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CS 3710 Probabilistic graphical models

Modeling uncertainty with probabilities

* Representing large multivariate distributions directly and
exhaustively is hopeless:

— The number of parameters is exponential in the number of
random variables

— Inference can be exponential in the number of variables

» Breakthrough (late 80s, beginning of 90s)
— Bayesian belief networks
* Give solutions to the space, acquisition bottlenecks
» Partial solutions for time complexities
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Graphical models

Aim: alleviate the representational and computational
bottlenecks

Idea: Take advantage of the structure, more specifically,
independences and conditional independences that hold
among random variables

Two classes of models:
— Bayesian belief networks
* Modeling asymmetric (causal) effects and dependencies
— Markov random fields

* Modeling symmetric effects and dependencies among
random variables

 Used often to model spatial dependences (image
analysis)
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Bayesian belief networks (BBNs)

Bayesian belief networks.

» Represent the full joint distribution over the variables more
compactly using a smaller number of parameters.

» Take advantage of conditional and marginal independences
among random variables

* A and B are independent
P(A,B)=P(A)P(B)
* A and B are conditionally independent given C
P(A,B|C)=P(A|C)P(B|C)
P(A|C,B)=P(4|C)
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Bayesian belief networks (general)

Two components: B =(S,0) (B E
« Directed acyclic graph \ f
— Nodes correspond to random variables A
— (Missing) links encode independences <>/
J M
* Parameters
— Local conditional probability distributions
for every variable-parent configuration P(A[B,E)
PCX, | pa(x,) T TosE 008
Where: T F | 0.94 0.06
pa(X;) - stand for parents of X, E -Fr 85(9)1 8;39
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Bayesian belief network.

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998

P(A[B,E)
B E| T F
T T | 095 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

PQIA) \ P(M|A)
Al T F Al T F
T|0.90 0.1
F | 0.05 0.95

-
oo
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,X,,..X,)= HP(Xi | pa(X,))

i=l,.n

ON: E
Example: \ O}D
Assume the following assignment A

of values to random variables (j/ E
J M

B=T,E=T,A=T,J=T,M=F

Then its probability is:
PB=T,E=T,A=T,J=T,M=F)=

AB=DAE=DAA=T|B=T,E=T)RJ =T|A=T)AM=F| A=T)
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Bayesian belief networks (BBNs)

Bayesian belief networks

» Represent the full joint distribution over the variables more
compactly using the product of local conditionals.

* But how did we get to local parameterizations?
Answer:

* Graphical structure encodes conditional and marginal
independences among random variables

* A and B are independent P(A4,B)= P(A)P(B)
* A and B are conditionally independent given C
P(A|C,B)=P(A4]|C)
P(A,B|C)=P(A|C)P(B|C)

e The graph structure implies the decomposition !!!
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Independences in BBNs

3 basic independence structures:

1.

Burglary

@
Comy G

Goncats
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Independences in BBN

« BBN distribution models many conditional independence
relations among distant variables and sets of variables

» These are defined in terms of the graphical criterion called d-
separation

* D-separation and independence
— Let X,Y and Z be three sets of nodes

— If X and Y are d-separated by Z, then X and Y are
conditionally independent given Z

* D-separation :
— A is d-separated from B given C if every undirected path
between them is blocked with C
* Path blocking

— 3 cases that expand on three basic independence structures
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Independences in BBNs

@
= =

Earthquake and Burglary are independent given MaryCalls F
Burglary and MaryCalls are independent (not knowing Alarm) F
Burglary and RadioReport are independent given Earthquake T
Burglary and RadioReport are independent given MaryCalls F
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Bayesian belief networks (BBNs)

Bayesian belief networks

* Represents the full joint distribution over the variables more
compactly using the product of local conditionals.

* So how did we get to local parameterizations?
P(X,,X,,..,X,)= [ P(X, | pa(X)))
i=l,.n

* The decomposition is implied by the set of independences
encoded in the belief network.
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Full joint distribution in BBNs

B E
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J M

=P(J=T|B=T,E=T,A=T,M=F)PB=T,E=T,A=T,M =F)
=P(J=T|A=T)PB=T,E=T,A=T,M =F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
P(B T)P(E 7)
—P(J T|A=DPAM=F|A=T)AA=T|B=T,E= T)P(B T)P(E T)
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Parameter complexity problem

* In the BBN the full joint distribution is defined as:
P(X,,X,,.,X,)= H P(X, | pa(X,))
* What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:
25232 Cearthquaike
One parameter is for free:

2° —1=31
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Parameter complexity problem

 In the BBN the full joint distribution is defined as:
P(X,.X,.. X,)=[] P(X,|pa(X)

 What did we save? e

Alarm example: 5 binary (True, False) variables

Cearthquake

# of parameters of the full joint:

2° =32
One parameter is for free:
2° -1=31

# of parameters of the BBN: ?
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Bayesian belief network.

* In the BBN the full joint distribution is expressed using a set
of local conditional distributions

P(B) 2 P(E) 2
T F T F
Burglary Earthquake
0.001 0.999 0.002 0.998
P(A|B,E)
/ BE| T F 8
T T |0.95 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

P(IA)

\ P(M|A)

Al T F |4 Al T F 4
T| 0.90 0.1 @ T| 07 0.3
F | 0.05 0.95 F| 0.01 0.99
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Parameter complexity problem

 In the BBN the full joint distribution is defined as:
P(X,.X,.. X,)=[][ P(X,]|pa(X,)

 What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

2° =32
One parameter is for free:
2° -1=31

# of parameters of the BBN:
2° +2(2%)+2(2)=20
One parameter in every conditional is for free:
()
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Parameter complexity problem

* In the BBN the full joint distribution is defined as:
P(Xsza--a Xn) = H P(Xi | pa (X;))

* What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:
2% =32 Cearthquake
One parameter is for free:
2° -1=31
# of parameters of the BBN:
2° +2(2°)+2(2) =120
One parameter in every conditional is for free:

2% +2(2)+2(1) =10
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Model acquisition problem

The structure of the BBN
* typically reflects causal relations
(BBNs are also sometime referred to as causal networks)

* Causal structure is intuitive in many applications domain and it
is relatively easy to define to the domain expert

Probability parameters of BBN

« are conditional distributions relating random variables and
their parents

» Complexity is much smaller than the full joint

« It is much easier to obtain such probabilities from the expert or
learn them automatically from data
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BBNs built in practice

* In various areas:
— Intelligent user interfaces (Microsoft)
— Troubleshooting, diagnosis of a technical device
— Medical diagnosis:
* Pathfinder (Intellipath)
» CPSC
* Munin
* QMR-DT
— Collaborative filtering
— Military applications
— Business and finance
* Insurance, credit applications
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Diagnosis of car engine

» Diagnose the engine start problem
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Car insurance example

 Predict claim costs (medical, liability) based on application data

"/
4] TS

TedicalCos
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(ICU) Alarm network

HYPOVOLEMIA LY FAILURE ANAPHYLAXIS PULMONARY EMBOLUS

ANESTHESIA,
INEUFFICIENT KINKED

PAP SHUNT |\ rigaTion TUBE  DISCONNECTION

CATECHOLAMINE WENT MACHINE

WENT &

BLOCD KW SETTING
PRESSLIRE
KINUTE
ERRCR VEMTILATION
LOW QUTPUT

ARTERIAL
coz
HR BF HREKG HR BAT EXFIRED

coz
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CPCS
» Computer-based Patient Case Simulation system (CPCS-PM)
developed by Parker and Miller (University of Pittsburgh)
d 867 arcs

Y

S

CS 3710 Probabilistic graphical models




QMR-DT

* Medical diagnosis in internal medicine

Bipartite network of disease/findings relations

OMR-DT derived from Internist-1/ QMR KB

534 discases

OOo QooG

oo Oooo

40740 arcs 4040 findings
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Inference in Bayesian networks

* BBN models compactly the full joint distribution by taking
advantage of existing independences between variables

» Simplifies the acquisition of a probabilistic model
» But we are interested in solving various inference tasks:
— Diagnostic task. (from effect to cause)
P (Burglary | JohnCalls =T)
— Prediction task. (from cause to effect)
P (JohnCalls | Burglary =T)
— Other probabilistic queries (queries on joint distributions).
P(Alarm )

* Main issue: Can we take advantage of independences to
construct special algorithms and speeding up the inference?
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Inference in Bayesian network

* Bad news:
— Exact inference problem in BBNs is NP-hard (Cooper)
— Approximate inference is NP-hard (Dagum, Luby)

* But very often we can achieve significant improvements

* Assume our Alarm network

o
\
Gomeis Gy

* Assume we want to compute: P(J =T)
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Inference in Bayesian networks

Computing: P(J =T)

Approach 1. Blind approach.

* Sum out all un-instantiated variables from the full joint,
 express the joint distribution as a product of conditionals

P(J=T)=

=> > > Y PB=bE=ed=a,J=T,M =m)

beT ,F eeT ,F aeT ,F meT ,F

=53 S Y PU=T|4=a)P(M =m| A=a)P(4=a|B=b,E = )P(B=b)P(E =)

bel F e<T ,F aeT ,F meT ,F

Computational cost:
Number of additions: ?
Number of products: ?
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Inference in Bayesian networks
Computing: P(J =T)
Approach 1. Blind approach.

* Sum out all un-instantiated variables from the full joint,
» express the joint distribution as a product of conditionals

P(J=T)=

=> > > YPB=bE=ed=a,J=T,M =m)

beT ,F eeT ,F aeT ,F meT ,F

=Y > > Y PJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E=e)P(B=b)P(E =¢)
bel F eeT ,F acT ,F meT ,F
Computational cost:
Number of additions: 15
Number of products: ?
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Inference in Bayesian networks

Computing: P(J =T)

Approach 1. Blind approach.

* Sum out all un-instantiated variables from the full joint,
 express the joint distribution as a product of conditionals

P(J=T)=

=> > > Y PB=bE=ed=a,J=T,M =m)

beT ,F eeT ,F aeT ,F meT ,F

=53 S Y PU=T|4=a)P(M =m| A=a)P(4=a|B=b,E = )P(B=b)P(E =)
bel F e<T ,F aeT ,F meT ,F
Computational cost:
Number of additions: 15
Number of products: 16*4=64
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Inference in Bayesian networks

Approach 2. Interleave sums and products
* Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)
P(J=T)=
=3 > > Y PJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E=e)P(B=b)P(E =e)

bel F el ,F acT ,F meT ,F

=Y > Y PJ=T|A=a)PM=m| A=a)P(B=b)[ Y MA=a| B=bE=e)E=¢)]

=Y PJ=T|A=a) Y, PM=m|A=a)][ ), PB=b)[ Y P(A=a|B=bE=e)P(E=e)]

Computational cost:
Number of additions: 1+2*[1+1+2*1]=?
Number of products: 2*[2+2*(1+2*1)]=?
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Inference in Bayesian networks

Approach 2. Interleave sums and products

* Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

P(J=T)=
=Y > > YPJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E =e)P(B=b)P(E =e)

bel F el F a<T ,F mel ,F

=Y > Y PJ=T|A=a)PM=m| A=a)PB=b)[ D) P(A=a|B=b,E=e)A(E=e)]

bel,F ael.F meT ,F eel,F
=Y PJ=T|A=a) Y, PM=m|A=a)][ Y. PB=b)[ Y P(A=a|B=b,E=e)P(E=e)]

Computational cost:
Number of additions: 1+2*[1+1+2*1]=9
Number of products: 2*#[2+2*(1+2*1)]=?

CS 3710 Probabilistic graphical models




Inference in Bayesian networks

Approach 2. Interleave sums and products
* Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)
P(J=T)=
=3 > > Y PJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E=e)P(B=b)P(E =e)

bel F el ,F acT ,F meT ,F

=Y > Y PJ=T|A=a)PM=m| A=a)P(B=b)[ Y MA=a| B=bE=e)E=¢)]

=Y PJ=T|A=a) Y, PM=m|A=a)][ ), PB=b)[ Y P(A=a|B=bE=e)P(E=e)]

Computational cost:
Number of additions: 1+2*[1+1+2*1]=9
Number of products: 2*[2+2*(1+2*1)]=16
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Inference in Bayesian networks

* The smart interleaving of sums and products can help us to
speed up the computation of joint probability queries

* What if we want to compute: P(B=T7T,J =T)

P(B=T,J=T)=
=Y PU=T|4=a)[ ) P(M=m|A=a){P(B=T){ ZP(A=a|B=T,E=e)P(E=e)}

ael ,F mel ,F ecl ,F

ST S S A

=Y PJ=T|A=a)[ ) P(M=m|A=a){ > P(B:b){ ZP(A=a|B=b,E=e)P(E=e)ﬂ

ael ,F mel ,F el ,F eeT . F

* A lot of shared computation
— Smart cashing of results can save the time for more queries
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Inference in Bayesian networks

* The smart interleaving of sums and products can help us to
speed up the computation of joint probability queries

* What if we want to compute: P(B=T7,J =T)

P(B=T,J=T)=

=Y PJUT|A=a) D AM=m| A=a)l[(B=T)[ Y PA=a| B=T,E=e)P(E=e)]]

ael ,F mel ,F el I

! !

=Y PJ=T|A=a)|Y, PM=m|A=a)|[ D | P(B=b)[ Y P(A=a|B=bE=e)P(E=¢)||

ael ,F nel ,F beT | ecT . F

* A lot of shared computation
— Smart cashing of results can save the time if more queries
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Inference in Bayesian networks

»  When cashing of results becomes handy?
* What if we want to compute a diagnostic query:

P(B=T,J=T)
P(J=T)

P(B=T|J=T)=

» Exactly probabilities we have just compared !!
* There are other queries when cashing and ordering of sums
and products can be shared and saves computation

P(B|J=T)=%=aP(B,J=T)

* General technique: Variable elimination
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Inference in Bayesian networks

» General idea of variable elimination

P(True ) =1=
= 2 [2 =/ A=a)[ ), AM=m| A=a)][}  AB=b)[ } RA=a| B=b,E=NE=c)]
acl ,F jel ,F j )(GT,F / bel ,F i)eT,F /
& G f2(ab)
£ (@) fular £ (4
T
Js(a)

Variable order:

A
/ \ Results cashed in
O17 M

B the tree structure

Complexity:
E  treewidth of the graph
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Inference in Bayesian network

» Exact inference algorithms:
— Variable elimination
— Symbolic inference (D’ Ambrosio)
— Recursive decomposition (Cooper)
— Message passing algorithm (Pearl)

— Clustering and joint tree approach (Lauritzen,
Spiegelhalter)

— Arc reversal (Olmsted, Schachter)

« Approximate inference algorithms:
— Monte Carlo methods:
» Forward sampling, Likelihood sampling
— Variational methods
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Markov random fields

* Probabilistic models with symmetric dependences.
— Typically models of spatially varying quantities

P(x)ec [] /.(x)

cecl(x)

f.(x,) - A potential function (defined over factors)

P(X)——GXP[ D 9.(x, )j

cecl(x)

- Gibbs (Boltzman) distribution

xe{x} cecl(x)

Z=> exp[ D f.(x, )j - A partition function
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Markov random fields

* Interactions induced by the factorized form are captured
by an undirected network (also called independence graph)

« G=(S,E)
— S=1,2,..N correspond to random variables
- (,j)e Ee dc:{i,j}cc

or x; and x; appear within the same factor ¢

* Consequence:

— factors c correspond to cliques of the graph
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Markov random fields

* regular lattice
(Ising model)

* Arbitrary graph
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Markov random fields

* regular lattice
(Ising model)

« Arbitrary graph
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Markov random fields

* Pairwise Markov property

— Two nodes in the network that are not directly connected
can be made independent given all other nodes

A

B

P(xA,xB|xr>=”xA’—Wocexp(— S px)- Z@(MJ

P(xr) ceNnA=#{} cenA={}

o exp(_ >4, (xc)j =P(x,|x,)

cieNA#{}
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Markov random fields

* Pairwise Markov property

— Two nodes in the network that are not directly connected
can be made independent given all other nodes

* Local Markov property
— A set of nodes (variables) can be made independent from
the rest of nodes variables given its immediate neighbors
* Global Markov property
— A vertex set A is independent of the vertex set B (A and B

are disjoint) given set C if all chains in between elements in
A and B intersect C
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