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Abstract: Herein, we report the mitochondrial genomic characteristics of three insect pests, Noto-
bitus meleagris, Macropes harringtonae, and Homoeocerus bipunctatus, collected from bamboo plants
in Guizhou Province, China. For the first time, the damaged conditions and life histories of M.
harringtonae and H. bipunctatus are described in detail and digital photographs of all their life stages
are provided. Simultaneously, the mitochondrial genome sequences of three bamboo pests were
sequenced and analyzed. Idiocerus laurifoliae and Nilaparvata lugens were used as outgroups, and
the phylogenetic trees were constructed. The mitochondrial genomes of the three bamboo pests
contained 37 classical genes, including 13 protein-coding genes (PCGs), two ribosomal RNA genes
(rRNAs), 22 transfer RNAs (tRNAs), and a control region, with a total length of 16,199 bp, 15,314 bp,
and 16,706 bp, respectively. The A+T values of the three bamboo pests were similar, and trnS1 was
a cloverleaf structure with missing arms. The phylogenetic analyses, using the Bayesian inference
(BI) and Maximum likelihood (ML), supported that N. meleagris and H. bipunctatus belonged to the
Coreoidea family, whereas M. harringtonae belonged to the Lygaeoidea family with high support val-
ues. This study involves the first complete sequencing of the mitochondrial genomes of two bamboo
pests. By adding these newly sequenced mitochondrial genome data and detailed descriptions of
life histories, the database of bamboo pests is improved. These data also provide information for
the development of bamboo pest control methods by quick identification techniques and the use of
detailed photographs.

Keywords: bamboo pests; Coreoidae; Lygaeoidae; mitogenome; hazard condition; life history

1. Introduction

Bamboo is a common plant that belongs to the Gramineae family. Bamboo resources
are an essential part of the terrestrial forest ecosystem with typical characteristics of wide
distribution, rapid growth, high yield, strong regeneration ability, wide use, and high eco-
nomic value. Bamboo has high economic, ecological, and social benefits, and is widely used
in the construction, ornamental, and food industries. Additionally, the bamboo extracts
exhibited excellent anti-free radicals, antioxidant, anti-aging, antibacterial, insecticidal,
lipid regulation, cardiovascular and cerebrovascular protection, and pharmacological ef-
fects [1]. There are more than 120 genera and over 1500 species of bamboo worldwide, and
approximately 44 genera and 762 species of bamboo in China [2]. With increased bamboo
planting areas, bamboo pests become more common, and damage becomes more severe,
which hinders the sustainable development of the bamboo industry. While investigating
bamboo pests in Guizhou, the authors found three species that are serious bamboo pests: N.
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meleagris, M. harringtonae, and H. bipunctatus, which belong to the Hemiptera (Heteroptera)
order [3–5]. At the end of the 19th century and the beginning of the 20th century, Japanese
researchers studied the behavior of N. meleagris. They noticed that N. meleagris have the
habit of multi-male mating aggregation [6,7]. Many Chinese researchers have also reported
the habits of N. meleagris. Adults and nymphs of N. meleagris are harmful because they suck
sap through thorns. Bamboo forests were severely damaged by these pests, which killed
70% of the bamboo plants. The harmed bamboo withered, bamboo whips rotted, and dried
without osmotic fluid. This led to the following year’s reduction of bamboo shoots and the
decline of the forest [8]. According to our study, the damage of N. meleagris in Guizhou is
becoming increasingly severe, and there are over20 insects on each bamboo shoot simulta-
neously. No scholars have studied the biological characteristics of M. harringtonae and H.
bipunctatus before. This study is the first to report these insects’ effects on bamboo; they
suck sugar and other nutrients from the bamboo rod’s basal membrane and inner wall with
their piercing mouthparts, and the damaged sites often become reddish-brown or black.
The bottom of the node becomes corroded and withered. M. harringtonae can cause damage
to every type of bamboo. Therefore, the damage and life histories of M. harringtonae and H.
bipunctatus are described in this study.

Mitochondrial genome sequences are widely used in biogeographical, molecular, and
systematic studies [9,10]. Mitochondrial genome research includes explaining species’
origins and exploring insects’ phylogeny, revealing the geographical distribution of species
polymorphisms. This relationship provides several genome level characteristics, including
changes in genomic diversity, control patterns for transcription and replication, and RNA
secondary structures (such as cloverleaf structures) [11,12]. Because of the higher base
replacement rate than nuclear genes, due to the lack of rearrangement during cell meiosis,
these characteristics make mitochondrial DNA a focal genetic marker for evolutionary
studies [13–16]. So far, only a few mitochondrial bamboo pests (such as Notobitus montanus,
Pirkimerus japonicus, Hippotiscus dorsalis, and Yemmalysus parallelus) have been sequenced
and are available on NCBI [17–19]. There were no complete mitochondrial sequences of
N. meleagris and H. bipunctatus on NCBI. This study presents the complete mitochondrial
genome of three bamboo pests (N. meleagris, M. harringtonae, and H. bipunctatus), which
provides the basis for developing bamboo-pest gene bank data and supports prevention
and management. This is the first study to investigate bamboo pests by using the mi-
tochondrial genomes data and life histories with detailed molecular and morphological
datasets. We also discuss their mitochondrial genome structures and analyze their tRNA’s
shamrock structure. This study aims to provide a reference for the identification, control,
and phylogenetic analysis of bamboo pests.

2. Materials and Methods
2.1. Observation of the Damaged Condition and Occurrence Regularity

From May 2021 to August 2022, we observed the damaged conditions and occurrence
regularity of three bamboo pests (N. meleagris, M. harringtonae, and H. bipunctatus) in
Guizhou Province. The observations were madeon sunny days, at an interval of once every
ten days. The damages were recorded and photographed using visual inspection and
sweep net techniques [20].

2.2. Sample Isolation and DNA Extraction

N. meleagris was collected in July 2021 from the Baizi Bridge, Duyun, and Guizhou,
whereas M. harringtonae and H. bipunctatus were collected in August 2021 from Huaxi Park,
Guiyang, and Sajinriver, Fuquan, Guizhou, respectively. Identification was made based on
external body morphology and genitalia with the help of theavailable literature [21–23].
After 48 h of starvation, fresh individuals were preserved in 95% ethanol at −40 ◦C at the
Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous
Regions, Guizhou University. Total DNA was extracted from the entire body using the
Genomic Extraction Kit [24–27].
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2.3. Genome Assembly, Annotation, and Analysis

The DNA quality before sequencing was evaluated using agarose (1%) gel elec-
trophoresis. Mitogenomes were sequenced using a next-generation sequencing platform
with Illumina Hiseq 2500 at BerryGenomics (Beijing, China). BerryGenomics (Beijing,
China) and FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc accessed on 17
March 2022) were used to evaluate the quality of the raw sequences. Then, the clean
sequences were assembled using MitoZ v2.4 software [28] with default parameters and
the mitogenomes of Riptortus pedestris (Alydidaeidae; NC_012462), Aeschyntelus notatus
(Coreidae; NC_012446), and Geocoris pallidipennis (Geocoridae; NC_012424) were used as
references. The three mitogenomes were initially annotated using the MITOS web server
(http://mitos.bioinf.uni-leipzig.de/index.py, accessed on 1 January 2023) [29] with in-
vertebrate genetic codes. Using the MITOS web server, we identified and predicted 22
tRNA genes’ locations and secondary structures. The 13 protein-coding genes (PCGs) were
predicted by determining their open reading frames using the invertebrate mitochondrial
genetic codons [30–32]. The skews of AT and GC were calculated according to the following
formulas: AT skew = (A − T)/(A + T) and GC skew = (G − C)/(G + C) [29,33,34]. The
nucleotide composition and relative synonymous codon usage (RSCU) were obtained using
PhyloSuite v1.2.2 [35], and RSCU figures were created using the package [36] of R 3.6.1 [37].

2.4. Phylogenetic Analysis

In addition to the three mitogenomes sequenced in this study, phylogenetic analyses
were conducted based on an additional 22 complete mitogenomes of the Hemiptera species
from NCBI. The Hemiptera species belonged to 6 superfamilies: Lygaeoidea (11 species),
Coreoidea (8 species), Pentatomoidea (2 species), Reduvioidea (2 species), Fulgoroidea
(1 species), and Membracoidea (1 species). The mitogenomes of I. laurifoliae (Cicadelli-
dae) and N. lugens (Delphacidae) from Auchenorrhyncha were selected as the outgroup
(Table A1). Accession numbers and detailed information on these mitogenomes are listed
in Table A1. We used MEGA v6 [38] to align the nucleotide sequences of 13 PCGs with
Muscle [39,40], and used SequenceMatrix v1.7 [41] to concatenate individual genes. Model
testing and selection was completed by using the software PartitionFinder v2.1.1 [42] with
the greedy algorithm [43]. Maximum likelihood (ML) analyses were employed using IQ-
TREE v1.6.3 [44] with 10,000 replicates of ultrafast likelihood bootstrapping [45]. Bayesian
inference (BI) analyses were employed using MrBayes 3.2 [46] under the matrix of two
simultaneous operations of 1,000,000 generations, sampling every 1000 generations, with a
burn-in of 25%. When the splitting frequency drops steadily to 0.01, the sample is consid-
ered to have converged. Finally, using FigTree v.1.4.3 [47], we viewed and beautified the
resulting phylogenetic trees [48,49].

3. Results
3.1. Hazard Condition and Occurrence Regularity

According to our investigation of the three bamboo pests in Guizhou Province from
2021 to 2022, the preliminary observation showed that N. meleagris was significantly harmful
to bamboo shoots, mainly harming them with clusters; M. harringtonae can harm whole
bamboo tree, including bamboo poles and bamboo joints, and have a wide distribution
range; H. bipunctatus often inhabits the growth of newly emerging leaves and feed on them.
Furthermore, the insect pests of bamboo species often aggregate and harm the bamboo
plants. The adults and nymphs are also harmful as they suck sap through the stylets
(Figures 1–3).

www.bioinformatics.babraham.ac.uk/projects/fastqc
http://mitos.bioinf.uni-leipzig.de/index.py
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Figure 1. Dorsal habitus of M. harringtonae. (A). First instar; (B). Second instar; (C). Third instar; (D). 
Fourth instar; (E). Fifth instar; (F). Adult. Scale bar = 1000 μm. 

 
Figure 2. (A). Egg mass of N. meleagris; (B–F). Dorsal habitus of first to fifth nymphal instars; (G). 
Adult, female; (H). Adult, male. Scale bars = (A) (500 μm); (B–F) (5000 μm). 

Figure 1. Dorsal habitus of M. harringtonae. (A). First instar; (B). Second instar; (C). Third instar;
(D). Fourth instar; (E). Fifth instar; (F). Adult. Scale bar = 1000 µm.
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N. meleagris, five instars, mass egg production with at least 20 eggs per time, obvious
generation overlap, >3 generations a year, and adults overwinter in dry trees; M. harring-
tonae, five instars, mass egg production with at least 20 eggs laid per time, >3 generations
a year, overwintering as adults in bamboo nodes; H. bipunctatus, five instars, single egg
production, >2 generations a year, and adults overwintering in weeds. (Table A2).

3.2. Mitogenomic Organization and Composition

The mitogenomes of the three bamboo pests, N. meleagris (GenBank No. OP442510;
length: 16,199 bp), M. harringtonae (GenBank No. OP442511; length: 15,314 bp), and H.
bipunctatus (GenBank No. OP442512; length: 16,706 bp) were double-stranded closed
circular molecules (Figure 4). The newly sequenced mitogenomes of three bamboo pests
presented 37 typical metazoan mitochondrial genes. These were similar to the mitogenomic
sequences of other Hemipteran insects [50–53], containing 13 PCGs, 22 tRNA genes, two
rRNA genes, and a control region (Table A3). Each sequence of the three bamboo pests
included nine PCGs and 14 tRNAs encoded on the major (J-strand), and the minor (N-
strand) consisted of four PCGs, eight tRNA, and two rRNAs. In addition, there were
some differences between the overlapping regions and intergenic spacers of the three
mitogenomes. There were seven overlapping regions and 12 intergenic spacers of N.
meleagris, the largest overlapping region was 7 bp located between atp8 and atp6, and the
largest intergenic spacer was 37 bp located between trnY and cox1. In addition, there were
11 overlapping regions and 10 intergenic spacers in M. harringtonae; the largest overlapping
region was 7 bp between atp8 and atp6, and the largest intergenic spacer was 71 bp
between trnH and nad4. There were nine overlapping regions and 13 intergenic spacers
in H. bipunctatus; the largest overlapping region was 8 bp between trnW and trnC, and
the largest intergenic spacer was 37 bp located between trnY and cox1. The nucleotide
compositions of N. meleagris, M. harringtonae, and H. bipunctatus are shown in Table A4.
The AT nucleotide content of the three mitogenomes was similar: In the range of 73–74.5%,
the content occupoed a substantial proportion of the entire sequence. The AT skew of all
three genomes is a positive number; on the contrary, the GC skew of all three genomes is a
negative number.

3.3. PCGs and Codon Usage

The mitogenomes of the three bamboo pests belong to the Hemipteran order [47],
which includes 13 PCGs. Their lengths in N. meleagris, M. harringtonae, and H. bipunctatus
were 11,008 bp, 10,957 bp, and 11,010 bp, respectively. In the three sequences, the nine PCG
genes (nad2, cox1, cox2, atp8, atp6, cox3, nad3, nad6, and cytb) were encoded on the major
strand (J-strand), and four PCG genes (nad5, nad4, nad4L, and nad1) were encoded on the
minor strand (N-strand). All 13 PCGs started with ATN. The stop codon of N. meleagris
is the same as that of H. bipunctatus, atp8 and nad6 had TAA as the stop codon, and the
other ten had incomplete T. The stop codon of M. harringtonae is special, except for the same
features as the other two sequences, nad4L had TAA as the stop codon, and nad3 had TAG
as the stop codon.

Except for the stop codon, the total number of codons was 3663 (N. meleagris), 3645 (M.
harringtonae), and 3664 (H. bipunctatus). In descending order, the three most abundant amino
acids, Leu2, Ile, and Phe, in N. meleagris are the same as M. harringtonae. In addition, Leu2,
Ile, and Met were the most abundant amino acids in H. bipunctatus (Figure 5). According to
Figure 6, the four most prevalent codons were Leu2 (UUA), Ile (AUU), Phe (UUU), and
Met (AUA). The RSCU values of the PCGs indicated a pattern toward more A and T than
G and C.
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harringtonae. The total number of the codons are presented as numbers at the Y-axis and codon
families are shown at the X-axis.
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3.4. Transfer and Ribosomal RNA Genes

The rrnL (16S) and rrnS (12S) genes on the N-strand were located between the trnL1
and trnV and the control region in the mitogenome of three bamboo pests (Table A3). The
total lengths of rrnL and rrnS of the three sequences were similar, in the range of 2036 bp to
2067 bp, and displayed a negative AT skew and a positive GC skew (Table A4).

The mitogenomes of N. meleagris, M. harringtonae, and H. bipunctatus included 22
transfer RNA genes, as in most invertebrates. The total lengths of tRNAs were 1449 bp,
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1439 bp, and 1446 bp, and these tRNA genes ranged from 62–75 bp. In the three sequences,
the 14 tRNA genes (trnI, trnM, trnW, trnL2, trnK, trnD, trnG, trnA, trnR, trnN, trnS1,
trnE, trnT, and trnS2) were encoded on the major strand (J-strand), and the eight tRNA
genes (trnQ, trnC, trnY, trnF, trnH, trnP, trnL1, trnV) were encoded on the minor strand
(N-strand) (Table A3). We found that only trnS1 lacked the dihydrouridine (DHU) arm,
and the remaining 21 tRNA genes can form a typical cloverleaf structure (Figures A1–A3).
In addition to the typical base pairing (G-C and A-U), there was some wobble G-U pairs in
these secondary structures, which could form stable chemical bonds between U and G.

3.5. Control Region

The control region, also called the A+T rich region, is the longest noncoding region
with many genes involved in mitogenic replication and transcription. In the three bamboo
pests, this region was located between the rrnS and trnL. The length of the control region
was 1627 bp (N. meleagris), 772 bp (M. harringtonae), and 2138 bp (H. bipunctatus). The AT-
rich region had the highest AT content with67.2% in N. meleagris, 79.3% in M. harringtonae,
and 68.4% in H. bipunctatus, with positive AT skew (0.099–0.117) and negative CG skew
(−0.329 to −0.188) (Table A4).

3.6. Phylogenetic Analyses

Phylogenetic relationships among 23 species of the heteropteran (including the three
sequenced mitogenomes of the bamboo pests, two of them newly sequenced) and two
outgroups (I. laurifoliae and N. lugens) were reconstructed based on 13 PCGs using ML
and BI analyses under the partitioning scheme and models selected by PartitionFinder.
The two resulting trees (Figure 7) had similar topologies, receiving strong support in most
nodes. These phylogenetic relationships were consistent with previous studies [54,55]. The
phylogenetic trees of N. meleagris and H. bipunctatus from sister group relationships, M.
harringtonae with M. robustus, and M. dentipes also from sister group relationships, showed a
high confidence value. The sister groups’ relationship of Coreoidea and Lygaeoidea located
in the middle of phylogenetic trees was also confirmed [56–58].
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Figure 7. Phylogenetic relationships based on Bayesian inference (A) and maximum likelihood
(B) analyses. Bayesian posterior probabilities are shown on each node. Bootstrap support values are
shown on each node. The tree was rooted using I. laurifoliae and N. lugens as outgroups. The three
bamboo pest species sequenced in this study are marked in red.

4. Discussion

N. meleagris are typical insects that attack and harm bamboo plants [59]. M. harringtonae,
belonging to the family Blissidae, and many genera (Macropes and Pirkimerus), have been
reported to have harmed bamboo, but this is the first time that M. harringtonae has been
reported to have harmed bamboo seriously [60,61]. Homoeocerus, belonging to the Coreidae
family, have previously been reported to harm only leguminous plants [62]; however, H.
bipunctatus collected from the bamboo plants showed normal physiological activities, such
as mating and oviposition, when the species were fed with bamboo. This study describes
the extent of damages and life histories of M. harringtonae and H. bipunctatus. This paper
updates and supplements the data on N. meleagris, M. harringtonae, and H. bipunctatus
in Guizhou. Research in 2009 showed that only two generations of N. meleagris were
present in Guizhou in one year [63]. However, according to our research observations,
at least three generations of N. meleagris were present in Guizhou in one year, and the
generations overlapped significantly. Previously, no study was performed on the biological
characteristics of M. harringtonae and H. bipunctatus. Our research shows that at least three
generations of M. harringtonae occur in a year in Guizhou, and at least two generations of
H. bipunctatus occur in a year in Guizhou. This study fills a gap in the understanding of the
biological characteristics of M. harringtonae and H. bipunctatus.

In this study, three complete mitogenomes (N. meleagris, M. harringtonae, and H. bipunc-
tatus) were sequenced and analyzed for their genome size, base content, AT nucleotide bias,
AT skew, GC skew, the codon usage of protein genes, and secondary structure of tRNA.
Despite differences in the sequence length of three bamboo pest species, the mitochondrial
genome order of N. meleagris, M. harringtonae, and H. bipunctatus was identical and con-
served with the alignment to that of known ancestral taxa regarding the organization and
composition of the genome [64–68]. The size, AT skew, and GC skew of genome and PCGs
of M. harringtonae in our study has little difference with previous research. However, the
positive and negative of AT skew and GC skew of rRNAs and tRNAs are opposite [17].
The analysis of synonymous codon usage showed that the occurrence of synonymous
codons ending in A or T was much higher than those of other synonymous codons; that is,
codons rich in AT were frequently used. Whether the abundant AT content in the control
region affects transcription and replication of the mitogenome and indirectly affects the
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feeding behavior of the bamboo pests is unclear; further studies are required to verify the
function of the conserved control region of the mitogenome of the bamboo pests. In the
insect mitochondrial genome, the stem-loop structure with dihydrouracil deletion of trnS1
in the tRNA secondary structure is a typical feature [69–71]. The trnS1 secondary structures
of the three mitochondrial genome sequences of bamboo pests are stem-loop structures
with dihydrouracil deletion; the other 21 tRNA secondary structures were typical clover
structures.

The phylogenetic tree was constructed using 13 protein genes, and the phylogenetic
relationships of 25 species were analyzed. The results showed that N. meleagris and H.
bipunctatus belonged to the Coreoidea, and M. harringtonae belonged to the Lygaeoidea.
There was no dispute on the taxonomic status, consistent with the results of morphological
identification [17,72,73]. The three mitogenomes sequenced enriched the database of
Heteroptera and laid a foundation for better resolving the controversy of the taxonomic
status of bugs. The study of the predator web of natural enemy insects is to determine the
prey of natural enemy insects by measuring the DNA fragments of the intestinal contents
of natural enemy insects and comparing them in the database [74]. However, before that,
it is necessary to establish a database of insect pests and surrounding arthropod species.
Therefore, this study will also provide essential information for subsequent research on
analyzing predator nets of natural enemies of bamboo pests.
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Appendix A

Table A1. List of mitogenomes used for phylogenetic analysis in this study.

Superfamily Species NCBI No. Length

Ingroups Lygaeoidea M. harringtonae NC065820 14,942
Lygaeoidea M. harringtonae OP442511 15,314
Lygaeoidea Macropes dentipes NC065821 14,923

Lygaeoidea Macropes
robustus NC065822 15,041

Lygaeoidea Bochrus foveatus NC065814 14,738
Lygaeoidea P. japonicus NC065823 15,440
Lygaeoidea Iphicrates gressitti NC065818 15,288

Lygaeoidea Cavelerius
yunnanensis NC065816 15,330

Lygaeoidea Dimorphopterus
gibbus NC065817 14,988
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Table A1. Cont.

Superfamily Species NCBI No. Length

Lygaeoidea Capodemus
sinuatus NC065815 15,199

Lygaeoidea Ischnodemus
noctulus NC065819 15,291

Coreoidea N. meleagris OP442510 16,199

Coreoidea Notobitus
montanus NC065112 16,209

Coreoidea H. bipunctatus OP442512 16,706
Coreoidea A. notatus NC012446 14,532
Coreoidea Leptocorisa acuta NC061738 15,373

Coreoidea Leptocorisa
chinensis NC061737 15,433

Coreoidea Leptocorisa
costalis NC061680 15,353

Coreoidea Leptocorisa lepida NC061739 15,129
Pentatomoidea Arma custos NC051562 15,629
Pentatomoidea Eurydema gebleri NC027489 16,005

Reduvioidea Acanthaspis
cincticrus NC037735 15,686

Reduvioidea Agriosphodrus
dohrni NC015842 16,470

Outgroups Fulgoroidea N. lugens NC021748 17,619
Membracoidea I. laurifoliae NC039741 16,811

The sequence number marked in red is the research subject of this paper.

Table A2. List of annual life history.

M. harringtonae

Generation
Mouth

Mar. Apr. May Jun. Jul. Aug. Sep. Oct.−Feb.

Overwintering
generation (−) − −

(+) + +
• • •

First
generation − − −

+ + +
• • •

Second
generation − − −

+ + +
• • •

Third
generation − − − (−)

+ (+)

H. bipunctatus

Generation
Mouth

Apr. May Jun. Jul. Aug. Sep. Oct. Nov.−Mar.

Overwintering
generation (+) + + +

• • •
First

generation − − −
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Table A2. Cont.

H. bipunctatus

Generation
Mouth

Apr. May Jun. Jul. Aug. Sep. Oct. Nov.−Mar.

+ + + +
• • • •

Second
generation − − − −

+ + + (+)

“+” means adult, “•” means egg, “−” means nymph, “()” means overwintering.

Table A3. List of mitogenomes’ configurations of the three bamboo pests.

N. meleagris

Gene Direction Location Size (bp) Start
Codon

Stop
Codon INC

trnI J 1–65 65 - - 0
trnQ N 63–131 69 - - −3
trnM J 131–199 69 - - −1
nad2 J 201–1200 1000 ATG T 1
trnW J 1201–1264 64 - - 0
trnC N 1257–1319 63 - - 6
trnY N 1320–1382 63 - - 0
cox1 J 1420–2917 1498 ATT T 37
trnL2 J 2918–2984 67 - - 0
cox2 J 2985–3663 679 ATC T 0
trnK J 3663–3738 75 - - −1
trnD J 3739–3803 65 - - 0
atp8 J 3804–3965 162 ATA TAA 0
atp6 J 3959–4630 672 ATG TAA −7
cox3 J 4630–5416 787 ATG T −1
trnG J 5417–5480 64 - - 0
nad3 J 5481–5832 352 ATA T 0
trnA J 5834–5897 64 - - 1
trnR J 5898–5961 64 - - 0
trnN J 5962–6027 66 - - 0
trnS1 J 6027–6096 70 - - −1
trnE J 6096–6160 65 - - −1
trnF N 6161–6225 65 - - 0
nad5 N 6228–7938 1711 ATG T 2
trnH N 7940–8002 63 - - 1
nad4 N 8004–9318 1315 ATG T 1

nad4L N 9314–9602 289 ATT T −5
trnT J 9605–9667 63 - - 2
trnP N 9668–9730 63 - - 0
nad6 J 9736–10,218 483 ATC TAA 5
cytb J 10,218–11,352 1135 ATG T −1
trnS2 J 11,353–11,421 69 - - 0
nad1 N 11,443–12,367 925 ATT T 21
trnL1 N 12,368–12,432 65 - - 0
rrnL N 12,437–13,707 1271 - - 4
trnV N 13,709–13,776 68 - - 1
rrnS N 13,777–14,572 796 - - 0
D-

−loop J 14,573–16,199 1627 - - 0
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Table A3. Cont.

M. harringtonae

Gene Direction Location Size (bp) Start
codon

Stop
codon INC

trnI J 1–62 62 - - 0
trnQ N 60–128 69 - - −3
trnM J 128–195 68 - - −1
nad2 J 196–1186 991 ATT T 0
trnW J 1187–1249 63 - - 0
trnC N 1249–1312 64 - - −1
trnY N 1313–1377 65 - - 0
cox1 J 1380–2913 1543 TTG T 2
trnL2 J 2914–2978 65 - - 0
cox2 J 2979–3657 679 ATA T 0
trnK J 3658–3729 72 - - 0
trnD J 3730–3792 63 - - 0
atp8 J 3793–3948 156 ATT TAA 0
atp6 J 3942–4607 666 ATG TAA −7
cox3 J 4607–5390 784 ATG T −1
trnG J 5391–5456 66 - - 0
nad3 J 5457–5810 354 ATT TAG 0
trnA J 5810–5871 62 - - −1
trnR J 5872–5935 64 - - 0
trnN J 5939–6005 66 - - 3
trnS1 J 6005–6073 69 - - −1
trnE J 6073–6136 64 - - −1
trnF N 6137–6201 65 - - 0
nad5 N 6199–7870 1672 ATT T −3
trnH N 7910–7972 63 - - 39
nad4 N 8044–9358 1315 ATG T 71

nad4L N 9352–9630 279 ATT TAA −7
trnT J 9633–9694 62 - - 2
trnP N 9695–9757 63 - - 0
nad6 J 9759–10,232 474 ATA TAA 1
cytb J 10,232–11,363 1132 ATG T −1
trnS2 J 11,364–11,433 70 - - 0
nad1 N 11,450–12,370 921 ATA T 16
trnL1 N 12,371–12,435 65 - - 0
rrnL N 12,436–13,684 1249 - - 4
trnV N 13,686–13,753 68 - - 1
rrnS N 13,756–14,542 787 - - 2
D-

−loop J 14,543–15,314 772 - - 0

H. bipunctatus

Gene Direction Location Size (bp) Start
codon

Stop
codon INC

trnI J 1–65 65 - - 0
trnQ N 63–131 69 - - −3
trnM J 131–198 68 - - −1
nad2 J 199–1201 1003 ATG T 0
trnW J 1202–1269 68 - - 0
trnC N 1262–1324 63 - - −8
trnY N 1325–1386 62 - - 0
cox1 J 1424–2921 1498 ATT T 37
trnL2 J 2922–2986 65 - - 0
cox2 J 2987–3665 679 ATC T 0
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Table A3. Cont.

H. bipunctatus

Gene Direction Location Size (bp) Start
codon

Stop
codon INC

trnK J 3666–3739 74 - - 0
trnD J 3741–3803 63 - - 1
atp8 J 3804–3962 159 ATC TAA 0
atp6 J 3956–4627 672 ATG TAA −7
cox3 J 4627–5413 787 ATG T −1
trnG J 5414–5474 61 - - 0
nad3 J 5475–5826 352 ATT T 0
trnA J 5828–5889 62 - - 1
trnR J 5895–5958 64 - - 5
trnN J 5959–6025 67 - - 0
trnS1 J 6025–6093 69 - - −1
trnE J 6093–6155 63 - - −1
trnF N 6165–6231 67 - - 9
nad5 N 6238–7948 1711 ATG T 6
trnH N 7950–8015 66 - - 1
nad4 N 8019–9333 1315 ATG T 3

nad4L N 9329–9614 286 ATT T −5
trnT J 9617–9679 63 - - 2
trnP N 9680–9742 63 - - 0
nad6 J 9746–10,237 492 ATG TAA 5
cytb J 10,237–11,368 1132 ATG T −1
trnS2 J 11,369–11,437 69 - - 0
nad1 N 11,459–12,382 924 ATC T 21
trnL1 N 12,383–12,449 67 - - 0
rrnL N 12,456–13,718 1263 - - 6
trnV N 13,719–13,786 68 - - 1
rrnS N 13,787–14,568 782 - - 0
D-

−loop J 14,569–16,706 2138 - - 0

Note: “J” means majority strand, and “N” means minority strand. Positive sign indicates the interval in base pairs
between genes, and the negative sign indicates overlapping base pairs between genes.

Table A4. Base composition of three mitochondrial whole genomes.

N. meleagris

Size (bp) T C A G A + T% G + C% AT Skew GC Skew

Genome 16,199 30.90 16.40 42.10 10.60 73.00 27.00 0.153 −0.215
PCGs 11,008 40.80 13.30 32.10 13.90 72.90 27.10 −0.119 0.022
rRNA 2067 45.30 8.30 30.70 15.80 76.00 24.00 −0.192 0.276
tRNAs 1449 37.40 10.10 38.80 13.70 76.20 23.80 0.018 0.151
Control
region 1627 29.70 21.80 37.60 11.00 67.20 32.80 0.117 −0.329

M. harringtonae

Size (bp) T C A G A + T% G + C% AT skew GC skew

Genome 15,314 31.80 15.30 42.60 10.30 74.50 25.50 0.145 −0.195
PCGs 10,957 41.20 13.70 31.80 13.20 73.00 27.00 −0.129 −0.019
rRNA 2036 46.80 8.10 31.60 13.60 78.40 21.60 −0.194 0.253
tRNAs 1439 39.50 9.30 37.70 13.50 77.20 22.80 −0.023 0.184
Control
region 772 35.50 12.30 43.80 8.40 79.30 20.70 0.105 −0.188

H. bipunctatus

Size (bp) T C A G A+T% G+C% AT skew GC skew

Genome 16,706 32.40 15.00 41.10 11.60 73.40 26.60 0.118 −0.128
PCGs 11,010 41.80 12.90 31.70 13.60 73.50 26.50 −0.137 0.026
rRNA 2045 46.40 8.60 31.40 13.60 77.80 22.20 −0.193 0.225
tRNAs 1446 37.30 10.50 36.80 15.40 74.10 25.90 −0.007 0.189
Control
region 2138 30.80 19.70 37.60 11.90 68.40 31.60 0.099 −0.247
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