$, which is the same as the value of $A_{\alpha}\left(\psi_{v}\right)$ at v.

Corollary 4.2. A composition $A_{\alpha_{1}} \circ \cdots \circ A_{\alpha_{\ell}}$ vanishes if the length of $s_{\alpha_{1}} \cdots s_{\alpha_{\ell}}$ is less than ℓ, and depends only on $v=s_{\alpha_{1}} \cdots s_{\alpha_{\ell}}$ if $\ell(v)=\ell$. Writing A_{v} for $A_{\alpha_{1}} \circ \cdots \circ A_{\alpha_{\ell}}$ for an reduced word for v, we have $A_{v} \circ A_{w}=$ $A_{v w}$ if $\ell(v w)=\ell(v)+\ell(w)$, and $A_{v} \circ A_{w}=0$ otherwise.

Proof. This follows from the corresponding results for the operators D_{α}, and the commutativity of the diagram in the proposition.

Lemma 4.3. (1) $\left.y\left(s_{\alpha}\right)\right|_{w}=\varpi_{\alpha}-w\left(\varpi_{\alpha}\right)$.
(2) $\left.x\left(w_{0} s_{\alpha}\right)\right|_{w}=w_{0}\left(\varpi_{\alpha}\right)-w\left(\varpi_{\alpha}\right)$.

Proof. For (1), let $f_{\alpha}(w)=\left.y\left(s_{\alpha}\right)\right|_{w}$. We know that
(i) $f_{\alpha}(i d)=0$,
since $e(i d)$ is not contained in $Y\left(s_{\alpha}\right)$. Since $D_{\beta}\left(y\left(s_{\alpha}\right)\right)=0$ for any simple root $\beta \neq \alpha$, Proposition 4.1 says that $A_{\beta}\left(f_{\alpha}\right)=0$, i.e.,
(ii) $f_{\alpha}\left(w s_{\beta}\right)=f_{\alpha}(w)$ for simple roots $\beta \neq \alpha$, for any w.

Similarly, $D_{\alpha}\left(y\left(s_{\alpha}\right)\right)=y(i d)=1$ gives $A_{\alpha}\left(f_{\alpha}\right)=1$, i.e.,
(iii) $f_{\alpha}\left(w s_{\alpha}\right)=f_{\alpha}(w)+w(\alpha)$ for all w.

The function $f_{\alpha}: W \rightarrow \Lambda$ (or $W \rightarrow Q$) is uniquely determined by properties (i), (ii), and (iii). Indeed, the difference of two such functions would take the same values at any w and $w s_{\beta}$, for all simple roots β, so it must be constant. (Every w has the form $w_{0} s_{\beta_{1}} \cdots s_{\beta_{\ell}}$.) By (i), this constant must be zero.

Now the function $f_{\alpha}(w)=\varpi_{\alpha}-w\left(\varpi_{\alpha}\right)$ clearly satisfies (i), and it satisfies (ii) and (iii) since

$$
\begin{aligned}
f_{\alpha}\left(w s_{\beta}\right) & =\varpi_{\alpha}-w s_{\beta}\left(\varpi_{\alpha}\right) \\
& =\varpi_{\alpha}-w\left(\varpi_{\alpha}-\delta_{\alpha \beta} \beta\right) \\
& =f_{\alpha}(w)+\delta_{\alpha \beta} w(\beta)
\end{aligned}
$$

Similarly, to prove (2), note that the function $f_{\alpha}(w)=\left.x\left(w_{0} s_{\alpha}\right)\right|_{w}$ satisfies (i') $f_{\alpha}\left(w_{0}\right)=0$,
together with (ii) and (iii) (since $D_{\beta}\left(x\left(w_{0} s_{\alpha}\right)\right)=\delta_{\alpha \beta} x\left(w_{0}\right)$, and $x\left(w_{0}\right)=1$). The same argument shows there is a unique such function, and that $f_{\alpha}(w)=$ $w_{0}\left(\varpi_{\alpha}\right)-w\left(\varpi_{\alpha}\right)$ satisfies (i^{\prime}), (ii), and (iii).
Corollary 4.4. $y\left(s_{\alpha}\right)-x\left(w_{0} s_{\alpha}\right)=\varpi_{\alpha}-w_{0}\left(\varpi_{\alpha}\right)$.
Proof. The two sides have the same localization at every fixed point.
Remark 4.5. In type $A_{n}, w_{0}\left(\varpi_{i}\right)=-\varpi_{n+1-i}$, so $y\left(s_{\alpha}\right)-x\left(w_{0} s_{\alpha}\right)=\varpi_{i}+$ ϖ_{n+1-i}.

We will give another formula for the localizations $\left.y\left(s_{\alpha}\right)\right|_{w}$, and for general $\left.y(v)\right|_{w}$, in the next chapter.

Corollary 4.6. If $v \neq w$, there is a simple root α such that $\left.y\left(s_{\alpha}\right)\right|_{v} \neq$ $\left.y\left(s_{\alpha}\right)\right|_{w}$, and $\left.x\left(w_{0} s_{\alpha}\right)\right|_{v} \neq\left. x\left(w_{0} s_{\alpha}\right)\right|_{w}$.
Proof. Since the weights ϖ_{α} form a basis for $M_{\mathbb{R}}$, there is an α such that $v\left(\varpi_{\alpha}\right) \neq w\left(\varpi_{\alpha}\right)$.

Exercise 4.7. For $\lambda \in M$, show that

$$
c_{1}^{T}(L(\lambda))=\sum_{\alpha \in S} a_{\alpha} y\left(s_{\alpha}\right)+\lambda,
$$

where $a_{\alpha}=-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)}$. (It suffices to do this for $\lambda=\varpi_{\alpha}$, where $c_{1}^{T}\left(L\left(\varpi_{\alpha}\right)\right)=$ $\varpi_{\alpha}-y\left(s_{\alpha}\right)$, as is seen by evaluating both sides at $w \in W$.)

References

[Ara86] A. Arabia, "Cycles de Schubert et cohomologie équivariante de K / T," Invent. Math. 85 (1986), no. 1, 39-52.
[Ara89] A. Arabia, "Cohomologie T-équivariante de la variété de drapeaux d'un groupe de Kac-Moody," Bull. Soc. Math. France 117 (1989), no. 2, 129-165.
[Ber-Gel-Gel73] I. Bernstein, I. Gelfand, and S. Gelfand, "Schubert cells and cohomology of the spaces $G / P, "$ Russian Math. Surveys 28 (1973), 1-26.
[Che94] C. Chevalley, "Sur les décompositions cellulaires des espaces G / B," Proc. Sympos. Pure Math. 56 1-23, Amer. Math. Soc., Providence, 1994.
[Dem74] M. Demazure, "Désingularisation des variétés de Schubert généralisées," Ann. Sci. cole Norm. Sup. (4) 7 (1974), 53-88.

[^0]: Date: May 29, 2007.

