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Solution 1.1 Discrete Distribution

(a) Note that N only takes values in N \ {0} and that p ∈ (0, 1). Hence we calculate

P[N ∈ R] =
∞∑
k=1

P[N = k] =
∞∑
k=1

(1− p)k−1p = p

∞∑
k=0

(1− p)k = p
1

1− (1− p) = p
1
p

= 1,

from which we can conclude that the geometric distribution indeed defines a probability
distribution on R.

(b) For n ∈ N \ {0}, we get

P[N ≥ n] =
∞∑
k=n

P[N = k] =
∞∑
k=n

(1− p)k−1p = (1− p)n−1p

∞∑
k=0

(1− p)k = (1− p)n−1,

where we used that
∑∞
k=0(1− p)k = 1

p , as was shown in (a).

(c) The expectation of a discrete random variable that takes values in N \ {0} can be calculated
as

E[N ] =
∞∑
k=1

k · P[N = k].

Thus we get

E[N ] =
∞∑
k=1

k(1−p)k−1p =
∞∑
k=0

(k+1)(1−p)kp =
∞∑
k=0

k(1−p)kp+
∞∑
k=0

(1−p)kp = (1−p)E[N ]+1,

where we used that
∑∞
k=0(1− p)kp = 1, as was shown in (a). We conclude that E[N ] = 1

p .

(d) Let r ∈ R. Then we calculate

E[exp{rN}] =
∞∑
k=1

exp{rk} · P[N = k]

=
∞∑
k=1

exp{rk}(1− p)k−1p

= p exp{r}
∞∑
k=1

[(1− p) exp{r}]k−1

= p exp{r}
∞∑
k=0

[(1− p) exp{r}]k.

Since (1− p) exp{r} is strictly positive, the sum on the right hand side is convergent if and
only if (1− p) exp{r} < 1, which is equivalent to r < − log(1− p). Hence E[exp{rN}] exists
if and only if r < − log(1− p) and in this case we have

MN (r) = E[exp{rN}] = p exp{r} 1
1− (1− p) exp{r} = p exp{r}

1− (1− p) exp{r} .
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(e) For r < − log(1− p), we have

d

dr
MN (r) = d

dr

p exp{r}
1− (1− p) exp{r}

= p exp{r}[1− (1− p) exp{r}] + p exp{r}(1− p) exp{r}
[1− (1− p) exp{r}]2

= p exp{r}
[1− (1− p) exp{r}]2 .

Hence we get

d

dr
MN (r)|r=0 = p exp{0}

[1− (1− p) exp{0}]2 = p

[1− (1− p)]2 = p

p2 = 1
p
.

We observe that d
drMN (r)|r=0 = E[N ], which holds in general for all random variables if the

moment generating function exists in an interval around 0.

Solution 1.2 Absolutely Continuous Distribution

(a) We calculate

P[Y ∈ R] =
∫ ∞
−∞

fY (x) dx =
∫ ∞

0
λ exp{−λx} dx = [− exp{−λx}]∞0 = [−0− (−1)] = 1,

from which we can conclude that the exponential distribution indeed defines a probability
distribution on R.

(b) For 0 < y1 < y2, we calculate

P[y1 ≤ Y ≤ y2] =
∫ y2

y1

fY (x) dx

=
∫ y2

y1

λ exp{−λx} dx

= [− exp{−λx}]y2
y1

= exp{−λy1} − exp{−λy2}.

(c) The expectation and the second moment of an absolutely continuous random variable can be
calculated as

E[Y ] =
∫ ∞
−∞

xfY (x) dx and E[Y 2] =
∫ ∞
−∞

x2fY (x) dx.

Thus, using partial integration, we get

E[Y ] =
∫ ∞

0
xλ exp{−λx} dx

= [−x exp{−λx}]∞0 +
∫ ∞

0
exp{−λx} dx

= 0 +
[
− 1
λ

exp{−λx}
]∞

0

= 1
λ
.
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The variance Var(Y ) can be calculated as

Var(Y ) = E[Y 2]− E[Y ]2 = E[Y 2]− 1
λ2 .

For the second moment E[Y 2] we get, again using partial integration,

E[Y 2] =
∫ ∞

0
x2λ exp{−λx} dx

=
[
−x2 exp{−λx}

]∞
0 +

∫ ∞
0

2x exp{−λx} dx

= 0 + 2
λ
E[Y ]

= 2
λ2 ,

from which we can conclude that

Var(Y ) = 2
λ2 −

1
λ2 = 1

λ2 .

Note that for the exponential distribution both the expectation and the variance exist. The
reason is that exp{−λx} goes much faster to 0 than x or x2 go to infinity, for all λ > 0.

(d) Let r ∈ R. Then we calculate

E[exp{rY }] =
∫ ∞

0
exp{rx}λ exp{−λx} dx =

∫ ∞
0

λ exp{(r − λ)x} dx.

The integral on the right hand side and therefore also E[exp{rY }] exist if and only if r < λ.
In this case we have

MY (r) = E[exp{rY }] = λ

r − λ
[exp{(r − λ)x}]∞0 = λ

r − λ
(0− 1) = λ

λ− r
and therefore

logMY (r) = log
(

λ

λ− r

)
.

(e) For r < λ, we have

d2

dr2 logMY (r) = d2

dr2 log
(

λ

λ− r

)
= d2

dr2 [log(λ)− log(λ− r)] = d

dr

1
λ− r

= 1
(λ− r)2 .

Hence we get
d2

dr2 logMY (r)|r=0 = 1
(λ− 0)2 = 1

λ2 .

We observe that d2

dr2 logMY (r)|r=0 = Var(Y ), which holds in general for all random variables
if the moment generating function exists in an interval around 0.

Solution 1.3 Conditional Distribution

(a) For y > θ > 0, we get

P[Y ≥ y] = P[Y ≥ y, I = 0] + P[Y ≥ y, I = 1]
= P[Y ≥ y|I = 0]P[I = 0] + P[Y ≥ y|I = 1]P[I = 1]
= 0 · (1− p) + P[Y ≥ y|I = 1] · p
= p · P[Y ≥ y|I = 1],
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since Y |I = 0 is equal to 0 almost surely and thus P[Y ≥ y|I = 0] = 0. Since Y | I = 1 ∼
Pareto(θ, α), we can calculate

P[Y ≥ y|I = 1] =
∫ ∞
y

fY |I=1(x) dx =
∫ ∞
y

α

θ

(x
θ

)−(α+1)
dx =

[
−
(x
θ

)−α]∞
y

=
(y
θ

)−α
.

We conclude that
P[Y ≥ y] = p

(y
θ

)−α
.

(b) Using that Y |I = 0 is equal to 0 almost surely and thus E[Y |I = 0] = 0, we get

E[Y ] = E[Y ·1{I=0}]+E[Y ·1{I=1}] = E[Y |I = 0]P[I = 0]+E[Y |I = 1]P[I = 1] = p·E[Y |I = 1].

Since Y | I = 1 ∼ Pareto(θ, α), we can calculate

E[Y |I = 1] =
∫ ∞
−∞

xfY |I=1(x) dx =
∫ ∞
θ

x
α

θ

(x
θ

)−(α+1)
dx = αθα

∫ ∞
θ

x−α dx

We see that the integral on the right hand side and therefore also E[Y ] exist if and only if
α > 1. In this case we get

E[Y |I = 1] = αθα
[
− 1
α− 1x

−(α−1)
]∞
θ

= αθα
1

α− 1θ
−(α−1) = θ

α

α− 1 .

We conclude that, if α > 1, we get

E[Y ] = pθ
α

α− 1 .

If 0 < α ≤ 1, E[Y ] does not exist.
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Solution 2.1 Gaussian Distribution

(a) The moment generating function of a+ bX can be calculated as

Ma+bX(r) = E [exp {r(a+ bX)}] = exp {ra}E [exp {rbX}] = exp {ra}MX(rb),

for all r ∈ R. Using the formula for the moment generating function of X given on the exercise
sheet, we get

Ma+bX(r) = exp {ra} exp
{
rbµ+ (rb)2σ2

2

}
= exp

{
r(a+ bµ) + r2b2σ2

2

}
,

which is equal to the moment generating function of a Gaussian random variable with
expectation a + bµ and variance b2σ2. Since the moment generating function uniquely
determines the distribution, we conclude that

a+ bX ∼ N (a+ bµ, b2σ2).

(b) Using the independence of X1, . . . , Xn, the moment generating function of Y =
∑n
i=1 Xi can

be calculated as

MY (r) = E [exp {rY }] = E

[
exp

{
r

n∑
i=1

Xi

}]
=

n∏
i=1

E [exp {rXi}] =
n∏
i=1

MXi
(r),

for all r ∈ R. Using the formula for the moment generating function of a Gaussian random
variable given on the exercise sheet, we get

MY (r) =
n∏
i=1

exp
{
rµi + r2σ2

i

2

}
= exp

{
r

n∑
i=1

µi +
r2∑n

i=1 σ
2
i

2

}
,

which is equal to the moment generating function of a Gaussian random variable with
expectation

∑n
i=1 µi and variance

∑n
i=1 σ

2
i . Since the moment generating function uniquely

determines the distribution, we conclude that
n∑
i=1

Xi ∼ N

(
n∑
i=1

µi,

n∑
i=1

σ2
i

)
.

Solution 2.2 Maximum Likelihood and Hypothesis Test

(a) Since log Y1, . . . , log Y8 are independent random variables, the joint density fµ,σ2(x1, . . . , x8)
of log Y1, . . . , log Y8 is given by product of the marginal densities of log Y1, . . . , log Y8. We
have

fµ,σ2(x1, . . . , x8) =
8∏
i=1

1√
2πσ

exp
{
−1

2
(xi − µ)2

σ2

}
,

since log Y1, . . . , log Y8 are Gaussian random variables with mean µ and variance σ2.
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(b) By taking the logarithm, we get

log fµ,σ2(x1, . . . , x8) =
8∑
i=1
− log

(√
2π
)
− log(σ)− 1

2
(xi − µ)2

σ2

= −8 log
(√

2π
)
− 8 log(σ)− 1

2σ2

8∑
i=1

(xi − µ)2.

(c) We have log fµ,σ2(x1, . . . , x8) < −8 log(σ) for all µ ∈ R. Hence, independently of µ,
log fµ,σ2(x1, . . . , x8) → −∞ if σ2 → ∞. Moreover, since for example x1 6= x2, there ex-
ists a c > 0 with

∑8
i=1(xi − µ)2 > c and thus log fµ,σ2(x1, . . . , x8) < −8 log(σ) − c

2σ2 for
all µ ∈ R. Since c

2σ2 goes much faster to ∞ than 8 log(σ) goes to −∞ if σ2 → 0, we have
log fµ,σ2(x1, . . . , x8) → −∞ if σ2 → 0, independently of µ. Finally, if σ2 ∈ [c1, c2] for some
0 < c1 < c2, we have log fµ,σ2(x1, . . . , x8) < − 1

2c2

∑8
i=1(xi − µ)2. Hence, independently

of the value of σ2 in the interval [c1, c2], log fµ,σ2(x1, . . . , x8) → −∞ if |µ| → ∞. Since
log fµ,σ2(x1, . . . , x8) is continuous in µ and σ2, we can conclude that it attains its global
maximum somewhere in R× R>0. Thus µ̂ and σ̂2 as defined on the exercise sheet have to
satisfy the first order conditions

∂

∂µ
log fµ,σ2(x1, . . . , x8)|(µ,σ2)=(µ̂,σ̂2) = 0 and

∂

∂(σ2) log fµ,σ2(x1, . . . , x8)|(µ,σ2)=(µ̂,σ̂2) = 0.

We calculate
∂

∂µ
log fµ,σ2(x1, . . . , x8) = 1

σ2

8∑
i=1

(xi − µ),

which is equal to 0 if and only if µ = 1
8
∑8
i=1 xi. Moreover, we have

∂

∂(σ2) log fµ,σ2(x1, . . . , x8) = − 8
2σ2 + 1

2σ4

8∑
i=1

(xi − µ)2 = 1
2σ2

[
−8 + 1

σ2

8∑
i=1

(xi − µ)2

]
,

which is equal to 0 if and only if σ2 = 1
8
∑8
i=1(xi − µ)2. Since there is only tuple in R× R>0

that satisfies the first order conditions, we conclude that

µ̂ = 1
8

8∑
i=1

xi = 7 and σ̂2 = 1
8

8∑
i=1

(xi − µ̂)2 = 1
8

8∑
i=1

(xi − 7)2 = 7.

Note that the MLE σ̂2 is not unbiased. Indeed, if we replace x1, . . . , x8 by independent
Gaussian random variables X1, . . . , X8 with expectation µ ∈ R and variance σ2 > 0 and write
µ̂ for 1

8
∑8
i=1 Xi, we can calculate

E[σ̂2] = E[σ̂2(X1, . . . , X8)] = E

[
1
8

8∑
i=1

(Xi − µ̂)2

]
= 1

8E
[ 8∑
i=1

(X2
i − 2Xiµ̂+ µ̂2)

]
.

By noting that
∑8
i=1 Xi = 8µ̂ and that E[X2

1 ] = · · · = E[X2
8 ], we get

E[σ̂2] = 1
8E
[ 8∑
i=1

X2
i − 2 · 8 · µ̂2 + 8µ̂2

]
= E[X2

1 ]− E[µ̂2] = σ2 − E[X1]2 −Var(µ̂) + E[µ̂]2.
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By inserting

Var(µ̂) = Var
(

1
8

8∑
i=1

Xi

)
=
(

1
8

)2 8∑
i=1

Var(Xi) = 1
8σ

2 and

E[µ̂]2 = E

[
1
8

8∑
i=1

Xi

]2

=
(

1
8

8∑
i=1

E[Xi]
)2

= E[X1]2,

we can conclude that

E[σ̂2] = σ2 − E[X1]2 − 1
8σ

2 + E[X1]2 = 7
8σ

2 6= σ2,

hence σ̂2 is not unbiased.

(d) Since our data is assumed to follow a Gaussian distribution and the variance is unknown, we
perform a t-test. The test statistic is given by

T = T (log Y1, . . . , log Y8) =
√

8
1
8
∑8
i=1 log Yi − µ√

S2
,

where

S2 = 1
7

8∑
i=1

(
log Yi −

1
8

8∑
i=1

log Yi

)2

.

Under H0, T follows a Student-t distribution with 7 degrees of freedom. With the data given
on the exercise sheet, the random variable S2 attains the value

1
7

8∑
i=1

(
xi −

1
8

8∑
i=1

xi

)2

= 1
7

8∑
i=1

(xi − 7)2 = 8,

and thus for T we get the observation
√

8
1
8
∑8
i=1 xi − µ√
S2

=
√

87− 6√
8

= 1,

where we use that µ = 6 under H0. Now the probability under H0 to observe a T that is at
least as extreme as the observation 1 we got above, is

P[|T | ≥ 1] = P[T ≥ 1] + P[T ≤ −1] = 1− P[T < 1] + 1− P[T < 1] = 2− 2P[T < 1],

where we used the symmetry of the Student-t distribution around 0. The probability P[T < 1]
is approximately 0.83, thus the p-value is given by

P[|T | ≥ 1] = 2− 2P[T < 1] ≈ 2− 2 · 0.83 = 0.34.

This p-value is fairly high, hence we conclude that we can not reject the null hypothesis, for
example, at significance level of 5% or 1%.

Solution 2.3 Variance Decomposition
By definition of the random variable X, the second moments exist. Hence, we have

E[Var(X|G)] = E
[
E[X2|G]− (E[X|G])2] = E[X2]− E

[
(E[X|G])2]

and
Var(E[X|G]) = E

[
(E[X|G])2]− E [E[X|G]]2 = E

[
(E[X|G])2]− E[X]2.

Combining these two results, we get

E[Var(X|G)] + Var(E[X|G]) = E[X2]− E[X]2 = Var(X).
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Solution 3.1 No-Claims Bonus

(a) We define the following events:

A = {“no claims in the last six years”},
B = {“no claims in the last three years but at least one claim in the last six years”},
C = {“at least one claim in the last three years”}.

Note that since the events A, B and C are disjoint and cover all possible outcomes, we have

P[A] + P[B] + P[C] = 1,

i.e. it is sufficient to calculate two out of the three probabilities. Since the calculation of
P[B] is slightly more involved, we will look at P[A] and P[C]. Let N1, . . . , N6 be the number
of claims of the last six years of our considered car driver, where N6 corresponds to the
most recent year. By assumption, N1, . . . , N6 are independent Poisson random variables with
frequency parameter λ = 0.2. Therefore, we can calculate

P[A] = P [N1 = 0, . . . , N6 = 0] =
6∏

i=1
P [Ni = 0] =

6∏
i=1

exp{−λ} = exp{−6λ} = exp{−1.2}

and, similarly,

P[C] = 1− P[Cc] = 1− P [N4 = 0, N5 = 0, N6 = 0] = 1− exp{−3λ} = 1− exp{−0.6}.

For the event B we get

P[B] = 1− P[A]− P[C] = 1− exp{−1.2} − (1− exp{−0.6}) = exp{−0.6} − exp{−1.2}.

Thus the expected proportion q of the base premium that is still paid after the grant of the
no-claims bonus is given by

q = 0.8 · P[A] + 0.9 · P[B] + 1 · P[C]
= 0.8 · exp{−1.2}+ 0.9 · (exp{−0.6} − exp{−1.2}) + 1− exp{−0.6}
≈ 0.915.

If s denotes the surcharge on the base premium, then it has to satisfy the equation

q(1 + s) · base premium = base premium,

which leads to
s = 1

q
− 1.

We conclude that the surcharge on the base premium is given by approximately 9.3%.
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(b) We use the same notation as in (a). Since this time the calculation of P[B] is considerably more
involved, we again look at P[A] and P[C]. By assumption, conditionally given Θ, N1, . . . , N6
are independent Poisson random variables with frequency parameter Θλ, where λ = 0.2.
Therefore, we can calculate

P[A] = P [N1 = 0, . . . , N6 = 0]
= E [P [N1 = 0, . . . , N6 = 0|Θ]]

= E

[ 6∏
i=1

P [Ni = 0|Θ]
]

= E

[ 6∏
i=1

exp{−Θλ}
]

= E [exp{−6Θλ}]
= MΘ(−6λ),

where MΘ denotes the moment generating function of Θ. Since Θ ∼ Γ(1, 1), MΘ is given by

MΘ(r) = 1
1− r ,

for all r < 1, which leads to
P[A] = 1

1 + 6λ = 1
2.2 .

Similarly, we get

P[C] = 1− P[Cc] = 1− P [N4 = 0, N5 = 0, N6 = 0] = 1− 1
1 + 3λ = 1− 1

1.6 = 0.6
1.6 .

For the event B we get

P[B] = 1− P[A]− P[C] = 1− 1
2.2 −

0.6
1.6 = 1

1.6 −
1

2.2 .

Thus the expected proportion q of the base premium that is still paid after the grant of the
no-claims bonus is given by

q = 0.8 · P[A] + 0.9 · P[B] + 1 · P[C]

= 0.8 · 1
2.2 + 0.9 ·

(
1

1.6 −
1

2.2

)
+ 0.6

1.6
≈ 0.892.

We conclude that the surcharge s on the base premium is given by

s = 1
q
− 1 ≈ 12.1%,

which is considerably bigger than in (a).

Solution 3.2 Central Limit Theorem
Let σ2 be the variance of the claim sizes and x > 0. Then we have

P

[∣∣∣∣ 1n
n∑

i=1
Yi − µ

∣∣∣∣ < x√
n

]
= P

[
1
n

n∑
i=1

Yi − µ <
x√
n

]
− P

[
1
n

n∑
i=1

Yi − µ ≤ −
x√
n

]

= P
[√

n
1
n

∑n
i=1 Yi − µ
σ

<
x

σ

]
− P

[√
n

1
n

∑n
i=1 Yi − µ
σ

≤ −x
σ

]
= P

[
Zn <

x

σ

]
− P

[
Zn ≤ −

x

σ

]
,
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where
Zn =

√
n

1
n

∑n
i=1 Yi − µ
σ

.

According to the Central Limit Theorem, Zn converges in distribution to a standard Gaussian
random variable. Hence, if we write Φ for the distribution function of a standard Gaussian random
variable, we have the approximation

P

[∣∣∣∣ 1n
n∑

i=1
Yi − µ

∣∣∣∣ < x√
n

]
≈ Φ

(x
σ

)
− Φ

(
−x
σ

)
.

On the one hand, as we are interested in a probabilty of at least 95%, we have to choose x > 0
such that

Φ
(x
σ

)
− Φ

(
−x
σ

)
= 0.95,

which implies
x

σ
= 1.96.

It follows that
x = 1.96 · σ = 1.96 ·Vco(Y1) · µ = 1.96 · 4 · µ. (1)

On the other hand, as we want the deviation of the empirical mean from µ to be less than 1%, we
set

x√
n

= 0.01 · µ,

which implies

n = x2

0.012 · µ2 . (2)

Combining (1) and (2), we conclude

n = (1.96 · 4 · µ)2

0.012 · µ2 = 1.962 · 42 · 10′000 = 614′656.

Solution 3.3 Compound Binomial Distribution

For S̃ ∼ CompBinom(ṽ, p̃, G̃) with the random variable Ỹ1 having distribution function G̃ and
moment generating function MỸ1

, the moment generating function MS̃ of S̃ is given by

MS̃(r) =
(
p̃MỸ1

(r) + 1− p̃
)ṽ
,

for all r ∈ R for which MỸ1
is defined. We calculate the moment generating function of Slc and

show that it is exactly of the form given above. Since Slc ≥ 0 almost surely, its moment generating
function is defined at least for all r < 0. Thus, for r < 0, we have

MSlc(r) = E

[
exp

{
r

N∑
i=1

Yi 1{Yi>M}

}]

= E

[
N∏

i=1
exp

{
rYi 1{Yi>M}

}]

= E

[
E

[
N∏

i=1
exp

{
rYi 1{Yi>M}

} ∣∣∣∣N
]]

= E

[
N∏

i=1
E
[
exp

{
rYi 1{Yi>M}

}]]
,
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where in the third equality we used the tower property of conditional expectation and in the fourth
equality the independence between N and Yi. For the inner expectation we get

E
[
exp

{
rYi 1{Yi>M}

}]
= E

[
exp {rYi} · 1{Yi>M} + 1{Yi≤M}

]
= E [exp {rYi} |Yi > M ]P[Yi > M ] + P[Yi ≤M ]
= E [exp {rYi} |Yi > M ] [1−G(M)] +G(M).

First note that the distribution function of the random variable Yi | Yi > M is Glc. Moreover,
since Yi | Yi > M is greater than 0 almost surely, its moment generating function MY1|Y1>M is
defined for all r < 0 and thus we can write

E
[
exp

{
rYi 1{Yi>M}

}]
= MY1|Y1>M (r)[1−G(M)] +G(M).

Hence we get

MSlc(r) = E

[
N∏

i=1

(
MY1|Y1>M (r)[1−G(M)] +G(M)

)]
= E

[(
MY1|Y1>M (r)[1−G(M)] +G(M)

)N
]

= E
[
exp

{
N log

(
MY1|Y1>M (r)[1−G(M)] +G(M)

)}]
= MN (ρ),

where MN is the moment generating function of N and

ρ = log
(
MY1|Y1>M (r)[1−G(M)] +G(M)

)
.

Since we have N ∼ Binom(v, p), MN (r) is given by

MN (r) = (p exp{r}+ 1− p)v.

Therefore, we get

MSlc(r) = [p
(
MY1|Y1>M (r)[1−G(M)] +G(M)

)
+ 1− p]v

= (p[1−G(M)]MY1|Y1>M (r) + 1− p[1−G(M)])v.

Applying Lemma 1.3 of the lecture notes, we conclude that Slc ∼ CompBinom(ṽ, p̃, G̃) with ṽ = v,
p̃ = p[1−G(M)] and G̃ = Glc.
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Solution 4.1 Poisson Model and Negative-Binomial Model

(a) Let v = v1 = · · · = v10 = 10’000. In the Poisson model we assume that N1, . . . , N10 are
independent with Nt ∼ Poi(λvt) for all t ∈ {1, . . . , 10}. We use Estimator 2.32 of the lecture
notes to estimate the claims frequency parameter λ by

λ̂MLE
10 =

∑10
t=1 Nt∑10
t=1 vt

=
∑10
t=1 Nt
10v = 10’224

100’000 ≈ 10.22%.

Note that a random variable N ∼ Poi(λv) can be understood as

N
(d)=

v∑
i=1

Ni, (1)

where N1, . . . , Nv are independent random variables that all follow a Poi(λ)-distribution. If
we define λ̂ = N/v, then we have

E
[
λ̂
]

= E
[
N

v

]
= E[N ]

v
= λv

v
= λ,

hence λ̂ can be seen as an estimator for λ. Moreover, we have

Var
(
λ̂
)

= Var
(
N

v

)
= Var(N)

v2 = λv

v2 = λ

v

and, because of (1), we can use the Central Limit Theorem to get

N/v − E [N/v]√
Var (N/v)

= λ̂− λ√
λ/v

−→ Z,

as v →∞, where Z is a random variable following a standard normal distribution. Hence, we
have the approximation

P

[
λ̂−

√
λ

v
≤ λ ≤ λ̂+

√
λ

v

]
= P

[
−1 ≤ λ̂− λ√

λ/v
≤ 1
]
≈ P(−1 ≤ Z ≤ 1) ≈ 0.7,

i.e. with a probability of roughly 70%, λ lies in the interval
[
λ̂−

√
λ/v, λ̂+

√
λ/v

]
. Since

a confidence interval for λ is not allowed to depend on λ itself, we also replace it by the

estimator λ̂ to get an approximate, roughly 70%-confidence interval
[
λ̂−

√
λ̂/v, λ̂+

√
λ̂/v

]
for λ. If we look at the estimator λ̂MLE

10 as the random variable
(∑10

t=1 Nt

)
/ (10v), we see

that

E
[
λ̂MLE

10

]
=
∑10
t=1 E[Nt]

10v =
∑10
t=1 λvt
10v = λ = E

[
λ̂
]

and

Var
(
λ̂MLE

10

)
=
∑10
t=1 Var(Nt)

(10v)2 =
∑10
t=1 λvt

(10v)2 = λ

10v <
λ

v
= Var

(
λ̂
)
.
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Because of the smaller variance it makes sense to replace λ̂ by λ̂MLE
10 to get the approximate,

roughly 70%-confidence intervalλ̂MLE
10 −

√
λ̂MLE

10
v

, λ̂MLE
10 +

√
λ̂MLE

10
v

 ≈ [9.90%, 10.54%]

for λ. If we define λt = Nt/vt for all t ∈ {1, . . . , 10}, we have the following observations
λ1, . . . , λ10 of the frequency parameter λ:

t 1 2 3 4 5 6 7 8 9 10
λt = Nt

vt
10% 9.97% 9.85% 9.89% 10.56% 10.70% 9.94% 9.86% 10.93% 10.54%

Table 1: Observed claims frequencies λt = Nt/vt.

We observe that instead of the expected, roughly seven observations, only four observations
lie in the estimated confidence interval. We conclude that the assumption of having Poisson
distributions might not be reasonable.

(b) By equation (2.8) of the lecture notes, the test statistic χ̂∗ is given by

χ̂∗ =
10∑
t=1

vt

(
Nt/vt − λ̂MLE

10

)2

λ̂MLE
10

and is approximately χ2-distributed with 10 − 1 = 9 degrees of freedom. By inserting the
numbers and λ̂MLE

10 calculated in (a), we get

χ̂∗ ≈ 14.84.

The probability that a random variable with a χ2-distribution with 9 degrees of freedom is
greater than 14.84 is approximately equal to 9.55%. Hence we can reject the null hypothesis
of having Poisson distributions only at significance levels that are higher than 9.55%. In
particular, we can not reject the null hypothesis at the significance level of 5%.

(c) As in part (a), let v = v1 = · · · = v10 = 10’000. In the negative-binomial model we
assume that N1, . . . , N10 are independent with Nt ∼ Poi(Θtλvt) for all t ∈ {1, . . . , 10}, where
Θ1, . . . ,Θ10

i.i.d.∼ Γ(γ, γ) for some γ > 0. We use Estimator 2.28 of the lecture notes to estimate
the claims frequency parameter λ by

λ̂NB
10 =

∑10
t=1 Nt∑10
t=1 vt

=
∑10
t=1 Nt
10v = 10’224

100’000 ≈ 10.22%.

As in equation (2.7) of the lecture notes, we define

V̂ 2
10 = 1

9

10∑
t=1

vt

(
Nt
vt
− λ̂NB

10

)
≈ 16.9%.

Now we can use Estimator 2.30 of the lecture notes to estimate the dispersion parameter γ by

γ̂NB
10 =

(
λ̂NB

10

)2

V̂ 2
10 − λ̂NB

10

1
9

( 10∑
t=1

vt −
∑10
t=1 v

2
t∑10

t=1 vt

)
=

(
λ̂NB

10

)2

V̂ 2
10 − λ̂NB

10

(
10v − 10v2

10v

)
9 =

(
λ̂NB

10

)2
v

V̂ 2
10 − λ̂NB

10
≈ 1576.15.
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For a random variable N ∼ Poi(Θλv), conditionally given Θ, we have

E
[
N

v

]
= E[N ]

v
= E[E[N |Θ]]

v
= E[Θλv]

v
= λv

v
= λ,

since E[Θ] = 1, and

Var
(
N

v

)
= E[Var(N |Θ)] + Var(E[N |Θ])

v2 = E[Θλv] + Var(Θλv)
v2 =

λv + λ2v2

γ

v2 =
λ+ λ2v

γ

v
,

since Var(Θ) = 1/γ. Similarly as in the Poisson case in part (a), we get the approximate,
roughly 70%-confidence intervalλ̂NB

10 −

√√√√ λ̂NB
10 +

(
λ̂NB

10

)2
v/γ̂NB

10

v
, λ̂NB

10 +

√√√√ λ̂NB
10 +

(
λ̂NB

10

)2
v/γ̂NB

10

v

 ≈ [9.81%, 10.63%].

for λ. Looking at the observations λ1, . . . , λ10 given in Table 1 above, we see that eight of
them lie in the estimated confidence interval, which is clearly better than in the Poisson
case in part (a). In conclusion, the negative-binomial model seems more reasonable than the
Poisson model.

Solution 4.2 Compound Poisson Distribution

(a) Since S ∼ CompPoi(λv,G), we can write S as

S =
N∑
i=1

Yi,

where N ∼ Poi(λv), Y1, Y2, . . . are i.i.d. with distribution function G and N and Y1, Y2, . . .
are independent. Now we can define Ssc, Smc and Slc as

Ssc =
N∑
i=1

Yi1{Yi≤1’000}, Smc =
N∑
i=1

Yi1{1’000<Yi≤1’000’000} and Slc =
N∑
i=1

Yi1{Yi>1’000’000}.

(b) Note that according to Table 2 given on the exercise sheet, we have

P[Y1 ≤ 1’000] = P[Y = 100] + P[Y = 300] + P[Y = 500] = 3
20 + 4

20 + 3
20 = 1

2 ,

P[1’000 < Y1 ≤ 1’000’000] = P[Y = 6’000] + P[Y = 100’000] + P[Y = 500’000]

= 2
15 + 2

15 + 1
15

= 1
3 and

P[Y1 > 1’000’000] = 1− P[Y1 ≤ 1’000’000] = 1− 1
2 −

1
3 = 1

6 .

Thus, using Theorem 2.14 of the lecture notes (disjoint decomposition of compound Poisson
distributions), we get

Ssc ∼ CompPoi
(
λv

2 , Gsc

)
, Smc ∼ CompPoi

(
λv

3 , Gmc

)
and Slc ∼ CompPoi

(
λv

6 , Glc

)
,
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where

Gsc(y) = P[Y1 ≤ y|Y1 ≤ 1’000],
Gmc(y) = P[Y1 ≤ y|1’000 < Y1 ≤ 1’000’000] and
Glc(y) = P[Y1 ≤ y|Y1 > 1’000’000]

for all y ∈ R. In particular, for a random variable Ysc having distribution function Gsc, we
have

P[Ysc = 100] = P[Y = 100]
P[Y1 ≤ 1’000] = 3/20

1/2 = 3
10 ,

P[Ysc = 300] = P[Y = 300]
P[Y1 ≤ 1’000] = 4/20

1/2 = 4
10 and

P[Ysc = 500] = P[Y = 500]
P[Y1 ≤ 1’000] = 3/20

1/2 = 3
10

Analogously, for random variables Ymc and Ylc having distribution functions Gmc and Glc,
respectively, we get

P[Ymc = 6’000] = 2
5 , P[Ymc = 100’000] = 2

5 and P[Ymc = 500’000] = 1
5 ,

as well as

P[Ylc = 2’000’000] = 1
2 , P[Ylc = 5’000’000] = 1

4 and P[Ylc = 10’000’000] = 1
4 .

(c) According to Theorem 2.14 of the lecture notes, Ssc, Smc and Slc are independent.

(d) In order to find E[Ssc], we need E[Ysc], which can be calculated as

E[Ysc] = 100·P[Ysc = 100]+300·P[Ymc = 300]+500·P[Ylc = 500] = 300
10 + 1200

10 + 1500
10 = 300.

Now we can apply Proposition 2.11 of the lecture notes to get

E[Ssc] = λv

2 E[Ysc] = 0.3 · 300 = 90.

Similarly, we get
E[Ymc] = 142’400 and E[Ylc] = 4’750’000.

Thus we find

E[Smc] = λv

3 E[Ymc] = 28’480 and E[Slc] = λv

6 E[Ylc] = 475’000.

Since S = Ssc + Smc + Slc, we get

E[S] = E[Ssc] + E[Smc] + E[Slc] = 503’570.

In order to find Var(Ssc), we need E[Y 2
sc], which can be calculated as

E[Y 2
sc] = 1002 · P[Ysc = 100] + 3002 · P[Ymc = 300] + 5002 · P[Ylc = 500]

= 30’000
10 + 360’000

10 + 750’000
10 = 114’000.

Now we can apply Proposition 2.11 of the lecture notes to get

Var(Ssc) = λv

2 E[Y 2
sc] = 0.3 · 114’000 = 34’200.
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Similarly, we get
E[Y 2

mc] = 54’014’400’000 and E[Y 2
lc ] = 33’250’000’000’000.

Thus we find

Var(Smc) = λv

3 E[Y 2
mc] = 10’802’880’000 and Var(Slc) = λv

6 E[Y 2
lc ] = 3’325’000’000’000.

Since S = Ssc + Smc + Slc and Ssc, Smc and Slc are independent, we get
Var(S) = Var(Ssc) + Var(Smc) + Var(Slc) = 3’335’802’914’200.

(e) First, we define the random variable Nlc as

Nlc ∼ Poi
(
λv

6

)
.

The probability that the total claim in the large claims layer exceeds 5 millions can be
calculated by looking at the complement, i.e. at the probability that the total claim in the
large claims layer does not exceed 5 millions. Since with three claims in the large claims layer
we already exceed 5 millions, it is enough to consider only up to two claims. Then we get
P [Slc ≤ 5’000’000] = P[Nlc = 0] + P[Nlc = 1]P[Ylc ≤ 5’000’000] + P[Nlc = 2]P[Ylc = 2’000’000]2

= exp
{
−λv6

}
+ exp

{
−λv6

}
λv

6

(
1
2 + 1

4

)
+ exp

{
−λv6

}(
λv

6

)2 1
2

1
4

= exp {−0.1} (1 + 0.075 + 0.00125)
≈ 97.4%.

Hence we can conclude
P [Slc > 5’000’000] = 1− P [Slc ≤ 5’000’000] ≈ 2.6%.

Solution 4.3 Method of Moments
If Y ∼ Γ(γ, c), then we have

E[Y ] = γ

c
and Var(Y ) = γ

c2 .

We define the sample mean µ̂8 and the sample variance σ̂2
8 of the eight observations given on the

exercise sheet as

µ̂8 = 1
8

8∑
i=1

xi = 64
8 = 8 and σ̂2

8 = 1
7

8∑
i=1

(xi − µ̂8)2 = 28
7 = 4.

The method of moments estimates (γ̂, ĉ) of (γ, c) are defined to be those values that solve the
equations

µ̂8 = γ̂

ĉ
and σ̂2

8 = γ̂

ĉ2 .

We see that γ̂ = µ̂8ĉ and thus
σ̂2

8 = µ̂8ĉ

ĉ2 = µ̂8

ĉ
,

which is equivalent to
ĉ = µ̂8

σ̂2
8

= 8
4 = 2.

Moreover, we get

γ̂ = µ̂2
8
σ̂2

8
= 64

4 = 16.

Thus we conclude that the method of moments estimate are given by (γ̂, ĉ) = (16, 2).
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Solution 5.1 Kolmogorov-Smirnov Test
The distribution function G0 of a Weibull distribution with shape parameter τ = 1

2 and scale
parameter c = 1 is given by

G0(y) = 1− exp{−y1/2}
for all y ≥ 0. Note that since G0 is continuous, we are allowed to apply a Kolmogorov-Smirnov test.
If x = (− log u)2 for some u ∈ (0, 1), we have

G0(x) = 1− exp
{
−
[
(− log u)2]1/2

}
= 1− exp {log u} = 1− u.

Hence, if we apply G0 to x1, . . . , x5, we get

G0(x1) = 2
40 , G0(x2) = 3

40 , G0(x3) = 5
40 , G0(x4) = 6

40 , G0(x5) = 30
40 .

Moreover, the empirical distribution function Ĝ5 of the sample x1, . . . , x5 is given by

Ĝ5(y) =



0 if y < x1,
1/5 if x1 ≤ y < x2,
2/5 if x2 ≤ y < x3,
3/5 if x3 ≤ y < x4,
4/5 if x4 ≤ y < x5,
1 if y ≥ x5.

Now the Kolmogorov-Smirnov test statistic D5 is defined as

D5 = sup
y∈R

∣∣∣Ĝ5(y)−G0(y)
∣∣∣ .

Since G0 is continuous and strictly monotonically increasing with range (0, 1) and Ĝ5 is piecewise
constant and attains both the values 0 and 1, it is sufficient to consider the discontinuities of Ĝ5 to
find D5. We define

f(s−) = lim
r↗s

f(r)

for all s ∈ R, where the function f stands for G0 and Ĝ5. Since G0 is continuous, we have
G0(s−) = G0(s) for all s ∈ R. The values of G0 and Ĝ5 and their differences can be summarized in
the following table:

xi, xi− x1− x1 x2− x2 x3− x3 x4− x4 x5− x5
Ĝ5(·) 0 8/40 8/40 16/40 16/40 24/40 24/40 32/40 32/40 1
G0(·) 2/40 2/40 3/40 3/40 5/40 5/40 6/40 6/40 30/40 30/40

|Ĝ5(·)−G0(·)| 2/40 6/40 5/40 13/40 11/40 19/40 18/40 26/40 2/40 10/40

From this table we see that D5 = 26/40 = 0.65. Let q = 5%. By writing K←(1 − q) for the
(1− q)-quantile of the Kolmogorov distribution, we have K←(1− q) = 1.36. Since

K←(1− q)√
5

≈ 0.61 < 0.65 = D5,

we can reject the null hypothesis of having a Weibull distribution with shape parameter τ = 1
2 and

scale parameter c = 1 as claim size distribution.
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Solution 5.2 Large Claims
(a) The density of a Pareto distribution with threshold θ = 50 and tail index α > 0 is given by

f(x) = fα(x) = α

θ

(x
θ

)−(α+1)

for all x ≥ θ. Using the independence of Y1, . . . , Yn, the joint likelihood function LY(α) for
the observation Y = (Y1, . . . , Yn) can be written as

LY(α) =
n∏
i=1

fα(Yi) =
n∏
i=1

α

θ

(
Yi
θ

)−(α+1)
=

n∏
i=1

αθαY
−(α+1)
i ,

whereas the joint log-likelihood function `Y(α) is given by

`Y(α) = logLY(α) =
n∑
i=1

logα+α log θ−(α+1) log Yi = n logα+nα log θ−(α+1)
n∑
i=1

log Yi.

Now the MLE α̂MLE
n is defined as

α̂MLE
n = arg max

α>0
LY(α) = arg max

α>0
`Y(α).

Calculating the first and the second derivative of `Y(α) with respect to α, we get

∂

∂α
`Y(α) = n

α
+ n log θ −

n∑
i=1

log Yi and

∂2

∂α2 `Y(α) = ∂

∂α

(
n

α
+ n log θ −

n∑
i=1

log Yi

)
= − n

α2 < 0,

for all α > 0, from which we can conclude that `Y(α) is strictly concave in α. Thus α̂MLE
n

can be found by setting the first derivative of `Y(α) equal to 0. We get

n

α̂MLE
n

+ n log θ −
n∑
i=1

log Yi = 0 ⇐⇒ α̂MLE
n =

(
1
n

n∑
i=1

log Yi − log θ
)−1

.

(b) Let α̂ denote the unbiased version of the MLE for the storm and flood data given on the
exercise sheet. Since we observed 15 storm and flood events, we have n = 15. Thus α̂ can be
calculated as

α̂ = n− 1
n

(
1
n

n∑
i=1

log Yi − log θ
)−1

= 14
15

(
1
15

15∑
i=1

log Yi − log 50
)−1

≈ 0.98,

where for Y1, . . . , Y15 we plugged in the observed claim sizes given on the exercise sheet. Note
that with α̂ = 0.98 < 1, the expectation of the claim sizes does not exist.

(c) We define N1, . . . , N20 to be the number of yearly storm and flood events during the twenty
years 1986− 2005. By assumption, we have

N1, . . . , N20
i.i.d.∼ Poi(λ).

Using Estimator 2.32 of the lecture notes with v1 = · · · = v20 = 1, the MLE λ̂ of λ is given by

λ̂ = 1∑20
i=1 1

20∑
i=1

Ni = 1
20

20∑
i=1

Ni.

Since we observed 15 storm and flood events in total, we get

λ̂ = 15
20 = 0.75.
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(d) Using Proposition 2.11 of the lecture notes, the expected yearly claim amount E[S] of storm
and flood events is given by

E[S] = λE[min{Y1,M}].
The expected value of min{Y1,M} can be calculated as

E[min{Y1,M}] = E[min{Y1,M}1{Y1≤M}] + E[min{Y1,M}1{Y1>M}]
= E[Y11{Y1≤M}] + E[M1{Y1>M}]
= E[Y11{Y1≤M}] +MP[Y1 > M ],

where for E[Y11{Y1≤M}] and P[Y1 > M ] we have

E[Y11{Y1≤M}] =
∫ ∞
θ

x1{x≤M}f(x) dx

=
∫ M

θ

x
α

θ

(x
θ

)−(α+1)
dx

= αθα
[

1
1− αx

1−α
]M
θ

= α

1− αθ
αM1−α − α

1− αθ

= α

1− αθ
(
M

θ

)1−α
− α

1− αθ

= θ
α

1− α

[(
M

θ

)1−α
− 1
]

= θ
α

α− 1

[
1−

(
M

θ

)1−α
]

and

MP[Y1 > M ] = M (1− P[Y1 ≤M ]) = M

(
1−

[
1−

(
M

θ

)−α])
= θ

(
M

θ

)1−α
.

Hence we get

E[min{Y1,M}] = θ
α

α− 1

[
1−

(
M

θ

)1−α
]

+ θ

(
M

θ

)1−α
= θ

α

α− 1 −
θ

α− 1

(
M

θ

)1−α
.

Replacing the unknown parameters by their estimates, we get for the estimated expected
total yearly claim amount Ê[S]:

Ê[S] = λ̂

[
θ

1− α̂

(
M

θ

)1−α̂
− α̂

1− α̂ θ
]
≈ 0.75

[
50

1− 0.98

(
2’000

50

)1−0.98
− 0.98 · 50

1− 0.98

]
≈ 180.4.

(e) Since S ∼ CompPoi(λ,G), we can write S as

S =
N∑
i=1

Yi,

where N ∼ Poi(λ), Y1, Y2, . . . are i.i.d. with distribution function G and N and Y1, Y2, . . . are
independent. Since we are only interested in events that exceed the level of M = 2 billions
CHF, we define SM as

SM =
N∑
i=1

Yi1{Yi>M}.
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Due to Theorem 2.14 of the lecture notes, we have SM ∼ CompPoi(λM , GM ) for some
distribution function GM and

λM = λP[Y1 > M ] = λ (1− P[Y1 ≤M ]) = λ

(
1−

[
1−

(
M

θ

)−α])
= λ

(
M

θ

)−α
.

Defining a random variable NM ∼ Poi(λM ), the probability that we observe at least one
storm and flood event in a particular year is given by

P[NM ≥ 1] = 1− P[NM = 0] = 1− exp{−λM} = 1− exp
{
−λ
(
M

θ

)−α}
.

If we replace the unknown parameters by their estimates, this probability can be estimated by

P̂[NM ≥ 1] = 1− exp
{
−λ̂
(
M

θ

)−α̂}
≈ 1− exp

{
−0.75

(
2’000

50

)−0.98
}
≈ 0.02.

Note that in particular such a flood storm and flood event that exceeds the level of 2 billions
CHF is expected roughly every 1/0.02 = 50 years.

Solution 5.3 Pareto Distribution

The density g and the distribution function G of Y are given by

g(x) = α

θ

(x
θ

)−(α+1)
and G(x) = 1−

(x
θ

)−α
for all x ≥ θ.

(a) The survival function Ḡ = 1−G of Y is

Ḡ(x) = 1−G(x) =
(x
θ

)−α
for all x ≥ θ. Hence, for all t > 0 we have

lim
x→∞

Ḡ(xt)
Ḡ(x)

= lim
x→∞

(xt/θ)−α

(x/θ)−α = t−α.

Thus, by definition, the survival function of Y is regularly varying at infinity with tail index
α.

(b) Let θ ≤ u1 < u2 and α 6= 1. Then the expected value of Y within the layer (u1, u2] can be
calculated as

E[Y 1{u1<Y≤u2}] =
∫ ∞
θ

x1{u1<x≤u2}g(x) dx =
∫ u2

u1

x
α

θ

(x
θ

)−(α+1)
dx = αθ

∫ u2

u1

1
θ

(x
θ

)−α
dx.

In the case α 6= 1, we get

E[Y 1{u1<Y≤u2}] = αθ

[
− 1
α− 1

(x
θ

)−α+1
]u2

u1

= θ
α

α− 1

[(u1

θ

)−α+1
−
(u2

θ

)−α+1
]
,

and if α = 1, we get

E[Y 1{u1<Y≤u2}] = θ

∫ u2

u1

1
x
dx = θ log

(
u2

u1

)
.
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(c) Let α > 1 and y > θ. Then the expected value µY of Y is given by

µY = θ
α

α− 1

and, similarly as in part (b), we get

E[Y 1{Y≤y}] = E[Y 1{θ<Y≤y}] = θ
α

α− 1

[(
θ

θ

)−α+1
−
(y
θ

)−α+1
]

= µY

[
1−

(y
θ

)−α+1
]
.

Hence, for the loss size index function for level y > θ we have

I[G(y)] = 1
µY

E[Y 1{Y≤y}] = 1−
(y
θ

)−α+1
∈ [0, 1].

(d) Let α > 1 and u > θ. The mean excess function of Y above u can be calculated as

e(u) = E[Y − u|Y > u] = E[Y |Y > u]− u =
E[Y 1{Y >u}]
P[Y > u] − u =

E[Y 1{Y >u}]
Ḡ(u)

− u,

where for E[Y 1{Y >u}] we have, similarly as in part (b),

E[Y 1{Y >u}] = αθ

[
− 1
α− 1

(x
θ

)−α+1
]∞
u

= α

α− 1θ
(u
θ

)−α+1
= α

α− 1uḠ(u).

Thus we get
e(u) = α

α− 1u− u = 1
α− 1u.

Note that the mean excess function u 7→ e(u) has slope 1
α−1 > 0.
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Solution 6.1 Goodness-of-Fit Test

Let Y be a random variable following a Pareto distribution with threshold θ = 200 and tail index
α = 1.25. Then the distribution function G of Y is given by

G(x) = 1−
(x
θ

)−α
= 1−

( x

200

)−1.25

for all x ≥ θ. For example for the interval I2 we then have

P[Y ∈ I2] = P[239 ≤ Y < 301] = G(301)−G(239) = 1−
(

301
200

)−1.25
−

[
1−

(
239
200

)−1.25
]
≈ 0.2.

By analogous calculations for the other four intervals, we get

P[Y ∈ I1] ≈ 0.2, P[Y ∈ I2] ≈ 0.2, P[Y ∈ I3] ≈ 0.2, P[Y ∈ I4] ≈ 0.2, P[Y ∈ I5] ≈ 0.2.

Let Ei and Oi denote respectively the expected number of observations in Ii and the observed
number of observations in Ii, for all i ∈ {1, . . . , 5}. As we have 20 observations in our data, we can
calculate for example E2 as

E2 = 20 · P[Y ∈ I2] ≈ 4.

The values of the expected number of observations and the observed number of observations in the
five intervals as well as their squared differences are summarized in the following table:

i 1 2 3 4 5
Oi 4 0 8 6 2
Ei 4 4 4 4 4

(Oi − Ei)2 0 16 16 4 4

Now the test statistic of the χ2-goodness-of-fit test using 5 intervals and 20 observations is given by

X2
20,5 =

5∑
i=1

(Oi − Ei)2

Ei
= 0

4 + 16
4 + 16

4 + 4
4 + 4

4 = 10.

Let α = 5%. Then the (1− α)-quantile of the χ2-distribution with 5− 1 = 4 degrees of freedom is
given by approximately 9.49. Since this is smaller than X2

20,5, we can reject the null hypothesis
of having a Pareto distribution with threshold θ = 200 and tail index α = 1.25 as claim size
distribution at the significance level of 5%.

Solution 6.2 Log-Normal Distribution and Deductible

(a) Let X ∼ N (µ, σ2). Then the moment generating function MX of X is given by

MX(r) = E [exp{rX}] = exp
{
rµ+ r2σ2

2

}
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for all r ∈ R. Since Y1 has a log-normal distribution with mean parameter µ and variance
parameter σ2, we have

Y1
d= exp{X}.

Hence, the expectation, the variance and the coefficient of variation of Y1 can be calculated as

E[Y1] = E [exp{X}] = E [exp{1 ·X}] = MX(1) = exp
{
µ+ σ2

2

}
,

Var(Y1) = E[Y 2
1 ]− E[Y1]2 = E [exp{2X}]−MX(1)2 = MX(2)−MX(1)2

= exp
{

2µ+ 4σ2

2

}
− exp

{
2µ+ 2σ

2

2

}
= exp

{
2µ+ σ2} (exp

{
σ2}− 1

)
and

Vco(Y1) =
√
Var(Y1)
E[Y1] =

exp
{
µ+ σ2/2

}√
exp {σ2} − 1

exp {µ+ σ2/2} =
√

exp {σ2} − 1.

(b) From part (a), we know that

σ =
√

log[Vco(Y1)2 + 1] and

µ = logE[Y1]− σ2

2 .

Since E[Y1] = 3’000 and Vco(Y1) = 4, we get

σ =
√

log(42 + 1) ≈ 1.68 and

µ ≈ log 3’000− (1.68)2

2 ≈ 6.59.

(i) The claims frequency λ is given by λ = E[N ]/v. With the introduction of the deductible
d = 500, the number of claims changes to

Nnew =
N∑
i=1

1{Yi>d}.

Using the independence of N and Y1, Y2, . . . , we get

E[Nnew] = E

[
N∑
i=1

1{Yi>d}

]
= E[N ]E[1{Y1>d}] = E[N ]P[Y1 > d].

Let Φ denote the distribution function of a standard Gaussian distribution. Since log Y1
has a Gaussian distribution with mean µ and variance σ2, we have

P[Y1 > d] = 1− P
[

log Y1 − µ
σ

≤ log d− µ
σ

]
= 1− Φ

(
log d− µ

σ

)
.

Hence, the new claims frequency λnew is given by

λnew = E[Nnew]/v = E[N ]P[Y1 > d]/v = λP[Y1 > d] = λ

[
1− Φ

(
log d− µ

σ

)]
.

Inserting the values of d, µ and σ, we get

λnew ≈ λ
[
1− Φ

(
log 500− 6.59

1.68

)]
≈ 0.59 · λ.

Note that the introduction of this deductible reduces the administrative burden a lot,
because 41% of (small) claims disappear.
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(ii) With the introduction of the deductible d = 500, the claim sizes change to

Y new
i = Yi − d |Yi > d.

Thus, the new expected claim size is given by

E[Y new
1 ] = E[Y1 − d|Y1 > d] = e(d),

where e(d) is the mean excess function of Y1 above d. According to the lecture notes,
e(d) is given by

e(d) = E[Y1]

1− Φ
(

log d−µ−σ2

σ

)
1− Φ

(
log d−µ

σ

)
− d.

Inserting the values of d, µ, σ and E[Y1], we get

E[Y new
1 ] ≈ 3’000

1− Φ
(

log 500−6.59−1.682

1.68

)
1− Φ

(
log 500−6.59

1.68

)
− 500 ≈ 4’456 ≈ 1.49 · E[Y1].

(iii) According to Proposition 2.2 of the lecture notes, the expected total claim amount E[S]
is given by

E[S] = E[N ]E[Y1].

With the introduction of the deductible d = 500, the total claim amount S changes to
Snew, which can be written as

Snew =
Nnew∑
i=1

Y new
i .

Hence, the expected total claim amount changes to

E [Snew] = E [Nnew]E [Y new
1 ]

= E[N ]P[Y1 > d]e(d)

= λv

[
1− Φ

(
log d− µ

σ

)]
·

E[Y1]

1− Φ
(

log d−µ−σ2

σ

)
1− Φ

(
log d−µ

σ

)
− d

 .

Inserting the values of d, µ, σ and E[Y1], we get

E [Snew] ≈ λv
[
1− Φ

(
log 500− 6.59

1.68

)]
·

3’000

1− Φ
(

log 500−6.59−1.682

1.68

)
1− Φ

(
log 500−6.59

1.68

)
− 500


≈ λv · 0.59 · 4’456
= 0.88 · E[S].

In particular, the insurance company can grant a discount of roughly 12% on the pure
risk premium. Note that also the administrative expenses on claims handling will reduce
substantially because we only have 59% of the original claims, see the result in (i).
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Solution 6.3 Inflation and Deductible
Let Y be a random variable following a Pareto distribution with threshold θ > 0 and tail index
α > 1. Then the expectation E[Y ] of Y and the mean excess function eY (u) of Y above u > θ are
given by

E[Y ] = α

α− 1θ and eY (u) = 1
α− 1u.

Since the insurance company only has to pay the part that exceeds the threshold θ, this year’s
average claim payment z is

z = E[Y ]− θ = α

α− 1θ − θ = θ

α− 1 .

For the total claim size Ỹ of a claim next year we have

Ỹ
d= (1 + r)Y ∼ Pareto([1 + r]θ, α).

Let ρθ for some ρ > 0 denote the increase of the threshold that is needed such that the average
claims payment remains unchanged. Then next year’s average claim payment is given by

z̃ = E[(Ỹ − [1 + ρ]θ)+].

Let’s first assume that we can choose a ρ < r such that z = z̃. In this case we get

Ỹ ≥ (1 + r)θ a.s. =⇒ Ỹ ≥ (1 + ρ)θ a.s.

and thus
z̃ = E[Ỹ − (1 + ρ)θ] = E[Ỹ ]− (1 + ρ)θ = α

α− 1(1 + r)θ − (1 + ρ)θ.

Now we have z = z̃ if and only if
α

α− 1θ − θ = α

α− 1(1 + r)θ − (1 + ρ)θ

⇐⇒ 0 = α

α− 1rθ − ρθ

⇐⇒ ρ = α

α− 1r > r,

which is a contradiction to the assumption ρ < r. Hence, we conclude that ρ ≥ r, i.e. the percentage
increase in the deductible has to be bigger than the inflation. Assuming ρ ≥ r, we can calculate

z̃ = E[(Ỹ − [1 + ρ]θ) · 1{Ỹ−(1+ρ)θ}]

= E[Ỹ − (1 + ρ)θ | Ỹ > (1 + ρ)θ] · P[Ỹ > (1 + ρ)θ]
= eỸ ([1 + ρ]θ) · P[Ỹ > (1 + ρ)θ]

= 1
α− 1(1 + ρ)θ ·

[
(1 + ρ)θ
(1 + r)θ

]−α
= θ

α− 1(1 + r)α(1 + ρ)−α+1

= z · (1 + r)α(1 + ρ)−α+1.

Now we have z = z̃ if and only if

(1 + r)α(1 + ρ)−α+1 = 1 ⇐⇒ ρ = (1 + r)
α
α−1 − 1.

We conclude that if we want the claim payment to remain unchanged, we have to increase the
deductible θ by the amount

θ
[
(1 + r)

α
α−1 − 1

]
.
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Solution 7.1 Hill Estimator

An example of a possible R-code is given below.

1 ### Generate 300 independent observations coming from a
2 ### Pareto distribution with threshold theta = 10 millions
3 ### and tail index alpha = 2.
4 ### We use that if Z ~ Gamma (1, alpha),
5 ### then theta*exp{Z} ~ Pareto (theta , alpha).
6 ### Note that for the Gamma distribution we have:
7 ### scale parameter in R = 1/(scale parameter in lecture notes)
8 n <- 300
9 theta <- 10 ### in millions

10 alpha <- 2
11 set.seed (100) ### for reproducibility
12 data .1 <- rgamma (n, shape = 1, scale = 1 / alpha)
13 data <- theta * exp(data .1)
14
15 ### Order the data
16 data. ordered <- data[order(data , decreasing = FALSE)]
17
18 ### Take the logarithm
19 log.data. ordered <- log(data. ordered )
20
21 ### Number of observations
22 n.obs <- n:1
23
24 ### Hill estimator
25 hill. estimator <- (( sum(log.data. ordered )
26 - cumsum (log.data. ordered ) + log.data. ordered ) / n.obs
27 - log.data. ordered )^( -1)
28
29 ### Confidence bounds (see Lemma 3.7 of the lecture notes)
30 upper.bound <- hill. estimator + sqrt(n.obs ^2 / ((n.obs - 1)^2
31 * (n.obs - 2)) * hill. estimator ^2)
32 lower.bound <- hill. estimator - sqrt(n.obs ^2 / ((n.obs - 1)^2
33 * (n.obs - 2)) * hill. estimator ^2)
34
35 ### Hill plot and log -log plot next to each other
36 par(mfrow=c(1 ,2))
37
38 ### Hill plot
39 plot(hill.estimator , ylim = c(alpha -1, alpha +2) , xaxt="n",
40 xlab = " number of observations ",
41 ylab = " Pareto tail index parameter ", cex = 0.5)
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42 title(main = "Hill plot for alpha")
43 axis (1,at=c(1, seq(from = n / 10, to = n, by = n / 10)),
44 c(seq(from = n, to = n / 10, by = -n / 10) ,1))
45 lines(upper.bound)
46 lines(lower.bound)
47 abline (h = alpha , col = "blue")
48 legend (" topleft ", col = c("blue","black"), lty = c(1,NA),
49 pch = c(NA ,1) ,
50 legend = c(" Pareto distribution "," observations "))
51
52 ### True survival function (= 1 - true distribution function )
53 true.sf <- (data. ordered / theta)^(- alpha)
54
55 ### Empirical survival function (= 1 - empirical survival function )
56 empirical .sf <- 1 - (1:n) / n
57
58 ### Log -log plot
59 plot(log.data.ordered ,log(true.sf), xlab = "log(claim size)",
60 ylab = "log (1 - distribution function )",
61 cex= 0.5, col = "blue")
62 title(main = "log -log plot")
63 lines(log.data.ordered , log(true.sf), col = "blue")
64 points (log.data.ordered , log( empirical .sf), col = "black",
65 cex= 0.5)
66 legend (" bottomleft ", col = c("blue","black"), lty = c(1,NA),
67 pch = c(1 ,1) , legend = c(" Pareto distribution "," observations "))

The Hill plot (on the left) and the log-log plot (on the right) look as follows:
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Note that even though we sampled from a Pareto distribution with tail index α = 2, it is not at all
clear to see that the data comes from a Pareto distribution. In the Hill plot we see that, first, the
estimates of α seem more or less correct, but starting from the 180 largest observations, the plot
suggests a higher α or even another distribution. In the log-log plot we see that for small-sized and
medium-sized claims the fit seems to be fine. But looking at the largest claims, we would conclude
that our data is not as heavy-tailed as a true Pareto distribution with threshold θ = 10 millions and
tail index α = 2 would suggest. We are confronted with these problems even though we sampled
directly from a Pareto distribution. This might indicate the difficulties one faces when trying to fit
such a distribution to a real data set, which, to make matters even worse, often contains far less
than 300 observations as in this example and moreover the observations may be contaminated by
other distributions.

Solution 7.2 Approximations

Note that if Y ∼ Γ(γ = 100, c = 1
10 ), then

E[Y ] = γ

c
= 100

1/10 = 1’000,

E[Y 2] = γ(γ + 1)
c2 = 100 · 101

1/100 = 1’010’000 and

E[Y 3] = γ(γ + 1)(γ + 2)
c3 = 100 · 101 · 102

1/1000 = 1’030’200’000.

Let MY denote the moment generating function of Y . According to formula (1.3) of the lecture
notes, we have

M ′′′Y (0) = d3

dr3MY (r)
∣∣∣∣
r=0

= E[Y 3].

For the total claim amount S, we can use Proposition 2.11 of the lecture notes to get

E[S] = λvE[Y ] = 1’000 · 1’000 = 1’000’000,
Var(S) = λvE[Y 2] = 1’000 · 1’010’000 = 1’010’000’000 and
MS(r) = exp{λv[MY (r)− 1]}.

In order to get the skewness ςS of S, which we will need for the translated gamma and the log-normal
approximations, we can use the third equation given in the formulas (1.5) of the lecture notes:

ςS ·Var(S)3/2 = d3

dr3 logMS(r)
∣∣∣∣
r=0

= λv
d3

dr3MY (r)
∣∣∣∣
r=0

= λvM ′′′Y (0) = λvE[Y 3],

from which we can conclude that

ςS = λvE[Y 3]
(λvE[Y 2])3/2 = E[Y 3]√

λvE[Y 2]3/2
= 1’030’200’000√

1’000(1’010’000)3/2
≈ 0.0321.

Let FS denote the distribution function of S. Then, since FS is continuous and strictly increasing,
the quantiles q0.95 and q0.99 can be calculated as

q0.95 = F−1
S (0.95) and q0.99 = F−1

S (0.99).

(a) According to Section 4.1.1 of the lecture notes, the normal approximation is given by

FS(x) ≈ Φ
(
x− λvE[Y ]√
λvE[Y 2]

)
,
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for all x ∈ R, where Φ is the standard Gaussian distribution function. For all α ∈ (0, 1), we
have

F−1
S (α) = λvE[Y ] +

√
λvE[Y 2] · Φ−1(α)

= 1’000 · 1’000 +
√

1’000 · 1’010’000 · Φ−1(α)
≈ 1’000’000 + 31’780.5 · Φ−1(α).

In particular, we get

q0.95 = F−1
S (0.95) ≈ 1’000’000+31’780.5·Φ−1(0.95) ≈ 1’000’000+31’780.5·1.645 = 1’052’279

and

q0.99 = F−1
S (0.99) ≈ 1’000’000+31’780.5·Φ−1(0.99) ≈ 1’000’000+31’780.5·2.325 = 1’073’890.

Note that the normal approximation also allows for negative claims S, which under our model
assumption is excluded. The probability for negative claims S in the normal approximation
can be calculated as

FS(0) ≈ Φ
(

0− λvE[Y ]√
λvE[Y 2]

)
≈ Φ

(
−1’000’000

31’780.5

)
≈ Φ(−31.5) ≈ 4.34 · 10−218,

which of course is positive, but very close to 0.

(b) According to Section 4.1.2 of the lecture notes, in the translated gamma approximation we
model S by the random variable

X = k + Z,

where k ∈ R and Z ∼ Γ(γ̃, c̃). The three parameters k, γ̃ and c̃ can be determined by solving
the equations

E[X] = E[S], Var(X) = Var(S) and ςX = ςS , (1)

where ςX is the skewness parameter of X. Since Z ∼ Γ(γ̃, c̃), we can use the results given in
Section 3.2.1 of the lecture notes to calculate

E[X] = E[k + Z] = k + E[Z] = k + γ̃

c̃
,

Var(X) = Var(k + Z) = Var(Z) = γ̃

c̃2 and

ςX =
E
[
(X − E[X])3]
Var(X)3/2 =

E
[
(k + Z − E[k + Z])3]
Var(k + Z)3/2 =

E
[
(Z − E[Z])3]
Var(Z)3/2 = ςZ = 2√

γ̃
.

Using equations (1), we get

2√
γ̃

= ςS ⇐⇒ γ̃ = 4
ς2
S

≈ 3’883,

γ̃

c̃2 = Var(S) ⇐⇒ c̃ =

√
γ̃

Var(S) ≈ 0.002 and

k + γ̃

c̃
= E[S] ⇐⇒ k = E[S]− γ̃

c̃
= E[S]−

√
γ̃Var(S) ≈ −980’392.

If we write FZ for the distribution function of Z ∼ Γ(γ̃ ≈ 3’883, c̃ ≈ 0.002), using the
translated gamma approximation, we get

FS(x) = P[S ≤ x] ≈ P[X ≤ x] = P[k + Z ≤ x] = P[Z ≤ x− k] = FZ(x− k),

Updated: November 1, 2017 4 / 7



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2017 Solution sheet 7

for all x ∈ R. Now, for all α ∈ (0, 1), we have

F−1
S (α) ≈ k + F−1

Z (α)

In particular, we get

q0.95 = F−1
S (0.95) ≈ k + F−1

Z (0.95) ≈ −980’392 + 2’032’955 = 1’052’563

and
q0.99 = F−1

S (0.99) ≈ k + F−1
Z (0.99) ≈ −980’392 + 2’055’074 = 1’074’682.

Note that since k < 0, the translated gamma approximation in this example also allows
for negative claims S, which under our model assumption is excluded. The probability for
negative claims S can be calculated as

FS(0) ≈ FZ(0− k) ≈ FZ(980’392) ≈ 4.87 · 10−320,

which is basically 0.

(c) According to Section 4.1.2 of the lecture notes, in the translated log-normal approximation
we model S by the random variable

X = k + Z,

where k ∈ R and Z ∼ LN(µ, σ2). Similarly as in part (b), the three parameters k, µ and σ2

can be determined by solving the equations

E[X] = E[S], Var(X) = Var(S) and ςX = ςS . (2)

Since Z ∼ LN(µ, σ2), we can use the results given in Section 3.2.3 of the lecture notes to
calculate

E[X] = E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2/2

}
,

Var(X) = Var(k + Z) = Var(Z) = exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
and

ςX = ςZ =
(
exp

{
σ2}+ 2

) (
exp

{
σ2}− 1

)1/2
.

Using the third equation in (2), we get(
exp

{
σ2}+ 2

) (
exp

{
σ2}− 1

)1/2 = ςS ≈ 0.0321 ⇐⇒ σ2 ≈ 0.00012,

which was found using a computer software. Using the second equation in (2), we get

exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
= Var(S) ⇐⇒ µ = 1

2

(
log
[(

exp
{
σ2}− 1

)−1 Var(S)
]
− σ2

)
,

which implies
µ ≈ 14.875.

Finally, using the first equation in (2), we get

k + exp
{
µ+ σ2/2

}
= E[S] ⇐⇒ k = E[S]− exp

{
µ+ σ2/2

}
≈ −2’391’769.

If we write FW for the distribution function of W = logZ ∼ N (µ ≈ 14.875, σ2 ≈ 0.00012),
using the translated log-normal approximation, we get

FS(x) = P[S ≤ x] ≈ P[X ≤ x] = P[k + Z ≤ x] = P[logZ ≤ log(x− k)] = FW (log[x− k]),
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for all x ∈ R. Now, for all α ∈ (0, 1), we have

F−1
S (α) ≈ k + exp{F−1

W (α)}.

In particular, we get

q0.95 = F−1
S (0.95) ≈ k + exp{F−1

W (0.95)} ≈ −2’391’769 + 3’444’295 = 1’052’527

and

q0.99 = F−1
S (0.99) ≈ k + exp{F−1

W (0.99)} ≈ −2’391’769 + 3’466’359 = 1’074’590.

Note that since k < 0, the translated log-normal approximation in this example also allows
for negative claims S, which under our model assumption is excluded. The probability for
negative claims S can be calculated as

FS(0) ≈ FZ(0− k) = FW (log[−k]) ≈ FW (log 2’391’769) ≈ 1.92 · 10−304,

which is basically 0.

(d) We observe that with all the three approximations applied in parts (a) - (c) we get almost the
same results. In particular, the normal approximation does not provide estimates that deviate
significantly from the ones we get using the translated gamma and the translated log-normal
approximations. This is due to the fact, that λv = 1’000 is large enough and the gamma
distribution assumed for the claim sizes is not a heavy tailed distribution. Moreover, the
skewness ςS = 0.0321 of S is rather small, hence the normal approximation is a valid model
in this example. Note that in all the three approximations we allow for negative claims S,
which actually should not be possible under our model assumption. However, the probability
of observe a negative claim S is vanishingly small.

Solution 7.3 Akaike Information Criterion and Bayesian Information Criterion

(a) By definition, the MLEs
(
γ̂MLE, ĉMLE) maximize the log-likelihood function `Y. In particular,

we have
`Y
(
γ̂MLE, ĉMLE) ≥ `Y (γ, c) ,

for all (γ, c) ∈ R+ × R+.
If we write d(MLE) and d(MM) for the number of estimated parameters in the MLE model and
in the method of moments model, respectively, we have d(MLE) = d(MM) = 2. The AIC value
AIC(MLE) of the MLE model and the AIC value AIC(MM) of the method of moments model
are then given by

AIC(MLE) = −2`Y
(
γ̂MLE, ĉMLE)+ 2d(MLE) = −2 · 1264.013 + 2 · 2 = −2524.026 and

AIC(MM) = −2`Y
(
γ̂MM, ĉMM)+ 2d(MM) = −2 · 1264.171 + 2 · 2 = −2524.342.

According to the AIC, the model with the smallest AIC value should be preferred. Since
AIC(MLE) < AIC(MM), we choose the MLE fit.

(b) If we write d(gam) and d(exp) for the number of estimated parameters in the gamma model
and in the exponential model, respectively, we have d(gam) = 2 and d(exp) = 1. The AIC value
AIC(gam) of the gamma model and the AIC value AIC(exp) of the exponential model are then
given by

AIC(gam) = −2`(gam)
Y

(
γ̂MLE, ĉMLE)+ 2d(gam) = −2 · 1264.013 + 2 · 2 = −2524.026 and

AIC(exp) = −2`(exp)
Y

(
ĉMLE)+ 2d(exp) = −2 · 1264.169 + 2 · 1 = −2526.338.
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Since AIC(gam) > AIC(exp), we choose the exponential model.
The BIC value BIC(gam) of the gamma model and the BIC value BIC(exp) of the exponential
model are given by

BIC(gam) = −2`(gam)
Y

(
γ̂MLE, ĉMLE)+ d(gam) · log 1000

= −2 · 1264.013 + 2 · log 1000
≈ −2514.21

and

BIC(exp) = −2`(exp)
Y

(
ĉMLE)+ d(exp) · log 1000

= −2 · 1264.169 + log 1000
≈ −2521.43.

According to the BIC, the model with the smallest BIC value should be preferred. Since
BIC(gam) > BIC(exp), we choose the exponential model. Note that the gamma model gives
the better in-sample fit than the exponential model. But if we adjust this in-sample fit by the
number of parameters used, we conclude that the exponential model probably has the better
out-of-sample performance (better predictive power).
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Solution 8.1 Panjer Algorithm

For the expected yearly claim amount π0 we have

π0 = E[S] = E[N ]E[Y1] = 1 · E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2

2

}
≈ 4123.872.

Let Y +
i denote the discretized claim sizes using a span of s = 10, where we put all the probability

mass to the upper end of the intervals. If we write gm = P[Y +
1 = sm] for m ∈ N, then we have

g1 = g2 = · · · = g10 = 0,

since P[Y +
1 ≤ k] = P[Z ≤ 0] = 0 and k = 10s. For all l ≥ 11, we get

gl = P[Y +
1 = sl]

= P[Y +
1 = k + s(l − 10)]

= P[k + s(l − 11) < Y1 ≤ k + s(l − 10)]
= P[Y1 ≤ k + s(l − 10)]− P[Y1 ≤ k + s(l − 11)]
= P[Z ≤ s(l − 10)]− P[Z ≤ s(l − 11)]
= P [logZ ≤ log(s[l − 10])]− P [logZ ≤ log(s[l − 11])]

= Φ
(

log[s(l − 10)]− µ
σ

)
− Φ

(
log[s(l − 11)]− µ

σ

)
,

where Φ is the distribution function of the standard Gaussian distribution and where we define
log 0 = −∞. From now on we will replace the claim sizes Yi with the discretized claim sizes Y +

i . In
particular, we will still write S for the yearly claim amount that changed to

S =
N∑
i=1

Y +
i .

Note that N ∼ Poi(1) has a Panjer distribution with parameters a = 0 and b = 1, see the proof of
Lemma 4.7 of the lecture notes. Applying the Panjer algorithm given in Theorem 4.9 of the lecture
notes, we have for r ∈ N0

fr
def.= P[S = sr] =

{
P[N = 0] for r = 0,∑r
l=1

l
rglfr−l for r > 0.

Since the yearly amount that the client has to pay by himself is given by

Sins = min{S, d}+ min{α · (S − d)+,M} = min{S, d}+ α ·min
{

(S − d)+,
M

α

}
,

M/α = 7’000 and the maximal possible franchise is 2’500, we have to apply the Panjer algorithm
until we reach P[S = 9’500] = f950. Here we limit ourselves to determine the values of f0, . . . , f12
to illustrate how the algorithm works. In particular, we have

f0 = P[N = 0] = e−1 ≈ 0.36
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and
f1 = f2 = · · · = f10 = 0,

since g1 = g2 = · · · = g10 = 0. For r = 11 and r = 12, we get

f11 =
11∑
l=1

l

11glf11−l = g11f0 =
[
Φ
(

log s− µ
σ

)
− Φ

(
log 0− µ

σ

)]
e−1 ≈ 7.089 · 10−9

and

f12 =
12∑
l=1

l

12glf12−l = g12f0 =
[
Φ
(

log 2s− µ
σ

)
− Φ

(
log s− µ

σ

)]
e−1 ≈ 2.786 · 10−7.

Using the discretized claim sizes, the yearly expected amount πins paid by the client is given by

πins = E[Sins] = E [min{S, d}] + αE
[
min

{
(S − d)+,

M

α

}]
,

where we have

E [min{S, d}] =
d/s∑
r=0

frsr + d

1−
d/s∑
r=0

fr

 = d+
d/s∑
r=0

fr(sr − d)

and

E
[
min

{
(S − d)+,

M

α

}]
=
d/s+M/sα∑
r=d/s+1

fr(sr − d) + M

α

1−
d/s+M/α∑

r=0
fr


= M

α
+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr.

Therefore, we get

πins = d+
d/s∑
r=0

fr(sr − d) + α

M
α

+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr


= d+M +

d/s∑
r=0

fr(sr − d−M) +
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

)
.

Finally, if the client has chosen franchise d, then the monthly pure risk premium π is given by

π = π0 − πins

12

= 1
12

k + exp
{
µ+ σ2

2

}
− d−M −

d/s∑
r=0

fr(sr − d−M)−
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

) .
In the end, we get the following monthly pure risk premiums for the different franchises:

d 300 500 1’000 1’500 2’000 2’500
π 307 297 274 253 233 216

More generally, the monthly pure risk premium as a function of the franchise, which is allowed to
vary between 300 CHF and 2’500 CHF, looks as follows:
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Note that the above values only represent the pure risk premiums. In order get the premiums that
the customer has to pay in the end, we would need to add an appropriate risk-loading, which may
vary between different health insurance companies. The above plot can be created by the R-code
given below, where we calculated the premiums using two different discretizations of the claim sizes:
in one we put the probability mass to the upper end of the intervals and in the other to the lower
end of the intervals. However, the resulting premiums for these two versions are basically the same.

1 ### Define the function KK_ premium with the variables :
2 ### lambda = mean number of claims
3 ### mu = mean parameter of log - normal distribution
4 ### sigma2 = variance parameter of log - normal distribution
5 ### span = span size used in the Panjer algorithm
6 ### shift = shift of the translated log - normal distribution
7 KK_ premium <- function (lambda , mu , sigma2 , span , shift){
8 ### we will calculate the distribution of S until M (M = 2500 +

7000)
9 M <- 9500

10
11 ### number of steps
12 m <- M/span
13
14 ### we won ’t have any mass until we reach shift , which happens at

the k0 -th step
15 k0 <- shift/span
16
17 ### initialize array where mass is put to the lower end of the

interval
18 g_min <- array (0, dim=c(m+1 ,1))
19
20 ### initialize array where mass is put to the upper end of the

interval
21 g_max <- array (0, dim=c(m+1 ,1))
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22
23 ### discretize the log - normal distribution putting the mass to

the lower end of the interval
24 for (k in (k0 +1) :(m+1)){g_min[k ,1] <- pnorm(log ((k-k0)*span),

mean=mu , sd=sqrt( sigma2 ))-pnorm(log ((k-k0 -1)*span), mean=mu ,
sd=sqrt( sigma2 ))}

25
26 ### discretize the log - normal distribution putting the mass to

the upper end of the interval
27 g_max [2:(m+1) ,1] <- g_min [1:m ,1]
28
29 ### initialize matrix , where we will store the probability

distribution of S
30 f1 <- matrix (0, nrow=m+1, ncol =3)
31
32 ### store the probability of getting zero claims (in both lower

bound and upper bound)
33 f1 [1 ,1] <- exp(- lambda *(1-g_min [1 ,1]))
34 f1 [1 ,2] <- exp(- lambda *(1-g_max [1 ,1]))
35
36 ### calculate the values "l * g_{l}" of the discretized claim

sizes (lower bound and upper bound), we need these values in
the Panjer algorithm

37 h1 <- matrix (0, nrow=m, ncol =3)
38 for (i in 1:m){
39 h1[i ,1] <- g_min[i+1 ,1]*(i+1)
40 h1[i ,2] <- g_max[i+1 ,1]*(i+1)
41 }
42
43 ### Panjer algorithm (note that in the Poisson case we have a = 0

and b = lambda *v, which is just lambda here)
44 for (r in 1:m){
45 f1[r+1 ,1] <- lambda /r*(t(f1 [1:r ,1])%*%h1[r:1 ,1])
46 f1[r+1 ,2] <- lambda /r*(t(f1 [1:r ,2])%*%h1[r:1 ,2])
47 f1[r+1 ,3] <- r * span
48 }
49
50 ### maximal and minimal franchise
51 m1 <- 2500
52 m0 <- 300
53
54 ### number of iterations needed to get to m1 and m0
55 i1 <- m1/span +1
56 i0 <- m0/span +1
57
58 ### calculate the part that the insured pays by himself
59 franchise <- array(NA , c(i1 , 3))
60 for (i in i0:i1){
61 franchise [i ,1] <- f1[i ,3] ### this represents the franchise
62 franchise [i ,2] <- sum(f1 [1:i ,1]*f1 [1:i ,3]) + f1[i ,3] * (1- sum(

f1 [1:i ,1]))
63 franchise [i ,2] <- franchise [i ,2] + sum(f1[(i+1) :(i+7000/span)
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,1]*f1 [2:(7000 /span +1) ,3])*0.1 + 700 * (1- sum(f1 [1:(i+7000/
span) ,1]))

64 franchise [i ,3] <- sum(f1 [1:i ,2]*f1 [1:i ,3]) + f1[i ,3] * (1- sum(
f1 [1:i ,2]))

65 franchise [i ,3] <- franchise [i ,3] + sum(f1[(i+1) :(i+7000/span)
,2]*f1 [2:(7000 /span +1) ,3])*0.1 + 700 * (1- sum(f1 [1:(i+7000/
span) ,2]))

66 }
67
68 ### calculate the price of the monthly premium
69 price <- array(NA , c(i1 , 3))
70 price [,1] <- franchise [,1] ### this represents the franchise
71 price [ ,2:3] <- ( lambda *(exp(mu+ sigma2 /2)+shift) - franchise

[ ,2:3])/12
72 price
73 }
74
75 ### Load the add -on packages stats and MASS
76 require (stats)
77 require (MASS)
78
79 ### Determine values for the input parameters of the function KK_

premium
80 lambda <- 1
81 mu <- 7.8
82 sigma2 <- 1
83 span <- 10
84 shift <- 100
85
86 ### The coefficient of variation of the translated log - normal

distribution is given by
87 exp(mu+ sigma2 /2)*sqrt(exp( sigma2 ) -1)/(shift+exp(mu+ sigma2 /2))
88
89 ### Run the function KK_ premium
90 price <- KK_ premium (lambda , mu , sigma2 , span , shift)
91
92 ### Plot the monthly pure risk premium as a function of the

franchise
93 plot(x=price [,1], y=price [,2], lwd =2, col="blue", type=’l’, ylab="

pure risk premium ", xlab=" franchise ", main="pure risk premium (
monthly )")

94 lines(x=price [,1], y=price [,2], lwd =1, col="blue")
95 points (x=c(300 ,500 , 1000 , 1500 , 2000 , 2500) , y=price[c(300 ,500 ,

1000 , 1500 , 2000 , 2500)/span +1,3], pch =19, col=" orange ")
96 abline (v=c(300 , 500, 1000 , 1500 , 2000 , 2500) , col=" darkgray ", lty

=3)
97
98 ### Give the monthly pure risk premiums for the six franchises

listed on the exercise sheet
99 round(price[c(300 ,500 , 1000 , 1500 , 2000 , 2500)/span +1 ,2])

100 round(price[c(300 ,500 , 1000 , 1500 , 2000 , 2500)/span +1 ,3])

Updated: November 8, 2017 5 / 9



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2017 Solution sheet 8

Solution 8.2 Variance Loading Principle

(a) Let S1, S2, S3 be the total claim amounts of the passenger cars, delivery vans and trucks,
respectively. Then, according Proposition 2.11 of the lecture notes, for the expected total
claim amounts we have

E[Si] = λivi E
[
Y

(i)
1

]
,

for all i ∈ {1, 2, 3}. Using the data given in the table on the exercise sheet, we get

E[S1] = 0.25 · 40 · 2’000 = 20’000,
E[S2] = 0.23 · 30 · 1’700 = 11’730 and
E[S3] = 0.19 · 10 · 4’000 = 7’600.

If we write S for the total claim amount of the car fleet, we can conclude that

E[S] = E[S1 + S2 + S3] = E[S1] + E[S2] + E[S3] = 39’330.

(b) Again using Proposition 2.11 of the lectures notes, we get

Var[Si] = λivi E
[(
Y

(i)
1

)2
]

= λivi

(
Var

(
Y

(i)
1

)
+ E

[
Y

(i)
1

]2
)

= λivi E
[
Y

(i)
1

]2 (
Vco(Y (i)

1 )2 + 1
)
,

for all i ∈ {1, 2, 3}. Using the data given in the table on the exercise sheet, we find

Var(S1) = 0.25 · 40 · 2’0002(2.52 + 1) = 290’000’000,
Var(S2) = 0.23 · 30 · 1’7002(22 + 1) = 99’705’000 and
Var(S3) = 0.19 · 10 · 4’0002(32 + 1) = 304’000’000.

Since S1, S2 and S3 are independent by assumption, we get for the variance of the total claim
amount S of the car fleet

Var(S) = Var(S1) + Var(S2) + Var(S3) = 693’705’000.

Using the variance loading principle with α = 3 · 10−6, we get for the premium π of the car
fleet

π = E[S] + αVar(S) = 39’330 + 3 · 10−6 · 693’705’000 ≈ 39’330 + 2’081 = 41’411.

Note that we have
π − E[S]
E[S] = αVar(S)

E[S] ≈ 2’081
39’330 ≈ 5.3%.

Thus, the loading π − E[S] is given by 5.3% of the pure risk premium.

Solution 8.3 Panjer Distribution

If we write
pk = P[N = k]

for all k ∈ N, then, by definition of the Panjer distribution, we have

pk = pk−1

(
a+ b

k

)
,

for all k in the range of N . We can use this recursion to calculate E[N ] and Var(N). Note that the
range of N is N if a ≥ 0 and it is {0, 1, . . . , n} for some n ∈ N≥1 if a < 0.
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First, we consider the case where a < 0, i.e. where the range of N is {0, 1, . . . , n}. According to the
proof of Lemma 4.7 of the lecture notes, we have

n = −a+ b

a
. (1)

For the expectation of N , we get

E[N ] =
n∑
k=0

k pk

=
n∑
k=1

k pk

=
n∑
k=1

k pk−1

(
a+ b

k

)

= a

n∑
k=1

k pk−1 + b

n∑
k=1

pk−1

= a

n−1∑
k=0

(k + 1) pk + b

n−1∑
k=0

pk

= a

n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk

= a (E[N ]− npn) + (a+ b)(1− pn)
= aE[N ] + a+ b+ pn(−an− a− b).

Using (1), we get
−an− a− b = a

a+ b

a
− a− b = 0. (2)

Hence, the above expression for E[N ] simplifies to

E[N ] = aE[N ] + a+ b,

from which we can conclude that
E[N ] = a+ b

1− a.
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In order to get the variance of N , we first calculate the second moment of N :

E[N2] =
n∑
k=0

k2 pk

=
n∑
k=1

k2 pk

=
n∑
k=1

k2 pk−1

(
a+ b

k

)

= a

n∑
k=1

k2 pk−1 + b

n∑
k=1

k pk−1

= a

n−1∑
k=0

(k + 1)2 pk + b

n−1∑
k=0

(k + 1) pk

= a

n−1∑
k=0

k2 pk + (2a+ b)
n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk

= a (E[N2]− n2pn) + (2a+ b)(E[N ]− npn) + (a+ b)(1− pn)
= aE[N2] + (2a+ b)E[N ] + a+ b+ pn[−an2 − (2a+ b)n− a− b].

Using (1), we get

−an2 − (2a+ b)n− a− b = −a
(
a+ b

a

)2
+ (2a+ b)a+ b

a
− a− b

= −a
2 + 2ab+ b2

a
+ 2a2 + 3ab+ b2

a
− a2 + ab

a
= 0.

(3)

Hence, the above expression for E[N2] simplifies to

E[N2] = aE[N2] + (2a+ b)E[N ] + a+ b,

from which we get

E[N2] = (2a+ b)E[N ] + a+ b

1− a

= (2a+ b) (a+ b) + (a+ b)(1− a)
(1− a)2

= 2a2 + 3ab+ b2 + a− a2 + b− ab
(1− a)2

= (a+ b)2 + a+ b

(1− a)2 .

Finally, the variance of N then is

Var(N) = E[N2]− E[N ]2 = (a+ b)2 + a+ b

(1− a)2 − (a+ b)2

(1− a)2 = a+ b

(1− a)2 .

In the case where a ≥ 0, i.e. where the range of N is N, we can perform analogous calculations
with the only difference that the index of summation in all the sums involved goes up to ∞ instead
of stopping at n. As a consequence, the calculations in (2) and in (3) aren’t necessary anymore.
The formulas for E[N ] and Var(N), however, remain the same.
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The ratio of Var(N) to E[N ] is given by

Var(N)
E[N ] = a+ b

(1− a)2
1− a
a+ b

= 1
1− a.

Note that if a < 0, i.e. if N has a binomial distribution, we have Var(N) < E[N ]. If a = 0, i.e. if
N has a a Poisson distribution, we have Var(N) = E[N ]. Finally, in the case of a > 0, i.e. for a
negative-binomial distribution, we have Var(N) > E[N ].
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Solution 9.1 Utility Indifference Price

(a) Suppose that there exist two utility indifference prices π1 = π1(u, S, c0) and π2 = π2(u, S, c0)
with π1 6= π2. By definition of a utility indifference price, we have

E[u(c0 + π1 − S)] = u(c0) = E[u(c0 + π2 − S)]. (1)

Without loss of generality, we assume that π1 < π2. Then we have

c0 + π1 − S < c0 + π2 − S a.s.,

which implies
u(c0 + π1 − S) < u(c0 + π2 − S) a.s.,

since u is a utility function and, thus, strictly increasing by definition. Finally, by taking the
expectation, we get

E[u(c0 + π1 − S)] < E[u(c0 + π2 − S)],

which is a contradiction to (1). We conclude that if the utility indifference price π exists, then
it is unique. Moreover, being a utility function, u is strictly concave by definition. Hence, we
can apply Jensen’s inequality to get

u(c0) = E[u(c0 + π − S)] < u(E[c0 + π − S]) = u(c0 + π − E[S]).

Note that we used that S is non-deterministic and, thus, Jensen’s inequality is strict. Since u
is strictly increasing, this implies π − E[S] > 0, i.e. π > E[S].

(b) Note that
E
[
Y

(1)
1

]
= γ

c
= 20

0.01 = 2’000

and that
E
[
Y

(2)
1

]
= 1

0.005 = 200.

Since S1 and S2 both have a compound Poisson distribution, Proposition 2.11 of the lecture
notes gives

E[S1] = λ1v1E
[
Y

(1)
1

]
= 1

2 · 2’000 · 2’000 = 2’000’000

and
E[S2] = λ2v2E

[
Y

(2)
1

]
= 1

10 · 10’000 · 200 = 200’000.

We conclude that
E[S] = E[S1 + S2] = E[S1] + E[S2] = 2’200’000.

(c) The utility indifference price π = π(u, S, c0) is defined through the equation

u(c0) = E[u(c0 + π − S)].
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Using that the utility function u is given by

u(x) = 1− 1
α

exp {−αx} ,

for all x ∈ R, with α = 1.5 · 10−6, we get

u(c0) = E[u(c0 + π − S)] ⇐⇒ 1− 1
α

exp {−αc0} = E
[
1− 1

α
exp {−α(c0 + π − S)}

]
⇐⇒ exp {−αc0} = E [exp {−α(c0 + π − S)}]
⇐⇒ exp {απ} = E [exp {αS}]

⇐⇒ π = 1
α

logE [exp {αS}] .

Note that we can write S = S1 + S2 and use the independence of S1 and S2 to get

π = 1
α

logE [exp {α(S1 + S2)}]

= 1
α

log (E [exp {αS1}]E [exp {αS2}])

= 1
α

(logE [exp {αS1}] + logE [exp {αS2}])

= 1
α

[logMS1(α) + logMS2(α)] ,

where MS1 and MS2 denote the moment generating functions of S1 and S2, respectively.
Moreover, since S1 and S2 both have a compound Poisson distribution, Proposition 2.11 of
the lecture notes gives

π = 1
α

(
λ1v1

[
M
Y

(1)
1

(α)− 1
]

+ λ2v2

[
M
Y

(2)
1

(α)− 1
])
,

whereM
Y

(1)
1

andM
Y

(2)
1

denote the moment generating functions of Y (1)
1 and Y (2)

1 , respectively.

Using that Y (1)
1 ∼ Γ(γ = 20, c = 0.01) and that Y (2)

1 ∼ expo(0.005), we get

M
Y

(1)
1

(α) =
(

c

c− α

)γ
=
(

0.01
0.01− 1.5 · 10−6

)20

and
M
Y

(2)
1

(α) = 0.005
0.005− α = 0.005

0.005− 1.5 · 10−6 .

In particular, since α < c and α < 0.005, both M
Y

(1)
1

(α) and M
Y

(2)
1

(α) and thus also MS1(α)
and MS2(α) exist. Inserting all the numerical values, we find the utility indifference price

π = 2
3 · 106

(
1
2 · 2’000 ·

[(
0.01

0.01− 1.5 · 10−6

)20
− 1
]

+ 1
10 · 10’000 ·

[
0.005

0.005− 1.5 · 10−6 − 1
])

= 2’203’213.

Note that we have

π − E[S]
E[S] = 2’203’213− 2’200’000

2’200’000 = 3’213
2’200’000 ≈ 0.146%.

Thus, the loading π − E[S] is given by approximately 0.146% of the pure risk premium.
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(d) The moment generating function MX of X ∼ N (µ, σ2) for some µ ∈ R and σ2 > 0 is given by

MX(r) = exp
{
rµ+ r2σ2

2

}
,

for all r ∈ R. Hence, if we assume Gaussian distributions for S1 and S2, then we get

π = 1
α

[logMS1(α) + logMS2(α)]

= 1
α

(
αE[S1] + α2

2 Var(S1) + αE[S2] + α2

2 Var(S2)
)

= E[S1] + E[S2] + α

2 [Var(S1) + Var(S2)]

= E[S] + α

2 Var(S),

where in the last equation we used that S1 and S2 are independent. We see that in this case
the utility indifference price is given according to a variance loading principle. Since here we
assume Gaussian distributions for S1 and S2 with the same corresponding first two moments
as in the compound Poisson case in part (c), in order to calculate Var(S1) and Var(S2), we
again assume that S1 and S2 have compound Poisson distributions. Note that

E
[
(Y (1)

1 )2
]

= γ(γ + 1)
c2

= 20 · 21
0.012 = 4’200’000,

and that
E
[
(Y (2)

1 )2
]

= 2
0.0052 = 80’000.

Then Proposition 2.11 of the lecture notes gives

Var(S1) = λ1v1E
[
(Y (1)

1 )2
]

= 1
2 · 2’000 · 4’200’000 = 4’200’000’000

and
Var(S2) = λ2v2E

[
(Y (2)

1 )2
]

= 1
10 · 10’000 · 80’000 = 80’000’000,

which leads to

Var(S) = Var(S1 + S2) = Var(S1) + Var(S2) = 4’280’000’000.

We conclude that the utility indifference price is given by

π = E[S] + α

2 Var(S) = 2’200’000 + 1.5 · 10−6

2 · 4’280’000’000 = 2’203’210.

Note that we have

π − E[S]
E[S] = 2’203’210− 2’200’000

2’200’000 = 3’210
2’200’000 ≈ 0.146%.

Thus, as in part (c), the loading π − E[S] is given by approximately 0.146% of the pure
risk premium. The reason why we get the same results in (c) and (d) is the Central Limit
Theorem. In particular, neither the gamma distribution nor the exponential distribution are
heavy-tailed distributions and thus λ1v1 = λ2v2 = 1’000 are large enough for the normal
approximations to be valid approximations for the compound Poisson distributions.
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Solution 9.2 Value-at-Risk and Expected Shortfall

(a) Since S ∼ LN(µ, σ2) with µ = 20 and σ2 = 0.015, we have

E[S] = exp
{
µ+ σ2

2

}
≈ 488’817’614.

Let z denote the VaR of S−E[S] at security level 1− q = 99.5%. Then, since the distribution
function of a lognormal distribution is continuous and strictly increasing, z is defined via the
equation

P[S − E[S] ≤ z] = 1− q.

By writing Φ for the distribution function of a standard Gaussian distribution, we can calculate
z as follows

P[S − E[S] ≤ z] = 1− q ⇐⇒ P[S ≤ z + E[S]] = 1− q

⇐⇒ P
[

logS − µ
σ

≤ log(z + E[S])− µ
σ

]
= 1− q

⇐⇒ Φ
[

log(z + E[S])− µ
σ

]
= 1− q

⇐⇒ log(z + E[S]) = µ+ σ · Φ−1(1− q)
⇐⇒ z = exp

{
µ+ σ · Φ−1(1− q)

}
− E[S]

⇐⇒ z = exp{µ}
(

exp{σ · Φ−1(1− q)} − exp
{
σ2

2

})
.

For 1− q = 99.5%, we have Φ−1(1− q) ≈ 2.576. Thus, we get

z ≈ 176’299’286.

In particular, πCoC is then given by

πCoC = E[S] + rCoC · z ≈ 488’817’614 + 0.06 · 176’299’286 ≈ 499’395’571.

Note that we have

πCoC − E[S]
E[S] ≈ 499’395’571− 488’817’614

488’817’614 = 10’577’957
488’817’614 ≈ 2.164%.

Thus, the loading πCoC − E[S] is given by approximately 2.164% of the pure risk premium.

(b) For all u ∈ (0, 1), let VaRu and ESu denote the VaR risk measure and the expected shortfall
risk measure, respectively, at security level u. Note that actually in part (a) we found that

VaRu(S − E[S]) = exp
{
µ+ σ · Φ−1(u)

}
− E[S]

and that by a similar computation we get

VaRu(S) = exp
{
µ+ σ · Φ−1(u)

}
,

for all u ∈ (0, 1). In particular, we have

VaRu(S − E[S]) + E[S] = VaRu(S)
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for all u ∈ (0, 1). Since the distribution function of S is continuous and strictly increasing,
according to Example 6.26 of the lecture notes we have

ES1−q(S − E[S]) = E [S − E[S] |S − E[S] ≥ VaR1−q(S − E[S])]
= E [S − E[S] |S ≥ VaR1−q(S)]
= E [S |S ≥ VaR1−q(S)]− E[S]
= ES1−q(S)− E[S].

By definition of the mean excess function eS(·) of S we have

ES1−q(S) = E [S −VaR1−q(S) |S ≥ VaR1−q(S)]+VaR1−q(S) = eS [VaR1−q(S)]+VaR1−q(S).

Moreover, according to the formula given in Chapter 3.2.3 of the lecture notes, the mean
excess function eS [VaR1−q(S)] above level VaR1−q(S) is given by

eS [VaR1−q(S)] = E[S]

1− Φ
[

log VaR1−q(S)−µ−σ2

σ

]
1− Φ

[
log VaR1−q(S)−µ

σ

]
−VaR1−q(S).

Using the formula calculated above for VaRu(S) with u = 1− q, we get

ES1−q(S) = E[S]

1− Φ
[

log VaR1−q(S)−µ−σ2

σ

]
1− Φ

[
log VaR1−q(S)−µ

σ

]


= E[S]

1− Φ
[
µ+σ·Φ−1(1−q)−µ−σ2

σ

]
1− Φ

[
µ+σ·Φ−1(1−q)−µ

σ

]


= E[S]
(

1− Φ
[
Φ−1(1− q)− σ

]
1− Φ [Φ−1(1− q)]

)

= E[S] 1
q

(
1− Φ

[
Φ−1(1− q)− σ

])
.

In particular, we have found

ES1−q(S − E[S]) = 1
q
E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])
− E[S]

= 1
q
E[S]

(
1− q − Φ

[
Φ−1(1− q)− σ

])
= 1
q

exp
{
µ+ σ2

2

}(
1− q − Φ

[
Φ−1(1− q)− σ

])
.

For 1− q = 99%, we get
ES99%(S − E[S]) ≈ 184’119’256.

Finally, πCoC is then given by

πCoC = E[S] + rCoC · ES99%(S − E[S]) ≈ 488’817’614 + 0.06 · 184’119’256 ≈ 499’864’769.

Note that we have
πCoC − E[S]

E[S] ≈ 499’864’769− 488’817’614
488’817’614 = 11’047’155

488’817’614 ≈ 2.26%.

Thus, the loading πCoC − E[S] is given by approximately 2.26% of the pure risk premium. In
particular, the cost-of-capital price in this example is higher using the expected shortfall risk
measure at security level 99% than using the VaR risk measure at security level 99.5%.
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(c) In parts (a) and (b) we found that

VaR99.5%(S − E[S]) < ES99%(S − E[S]).

Let 1− q = 99%. Now the goal is to find u ∈ [0, 1] such that

VaRu(S − E[S]) = ES1−q(S − E[S]) ⇐⇒ VaRu(S) = ES1−q(S).

Note that from part (b) we know

VaRu(S) = exp
{
µ+ σ · Φ−1(u)

}
,

for all u ∈ (0, 1), and

ES1−q(S) = 1
q
E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])
.

Hence, we can solve for u to get

u = Φ

 log
[

1
q E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])]
− µ

σ


≈ 99.62%.

We conclude that in this example the cost-of-capital price using the VaR risk measure at
security level 99.62% is approximately equal to the cost-of-capital price using the expected
shortfall risk measure at security level 99%.

(d) Since S ∼ LN(µ, σ2) with µ = 20 and σ2 = 0.015 and U and V are assumed to be independent,
we have

U ∼ N (µ, σ2), V ∼ N (µ, σ2) and U + V ∼ N (2µ, 2σ2).
Let X ∼ N (µ̃, σ̃2) for some µ̃ ∈ R and σ̃2 > 0. Then VaR1−q(X) can be calculated as

P [X ≤ VaR1−q(X)] = 1− q ⇐⇒ P
[
X − µ̃
σ̃

≤ VaR1−q(X)− µ̃
σ̃

]
= 1− q

⇐⇒ Φ
[
VaR1−q(X)− µ̃

σ̃

]
= 1− q

⇐⇒ VaR1−q(X) = µ̃+ σ̃ · Φ−1(1− q).

This implies that

VaR1−q(U) + VaR1−q(V ) = µ+ σ · Φ−1(1− q) + µ+ σ · Φ−1(1− q) = 2µ+ 2σ · Φ−1(1− q)

and that
VaR1−q(U + V ) = 2µ+

√
2σ · Φ−1(1− q).

Since Φ−1(0.45) ≈ −0.126 and Φ−1(0.55) ≈ 0.126, we get

VaR0.45(U + V ) ≈ 39.978 > 39.969 ≈ VaR0.45(U) + VaR0.45(V )

and
VaR0.55(U + V ) ≈ 40.022 < 40.031 ≈ VaR0.55(U) + VaR0.55(V ).

Note that since

VaR1−q(U + V ) > VaR1−q(U) + VaR1−q(V ) ⇐⇒ Φ−1(1− q) >
√

2Φ−1(1− q)
⇐⇒ Φ−1(1− q) < 0,
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one can see that in this example

VaR1−q(U + V ) > VaR1−q(U) + VaR1−q(V )

for all 1− q ∈
(
0, 1

2
)
and that

VaR1−q(U + V ) < VaR1−q(U) + VaR1−q(V )

for all 1− q ∈
( 1

2 , 1
)
.

Solution 9.3 Esscher Premium

(a) Let α ∈ (0, r0) and M ′S and M ′′S denote the first and second derivative of MS , respectively.
According to the proof of Corollary 6.16 of the lecture notes, the Esscher premium πα can be
written as

πα = M ′S(α)
MS(α) .

Hence, the derivative of πα can be calculated as

d

dα
πα = d

dα

M ′S(α)
MS(α)

= M ′′S (α)
MS(α) −

(
M ′S(α)
MS(α)

)2

=
E
[
S2 exp{αS}

]
MS(α) −

(
E [S exp{αS}]

MS(α)

)2

= 1
MS(α)

∫ ∞
−∞

x2 exp{αx} dF (x)−
[

1
MS(α)

∫ ∞
−∞

x exp{αx} dF (x)
]2

=
∫ ∞
−∞

x2 dFα(x)−
[∫ ∞
−∞

x dFα(x)
]2
,

where we define the distribution function Fα by

Fα(s) = 1
MS(α)

∫ s

−∞
exp{αx} dF (x),

for all s ∈ R. Let X be a random variable with distribution function Fα. Then we get

d

dα
πα =

∫ ∞
−∞

x2 dFα(x)−
[∫ ∞
−∞

x dFα(x)
]2

= E
[
X2]− E[X]2 = Var(X) ≥ 0.

Hence, the Esscher premium πα is always non-decreasing. Moreover, if S is non-deterministic,
then also X is non-deterministic. Thus, in this case we get

d

dα
πα = Var(X) > 0.

In particular, the Esscher premium πα then is strictly increasing in α.

(b) Let α ∈ (0, r0). According to Corollary 6.16 of the lecture notes, the Esscher premium πα is
given by

πα = d

dr
logMS(r)

∣∣∣∣
r=α

.
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For small values of α, we can use a first-order Taylor approximation around 0 to get

πα ≈
d

dr
logMS(r)

∣∣∣∣
r=0

+ α · d
2

dr2 logMS(r)
∣∣∣∣
r=0

= M ′S(0)
MS(0) + α

(
M ′′S (0)
MS(0) −

[
M ′S(0)
MS(0)

]2
)

= E[S] + α
(
E
[
S2]− E[S]2

)
= E[S] + αVar(S).

We conclude that for small values of α, the Esscher premium πα of S is approximately equal
to a premium resulting from a variance loading principle.

(c) Since S ∼ CompPoi(λv,G), we can use Proposition 2.11 of the lecture notes to get

logMS(r) = λv [MG(r)− 1] ,

where MG denotes the moment generating function of a random variable with distribution
function G. Since G is the distribution function of a gamma distribution with shape parameter
γ > 0 and scale parameter c > 0, we have

MG(r) =
(

c

c− r

)γ
,

for all r < c. In particular, also MS(r) is defined for all r < c, which implies that the Esscher
premium πα exists for all α ∈ (0, c).
Now let α ∈ (0, c). Then the Esscher premium πα can be calculated as

πα = d

dr
logMS(r)

∣∣∣∣
r=α

= d

dr
λv

[(
c

c− r

)γ
− 1
] ∣∣∣∣∣
r=α

= d

dr
λv

[(
1− r

c

)−γ
− 1
] ∣∣∣∣∣
r=α

= λv
γ

c

(
1− r

c

)−γ−1
∣∣∣∣∣
r=α

= λv
γ

c

(
c

c− α

)γ+1
.

Note that since c > c− α and γ > 0, we have(
c

c− α

)γ+1
> 1,

and, thus,

πα = λv
γ

c

(
c

c− α

)γ+1
> λv

γ

c
= E[S].
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Solution 10.1 Tariffication Methods

In this exercise we work with K = 2 tariff criteria. The first criterion (vehicle type) has I = 3 risk
characteristics:

χ1,1 (passenger car), χ1,2 (delivery van) and χ1,3 (truck).

The second criterion (driver age) has J = 4 risk characteristics:

χ2,1 (21 - 30 years), χ2,2 (31 - 40 years), χ2,3 (41 - 50 years) and χ2,4 (51 - 60 years).

The claim amounts Si,j for the risk classes (i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, are given on the exercise
sheet. We work with a multiplicative tariff structure. In particular, we use the model

E[Si,j ] = vi,j µχ1,i χ2,j ,

for all 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, where we set the number of policies vi,j = 1. Moreover, in order to get a
unique solution, we set µ = 1 and χ1,1 = 1. Therefore, there remains to find the risk characteristics
χ1,2, χ1,3, χ2,1, χ2,2, χ2,3, χ2,4.

(a) In the method of Bailey & Simon, these risk characteristics are found by minimizing

X2 =
I∑
i=1

J∑
j=1

(Si,j − vi,j µχ1,i χ2,j)2

vi,j µχ1,i χ2,j
=

3∑
i=1

4∑
j=1

(Si,j − χ1,i χ2,j)2

χ1,i χ2,j
.

Let i ∈ {2, 3}. Then χ̂1,i is found by the solution of

0 != ∂

∂χ1,i
X2

=
4∑
j=1

∂

∂χ1,i

(Si,j − χ1,i χ2,j)2

χ1,i χ2,j

=
4∑
j=1

−2(Si,j − χ1,i χ2,j)χ1,i χ2,j − (Si,j − χ1,i χ2,j)2

χ2
1,i χ2,j

=
4∑
j=1

−2Si,jχ1,i χ2,j + 2χ2
1,i χ

2
2,j − S2

i,j + 2Si,jχ1,i χ2,j − χ2
1,i χ

2
2,j

χ2
1,i χ2,j

=
4∑
j=1

χ2
1,i χ

2
2,j − S2

i,j

χ2
1,i χ2,j

=
4∑
j=1

χ2,j −
1
χ2

1,i

4∑
j=1

S2
i,j

χ2,j
.

Thus, we get

χ̂1,i =
(∑4

j=1 S
2
i,j/χ2,j∑4

j=1 χ2,j

)1/2

.
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By an analogous calculation, one finds

χ̂2,j =
(∑3

i=1 S
2
i,j/χ1,i∑3

i=1 χ1,i

)1/2

,

for j ∈ {1, 2, 3, 4}. For solving these equations, one has to apply a root-finding algorithm like
for example the Newton-Raphson method. We get the following multiplicative tariff structure:

21-30y 31-40y 41-50y 51-60y χ̂1,i
passenger car 2’176 1’751 1’491 1’493 1
delivery van 2’079 1’674 1’425 1’427 0.96

truck 2’456 1’977 1’684 1’686 1.13
χ̂2,j 2’176 1’751 1’491 1’493

We see that the risk characteristics for the classes passenger car and delivery van are close to
each other, whereas for trucks we have a higher tariff. Moreover, an insured with age in the
class 21 - 30 years gets a considerably higher tariff than an insured with age in the class 31 -
40 years. The smallest tariff is assigned to insureds with age in the classes 41 - 50 years and
51 - 60 years. Note that we have

3∑
i=1

4∑
j=1

χ̂1,iχ̂2,j = 21’320 > 21’300 =
3∑
i=1

4∑
j=1

Si,j ,

which confirms the (systematic) positive bias of the method of Bailey & Simon shown in
Lemma 7.2 of the lecture notes.

(b) In the method of Bailey & Jung, which is also called method of marginal totals, the risk
characteristics χ1,2, χ1,3, χ2,1, χ2,2, χ2,3, χ2,4 are found by solving the equations

J∑
j=1

vi,j µχ1,i χ2,j =
J∑
j=1

Si,j ,

I∑
i=1

vi,j µχ1,i χ2,j =
I∑
i=1

Si,j .

Since I = 3, J = 4 and we work with vi,j = 1 and set µ = 1, we get the equations

4∑
j=1

χ1,i χ2,j =
4∑
j=1

Si,j ,

3∑
i=1

χ1,i χ2,j =
3∑
i=1

Si,j .

Thus, for i ∈ {2, 3} and j ∈ {1, 2, 3, 4}, we get

χ̂1,i =
4∑
j=1

Si,j

/ 4∑
j=1

χ2,j ,

χ̂2,j =
3∑
i=1

Si,j

/ 3∑
i=1

χ1,i.

Analogously to the method of Bailey & Simon, one has to solve this system of equations using
a root-finding algorithm. We get the following multiplicative tariff structure:
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21-30y 31-40y 41-50y 51-60y χ̂1,i
passenger car 2’170 1’749 1’490 1’490 1
delivery van 2’076 1’673 1’425 1’425 0.96

truck 2’454 1’977 1’684 1’684 1.13
χ̂2,j 2’170 1’749 1’490 1’490

We see that the results are very close to those in part (a) where we applied the method of
Bailey & Simon. However, now we have

3∑
i=1

4∑
j=1

χ̂1,iχ̂2,j = 21’300 = 21’300 =
3∑
i=1

4∑
j=1

Si,j ,

which comes as no surprise as we fitted the risk characteristics such that the above equality
holds true.

(c) In the log-linear regression model we work with the stochastic model

Xi,j
def= log Si,j

vi,j
= logSi,j ∼ N (β0 + β1,i + β2,j , σ

2),

where β0, β1,i, β2,j ∈ R and σ2 > 0, for all risk classes (i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4. The risk
characteristics of the two tariff criteria vehicle type and driver age are now given by

β1,1 (passenger car), β1,2 (delivery van) and β1,3 (truck),

and

β2,1 (21 - 30 years), β2,2 (31 - 40 years), β2,3 (41 - 50 years) and β2,4 (51 - 60 years).

In order to get a unique solution, we set β1,1 = β2,1 = 0. Because this will simplify notation
considerably, we write X = (X1, . . . , XM )′ with M = 12 and

X1 = X1,1, X2 = X1,2, X3 = X1,3, X4 = X1,4, X5 = X2,1, X6 = X2,2,

X7 = X2,3, X8 = X2,4, X9 = X3,1, X10 = X3,2, X11 = X3,3, X12 = X3,4.

Moreover, we define
β = (β0, β1,2, β1,3, β2,2, β2,3, β2,4)′ ∈ Rr+1,

where r = 5. Then, we assume that X has a multivariate Gaussian distribution

X ∼ N (Zβ, σ2I),

where I ∈ RM×M denotes the identity matrix and Z ∈ RM×(r+1) is the so-called design
matrix that satisfies

E[X] = Zβ.

For example for m = 1 we have

E[Xm] = E[X1] = E[X1,1] = β0 + β1,1 + β2,1 = β0 = (1, 0, 0, 0, 0, 0) β,

and for m = 8

E[Xm] = E[X8] = E[X2,4] = β0 + β1,2 + β2,4 = (1, 1, 0, 0, 0, 1) β.

Doing this for all m ∈ {1, . . . , 12}, we find the design matrix Z:
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intercept (β0) van (β1,2) truck (β1,3) 31-40y (β2,2) 41-50y (β2,3) 51-60y (β2,4)
1 0 0 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1

Here we would like to point out that we can also use R to find the design matrix, see the
R-Code of Exercise 10.2. According to formula (7.9) of the lecture notes, the MLE β̂

MLE
of

the parameter vector β is given by

β̂
MLE

= [Z ′(σ2I)−1Z]−1Z ′(σ2I)−1X = (Z ′Z)−1Z ′X.

Note that β̂
MLE

does not depend on σ2. Moreover, the design matrix Z has full column rank
and, thus, Z ′Z is indeed invertible. See the R-Code given at the end of the solution to this
exercise for the calculation of β̂

MLE
. We get the following tariff structure:

β̂0 = 7.688 21-30y 31-40y 41-50y 51-60y β̂1,i
passenger car 2’182 1’758 1’500 1’501 0
delivery van 2’063 1’663 1’417 1’419 -0.056

truck 2’444 1’970 1’680 1’682 0.113
β̂2,j 0 -0.216 -0.375 -0.374

We see that the results are very close to those in parts (a) and (b) where we applied the
method of Bailey & Simon and the method of Bailey & Jung. However, since we are now
working in a stochastic framework, we also get standard errors and we can make statements
about the statistical significance of the parameters. According to the R-output, we get the
following p-values for the individual parameters:

β̂0 β̂1,2 β̂1,3 β̂2,2 β̂2,3 β̂2,4
p-value ≈ 0 0.232 0.036 -0.005 0.0003 0.0003

R gets these p-values by applying a t-test individually to each parameter, whether they are
equal to zero. While the p-values for β̂0, β̂1,3, β̂2,2, β̂2,3, β̂2,4 are smaller than 0.05 and, thus,
these parameters are significantly different from zero, the p-value of β̂1,2 (delivery van) is
fairly high. Hence, we might question if we really need the class delivery van.
In order to check whether there is statistical evidence that the classification into different
types of vehicles could be omitted, we define the null hypothesis of the reduced model:

H0 : β1,2 = β1,3 = 0,

i.e. we set p = 2 parameters equal to 0. Then we can perform the same analysis as above to
get the MLE β̂

MLE
H0

. In particular, let ZH0 be the design matrix Z without the second column
van (β1,2) and the third column truck (β1,3). Then β̂

MLE
H0

is given by

β̂
MLE
H0

= (Z ′H0
ZH0)−1Z ′H0

X.
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See the R-Code given below for the calculation of β̂
MLE
H0

. Now, for all m ∈ {1, . . . , 12}, we
define the fitted value X̂ full

m of the full model and the fitted value X̂H0
m of the reduced model.

In particular, we have
X̂ full
m =

[
Zβ̂

MLE]
m

and
X̂H0
m =

[
ZH0 β̂

MLE
H0

]
m
,

where [·]m denotes the m-th element of the corresponding vector, for all m ∈ {1, . . . , 12}.
Moreover, we define

SSfull
err =

M∑
m=1

(
Xm − X̂ full

m

)2

and

SSH0
err =

M∑
m=1

(
Xm − X̂H0

m

)2
.

According to formula (7.15) of the lecture notes, the test statistic

T = SSH0
err − SSfull

err
SSfull

err

M − r − 1
p

= 3 SS
H0
err − SSfull

err
SSfull

err

has an F -distribution with degrees of freedeom given by df1 = p = 2 and df2 = M − r− 1 = 6.
See the R-Code below for the calculation of T . We get

T ≈ 8.336,

which corresponds to a p-value of approximately 1.85%. Thus, we can reject H0 at significance
level of 5%, i.e. there is no statistical evidence that the classification into different types of
vehicles could be omitted.

(d) As we already mentioned above, the method of Bailey & Simon, the method of Bailey & Jung
and the MLE method in the log-linear regression model all lead to approximately the same
results. The only differences are, that with the method of Bailey & Jung we get coinciding
marginal totals and with the log-linear regression model we are in a stochastic framework
which allows for calculating parameter uncertainties and hypothesis testing.

1 ### c)
2
3 ### We apply the log - linear regression method to the observed

claim amounts given on the exercise sheet
4
5 ### Load the observed claim amounts into a matrix
6 S <- matrix (c

(2000 ,2200 ,2500 ,1800 ,1600 ,2000 ,1500 ,1400 ,1700 ,1600 ,1400 ,1600)
, nrow = 3)

7
8 ### Define the design matrix Z
9 Z <- matrix (c(rep (1 ,12) ,rep (0 ,4) ,rep (1 ,4) ,rep (0 ,12) ,rep (1 ,4) ,

rep(c(0 ,1 ,0 ,0) ,3),rep(c(0 ,0 ,1 ,0) ,3),rep(c(0 ,0 ,0 ,1) ,3)),nrow
= 12)

10
11 ### Store the design matrix Z ( without the intercept term) and

the dependent variable log(S_{i,j}) in one dataset
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12 data <- cbind(Z[,-1], matrix (log(t(S)),nrow = 12))
13 data <- as.data.frame(data)
14 colnames (data) <- c("van", "truck", "X31_40y", "X41_50y", "X51_

60y", " observation ")
15
16 ### Apply the regression model
17 linear . model1 <- lm( formula = observation ~ van + truck + X31_

40y + X41_50y + X51_60y,data=data)
18
19 ### Print the output of the regression model
20 summary ( linear . model1 )
21
22 ### Fitted values
23 fitted ( linear . model1 )
24
25 ### We can also get the parameters by applying the formula

(7.9) of the lecture notes
26 solve(t(Z)%*%Z)%*%t(Z)%*% matrix (log(t(S)),nrow = 12)
27
28
29 ### Apply the regression model under H_{0}
30 linear . model2 <- lm( formula = observation ~ X31_40y + X41_50y +

X51_60y,data=data)
31
32 ### Calculation of the test statistic T which has an F-

distribution
33 T <- 3 * (sum (( fitted ( linear . model2 ) - data [ ,6]) ^2) - sum ((

fitted ( linear . model1 ) - data [ ,6]) ^2)) / sum (( fitted ( linear .
model1 ) - data [ ,6]) ^2)

34
35 ### Calculation of the corresponding p-value
36 pf(T, 2, 6, lower.tail = FALSE)

Note that we could also define the covariates of factor type in R which then automatically
implies that these covariates are of categorical type and R chooses the design matrix Z
accordingly, see the R-Code for the solution of Exercise 10.2 given below.

Solution 10.2 Tariffication Methods

(a) In this exercise we work with K = 3 tariff criteria. The first criterion (vehicle class) has 2
risk characteristics:

β1,1 (weight over 60 kg and more than two gears) and β1,2 (other).

The second criterion (vehicle age) also has 2 risk characteristics:

β2,1 (at most one year) and β2,2 (more than one year).

The third criterion (geographic zone) has 3 risk characteristics:

β3,1 (large cities), β3,2 (middle-sized towns) and β3,3 (smaller towns and countryside).
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The observed number of claims Nl1,l2,l3 , the observed volumes vl1,l2,l3 and the observed claim
frequencies

λl1,l2,l3 = Nl1,l2,l3
vl1,l2,l3

for the risk classes (l1, l2, l3), 1 ≤ l1 ≤ 2, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 3, are given on the exercise sheet.
Now, for modelling purposes, we assume that all Nl1,l2,l3 are independent with

Nl1,l2,l3 ∼ Poi(λl1,l2,l3vl1,l2,l3)

and define
Xl1,l2,l3 = Nl1,l2,l3

vl1,l2,l3
.

Then we use the model Ansatz

g(λl1,l2,l3) = g

(
E
[
Nl1,l2,l3
vl1,l2,l3

])
= g (E [Xl1,l2,l3 ]) = β0 + β1,l1 + β2,l2 + β3,l3 ,

where β0 ∈ R and where we use the log-link function, i.e. g(·) = log(·). In order to get a
unique solution, we set β1,1 = β2,1 = β3,1 = 0. Moreover, we define

β = (β0, β1,2, β2,2, β3,2, β3,3)′ ∈ Rr+1,

where r = 4. Similarly as in Exercise 10.1, (c), we will relabel the risk classes with the index
m ∈ {1, . . . ,M}, where M = 2 · 2 · 3 = 12, define X = (X1, . . . , XM )′ and the design matrix
Z ∈ RM×(r+1) that satisfies

logE[X] = Zβ,

where the logarithm is applied componentwise to E[X]. Let m ∈ {1, . . . , 12}. According to
Example 7.10 of the lecture notes, Xm = Nm/vm belongs to the exponential dispersion family
with cumulant function b(·) = exp{·}, θm = log λm, wm = vm and dispersion parameter φ = 1,
i.e. we have

[Zβ]m = logE[Xm] = logE
[
Nm
vm

]
= log λm = θm,

where [Zβ]m denotes as above the m-th element of the vector Zβ. Thus, we assume that
X1, . . . , XM are independent with

Xm ∼ EDF(θm = [Zβ]m, φ = 1, vm, b(·) = exp{·}),

for all m ∈ {1, . . . ,M}. According to Proposition 7.11 of the lecture notes, the MLE β̂
MLE

of
β is the solution of

Z ′V exp{Zβ} = Z ′VX, (1)
where the weight matrix V is given by V = diag(v1, . . . , vM ). This equation has to be solved
numerically. See the R-Code at the end of the solution to this exercise for the calculation of
β̂

MLE
. We get the following estimates:

β̂0 β̂1,2 β̂2,2 β̂3,2 β̂3,3
MLE -1.435 -0.237 -0.502 -0.404 -1.657

We observe that insureds with a vehicle with weight over 60 kg and more than two gears tend
to cause more claims than insureds with other vehicles. Analogoulsy, if the vehicle is at most
one year old, we expect more claims than if it was older. Regarding the geographic zone,
we see that driving in middle-sized towns leads to fewer claims than driving in large cities.
Moreover, driving in smaller towns and countryside leads to even fewer claims than driving in
middle-sized towns, where this difference is greater than the difference between large cities
and middle-sized towns.
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(b) The observed and the fitted claim frequencies against the vehicle class, the vehicle age and
the geographical zone look as follows:
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See the R-Code at the end of the solution to this exercise for creating the plots given above.
Note that the observed and the fitted marginal claim frequencies are always the same. This is
a direct consequence of equation (1) given above which ensures that the observed and the
fitted total marginal sums are the same if we use the same volumes again. This is also the
reason why in the marginal plot for the vehicle class we don’t see that insureds with a vehicle
with weight over 60 kg and more than two gears tend to cause more claims than insureds
with other vehicles as expected after the discussion at the end of part (a). More precisely,
for the vehicles with weight over 60 kg and more than two gears we have a smaller volume
for the riskier classes with respect to the other tariff criteria vehicle age and geographic zone
than for the other vehicles. This compensates for the fact that vehicles with weight over 60
kg and more than two gears tend to cause more claims than other vehicles, as seen at the end
of part (a). For the other variables vehicle age and geographic zone we again see the same
results as in part (a).

(c) The Tukey-Anscombe plot and the QQ plot look as follows:

See the R-Code at the end of the solution to this exercise for creating the plots given above.
They are both not ideal, but considering that we only have 12 risk classes, we accept them.

(d) We will perform two tests in order to check if there is statistical evidence that the classification
into the geographic zones could be omitted. Note that in part (a) we saw that we tend to
have considerably fewer claims for drivers in smaller towns and countryside than for drivers
in middle-sized towns. The same holds true in a weakened form for middle-sized towns and
large cities. Thus, we would expect that the classification into the three different geographic
zone is reasonable. Now we will investigate this. To start with, note that the logarithmic
probability that a Poisson random variable with frequency parameter α attains the value k,
for some k ∈ N, is equal to

log
(

exp{−α}α
k

k!

)
= −α+ k logα− log k!.
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Thus, defining
λ̂

MLE
= exp

{
Zβ̂

MLE}
,

with λ̂
MLE

=
(
λ̂MLE

1 , . . . , λ̂MLE
M

)
, the joint log-likelihood function lX of X at λ̂

MLE
is given

by

lX

(
λ̂

MLE)
=

M∑
m=1
−λ̂MLE

m vm +Xmvm log
(
λ̂MLE
m vm

)
− log [(Xmvm)!] .

Therefore, we get for the scaled deviance statistics D∗
(

X, λ̂
MLE)

:

D∗
(

X, λ̂
MLE)

= 2
[
lX (X)− lX

(
λ̂

MLE)]
= 2

M∑
m=1
−Xmvm +Xmvm logXm + λ̂MLE

m vm −Xmvm log λ̂MLE
m

= 2
M∑
m=1

vm

(
Xm logXm −Xm −Xm log λ̂MLE

m + λ̂MLE
m

)
.

Moreover, since for the Poisson case we have φ = 1, the scaled deviance statisticsD∗
(

X, λ̂
MLE)

and the deviance statistics D
(

X, λ̂
MLE)

are the same. Now, in order to check whether there
is statistical evidence that the classification into the geographic zones could be omitted, we
define the null hypothesis

H0 : β3,2 = β3,3 = 0.
Thus, in the reduced model, we set the above p = 2 variables equal to 0. Then we can
recalculate β̂

MLE
H0

for this reduced model and define

λ̂
MLE
H0

= exp
{
ZH0 β̂

MLE
H0

}
,

where ZH0 is the design matrix in the reduced model. According to formula (7.22) of the
lecture notes, the test statistic

F =
D
(

X, λ̂
MLE
H0

)
−D

(
X, λ̂

MLE)
D
(

X, λ̂
MLE) M − r − 1

p

= 7
2

D
(

X, λ̂
MLE
H0

)
−D

(
X, λ̂

MLE)
D
(

X, λ̂
MLE)

has approximately an F -distribution with degrees of freedom given by df1 = p = 2 and
df2 = M − r − 1 = 7. See the R-Code below for the calculation of F. We get

F ≈ 51.239,

which corresponds to a p-value of approximately 0.0066%. Thus, we can reject H0 at
significance level of 5%. According to formula (7.23) of the lecture notes, a second test
statistic is given by

X2 = D∗
(

X, λ̂
MLE
H0

)
−D∗

(
X, λ̂

MLE)
.

The test statistic X2 has approximately a χ2-distribution with df = p = 2 degrees of freedom.
See the R-Code below for the calculation of X2. We get

X2 ≈ 389.882,
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which corresponds to a p-value of approximately 2.179 · 10−85, which is basically 0. Thus,
we can reject H0 at significance level of 5%. Since we can reject H0 using two different test
statistics, we can conclude that there is no statistical evidence that the classification into
different types of vehicles could be omitted.

1 ### a)
2
3 ### We perform a GLM analysis for the claim frequencies
4
5 ### Determine the design matrix Z
6 class <- factor (c(rep (1 ,6) ,rep (2 ,6)))
7 age <- factor (c(rep (1 ,3) ,rep (2 ,3) ,rep (1 ,3) ,rep (2 ,3)))
8 zone <- factor (c(rep (1:3 ,4)))
9 counts <- c(25 ,15 ,15 ,60 ,90 ,210 ,45 ,45 ,30 ,80 ,120 ,90)

10 volumes <- c(1 ,2 ,5 ,4 ,9 ,70 ,2 ,3 ,6 ,8 ,15 ,50) * 100
11 Z <- model. matrix ( counts ~ class + age + zone)
12
13 ### Store the design matrix Z ( without the intercept term), the

counts and the volumes in one dataset
14 data <- cbind(Z[,-1], counts , volumes )
15 data <- as.data.frame(data)
16
17 ### Apply GLM
18 d.glm <- glm( counts ~ class2 + age2 + zone2 + zone3 , data=data ,

offset = log( volumes ), family = poisson ())
19 d.glm
20
21
22
23 ### b)
24
25 ### Fitted number of claims
26 fitted (d.glm)
27
28 ### Store the features , the observed number of claims and the

fitted numer of claims in one data set
29 data2 <- cbind(class , age , zone , volumes , counts , fitted (d.glm)

)
30 data2 <- as.data.frame(data2)
31 colnames (data2)[5:6] <- c(" observed "," fitted ")
32
33 ### Marginal claim frequencies for the two class categories
34 library (plyr)
35 class.comp <- ddply(data2 , .( class), summarise , volumes = sum(

volumes ), observed = sum( observed ), fitted = sum( fitted ))
36 barplot (t(as. matrix (class.comp [ ,3:4]/class.comp [ ,2])), beside =

TRUE , names.arg = c(" weight > 60 kg , nr. of gears > 2", "
other"), main = " claims frequencies ( observed vs. fitted )",
ylim = c(0 ,0.15) , xlab = " vehicle class", ylab = "mean claim

frequency ",legend .text = TRUE)
37
38 ### Marginal claim frequencies for the two age categories
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39 age.comp <- ddply(data2 , .( age), summarise , volumes = sum(
volumes ), observed = sum( observed ), fitted = sum( fitted ))

40 barplot (t(as. matrix (age.comp [ ,3:4]/age.comp [ ,2])), beside =
TRUE , names.arg = c("at most one year", "more than one year"
), main = " claims frequencies ( observed vs. fitted )",ylim =
c(0 ,0.15) , xlab = " vehicle age", ylab = "mean claim
frequency ",legend .text = TRUE)

41
42 ### Marginal claim frequencies for the three zone categories
43 zone.comp <- ddply(data2 , .( zone), summarise , volumes = sum(

volumes ), observed = sum( observed ), fitted = sum( fitted ))
44 barplot (t(as. matrix (zone.comp [ ,3:4]/zone.comp [ ,2])), beside =

TRUE , names.arg = c("large cities ", "middle -sized towns", "
smaller towns"), main = " claims frequencies ( observed vs.
fitted )",ylim = c(0 ,0.15) , xlab = " geographic zone", ylab =
"mean claim frequency ",legend .text = TRUE)

45
46
47
48 ### c)
49
50 par(mfrow = c(1, 2))
51
52 ### Calculate the deviance residuals
53 dev.red <- sign(data2$ observed - data2$ fitted ) * sqrt (2 * data2

$ observed *(-log(data2$ fitted / data2$ observed ) + data2$
fitted / data2$ observed - 1))

54
55 ### Tukey - Anscombe plot
56 plot(data2$fitted , dev.red , main = "Tukey - Anscombe Plot", xlab

= " fitted means", ylab = " deviance residuals ", ylim = c
(-3,3))

57 abline (h = 0,col = "red")
58
59 ### QQ plot
60 library (mgcv)
61 qq.gam(d.glm , type = " deviance ",rep = 1, pch =19, main = "QQ

Plot")
62
63
64
65 ### d)
66
67 ### Calculate the deviance statistics of the full model
68 X <- data2$ observed / data2$ volumes
69 lambda .full <- data2$ fitted / data2$ volumes
70 D.full <- 2 * sum(data2$ volumes * (X * log(X) - X - X * log(

lambda .full) + lambda .full))
71
72 ### Fit the reduced model
73 d.glm .2 <- glm( counts ~ class2 + age2 , data=data , offset = log(

volumes ), family = poisson ())
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74 d.glm .2
75
76 ### Calculate the deviance statistics of the reduced model
77 lambda . reduced <- fitted (d.glm .2) / data2$ volumes
78 D. reduced <- 2 * sum(data2$ volumes * (X * log(X) - X - X * log(

lambda . reduced ) + lambda . reduced ))
79
80 ### Calculate the test statistic F
81 F <- 7 / 2 * (D. reduced - D.full) / D.full
82
83 ### Calculation of the corresponding p-value
84 pf(F, 2, 7, lower.tail = FALSE)
85
86 ### Calculate the test statistic X^2
87 X.2 <- D. reduced - D.full
88
89 ### Calculation of the corresponding p-value
90 pchisq (X.2, 2, lower.tail = FALSE)

Solution 10.3 Tweedie’s Compound Poisson Model

(a) We can write S as

S =
N∑
i=1

Yi,

where N ∼ Poi(λv), Y1, Y2, . . .
i.i.d.∼ G and N and (Y1, Y2, . . . ) are independent. Since G is the

distribution function of a gamma distribution, we have G(0) = 0 and, thus,

P[S = 0] = P[N = 0] = exp{−λv}.

Let x ∈ (0,∞). Then the density fS of S at x can be calculated as

fS(x) = d

dx
P[S ≤ x],

where we have

P[S ≤ x] =
∞∑
n=0

P[S ≤ x,N = n]

=
∞∑
n=0

P[S ≤ x |N = n]P[N = n]

= P[S ≤ x |N = 0]P[N = 0] +
∞∑
n=1

P[S ≤ x |N = n]P[N = n]

= P[N = 0] +
∞∑
n=1

P

[
n∑
i=1

Yi ≤ x

]
P[N = n].
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Since Y1, Y2, . . .
i.i.d.∼ Γ(γ, c), we get

n∑
i=1

Yi ∼ Γ(nγ, c).

By writing fn for the density function of Γ(nγ, c), for all n ∈ N, we get

fS(x) = d

dx

(
P[N = 0] +

∞∑
n=1

P

[
n∑
i=1

Yi ≤ x

]
P[N = n]

)

=
∞∑
n=1

d

dx
P

[
n∑
i=1

Yi ≤ x

]
P[N = n]

=
∞∑
n=1

fn(x)P[N = n]

=
∞∑
n=1

cnγ

Γ(nγ)x
nγ−1 exp{−cx} exp{−λv} (λv)n

n!

= exp{−(cx+ λv)}
∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

= exp
{
−(cx+ λv) + log

[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

]}
,

for all x ∈ (0,∞). Note that one can show that interchanging summation and differentiation
above is indeed allowed. However, the proof is omitted here.

(b) Let X ∼ fX belong to the exponential dispersion family with w, φ, θ, b(·) and c(·, ·, ·) as given
on the exercise sheet. Then we have

xθ

φ/w
= −xv

(γ + 1)
(
λvγ
c

)− 1
γ+1

γ+1
λγ

(
λvγ
c

) γ
γ+1

= −xλvγ
(
λvγ

c

)−1
= −cx,

for all x ≥ 0, and

b(θ)
φ/w

= v

γ+1
γ

(
−θ
γ+1

)−γ
γ+1
λγ

(
λvγ
c

) γ
γ+1

= λv

(
λvγ
c

) γ
γ+1

(
λvγ
c

) γ
γ+1

= λv.

Moreover, since

(γ + 1)γ+1

γ

(
φ

w

)−γ−1
= (γ + 1)γ+1

γ

[
γ + 1
λvγ

(
λvγ

c

) γ
γ+1
]−γ−1

= 1
γ

(λvγ)γ+1
(
λvγ

c

)−γ
= 1
γ
λvγcγ

= λvcγ ,
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we have

c(x, φ,w) = log
( ∞∑
n=1

[
(γ + 1)γ+1

γ

(
φ

w

)−γ−1
]n

1
Γ(nγ)n! x

nγ−1

)

= log
[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n! x

nγ−1

]
,

for all x > 0. By putting together the above terms, we get

fX(x; θ, φ) = exp
{
xθ − b(θ)
φ/w

+ c(x, φ,w)
}

= exp
{
−(cx+ λv) + log

[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

]}
= fS(x),

for all x > 0, and

fX(0; θ, φ) = exp
{

0 · θ − b(θ)
φ/w

+ c(0, φ, w)
}

= exp{−λv} = P[S = 0].

We conclude that S indeed belongs to the exponential dispersion family. Note that with this
result at hand one might be tempted to estimate the shape parameter γ of the claim size
distribution and then to do a GLM analysis directly on the compound claim size S. However,
there are two reasons to rather perform a separate GLM analysis of the claim frequency and
the claim severity instead: First, claim frequency modelling is usually more stable than claim
severity modelling and often much of the differences between tariff cells are due to the claim
frequency. Second, a separate analysis of the claim frequency and the claim severity allows
more insight into the differences between the tariffs.
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Solution 11.1 (Inhomogeneous) Credibility Estimators for Claim Counts

We define
Xi,1 = Ni,1

vi,1
,

for all i ∈ {1, . . . , 5}. Then we have

E[Xi,1 |Θi] = 1
vi,1

E[Ni,1 |Θi] = 1
vi,1

µ(Θi) vi,1 = µ(Θi)

and
Var(Xi,1 |Θi) = 1

v2
i,1

Var(Ni,1 |Θi) = 1
v2
i,1
µ(Θi) vi,1 = µ(Θi)

vi,1
= σ2(Θi)

vi,1
,

with σ2(Θi) = µ(Θi) = Θiλ0, for all i ∈ {1, . . . , 5}. Moreover, since

E[µ(Θi)2] = Var(µ(Θi)) + E[µ(Θi)]2 = τ2 + λ2
0 <∞

and
E[X2

i,1 |Θi] = Var(Xi,1 |Θi) + E[Xi,1 |Θi]2 = µ(Θi)
vi,1

+ µ(Θi)2,

we get

E[X2
i,1] = E

[
E[X2

i,1 |Θi]
]

= E
[
µ(Θi)
vi,1

+ µ(Θi)2
]

= λ0

vi,1
+ τ2 + λ2

0 <∞,

for all i ∈ {1, . . . , 5}. In particular, the Model Assumptions 8.13 of the lecture notes for the
Bühlmann-Straub model are satisfied. The (expected) volatility σ2 within the regions defined in
formula (8.5) of the lecture notes is given by

σ2 = E[σ2(Θi)] = E[µ(Θi)] = λ0 = 0.088.

(a) Let i ∈ {1, . . . , 5}. Then, according to Theorem 8.17 of the lecture notes, the inhomogeneous

credibility estimator ̂̂
µ(Θi) is given by

̂̂
µ(Θi) = αi,T X̂i,1:T + (1− αi,T )µ0,

with credibility weight αi,T and observation based estimator X̂i,1:T

αi,T = vi,1

vi,1 + σ2

τ2

and X̂i,1:T = 1
vi,1

vi,1Xi,1 = Xi,1.

Hence, we get

̂̂
µ(Θi) = vi,1

vi,1 + σ2

τ2

Xi,1 +
σ2

τ2

vi,1 + σ2

τ2

µ0 = vi,1

vi,1 + 0.088
0.00024

Xi,1 +
0.088

0.00024
vi,1 + 0.088

0.00024
0.088.

The results for the 5 regions are summarized in the following table:
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region 1 region 2 region 3 region 4 region 5
αi,T 99.3% 96.5% 99.7% 99.0% 92.0%
X̂i,1:T 7.8% 7.8% 7.4% 9.8% 7.5%
̂̂
µ(Θi) 7.8% 7.9% 7.4% 9.8% 7.6%

Note that since the credibility coefficient κ = σ2/τ2 ≈ 367 is rather small compared to the
volumes v1,1, . . . , v5,1, the credibility weights α1,T , . . . , α5,T are fairly high. Moreover, the
observation based estimators are almost the same for the regions 1, 2, 3 and 5 and only X̂4,1:T
is roughly 2% higher. As a result, only for the smallest two credibility weights α2,T and α5,T
we see a slight upwards deviation of the corresponding inhomogeneous credibility estimators
̂̂
µ(Θ2) and ̂̂

µ(Θ5) from the observation based estimators X̂2,1:T and X̂5,1:T towards µ0.

(b) Since the number of policies grows 5% in each region, next year’s numbers of policies
v1,2, . . . , v5,2 are given by

region 1 region 2 region 3 region 4 region 5
vi,2 52’564 10’642 127’376 36’797 4’402

Similarly to part (a), we define
Xi,2 = Ni,2

vi,2
,

for all i ∈ {1, . . . , 5}. Then, according to formula (8.17) of the lecture notes, the mean square
error of prediction is given by

E

[(
Ni,2
vi,2
−̂̂
µ(Θi)

)2
]

= E

[(
Xi,2 −

̂̂
µ(Θi)

)2
]

= σ2

vi,2
+ (1− αi,T ) τ2,

for all i ∈ {1, . . . , 5}. We get the following square-rooted mean square errors of prediction for
the five regions:

region 1 region 2 region 3 region 4 region 5√
mse of prediction 0.185% 0.408% 0.119% 0.221% 0.627%

in % of the credibility estimators 2.4% 5.2% 1.6% 2.2% 8.3%

Note that we get the highest (square-rooted) mean square errors of prediction for the regions 2
and 5, i.e. exactly for those regions for which we also have the lowest volumes and, consequently,
the lowest credibility weights. Of course, this is due to the formula for the mean square error
of prediction given above.

Solution 11.2 (Homogeneous) Credibility Estimators for Claim Sizes

We define
Xi,t = Yi,t

vi,t
,

for all i ∈ {1, 2, 3, 4}, t ∈ {1, 2}. Then we have

E[Xi,t |Θi] = 1
vi,t

E[Yi,t |Θi] = 1
vi,t

µ(Θi)cvi,t
c

= µ(Θi)

and
Var(Xi,t |Θi) = 1

v2
i,t

Var(Yi,t |Θi) = 1
v2
i,t

µ(Θi)cvi,t
c2

= µ(Θi)
cvi,t

= σ2(Θi)
vi,t

,
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with
σ2(Θi) = µ(Θi)

c
= Θi

c
,

for all i ∈ {1, 2, 3, 4}, t ∈ {1, 2}. Moreover, using that

E[X2
i,t |Θi] = Var(Xi,t |Θi) + E[Xi,t |Θi]2 = µ(Θi)

cvi,t
+ µ(Θi)2 = Θi

cvi,t
+ Θ2

i

we get

E[X2
i,t] = E

[
E[X2

i,t |Θi]
]

= E
[

Θi

cvi,t
+ Θ2

i

]
<∞

by assumption, for all i ∈ {1, 2, 3, 4}, t ∈ {1, 2}. In particular, the Model Assumptions 8.13 of the
lecture notes for the Bühlmann-Straub model are satisfied.

(a) In order to calculate the homogeneous credibility estimators, we need to estimate the structural
parameters σ2 = E[σ2(Θ1)] and τ2 = Var(µ(Θ1)). First, following Theorem 8.17 of the lecture
notes, we define the observation based estimator X̂i,1:T as

X̂i,1:T = 1∑T
t=1 vi,t

T∑
t=1

vi,tXi,t = vi,1Xi,1 + vi,2Xi,2

vi,1 + vi,2
= Yi,1 + Yi,2
vi,1 + vi,2

,

for all i ∈ {1, 2, 3, 4}. According to formula (8.15) of the lecture notes, σ2 can be estimated by

σ̂2
T = 1

I

I∑
i=1

1
T − 1

T∑
t=1

vi,t (Xi,t − X̂i,1:T )2 ≈ 1.3 · 1010.

For the estimator τ̂2
T of τ2, we define first the weighted sample mean X̄ over all observations

by

X̄ = ∑I
i=1
∑T
t=1 vi,t

I∑
i=1

T∑
t=1

vi,tXi,t =
∑I
i=1 Yi,1 + Yi,2∑I
i=1 vi,1 + vi,2

≈ 7004.

Then, as on page 219 of the lecture notes, we define v̂2
T , cw and t̂2T as

v̂2
T = I

I − 1

4∑
i=1

vi,1 + vi,2∑I
j=1 vj,1 + vj,2

(
X̂i,1:T − X̄

)2
≈ 9.3 · 107,

cw = I − 1
I

[
I∑
i=1

vi,1 + vi,2∑I
j=1 vj,1 + vj,2

(
1− vi,1 + vi,2∑I

j=1 vj,1 + vj,2

)]−1

≈ 1.425

and

t̂2T = cw

(
v̂2
T −

I σ̂2
T∑I

i=1 vi,1 + vi,2

)
≈ 1.25 · 108.

Then, using formula (8.16) of the lecture notes, τ2 can be estimated by

τ̂2
T = max

{
t̂2T , 0

}
= t̂2T ≈ 1.25 · 108.

Now we are ready to calculate the inhomogeneous credibility estimators. Let i ∈ {1, 2, 3, 4}.
Then, according to Theorem 8.17 of the lecture notes, the inhomogeneous credibility estimator
̂̂
µ(Θi)

hom

is given by
̂̂
µ(Θi)

hom

= αi,T X̂i,1:T + (1− αi,T ) µ̂T

Updated: December 5, 2017 3 / 6



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2017 Solution sheet 11

with credibility weight αi,T and estimate µ̂T given by

αi,T = vi,1 + vi,2
vi,1 + vi,2 + σ̂2

T /τ̂
2
T

and µ̂T = 1∑I
i=1 αi,T

I∑
i=1

αi,T X̂i,1:T .

Hence, we get

̂̂
µ(Θi)

hom

= αi,T X̂i,1:T + (1− αi,T )∑I
i=1 αi,T

I∑
i=1

αi,T X̂i,1:T

The results for the 4 risk classes are summarized in the following table:

risk class 1 risk class 2 risk class 3 risk class 4
αi,T 95.4% 98.4% 82.4% 89.6%
X̂i,1:T 10’493 1’907 18’375 29’197
̂̂
µ(Θi) 10’677 2’107 17’702 27’665

Moreover, we get µ̂T ≈ 14’538. Looking at the credibility weights α1,1, α2,1, α3,1 and α4,1, we
see that the estimated credibility coefficient κ̂ = σ̂2

T /τ̂
2
T ≈ 104 has the biggest impact on risk

classes 3 and 4 where we have less volumes compared to risk classes 1 and 2. As a result, the
smoothing of the observation based estimators X̂1,1:T , X̂2,1:T , X̂3,1:T and X̂4,1:T towards µ̂T
is strongest for risk classes 1 and 2.

(b) Since the number of claims grows 5% in each region, next year’s numbers of claims v1,3, . . . , v4,3
are given by

risk class 1 risk class 2 risk class 3 risk class 4
vi,3 1’167 3’468 262 479

Similarly to part (a), we define
Xi,3 = Yi,3

vi,3
,

for all i ∈ {1, 2, 3, 4}. Then, according to formula (8.17) of the lecture notes, the mean square
error of prediction can be estimated by

Ê

[(
Yi,3
vi,3
−̂̂
µ(Θi)

)2
]

= Ê

[(
Xi,3 −

̂̂
µ(Θi)

)2
]

= σ̂2
T

vi,3
+ (1− αi,T ) τ̂2

T ,

for all i ∈ {1, 2, 3, 4}. We get the following square-rooted mean square errors of prediction for
the four risk classes:

risk class 1 risk class 2 risk class 3 risk class 4√
estimated mse of prediction 4’099 2’390 8’446 6’331

in % of the credibility estimators 38.4% 113.4% 47.7% 22.9%

According to the formula given above for the estimated mean square error of prediction, we
observe that, the smaller the volumes of a particular risk class, the bigger the corresponding
(square-rooted) estimated mean square error of prediction. Moreover, note that these square-
rooted estimated mean square errors of prediction are rather high compared to the credibility
estimators, which indicates a high variability within the individual risk classes.
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Solution 11.3 Pareto-Gamma Model

(a) Let fY|Λ and fΛ denote the density of Y |Λ and fΛ, respectively. Then we have

fY|Λ(y1, . . . , yT |Λ = α) =
T∏
t=1

α

θ

(yt
θ

)−(α+1)
· 1{yt≥θ} = αT

(
T∏
t=1

yt
θ

)−α T∏
t=1

yt
θ
· 1{yt≥θ}

and
fΛ(α) = cγ

Γ(γ)α
γ−1 exp{−cα} · 1{α>0}.

Let fΛ|Y denote the density of Λ|Y. Then, for all α > 0 and y1, . . . , yT ≥ θ, we have

fΛ|Y(α |Y1 = y1, . . . , YT = yT ) =
fY|Λ(y1, . . . , yT |Λ = α) fΛ(α)∫∞

0 fY|Λ(y1, . . . , yT |Λ = x) fΛ(x) dx

∝ αT
(

T∏
t=1

yt
θ

)−α
αγ−1 exp{−cα}

= αγ+T−1 exp
{
−α

T∑
t=1

log yt
θ

}
exp{−cα}

= αγ+T−1 exp
{
−α

(
T∑
t=1

log yt
θ

+ c

)}
,

i.e. we have shown that

Λ |Y ∼ Γ
(
γ + T, c+

T∑
t=1

log Yt
θ

)
.

(b) We calculate

αT λ̂T + (1− αT )λ0 =
∑T
t=1 log Yt

θ

c+
∑T
t=1 log Yt

θ

T∑T
t=1 log Yt

θ

+ c

c+
∑T
t=1 log Yt

θ

γ

c

= γ + T

c+
∑T
t=1 log Yt

θ

= λ̂post
T .

(c) For the (mean square error) uncertainty of the posterior estimator λ̂post
T = E[Λ |Y] we have

E
[(

Λ− λ̂post
T

)2
∣∣∣∣Y] = E

[
(Λ− E[Λ |Y])2

∣∣∣∣Y]
= Var (Λ |Y)

= γ + T(
c+

∑T
t=1 log Yt

θ

)2

= 1
c+

∑T
t=1 log Yt

θ

λ̂post
T

= (1− αT ) 1
c
λ̂post
T .
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(d) Analogously to λ̂post
T , the posterior estimator λ̂post

T−1 in the sub-model where we only have
observed (Y1, . . . , YT−1) is given by

λ̂post
T−1 = γ + T − 1

c+
∑T−1
t=1 log Yt

θ

.

Then we can calculate

βT
1

log YT

θ

+ (1− βT ) λ̂post
T−1 =

log YT

θ

c+
∑T
t=1 log Yt

θ

1
log YT

θ

+
c+

∑T−1
t=1 log Yt

θ

c+
∑T
t=1 log Yt

θ

γ + T − 1
c+

∑T−1
t=1 log Yt

θ

= γ + T

c+
∑T
t=1 log Yt

θ

= λ̂post
T .

Remark: Suppose we would like to use the observations Y1, . . . , YT−1 in order to estimate YT
in a Bayesian sense. Then we have

E[YT |Y1, . . . , YT−1] = E [E [YT |Y1, . . . , YT−1,Λ] |Y1, . . . , YT−1] a.s.
= E [E [YT |Λ] |Y1, . . . , YT−1] a.s.,

where in the second equality we used that, conditionally given Λ, Y1, . . . , YT are independent.
Now, by assumption,

YT |Λ ∼ Pareto(θ,Λ).

In particular, E[YT |Λ] <∞ if and only if Λ > 1. However, according to part (a), we have

Λ | (Y1, . . . , YT−1) ∼ Γ
(
γ + T − 1, c+

T−1∑
t=1

log Yt
θ

)
.

Since the range of a gamma distribution is the whole positive real line, this implies that

0 < P [Λ ≤ 1 |Y1, . . . , YT−1] = P [E [YT |Λ] =∞|Y1, . . . , YT−1] a.s.

We conclude that
E[YT |Y1, . . . , YT−1] =∞ a.s.
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Solution 12.1 Chain-Ladder and Bornhuetter-Ferguson

(a) According to formula (9.5) of the lecture notes, the CL factor fj can be estimated by

f̂CL
j =

∑I−j−1
i=1 Ci,j+1∑I−j−1

i=1 Ci,j

=
I−j−1∑

i=1

Ci,j∑I−j−1
n=1 Cn,j

Ci,j+1

Ci,j
,

for all j ∈ {0, . . . , 8}. Then, for all i ∈ {2, . . . , 10} and j ∈ {0, . . . , 9} with i + j > 10, Ci,j

can be predicted by

ĈCL
i,j = Ci,I−i

j−1∏
k=I−i

f̂CL
k .

In particular, for the prediction ĈCL
i,J of the ultimate claim Ci,J we have

ĈCL
i,J = Ci,I−i

J−1∏
j=I−i

f̂CL
j . (1)

The estimates f̂CL
0 , . . . , f̂CL

8 and the prediction for the lower triangle Dc
10 are then given by

accident development year j
year i 0 1 2 3 4 5 6 7 8 9

1
2 10’663’318
3 10’646’884 10’662’008
4 9’734’574 9’744’764 9’758’606
5 9’837’277 9’847’906 9’858’214 9’872’218
6 10’005’044 10’056’528 10’067’393 10’077’931 10’092’247
7 9’419’776 9’485’469 9’534’279 9’544’580 9’554’571 9’568’143
8 8’445’057 8’570’389 8’630’159 8’674’568 8’683’940 8’693’030 8’705’378
9 8’243’496 8’432’051 8’557’190 8’616’868 8’661’208 8’670’566 8’679’642 8’691’971
10 8’470’989 9’129’696 9’338’521 9’477’113 9’543’206 9’592’313 9’602’676 9’612’728 9’626’383
f̂CL

j 1.493 1.078 1.023 1.015 1.007 1.005 1.001 1.001 1.001

Note that f̂CL
0 ≈ 1.5 while f̂CL

j is close to 1, for all j ∈ {1, . . . , 8}, i.e. we observe a rather
fast claims settlement in this example. The CL reserves R̂CL

i at time t = I are given by

R̂CL
i = ĈCL

i,J − Ci,I−i = Ci,I−i

 J−1∏
j=I−i

f̂CL
j − 1

 ,

for all accident years i ∈ {2, . . . , 10}. Moreover, since C1,J = C1,I−1 is known, we have
R̂CL

1 = 0. Summarizing, we get

accident year i 1 2 3 4 5 6 7 8 9 10
CL reserve R̂CL

i 0 15’126 26’257 34’538 85’302 156’494 286’121 449’167 1’043’242 3’950’815
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By aggregating the CL reserves over all accident years, we get the CL predictor R̂CL for the
outstanding loss liabilities of past exposure claims:

R̂CL =
I∑

i=1
R̂CL

i = 6’047’061.

(b) For all j ∈ {0, . . . , J − 1}, we define β̂CL
j as the proportion paid after the first j development

periods according to the estimated CL pattern, i.e.

β̂CL
0 = 1∏J−1

l=0 f̂CL
l

=
J−1∏
l=0

1
f̂CL

l

and

β̂CL
j =

∏j−1
l=0 f̂

CL
l∏J−1

l=0 f̂CL
l

=
J−1∏
l=j

1
f̂CL

l

,

for all j ∈ {1, . . . , J − 1}. We get

development period j 0 1 2 3 4 5 6 7 8
proportion β̂CL

j paid so far 0.590 0.880 0.948 0.970 0.984 0.991 0.996 0.998 0.999

According to formula (9.8) of the lecture notes, in the Bornhuetter-Ferguson method the
ultimate claim Ci,J is predicted by

ĈBF
i,J = Ci,I−i + µ̂i

(
1− β̂CL

I−i

)
,

for all accident years i ∈ {2, . . . , 10}. Thus, the Bornhuetter-Ferguson reserves R̂BF
i are given

by
R̂BF

i = ĈBF
i,J − Ci,I−i = µ̂i

(
1− β̂CL

I−i

)
for all accident years i ∈ {2, . . . , 10}. Moreover, since C1,J = C1,I−1 is known, we have
R̂BF

1 = 0. Summarizing, we get

accident year i 1 2 3 4 5 6 7 8 9 10
CL reserve R̂CL

i 0 16’124 26’998 37’575 95’434 178’024 341’305 574’089 1’318’646 4’768’384

By aggregating the BF reserves over all accident years, we get the BF predictor R̂BF for the
outstanding loss liabilities of past exposure claims:

R̂BF =
I∑

i=1
R̂BF

i = 7’356’580.

(c) Note that for accident year 1 we have

R̂CL
1 = 0 = R̂BF

1 .

Now let i ∈ {2, . . . , 10}. Then, in parts (a) and (b) we can observe that

R̂CL
i < R̂BF

i .
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This can be explained as follows: Equation (1) can be rewritten as

ĈCL
i,J = Ci,I−i

J−1∏
j=I−i

f̂CL
j

= Ci,I−i + Ci,I−i

 J−1∏
j=I−i

f̂CL
j − 1


= Ci,I−i + Ci,I−i

J−1∏
j=I−i

f̂CL
j

1−
J−1∏

j=I−i

1
f̂CL

j


= Ci,I−i + ĈCL

i,J

(
1− β̂CL

I−i

)
.

Comparing this to
ĈBF

i,J = Ci,I−i + µ̂i

(
1− β̂CL

I−i

)
and noting that for the prior information µ̂i we have µ̂i > ĈCL

i,J , we immediately see that

ĈCL
i,J < ĈBF

i,J ,

which of course implies that

R̂CL
i = ĈCL

i,J − Ci,I−i < ĈBF
i,J − Ci,I−i = R̂BF

i .

Concluding, we found that choosing a prior information µ̂i bigger than the estimated CL
ultimate ĈCL

i,J leads to more conservative, i.e. higher reserves in the Bornhuetter-Ferguson
method compared to the chain-ladder method.

Solution 12.2 Mack’s Formula and Merz-Wüthrich (MW) Formula (R Exercise)

See the R-Code below for getting the results presented in the following table:

accident year i CL reserve R̂CL
i

√
total msep (Mack) in % reserves

√
CDR msep (MW) in %

√
total msep

1 0
2 15’126 267 1.8 % 267 100 %
3 26’257 914 3.5 % 884 97 %
4 34’538 3’058 8.9 % 2’948 96 %
5 85’302 7’628 8.9 % 7’018 92 %
6 156’494 33’341 21.3 % 32’470 97 %
7 286’121 73’467 25.7 % 66’178 90 %
8 449’167 85’398 19.0 % 50’296 59 %
9 1’043’242 134’337 12.9 % 104’311 78 %
10 3’950’815 410’817 10.4 % 385’773 94 %

total 6’047’061 462’960 7.7 % 420’220 91 %

Mack’s square-rooted conditional mean square errors of prediction give us confidence bounds around
the estimated CL reserves. We see that for the total claims reserves the one standard deviation
confidence bounds are 7.7%. The biggest uncertainties can be found for accident years 6, 7 and 8,
where the one standard deviation confidence bounds are roughly 20% or even higher. Moreover,
MW’s square-rooted conditional mean square errors of prediction measure the contribution of the
next accounting year to the total uncertainty given by Mack’s square-rooted conditional mean
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square errors of prediction. We see that 91% of the total uncertainty is due to the next accounting
year. This high value can be explained by the fast claims settlement already noticed in Exercise
12.1, (a).

1 ### Load the required packages
2 require (xlsx)
3 library ( ChainLadder )
4
5 ### Download the data from the link indicated on the exercise sheet
6 ### Store the data under the name " Exercise .12. Data.xls" in the

same folder as this R-Code
7 ### Load the data
8 data <- read.xlsx(" Exercise .12. Data.xls", sheetName = "Data_1",

rowIndex = c (21:31) , colIndex = c (2:11) )
9

10 ### Bring the data in the appropriate triangular form and label the
axes

11 tri <- as. triangle (as. matrix (data))
12 dimnames (tri)=list( origin =1: nrow(tri),dev =1: ncol(tri))
13
14 ### Calculate the CL reserves and the corresponding msep ’s
15 M <- MackChainLadder (tri , est.sigma = "Mack")
16
17 ### Cl factors
18 M$f
19
20 ### Full triangle
21 M$ FullTriangle
22
23 ### CL reserves and Mack ’s square - rooted msep ’s ( including

illustrations )
24 M
25 plot(M)
26 plot(M, lattice = TRUE)
27
28 ### CL reserves , MW ’s square - rooted msep ’s and Mack ’s square - rooted

msep ’s
29 CDR(M)
30
31 ### Mack ’s square - rooted msep ’s in % of the reserves
32 round(CDR(M)[,3] / CDR(M)[ ,1] ,3) * 100
33
34 ### MW ’s square - rooted msep ’s in % of Mack ’s square - rooted msep ’s
35 round(CDR(M)[,2] / CDR(M)[ ,3] ,2) * 100
36
37 ### Full uncertainty picture
38 CDR(M, dev="all")
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Solution 12.3 Conditional MSEP and Claims Development Result

Note that the equalities in this exercise involving a conditional expectation are to be understood in
an almost sure sense.

(a) Since X is square-integrable, also E[X | D] is. Now, by subtracting and adding E[X | D], we
can write

msepX|D

(
X̂
)

= E
[(
X − X̂

)2
∣∣∣∣D]

= E
[(
X − E[X | D] + E[X | D]− X̂

)2
∣∣∣∣D]

= E
[
(X − E[X | D])2

∣∣∣∣D]+ E
[(

E[X | D]− X̂
)2
∣∣∣∣D]

+ 2E
[
(X − E[X | D])

(
E[X | DI ]− X̂

) ∣∣∣∣D]
= Var(X | D) + E

[(
E[X | D]− X̂

)2
∣∣∣∣D]

+ 2E
[
(X − E[X | D])

(
E[X | D]− X̂

) ∣∣∣∣D] .
Since E[X | D] and X̂ are D-measurable, we get

E
[(

E[X | D]− X̂
)2
∣∣∣∣D] =

(
E[X | D]− X̂

)2

and

E
[
(X − E[X | D])

(
E[X | D]− X̂

) ∣∣∣∣D] =
(
E[X | D]− X̂

)
E
[
(X − E[X | D])

∣∣∣∣D]
=
(
E[X | D]− X̂

)
(E[X | D]− E[X | D])

= 0.

By collecting the terms, we get the result

msepX|D

(
X̂
)

= E
[(
X − X̂

)2
∣∣∣∣D] = Var(X | D) +

(
E[X | D]− X̂

)2
.

(b) For t ∈ N with t ≥ I and i > t − J , the claims development result CDRi,t+1 is defined in
formulas (9.27) and (9.29) of the lecture notes by

CDRi,t+1 = Ĉ
(t)
i,J − Ĉ

(t+1)
i,J = E [Ci,J | Dt]− E [Ci,J | Dt+1] ,

which implies, since Dt ⊂ Dt+1, that CDRi,t+1 is Dt+1-measurable. Moreover, using the
tower property, we get

E [CDRi,t+1 | Dt] = E [E [Ci,J | Dt]− E [Ci,J | Dt+1] | Dt]
= E [Ci,J | Dt]− E [Ci,J | Dt]
= 0.

Note that this result is given in Corollary 9.13 of the lecture notes. In particular, it implies
that

E [CDRi,t+1] = E [E [CDRi,t+1 | Dt]] = 0.
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Now, since t1 < t2 by assumption, CDRi,t1+1 is Dt2-measurable. Thus, we get

E [CDRi,t1+1CDRi,t2+1] = E [E [CDRi,t1+1CDRi,t2+1 | Dt2 ]]
= E [CDRi,t1+1E [CDRi,t2+1 | Dt2 ]]
= E [CDRi,t1+1 · 0]
= 0.

We can conclude that

Cov (CDRi,t1+1,CDRi,t2+1) = E [CDRi,t1+1CDRi,t2+1]− E [CDRi,t1+1]E [CDRi,t2+1] = 0.
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