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Let G be a complex semisimple linear algebraic group, with a Borel (i.e.,
maximal solvable) subgroup B, and maximal torus T ⊂ B. Our goal in this
lecture is to describe H∗

T (G/B) and H∗
T (G/P ), for G ⊃ P ⊃ B a paraboloic

subgroup.
We will need the language of roots and weights. The roots are the weights

of T on the Lie algebra g of G, so

g = h ⊕
⊕

β∈R

gβ,

where h is the Lie algebra of T , and gβ is the one-dimensional subspace of
weight β. The positive roots are those occurring in the Lie algebra b of
B, so

b = h ⊕
⊕

β∈R+

gβ.

Then R = R+ ∪R−, where the negative roots are R− = {α | − α ∈ R+}.
The roots lie in M , and span the vector space MR.

The simple roots are the positive roots that are not positive sums of
more than one positive root; there are n of them, forming a basis for MR.
Let S ⊂ R+ be the set of simple roots. Any positive root β has a unique
expression

β =
∑

α∈S

nβαα,(1)

for nonnegative integers nβα.
Each root β corresponds to a unipotent subgroup Uβ of G, whose Lie

algebra is gβ. There is an isomorphism of the additive Lie group Ga
∼= C with

Uβ; this is T -equivariant, with multiplication by β(t) on C corresponding
to conjugation by t on Uβ (u 7→ tut−1). The product of the groups Uβ for

β ∈ R+ forms a unipotent group U , isomorphic to CN , with N = #R+, and
B = T · U is a semidirect product.
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The Weyl group W = N(T )/T acts on M , with the class w of nw ∈ N(T )
taking a weight λ to the weight w(λ) defined by

w(λ)(t) = λ(n−1
w tnw).

(One verifies this is independent of the choice of nw.) This determines an
embedding of W in the automorphism group of M , and an inner product
( , ) on MR that is invariant under W .

Each root β determines an element sβ ∈W , acting onMR by the reflection

sβ(v) = v −
2(v, β)

(β, β)
β.

The reflections sα, for simple roots α, generate W . The length ℓ(w) of
w ∈W is the minimum ℓ such that w can be written as a product sα1

· · · sαℓ
,

for α1, . . . , αℓ ∈ S. Such an expression w = sα1
· · · sαℓ

, with ℓ = ℓ(w), is
called a reduced decomposition, and α1 · · ·αℓ is a reduced word for w.

There is a unique longest element w0, whose length is N = #R+. The
opposite Borel subgroup B− is w0Bw0. Its Lie algebra is

b− = h ⊕
⊕

β∈R−

gβ.
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Let X = G/B; this is a smooth variety of dimension N . The T -fixed
points are the points e(w) = nwB/B, for any lift nw of w to N(T ).

The B-orbits are denoted Xo(w) = Be(w), and isomorphic to an affine

space of dimension ℓ(w). The closure Be(w) is the Schubert variety cor-
responding to w, denoted X(w); these are B-invariant subvarieties of X.
Each X(w) is a disjoint union of orbits Xo(v), and one writes v ≤ w for
those Xo(v) that occur. That is, v ≤ w if and only if X(v) ⊆ X(w). The
filtration

F0 ⊂ F1 ⊂ · · · ⊂ FN = X,

with Fp =
⋃

ℓ(w)≤pX(w), has Fp rFp−1 a union of affine spaces of dimension

p. It follows that the classes [X(w)] of these Schubert varieties form a basis
for H∗X. Since each X(w) is T -invariant, the classes

x(w) := [X(w)]T

form a basis of H∗
TX over Λ. Note that x(w) ∈ H

2(N−ℓ(w))
T X.

Similarly, there are B−-orbits Y o(w) = B−e(w), and Y (w) = Y o(w). The
dimension of Y (w) is N − ℓ(w). The classes

y(w) := [Y (w)]T

also form a basis for H∗
TX, with y(w) ∈ H

2ℓ(w)
T X.

It is an important general fact that v ≤ w (i.e., X(v) ⊆ X(w)) if and only
if Y (v) ⊇ Y (w) [Che94, Prop. 5].
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The tangent space to X at e(id) is
⊕

β∈R− gβ. Translating by w (or nw),
we have

Te(w)X =
⊕

β∈w(R−)

gβ.

The Schubert varieties X(w) and Y (w) are nonsingular at their central
points e(w), with

Te(w)X(w) =
⊕

β∈w(R−)∩R+

gβ, and

Te(w)Y (w) =
⊕

β∈w(R−)∩R−

gβ.

In particular, X(w) and Y (w) meet transversally at the point e(w).

Proposition 2.1. The bases {x(w)}w∈W and {y(w)}w∈W are Poincaré dual

bases of H∗
TX. That is,

ρ∗(x(u) · y(v)) = δuv ∈ Λ.

Proof. If X(u) ∩ Y (v) is not empty, then it has a T -fixed point e(w). Then
X(w) ⊂ X(u) and Y (w) ⊂ Y (v), so v ≤ w ≤ u. If v 6= u, this implies
ℓ(v) < ℓ(u), so codimX(u) + codimY (v) > N , and ρ∗(x(u) · y(v)) = 0 for

dimension reasons. If v = u, then transversality implies x(u)·y(u) = [e(u)]T ,
so ρ∗(x(u) · y(u)) = 1. Finally, if X(u) ∩ Y (v) is empty, then x(u) · y(v) =
0. �

Corollary 2.2. Let y(u) · y(v) =
∑
pw

uvy(w), with pw
uv ∈ Λ. Then pw

uv is in

Z≥0[α1, . . . , αn], where α1, . . . , αn are the simple roots.

Proof. This is a special case of Graham’s theorem, since the y(w) are classes
of B−-invariant subvarieties. �

3

Subgroups P with G ⊃ P ⊃ B are called parabolic subgroups. There
is a parabolic subgroup PJ for each subset of simple roots J ⊂ S. This PJ

is generated by B and the groups U−β for β in the set R+
J of positive roots

which are sums of simple roots in J ; its Lie algebra is

pJ = b ⊕
⊕

β∈R
+

J

g−β.

The associated Weyl group isWP = NP (T )/T , the subgroup of W generated
by the simple reflections sα for α ∈ J .

For each parabolic subgroup P = PJ , every element (coset) in W/WP has
a unique representative w of minimal (resp., maximal) length, characterized
by the property that w(α) is a positive (resp., negative) root for all α ∈ J .
We often write [w] for the coset wWP /WP determined by w ∈ W , and call
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w a minimal (resp., maximal) representative if it has minimal (resp.,
maximal) length.

For P = PJ paraboloic, the homogeneous variety XJ = G/P has T -fixed
points e[w], with [w] ∈ W/WP , where e[w] = nwP/P . One has corre-

sponding Schubert varieties X[w] = Be[w] and Y [w] = B−e[w], with classes

x[w] = [X[w]]T and y[w] = [Y [w]]T in H∗
T (XJ).

Let R+
J be as above, and let R−

J = {β ∈ R− | − β ∈ R+
J }. The dimension

of XJ is the number of positive roots not in R+
J .

Let π = πJ be the projection from X = G/B onto XJ = G/P ; this is
G-equivariant. One has corresponding descriptions of the tangent spaces:

Te[w]XJ =
⊕

β∈w(R−rR
−

J
)

gβ,

Te[w]X[w] =
⊕

β∈w(R−rR
−

J
)∩R+

gβ, and

Te[w]Y [w] =
⊕

β∈w(R−rR−

J
)∩R−

gβ.

The dimension of X[w] is the minimal length of a representative of [w],
and the codimension of Y [w] is the minimal length of a representative of
[w]. In fact, for w minimal, X(w) → X[w] determines an isomorphism
Te(w)X(w) → Te[w]X[w] (since w(R−

J )∩R+ = ∅), so it gives an isomorphism
from Xo(w) to Xo[w] = Be[w]. In particular,

π∗(x(w)) = x[w] for w minimal.

Similarly, we have an isomorphism Te(w)Y (w) → Te[w]Y [w] for w maximal,
so

π∗(y(w)) = y[w] for w maximal.

On the other hand, for w maximal, we have π−1(X[w]) = X(w); notice
that this set-theoretic equality is also scheme-theoretic, since π is a smooth
morphism and these varieties are irreducible. Hence

π∗(x[w]) = x(w) for w maximal,

and similarly,

π∗(y[w]) = y(w) for w minimal.

As in the case ofG/B, the sets {x[w]} and {y[w]} form bases forH∗
T (G/P ),

as [w] varies in W/WP .

Exercise 3.1. Show that these are Poincaré dual bases. (Solution: For
η : G/P → pt, and w and v maximal representatives of [w] and [v], we have
η∗(x[w] · y[v]) = η∗(x[w] ·π∗(y(v))) = η∗π∗(π

∗x[w] · y(v)) = ρ∗(x(w) · y(v)) =
δwv.)
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Let DJ : H∗
TX → H∗

TX be the Λ-linear map defined by

DJ = (πJ)∗ ◦ (πJ)∗.

This lowers degree by twice the codimension, i.e., by 2#(R+
J ).

Lemma 3.2. (1) If w− is the minimal representative of its coset in

W/WP , then

DJ(x(w−)) = x(w+),

where w+ is the maximal representative of the coset. If w is not

minimal in its coset, then DJ(x(w)) = 0.
(2) If w+ is the maximal representative of its coset, then

DJ(y(w+)) = y(w−),

where w− is the minimal representative. If w is not maximal in its

coset, then DJ(y(w)) = 0.

Proof. This follows from the preceding discussion. Note that if w is not mini-

mal, thenX(w) has larger dimension than its imageX[w], so π∗[X(w)]T = 0,
and similarly for Y (w) if w is not maximal. �

We will use these operators primarily when J consists of one simple root
α, so PJ is a minimal parabolic subgroup. In this case, WJ is the group of
order two generated by sα, and each coset has two representatives, w and
wsα, whose lengths differ by 1. If ℓ(wsα) = ℓ(w) + 1, then for Dα = D{α},
we have

Dα(x(w)) = x(wsα), Dα(x(wsα)) = 0;

Dα(y(wsα)) = y(w), Dα(y(w)) = 0.

Exercise 3.3. If α is a simple root, and u, v ∈ W with ℓ(usα) > ℓ(u) and
ℓ(vsα) < ℓ(v), then

Dα(y(u) · y(v)) = y(u) · y(vsα).

(Solution: Write Dα = (πα)∗ ◦ (πα)∗, y(u) = π∗αy[u], (πα)∗y(v) = y[v], and
π∗αy[v] = y(vsα), so

Dα(y(u) · y(v)) = π∗α((πα)∗(π
∗
αy[u] · y(v)))

= π∗α(y[u] · (πα)∗y(v))

= π∗α(y[u] · y[v])

= π∗αy[u] · π
∗
αy[v].)

For any sequence α1, . . . , αℓ of simple roots, we have the composition

Dα1
◦ · · · ◦Dαℓ

: H∗
T (X) → H∗−2ℓ

T (X).

This takes y(w) to y(wsα1
· · · sαℓ

) if ℓ(wsα1
· · · sαℓ

) = ℓ(w) − ℓ, and takes
y(w) to 0 otherwise; and similarly for the x(w)’s. Since the classes y(w) form
a basis for H∗

TX, it follows that if the length of sα1
· · · sαℓ

is less than ℓ, then
Dα1

◦· · ·◦Dαℓ
= 0; on the other hand, if sα1

· · · sαℓ
is a reduced decomposition
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for v, then Dα1
◦· · ·◦Dαℓ

depends only on v, and can be denoted Dv. Indeed,
Dv(y(w)) = y(wv) if ℓ(wv) = ℓ(w) + ℓ(v), and Dv(y(w)) = 0 otherwise. In
addition, Du ◦Dv = Duv if ℓ(uv) = ℓ(u) + ℓ(v), and Du ◦Dv = 0 otherwise.

It follows from the preceding discussion that π∗ embeds H∗
T (G/P ) in

H∗
T (G/B), taking Schubert classes to Schubert classes.

Remark 3.4. As in [Ber-Gel-Gel73] and [Dem74] (cf. [Ara89, §3.7]), the
operators Dw can be defined via a correspondence: Let Z(w) ⊂ X × X
be the closure of G · (e(id) × e(w)), with G acting diagonally. Then Dw

is (p1)∗ ◦ (p2)
∗, where p1 and p2 are the projections from Z(w) to X. In

particular, Z(si) = X ×Xi
X, where Xi = X{αi}. For w = siv, with ℓ(w) =

ℓ(v) + 1, we have a diagram

Z̃(w)

Z(si)
�

Z(v)

-

X
�

X
�

-

X.

-

The map Z̃(w) → Z(w) (by the projection p13) is birational and surjective,
from which it follows that Dw = Dsi

◦Dv.

Remark 3.5. The literature also contains operators Lw : H∗
TX → Λ (cf.

[Ara86], [Ara89]). In our language, Lw(x) = ρ∗(x · x(w)). Equivalently, by
Poincaré duality, Lw(x) is the coefficient of y(w) in the expansion of x; i.e.,

x =
∑

Lw(x) y(w).

4

Let Q be the quotient field of Λ, and let F (W,Q) be the Q-algebra of
functions from W to Q. We know that the localization map

H∗
TX → H∗

TX
T =

⊕

w∈W

H∗
T (e(w))

embeds H∗
TX in the space F (W,Λ) of functions from W to Λ, by x 7→ (w 7→

x|w), and hence H∗
TX →֒ F (W,Q).

For a simple root α, define the Q-linear map Aα : F (W,Q) → F (W,Q)
by the formula

(Aαψ)(w) =
ψ(wsα) − ψ(w)

w(α)
.
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Proposition 4.1. The diagram

H∗
TX

⊂- F (W,Q)

H∗
TX

Dα
?

⊂- F (W,Q)

Aα
?

commutes.

Proof. Since the inclusion H∗
TX

T → H∗
TX given by the Gysin map is an

isomorphism after tensoring with Q (over Λ), it suffices to show that the
two paths around the diagram agree on elements of the form x = (ιv)∗(1),
where ιv : {e(v)} → X is the inclusion. Such an x localizes to the function
ψv, defined by

ψv(v) = (ιv)
∗(ιv)∗(1) = cTtop(Te(v)X) =

∏

β∈v(R−)

β,

and ψv(w) = 0 for w 6= v.
Then

Aα(ψv)(v) = −
ψv(v)

v(α)
,

Aα(ψv)(vsα) =
ψv(v)

vsα(α)
= −

ψv(v)

v(α)
,

and Aα(ψv)(w) = 0 for w 6∈ {v, vsα}.
Going the other way around the diagram, we haveDα(x) = (πα)∗(πα)∗(ιv)∗(1).

ThenDα(x)|w = ι∗w(πα)∗(πα)∗(ιv)∗(1) = (ι[w])
∗(ι[v])∗(1), where ι[w] = ιw◦πα

is the inclusion of the point e[w] in Xα = G/Pα. (Here e(w) and e[w] are
identified.) Therefore Dα(x)|w = 0 if [w] 6= [v], and

Dα(x)|vsα
= Dα(x)|v = cTtop(Te[v]Xα).

But

Te[v]Xα =
⊕

β∈v(R−r{−α})

gβ ,

so cTtop(Te[v]Xα) is equal to cTtop(Te(v)X)/(−v(α)), which is the same as the
value of Aα(ψv) at v. �

Corollary 4.2. A composition Aα1
◦ · · · ◦ Aαℓ

vanishes if the length of

sα1
· · · sαℓ

is less than ℓ, and depends only on v = sα1
· · · sαℓ

if ℓ(v) = ℓ.
Writing Av for Aα1

◦ · · · ◦Aαℓ
for an reduced word for v, we have Av ◦Aw =

Avw if ℓ(vw) = ℓ(v) + ℓ(w), and Av ◦ Aw = 0 otherwise.

Proof. This follows from the corresponding results for the operators Dα, and
the commutativity of the diagram in the proposition. �

Lemma 4.3. (1) y(sα)|w = ̟α − w(̟α).
(2) x(w0sα)|w = w0(̟α) − w(̟α).
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Proof. For (1), let fα(w) = y(sα)|w. We know that

(i) fα(id) = 0,

since e(id) is not contained in Y (sα). Since Dβ(y(sα)) = 0 for any simple
root β 6= α, Proposition 4.1 says that Aβ(fα) = 0, i.e.,

(ii) fα(wsβ) = fα(w) for simple roots β 6= α, for any w.

Similarly, Dα(y(sα)) = y(id) = 1 gives Aα(fα) = 1, i.e.,

(iii) fα(wsα) = fα(w) + w(α) for all w.

The function fα : W → Λ (or W → Q) is uniquely determined by prop-
erties (i), (ii), and (iii). Indeed, the difference of two such functions would
take the same values at any w and wsβ, for all simple roots β, so it must be
constant. (Every w has the form w0sβ1

· · · sβℓ
.) By (i), this constant must

be zero.
Now the function fα(w) = ̟α−w(̟α) clearly satisfies (i), and it satisfies

(ii) and (iii) since

fα(wsβ) = ̟α − wsβ(̟α)

= ̟α − w(̟α − δαββ)

= fα(w) + δαβw(β).

Similarly, to prove (2), note that the function fα(w) = x(w0sα)|w satisfies

(i’) fα(w0) = 0,

together with (ii) and (iii) (since Dβ(x(w0sα)) = δαβx(w0), and x(w0) = 1).
The same argument shows there is a unique such function, and that fα(w) =
w0(̟α) − w(̟α) satisfies (i’), (ii), and (iii). �

Corollary 4.4. y(sα) − x(w0sα) = ̟α − w0(̟α).

Proof. The two sides have the same localization at every fixed point. �

Remark 4.5. In type An, w0(̟i) = −̟n+1−i, so y(sα) − x(w0sα) = ̟i +
̟n+1−i.

We will give another formula for the localizations y(sα)|w, and for general
y(v)|w, in the next chapter.

Corollary 4.6. If v 6= w, there is a simple root α such that y(sα)|v 6=
y(sα)|w, and x(w0sα)|v 6= x(w0sα)|w.

Proof. Since the weights ̟α form a basis for MR, there is an α such that
v(̟α) 6= w(̟α). �

Exercise 4.7. For λ ∈M , show that

cT1 (L(λ)) =
∑

α∈S

aαy(sα) + λ,

where aα = −2(λ,α)
(α,α) . (It suffices to do this for λ = ̟α, where cT1 (L(̟α)) =

̟α − y(sα), as is seen by evaluating both sides at w ∈W .)
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