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Abstract

We construct a hierarchy of semantics by successive abstract interpretations. Start-
ing from a maximal trace semantics of a transition system, we derive a big-step
semantics, termination and nontermination semantics, natural, demoniac and an-
gelic relational semantics and equivalent nondeterministic denotational semantics,
D. Scott’s deterministic denotational semantics, generalized/conservative/liberal
predicate transformer semantics, generalized /total/partial correctness axiomatic se-
mantics and corresponding proof methods. All semantics are presented in uni-
form fixpoint form and the correspondence between these semantics are established
through composable Galois connection.

1 Introduction

The main idea of abstract interpretation is that program static analyzers ef-
fectively compute an approximation of the program semantics so that the
specification of program analyzers should be formally derivable from the spec-
ification of the semantics [8]. The approximation process which is involved in
this derivation has been formalized using Galois connections and/or widening
narrowing operators [9]. The question of choosing which semantics one should
start from in this calculation based development of the analyzer is not obvi-
ous: originally developed for small-step operational and predicate transformer
semantics [11], the Galois connection based abstract interpretation theory was
later extended to cope in the same way with denotational semantics [14]. In
order to make the theory of abstract interpretation independent of the initial
choice of the semantics we show in this paper that the specifications of these
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semantics can themselves be developed by the same Galois connection based
calculation process. It follows that the initial choice is no longer a burden,
since the initial semantics can later be refined or abstracted exactly with-
out calling into question the soundness (and may be the completeness) of the
previous semantic abstractions.

2 Abstraction of Fixpoint Semantics

2.1 Fizpoint Semantics

A fizpoint semantic specification is a pair (D, F') where the semantic domain
(D, C, L, U)is a poset with partial order C, infimum L and partially defined
least upper bound (lub) Ll and the semantic transformer F € D = D is
a total monotone map from D to D assumed to be such that the transfinite
iterates of F' from L, thatis FO= 1, 5+ = F(F?) for successor ordinals §41

and F* = 5|_IA F% for limit ordinals ) are well-defined (e.g. when (D, C, L, LI)
<

is a directed-complete partial order or DCPO [1]). By monotony, these iterates
form an increasing chain, hence reach a fixpoint so that the iteration order

can be defined as the least ordinal e such that F'(F) = F. This specifies the

fizpoint semantics S as the C-least fixpoint S = lfpg F = F° of F. We prefer
semantic specifications in fixpoint form which directly leads to proof methods
using D. Park [32] or D. Scott [17] induction and to iterative program analysis
algorithms by fixpoint approximation [9]. Other presentations, in particular
in rule-based form, are equivalent [15].

2.2 Fizpoint Semantics Approzimation

In abstract interpretation, the concrete semantics S* is approximated by a
(usually computable) abstract semantics S* via an abstraction function o €
D% —— D" such that a(S%) CF S* 1. The abstraction is ezact if a(S*) = S*
and approzimate if o(S%) C* S*. To derive S* from S* by abstraction or S* from
S* by refinement, we can use the following fixpoint approximation theorems
(as usual, we call a function f Scott-continuous, written f: D "= E, if it is
monotone and preserves the lub of any directed subset A of D [1]):

Theorem 2.1 (S. Kleene fixpoint approximation) Let ((D* C*, 1% [I%),
F®) and ((D*, T L5 U, F'Y) be concrete and abstract fixpoint semantic specifi-

cations. If the L-strict Scott-continuous abstraction function o € D" —s D
is such that for all x € D* such that x C% F'*(x) there exists y T x such that

b
a(FH(2)) C* Fi(al(y)) then a(ifpS &) C* IS P,
Proof. Let F*° and F*°, § € O be the respective ordinal-termed C-increas-

ing ultimately stationary chains of transfinite iterates of F* and F'* [10]. We
have a(F') = a(1%) = 1* = F* by strictness of o and definition of the

! More generally, we look for an abstract semantics S* such that a(S") <* S* for the
approximation partial ordering =<' corresponding to logical implication which may differ
from the computational partial orderings C used to define least fixpoints [14].
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iterates. Assume oz(F”S) C* F*° by induction hypothesis. We have F® Ct
F”(F”é) = F®*! 4o that, by hypothesis, Jy C* F* such that oz(F”5+1) C#
F'(a(y)). By monotony of F'* and o, Fi(a(y)) C°* F”(oz(F”é)) whence by
transitivity, induction hypothesis, monotony of F* and definition of the it-
erates, oz(F”5+1) Ct F”(oz(F”é)) Ct F”(F”é) — F**!' Given a limit ordinal
A, assume oz(F”S) Ct F* for all § < A. Then by definition of the iter-
ates, continuity of «, induction hypothesis and definition of lubs, oz(F”A) =
oz(él_<|”A F”é) = 5|_<I”Aoz(F”5) C? 5|_|<‘; F¥ = F*. By transfinite induction, we con-

clude V6 € O : oz(F”S) C! F*9. Let ¢ and ¢ be the iteration orders such that
P = 11pF 5 and P = 165 5,

In particular oz(lfpEh F*) = a(F*) = a(F”maX{E’E/}) o pemaxtedt — e
IfpS Fi, =

Theorem 2.2 (A. Tarski fixpoint approximation) Let (D", F*) and (D?,
F*) be concrete and abstract fixpoint semantic specifications such that (D",
Co, L5 T8 WA M%) and (Df, T LF TH WA M) are complete lattices. If the
monotone abstraction function o € D'+~ D' is such that for all y € D!
such that F*'(y) C' y there exists ¥ € D" such that a(x) C'y and F'(x) C* 2

ch ct
then a(1fp~ F%) C*Ifp~ FY

Proof. By A. Tarski’s fixpoint theorem [39], monotony of «, hypothesis and
b
definition of greatest lower bounds (glb), we have oz(lfpE F*) = oMy |
]
Fi(z) T o)) CF N¥{a(z) | F4z) CF 2} T My | Fi(y) Ty} = Ifp- F5. O

2.3  Fizpoint Semantics Transfer

When the abstraction must be exact, that is a(S*) = S* we can use the
following fixpoint transfer theorem, which provide guidelines for designing S*
from S* (or dually) in fixpoint form [11, theorem 7.1.0.4(3)], [16, lemma 4.3],
[2, fact 2.3]:

Theorem 2.3 (S. Kleene fixpoint transfer) Let (D', %) and (D', F'")
be concrete and abstract fixpoint semantic specifications. If the L-strict Scott-

. . . L, . .
continuous abstraction function o € Db —= D* satisfies the commutation

b ]
condition F'o v = v o F'* then oz(lfpE F* = lfpg F*. Moreover the respective
iterates F*° and F*°*, § € © of F* and F* from 1* and 1* satisfy V§ € O:
oz(F”S) = F* and the iteration order of F* is less than or equal to that of F*.

Proof. Let F* and F*°, § € O be the respective ordinal-termed C-increas-
ing ultimately stationary chains of transfinite iterates of F'* and F*. We have
a(F°) = a(1%) = 1* = F'° by strictness of a and definition of the iterates.
Assume oz(F”S) = F* by induction hypothesis. By definition of the iter-
ates, commutation condition and induction hypothesis, we have oz(F”5+1) =
a(F”(F”é)) = F”(oz(F”é)) = F”(F”é) — ¥+ Given a limit ordinal \, assume
oz(F”S) = F* for all § < . Then by definition of the iterates, continuity of o
and induction hypothesis, o F*") = o( LI F”é) = L oz(F”S) = Ut Y=
S<A <A <A
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By transfinite induction, we conclude Vé € O : oz(F”S) — F*. In particular
i ’ ’ / i

oz(lfpE F%) = a(F") = a(F”maX{E’E}) = pumax{ed} — e — lfpE F'* where ¢

and ¢’ are the respective iteration orders. F' is a fixpoint of F'* so that by

the correspondence between iterates and the commutation condition, we have

FHFY) = Fa(F*)) = o FY(F™)) = a(F*) = F* proving that ¢ <e. O

Observe that in theorem 2.3 (as well as in theorem 2.1), Scott-continuity
of the abstraction function « is a too strong hypothesis since we only use the
fact that a preserves the lub of the iterates of F" starting from 1% When this

is not the case, but « preserves glhs, we can use:

Theorem 2.4 (A. Tarski fixpoint transfer) Let (D%, F") and (D', F'")

be concrete and abstract fixpoint semantic specifications such that (D", C*,

L5 TE UE M8 and (DY, CF L5 TH WS T19) are complete lattices. If the ab-

straction function a € D* ——s D' is a complete M-morphism satisfying the

commutation inequality F* o o C' « o F" and the post-fixpoint correspon-

dence Yy € D' : ' (y) C' y = Jo € D" : a(a) = y A F'(x) CF x then
]

b
a(lfp- F%) =1fp- F*,

Proof. If F¥(x) C* x then a o F*(x) C* a(x) since o is monotone whence
F' o a(x) C% a(x) by the commutation inequality. Together with the post-
fixpoint correspondence, this implies {a(2) | F*(z) C* 2} = {y | F'(y) C" y}.
By A. Tarski’s fixpoint theorem [39] and meet preservation, it follows that
b
a(ifp™ F¥) = a(Mi{z | Fi(x) T 2}) = M{a(z) | Fi(z) C° 2} = Ny |
i
Fi(y) Ty} = Ifp~ F*, O

2.4  Semantics Abstraction

An important particular case of abstraction function o € D% —— D* is when

a preserves existing lubs oz('l_li r;) = 'I_Iioz(:zji). In this case there exists a
S S

unique map v € D' —— D* (so-called the concretization function [9]) such
that the pair (a, v) is a Galois connection, written:
(D, £ == (D", ) |

which means that (D", CF) and (D', C*) are posets, a € D" —— D' ~ €
DV —— D' and Vo € D" : Vy € D' : a(z) C'y < o C" y(y). If o is
surjective (resp. injective, bijective) then we have a Galois insertion written
ﬁ (resp. embedding* written ﬁ, bijection written ﬁ) The use of
Galois connections in abstract interpretation was motivated by the fact that
a(x) is the best possible approximation of x € D' within D* [9,11].

Example 2.5 (Subset abstraction) If D%is aset and D* C D" then (p(D"?),
C) =5 (p(D*), C) where a(X) 2 X N D! and 7(Y) 2 X U =D (where the

complement of ECDis =€ = {z €D |z ¢ EY). O

2 If o and v are Scott-continuous then this is an embedding-projection pair.
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Example 2.6 (Elementwise set abstraction) If @ € D" —— D' the
abstraction function o € p(D*) —— p(D*) is defined by a(X) = {e(z) |
x € X} and the concretization function v € o(D*) —— ©(D?) is defined by
1(Y) £ {z | 0(x) € Y} then (p(D"), C) == (p(D*), C). Morcover, if @ is
surjective then so is a. O

We often use the fact that Galois connections compose®. If (D", C") N:}l

aq

(D!, T and (D*, C¥) == (D*, C*) then (D’, C*) $——— (D!, C*).

Example 2.7 (Elementwise subset abstraction) If § C D" and @ €
S —— D' then by composition of examples 2.5 and 2.6, we get (p(D"),

<) % (p(D?), C) where a(X) = {e(z) |z € X NS} and v = {z | e(z) €
Y}Iu-=S. 0

Finally, to reason by duality, observe that the dual of (D, CF) i (D*,
C*) is (D?, 2% &= (D*, 3%,
Y

2.5 Fizpoint Semantics Fusion

The joint of two disjoint powerset fixpoint semantics can be expressed in
fixpoint form, trivially as follows:

Theorem 2.8 (Fixpoint fusion) Let D*, D“ be a partition of D> and
(p(D*), F*) and (p(D®, F“) be fixpoint semantic specifications. Partially
define:

X+ 2 XD+, 12 1+ U Lo,
X“ = XnDe, T2 THUTe,
F>(X) = FHX+)U F(X*), U~ X; = Ut X+ UL X,
1EA 1EA 1EA
XC¥Y 2 XHEFYHAXCUYe, pmey, 20 Xtune X© .
1EA 1EA 1EA

If {p(D*), CF) and (p(D*), C¥) are posets (respectively DCPOs, complete
lattices) then so is (p(D>), °=). If F* and F*“ are monotone (resp. Scotl-

continuous, a complete LI-morphism) then so is F'>. In all cases, lfpE F~ =

IS P+ U IS e,

2.6 Fizpoint Iterates Reordering

For some fixpoint semantic specifications (D, F') the fixpoint semantics =
lfpE F = lfpj F' can be characterized using several different orderings C, <,
etc. on the semantic domain D, in which case the iterates are the same but
just ordered differently:

~
3 contrary to Galois’s original definition corresponding to the semi-dual {D#, C¥) &= (D",
(o4

).



Theorem 2.9 (Fixpoint iterates reordering) Let ((D,C, L, L), F) be a
fixpoint semantic specification (the iterates of F, i.e. F*= 1, F*' = F(F?)
for successor ordinals § + 1 and F* = 5|ZIA F? for limit ordinals X, being well-
defined). Let E be a set and < be a binary relation on F, such that:

(i) < is a pre-order on I;
(ii) all iterates F°, § € O of I belong to E;
(iii) L is the <-infimum of F;

(iv) the restriction F|, of F' to E is <-monotone;

)
)
)
(v) forallz € E, if X is a limit ordinal and W6 < X : F* < x then || F® < .
§<A

Then Ifp- F =1fp> F|, € E.

Proof. Let ¢ be the order of the iterates of F'. By (ii), F* € E whence
F| (F°) = F(F*) = F° is a fixpoint of F|.

Let © € E be another fixpoint of F|.. By (ii) and (iii), F* = L < =.
If % < 2 by induction hypothesis then by (ii) and (iv), F**' = F(F°
F|E(F5) = F|.(z) = z. By induction hypothesis and (v), F* < 2 for limit
ordinals X. By transfinite induction, V6 € @ : F° < z so lfpf F=F<g 0O

~—

3 Transition/Small-Step Operational Semantics

The transition/small-step operational semantics of a programming language
associates a discrete transition system to each program of the language that is
a pair (X, 7) where ¥ is a (non-empty) set of states* , 7 C ¥ x ¥ is the binary
transition relation between a state and its possible successors. We write s 7 &/
or 7(s,8") for (s, ') € 7 using the isomorphism p(¥X x ¥) ~ (¥ x ¥) —— B
where B = {tt, ff} is the set of booleans. ¥ = {s € ¥ |Vs' € X : =(s 7 &)} is
the set of final/blocking states.

4 Finite and Infinite Sequences

Computations are modeled using traces that is maximal finite and infinite
sequences of states such that two consecutive states in a sequence are in the
transition relation.

4.1 Sequences

Let A be a non-empty alphabet. A% = {€} where € is the empty sequence.
When n > 0, A" = [0, n — 1] —— A is the set of finite sequences o =

0¢...0,-1 of length |o] 2 n € N over alphabet A. A¥ = UO A" is the set of
n>
non-empty finite sequences over A. The finite sequences are A¥ = AF U A?

while the infinite ones ¢ = 0g...0, ... ate A° = N+——3 A. The length of an

4 We could also consider actions as in process algebra [28].
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infinite sequence o € A% is |o| = w. The sequences are A% = A* U A? while

the non-empty ones are A = A¥ U A%,

4.2 Concatenation of Sequences

The concatenation o = n - £ of sequences 1, € A% has length |o| = |n| & |¢]
(where l4 @ ly = 1 + {5 when (1,0 e N, wdl = (PHw = w when [ € NU{w})
and is such that o, = i, when ¢ < |n| while oy = &}, if [n] < ¢ < |o|. Thus
if n,& € A®, n- £ is the ordinary concatenation. For all n € A%, £ € A%, one

has n-& =n. For all n € A%, €-n = n-€=rn. The concatenation extends to
sets of sequences A and B € p(A%) by A-B = {n-£|ne ANE € B

4.3 Junction of Sequences

Non-empty finite sequences n € A and ¢ € Amﬂe joinable, written n 7 £,
iff ne_y = &. Their join is then o = n =~ & € A“™" such that o, = n, when
0<n</land o/_14, =&, when 0 <n <m — 1.

Non-empty infinitary sequences n € A® of length |n| = ¢ and £ € A® of
length |£] = m (£,m € NU{w}) are joinable, written n 7 £, iff { = wor £ € N,
in which case ny_1 = &. The length of their join ¢ = n =& € A® is then |o]
=(dmc 1 (where l; &0y =1 — (5 when {4,/ € Nand w — 1 = w). Their
join ¢ = n = £ satisfies 0, = 1, when 0 < n < ¢ while oy_1y, = &, when
{<wAN0<n<mé&l. In particular, n = € = n when n € A? is infinite.

The junction of sets A and B € p(A¥) of non-empty sequences is A~ B
S €E|lneANE € BARTE} Observe that A~ (Y B:) = YA~ By
and (ZEUA A) " B= ZEUA(AZ' ~ B) but set of sequences junction is not Scott-co-
continuous on p(A®). A counter example on the alphabet A = {a} uses X =
{a*} and the C-decreasing chain Y, = {a‘ |/ € NA /> n}, n € N such that
X~ (nQNYn) = () and (nQNX ~Y,) ={a¥}.

5 Maximal Trace Semantics

The mazimal trace semantics 7% of the transition system (X, 7) is the join
7 = 75 Ur? of the infinite traces ° = {0 € ¥° | Vi € N: 0y 7 0441} and the

mazimal finite traces 7% = UOTﬁ including all sets 7% = {o € 7% | 0,y € 7}
n>

of traces of length n terminating with a final/blocking state in ¥ = {s € ¥ |
Vs' €N :a(s7s)} where 7" = {6 € 2" |Vi<n—1:0;7 oiy1} is the set of
partial execution traces of length n.

5.1  Fizpoint Finite Trace Semantics

The finite trace semantics 7 can be presented in unique fixpoint form as
follows [13, example 17] (lfpf is the C-least fixpoint of F' greater than or

equal to a, if it exists and dually, gfpf = lfpf is the C-greatest fixpoint of F
less than or equal to «a, if it exists):



Theorem 5.1 (Fixpoint finite trace semantics) 7+ = lfpf FF = gfngF ¥
D

where F¥ € o(SF) —— o(%F) defined as F¥F(X)=717U 72~ X is a complete
U- and N-morphism on the complete lattice (p(XF), C, 0, X, U, N).

Proof. The first iterates of F¥ for lfpg FJF are X0 = (), X! = F¥(X9) =
TTUr ) =rTul =77, X2 = F¥ (XYHY=r "Uri~7T = 77Ur?, ete. By recurrence,
the n-th iterate is X"= U 77 since X"t = FF(X") = 7T U i (CJ1 ) =

- n o - —
T1U'U(T2AT1):T1UUT1+1:TUUTJ:
=1 =1 7=2 =1

7

-
C+
=

F¥ is a complete
U-morphism so that by S. Kleene’s fixpoint theorem, lfpj F¥ = UNX” =
ne

n -+ - -
U Urr=Ur'=r7t,
neN =1 >0

The first iterates of F'¥ for gfp Ffare YO =% Y= F¥HYY) = rTuri-
Y7, ete. By recurrence, the n-th iterate is Y= U U 7= SF gince Y

—% .
S o e o

:F-F(Yn):TTUT (UTUT"+1 ¥ =11 UTi

=1

( 91 T ) ur?
n+1 : —5 _ . . N 9
U1 U 7 B FF s a complete N-morphism so that by S. Kleene’s dual

fixpoint theorem, gfp FF=NY"=N( O riu et - Y = uU7ri=rF
neN neN =1 ’L>0
because Vi,n € N : 77 g Y™ and for all successive states (o;, 0,41) of a finite

trace o in Y™ we have o; T 0,11 since otherwise o & Y12,
) +

neN
O

5.2 Fizpoint Infinite Trace Semantics

The infinite trace semantics 7 can be presented in C-greatest fixpoint form
as follows [13, example 20]:

Theorem 5.2 (Fixpoint infinite trace semantics) 7¢ = gfp; F? where
F? € o(2%) — o(2%) defined as F*(X) = 727X is a complete N-morphism
on the complete lattice (p(X7), D, X% 0, N, U). lfpj Fe =0.

Proof. The first iterates of ¢ for gfp F? are X0 = %% = 71~ ¥ Xt =

F“’(XO):T FIoN% = 17N ete. Byrecurrence‘v’nEN X = o -y

since X"+ = FO(X7) = 7f = X7 = of - g -y o it o we pe o
AX . 737 X is a complete N-morphism on ©(X7) so by S. Kleene dual fixpoint
theorem, gfp; FF= N X"= () NI Y N 7" ~ %% = 7% because

neN neN n>0
Vn € N: 72 C X" and for all successive states (o;, o;41) of an infinite trace o
in (] X, we have o; 7 0,41 since otherwise o & X". O

neN



5.3  Fizpoint Maximal Trace Semantics

By the fixpoint fusion theorem 2.8 and fixpoint theorems 5.1 and 5.2, the
mazximal trace semantics 7 can now be presented in two different fixpoint
forms, as follows [13, examples 21 & 28]:

Theorem 5.3 (Fixpoint maximal trace semantics) 7% = gfp;o Fe =
lfpi: F® where F® € p(X%) TN o(2®) defined as F*(X) = 17U X s
a complete U¥-morphism on the complete lattice (p(XF), C°F, 1=, T, U,
A°) with X C* Y = XF CYFAX2 D Y? XF = XNT®, T® = %f,
X°2XNL1® and L® = ¥7,

3

c

Proof. We have 7% = 7¥ U 79 lfp F¥ U lfp~ F° = lfpE F* by theorems

5.1, 5.2 and 2.8, where F(’?’(X) FHXF)UF(X?) =1 UT2“X+UT2“X“’
=7TUr? " (X¥UX?) = rTU7?~ X. Moreover, |_|4 (X)) = ]F T uri=X;

(

U U XF) U XE) = T U (UXFUN XE) = P X,

s A

By theorems 5.1, 5.2 and the dual of theorem 2.8, we also have: 7%
rFuUr® = gfngF F¥ U gfpj Fe = gfpj .
b w [ele)

O

The non-determinism of the transition system (3, 7) may be unbounded.
Observe that this does not imply absence of Scott continuity of the trans-
former F'® of the fixpoint semantics 7 lfp F®, as already observed by

[4] using program execution trees. This is not in contradiction with [2, theo-
rem 3.4] proving that there is no fully abstract continuous compositional least
fixpoint semantics that has a continuous full abstraction function. However
this is for a specific operational semantic domain only and does not apply to
all semantic domains. For example, unbounded nondeterminism is equivalent
to weak fairness and the description of fair executions can be refined into max-
imal execution traces for a transition relation including an explicit universal
scheduler.

Corollary 5.4 (Arrangement of the iterates of F'®) Let F=°, § € O be
the iterates of F'* from 1®. Their order isw and 7% = F¥ = U® =", We

nw
) Ny
have Vn < w : F*" = U 7 U 7t ~ 29,

i=1
Proof. Let F¥’ (resp. F“’S), § € O be the iterates of F'¥ (vesp. F?) from L¥
(resp. Jf’). Both have order w. By transfinite induction, V6 € O : F=*° =
F*° U F2° where for all n < w, F¥" = U 7" and F" = m ~ 3¢ as shown
by the respective proofs of theorems 5. 1 and 5.2. O

One may wonder why, following [13], we have characterized the trace se-

mantics as 7% lfp F* while 7% gfp F* is both more frequently

used in the literature (e g. [3]) and apparently snnpler. This is because 7% =

lfpf: F® may lift to further abstractions while 7% = gfpi&) F*® does not. For
9



an example, let us consider potential termination.

5.4  Potential Termination Semantics

The potential termination semantics 72 of a transition system (3, 7) provides

the set of states starting an execution which may terminate, that is 79 =

<
a?(7%) where the Galois insertion (p(X%), C%) 4—;4» (p(X), ) is defined

by a¥(X) = {og | 0 € XN Y} and v3(YV) = {0 € ¥F | 0 € Y} U X2,

In fixpoint form, we have (the left image of s € ¥ by a transition relation

T C Y xYist*(s) = {s' | &' 7 s} while for S C ¥, it is 74(5) = UST"(S) =
s€

{/|ds €S :8 7 s}):

Theorem 5.5 (Fixpoint potential termination semantics) 79 = lfpf Fe
A

where F< € (%) —— o(X) defined as FS(X) = # UT4X) is a complete
U-morphism on the complete lattice (p(%), C, 0, ¥, U, N).

Proof. We have 0¥(X) CV <= Vo € X¥: 00 €V < XF C ({0 € ©F

o0 EYIUR)NSF <= XF C (V) AX? D <= XF C (y3Y))*AX? D
<

(Y3(Y))? <= X C= 43(Y) so that (p(X®), C=) W: (p(¥), C). Moreover
ol

a?(1%®) = a?(X?%) = () so that by S. Kleene’s fixpoint transfer theorem 2.3 and

5.3, we have 79 = a3(7%) = o (lfpf: Fe) = lfpj F'2 where the commutation

condition leads to the design of the transformer F'€ as follows: a2 o F*(X) =

ad(rTUr X) = o (rHUa (12" X) = {0g | 0 € TT}U 0o | 0 € (77~ X)NXEF}

= FU{s|3s' €a(X):s7 s} = FYX) by defining FI(X) = 7 Ur4X).0

In general 79 gfpg F<2 (so that a? is not co-continuous). A counter-
P
example is given by ¥ = {a}, 7 = {(a, a)} so that + = () and 79 = () while
gfpi F2 = {a}. Hence o transfers lfpf: F* but not gfpi&) =,

6 The Maximal Trace Semantics as a Refinement of the
Transition Semantics

The trace semantics is a refinement of the transition/small-step operational

r

semantics by the Galois insertion (p(¥%), C) L—» (p(X x X)), C) where

the abstraction collects possible transitions o™ (T) = {(s, s') | Jo € ¥¥ :
Jdo’ € ¥% 1 035" - o' € T} while the concretization builds maximal execution
traces 47(t) = t*. In general T C ~7(a”(T)) as shown by the set of fair
traces T' = {a"b | n € N} for which o (T) = {(a, a),{a, b)} and v (a"(T)) =
{a"b|n € N} U {a*} is unfair for b.
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7 Relational Semantics

The relational semantics associates an input-output relation to a program [29],
possibly using D. Scott’s bottom L & ¥ to denote non-termination [26]. Tt is
an abstraction of the maximal trace semantics where intermediate computa-
tion states are ignored.

7.1  Finite/Angelic Relational Semantics

The finite/angelic relational semantics (also called big-step operational se-

mantics by G. Plotkin [35], natural semantics by G. Kahn [25], relational

semantics by R. Milner & M. Tofte [29] and evaluation semantics by A. Pitts
+

[34]) is 7+ = a* (7F) where the Galois insertion (p(X¥), C) W:Jr (p(X x ),

C) is defined by a*(X) = {e*(0) | 0 € X} and 4*(V) = {5 | @*(s) € Y}
where @ € ¥ —— (¥ x X) is @ (o) = (00, 0,_y), for all 0 € £, n € N.
Using S. Kleene fixpoint transfer 2.3 and theorem 5.1, we can express 7F in
fixpoint form (7 = {(s, s) | s € 7} is the set of final/blocking state pairs):

Theorem 7.1 (Fixpoint finite/angelic relational semantics) 7+ = lfpf F*
VAN

where F* € o(5 x X)) —— (% x X) defined as F*(X) = 7UT o X is a
complete U-morphism on the complete lattice (p(X x %), C, 0, ¥ x ¥, U, N).

Proof. By S. Kleene fixpoint transfer theorem 2.3, using the Galois insertion
of example 2.6 and a* o FF(X) = {e*(z) |z € TTUTT~ X} = {(s, s) | Vs’ €
Yia(sT ) U{(s,001) |n>0Ac €X"AsTogAoc € X} =TUT oa*(X)
= F'* o a*(X) by defining F*(X) =7 U7t o X where 7 = {(s, s) | s € 7}. O

Observe that A. Tarski fixpoint transfer theorem 2.4 is not applicable since
at is a N-morphism but not co-continuous hence not a complete N-morphism.
A counter example is given by the C-decreasing chain X* = {a"b | n >

+ kY _ : k _
k},k > 0 such that kgooz (X7) = kgo{<a, b)} = {(a, b)} while onX =0

since a”b € kﬂ X% for n > 0 is in contradiction with a"b ¢ X"*! so that
>0

a*( 0, XF) = a*(0) = 0.

7.2 Infinite Relational Semantics

The infinite relational semantics is 7% = a“(7?) where the Galois insertion

(p(X%), ©) % (p(X x {L}), €) is defined by a*(X) 2 {e“(0) | 0 € X}

and v*(Y) = {0 | @*(c) € Y} where ¢ € ¥% —— (X x {L}) is €*(c) = (00,
1),

By the Galois connection, a* is a complete U-morphism. It is a N-morphism
but not co-continuous. A counter-example is given by the C-decreasing chain

k é npw > w ky — —
X {a"b¥ | n > k}, k > 0 such that kgooz (X7) kgo{<a, L} = {{a,

1)} while 0 X% = () since a"b* € i X* for n > 0 is in contradiction with
>0 >0

11



® 392 832

® S33

Fig. 1. Transition system with unbounded nondeterminism
a™b & X"t whence oz“’(kﬂ X*®) = a“(0) = 0. Using A. Tarski fixpoint trans-
>0

fer theorem 2.4 and theorem 5.2, we get:

Theorem 7.2 (Fixpoint infinite relational semantics) 7¢ = gfpixu} ¢

where F* € (X x {1}) —— (2 x {L}) defined as F*(X) =70 X is a
C-monotone map on the complete lattice (p(X x {L}), C, 0, ¥ x {L}, U, N).

Proof. By the Galois connection, a“ is a complete U-morphism. To design
Fe, we have a® o F9(X) = o*(r?~ X) ={e(n &) [n e P NEE X A7 &}
={(no, L) |noméNEEXT={(s, L) |Ts" 157N, L)€ av(X)} =
Toa*(X) = F¥ o a“(X) by defining F*(X) =710 X.

We have to prove that VY € p(X x {L1}): F*(Y) 2 YV = JX € ¥ :
a“(X)=YAFH(X)DX. Welet X = {s€7|VieN: (o L)€V}

To prove that Y C a“(X), observe (a) that Y C F(Y) =7 o Y = {(s,
1)y |3s' s 78" A(s, L) € Y} Henceif og...0, is such that o; 7 0,44, 1 <n
and (o;, 1) € Y, 1 < n then (0,, L) € YV and (a) imply Jo,41: 00 T 0np1
A {opt1, L) € Y. So, by induction, we can built o € 7¢ such that Vi € N:
(0;, L) € Y. We have 0 € X and (09, L) € a“(X) proving that Y C a“(X).
Moreover a“(X) C Y is obvious since o € X implies (og, L) € YV proving that
a“(X) =Y by antisymmetry.

To prove that F“(X) O X observe that F*(X) D X &= X C 72~ X
& Vo € X : 0p 7 0y A 02! € X where the suffix 02! is 5 such that
Vi € N:n, = 0;41. 09 7 op holds since X C 7%, n € 7 and Vi € N : (;,
1) = (o4, 1) € Y proving that n = 02! € X.

We conclude by the dual of A. Tarski’s fixpoint transfer theorem 2.4. O

In general F'“ is not co-continuous, as shown by the following example
. c o
where the iterates for gfpgxu} F“ do not stabilize at w.

Example 7.3 (Unbounded nondeterminism) Let us consider the tran-
sition system (X, 7) of figure 1 such that ¥ = {s}U{s;; | 7,7 € NAO < 5 <}
(where s # s;; # sk wheneveri # kor j # () and 7 = {(s, si0) | 1 € N}U{(s;,
sigan) 1 0< < 7} [40].

12



The iterates of F“(X) =170 X are X = {(s, 1)} U{(s;;, L) |0<j<i},
X' = F(X%) ={(s, L)} U{(s;;, L) |1 <j <i} so that by recurrence X" =
{(s, L)} U{(ss;, L) | n <7 <1} whence X¥ = ONX” = {(s, 1)}. Now X«+!

ne
= Fo(X¥) =0 =gfp-  Fv =1~ 0

o x{L}

It follows that S. Kleene fixpoint transfer theorem 2.3 is not applicable to
prove theorem 7.2 since otherwise the convergence of the iterates of I’ would
be as fast as those of F°, hence would be stable at w.

7.3  Inevitable Termination Semantics

The possibly nonterminating executions could alternatively have been charac-
terized using the isomorphic inevitable termination semantics providing the
set of states starting an execution which must terminate, that is 79 = a(7¢)

<
where the Galois bijection (p(X x {L}), C) W«—_q»_ (p(X), D) is defined by

a?(X) = {s | {s, L) & X} and y2(Y) = {{s, L) | s ¢ V}.

The right image of s € ¥ by a relation 7 C X x X is 7%(s) = {s' | s 7 &'}
(in particular if f € ¥ —— X' then f*(s) = {f(s)}) while for P C %, 7*>(P)
={s" | 3s € P : s 7 §'} (in particular, f>(P) = {f(s) | s € P}). The
inverse of T is 77" = {(s', s) | s 7 &'} so that 7* = (77)® and 74 = (77')".
The dual of a map F € p(X) —— p(X') is F 2 \P. = F(=P). Finally,
7-*(P) = {s' |Vs: s s =>s € P}. Applying the semi-dual of S. Kleene
fixpoint transfer theorem 2.3 to the fixpoint characterization 7.2 of the infinite
relational semantics 7, we get the

Theorem 7.4 (Fixpoint inevitable termination semantics) 79 = lfpf F<
A

where F9 € p(X) —— o(X) defined as FI(X) = 7:;(X) =7 UTA—;(X) is
a complete U-morphism on the complete lattice (p(X), C, @, ¥, U, N).

Proof. a< is bottom strict since a?((X, {L1})) = . a< is continuous by
<

(0[S % {1}), €) £ (p(%), D). Finally, we have a o F=(X) = {s | {s,
<

1) groXh={s[ (s, 1) & {(s,5") | 35 (s, 5) € TA(, &) € X}}
{s | Vs':s71 s = (s, L}EXL/:{S|‘v’5’:5,13’:>3’€oz<‘(X)}
F< o a9(X) by defining F9(X) = 7-*(X) = # Ur-(X).

o

7.4 Natural Relational Semantics

We now mix together the descriptions of the finite and infinite executions of
a transition system (3, 7). The natural relational semantics 7 = ure
is the fusion of the finite relational semantics 7t and the infinite relational
semantics 7¢. It is more traditional [5,33] to consider the product of the
finite relational semantics 7+ and the inevitable termination semantics 7.
The reason for preferring the infinite relational semantics to the inevitable
termination semantics 7.4 is that the fixpoint characterizations 7.1 of 7+ and
7.2 of ¢ fuse naturally by the fixpoint fusion theorem 2.8. This leads to a

13



simple fixpoint characterization of the natural relational semantics using the
mized ordering T first introduced in [13, proposition 25]:

Theorem 7.5 (Fixpoint natural relational semantics) 7 = lfpi: F
A

where F* € (5 x N1) —— (% x N)) defined as F*(X) 2 7U7T o X is
a C*-monotone map on the complete lattice (p(X x ¥1), &=, L, T, U*,
M=) with S, =D U{Ll}, XC*Y = X*CY+AX“DYY Xt =XNT>,
T*=NxY. X“=XNL1* and L =3 x {1},

2

Proof. 7 = 7+Ur* = IfpS F+Ulip._ | F* = Ifp5. F=. 0

T x{L}

A

By defining o> (X) = a*(X*) U a®(X*), we have 7 = a™(7%). Neither
S. Kleene fixpoint transfer theorem 2.3 nor A. Tarski fixpoint transfer theo-
rem 2.4 is directly applicable to derive that 7> = a* (lfpf: F) = lfpi: Fe.
Observe however that we proceeded by fusion of independent parts, using a*
to transfer the finitary part 7% by S. Kleene fixpoint transfer theorem 2.3 (but
A. Tarski’s one was not applicable) and the infinitary part 7% by A. Tarski
fixpoint transfer theorem 2.4 (but S. Kleene’s one was not applicable).

To prove that the iterates of F'* are ordered according to Egli-Milner
ordering, we will use the following:

Lemma 7.6 (Arrangement of the iterates of F~) Let F>° § € O be
the iterates of F*> = AX+7UT o X from L>. Foralln <€ Q, s, € X, if
(5, ') € F=% and (s, s') € F>" then (s, L) € ™",

Proof. By transfinite induction on £ > 0.

The lemma is true for ¢ = 1 since for n = 0 we have F>=" = 1=~ =¥ x { 1}.

We have F*' =7 U7 o F~° F~° § € O is a C*-increasing chain so that
(F~%)", § € O is a C-increasing chain and V& € Q: (F*~*)" C F*° proving
that V6 € O : 7 C F'~°.

Assume that the lemma holds for all ¢’ < ¢ and ¢ is a limit ordinal. Assume

n < & (s, s) € F¢ and (s, s') ¢ F>~". We have F>* = é_I‘X;F"Og/ hence
<

(F“£)+ = gUg(F"Og/)Jr so that (s, s') € F~¢ implies the existence of & < ¢
<

such that (s, s) € (F®£/)+ C F~¢. But (F“5)+, 6 € O is a C-increasing
chain, so that (s, ') & F'>" implies n < £'. It follows by induction hypothesis
that (s, L) € F>".

Assume now that ¢ = ¢ + 1 is a successor ordinal, n < ¢, (s, ') € F>¢
and (s, §') & F>".

LIf (s, L) € F=¢ then (F>~%), § € O is a C-decreasing chain so that
n < & implies (s, 1) € F>".

IL If (s, L) & F~¢ then F~¢ = ¢+l = peo(pet’y — 7 U7 o F*¢ g0
that (s, ') € 7o F>~¢ since 7 C F>=" which implies the existence of s” € ¥
such that s 7 s” and (s”, §') € F=t

IL1. If (s", ') & F'>" then by induction hypothesis (s”, 1) € F>~" so
that (s, 1) € F="! proving (s, L) € F*" since F*°, § € O is C™-increasing
whence (F>=°)°, § € 0 is C-decreasing.
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1.2, Tf (5", §') € F>" then (s, §') € F>"",

I.2.A. If np < &, n+1 < ¢ so that, by induction hypothesis, (s, s') € F=t!
and (s, &) & F>" imply (s, L) € F'>".

I1.2.B. Otherwise n = ¢'.

I1.2.B.a. If n = £ is a successor ordinal with predecessor ¢’ — 1 then we
have (s”, &') & F>~¢=1 gince otherwise s 7 s” and (8", &) € F=¢~1 would
imply (s, s') € F=¢ in contradiction with (s, s’y & F~" and n = ¢'. But
(8", &) € =" = F= 5o (s", sy & F=¢=" and ¢ < ¢ imply, by induction
hypothesis, that (s”, L) € F>¢ hence (s", 1) € F¢~' Then s 7 s” implies
(s, 1) € oot = freen,

I1.2.B.b. If p = ¢ is a limit ordinal then we have (s, s') ¢ F>¢ for
all ( < n = ¢ since otherwise s 7 s” and (s”, ') € F>* would imply (s,
s'y € P> so (s, s') € F>~¢in contradiction with (s, &) ¢ F>*" and n = ¢'.
But (s”, §') € =" = et (5", 'Y ¢ F>¢ and ¢ < ¢ < ¢ imply, by induction
hypothesis that (s”, J_> € F>¢ so (s, L) € F=*! hence (s, 1) € F>¢ and
therefore (s, 1) € F*¢ = F~" since Ft = C|_<I°£°/F°°C. O
Lemma 7.7 (Totality of the iterates of F~) Let F><°, § € O be the
iterates oéfF"O =AX7UT0X from 1. V5 € Q:Vse X : 3 € X, : (s
sy e F°.

Proof. By transfinite induction on é € Q.

For §=0,¥s€X:(s, )€ F’=1>=%x%,.

Assume that the lemma is true for § € Q. F** ' =7 U7 o F~° Ifse 7
then (s, s) € F~"*" or 35’ € ¥ : s 7 s’ so that, by induction hypothesis, 35" €
Ny (s, 8") € F=0 proving that (s, s”) € 7o (F*%)" C (F™1)" C pedtt,

If X is a limit ordinal and the lemma is true for all § < A then either
V8 < A: (s, L) € F*% in which case (s, L) € F>=* since (F>=")" = ) (F~%)".

§<A
Otherwise, 36 < A : (s, L) & F*%_in which case, by induction hypothesis,
Js' € % : (s, ') € F*% so that (s, s') € " since (F“5)+ C (F“’A)Jr. O

Lemma 7.8 (Final states of the iterates of F>) Let F*' § ¢ O be
the iterates of F* = AX+7 U7 o X from 1. V6 € O : Vs, s € ¥ : (s,
SYEF = (s € F)A(Vs" € DL : (s, ") € F~ = 5" = ).

Proof. By transfinite induction on é € Q.

The lemma vacuously holds for § = 0 since Vs,s' € ¥ : (s, §') & F>~° =
Yox {1}

Assume that the lemma holds for § € @ and (s, s') € F=<*' = 7Ur o F>°,
If (s,5') € 7 then s’ = s € 7 hence Vs € B, : (s, §") € F**! — (s = §'A(s,
§") € 7) = (s = s’ = s"). Otherwise, 35" € ¥ : 5 7 " and (s", §') € F~°
in which case, by induction hypothesis, s’ € ¥. Moreover Vs" € ¥, : (s,
§") € P — (¢, §") € TUT o F=°, But & € 7 so (s, s") € 7 which
implies s” = ¢’

Let A be a limit ordinal such that the lemma holds for all § < A. If (s,
s') € F>* then (F"OA)+ = 5&& (F°°5)+ implies 36 < X : (s, s') € F*® whence
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s’ € 7 by induction hypothesis. Moreover, ¥s"” € ©, : (s, s") € F*' —
In < A (s, §") € F>". Let £ = max(d,n) < . We have (s, ') € F*¢ and
(s, §") € F=¢ since F*° § € © is C™-increasing whence (F“5)+, 0 €0is
C-increasing. By induction hypothesis, s” = s’ O

7.5 Demoniac Relational Semantics

The demoniac relational semantics is derived from the natural relational se-
mantics by approximating nontermination by chaos: 72 = o (1) where

o®(X) = X U {(s, 5> | (s, L) € X As' € B} and 4°(Y) = Y so that
(p(X x X)), >_8>+<D8 C) where D? = {YV € (Y x 8,) | Vs € X : (s,

1) eY = (Vs e OF (s, s') € Y)}. By definition of 77, fixpoint characteri-
zation of the natural relational semantics 7.5 and S. Kleene fixpoint transfer
theorem 2.3, we derive:

Theorem 7.9 (Fixpoint demoniac relational semantics) 7° lfp F8

where F° € D? +" D? defined as F°(X) = 7Ut o X is a £° -monotone map
on the complete lattice (D?, 2%, 12 T2 U2, M%) with X C°Y =Vs e ¥ : (s,
DeXV(s, LgYAXn({s}xD)CYn({s}x¥)), L2 =2 x%,, T?
=5 LIZXi = (s, sV | (VieA:(s, e X;Asd €DV (FieA: (s,
1€
L) & XiA(s, s') € Xi)} and IfIZXi = {(s, )| (FEA: (s, L)E X; A5 €
1€
YOVVieA:(s, L) g€ X;N (s, §) € X))}
Moreover X C° Y = 4%(X) T 4°(Y) where 4%(X) = {(s, 1) | <5 1) €
XYU{{s, ) | (5, 1) & X Afs, ') € X} so that (p(3 x £,), 3%) 5 (7,
el
7,

(o}

1]

Proof. For the Galois insertion (p(X x ¥,), C) L—» (D?, C) observe that
el

a®(X) C Y implies X U{(s, s') | (s, L) € X A& € aE} C Y hence X C~+7(Y)
and, reciprocally, X C 4?(Y) implies X U {(s, ') | (s, L) € X As’ € ¥} C
YU{(s, &) | (s, L) € XANs" € X} =Y by definition of D? hence a®(X) C Y.
This implies that o is U-preserving. Moreover D? C (¥ x ¥ ) and VX €
D? : a?(X) = X proving that o is surjective.

Assume that v°(X) = 4°(Y). For all s € X, we have (s, 1) € X iff (s,
1)y € ~5(X)iff (s, L) € 4°%(Y)iff (s, L) € Y. Soif (s, L) € X then (s, L) €Y
whence by definition of D?, (s, §') € X and (s, §') € YV for all s’ € ¥ ,.
Moreover if (s, L) & X then (s, L) € Y so that 4y°(X) = ~°(Y) implies {(s,
Y| (s, 8"y € X} ={(s, &) | (s, &) € Y}. It follows that X =Y proving that
~% is injective.

It follows that the relation defined by X C° YV = ’y °(X) C* ~%(Y) on
D? is a partial order. We have 7°(X) C>* 4°(Y) = (/°(X) N (¥ x ¥) C
A x D) AT X)A(E (1) 27N (S x (1) = ({65, ) | s
1 ¢ X Afs ) € XEC (s o) | (5 1) €V Afs, ) € YD) A ({(s,
Ly (s, L) e X} O {{s, L) | (s, L) eY})=Vse X: (s, L)€eXV((s,
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LEYAXN{sxE)TYNn({s}xX)).

By definition, 4° is monotone.

We have 7% o a?(X) = 4%(X U {(s, &) | (s, L) € X A € ¥}) = {{(s,
Doy 1) € XU{{s, ) | {5, 1) € X A5 €S} U (s, &) | {5, 1) & XU {(s,
Y| (s, L) e XA eX}A(s, ) e XU{(s,d)|(s, L)eE XN €X}} =
fo 1) [ s, 1) € XYU{(s, &) | (5, 1) & X A (s, o) € X

If follows that X N (X xX) D4 ca?(X)N(E¥ x X)and X N (X x{L}) =
v o a?(X)N (X x {L}) proving that 4% ¢ a?(X) > X.

If X C* Y then XN (ExX) CYN(Ex3) and X N (2 x{1}) D
Y N (¥ x {L}) so that for all s € ¥, we have {(s, 1) | (s, L) € X} D {(s,
1) ] (s, L)y € Y}. Moreover (s, L) & X = (s, L) ¢ Y whence {(s, s') | <3,
L)y X A(s, sy e X C{(s, s)| (s, L) €Y A (s, §) € Y} proving that
Yo a?(X) E* 4% o a?(Y) whence o?(X) C? o?(Y). This shows that o
monotone.

a® o y?(X) = a”({(s, L) [ (s, L) € XJU{(s, ") | (s, L) & X A(s, ") € X})
=a’({(s, L) | (s, L) e XHUa?({(s, &) | (s, L) & X A (s, s') € X}) since
a? is U-preserving. This is equal to {(s, ') | (s, L) € X As' € ¥} U{{(s,
s') | (s, sy € X} = X by deﬁmtlon of D?.

{
s')

We have (p(X x X ), J%) %} (D?, J7) since a® and 4° are monotone,

o 7% is the identity on D? and ~v7 o o is J%-extensive, a characteristic
property of Galois insertions. Since (p(X x X ), T, L~ T U*, M) isa
complete lattice, it follows that (D?, C%, 17, T2, 12, M?) is also a complete
lattice.

The infimum is o®(L>) = a® (X x {L}) =¥ x 3.

The supremum is a”(T*) = a?(¥ x ¥) = ¥ x X.

The jon s U2 X: = (U= (X)) = a* (( U 1"(X) A T=)0 (447X
S S

L7)) = (Y, o® (P(X)N(E % E))) (@?(,07 (X) (X x{L}))) by definition
of U~ and since o’ is U-preserving. ThlS is equal to igA(aa({@, s | (s,
L) ¢ XA s, ) € X U (a? (A {ls. 1) 1 (s, 1) € X)) = U {ls, )1 s
Ly XN (s, 8) € X;JU{(s,s") |Vie A: (s, L) € X;As" € X} by definition

of a?.

The same way, the meet is M° X; = oza(lfIZ’ys(Xi)) ={(s,8") | (Vi e A: (s,
1€

1EA
LDEXiAN(s, e X)V(TeA: (s, L)e X;As € )}
a® is not U*-preserving. A counter example for ¥ = {a,b} is o’ ({(a,

a)yU={{a, b),(a, L)}) = a”({{a, a).(a, b)}) = {(a, a),(a, b)} whereas o’ ({(a,
a)}) U7 a”({(a, b),(a, 1)}) = {{a, )} U {(a, a),{a, b),(a, L)} = {(a, a)}.
However a? is Scott-continuous. To prove this, let X;, i < § be a C>-
increasing chain. By definition of U>*, a? is U-preserving and definition

of a?, we have aa(U°;X¢) = oza('UéXi N xX)u ﬂéXi N(X x{L1})) =
1< 1< 1<
oza( N (X x ¥) U oza(ﬂéXi N(E x{L}) = AU B where A = {(s,
1<

3’>|E|z <5 (s, 8y e Xin(E xX¥)}and B = {(s, §) | Vi < : (s,
e Xinsg eX i} Let AA={(s, s)|Fi<d: (s, L)& X, N{(s, &) e X}
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so that A C A whence A’U B C AU B. Reciprocally, if (s, s’) € A then
there exists ¢ < & such that (s, ') € X; N (¥ x X). FEither Vj < 4§ : (s,
1) € X, in which case (s, s') € BorJd7 < §: (s, L) ¢ X;. Xj, k< disa
C>~-increasing chain so that if ¢ < j then (s, §') € X, since X; N (¥ x X)),
k < § is C-increasing so that (s, ') € A’. Otherwise j < i, in which case
XeN(Xx{L}), k < éis C-decreasing so that (s, L) & X; which again implies
(s, 8"y € A'. By antisymmetry, we have AUB = A'UB = {(s, &') | 31 < §: (s,
Ly g a?(X;)A (s, 8) € a® (X)) U{(s, &) |Vi<d:(s, L)€ a?(X)ANs' € X}
since (s, L) € X; < (s, L) € a?(X;) and (s, ') € X; < (s, §') € a?(X))
whenever (s, L) ¢ X;. This is equal to i|_<|§ a?(X;) proving Scott-continuity.

By definition of F*, a?, 7 and o, we have a® o F'*(X) =a’(TUT o X) =
TUTo XU{(s, ) |(s, L)eETUT XA EX=TUTXU{(s, s)] (s,
L eToXASdeEL=TUTo XUTo{(s" &)|(s" L)e XN eEX}=
TUT o (XU{(s", )| (8", L) e XA eXH =TUTo0a?(X)=F?0a’(X)
by defining F°(X) = 7UT o X.

If X C°% Y then Vs € ¥ : (s, L) € XV ({(s, L) € Y ANXnN({s} x
) C YN ({s} x X)) which implies Vs’ € ¥ : <5, 1)y eTUT o XV ((s,
DEgTUToYATUTo X)NHIIxE)C(TUTY)N ({8} x X)) that is
F2(X)C? F?(Y) so that F° is monotone.

By definition of 772, fixpoint characterization of the natural relational se-
mantics 7.5 and S. Kleene ﬁxpomt transfer theorem 2.3, we conclude that 77

= a?(r*) = a? (lfpi: F~) = lfp Fe. O

Lemma 7.10 (Arrangement of the iterates of F°) Let F°°, 3 € O be
the iterates of F° from 1°. For alln < €, s,8' € ¥, if (s, ') € F?* and (s,
sy € F°7 thenVs' € ¥, : (s, ') € F?".

Proof. Follows from lemma 7.6 and the proof of theorem 7.9, showing by S.
Kleene fixpoint theorem 2.3 that V3 € O : F°¥ = a® (F=9). O

Lemma 7.11 (Totality of the iterates of F°) Let F°°, 3 € O be the
iterates of F° from L°. V3 € Q:Vse X :3s' € X : (s, &) € ol

Proof. Follows from lemma 7.7 and the proof of theorem 7.9, showing by S.
Kleene fixpoint theorem 2.3 that V3 € O : F?7 = o? (F>F), O

Lemma 7.12 (Final states of the iterates of F?) Let F°°, 3 € Q be
the iterates of F° from 1°. V3 € O : Vs, s € ¥ : ((s, &) € FoP A (s,
DY = (s eF)ANVs" €D : (s, s") € FP’ = 5" = ¢).

Proof. The proof of theorem 7.9 shows, by S. Kleene fixpoint theorem 2.3,
that V3 e Q: F°F = a® (F=7). Soif (s, 1) ¢ F°” then (s, §') € F°P implies
(5, ')y € F*~? by definition of a® whence s' € 7 by lemma 7.8. We have (s,
1) ¢ F°P gince otherwise (s', 1) € F>" which is impossible by lemma 7.8
since s’ # 1. So if s” € X then (s, s”) € F?7 implies (s, s") € F~" since
(s', 1) & F>~P 5o that s” = s’ by lemma 7.8. O

In order to place the demoniac relational semantics 79 in the hierarchy of
semantics, we will use the following:
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Theorem 7.13 7% = a®“(7%) where a®“(X) = X N (T x {1}).

Proof. By definition of a®“, 77, 7, a®, 7+ CEx X, L & Y and 7¢ C ¥ x {1},
we have o®“(7%) = 77N (Z X {J_}) =a?(7*) N (Z x {L}) = (rFure U{(s,
Yy (s, L)y ertureAs’ e BN (E x {L}) =7vU{(s, L) | (s, L) € ¢} =
T, g

8 Denotational Semantics

In contrast to operational semantics, denotational semantics abstracts away
from the history of computations by considering input-output functions [36].
For that purpose, given any partial order < on p(Dx &), we use the right-image

»
isomorphism: (p(D x &), <) W«__»_> (D — p(€), <) where o*(R) = R* =

Ao+ {y | (z, y) € R}, v (f) = {<3;, y) |y € flz)}and f < g="(f) <™ (9).

8.1 Nondeterministic Denotational Semantics

Our initial goal was to derive the nondeterministic denotational semantics
of [2] by abstract interpretation of the trace semantics (in a succinct form,
using transition systems instead of imperative iterative programs). Surpris-
ingly enough, we obtain new fixpoint characterizations using different partial
orderings.

8.1.1 Natural Nondeterministic Denotational Semantics

The natural nondeterministic denotational semantics is defined as the right-
image abstraction 7% = a”(7%) of the natural relational semantics 7. By the
fixpoint characterization 7.5 of 7> and S. Kleene fixpoint transfer theorem 2.3,
we derive a fixpoint characterization of the fixpoint natural nondeterministic
denotational semantics (where 7 = As+{s | Vs’ € ¥ : =(s 7 ') }):

Theorem 8. 1 (lepomt natural nondeterministic denotational seman-

tics) 7¢ = lfp Fu where Dt = % —— o(X,), F* € Dt s Dt defined as
F”(f) = 7‘ U Uf’ o 7% is a C'-monotone map on the complete lattice <D”,
IZ 1o T L |;|h> which is the pointwise extension of the complete lattice
<D“, Cf, L, e, e, M) with Dt = (X)), X C'Y 2 X+ CY*+AXY DY,
X+t=XNTy, TP=%, X = XN 18 and 15 = {1}.

Proof. The order structure of ¥ —— (X ) is chosen to be (a®, v*)-
isomorphic to the complete lattice (p(X x ¥,), T, L~ T> U, MN*) of
theorem 7.5. Therefore we have a complete lattice (¥ —— o(X ), ;h, 18 T,
L, ™% such that the infimumis 1* = o*(1%) = o*(X x {L}) = As- L* where
L 3 {1}. The supremum is T* = o*(T%) = a*(X x ) = s+ T! where
TEE2 Y.

The partial order is f ' g 2 V()= A"(g) ={(s, ') | s € f(s)NE} C
{(s,8") [ " € g(s)NTIA{(s,s") | 5" € f(s)N{L}} 2 {(s,5") | s" € g(s)N{L}} =



Vs €31 f(5)NS C g(s)NSAS()N {1} D g(s){L} = Vs € 5+ f(5) T gfs)
by defining X C*Y = X+ CY+*AX“ DY“ X+ = XNTrand X¥ = XN 1%

For the lub, we have a®(U X;) = Ua™(X;), o®(N X;) = Na*(X;), o®(X)
= XA T¢and a*(X*) = X A 1% whence a”(U*X;) = a”(UX;FUNX®) =
U (e (X)) UA (™ (X)) = UF a*(X;) pointwise, by defining LIF X; = U X;tU
B | o

We design the semantic transformer F* using the commutation require-
ment: a® o F¥(X) = a*(7UT o X) = a*(T)Ua™(7 o X) = As+{s' | (s,
sy € TIUXs{s" | (s, 8"y € 70 X} = Ase{s | Vs’ : =(s 7 s} U {s" |
ds" € ¥ s 71 7 A(S, ) € X} = Ase{s | V' @ =(s 7 )P U{s" |
I €N s T A € a*(X)(s) = F o o*(X) by defining Fi(f) =
Ase{s | Vs € ¥ =(s 7 U{s" | s € ¥ 157 NS € f(d)} =
FUX U s =F U Uds-{f(s) | s er>(s)y =% U US> or>.

If f = g then Vs € ¥ : f(s) C% g(s) that is Vs € ¥ : f(s)n¥ C
g(s)NE A f(s)Nn{L} D g(s)N{L}. By definition of F* we have F*(f)sN ¥
={s |V e€X: (st U | e :s7 N € flsYNE} C
{s|Vs'eX :ia(s7s)}U{s"|Td €N 57N €g(sd)NE} = Fi(g)sNX
and FU(fisn{L}={L|FdeX:s7dALe f(s Y N{L}} D{L]|Td €
st s NLeg)nN{L}} = F'g)sn{L} so that Vs € ¥ : F*(f)s C" F*(g)s
proving F(f) C’ F*(g) hence that F'* is monotone. O

Lemma 8.2 (Arrangement of the iterates of %) Let F*°, § € O be the
iterates of F from 1%, For alln < ¢, s,s' € X, if &' € F*(s) and s' & F*"(s)
then L € F"(s).

Proof. Follows from lemma 7.6 and the proof of theorem 8.1, showing by
S. Kleene fixpoint theorem 2.3 that V§ € O : F** = o> (F=%). O

Lemma 8.3 (Totality of the iterates of F*) Let F*°, § € O be the iterates
of F* from 1%, V6 € O : Vs € ¥ : F*(s) # 0.

Proof. Follows from lemma 7.7 and the proof of theorem 8.1, showing by
S. Kleene fixpoint theorem 2.3 that V86 € O : F* = o® (F=°). O

Lemma 8.4 (Final states of the iterates of F) Let F*°, § € O be the
iterates of F* from 1*. V6 € O :Vs,s' € ¥: (s € F”é(s) ANLd F”é(s)) ==
(s € # NF(s) = {s}).

Proof. Follows from lemma 7.8 and the proof of theorem 8.1, showing by
S. Kleene fixpoint theorem 2.3 that V§ € O : F** = o (F=°%). O

8.1.2  Convex/Plotkin Nondeterministic Denotational Semantics

Unexpectedly, the natural semantic domain D' = p(X ) with the mixed or-
dering C" differs from the usual convex/Plotkin powerdomain with Egli-Milner
ordering CPM [22] (see figure 2). Apart from the presence of (} (which can be
easily eliminated), the difference is that C™ C C* which can be useful, e.g.
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Fig. 2.

to define the semantics of the parallel or as [f or g] = Ap- [f]p U [¢] p° .
We let (¢4 7 w1 | e 7 vg | ...} w) be vy if condition ¢; holds else
vy if condition ¢y holds, etc. and w otherwise. Let us recall [2, fact 2.4]
that G. Plotkin convex powerdomain (D™, C"M "M "M} is the DCPO
{AC %, | A+# 0} with Egli-Milner ordering A C™ B = Va € A : b €
B:alCPbAVbe B:da € A:a P b based upon D. Scott flat ordering
Ve e ¥+ LEP 2 CP 2 such that AC™ B« (Le A7 A\ {L} C

B ; A= B), with infimum 1* = {1} and lub of increasing chains UEX X;
1€
= (,UAXi \{LHU{L|VieA: L e X;}. Applying the fixpoint iterates
1€
reordering theorem 2.9 to theorem 8.1, we get [2]:

Corollary 8.5 (G Plotkln fixpoint nondeterministic denotational se-

mantics) 7% = lfp F* where F' is a " -monotone map on the pointwise

extension <DEM, E LS U™ of G. Plotkin convexr powerdomain (D™,
I:EM J_EM I—lEM>.

Proof. We apply theorem 2.9 with £ = D™ = ¥ —— (2 )\ {As- 0}.

C™ s a preorder on D™,

By lemma 8.3, no iterate F*°, § € O of F* from 1% is As+ 0 .

1% = As+{1} is the infimum of (D™, ™).

If fE" gthen Vs e X : (Le F(s)? f(s)\ {L} C g(s) i f(s) = g(s))
so that we must show that Vs € ¥ : F&(f)s C™ F%(g)s <= Vs € ¥ : 7(s) U
U erm®(s) C™M #(s) U Jg> om>(s) <= Vs e X (Le U{f(s") | sT s}
DU s 7 I\ UG |57 57 2 U s 7 9} = Ula(s) |
s 7 8'}). Let us consider any s’ € ¥ such that s 7 §'. If L € f(s') then
F)\{L} Cg(s) else f(s') = g(s’) so that in both cases f(s')\ {L} C g(s').
It follows that |J{f(s") | s 7 s’} \{L} C (J{g(s') | s T s'} proving F*(f)s CFM
F*(g)sincase L € [J{f(s') | s 7 s'}. Otherwise,Vs' € ¥ :s7 s = L & f(s)
hence f(s') = g(s') so that [J{f(s") | s 7 '} = [U{g(s') | s 7 s’} and again
F*(f)s C™ F*(g)s. It follows that F* hence F*|pen is ;EM—monotonic.

In order to prove that for all ¢ € D™ if X is a limit ordinal and V§ <

5 Observe that LI is monotonic for Cf which is not in contradiction with [6] since by lemma
8.3 failure is excluded i.e. would have to be explicitly denoted by Q ¢ X.
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* EM

A FY ™ g then 5|;Ii F® ™ g, let us assume that Vs € ¥ : V6 < \ :
<

F(s) E™ g(s) that is (L € F*(s) ? F*(s)\ {1} C g(s) & F*(s) = g(s)).
We have 5|_<I”A F”é(s) = (5% F”é(s) nX)u ((QA F”é(s) N{L})

AT L e 5I_I”AF”(g(s) then Vo < A : L € F”é(s) which implies V6 < A :
<
F¥(s)\ {1} C g(s) since F¥*(s) ™ g(s). Therefore (5UA FP(s)\{L} C g(s)
<
I Al C : bopnd (N
hence (5|_<IAF (s)) \ {L} C g(s) proving 5|_<IAF (s) C g(s).
B.If L & 5|_I”A F*(s) then there exists n < A : L & F®'(s). Moreover
<

F””/(s) = ¢g(s) since F””/(S) C" g(s). Let n > 0 be the least such ' (n # 0

since F(s) = {L}). For all § < 5, we have F¥ 01X C F(s) N = g(s)

so that 5L<J F”é(s) NY =g(s). Now if n <& < A then g(s) = F*(s)NX C
n

F”é(s) N Y so that by reductio ad absurdum F”é(s) NY # g(s) would imply
' €N € FP(5)NEAS & F(s)NY so 3’ € X s’ € FP(s)As' & F(s)
and § # n, whence n < § proving, by the lemma 7.6 that L € F*(s), a
contradiction. For all § such that n < é < X, we have F”é(s) NY = g(s) so
that 5&& F”é(s) NY = g(s) whence 5|2|A F”é(s) CFM g(s).

- EM

By theorems 8.1 and 2.9, we conclude that 7% = lfp Fu = lfprM e O

8.1.3 Demoniac Nondeterministic Denotational Semantics
The demoniac nondeterministic denotational semantics is the right-image ab-
straction 7% = a”(7?) of the demoniac relational semantics 77.

In order to place the demoniac nondeterministic denotational semantics 7*
in the hierarchy of semantics, we will use the following:

Theorem 8.6 (Denotational demoniac abstraction) 7% = of(7") where
A f) = Ase f(s)U{s' € D | L€ f(s)} and v (g) = g satisfies (X — (D),
L .

&) 55 (8 s (p(2) U {EL}), ©).

(o}

Proof. o/(f) C g <= Vs € X : f(s)U{s € X | L € f(s)} C g(s) =

Vs € %1 f(s) C gls) <= f C ~(g). Reciprocally, if Vs € X @ f(s) C g(s)
then either L € g(s) so g(s) = X hence of(f)s C g(s) or L & g(s) hence
1 & f(s) and again o;”( )s € g(s) proving a'(f) € g. We conclude that
(8 p(20), ©) 5 (S (p(B)U (3.}, &)

We have a” o a® = XX+ As«{s" | ({s, &') € X)V ((s, J_> E X/\S eX)} =
AX e dse{s' | (s € a®(X)s) V(L e a*(X)sAs € X)) = . It follows
that 7% = a®(7%) = a® 0 a®(7%) = af 0 a® (1) = a!(7?). O

Let us recall the properties of lifting:

Lemma 8.7 (Lifting) Given a complete lattice (D, T, L, T, U, M) (respec-
tively poset (D, T, U), DCPO (D, =, L, U)), the lift of D by £ & D is the
complete lattice (resp. poset, DCPO) (Dy, =, £, T, ][, TI) with Dy = DU{+},
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r =<y =(xr=41V(y € DAz T y), infimum L, supremum T, join
[TX:=(VieA:X; =427 4, U{X;]ieANX;# L}) and the
1EA
meet is [[ X; = (F €A X; =22 £ T{X; |i€ AANX; # L)),
1EA
By the fixpoint characterization 7.9 of 72 and S. Kleene fixpoint transfer
theorem 2.3, we get:

Theorem 8.8 (lepomt demoniac nondeterministic denotational se-
mantics) 7/ = lfp Fm where FY(f) = 7 U Uf’ o 7% is a C'-monotone map

on the pointwise e:z:tension <D”, Cf,oL, T L (%Y of the lift (D*, CF, 1*, T*,
Uf, %) of the complete lattice (p(X), C, 0, X, U, N) by the infimum X, .

Proof. The order structure of D is chosen to be (a®, 4*)-isomorphic to the
complete lattice (D7, C7, 17, T, 17 M?) of theorem 7.9. Therefore we have
a complete lattice <Dm C’ J_” —|—n L, 11") such that the partial order is f Cf g
= (/) B2 (g) Ve (s, L> €V (s, L) & %(g) A= (f) N
({5} 2) C1(9) N({s} X 5)) = Vs € 51 L€ f(5)V (L& g(s) A (s) € 9(5))
= Vs e X: f(s) T g(s) by defining X C'Y = L e XV(LEYAX CY),
pointwise. Consequently, by lemma 8.7, (D T L*, T* U M) is the lift of
the complete lattice (p(X), C, (), ¥, U, N) by the infimum ¥ ,. Tt follows that
the infimum is L* = Xs+ 1* where 1} = Y1, the supremum is TH 2 \s. T
where T* = %, the lub UXi=(VieA: Xi=S078, U{Xs i€ A:

AX; # ¥, }) satisfies oz’(LIZ X;) = 'I;Ii a”(X;). The same way , by lemma 8.7,
S 1€
the glb is ¢ X; S(NeA:X; =28, ;0 {X;|1€A:AX; £2.)).
1€

The design of the semantic transformer F* is identical to that of F'* in the
proof of theorem 8.1.
Monotony directly follows from that of F'? using the (a*,v*)-isomorphism.O

Lemma 8.9 (Arrangement of the iterates of F*) Let F*°, 5 € O be the
iterates of F* from 1'. For alln < ¢, s,8' € X, if s' € F*(s) ands g F(s)
then F*(s) =% ,.

Proof. Follows from lemma 7.10 and the proof of theorem 8.8, showing by
S. Kleene fixpoint theorem 2.3 that V3 € O : F** = o (F?7), O

Lemma 8.10 (Totality of the iterates of F*) Let F¥ 5O be the iter-
ates of F'* from 1'. V6 € QO :Vs € X : F”é( ) # 0.

Proof. Follows from lemma 7.11 and the proof of theorem 8.8, showing by
S. Kleene fixpoint theorem 2.3 that V3 € O : F** = o (F?7), O

Lemma 8.11 (Final states of the iterates of I'*) Let F¥, 5 €O be the
iterates of F* from L'. V6 € O :Vs,s' € ¥: (s € F”é(s) ANLd F”é(s)) =
(s € # ANFP(s) = {s}).

Proof. Follows from lemma 7.12 and the proof of theorem 8.8, showing by
S. Kleene fixpoint theorem 2.3 that V3 € Q : F*’ = oz’(Faﬁ). O
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Fig. 3.

From theorem 8.8, lemma 8.10 and the fixpoint iterates reordering theorem
2.9, we deduce another fixpoint characterization of F*(f) with a different
partial ordering:

Corollary 8.12 (Reordered ﬁxpomt demoniac nondeterministic de-
notational semantics) 7/ = lfp Ft where FU(f) = 7 U Uf’ o T is a
C°-monotone map on the pomthse extension <D<>, ;0, J_O, —]—<>7 1%, 1°) of the
complete lattice (D, C°, 1°, T, LU°, M°) where D° = (p(2)\ {0}) U {L1°},
=Y, and XE°V = (X = 1)V (X CY).

8.1.4  Upper/Smyth Nondeterministic Denotational Semantics

Unforeseenly, the demoniac semantic domain D* with the demoniac ordering
C*! differs from the usual upper powerdomain with M. Smyth ordering [22] C*
(see figure 3). Let us recall [2, fact 2.7] that M. Smyth upper powerdomain

(D3, C3, L5, 1%, L) is D° 2 {ACY | A#0Q}U{Z,} ordered by the superset
ordering A C° B 2 A D B which is a poset with infimum 1° 2 Y 1, the glb
of nonempty families X;, ¢+ € A always exist being given by ]_IZ X, = 'UA X;
1€ 1€
and if X;, 2 € A has an upper bound, its lub exists and is ]_IZ X, = 'OA X;. By
1€ 1€
applying the fixpoint iterates reordering theorem 2.9 to 8.8, we get [2]:

Corollary 8.13 (M Srnyth fixpoint nondeterministic denotational

semantics) 7' = lfp Fm where F* is a = -monotone map on the pointwise
extension <DS7 C J-b, , LY of M. Smyth upper powerdomain (D%, C%, 15,
Me, L),

Proof. T is a partial order on DS.

By lemma 8.10, all iterates F*°, § € O of F* from IE belong to D° =
Di\ {As- @}

If fC ¢ then Vs € X 1 f(s) C° g(s) so that Vs € X : f(s) 2 g(s) which
implies Vs € ¥ : 7(s) U U{f(s") | s 7 s} D T(S) U (Hg(s") | s 7 &'} that
is Vs € ¥ : FY(f)s D F¥(g)s whence F¥(f) T F*(g) proving that F* hence

Flps is I: -monotone.
Assume that f € Db, X is a limit ordinal and ¥§ < X : F*’ C° f, that 1s
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Vo < A:Vs€eX: F”é(s) 2 f(s). Tt follows that 5OA F”é(s) 2 f(s) proving
<
that (V6 < A: F¥(s)=%,7%,; 5OA F*¥(s)) D f(s) that is (gl;I’;F’“g Cf.
< <

Ly s
By theorems 8.8 and 2.9, we conclude that 7% = lfpfm F' = lfpi F. O

8.1.5 Minimal Demoniac Nondeterministic Denotational Semantics

M. Smyth ordering C° is not minimal since, for example on figure 3, {a} and

{a,b} need not be comparable by lemma 7.10. This leads to:

Theorem 8.14 (Flat powerdomain fixpoint nondeterministic deno-

=

tational semantics) 7/ = lfpi F* where F* is a T -monotone map on the
DCPO <D”, C, J_“, U™) which is the restriction of the pointwise extension of
the flat DCPO (D=, C=, 1=, U=). with D= = (p(X)\{0})U{L=} and infimum
==Y, toD=={fEN —— D= |Vs,s’ € X : (s € f(s) A fs) # 1=) =
(s" €7 AS(s') ={s"}).

Proof. fC~ g <= Vs ¢ Y1 f(s) E7 g(s) and £~ is the flat partial ordering
with infimum 1=, so that C~ is a partial order on D=.

To prove that <D”, C7) is a DCPO, let A be a limit ordinal, f°,§ < A
be a C -increasing chain. Tts lub in the pointwise extension of (D=, C7) is

A= Sl;lij. Let us show that f* € D= which implies that f* is the lub
<
in D=. To prove this, we have Vs € ¥ : f(s) = (gl_l’:f‘g(s) so that either
<

V6 < X : f%(s) = L= in which case f(s) = 1= or, by definition of the
flat ordering, In < A : f(s) = 5|_|<’:f5(5) = f7(s) so that f" € D= implies
Vs,s' € ¥ (s’ € FM) A M) # 17) = s' € (s € # A f(s') = {s'}) hence
fre D=,

All iterates F**, § € O of Fi(f)y =+ U Uf’ o 7% from 15 = \s- X, =
1= satisfy F*° # As+ ) by lemma 8.10 and Vs, s’ € ¥ : (s’ € F”é(s) A E”é(s) +
1=y = s e (s €7 A [f(s')={s'}) by lemma 8.11, hence belong to D=.

1= is the C™-infimum of D=.

It C™ g then Vs € ¥ : (f(s) = X))V (f(s) = g(s)) so that Vs € ¥ :
(7(s) UULS(s) [s 7 s} = DV (s) U ULS(S) [ s 7 s = 7(s) U U{g(s) |
s 7 s'}) whence F*(f) T~ F¥(g) proving that F"* hence F*|; - is C -monotone.

Assume that f € D=, X is a limit ordinal and V6 < X : F* T~ f, that
sV < A:Vse X (F”é(s) =Y,1)V (F”é(s) = f(s)). It follows that either

u5 — Ii5 _ . .3 Ii5 E::
5QAF (s)=%, or 5QAF (s) = f(s) proving that 5|_<IAF cC f.

By theorems 8.13 and 2.9, we conclude that ¢ = lfpf F' = lfp%z o0

S =

The poset <D”, Ex> is minimal for the fixpoint nondeterministic denota-
tional semantics, in that:
Theorem 8.15 (Minimality of <D”, C7)) Let (E, <) be any poset such
that 1= is the <-infimum of E, F'[r] = Af-7 U |Jf> o7® € B+ E is
<-monotone and V1 : 7" = lfpl Fi[7] then D= C E and T~ C <.
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Proof. Assume, by reductio ad absurdum, that 3f € D= : f ¢ FE. We
write F'[7] to explicitate which transition system (X, 7) the transformer
F'* depends upon. Let us define the particular transition relation 7 = {(s,
D (=5 ALE FS)V (s £5ALE f(s) Aol € Fls)])

We have 7(s) = {s |Vs' € L :n(s7 s )} ={s| Vs’ €D (s =5 AN LE
FS) A(s £/ ALE f(s) As' € F(s))} = {s | (95 € Sz s £ &'V L& f(3)) A
(V' eX:is=8'VLE f(s)Vs & f(s))}={s| L& f(s)AVs' #£s:5 & f(s))
= {51 £(5) = {s}} since f(s) # 0.

Wehaveds': s 7' =(3s' 1 s = AL € f(s))V(Fs 1 s #£SANLE f(s)/\s €
F) = (e Fly (6 o 1o (L€ TN (18) 4 1) snce
f(s) # 0 so that (Is" £ s:5" € f(s)) <= f(s) # {s}.

The iterates F*°,§ € Q of Fi[r] are as follows:

F1% = Xs. 5.

P = BL(F) = Aev #(s) U ULFO(S) | s 7 ok = Ase{s | f(s) =
1} U (Lef(s)V (f(5) # {s1) 750 10) = Ase{s | f(s) = {s)} U (Le
f(s) 7300 0) U ((f(s )75{8} 73100).

F? = FPUr](F*) = Ase{s | f(s) = {s}} U AU B where:

AZU{{S|f(S)—{S}}U(lEf()7EL¢@) (f(s) #{s} 73800
D) Lef(s)}=(LEf(5)?780y0)=(LeE f(s)?f(s)iD).

B=U{{s | f(s)={s1} U (Lef(s)TZL10) U ((f(s)#{D7T
Nii0)ls#SANLEf(s)As € f(s)}. Since s’ € f(s) and L & f(s) hence
f(s) # XL = 1=, we have ' € 7 hence s’ € 7(s') so that, as shown above,
f(s"y ={s'}and L & f(s'). Therefore B=|J{{s'| f(s')={s'}} |s# AL
F(s)As € f(s)} = 15/ | s £ 5 A L f(s) As' € fis)]}

It follows that F** = \s {3 | f(s) = {s}}UAUB = Xs-{s | f(s) =
BHULE f(5)? f(5) L0 UL | s £ L¢ f(s)ns € fs)) If
1 € f(s) then F”z( ) = f(s). Otherwise L & f(s) hence f(s) # L= in
which case F*(s) = {s | f(s) = {s}}U{s' | s # s As’ € f(s)}. But
s € f(s)A f(s) # L= A f € D=implies f(s) = {s} so F**(s) = f(s).

We have shown that F** = f.

This is in contradiction with f & FE so that D= C E.

For all f € D=, we have shown that there exists 7 such that f is one of
the iterates of F*[r] from 1=. Since the iterates are <-increasing, we must
have 1= < < f proving that T~ C <. a

—

Reciprocally, we have:

Theorem 8.16 (General fixpoint demoniac nondeterministic denota-
tional semantics) Let (E, <) be a poset such that D= C E, T C g, 1=
is the -infimum of E, the <-lub of C ™ -increasing chains f3,8 € X in D= is

(gI_IAf‘g and F* = \f«# U Jf> ot € E+"s E is <-monotonic. Then 7% =
<

Ifp”_ F.

Proof. By the proof of theorem 8.14, we know that all 1terates F¥ 5 ¢ 0 of
F* are in D=. Let ¢ be the iteration order so that F** = lfp Ft. let feFl
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be any fixpoint of F*. We have F1° = 1= < f since 1= is the <-infimum of

E. It F** < f then F¥*! = F”(F”é) < F¥(f) = f since F'* is <-monotonic.

If X is a limit ordinal then F**, § < X is a C"-increasing chain so that its

<-lub is 5|_|: F* = F* whence F*' < f since V6 < X\ : F** < f by induction
<

hypothesis. By transfinite induction, ¥§ € O : F** < f proving that F*" =

lfpl F'. By theorem 8.14, 7% = lfpi F' = lfpl Fr. O

I

8.1.6  Angelic/Lower/C.A.R. Hoare Nondeterministic Denotational Seman-
tics

The angelic nondeterministic denotational semantics is the right-image ab-

straction 7° = o®(7+) of the finite/angelic relational semantics 7+. We also

have 7° = o (7%) where o”(f) = As+ f(s) N X. By theorem 7.1 and S. Kleene

fixpoint transfer theorem 2.3, we get:

Corollary 8.17 (C.A.R. Hoare fixpoint nondeterministic denotational
semantics) 7' = lfpj Y where F* = Mfe7 U |Jf> o 7 is a complete U-

morphism on the complete lattice (X —— p(¥), C, @, Ase X, U, N) which is
the pointwise extension of the powerset (p(X), ().

Proof. The order structure of ¥ —— (X)) is chosen to be (a*, 4*)-isomorphic
to the complete lattice (p(X x X), T, (), ¥ x X, U, N) of theorem 7.1 that is
the pointwise extension of the powerset (p(¥), C).
> ) L) = . ! ! . — ) . ! !

We he‘we a (igAXZ) As+{s" | (s, &) € Z'éJAXZ)} igA As+{s" | (s, &) €

X))} = 'UA a”(X;) so that o is (-strict and Scott-continuous.
1€
The commutation condition leads to the definition of [ as in the proof of

theorem 8.1.
F’ is a complete join-morphism since (U('UA TIX) = U{('UA fis) |
1€ 1€
J— . —_— . — »’
s € X} = U{igAfZ(S) | s € X} = igA{ff(S) | s € X} = igAfZ (X) so that
bl e a PN Do e (s .
F(ieUAfZ)_TUU(iEUAfZ) i TUUieUAfZ i z'eUA(TUUfZ ™)
— U B(F
- zeUAF (fz) .
Finally 7 = o*(7+) = a’(lfpj F*) = lfpj F". O

Observe that the angelic semantic domain (X —— (X)), C) is exactly the
pointwise extension of the usual lower/C.A.R. Hoare powerdomain [22].

8.2 Deterministic Denotational Semantics

In the deterministic denotational semantics the nondeterministic behaviors
are ignored.
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7(a) = {b} 7(a) = {b, L} 7(a) = {b,c}
T(a) = b T(a) = b TT(a)=T
TT(b) = b TT(b) = b TT(b) =
TT(c) = b TT(e) = L T7(e) =

Fig. 4. Natural 7% and deterministic 77 denotational semantics of nondeterministic
transition systems 7

8.2.1 Deterministic Denotational Semantics of Nondeterministic Transition
Systems
For nondeterministic transition systems, the nondeterministic behaviors are
abstracted to chaos T. We let aT(0) = aT({L}) = L, Vs € ¥ : aT({s}) =
a"({s,1}) = s and aT(X) = T when X C %, has a cardinality such that
|IX\ {L}| > 1. Observe that a" ignores inevitable nontermination in the
abstraction of nondeterminism (see figure 4). By letting V¢ € ¥, : 47(¢) =
.

{¢, L} and 47(T) = T, we get the Galois insertion (p(X ), C) W: (%71,
OZT

CT) where CT is given by LCT (CT(CT Tfor (e X] =X U{L, T}
We define &™ = Xs- a(f(s)) pointwise so that 77 = &7 (7). By theorem
8.1 and S. Kleene fixpoint transfer theorem 2.3, we get:

Theorem 8.18 (D. Scott fixpoint deterministic denotational seman-

T
tics (complete lattices and continuous functions)) 77 = lfpf FT where
FT € (X — %)) —— (X —— X]) defined as FT(f) = se(Vs' €
Yio(sTs) s UT{f(S) | 5T s'}) s a complete 1" -morphism on the
complete lattice (X —— N7, E J_ T, 07 |_|T> which is the pointwise ex-
tension of the complete lattice <ZT, CT, L, T, U™, ") with C7 such that
Y(eX] : LCT(CET¢CCT™T

Proof. o"(X)C" ( <= X C ~47(() is easily proved by case analysis. Either
( = L and X can only be {) or {1}, or ( = s and X C {s, L}, otherwise
T

¢ = T and this is obvious. We get (¥ — p(X,), C) W: (Y — %]
&aT
;T>, pointwise.
The abstraction function &7 is strict since o™ ({L}) = L. IfVi e A: X, €
©(X 1) then either Vi € A: X; C {1} and then aT(ULXi) = LILaT (X)) =1
S 1€

ordseX :Vie A: X; C{s, L} Adk € A:s € Xy, in which case ozT(iI_EILXZ»)
= il_elgozT(Xi) = s, otherwise Js,8" € A : s £ AT € A: {s,8} C X,
in which case ozT(iI_EILXZ») = il_elgozT(Xi) = T proving &7 (I_I i) = |_| at(f),
pointwise.
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~ The commutation condition is used to design I'T. &™ o F'(f) = a7 (7 U
U or®)=Asea T (7(s) US> o7®(s)) = AseaT({s | Vs’ € X : =(s 7 5)}
UUA() [s 78} = Ase(Vs' € B2 =(s 7 5') 7 aT({s}) ¢ T (ULS(s) |
s T ) =Ase(Vs' € ¥ i a(s 78T s U{a T (f(8) | s 7 8}) =
Aso(Vs' € X im(s78) s U{aT(f)(s") | s78'})=As« FT o &7 (f) by
definition of @™ and a™ which is a complete LIT-complete morphism and by
defining FT = Mfe dso(Vs' €N (s 7)) 2 s UT{f(s') | s T s}).
fVvie A: fi € ¥ +—— p(¥1) and s € ¥ then FT(I_Ile)(S) = (Vs €
1€
Yia(sT )T s I_IT{(I;ILfi)(S’) |sTd})=(Vd eX:n(s7 )7 s
1€
UT{UT () |5 7)) = (¥ € S5 ~fs 7 ) 2 4 UT{ALS) | s 7 )
S S
= UL(\V{S/ eEX:a(sT ) Ts  {fils) | sT8Y) = ULFTfi(S)a proving
S S
T LY = 1T FT(F i i
F (Z'I_IeA i) = Z'I_IGAF (fi), pointwise.
i, T ‘
We conclude 77 = a7 (%) = a7 (lfpfh F*y = lfpi FT where LT £ \s. 1.0
Observe that we have got a complete lattice as in the original work of

D. Scott [37] by giving the top element T the obvious meaning of abhstraction
of nondeterminism by chaos (so as to restrict to functions).

8.2.2 D. Scott Deterministic Denotational Semantics of Locally Determinis-
tic Transition Systems

For locally deterministic transition systems (X, 7) (i.e. Vs,8',8" € ¥ 1 s 7

s ANs T " = & = §") the top element T can be withdrawn from the

semantic domain:

Lemma 8.19 (Iterates of ['T for deterministic transition systems)
For locally deterministic transition systems (X, 7), Vs € X 177 (s) # T.

Proof. Let ¢ be the order of the C -increasing chain of iterates F'7°, § € O
of F™ from 17. We show that Vs € © : V6 € Q: F™(s) £ T.

We have Vs € ¥ : FT%s) = L # T.

If this is true for § € O then for all s € X, FT5+1(3) = FT(FTé)(S) =
(Vs' €N :tm(s7 &) 75 UT{F™(s") | s 7 s'}). Vs € X : (s T s') then
s # T. Otherwise their is a unique s’ € ¥ such that s 7 s’ and FT°(s') # T
by induction hypothesis so UT{FT%(s') | s 7 s’} # T.

Let A be a limit ordinal such that V6 < A : Vs € ¥ : FT%(s) # T. Since

the iterates form an increasing chain, we have either V§ < A : F7°(s) = L in

which case (Ig_ITAFTé(S) =1#Tord(eX Vi< FTS(S) CT ¢, in which
<
T Té —
case (Ig_IOF (s)=C#T.
By transfinite induction Vs € ¥ : V4§ € O : FTS(S) # T thus proving that
T
TT(s) = (p-, FT)(s) = F7(s) # T. 0
It follows that we can define 7° = 77 N(X —— X ;). By the fixpoint

iterates reordering theorem 2.9 and theorem 8.18, we infer:
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Theorem 8.20 (D. Scott fixpoint deterministic denotational seman-
D
tics (CPOs and continuous functions)) 77 —lfpg F where FP? € (¥ ——

Y1) — (8 —— %)) defined as FP(f) = )\3 (s 787 f(s") ¢ s) is a Scott-
continuous map on the DCPO (¥ —— ¥, E 1, UPY which is the pointwise
extension of DCPO (¥, CP, L, UP) where the Scott-ordering CP is such that
VieX,: 1LEP (P (.

Proof. E is a partial order on ¥ —— Y| with infimum 17 = Ase L.
By lemma 8.19, all iterates of F'T belong to X;. We have FT|g o =
A EXN Y1 A8 FT(fls = Af € X ——= Y dso(Vs' € X 1 (s 7 8) 7
SIUT{f(s) | s7 ) =Af €N — D dseN (57827 f(s)is)=FP
since 7 is locally deterministic so that s’ is unique.

Moreover F” is Scott-continuous since if f0, § < Xis a c” increasing chain

and s € ¥ then FD(SI_IAf‘g)(S) =(s7 87 (5|;|Af5))(3’) is)y=(s71 487
< <

) no. — DI N AN — D( £6 — : D/ £é

U 1) = Um0 s) = U PP = (0 P
T T

We conclude that 7° = 77 N(X —— ¥ ,) = lfpf FT = lfpf Fllg 5,

D
= lfp_ F". O

9 Predicate Transformer Semantics

A predicate is a set of states may be augmented by L to denote nontermination.
A predicate transformer is a map of predicates to predicates. A backward
predicate transformer maps a predicate called the postcondition to a predicate
called the precondition. A forward predicate transformer maps a precondition
to a postcondition.

9.1  Correspondences Between Denotational and Predicate Transformers Se-
mantics

Various correspondences between denotational and predicate transformer se-
mantics can be considered using the following maps (D, E are sets):

o' =NfeD—s p(E) X' {s | s € f(s)}
yTTENf € E— (D) As+{s' | s € f(s)}
0" =N €D o(E)- AP € p(D)-{s' | 3s € P: 5 € f(s)}

Y EM € p(D) = p(E)+ As U({s})

0" =XV € (D) — p(E)- AQ € p(B)+{s | ¥({s})NQ # 0}
YEM € (E) — p(D)- AP € p(D){s' | ¥({s'}) n P # 0}
0" =AW € p(D) = p(F)+ AP € p(D)+ ~(V(=P))

V=X € p(B) = p(D)+ AP € p(D)+ ~(¥(=P))

a"=A® € p(D) = p(B)+ AQ € p(E)-{s| d(~{s})UQ = F}
YEAD € p(E) = p(D)+ AP € p(D)-{s' | ®(={s'}) U P = D}
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Following [12], the correspondences between denotational and predicate trans-
formers semantics are given as follows:

Theorem 9.1 (Denotational to predicate transformer Galois connec-
tion commutative diagram)

~

(D= o(E), €) =5 (p(D) —= p(F), €) =5 (p(D) — p(E), 2)

a—l ’7_1 OZU ’VU aﬂ ,yﬂ
. ~* U . ~ A .
(B = o(D), ©) Tz (p(E) — p(D), ) == (p(E) — p(D), 2)

Proof. We have a™ o y7/(®) = As'-{s | s’ € {s' | s € ®(s')}} = ®. The same
way, v o a™ (W) = As-{s' | s € {s| s € U(s)}} = V. We have a'(P) C

if and only if Vs’ : a7 (®)(s") C U(s') that is Vs’ : {s | s’ € ®(s)} C U(s )
equivalently Vs : ®(s) C {s' | s € U(s')} if and only if Vs : ®(s) C v~ (V)(s )

hence ® C 4~'(W). We conclude that (D —— p(F), C) W@l (B —
p(D), S).

If feDr— p(F) then oz"[f](igA P)={s|3s € igA P s € f(s)} =
igA{s’ |ds e P s € f(s)} = igA a*[f](P;) so that a*[f] € p(D) —— o(F).

)

o [flC Wifandonly VP C D :Vs' € E:Vs€ P:s' € f(s) = s' € U(P)
that isVP C D:Vs e E:Vse D:s € f(s) = (s € P = s € ¥U(P))
whence VP C D : f C As+{s'| s € P = s' € W(P)}. It follows for P = {s}
that f C As-{s' | s’ € W({s})} i.e. f C ~*(¥). Reciprocally, ¥s' € f(s):s" €
U({s}) implies VP C D :s" € f(s) = (s € P = s’ € U({s})) but s € P
that is {s} C P implies W({s}) C WU(P) by monotony of ¥ € p(D) —— p(F),
whence VP C D :Vse D:Vs € E:s € f(s) = (s € P = s € ¥U(P))
thus proving a*[f] C .

If f # f' there exists ' € f(s) such that s’ ¢ f'(s) or vice-versa. Therefore
L)) = {5 | & € f(s) # {5 | & € F(9)} = a[]({s}) so that a° is
injective.

If U # U’ then there is P C D such that W(P) # W'(P). This implies that
there is a state s € P such that WU({s}) # W'({s}) since otherwise U(P) =
ql(sgp{s}) = Sgpql({s}) = SgP U'({s}) = W'(P). It follows that 35" € W({s}) :
"¢ U({s}) or vice-versa. Since s € 4*(¥)s but s’ & v*(V')s, we have
v (W) # 47 (¥') proving that 4* is injective.

~

3

We conclude that (D —— o(E), C) = (p(D) —— (), C).
We have ozN[\Il](iQAPZ') = —|\I/(—|ZEOAP) = ﬁ\Il(igA -F) = ﬁieLJA\I/(—'PZ) =

-U(=F) = N a~[V](F;). Dually, v~[®( U P;) = ZQ Y [W](FP).

€A €A €A
We have o~ (W) C P << VP : —|\I/(—|P

U(-P) <= VQ: =(=Q) CV(Q) < ¥ D y~(P
Obviously a~(y~(®)) = AP« —y~(®)(=P)
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7 (@™ (P)) = V.
We conclude that (p(D) —— p(E), C) W@ (p(D) —— o(E), D).
We have o¥ = a®ca™ oy" = AU AQ-{s| I’ € Q:5 € a™' o

o
AV AQ{s | T €Q 8 €4°(V)s} = AV AQ{s |TFd € Q: €T
AU AQ-{s | U ({s})NQ # @}. Similarly ’yUU =AM APA{S | U

By composition (p(D) —— o(F), C) %% (p(E) — p(D

~—

Finally o™ = a™ o a” o 4~ = A0« a™(AQ- (7~ (P))(Q)) = AP XQ-
~a ((@))(=Q) = A AQ- ~{s | #(@)({5) 1 =@ # D} = Ab-AQ-s |
~B(={s)mQ = 0} = AB+ AQ- {s | ~(~B(~{s1)0=)Q = ~(1)} = A&+ AQ {5 |
O(—~{s})UQ = F}. The same way 4" :n)\CI)o AP s | ®(—{s'})U P = D}.

By composition (p(D) — o(F), 2} :ﬁn (p(F) — o(D), 2} a

After [24], we define (f € D —— o(F)):

gsp[f1=a*[f] € p(D) —= p(E)
=AP e p(D){s e E|TseP:s € f(s)}

gspalf]= 0~ e o*[f] € (D) — p(E)
=AP e p(D){s € E|VseD:s e f(s) = se P}

gwplf]=a” 00”0 a[f] € p(E) = (D)
=AQ € p(E)-{seD|VseFE:s¢ef(s)= s eq}

gwpal f]=a” o a”[f] € p(E) —— p(D)

=M €p(E){seD[I'€Q:s" € f(s)}
Combined with the natural 7%, angelic 7* and demoniac 7% denotational se-
mantics, we get twelve predicate transformer semantics, some of which such
as E. Dijkstra [18] weakest precondition® wp (7%, Q) = gwp[r?] Q and weak-
est liberal precondition wip(r,Q) = gwp[r’] Q of postcondition @ C ¥ are
well-known. E. Dijkstra postulated healthiness conditions of predicate trans-
formers [18] indeed follow from gwp[r'] € (%) —— (¥) (Conjunctivitis)
and gwp[7"] @ = () since 7 is total by theorem 8.1 and lemma 8.3 (Excluded
Miracle).

In order to establish the equivalence of forward and backward predicate
transformers and proof methods, we observe [7,19] that gsp[f] P C @ if and
only if Vs’ € £ : (s € P:s" € f(s)) = s € Q hence Vs € P: (Vs € F :
s € f(s) = s € Q) that is P C gwp[f] @, and reciprocally, proving for all
f € D+—— p(F) that:

Lemma 9.2 (Correspondence between pre- and postcondition se-

mantics) If f € D — o(E) then (¢(D), C) % (o(E), C).
sp

¢ E. Dijkstra’s notation is wp(C, Q) where ' is a command and @ is a postcondition so
that we use 7 which should be understood as the maximal trace semantics of the command

C.
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9.2 (Generalized Weakest Precondition Semantics

The generalized weakest precondition semantics is 78" = gwp[rf]. Tt com-
bines the expressive power of the conservative and liberal weakest precondi-
tions since for ( C X, we have 78"?[Q] = wp(7%,Q) and 7" P [Q U{L}] =
wip(7%,Q). Applying S. Kleene transfer theorem 2.3 to the fixpoint natural

nondeterministic denotational semantics 8.1 with the correspondence (a#"?,
"and 4F = 47! o 4° o 4~ which,
7.

A
vE"P) where af"? = gwp = a~ o o o a~
according to theorem 9.1, is a Galois bijection, we derive

Theorem 9.3 (Fixpoint generalized weakest precondition semantics)
gWp m
TEYP = lfpg F&® where F&™» € D> " D&"® defined as F&"(®) = \Q+(—7U

18WPp
Q)N gwp[r*] e ® = AQ-(QNF)Uwp[r*] o ® where wp[f]Q = {s € X | Is' €
Yis e f(s)AVs € f(s):8 €Q} is a CEP-monotone map on the complete
lattice (Ds*P, C8"P, L&vp T&vp [J8p  [187) gith DE"P = (X)) —— p(D),
S U 2VQ C N WQUI{LY C BQU LY ABE) C U,
12 = AQ-(L € Q7Y ;) and LW = AQ- N w(QU{LH N (L ¢

Q7 U Wi(Z) ;. T).

wp

. g
Proof. By the Galois bijection (¥ —— (X ), C) W: (p(X1 —= p(%),

A BWD

D) (Dswe, Cevr, L& T 8" [5°P) is a complete lattice where ® C5"» U =

YE"P (D) C’ A8 (), 18" = of"P( L") (so that &P is bottom-strict) and ngp o,
1€

= ongp('I;lhA vE"P(®;)) (so that at* is Scott-continuous).
1€

We get 157 = gwp(L) = ANQ € p(X 1) {s €D |V eX s € {l} =
feQl=2QepS){seX | LeQt=X0€pXE)(LeQ?X D).
The same way, T#" = gwp(TH) = AQ € p(X 1) {s €T |V eED,: s €Y =
sSeRQ=MepX){seX[VsieX scQ=AQ€cpB){secX|
SCQ=AQE oS )-(SCQ T 0).

We have 7¥"(®) = 77" o 9% 0 77(®) = As+{s' € X1 | 5 € v* 2 77()(s')}
=Ase{s €N |sev(P){})} =As{s' € X | s d(={s'})}.

It follows that & CF"» & 2 y&r(§) C° 4= (U) = Vs € X : {s' | s &
S PINE C{s [s g W({PINE AL [ s € B(~{s'H}N{L} 2{s"|
SEU(LNT A (L) =V € 5 U(~{s'}) C D(={s}) A B(3) D B(S).

Assume that Vs’ € ¥ : U(={s'}) C ®(={s'}) and P C X. Then ¥(-P) =

U( ﬂpﬁ{s’}) = OP\II(—'{S’}) and the same way for ® € D#"?. So W(-P) C
s'e s'e

®(=P) whence VQ C X : W(QU {L}) € ®(Q U{L}) where QU {L} = =P in
Y1 whence @ = =P in ¥. Reciprocally, if VQ C ¥ : U(QU{L}) C d(QU{L})
then for all s € ¥ and Q = ¥\ {s'} we have QU {L} = ¥, \ {s'} = ={s}
whence U(—{s'}) C ®(={s'}).

7 Observe that C5"P coincides with the partial ordering T of [31] except that the explicit
use of L to denote nontermination dispenses with the handling of two formulae to express
T8YP in terms of 7¥P and 7VP.
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We conclude that & C&™» U =V C X : U(QU{L}) C (QU{L}HAP(E) C
T(%).

We have ZIEI”A YEP (W) () = Z"Eli{S/ EX s W(—~{s})} = igA{S/ EX|ség
WD U ALY € {1} 5 Wi~} = U € 8 | & Wi(~{s'})} U
AL # W),

It follows that |_|gwp T; = gwp(Ase U ’ygwp(q’i)(s)) =AQ € p(X,)-{s € X
Vs'e X, s € (U{S €Y |se€ —|\Il( {S/})}UZQA{J—|S € -U,(X)}) =
s e Q} = )\QE@( s € B Vs € ¥ ((s € igA_‘\I}i(_‘{S/})) —
s eQ)N((s € iQAﬁ\Ili(E)) = L eQ)} =M epX){s e X |Vs e
S (s f W) = € QA § UWT) = Le Q) =
AQE(EL) s € T [V €T (¢ ¢ Q= (s € 0 W(~(W)A(L
Q = (s € ZéJA\IIZ(Z)))} =X €EpX){s e X | Vs eXN-Q : s €

DIN(LFQT U W) ;).

We have {s € ¥ | Vs’ € ¥N-Q : s € ﬂ U, (= {S’})} = 'ezn o eA U, (={s'})
= 00 )= O, U () = 0 (50 = 0, (LI
Q).

wp — . . ? . .

We conclude that |7|€gA U, = AQ iQA U,{Ltu)nNn(LgQ igA U, (¥)
).

Finally we design F'&"* by the commutation condition. If @ € (¥ ) then

afP(F(fNQ = {s € ¥ | Vs & € (F(s) UUS™ o m(s)) = & € Q}
{seX | (V" :=(s78) = se@QtN{seX |Vs:(Fs" 57" NS
f(") = s e@Qt={seX | ™) =0Vvse@Q}nN{se X |Vs:s
"= (Vs': s € f(s") = 5 € Q)} = (-7 UQ) Ngwp[r*] o gwp[f)(Q)
F&r (a5 (£))(Q), by defining F&® = Af+ A\Q+ (=7 U Q) Agwp[r*] o f. But
AQ+ (-7 U Q) Ngwp[r>] o f(Q) = AQ+(~7 U (7 N Q)) Ngwp[r>] o f(Q) =
AQ+ (=7 Ngwp[r*] o F(Q)U(FNQNgwp[r*] o f(Q)) = AQ-{s | Is": s T s'A
Vs'er®(s): s € f(Q)U(Q@N{s]|Vs:a(sT)AVS €1™(s):5 € f(Q)})
= AQ-wp[r*] o f(Q)U(Q N 7).

By the commutation condition as"® o F'* = ['s"? o f"? g0 that as™® o [ o
YEVP = FEP o qf"P o 48P = &' It follows that f C&** ¢ implies v&"»(f) C°
vE"P(g) that is F(~*"(f)) C" F*(y5"*(g)) by theorem 7.5 whence 5" o 8" o
Fb oo Vng(f) Eh ,Yng o a8"P o It o Vng(g)‘ Therefore Vng(Fng(f)) Eh
yEP(F5?(g)) hence F'&"*( f) C&™ F'&"P(g) proving that F'&*? is C#""-monotone.0

= m

Lemma 9.4 (Arrangement of the iterates of F®"*) Let Fer' 5 € O
be the iterates of Fgwp from L1&°. For all n < € and Q@ C ¥, we have

Fer(Q\ {1}) € P (Q\ {L}).

Proof. The proof of theorem 9. 3 shows, by S. Kleene fixpoint theorem 2.3,
that V6 € O : Fev' = gvvp[[Fgwp ]] By reductlo ad absurdum, if there eX1sts

Q C ¥ such that Fs*"(Q) € et (Q) then 3s € gwp[F*'] Q : ngvp[[Fu K,
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which implies 3s : Vs” € ¥, : 5" € Fi'(s) = s" € QAT € %, : & €
F”ﬁ(s) As & @Q hence s,s' : L & F¥'(s)As' € F”ﬁ(s) As & F¥(s) in
contradiction with lemma 8.2. O

Lemma 9.5 (Strictness of the iterates of F®"?) Let Fer' 5 € O be the
iterates of F& from 15°. V5 € O : FgWPé(@) = .

Proof. The proof of theorem 9.3 shows, by S. Kleene fixpoint theorem 2.3,
that V6 € @ : Fe’ = gwp[[Fngé]]. So FgWPé(@) ={seX |VdeX,  4€
Fl(s)=s' €} ={seX |Vs' €D, :5 & F'(s)}={se 3| F(s)=0}
= () by lemma 8.3. O
Lemma 9.6 (Final states of the iterates of Fs"?) Let s’ § € O be the
iterates of F& from 157, V6 € O :VQ C X : FgWPé(Q \{Ll}) C FgWPé(i').

Proof. The proof of theorem 9.3 shows, by S. Kleene fixpoint theorem 2.3,
that V6 € O : Fo' = gwp[F*']. So if s € F=*'(Q \ {1}) then Vs’ €
Y, :8 € F”é(s) — s € Q\{Ll}so L ¢ F”é(s) hence, by lemma 8.4,
Vs'e ¥, s € F”é(s) —> s’ € 7 proving that s € FgWPé(i'). 0

Total correctness is the conjunction of partial correctness and termination
in that VQ C X : 72 [Q] = 78" [Q U { L}] N 78" [X] since 758"F is a complete N-
morphism. We have ¥ C ¥ so 78"?[7] C 75*?[X] by monotony and 7&*°[¥] C
78°P[7] by lemma 9.6 and theorem 9.3 so that by antisymmetry: VQ C X :
reeQ] = e [Q U { L} e[,

9.3 E. Dikstra Weakest Conservative Precondition Semantics

E. Dijkstra’s weakest conservative precondition semantics [18]is 77 = ™ (75")

(traditionally written AQ € p(X)+ wp(7®,Q)) where the abstraction a™ =
AD. O] ) satisfies:

Lemma 9.7 (Weakest conservative precondition abstraction) (D=,
wp

D) £ (D™, D) where D™ = o(8) — (%) and v (W) = AQ+(L ¢

aVWp

QTU(Q) D).

Proof. a™?(®) D ¥ = VQ C ¥ : O (@) 2 ¥(Q) < VQ C ¥,
Q)2 (L €Q7TVQ) D) —= VO C I, : Q) 2y(V)(Q) —
O O 4vr(W). 0

Dijkstra’s weakest conservative precondition semantics 77 is an abstrac-
tion of the demoniac denotational semantics [2]:

Lemma 9.8 (Abstraction of the demoniac nondeterministic denota-
tional semantics) 7" = a"?(gwp[7']).

Proof. We have 7" = o (75"?) = o™ (gwp[r']) = A\Q € p(X)-{s € X | Vs’ €
Yi:8d€eri(s) = €@ =AQepX){seX | L&r(s)AVs' €X,:
s € ris) = s € Q} since L ¢ (). This is AQ € p(X)-{s € ¥ | Vs €
Yo (LeTs) = & € QQAN(LETH(s)NS € Tis) = & € Q)} =
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AR E€p(XN){s e ¥ |V eX (s eri(s)u{s" e X | L€ T( '} =
s eRQ=AepX){se X |VseX, s eadr)(s) = s €@} =
a"(gwplaf(TH)]) = a*?(gwp[r']) by lemma 8.6. O

E. Dijkstra’s fixpoint characterization [18] of the conservative precondition
semantics 77" will be derived from theorem 8.14, by abstraction for a given
post-condition ) C ¥:

Lemma 9.9 If Q C E then (p(F) —— o(D), D) % (p(D), D) where

a®(®) = &(Q) and v*(P) = AR-(Q CR? P ; 0).
Proof. If Q C VOA P; then Vi € A : Q C P; whence ’yQ(ﬂA P) = ﬂA’yQ(PZ') =
1€ 1€ 1€
P else Q € ﬂ P; in which case 35 € A : Q € P; whence ’yQ(ﬂAPZ') =
1EA S

YUP) =0 =~ ( ﬂ P;) proving that ¢ € p(D) —— (p(F) —— o(D)).
Moreover on(CI)) DP<=d(Q)DP <= VR:®(R)D2(Q=R?P ;D)

<= & D 4?(P) since ¢ is monotone. O

By composition of lemmata 9.9, 9.8 and theorem 9.1, we get:

Corollary 9.10 (Demoniac to weakest conservative precondition ab-

a® o aWP o o8WP

straction) For all Q C %, (X —— (X)), C) * = (p(X), D)

YEWP 0 4P oy
where a® o " o af"* = Af.gwp[f] Q.

By definition of 7% and S. Kleene fixpoint transfer theorem 2.3 applied to
the fixpoint characterization of the nondeterministic demoniac semantics se-
mantics 8.14 with the abstraction Af- gwp[f] @ for a given @ C ¥ considered

in corollary 9.10, we now obtain [19,20]:

Theorem 9.11 (E. Dijkstra’s fixpoint weakest conservative precondi-
tion semantics) 7 = AQ- lfpf Fr[Q] where F™® € (%) — o(3)
o(2) defined by F**[Q] = AP-(QNF)Uwp[r*] P = AP+ (-7UQ)Ngwp[r*] P
is a C-monotone map on the complete lattice (p(X), C, 0, ¥, U, N).

Proof. The abstraction Af+ gwp[f] @ for a given @ C ¥ is strict since gwp[[i_“]] Q
{1 07(5) Q) = {5151 C Q) = 0.

Let f9,6 € O be a T -increasing chain. We have gwp[[él;l?:o)f‘g]]Q = {s |

€
(gl_l?’o)f‘g(s) C Q}. fi(s),d € O is a C=increasing chain so that by definition
€
of the flat DCPO D= we have either ¥§ € Q : f’(s) = 1= = ¥, in which
case {s | (gl_l?’o)f‘g(s) CQRtis{s| XL CQ=0= 5U@gwp[[f5]]Q or there
€ €
exists 3 € QO and P € p(X) \ {0} such that fo(s) = L= for all § < 3 and
f%(s) = P for all § > 3. In this that case {s | (gl_l?’o)f‘g(s) CQYis{s| P CQ}
€

— U0V LI PC@l = Uls | F) QU U s | () € Q) =

6<p
5U@ gwp [[f‘g]] Q, proving Scott- contmulty.
€
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By theorems 8.8 and 8.1, we have a® o a™ o af o F!(f) = a% o
a™ o af"" o FU(f) = a® o a" o FE o of?(f) as shown in the proof of
theorem 9.3. By definition of a® and o™, this is F&?(af?(f))Q = (Q N
) U wp[r*] (e (f)(Q)) by theorem 9.3. Since @ C X, this is (Q N 7) U
wp[r*](a® o a™ o af?(f)) = F"[Q] o a® o a™ o af*?(f) by defining
F*[Q] = AP+(Q N #) U wp[r*] P thus proving the commutation property
A -gwplf1Q o ¥ = F[Q] o M- gwplf1Q. Morcover F**[Q] = AP-(Q A
FYUwp[r®] P =AP-(QN{s | Vs :n(sT )AVs €r® s € P)u{s|Is:
sT AV €r® s e P=(QNFNgwp[r*] P)U (=7 Ngwp[r*] P) =
(U (Q N 7)) ewpr] P = (=7 U Q) N swplr] P.

We conclude that 7 = o™ (gwp[r=]) = A\Q € p(X)- gvvp[[lfpf== FqQ =

AQ € p(%)- lp, F[Q]. o

9.4 E. Diykstra Weakest Liberal Precondition Semantics
E. Dijkstra’s weakest liberal precondition semantics [18] AQ € (X)) wip(7%, Q)

. A . .
is 7P = a"?(75"?) where the abstraction o™ satisfies:

Lemma 9.12 (Weakest liberal precondition abstraction) If D™ = (%)
T p(S), 07 £ X8:2Q- B(Q U {1}) and 70 (1) £ XQ-(LE Q7 W(Q);

D) then (D=, D) =——= (D", D).
Proof. a"?(®) D ¥ «—= VQ C ¥ F QUL 2 U(Q) &= VQ C X, :
Q) 2(LeQ?V(Q) D) = 2™ (V), =

Dijkstra’s weakest liberal semantics 7%'® is an abstraction of the angelic
denotational semantics [2]:

Lemma 9.13 (Abstraction of the angelic nondeterministic denota-
tional semantics) 7" = gwp[r’].

Proof. We have 7™ = o™ (75") = o™ (gwp[r]) = AQ € p(¥)-{s € &
V'eX 18 eri(s) = cQU{LI} =XQ €p(X){seX |VseX: 4
TH)NYE = & € Q=M €p(X){s € X | Vs € X:d €a’(r9)(s) =
s'€Q} =2Q € p(N){seX [ CQ}=gwp[r]. =

By lemma 9.13, theorem 8.17 and S. Kleene fixpoint transfer theorem 2.3,
we deduce [19]:

Theorem 9.14 (E. Dijkstra’s fixpoint weakest liberal precondition
semantics) 7" = \Q- gfpi FrrlQ].

Proof. Given () C X, we consider the abstraction Af.gwp[f] Q. We have
gwp[As- 0]Q = {s € ¥ | Vs’ € ¥ : € ) = & € Q} = X, proving
strictness. gwp[[,UAfi]]Q ={seX |V eX: :dc¢€ 'UAfi(s) = ¢ € Q}
XS S
={seX|[VieA: W e s e fils) = Q)= 0ew[f]0
which implies Scott-continuity. The semantic transformer is designed using
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the commutation condition F* o Af« gwp[f]Q = Af- gwp[f] Q o F**[Q] as in
the proof of theorem 9.11 since F" = I*. F"?[Q] is C-monotone. We conclude

that 77(Q) = gwp[r'] Q = gwp[[lfpj F1Q = Ifpl F» = gips P, O

10 Galois Connections and Tensor Product

The set of Galois connections between posets (respectively DCPOs, complete
lattices) (D', C*) and (D*, C*) is denoted:
(DF, C°) = (D', £ = {{a, 7) | (D", E7) == (D', ©})} .

It is a poset (resp. DCPOs, complete lattices) ((D?, C°) &= (D*, ), C' x
A

for the pairwise pointwise ordering (a, v) C' x C* (o', v 2 (a T o)Ay
y') where f E g = Va: f(z) C g(x).

The set of complete join morphisms is:
Di—s D'={aeD'— D' |YX CD :a(lf X)=1Fa"(X)}.

(also written (D!, C) —— (D, C*) when the considered partial orderings
are not understood). Dually, the set of complete meet morphisms is:

DT DA [y € D DF WY C DA (1Y) = (1))
The tensor product @ [38] ®
Definition 10.1 (Tensor product) (Dt CH@(D!, C!) = {H € p(D*x D*) |
(i) A (ii) A (iii)} where the conditions are:
() (XX A (X, Y)Y e HAY' CY) = (X, Y) € H);
(i) (Vie A (X, Y)e H) = (<i|g|iXi7 Y) e H);
(i) (Vie A: (X, Y;) e H) = ((X, ZEZYZ'> € H).

Let us define the correspondences:

1((@, 7)) = a HA(a) 2 {(z, y) € D* x D' | a(z) C' y}
2({a, 7)) = v HC(7) = {(z, y) € D* x D* | 2 E* 4(y)}
AG(y) = de-TH{y |2 T y(y)}  AH(H) = de-H{y | (v, y) € H}
CG(a) = A\y- U{x |a(z) EPy}  CH(H) = My Uz | (z, y) € H}

Theorem 10.2 (Galois connections/tensor product commutative di-
agram)

8 This is the semi-dual version, so that Z. Shmuely original definition corresponds to (D,

C*) @ (D, ).
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(Df, C%) = (D?, %), C' x 2

2| [ 2y (AG(v),v)

CH

<<Dﬁ7 |:Ii> 'L> <Dh7 Eh>7 gﬁ> < C > <<Dh7 Eh>®<Dn7 En>7 2>
H

Proof.

In a Galois connection (o, ), o is a complete join morphism so that
1 € (D" == D') —— (D* —— D!) and v is a complete meet morphism so
that 2 € (D' == D') —— (D' —— D").

To each a € D* —— D*, there corresponds a unique ~ such that D i

D! given by v = CG(a) = Ay- Uz | a(z) Cf y}. So da-(a, CG(a)) €
(D" —— D') —— (D! == D"). Dualay, Ay (AG(¥y), v) El_l(Dm —— D) —
(D" = D"). Moreover CG € (D" —— D*) —— (D* —— D") and dually
AG € (D' " D*) —— (D' — D).

We have HA € (D" Y D) —— (D" @ D) since (i) if 2 C* 2/ A ao(2') T
y' Ay’ C y then a(z) C' a(2’) by monotony so that a(x) C* y by transitivity;
(il) if Vi € Az a(x;) CF y then 'I_I”Aoz(xi) C*! y by definition of lubs so that

1€

oz('I_I”A x;) C' y since a is a complete join morphism and (iii) if Vi € A : a(x) C*
1€

n

y; then a(z) C* ZI;IL y; by definition of glbs. Dually, we have HC € (D! ——
DY) s (D' @ D).

We have (x, y) € H implies M*{y’ | (x, y') € H} C' y by definition of glbs.
Reciprocally (z, My’ | (x, y') € H}) € H by (iii) so that if N*{y" | (z, y') €
H} Ty then (2, y) € H by (i). So (x, y) € H if and only if M*{y’ | (z, ¢') €
H} C'y. Dually (z, y) € H ifand only if # C* Uz’ | (2, y) € H}. Tt follows
that for all H € D*® D*, we have AH(H)ax C' y <= Ny’ | (2, ) € H} C'y
= (z,y) € H<= o C"UY{a' | (2',y) € H} <= « C" CH(H )y proving that
(Dt T % (DF, CF) whence AH x CH € (DF @ D¥) — (Dt <= D¥).

i
It follows that AH = 1 o (AH x CH) € (D' ® D') —— (D" Y D) and
CH =20 (AH x CH) € (D' @ D") —— (D! — D).

To prove isomorphism, we assume (a, ) € D == D!, a € Df —— D!
with pointwise ordering o C' o/ =V € D' : a(z) Cf o/(z), v € D —— D"
with pointwise ordering v 2" 7/ 2 Vy € D' : y(y) 2" ¥'(y) and H € D" @ D*
with superset ordering D.

We have 2 o Ay+(AG(y), 7)(v) = v and Ay+(AG(y), 7) © 2({a, 7)) =
(AG(7), 7) = (e, 7).

Loda+(a, CG(a))(a) = a, Aa+(a, CG(a)) o 1({a, 7)) = (a, CG(a)) = .
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HC o CH(H) = {(z, y) |« C UHa' | af, ) € HYY = {(o, 4} | (2, y) € H]}
= H since we have shown that (x, y) € H if and only if  C" L*H{a’ | (2,
y) € H}. Dually, HA o AH(H) = H.

CH o HC(y) = Ay- Uz | (z, y) € HC(y)} = Ay- Uz [ 2 E* y(y)} = 7.
Dually, AH o HA(a) = a.

Since all maps in the diagram are monotone, it follows that we have Galois
connections.

Let us now check the commutation property of the diagram.

We have shown that AH = AG o CH so AH o« HC = AG o CH o HC = AG.
Dually CH o« HA = CG.

Ay +(AG(7), ) = CH(HT) = (AG(CH(IT)), CH(IT)) = (AR(IT), CH(IT)) 2
(AH x CH)(H). Similarly, Aa+(cr, CG(er)) o AH = AH x CH.

Finally, 1 o Ay<(AG(v), v) = AG and 2 o Aa+(a, CG(a)) = CG. O

11 Axiomatic Semantics

Using theorems 9.2 and 10.2, we can define the generalized axiomatic seman-
tics 78" of a transition system (X, 7) as the element HC(75") of the tensor
product p(¥) @ p(X 1) corresponding to the weakest precondition semantics
T8 or equivalently as HA(757) corresponding to the strongest postcondition
semantics 787, Writing (P)7(Q) for (P, Q) € 7%, we have (P)7(Q) if and
only if P C#™ 78**(Q) if and only if 75»(P) C#*» (). Condition (i) of definition
10.1 is the consequence rule of C.A.R. Hoare logic [23]. Conditions (ii) and
(iii) are also valid for the classical presentation of C.A.R. Hoare logic [23] but
have to be derived from the deduction rules by structural induction on the
syntactic structure of programs.

11.1  R. Floyd/C.A.R. Hoare/P. Naur Partial Correctness Semantics

R. Floyd [21], C.A.R. Hoare [23] & P. Naur [30] partial correctness semantics
is 777 = HC(7""). We get R. Floyd & P. Naur’s partial correctness verifi-
cation conditions [21,30] using E. Dijkstra’s fixpoint characterization 9.14 of
the weakest liberal precondition semantics 7% and D. Park fixpoint induction

[32]:

Lemma 11.1 (D. Park fixpoint induction) If (D, T, L, T, U, M) is a
complete lattice, F' € D —— D is C-monotone and L € D then lfpf FrcP
— I F(HCIAITCP).

Proof. For soundness (<), lfpf FCP=H{X|F(X)CX}CITC Lbhby
Tarski’s fixpoint theorem [39] and definition of glbs.

For completeness (=), I = lfpf F C P satisfies F'(I) = I by definition.O
Theorem 11.2 (R. Floyd & P. Naur partial correctness semantics)
™ ={(P,Q) € p(X)2p(X) | FT € p(X): PC T AT Cgwp[r*] I A (INF) C
Q)
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The condition I C gwp[[r*] [ is given by C.A.R. Hoare [23] while R. Floyd
& P. Naur partial correctness verification condition [21,30] corresponds more
precisely to gsp[7*] I C I which, by lemma 9.2, is equivalent.

Proof. 7" 2 HC(7") = HC(AQ- gfp, F**[Q]) = {(P, Q) € p(¥) @ p(%) |
lfpi F**[Q] 2 P} by theorem 9.14 and definition of HC. By D. Park induction
11.1, we derive {(P, Q) € p(¥) @ p(X) | I € p(X) : F*°[Q(I) 2 INT 2D P}
which, by definition of F'** in theorem 9.11, is {(P, Q) € p(¥) @ p(X) | 31 €
p(X): IS (=7UQ)Ngwp[r>[(I) AP C T} = {(P, Q) € p(X) @ p(X) | I €
oX): (INF)C QAT Cgwp[r*](I)ANP C T}, O

Writing C.A.R. Hoare triples {P}7{Q} for (P, Q) € ™", {P}r{Q} for
P C gwp[r*]Q and using a rule-based presentation of 7°%. we get a set
theoretic model of C.A.R. Hoare logic:

Corollary 11.3 (C.A.R. Hoare partial correctness axiomatic seman-
tics) {P}r={Q} if and only if it derives from the axiom:

{ewp[r*1@Q}~{Q}  (7)

and the following inference rules:

PP M@ QCQ  ARITQ) ieA
{(Py{Q} R

(Pir{Qd i | nein
{P1={0 Qi} (Nrs{ins

Proof. For soundness, rules (=), (1) and (v) follow from the definition of
o(X) ® p(X). The tautology gwp[r*] Q) C gwp[r*] ) implies the axiom (7).
Rule (7%) follows from theorem 11.2 where P = [ and Q = (I N 7).

For relative completeness, if (P, Q)) € 7°", then by theorem 11.2, there
exists an invariant [ € o(¥) such that P C I, I C gwp[[r*] [ and (I NF) C
Q. By the axiom {gwp[r*] [}7{[} and [ C I so that by the consequence
rule (=) {I}7{7}. Then by rule (=) we derive {/}7{I N7} whence by the
consequence rule (=) we prove { P}r*{Q}, Q.E.D. O

11.2  R. Floyd Total Correctness Semantics

R. Floyd [21] total correctness semantics is T = HC(7"?). We get R. Floyd’s
verification conditions using E. Dijkstra’s fixpoint characterization 9.11 of 7°
and the following induction principle:

Lemma 11.4 (Lower fixpoint induction) If (D, C, L, U) is a DCPO,
F € D+"% D is C-monotone, £ € D satisfies + C F(L) and P € D then
PEprfF<:>(EIGE(O):EIIE(6—|—1)|—>D:]OE}_/\‘V’5:0<5§6:>
rc F(C|2|5[<) APLCI.

Proof. For soundness (<=), let F°,§ € O be the increasing sequence of
iterates of F' from 4, which can be defined as F° = 4 and F° = F(CI—IS F¢) for
<
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all § > 0 [10]. We have I° C L = F° If, by induction hypothesis, V(¢ < §: I¢

C F¢ then CI_I(g[C C CI_IéFC by definition of lubs so F(I_I 14 C F(I_I F¢) by
< <

monotony proving I° = F? by hypothesis and deﬁmtlon of the 1terates. By
transfinite induction, V8 < e : I* C F9, so that in particular P C [ T F° C
c
Ifp,| F.
For completeness (=), we can always choose I° = F for all § > 0 so that
I°= 4 and I’ = F(CI_I(g]C) for all 6 € @. We have P C lfpi F = I¢ where ¢ is
<
the order of the iterates. O
Theorem 11.5 (R. Floyd total correctness semantlcs) T {(P,Q) €
Q

X))@ pX) | Jeec O: AT € (e+ 1) — p(X) : V§d < e :(%U )N
gwp[[f’]](ﬁ%é[ﬁ) NP CIY.

The verification condition is better recognized as R. Floyd’s verification
condition in the equivalent form:

Vsel': VY :=(sts)AseQ
\%
ds' s TS AVs st = (A3 < §:5 € 1P)
where the ordinal § encodes the value of R. Floyd’s variant function [20].

Proof. Follows directly from lemma 11.4, theorem 9.11 and the definition
= HC(r) = {(P, Q) € p(%) & p(S) | P C 1ipE F[Q]} where 10 C
QN7 =F[r*]0 = +. O

Writing 7. Manna/A. Pnueli triples [P]T®[Q] for (P, Q) € ", [P]7[Q)]
for P C gwp[r*] @ and using a rule-based presentation of 7", we get a set

theoretic model of Z. Manna/A. Pnueli logic [27]:

Corollary 11.6 (Z. Manna/A. Pnueli total correctness axiomatic se-
mantics) [P]7°[Q] if and only if it derives from the axiom (1), the inference
rules (=), (r), (v) and the following:

OC ~ ¢ 5C_|V . 5 ﬁ
rconrs, 5/:\1] C-7UQ, 5/:\1[[]7'[525[] -

FREa(®]
Proof. For soundness, rules (=), (1) and (v) follow from the definition of
o(X) @ p(¥) while the axiom (7) follows from the tautology gwp[r*]Q C
gwp[r*] Q. Rule (%) follows from theorem 11.5 where P = [, [° C (=7 U
Q)Ngwp[r*]0 = #NQ and for 0 < § < ¢, I° C (=7 UQ) and I° C
gvvp[[7"’]](ﬁL<J5 I%) whence [[5]7'[525 1°].

For relative completeness, if (P, Q) € 7', then by theorem 11.5, there
exists an ordinal ¢ and an invariant I € (e + 1) —— ©(X) such that forall
§ € O with § < ¢, we have I° C (=7 U Q) U gwp[[T"]](ﬁU(g]ﬁ) and P C

<

I°. For § = 0 this implies I°

C QN+ Ford§ > 1, we have I° C (=F U
Q). Moreover I° C gwp[[r"]](ﬁu 1),
<8

the axiom [gwp[[r"]]( U ]ﬁ)] [5L<J5 17

42



HOE‘LI’G o n
logics

weakest
precondition
semantics

Twlp TWP

TEWP T T

denotational ® ® ®
semantics

relational
semantics

trace
semantics

T —, abstraction
| | | | | —__equivalence
angelic  natural demoniac ___restriction

deterministic infinite

Fig. 5. The lattice of semantics

and ﬁUS I° C ﬁUS I together with the consequence rule (=) allows to derive
< <

[IS]T[ﬁU(g[ﬁ]. Then by rule (+®) we derive [[°]7®[Q)] whence [P]T®[Q)] by the
<

consequence rule (=), Q.E.D. 0

12 Lattice of Semantics

A preorder can be defined on semantics 7% € D" and 7% € D¥ when 7% = of(7¥)
'

and (D*, <) N:} (D*, <). The quotient poset is isomorphic to M. Ward
p

lattice [41] of upper closure operators v* o af on (D®, C), so that we get a
lattice of semantics which is part of the lattice of abstract interpretations of
[9, sec. 8], a sublattice of which is illustrated in figure 5.

13 Conclusion

We have shown that the classical semantics of programs, modeled as transition
systems, can be derived from one another by Galois connection based abstract
interpretations. All classical semantics of programming languages have been
presented in a uniform framework which makes them easily comparable and
better explains the striking similarities and correspondences between semantic
models. Moreover the construction leads to new reorderings of the fixpoint se-
mantics. Our presentation uses abstraction which proceeds by omitting some
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aspects of program execution but the inverse operation of semantic refinement
(traditionally called concretization) is equally important ?. This suggests con-
sidering hierarchies of semantics which can describe program properties, that
is program executions, at various levels of abstraction or refinement in a uni-
form framework. Then for program analysis of a given class of properties there
should be a natural choice of semantics in the hierarchy [8].
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