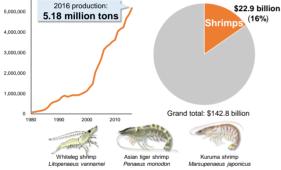
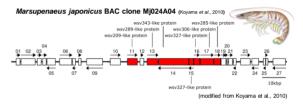

Crustacean Genome Exploration Reveals the Evolutionary Origin of Deadly Shrimp Virus

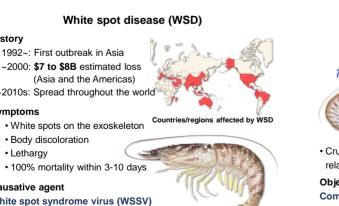
Satoshi Kawato, Hidehiro Kondo, and Ikuo Hirono Tokyo University of Marine Science and Technology, Japan

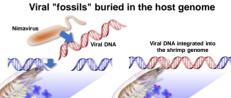

WSSV: enigmatic shrimp virus



- Double-stranded DNA virus (circular, ca. 300 kbp)
- Extremely broad host range (Lo et al., 1996; Otta et al., 1999)
- Few relatives reported: isolated taxonomic position (family Nimaviridae)
- · Little knowledge on evolution and phylogeny

Studying shrimp (and their pathogens) does matter


shrimp aquaculture production (tons) 2016 fishery commodities global export 6,000,000



Viral "fossils" buried in the host genome

- · WSSV homologs in localized in the cell nucleus as repetitive elements (Koyama et al., 2010)
- Over 30 WSSV homologs identified in M. japonicus genome (Shitara, unpublished: Wang, unpublished

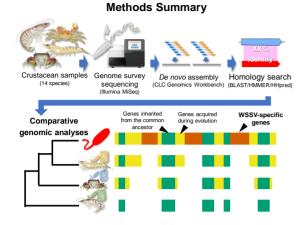
· Crustacean genomes harbor footprints of ancient WSSV relatives (nimaviruses) (Koyama et al., 2010, Huang et al., 2011; Rosenberg et al., 2015)

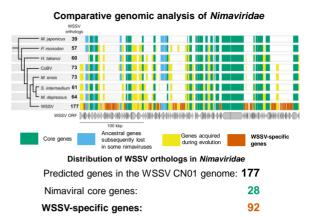
mp chromosomes taining viral DNA

Objective

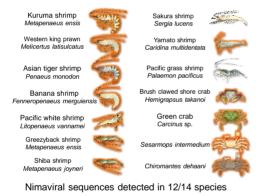
Comparative genomic analysis of (fossilized) nimavirues to elucidate the evolutionary history of WSSV

History

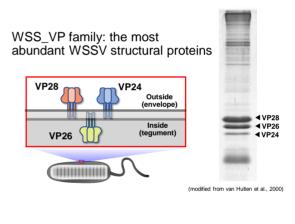

- ~2010s: Spread throughout the world

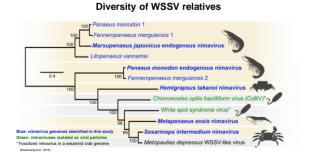

Symptoms

- · White spots on the exoskeleton
- Lethargy

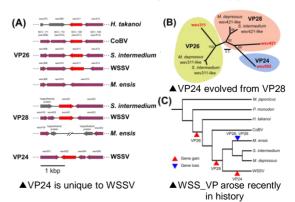

Causative agent

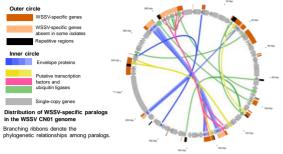
White spot syndrome virus (WSSV)





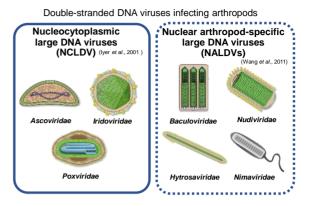
Nimaviral sequences in decapod crustaceans


Many WSSV characteristic genes are young genes

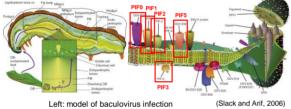


- · WSSV relatives of different "genera"
- > Diversity and long history of Nimaviridae

Many WSSV characteristic genes are young genes

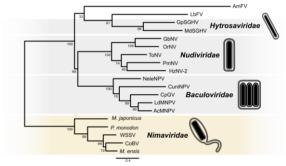


Expansion of host-viral interface by unique accessory gene duplications



- Unique paralogues accounting for 48% (42/92) of WSSV-specific genes
- WSSV-specific genes: associated with host-viral interactions
 Lacking in some isolates: non-essential accessory genes

Is WSSV a distant offshoot of baculo-like viruses?


Insect dsDNA virus protein homologs in Nimaviridae

Right: PIFs in the baculovirus envelope

Per os infectivity factors (PIFs): a set of envelope proteins conserved among insect DNA viruses, which are required for viral entry into host midgut cells

Is WSSV a distant offshoot of baculo-like viruses?

Maximum likelihood phylogenetic tree of arthropod dsDNA viruses based on seven NALDV core genes

Function Nam Nudiv Hytr wssv p47 lef-8 lef-9 vlf-1 lef-4 lef-5 DNA polymerase Helicase Nimaviridae Transcription (6 • •••••• •••• Replication (2) • • Structural proteins (12) Oral infectivity (6) p74 (PIF-0) •••• •••• ••••• pif-1 pif-2 pif-3 pif-4/19kda pif-5/odv-e56 • • • Morphogenesis (2) ac68 38K Unknown (2) vp91/p95 vp39 ac81 Others (2) : p33 • • Number of NALDV 20 20 14 7 7 Newly identified in this study (Modified from Wang et al., 2011)

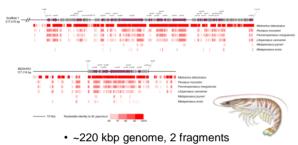
Insect dsDNA virus protein homologs in Nimaviridae

Summary

- Host genome survey revealed previously undetected diversity of WSSV relatives
- Gene duplications enriched WSSV-specific genes involved in host-viral interactions
- Insect dsDNA virus homologs in the ancestral nimavirus gene set suggest a shared phylogentetic origin of arthropod dsDNA viruses

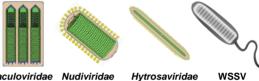
Acknowledgement

- Jumroensri Thawonsuwan
- Hiroyuki Yokooka



Reference Kawato, S., Shitara, A., Wang, Y., Nozaki, R., Kondo, H., & Hirono, I. (2018). Crustacean Genome Exploration Reveals the Evolutionary Origin of White Spot Syndrome Virus. Journal of virology, JVI-01144.

Thank you


Nimaviral core genes (28)			
Function in WSSV	WSSV ORF		
Structural proteins (11)			
Envelope proteins (2)	wsv293a, wsv327		
Capsid proteins (7)	wsv037, wsv220, wsv271, wsv289, wsv332, wsv360, wsv415		
Unknown (2)	wsv131, wsv161		
Non-structural proteins (17)			
DNA polymerase	wsv514		
Putative TATA binding protein	wsv303		
Putative protein kinase	wsv423		
Latency-related gene	wsv427		
Hypothetical protein (13)	wsv026, wsv133, wsv137, wsv139, wsv192, wsv267, wsv282, wsv285, wsv313, wsv343, wsv433, wsv440, wsv447		

Marsupenaeus japonicus endogenous nimavirus

- At least 39 WSSV orthologs
- · Most distantly related to WSSV
- · Homologs present in other 5 species

Nuclear arthropod-specific large DNA viruses (NALDV)

Baculoviridae Nudiviridae

Hytrosaviridae

- · Rod-shaped, enveloped virions
- · Circular genomes interspersed with repeat regions
- · Replication in the host cell nucleus
- NALDV core genes

(Wang et al., 2011)

Penaeus monodon endogenous nimavirus

Fragment 1 150,120 bp	des alles have seen to be dead	59 mol 12 mol 20 10 mol 12 mol 12 mol 20 10 mol 12 mol 20 10 mol 12 mol 20 10 mo		world anothin and anothin	4(7 mm)	
Fragment 2 26,000 bp		Fragment 3 Fragment 3	F. mergulensis		P monodon	90 100%

- ~200 kbp genome, 3 fragments
- At least 39 WSSV orthologs
- · Homologs present in 2 other species