EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE FOURTEEN: GENERAL LIE GROUPS

WILLIAM FULTON NOTES BY DAVE ANDERSON

1

Let G be a complex semisimple linear algebraic group, with a Borel (i.e., maximal solvable) subgroup B, and maximal torus $T \subset B$. Our goal in this lecture is to describe $H_T^*(G/B)$ and $H_T^*(G/P)$, for $G \supset P \supset B$ a paraboloic subgroup.

We will need the language of roots and weights. The **roots** are the weights of T on the Lie algebra \mathfrak{g} of G, so

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{eta \in R} \mathfrak{g}_{eta},$$

where \mathfrak{h} is the Lie algebra of T, and \mathfrak{g}_{β} is the one-dimensional subspace of weight β . The **positive roots** are those occurring in the Lie algebra \mathfrak{b} of B, so

$$\mathfrak{b} = \mathfrak{h} \oplus \bigoplus_{\beta \in R^+} \mathfrak{g}_{\beta}.$$

Then $R = R^+ \cup R^-$, where the **negative roots** are $R^- = \{\alpha \mid -\alpha \in R^+\}$. The roots lie in M, and span the vector space $M_{\mathbb{R}}$.

The **simple roots** are the positive roots that are not positive sums of more than one positive root; there are n of them, forming a basis for $M_{\mathbb{R}}$. Let $S \subset R^+$ be the set of simple roots. Any positive root β has a unique expression

(1)
$$\beta = \sum_{\alpha \in S} n_{\beta \alpha} \alpha,$$

for nonnegative integers $n_{\beta\alpha}$.

Each root β corresponds to a unipotent subgroup U_{β} of G, whose Lie algebra is \mathfrak{g}_{β} . There is an isomorphism of the additive Lie group $\mathbb{G}_a \cong \mathbb{C}$ with U_{β} ; this is T-equivariant, with multiplication by $\beta(t)$ on \mathbb{C} corresponding to conjugation by t on U_{β} ($u \mapsto tut^{-1}$). The product of the groups U_{β} for $\beta \in \mathbb{R}^+$ forms a unipotent group U, isomorphic to \mathbb{C}^N , with $N = \#\mathbb{R}^+$, and $B = T \cdot U$ is a semidirect product.

Date: May 29, 2007.

The Weyl group W = N(T)/T acts on M, with the class w of $n_w \in N(T)$ taking a weight λ to the weight $w(\lambda)$ defined by

$$w(\lambda)(t) = \lambda(n_w^{-1}tn_w).$$

(One verifies this is independent of the choice of n_w .) This determines an embedding of W in the automorphism group of M, and an inner product (,) on $M_{\mathbb{R}}$ that is invariant under W.

Each root β determines an element $s_{\beta} \in W$, acting on $M_{\mathbb{R}}$ by the reflection

$$s_{\beta}(v) = v - \frac{2(v,\beta)}{(\beta,\beta)}\beta.$$

The reflections s_{α} , for simple roots α , generate W. The **length** $\ell(w)$ of $w \in W$ is the minimum ℓ such that w can be written as a product $s_{\alpha_1} \cdots s_{\alpha_\ell}$, for $\alpha_1, \ldots, \alpha_\ell \in S$. Such an expression $w = s_{\alpha_1} \cdots s_{\alpha_\ell}$, with $\ell = \ell(w)$, is called a **reduced decomposition**, and $\alpha_1 \cdots \alpha_\ell$ is a **reduced word** for w.

There is a unique **longest element** w_0 , whose length is $N = \#R^+$. The **opposite Borel subgroup** B^- is w_0Bw_0 . Its Lie algebra is

$$\mathfrak{b}^- = \mathfrak{h} \oplus \bigoplus_{\beta \in R^-} \mathfrak{g}_{\beta}.$$

 $\mathbf{2}$

Let X = G/B; this is a smooth variety of dimension N. The T-fixed points are the points $e(w) = n_w B/B$, for any lift n_w of w to N(T).

The *B*-orbits are denoted $X^o(w) = Be(w)$, and isomorphic to an affine space of dimension $\ell(w)$. The closure $\overline{Be(w)}$ is the **Schubert variety** corresponding to w, denoted X(w); these are *B*-invariant subvarieties of X. Each X(w) is a disjoint union of orbits $X^o(v)$, and one writes $v \leq w$ for those $X^o(v)$ that occur. That is, $v \leq w$ if and only if $X(v) \subseteq X(w)$. The filtration

$$F_0 \subset F_1 \subset \cdots \subset F_N = X,$$

with $F_p = \bigcup_{\ell(w) \leq p} X(w)$, has $F_p \setminus F_{p-1}$ a union of affine spaces of dimension p. It follows that the classes [X(w)] of these Schubert varieties form a basis for H^*X . Since each X(w) is T-invariant, the classes

$$x(w) := [X(w)]^T$$

form a basis of H_T^*X over Λ . Note that $x(w) \in H_T^{2(N-\ell(w))}X$.

Similarly, there are B^- -orbits $Y^o(w) = B^-e(w)$, and $Y(w) = \overline{Y^o(w)}$. The dimension of Y(w) is $N - \ell(w)$. The classes

$$y(w) := [Y(w)]^T$$

also form a basis for H_T^*X , with $y(w) \in H_T^{2\ell(w)}X$.

It is an important general fact that $v \leq w$ (i.e., $X(v) \subseteq X(w)$) if and only if $Y(v) \supseteq Y(w)$ [Che94, Prop. 5].

The tangent space to X at e(id) is $\bigoplus_{\beta \in R^-} \mathfrak{g}_{\beta}$. Translating by w (or n_w), we have

$$T_{e(w)}X = \bigoplus_{\beta \in w(R^-)} \mathfrak{g}_{\beta}.$$

The Schubert varieties X(w) and Y(w) are nonsingular at their central points e(w), with

$$T_{e(w)}X(w) = \bigoplus_{\beta \in w(R^{-}) \cap R^{+}} \mathfrak{g}_{\beta}, \text{ and}$$
$$T_{e(w)}Y(w) = \bigoplus_{\beta \in w(R^{-}) \cap R^{-}} \mathfrak{g}_{\beta}.$$

In particular, X(w) and Y(w) meet transversally at the point e(w).

Proposition 2.1. The bases $\{x(w)\}_{w \in W}$ and $\{y(w)\}_{w \in W}$ are Poincaré dual bases of H_T^*X . That is,

$$\rho_*(x(u) \cdot y(v)) = \delta_{uv} \in \Lambda.$$

Proof. If $X(u) \cap Y(v)$ is not empty, then it has a *T*-fixed point e(w). Then $X(w) \subset X(u)$ and $Y(w) \subset Y(v)$, so $v \leq w \leq u$. If $v \neq u$, this implies $\ell(v) < \ell(u)$, so codim $X(u) + \operatorname{codim} Y(v) > N$, and $\rho_*(x(u) \cdot y(v)) = 0$ for dimension reasons. If v = u, then transversality implies $x(u) \cdot y(u) = [e(u)]^T$, so $\rho_*(x(u) \cdot y(u)) = 1$. Finally, if $X(u) \cap Y(v)$ is empty, then $x(u) \cdot y(v) = 0$.

Corollary 2.2. Let $y(u) \cdot y(v) = \sum p_{uv}^w y(w)$, with $p_{uv}^w \in \Lambda$. Then p_{uv}^w is in $\mathbb{Z}_{\geq 0}[\alpha_1, \ldots, \alpha_n]$, where $\alpha_1, \ldots, \alpha_n$ are the simple roots.

Proof. This is a special case of Graham's theorem, since the y(w) are classes of B^- -invariant subvarieties.

 $\mathbf{3}$

Subgroups P with $G \supset P \supset B$ are called **parabolic subgroups**. There is a parabolic subgroup P_J for each subset of simple roots $J \subset S$. This P_J is generated by B and the groups $U_{-\beta}$ for β in the set R_J^+ of positive roots which are sums of simple roots in J; its Lie algebra is

$$\mathfrak{p}_J = \mathfrak{b} \oplus igoplus_{eta \in R_J^+} \mathfrak{g}_{-eta}.$$

The associated Weyl group is $W_P = N_P(T)/T$, the subgroup of W generated by the simple reflections s_α for $\alpha \in J$.

For each parabolic subgroup $P = P_J$, every element (coset) in W/W_P has a unique representative w of minimal (resp., maximal) length, characterized by the property that $w(\alpha)$ is a positive (resp., negative) root for all $\alpha \in J$. We often write [w] for the coset wW_P/W_P determined by $w \in W$, and call w a minimal (resp., maximal) representative if it has minimal (resp., maximal) length.

For $P = P_J$ paraboloic, the homogeneous variety $X_J = G/P$ has T-fixed points e[w], with $[w] \in W/W_P$, where $e[w] = n_w P/P$. One has corresponding Schubert varieties $X[w] = \overline{Be[w]}$ and $Y[w] = \overline{B^-e[w]}$, with classes $x[w] = [X[w]]^T$ and $y[w] = [Y[w]]^T$ in $H_T^*(X_J)$.

Let R_J^+ be as above, and let $R_J^- = \{\beta \in R^- \mid -\beta \in R_J^+\}$. The dimension of X_J is the number of positive roots not in R_J^+ .

Let $\pi = \pi_J$ be the projection from X = G/B onto $X_J = G/P$; this is G-equivariant. One has corresponding descriptions of the tangent spaces:

$$T_{e[w]}X_J = \bigoplus_{\beta \in w(R^- \smallsetminus R_J^-)} \mathfrak{g}_{\beta},$$

$$T_{e[w]}X[w] = \bigoplus_{\beta \in w(R^- \smallsetminus R_J^-) \cap R^+} \mathfrak{g}_{\beta}, \text{ and }$$

$$T_{e[w]}Y[w] = \bigoplus_{\beta \in w(R^- \smallsetminus R_J^-) \cap R^-} \mathfrak{g}_{\beta}.$$

The dimension of X[w] is the minimal length of a representative of [w], and the codimension of Y[w] is the minimal length of a representative of [w]. In fact, for w minimal, $X(w) \to X[w]$ determines an isomorphism $T_{e(w)}X(w) \to T_{e[w]}X[w]$ (since $w(R_J^-) \cap R^+ = \emptyset$), so it gives an isomorphism from $X^o(w)$ to $X^o[w] = Be[w]$. In particular,

$$\pi_*(x(w)) = x[w]$$
 for w minimal.

Similarly, we have an isomorphism $T_{e(w)}Y(w) \to T_{e[w]}Y[w]$ for w maximal, so

$$\pi_*(y(w)) = y[w]$$
 for w maximal.

On the other hand, for w maximal, we have $\pi^{-1}(X[w]) = X(w)$; notice that this set-theoretic equality is also scheme-theoretic, since π is a smooth morphism and these varieties are irreducible. Hence

$$\pi^*(x[w]) = x(w)$$
 for w maximal,

and similarly,

$$\pi^*(y[w]) = y(w)$$
 for w minimal.

As in the case of G/B, the sets $\{x[w]\}$ and $\{y[w]\}$ form bases for $H_T^*(G/P)$, as [w] varies in W/W_P .

Exercise 3.1. Show that these are Poincaré dual bases. (Solution: For $\eta: G/P \to pt$, and w and v maximal representatives of [w] and [v], we have $\eta_*(x[w] \cdot y[v]) = \eta_*(x[w] \cdot \pi_*(y(v))) = \eta_*\pi_*(\pi^*x[w] \cdot y(v)) = \rho_*(x(w) \cdot y(v)) = \delta_{wv}$.)

Let
$$D_J: H^*_T X \to H^*_T X$$
 be the Λ -linear map defined by

$$D_J = (\pi_J)^* \circ (\pi_J)_*.$$

This lowers degree by twice the codimension, i.e., by $2\#(R_I^+)$.

Lemma 3.2. (1) If w^- is the minimal representative of its coset in W/W_P , then

$$D_J(x(w^-)) = x(w^+),$$

where w^+ is the maximal representative of the coset. If w is not minimal in its coset, then $D_J(x(w)) = 0$.

(2) If w^+ is the maximal representative of its coset, then

$$D_J(y(w^+)) = y(w^-),$$

where w^- is the minimal representative. If w is not maximal in its coset, then $D_J(y(w)) = 0$.

Proof. This follows from the preceding discussion. Note that if w is not minimal, then X(w) has larger dimension than its image X[w], so $\pi_*[X(w)]^T = 0$, and similarly for Y(w) if w is not maximal.

We will use these operators primarily when J consists of one simple root α , so P_J is a minimal parabolic subgroup. In this case, W_J is the group of order two generated by s_{α} , and each coset has two representatives, w and ws_{α} , whose lengths differ by 1. If $\ell(ws_{\alpha}) = \ell(w) + 1$, then for $D_{\alpha} = D_{\{\alpha\}}$, we have

$$D_{\alpha}(x(w)) = x(ws_{\alpha}), \qquad D_{\alpha}(x(ws_{\alpha})) = 0;$$

$$D_{\alpha}(y(ws_{\alpha})) = y(w), \qquad D_{\alpha}(y(w)) = 0.$$

Exercise 3.3. If α is a simple root, and $u, v \in W$ with $\ell(us_{\alpha}) > \ell(u)$ and $\ell(vs_{\alpha}) < \ell(v)$, then

$$D_{\alpha}(y(u) \cdot y(v)) = y(u) \cdot y(vs_{\alpha}).$$

(Solution: Write $D_{\alpha} = (\pi_{\alpha})^* \circ (\pi_{\alpha})_*$, $y(u) = \pi_{\alpha}^* y[u]$, $(\pi_{\alpha})_* y(v) = y[v]$, and $\pi_{\alpha}^* y[v] = y(vs_{\alpha})$, so

$$D_{\alpha}(y(u) \cdot y(v)) = \pi_{\alpha}^{*}((\pi_{\alpha})_{*}(\pi_{\alpha}^{*}y[u] \cdot y(v)))$$

= $\pi_{\alpha}^{*}(y[u] \cdot (\pi_{\alpha})_{*}y(v))$
= $\pi_{\alpha}^{*}(y[u] \cdot y[v])$
= $\pi_{\alpha}^{*}y[u] \cdot \pi_{\alpha}^{*}y[v].)$

For any sequence $\alpha_1, \ldots, \alpha_\ell$ of simple roots, we have the composition

$$D_{\alpha_1} \circ \cdots \circ D_{\alpha_\ell} : H^*_T(X) \to H^{*-2\ell}_T(X)$$

This takes y(w) to $y(ws_{\alpha_1}\cdots s_{\alpha_\ell})$ if $\ell(ws_{\alpha_1}\cdots s_{\alpha_\ell}) = \ell(w) - \ell$, and takes y(w) to 0 otherwise; and similarly for the x(w)'s. Since the classes y(w) form a basis for H_T^*X , it follows that if the length of $s_{\alpha_1}\cdots s_{\alpha_\ell}$ is less than ℓ , then $D_{\alpha_1}\circ\cdots\circ D_{\alpha_\ell} = 0$; on the other hand, if $s_{\alpha_1}\cdots s_{\alpha_\ell}$ is a reduced decomposition

§14 GENERAL LIE GROUPS

for v, then $D_{\alpha_1} \circ \cdots \circ D_{\alpha_\ell}$ depends only on v, and can be denoted D_v . Indeed, $D_v(y(w)) = y(wv)$ if $\ell(wv) = \ell(w) + \ell(v)$, and $D_v(y(w)) = 0$ otherwise. In addition, $D_u \circ D_v = D_{uv}$ if $\ell(uv) = \ell(u) + \ell(v)$, and $D_u \circ D_v = 0$ otherwise.

It follows from the preceding discussion that π^* embeds $H^*_T(G/P)$ in $H^*_T(G/B)$, taking Schubert classes to Schubert classes.

Remark 3.4. As in [Ber-Gel-Gel73] and [Dem74] (cf. [Ara89, §3.7]), the operators D_w can be defined via a correspondence: Let $Z(w) \subset X \times X$ be the closure of $G \cdot (e(id) \times e(w))$, with G acting diagonally. Then D_w is $(p_1)_* \circ (p_2)^*$, where p_1 and p_2 are the projections from Z(w) to X. In particular, $Z(s_i) = X \times_{X_i} X$, where $X_i = X_{\{\alpha_i\}}$. For $w = s_i v$, with $\ell(w) = \ell(v) + 1$, we have a diagram

The map $Z(w) \to Z(w)$ (by the projection p_{13}) is birational and surjective, from which it follows that $D_w = D_{s_i} \circ D_v$.

Remark 3.5. The literature also contains operators $\mathscr{L}_w : H_T^*X \to \Lambda$ (cf. [Ara86], [Ara89]). In our language, $\mathscr{L}_w(x) = \rho_*(x \cdot x(w))$. Equivalently, by Poincaré duality, $\mathscr{L}_w(x)$ is the coefficient of y(w) in the expansion of x; i.e.,

$$x = \sum \mathscr{L}_w(x) \, y(w).$$

4

Let Q be the quotient field of Λ , and let F(W,Q) be the Q-algebra of functions from W to Q. We know that the localization map

$$H_T^*X \to H_T^*X^T = \bigoplus_{w \in W} H_T^*(e(w))$$

embeds H_T^*X in the space $F(W, \Lambda)$ of functions from W to Λ , by $x \mapsto (w \mapsto x|_w)$, and hence $H_T^*X \hookrightarrow F(W, Q)$.

For a simple root α , define the Q-linear map $A_{\alpha} : F(W,Q) \to F(W,Q)$ by the formula

$$(A_{\alpha}\psi)(w) = \frac{\psi(ws_{\alpha}) - \psi(w)}{w(\alpha)}$$

 $\mathbf{6}$

Proposition 4.1. The diagram

$$H_T^*X \hookrightarrow F(W,Q)$$

$$D_\alpha \downarrow \qquad \qquad \downarrow A_\alpha$$

$$H_T^*X \hookrightarrow F(W,Q)$$

commutes.

Proof. Since the inclusion $H_T^*X^T \to H_T^*X$ given by the Gysin map is an isomorphism after tensoring with Q (over Λ), it suffices to show that the two paths around the diagram agree on elements of the form $x = (\iota_v)_*(1)$, where $\iota_v : \{e(v)\} \to X$ is the inclusion. Such an x localizes to the function ψ_v , defined by

$$\psi_v(v) = (\iota_v)^*(\iota_v)_*(1) = c_{top}^T(T_{e(v)}X) = \prod_{\beta \in v(R^-)} \beta,$$

and $\psi_v(w) = 0$ for $w \neq v$.

Then

$$\begin{aligned} A_{\alpha}(\psi_{v})(v) &= -\frac{\psi_{v}(v)}{v(\alpha)}, \\ A_{\alpha}(\psi_{v})(vs_{\alpha}) &= \frac{\psi_{v}(v)}{vs_{\alpha}(\alpha)} = -\frac{\psi_{v}(v)}{v(\alpha)}, \end{aligned}$$

and $A_{\alpha}(\psi_v)(w) = 0$ for $w \notin \{v, vs_{\alpha}\}.$

Going the other way around the diagram, we have $D_{\alpha}(x) = (\pi_{\alpha})^*(\pi_{\alpha})_*(\iota_v)_*(1)$. Then $D_{\alpha}(x)|_w = \iota_w^*(\pi_{\alpha})^*(\pi_{\alpha})_*(\iota_v)_*(1) = (\iota_{[w]})^*(\iota_{[v]})_*(1)$, where $\iota_{[w]} = \iota_w \circ \pi_{\alpha}$ is the inclusion of the point e[w] in $X_{\alpha} = G/P_{\alpha}$. (Here e(w) and e[w] are identified.) Therefore $D_{\alpha}(x)|_w = 0$ if $[w] \neq [v]$, and

$$D_{\alpha}(x)|_{vs_{\alpha}} = D_{\alpha}(x)|_{v} = c_{top}^{T}(T_{e[v]}X_{\alpha}).$$

But

$$T_{e[v]}X_{\alpha} = \bigoplus_{\beta \in v(R^- \smallsetminus \{-\alpha\})} g_{\beta},$$

so $c_{top}^T(T_{e[v]}X_{\alpha})$ is equal to $c_{top}^T(T_{e(v)}X)/(-v(\alpha))$, which is the same as the value of $A_{\alpha}(\psi_v)$ at v.

Corollary 4.2. A composition $A_{\alpha_1} \circ \cdots \circ A_{\alpha_\ell}$ vanishes if the length of $s_{\alpha_1} \cdots s_{\alpha_\ell}$ is less than ℓ , and depends only on $v = s_{\alpha_1} \cdots s_{\alpha_\ell}$ if $\ell(v) = \ell$. Writing A_v for $A_{\alpha_1} \circ \cdots \circ A_{\alpha_\ell}$ for an reduced word for v, we have $A_v \circ A_w = A_{vw}$ if $\ell(vw) = \ell(v) + \ell(w)$, and $A_v \circ A_w = 0$ otherwise.

Proof. This follows from the corresponding results for the operators D_{α} , and the commutativity of the diagram in the proposition.

Lemma 4.3. (1) $y(s_{\alpha})|_{w} = \varpi_{\alpha} - w(\varpi_{\alpha}).$ (2) $x(w_{0}s_{\alpha})|_{w} = w_{0}(\varpi_{\alpha}) - w(\varpi_{\alpha}).$ *Proof.* For (1), let $f_{\alpha}(w) = y(s_{\alpha})|_{w}$. We know that

(i) $f_{\alpha}(id) = 0$,

since e(id) is not contained in $Y(s_{\alpha})$. Since $D_{\beta}(y(s_{\alpha})) = 0$ for any simple root $\beta \neq \alpha$, Proposition 4.1 says that $A_{\beta}(f_{\alpha}) = 0$, i.e.,

(ii) $f_{\alpha}(ws_{\beta}) = f_{\alpha}(w)$ for simple roots $\beta \neq \alpha$, for any w. Similarly, $D_{\alpha}(y(s_{\alpha})) = y(id) = 1$ gives $A_{\alpha}(f_{\alpha}) = 1$, i.e.,

(iii) $f_{\alpha}(ws_{\alpha}) = f_{\alpha}(w) + w(\alpha)$ for all w.

The function $f_{\alpha}: W \to \Lambda$ (or $W \to Q$) is uniquely determined by properties (i), (ii), and (iii). Indeed, the difference of two such functions would take the same values at any w and ws_{β} , for all simple roots β , so it must be constant. (Every w has the form $w_0s_{\beta_1}\cdots s_{\beta_{\ell}}$.) By (i), this constant must be zero.

Now the function $f_{\alpha}(w) = \varpi_{\alpha} - w(\varpi_{\alpha})$ clearly satisfies (i), and it satisfies (ii) and (iii) since

$$f_{\alpha}(ws_{\beta}) = \varpi_{\alpha} - ws_{\beta}(\varpi_{\alpha})$$

= $\varpi_{\alpha} - w(\varpi_{\alpha} - \delta_{\alpha\beta}\beta)$
= $f_{\alpha}(w) + \delta_{\alpha\beta}w(\beta).$

Similarly, to prove (2), note that the function $f_{\alpha}(w) = x(w_0 s_{\alpha})|_w$ satisfies (i') $f_{\alpha}(w_0) = 0$,

together with (ii) and (iii) (since $D_{\beta}(x(w_0 s_{\alpha})) = \delta_{\alpha\beta}x(w_0)$, and $x(w_0) = 1$). The same argument shows there is a unique such function, and that $f_{\alpha}(w) = w_0(\varpi_{\alpha}) - w(\varpi_{\alpha})$ satisfies (i'), (ii), and (iii).

Corollary 4.4. $y(s_{\alpha}) - x(w_0 s_{\alpha}) = \varpi_{\alpha} - w_0(\varpi_{\alpha}).$

Proof. The two sides have the same localization at every fixed point. \Box

Remark 4.5. In type A_n , $w_0(\varpi_i) = -\varpi_{n+1-i}$, so $y(s_\alpha) - x(w_0s_\alpha) = \varpi_i + \varpi_{n+1-i}$.

We will give another formula for the localizations $y(s_{\alpha})|_{w}$, and for general $y(v)|_{w}$, in the next chapter.

Corollary 4.6. If $v \neq w$, there is a simple root α such that $y(s_{\alpha})|_{v} \neq y(s_{\alpha})|_{w}$, and $x(w_{0}s_{\alpha})|_{v} \neq x(w_{0}s_{\alpha})|_{w}$.

Proof. Since the weights ϖ_{α} form a basis for $M_{\mathbb{R}}$, there is an α such that $v(\varpi_{\alpha}) \neq w(\varpi_{\alpha})$.

Exercise 4.7. For $\lambda \in M$, show that

$$c_1^T(L(\lambda)) = \sum_{\alpha \in S} a_\alpha y(s_\alpha) + \lambda,$$

where $a_{\alpha} = -\frac{2(\lambda,\alpha)}{(\alpha,\alpha)}$. (It suffices to do this for $\lambda = \varpi_{\alpha}$, where $c_1^T(L(\varpi_{\alpha})) = \varpi_{\alpha} - y(s_{\alpha})$, as is seen by evaluating both sides at $w \in W$.)

8

References

- [Ara
86] A. Arabia, "Cycles de Schubert et cohomologie équivariante d
eK/T," Invent. Math. 85 (1986), no. 1, 39–52.
- [Ara89] A. Arabia, "Cohomologie T-équivariante de la variété de drapeaux d'un groupe de Kac-Moody," Bull. Soc. Math. France 117 (1989), no. 2, 129–165.
- [Ber-Gel-Gel73] I. Bernstein, I. Gelfand, and S. Gelfand, "Schubert cells and cohomology of the spaces G/P," Russian Math. Surveys 28 (1973), 1–26.
- [Che94] C. Chevalley, "Sur les décompositions cellulaires des espaces G/B," Proc. Sympos. Pure Math. 56 1–23, Amer. Math. Soc., Providence, 1994.
- [Dem74] M. Demazure, "Désingularisation des variétés de Schubert généralisées," Ann. Sci. cole Norm. Sup. (4) 7 (1974), 53–88.