
Lecture	10:	Memory	Hierarchy
-- Memory	Technology	and	Principal	of	Locality

Locality	of	Matrix	Multiplication	and	Two	Cache	
Optimization	Algorithms	

CSCE	513	Computer	Architecture

1

Department	of	Computer	Science	and	Engineering
Yonghong Yan

yanyh@cse.sc.edu
https://passlab.github.io/CSCE513



Sources	of	locality

• Temporal	locality
– Code	within	a	loop
– Same	instructions	fetched	repeatedly

• Spatial	locality
– Data	arrays
– Local	variables	in	stack
– Data	allocated	in	chunks	(contiguous	bytes)

for	(i=0;	i<N;	i++)	{
A[i]	=	B[i]	+	C[i]	*	a;

}

2



int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Miss rate = 1/4 = 25% Miss rate = 100%

Writing	Cache	Friendly	Code

• Repeated	references	to	variables	are	good	(temporal	locality)
• Stride-1	reference	patterns	are	good	(spatial	locality)
• Examples:

– cold	cache,	4-byte	words,	4-word	cache	blocks

3



Matrix	Multiplication	Example

• Major	cache	effects	to	consider
– Total	cache	size

• Exploit	temporal	locality	and	blocking)
– Block	size

• Exploit	spatial	locality

• Description:
– Multiply	N	x	N	matrices
– O(N3)	total	operations
– Accesses

• N	reads	per	source	element
• N	values	summed	per	destination

– but	may	be	able	to	hold	in	register

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

Variable sum
held in register

4



Miss	Rate	Analysis	for	Matrix	Multiply

• Assume:	
– Cache	line	size	=	32	Bytes	(big	enough	for	4	64-bit	words)	
– Matrix	dimension	(N)	is	very	large

• Approximate	1/N	as	0.0	
– Cache	is	not	even	big	enough	to	hold	multiple	rows

• Analysis	method:	
– Look	at	access	pattern	of	inner	loop

5



Matrix	Multiplication	(ijk)

6



Matrix	Multiplication	(jik)

7



Matrix	Multiplication	(kij)

8



Matrix	Multiplication	(ikj)

9



Matrix	Multiplication	(jki)

10



Matrix	Multiplication	(kji)

11



Summary	of	Misses	of	Matrix	Multiplication

12

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)
sum += a[i][k] *

b[k][j]; c[i][j] = sum;

}

}

ijk (& jik): kij (& ikj): jki (& kji):
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {

r = a[i][k];
for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {

r = b[k][j];
for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}
}

• 2 loads, 1 store
• misses/iter = 0.5

• 2 loads, 1 store
• misses/iter = 2.0



Two	Cache	Optimization	Algorithms:
1.	Blocking	(Tiling)
2.	Cache	Oblivious	Algorithm

13



Blocking	Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

x[i][j] = r;

};

• Two	inner	loops:
– Read	all	NxN elements	of	z[]
– Read	N	elements	of	1	row	of	y[]	repeatedly
– Write	N	elements	of	1	row		of	x[]

• Capacity	misses	a	function	of	N	&	Cache	Size:
– 2N3	+	N2 =>	(assuming	no	conflict;	otherwise	…)

• Idea:	compute	on	BxB submatrix	that	fits

14



Array	Access	in	Matrix	Multiplication	

15



Array	Access	for	Blocking/Tiling	Transformation

16

• https://en.wikipedia.org/wiki/Loop_nest_optimization
• SC17 Invited Talks: Michael Wolfe, Test of Time Award Winner, 

https://www.youtube.com/watch?v=oVY8BvFao3M, an ~1 hour talk 
without slide



Blocking	Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;

};

• B	called	Blocking	Factor
• Capacity	misses	from	2N3 +	N2 to	2N3/B	+N2

• Reduce	conflict	misses	too?	
17



Cache	Oblivious	Algorithm

18
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
Cache-Oblivious Algorithms: http://supertech.csail.mit.edu/papers/FrigoLePr99.pdf



C	Implementation	of	Cache	Oblivious	Algorithm

19


