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Abstract

Echocardiogram video segmentation plays an important
role in cardiac disease diagnosis. This paper studies the
unsupervised domain adaption (UDA) for echocardiogram
video segmentation, where the goal is to generalize the
model trained on the source domain to other unlabelled
target domains. Existing UDA segmentation methods are
not suitable for this task because they do not model lo-
cal information and the cyclical consistency of heartbeat.
In this paper, we introduce a newly collected CardiacUDA
dataset and a novel GraphEcho method for cardiac struc-
ture segmentation. Our GraphEcho comprises two innova-
tive modules, the Spatial-wise Cross-domain Graph Match-
ing (SCGM) and the Temporal Cycle Consistency (TCC)
module, which utilize prior knowledge of echocardiogram
videos, i.e., consistent cardiac structure across patients
and centers and the heartbeat cyclical consistency, respec-
tively. These two modules can better align global and lo-
cal features from source and target domains, leading to
improved UDA segmentation results. Experimental results
showed that our GraphEcho outperforms existing state-of-
the-art UDA segmentation methods. Our collected dataset
and code will be publicly released upon acceptance. This
work will lay a new and solid cornerstone for cardiac
structure segmentation from echocardiogram videos. Code
and dataset are available at : https://github.com/xmed-
lab/GraphEcho

1. Introduction
Echocardiography is a non-invasive diagnostic tool that

enables the observation of all the structures of the heart.
It can capture dynamic information on cardiac motion and
function [33, 11, 20], making it a safe and cost-effective
option for cardiac morphological and functional analysis.
Accurate segmentation of cardiac structure, such as Left
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Figure 1. Examples of nine frames from our newly collected
CardiacUDA dataset, which serves as a new domain adaptation
benchmark for cardiac structure segmentation from echocardio-
gram videos.

Ventricle (LV), Right Ventricle (RV), Left Atrium (LA), and
Right Atrium (RA), is crucial for determining essential car-
diac functional parameters, such as ejection fraction and
myocardial strain. These parameters can assist physicians
in identifying heart diseases, planning treatments, and mon-
itoring progress [12, 32]. Therefore, the development of an
automated structure segmentation method for echocardio-
gram videos is of great significance. Nonetheless, a model
trained using data obtained from a specific medical institu-
tion may not perform as effectively on data collected from
other institutions. For example, when a model trained on
site G is directly tested on site R, its performance can signif-
icantly decrease to 48.5% Dice, which is significantly lower
than the performance of a model trained directly on site
R, which achieves 81.3% Dice; see results of Without DA
and Upper Bound in Table 2. The result indicates that there
are clear domain gaps between echocardiogram videos col-
lected on different sites; see (c-d) in Figure 2. Therefore,
it is highly desirable to develop an unsupervised domain
adaptation (UDA) method for cardiac structure segmenta-
tion from echocardiogram videos.

To the best of our knowledge, the UDA segmentation
for echocardiogram videos has not been explored yet, and
the most intuitive way is to adapt existing UDA meth-
ods designed for natural image segmentation and medi-
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(a) CAMUS (b) Echonet (c) Site G (d) Site R

Figure 2. (a-b) two public datasets; (c-d) our newly collected Car-
diacUDA from two sites: G and R. Red, green, blue, orange and
yellow refer to the segmentation contours for left ventricle (LV),
left atrium (RA), right Atrium (RA), right ventricle (RV), and epi-
cardium of left ventricle, respectively. Table 1 outlines the advan-
tages of our dataset over CAMUS and Echonet.

Table 1. The comparison of CardiacUDA, CAMUS, and Echonet.
†: 5 frames are labelled for each video in the training set, and all
frames are labelled for each video in the validation and test dataset.

Dataset Our CardiacUDA CAMUS [22] EchoNet [32]
Video Num. 992 500 10,030

Frames Num. 102,796 10,000 1,755,250
Train/Test Labels 5 frames / Full † 2 frames / 2 frames 2 frames / 2 frames
Multiple Centers ✓ × ×
Cardiac Views 4 1 1

Resolution 720p 480p 120p
Annotated Regions LV, RV, LA, RA LV, LA LV

cal image segmentation to our task. In general, existing
methods can be grouped into 1). the image-level align-
ment methods [21, 29, 43, 37] that focus on aligning the
style difference to minimize the domain gaps, such as
PLCA [21], PixMatch [29] and Fourier-base UDA [43, 37];
2). feature-level alignment methods [19, 23, 24], such
as [23], use global class-wise alignment to reduce the dis-
crepancy between source and target domains. However,
applying these methods directly to cardiac structure seg-
mentation in echocardiogram videos generated unsatisfac-
tory performance; see results in Table 2 and Figure 5. We
thus consider two possible reasons: (1) Existing UDA meth-
ods [23, 21, 29, 43, 37] primarily focused on aligning the
global representations between the source and target do-
main while neglecting local information, such as LV, RV,
LA, and RA; see (c-d) in Figure 2. The failure to model
local information during adaptation leads to restricted car-
diac structure segmentation results. (2) Most existing meth-
ods [16, 23, 21, 29, 43, 37, 39, 44, 41] were mainly designed
for 2D or 3D images, which does not consider the video
sequences and the cyclic properties of the cardiac cycle in
our task. Given that heartbeat is a periodically recurring
process, it is essential to ensure that the extracted features
exhibit cyclical consistency [7].

To address the above limitations, we present a novel
graph-driven UDA method, namely GraphEcho, for
echocardiogram video segmentation. Our proposed
GraphEcho consists of two novel designs: (1) Spatial-wise
Cross-domain Graph Matching (SCGM) module and (2)
Temporal Cycle Consistency (TCC) module. SCGM is mo-
tivated by the fact that the structure/positions of the differ-
ent cardiac structures are similar across different patients

and domains. For example, the left ventricle’s appear-
ance is typically visually alike across different patients; see
red contours in Figure 2. Our SCGM approach reframes
domain alignment as a fine-grained graph-matching pro-
cess that aligns both class-specific representations (local in-
formation) and the relationships between different classes
(global information). By doing so, we can simultaneously
improve intra-class coherence and inter-class distinctive-
ness.

Our TCC module is inspired by the observation the
recorded echocardiogram videos exhibit cyclical consis-
tency; see examples in Figure 1. Specifically, our TCC
module utilizes a series of recursive graph convolutional
cells to model the temporal relationships between graphs
across frames, generating a global temporal graph represen-
tation for each patient. We then utilized a contrastive ob-
jective that brings together representations from the same
video while pushing away those from different videos,
thereby enhancing temporal discrimination. By integrating
SCGM and TCC, our proposed method can leverage prior
knowledge in echocardiogram videos to enhance inter-class
differences and intra-class similarities across source and tar-
get domains while preserving temporal cyclical consistency,
leading to a better UDA segmentation result.

In addition, we collect a new dataset, called Car-
diacUDA from two clinical centers. As shown in Ta-
ble 1, compared to existing publicly available echocardio-
gram video datasets [22, 32], our new dataset has higher
resolutions, greater numbers of annotations, more annotated
structure types as well as more scanning views. Our contri-
bution can be summarized as follows:

• We will publicly release a newly collected echocardio-
gram video dataset, which can serve as a new bench-
mark dataset for video-based cardiac structure seg-
mentation.

• We propose GraphEcho for cardiac structure segmen-
tation, which incorporates a novel SCGM module
and a novel TCC module that are motivated by prior
knowledge. These modules effectively enhance both
inter-class differences and intra-class similarities while
preserving temporal cyclical consistency, resulting in
superior UDA results.

• GraphEcho achieved superior performance compared
to state-of-the-art UDA methods in both the computer
vision and medical image analysis domains.

2. Related Work
2.1. UDA for Segmentation

In this section, we review the existing UDA segmenta-
tion methods for natural and medical images separately.
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Natural image segmentation. For natural image seg-
mentation, the adversarial-based domain adaptation meth-
ods [14, 29, 34, 36, 46] and multi-stage self-training meth-
ods, including single stage [5, 26, 28, 40, 47] and multi-
stage [23, 24] are the most commonly used training meth-
ods. The adversarial method aims to align the distributions
and reduce the discrepancy of source and target domains
through the Generative Adversarial Networks (GAN) [15]
framework. At the same time, the self-training generate and
update pseudo label online during training, such as applying
data augmentation or domain mix-up.
Medical image segmentation. For medical image seg-
mentation, the UDA segmentation methods can be classi-
fied into image-level [1, 39] that use GANs and different
types of data augmentation to transfer source domain data
to the target domain, and feature-level methods [16, 41],
such as feature alignment methods that aim to learn domain-
invariant features across domains.

While existing methods tend to overlook the temporal
consistency characteristics in heartbeat cycles and the local
relationships between different chambers across domains,
our proposed GraphEcho method effectively learns both
inter-class differences and intra-class coherence while pre-
serving temporal consistency. This leads to superior UDA
segmentation results.

2.2. Graph Neural Networks

Graph neural networks (GNNs) have the ability to con-
struct graphical representations to describe irregular objects
of data [17]. Also, graphs can iteratively aggregate the
knowledge based on the broadcasting of their neighbour-
ing nodes in the graph, which is more flexible for con-
structing the relationship among different components [17].
The learned graph representations can be used in various
downstream tasks, such as classification [17], object detec-
tion [25], vision-language [2], etc. Specifically, ViG [17]
models an image as a graph and uses GNN to extract high-
level features for image classification. Li et al. [25] apply
graphical representation instead of the feature space to ex-
plore multiple long-range contextual patterns from the dif-
ferent scales for more accurate object detection. GOT [2]
leverages the graphs to conduct the vision and language
alignment for image-text retrieval. There also exist some
works that use the graph to conduct cross-domain alignment
for object detection [25] and classification [10, 27]. How-
ever, these methods only capture the global graph informa-
tion for images, which is insufficient for video segmenta-
tion tasks. In this paper, our proposed GraphEcho learns
both local class-wise and temporal-wise graph representa-
tions, which can reduce the domain gap in a fine-grained
approach and enhance temporal consistency, leading to an
enhanced result.

3. Method
As shown in Figure 3, our method consists of three main

components. First, a basic segmentation network is used to
extract features and obtain prediction masks for both source
and target domain data (See Section 3.1). Then, a Spatial-
wise Cross-domain Graph Matching (SCGM) module and
a Temporal-wise Cycle Consistency (TCC) module are de-
signed to reduce the domain gap in both spatial and tem-
poral wise for echocardiogram videos (See Section 3.2 and
(See Section 3.3)).

3.1. Basic Segmentation Network

In our UDA echocardiogram segmentation, we denote
the source and target domain data as {X s,Ys} and X t, re-
spectively, where X s is the video set in the source domain,
and Ys is its corresponding label set. Note that the videos
set in the target domain X t is without the label. For clar-
ity, we sample a video frame with the label {xs,ys} from
an example {Xs,Ys} of the source domain data, where
Xs ∈ X s is a video from X s and Ys ∈ Ys is its corre-
sponding label. Similarly, we can also sample a video frame
from the target domain, i.e., xt.

The basic segmentation network consists of a feature ex-
tractor and a decoder. We first feed the xs or xt to the fea-
ture extractor to obtain fs or fs, followed by a decoder that
maps the features fs or f t to the corresponding prediction
mask, i.e., ŷs or ŷt. Then, we use the segmentation loss to
supervise the model on the pixel classification task with the
annotated source domain data as follows:

Lseg = Lbce(ŷ
s,ys) + Ldice(ŷ

s,ys), (1)

where Lbce and Ldice are the binary cross-entropy loss and
dice loss [30].

3.2. Spatial-wise Cross-domain Graph Matching

In this section, we introduce the spatial-wise cross-
domain graph matching (SCGM), which aligns both class-
wise representations and their relations across the source
and target domains. To this end, we use the graph to model
each echocardiogram frame, where the nodes represent the
different chambers and the edges illustrate the relations be-
tween them. Compared with the convolution neural net-
work, the graph can better construct the relations among
different classes explicitly [17].

In the following, we first illustrate how to convert the fea-
tures of source and target domains i.e., fs and fs to the cor-
responding graph representation, which is defined as gs and
gt respectively. After that, we introduce the graph matching
method to align the generated graph to reduce the domain
gap.
Graph construction. The graph construction aims to con-
vert visual features to graphs. Since the construction pro-
cess of the source domain and the target domain is the same,
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Figure 3. The overview of our GraphEcho framework. The source/target videos are fed into a shared backbone, generate feature
maps, and produce the segmentation result from the decoder. Spatially, we extract feature nodes from each feature map based on their
corresponding ground truth and pseudo label and, subsequently, construct complete semantic graphs suitable for intra-domain and inter-
domain matching of cardiac structures. Temporally, we aggregate temporal messages by means of recurrent graph cells, thereby clustering
heartbeat representations and enforcing temporal cycle consistency. Additionally, our method incorporates the temporal-spatial node
attention module to establish a connection between the spatial and temporal domains. Finally, the trained feature extractor and decoder are
used for inference and generating the final result.

we take the source domain for illustration. Formally, given
the feature fs and its corresponding pseudo labels ŷs for
a video frame (see definitions in Section 3.1), we conduct
graph sampling to sample the graph nodes from fs based
on ŷs, as shown in Figure 3. Specifically, we first use the
pseudo labels ŷs to segment fs into different chamber re-
gions, i.e., {fsi }. Then, in each chamber region, we uni-
formly sample m feature vectors fed into a projection layer
to obtain the node embedding vs. Based on vs, we de-
fine the edge connections es, which is a learned matrix.
Finally, the constructed semantic graph can be defined as
gs = {vs, es}. In this same way, we can also obtain the
semantic graph for the target domain, i.e., gt = {vt, et}.

Graph matching. We leverage graph matching to perform
the alignment of the source and target domain graph gs

and gt, thus reducing the domain gap. Since graph match-
ing is an optimization problem for gs and gt, the relations

between the two graphs are essential for the optimal solu-
tion [2]. Hence, we use the self-attention [35, 8] to capture
the intra- and inter-domain relations between the source and
target graph nodes, i.e., vs and vt, which can be formulated
as v̄s, v̄t = Attention(concat(vt,vs)), where concat in-
dicates the concatenation. To ensure the generated graph
nodes are classified into the correct classes, we introduce
the classification loss as follows:

Lcls = −αylog(h(v̄s))− βŷlog(h(v̄t)), (2)

where h is the classifier head followed by a softmax, and
α, β are the weights for two domains.

Then, graph matching can be implemented by maximis-
ing the similarity of graphs (including nodes and edges) be-
longing to the same class but from two different domains.
Specifically, we first obtain the adjacency matrix A from gs

and gt following to represent the relations of graph nodes.
Then, the maximizing process can be transferred into opti-
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mizing the transport distance of A. To this end, we use the
Sinkhorn algorithm [6] to obtain the transport cost matrix of
graphs among chambers, defined as A⃗ = Sinkhorn(A).
Then, our optimization target can be formulated as follows:

Lmat =
∑
p,q

I(ys
p = ŷt

q) ·min(A⃗(p, q))+

I(ys
p ̸= ŷt

q) ·max(A⃗(p, q)),

(3)

where A(p, q) is the p-th row and q-th column element on
A, I(·) is the indicator function. Eq. 3 aims to minimize the
distance between samples of the same class across different
domains while increasing the distance between samples of
different classes across domains, thus eliminating the influ-
ence of domain shift. Finally, LSCGM = Lcls + Lmat is
the overall loss of module SCGM.

3.3. Temporal-wise Cycle Consistency

In this section, we propose the Temporal Cycle
Consistency (TCC) module to enhance the temporal graphic
representation learning across frames, by leveraging the
temporal morphology of echocardiograms, i.e., the discrim-
inative heart cycle pattern across different patients. The
proposed TCC consists of three parts: a temporal graph
node construction to generate a sequence of temporal graph
nodes for each video; a recursive graph convolutional cell
to learn the global graph representations for each video; a
temporal consistency loss to enhance the intra-video simi-
larity and reduce the inter-video similarity. Note that TCC
is applied to both source and target domains; we take the
source domain for clarity.
Temporal graph node construction. Given a video Xs,
we defines its features for frames as {fsi }Ni=1, where fi is the
feature of the i-th frame and N is the number of frames in
Xs. Considering the computation cost, we use an average
pooling layer to compress the size of {fsi }Ni=1. For each
compressed feature fsi , we flatten it and treat its pixels as
graphical nodes, i.e., v̈s

i . Then, the temporal graph nodes
for the video Xs can be defined as {v̈s

i }Ni=1.
Recursive graph convolutional cell. Inspired by [42], we
propose the recursive graph convolutional cell to aggregate
the semantics of the temporal graph nodes {v̈s

i }Ni=1 for ob-
taining the global temporal representation of each video.
For the p-th node v̈s

i (p) at v̈s
i , we find its K nearest neigh-

bors N (p) on the hidden state ht
1, where N (p) ∈ ht. Then

the edge ësi (q, p) can be added directed from ht(q) to v̈s
i (p)

for all ht(q) ∈ N (p). After obtaining the edge ësi for v̈s
i ,

the message broadcast from the i-th graph to the i + 1-th
graph can be defined as follows:

ht+1 = σwgcn(v̈
s
i , ë

s
i ) + bgcn, (4)

where the σ indicates the activation function, wgcn and
bgcn are the graph convolution weight and bias, respec-

1ht is the learned parameters and the initial hidden state h0 is all zero.

Figure 4. This figure illustrates the workflow of the Recursive
Graph Convolutional Cell (RGCC), which receives the current in-
put v̈s

i and the hidden reference graph ht−1. Complete the knowl-
edge aggregation operation through the K-nearest neighbour algo-
rithm that builds the edge ës

i for v̈s
i . Finally, a graph convolution

layer for nodes representation x̄t calculation.

tively. We conduct this message broadcast for {v̈s
i , ë

s
i}Ni=1,

and obtain the final hidden state hN . The global representa-
tion for video Xs is the os, obtained by os = FFN(hN ),
where FFN is a feed forward network. Hence, the whole
process of recursive graph convolutional cell can be for-
mulated as os = RGCC(Xs). Similarly, we can ob-
tain the temporal representation for the target video Xt by
ot = RGCC(Xt).
Temporal consistency loss. For better representation learn-
ing, we leverage temporal consistency loss to make features
from the same video similar and features from different
videos dissimilar. In this paper, we use contrastive learn-
ing [18, 9], a mainstream method to pull close the positive
pairs and push away negative ones, to achieve this goal. We
regard the two consequent clips Xs

k and Xs
+ that randomly

sampled from a video Xs as positive pairs. Then, we feed
the positive clips to the recursive graph convolutional cell to
obtain the global representations, i.e., os

k = RGCC(Xs
k)

and os
+ = RGCC(Xs

+). For negative pairs, we maintain a
memory bank B consisting of representations of clips sam-
pled from different videos. Then, the temporal consistency
loss for the source domain is defined as follows:

Ls
tc = −

∑
{os

k,o
s
+}∈Ps

log
exp(os

k · os
+)∑

os
−∈B exp(os

k · os
−)

, (5)

where Ps is the set of positive pairs. We here use the dot
product to measure the similarity and use InfoNCE [31] as
the specific contrastive learning objective. Similarly, we can
define the temporal consistency loss for the target domain
as Lt

tc, and the total temporal consistency loss is Ltc =
Ls
tc + Lt

tc.
Since Ltc is applied to two domains independently, a

gap between source and target domains still exists for the
learned global representation, i.e., os or ot. Hence, we
leverage the adversarial methods [13] to eliminate the gap
between os and ot, which can be formulated as Ladv . The
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overall loss of temporal consistency is LTCC = Ltc+Ladv ,
where Ladv is the global domain-adversarial loss in our
TCC module. To summarize, the final loss of GraphEcho
is LAll = LSCGM + LTCC + Lseg , and the network is
trained in end-to-end.

4. Experiments

4.1. Datasets.

We evaluate our method on three datasets, including our
collected dataset (CardiacUDA) and two public datasets
(CAMUS [22] and Echonet Dynamic [32]). Table 1 shows
the dataset details.
CardiacUDA. We collect CardiacUDA from our two col-
laborating hospitals: site G and site R. In order to guaran-
tee all echocardiogram videos are standards-compliant, all
cases of CardiacUDA are collected, annotated and approved
by 5-6 experienced physicians. For ethical issues, we have
required approval from medical institutions.

Each patient underwent four views during scanning,
which included parasternal left ventricle long axis (LVLA),
pulmonary artery long axis (PALA), left ventricular short-
axis (LVSA), and apical four-chamber heart (A4C), result-
ing in four videos per patient. The resolution of each video
was either 800x600 or 1024x768, depending on the scanner
used (Philips or HITACHI). A total of 516 and 476 videos
were collected from Site G and Site R, respectively, from
approximately 100 different patients. Each video consists
of over 100 frames, covering at least one heartbeat cycle.

We have provided pixel-level annotations for each view,
including masks for the left ventricle (LV) and right ventri-
cle (RV) in the LVLA view, masks for the pulmonary artery
(PA) in the PALA view, masks for the LV and RV in the
LVSA view, and masks for the LV, RV, left atrium (LA), and
right atrium (RA) in the A4C view. The videos in both Site
R and Site G were divided into a ratio of 8:1:1 for training,
validation, and testing, respectively. To lower annotation
costs in the training set, only five frames per video are pro-
vided with pixel-level annotation masks. To better measure
the model performance, we provide pixel-level annotations
for every frame in each video in the validation and testing
sets.
CAMUS [22] consists of 500 echocardiogram videos with
pixel-level annotations for the left ventricle, myocardium,
and left atrium. To save the annotation cost, only 2 frames
(end diastole and end systole) are labelled in each video.
We randomly split the dataset into 8 : 1 : 1 for training,
validation, and testing.
Echonet Dynamic [32] is the largest echocardiogram video
dataset, including 10,030 videos with human expert annota-
tions. Similarly, we split videos into 8 : 1 : 1 for training,
validation, and testing, respectively.

4.2. Implementation Details

Training. All methods are built on the “DeepLabv3” [3]
backbone for fair comparison. We trained the model us-
ing the stochastic gradient descent (SGD) optimizer with a
weight decay of 0.0001 and a momentum of 0.9. The model
was trained for a total of 400 epochs with an initial learn-
ing rate of 0.02, and the learning rate was decreased by a
factor of 0.1 every 100 epochs. The batch size was set to
4. For spatial data augmentation, each frame was resized
to 384 × 384 and then randomly cropped to 256 × 256.
The frames were also randomly flipped vertically and hori-
zontally. As for temporal data augmentation, we randomly
selected 40 frames from an echocardiogram video and sam-
pled 10 frames as input equidistantly. We followed the same
training and data augmentation approach for the CAMUS
and Echonet dynamic datasets as we did for our dataset.
Validation and Testing. We chose the model with the high-
est performance on the validation set and reported its results
on the testing set. During the inference stage, we only used
center cropping as the preprocessing.

4.3. Comparison with the State-of-the-Art Methods

Results on CardiacUDA. We compare our method with ex-
isting state-of-the-art UDA methods [23, 24, 19, 21, 29, 43,
43, 37, 40] in the computer vision domain. Furthermore,
considering the similar visual appearances of different do-
mains, we also compare our method with several state-of-
the-art semi-supervised segmentation methods [4, 45, 38],
where images in the source domain are considered as la-
belled images, and images from target domain are treated
as unlabelled images.

The performance is evaluated on two settings, as shown
in Table 2. Our method demonstrated superior performance
compared to the best-performing method [37], achieving a
3.9% and 6.2% improvement on averaged Dice under two
settings, respectively. Notably, our method can surpass
the best semi-supervised segmentation methods [38, 45] by
10% and 11.6% on averaged Dice under two settings, re-
spectively. This comparison further highlights the signifi-
cant domain gaps between site G and site R, demonstrating
the effectiveness of our developed UDA method. Figure 5
shows the visualization of the segmentation results, where
our method outperformed the other methods.
Results on our CardiacUDA, CAMUS, and Echonet. Ta-
ble 3 shows the results of our UDA methods under six set-
tings with three datasets. a → b indicates that a is the
source domain and b is the target domain. We can see
that our method can achieve excellent performance under
six settings. Notably, as shown in Echo → CAMUS, our
method can achieve 87.6% and 82.4% on Dice for EDV and
ESV, respectively, which are very close to the upper bound
of this setting. We also compare our method with state-
of-the-art methods on different settings in Table 3, which
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Table 2. Results on CardiacUDA dataset. “Without DA”: evaluating the model trained on the source domain directly on the target domain.
“Upper Bound”: evaluating the model trained on the target domain with labels directly on the same domain. “Avg.” refers to the averaged
Dice score over four views, including LVLA, PALA, LVSA, and A4C. All results are reported in Dice score (%)

Method site G (source) −→ site R (target) site R (source) −→ site G (target)
LVLA PALA LVSA A4C Avg. LVLA PALA LVSA A4C Avg.

Semi-Supervised Segmentation Methods
CPS [4] 63.2±0.9 60.5±1.1 57.0±0.8 64.2±1.0 61.2±0.7 64.9±1.4 63.3±1.1 59.8±0.6 61.0±1.9 62.2±1.4

PC2Seg [45] 64.1±0.8 58.2±0.6 70.2±0.9 63.9±1.2 64.1±1.1 63.7±1.0 64.4±1.0 65.2±1.3 67.0±0.9 65.1±0.8

U2PL [38] 66.2±1.2 62.9±1.5 69.1±0.9 64.4±1.4 65.6±1.6 62.1±1.2 61.5±1.1 61.9±1.0 65.0±0.5 62.7±0.9

Unsupervised Domain Adaptation Methods
Without DA 53.5±0.4 42.8±0.7 47.6±0.6 50.1±1.0 48.5±0.7 55.2±0.5 47.4±0.6 49.1±0.3 52.8±0.9 51.1±0.5

CCM [23] 13.5±2.6 10.3±3.8 13.0±3.2 20.7±2.9 22.3±3.5 17.8±4.0 14.2±3.1 25.7±2.9 16.6±3.2 18.6±3.0

Caco [19] 40.7±2.4 39.9±2.6 28.4±2.1 34.1±1.9 35.8±2.3 36.2±3.0 35.9±2.6 27.0±1.8 38.3±2.5 32.7±2.8

RIPU [40] 36.0±2.3 34.9±2.8 25.8±3.0 31.1±1.9 31.9±2.2 27.4±2.1 36.2±1.7 32.5±1.9 34.9±2.6 32.8±2.4

CPSL [24] 35.4±1.4 45.1±1.6 39.7±1.5 51.2±1.3 42.6±2.0 44.2±1.6 53.0±2.3 39.5±1.5 42.6±2.0 44.8±1.9

PLCA [21] 58.2±1.7 21.0±4.9 40.2±3.6 60.3±2.3 44.9±3.1 60.1±2.9 38.8±3.0 42.9±2.7 59.4±2.6 50.3±2.9

PixMatch [29] 60.8±1.8 52.7±1.6 56.0±1.8 66.5±1.5 59.0±1.7 62.9±2.0 49.0±3.2 63.2±2.1 69.9±1.8 61.3±1.8

FDA [43] 67.3±2.0 65.5±1.5 54.8±2.3 64.3±1.9 63.0±1.5 65.8±1.7 63.2±1.8 61.9±2.1 64.5±1.5 63.9±1.8

FDA-MBT [43] 64.4±0.9 65.1±0.8 61.7±1.1 70.1±1.3 65.3±1.2 66.3±0.9 64.9±1.4 67.2±0.6 71.3±0.9 67.4±0.8

FADA [37] 70.1±1.2 68.3±1.4 76.1±0.7 72.4±0.6 71.7±0.8 69.9±0.9 67.7±1.0 74.5±1.4 70.0±0.5 70.5±1.1

Ours 73.9±1.2 75.5±1.3 76.8±0.4 76.3±0.7 75.6±0.9 73.3±1.0 74.9±1.2 80.2±0.3 78.2±0.5 76.7±0.5

Upper Bound 79.1±0.4 82.4±0.6 82.1±1.0 81.4±1.2 81.3±0.5 80.5±1.4 79.2±0.8 83.3±1.6 83.9±0.2 81.7±0.8

Table 3. Results on CAMUS, Echonet dynamic and CardiacUDA datasets. As only LV segmentation labels are provided in these three
datasets, we report the results on the dice score of LV segmentation. “EDV” and “ESV” refers to the Dice score of LV segmentation results
at end-systole and end-diastole frames, respectively. All results are reported in Dice score (%)

Method CAMUS→Echo Echo→CAMUS Ours→Echo Ours→CAMUS Echo→Ours CAMUS→Ours
EDV ESV EDV ESV EDV ESV EDV ESV Avg. Avg.

Without DA. 69.2±1.4 66.2±2.2 64.3±0.9 59.6±1.7 34.1±1.4 33.8±2.2 31.0±0.9 32.4±1.7 22.9±1.6 19.2±1.4

U2PL [38] 63.2±0.9 67.8±0.9 57.2±1.1 60.1±1.2 49.5±0.9 51.3±0.7 43.1±0.9 46.7±1.2 36.5±1.0 34.3±0.8

Caco [19] 55.9±1.5 56.0±1.3 47.3±1.3 49.0±1.2 38.6±3.4 40.8±2.6 46.1±1.9 45.5±2.2 29.6±1.8 26.8±2.3

RIPU [40] 64.3±1.2 67.7±1.0 70.2±0.6 68.2±0.9 46.9±0.7 47.4±0.7 56.0±1.2 51.5±1.4 36.2±1.7 31.7±2.0

PLCA [21] 71.1±0.4 69.3±0.5 72.9±0.8 68.3±0.7 51.9±0.9 49.7±0.9 52.4±1.4 52.1±1.2 35.3±1.1 36.1±0.8

FDA [43] 78.8±1.1 75.4±1.0 76.2±0.4 74.1±0.5 55.6±0.4 54.0±0.6 56.8±0.5 56.1±0.3 38.4±1.5 37.9±1.2

FADA [37] 77.5±0.8 76.5±0.5 78.6±0.8 76.6±0.6 54.1±0.6 52.0±1.0 57.4±1.0 55.2±0.8 41.7±1.1 39.0±0.9

Ours 83.4±0.7 81.8±0.9 87.6±0.4 82.4±1.0 61.2±0.5 61.8±0.7 66.3±0.3 64.9±0.4 46.2±1.3 44.0±1.6

Upper Bound 93.4±0.6 90.5±1.3 89.3±1.1 87.9±0.8 93.4±0.6 90.5±1.3 89.3±1.1 87.9±0.8 81.3±0.9 81.3±0.6

shows our method outperforms all other methods with sig-
nificant improvement.

4.4. Ablation Study

Effectiveness of SCGM and TCC. Table 4 shows the ef-
fectiveness of our proposed SCGM and TCC. “Base” indi-
cates the basic segmentation network. The results show that
adopting SCGM can largely improve the base model from
48.5% to 74.3% under setting G → R. However, only apply-
ing TCC shows limited improvements over the base model.
This is mainly because the TCC is designed to jointly train
unlabelled data and construct better graphical representa-
tion in a temporal manner, which does not include any op-
eration that focuses on narrowing the domain discrepancy,
leading to limited adaptation results. The combination of
SCGM and TCC can achieve the best performance.

Ablation study of SCGM. Since there are two loss func-
tions, i.e., Lcls (Eq. 2) and Lmat (Eq. 3) in SCGM, we ab-
late their effects in Table 5. The results illustrate that us-
ing Lcls and Lmat alone can only achieve limited improve-
ments. This is because only using Lcls can not align the rep-
resentations from different domains well while only using
Lmat may perform the erroneous alignment, e.g., align the
features of LV to those of RV. By combining two losses, we
can conduct the correct class-wise alignment and achieve
significant improvement.
Ablation study of TCC. We explore the effects of two loss
functions (Ltc (Eq. 5) and Ladv) in TCC in Table 6. In this
ablation study, we use SCGM as the baseline model, which
has been ablated. We can see that both Ltc and Ladv can
benefit the model, and using two losses can achieve the best
performance. For the visualisation of the effectiveness of
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Table 4. Effectiveness of SCGM and TCC.
Results report in averaged Dice score.

SCGM TCC Dice Scores (%)
G→R R→G

Base 48.5±0.7 51.1±0.5

Base + SCGM 74.3±1.0 71.3±0.7

Base + TCC 55.3±0.8 53.0±1.2

Ours 75.6±0.9 76.7±0.5

Table 5. Effect of Lcls (Eq. 2) and Lmat

(Eq. 3) in SCGM.

Lcls Lmat
Averaged Dice Score (%)
G→R R→G
48.5±0.7 51.1±0.5

51.9±1.2 53.7±1.3

53.4±1.6 54.0±1.5

74.3±1.0 71.3±0.7

Table 6. Effect of Ltc (Eq. 5) and Ladv in
TCC.

Ltc Ladv
Averaged Dice Score (%)
G→R R→G
74.3±0.7 71.3±0.5

74.4±1.1 75.6±0.9

74.1±0.9 73.5±1.0

75.6±0.9 76.7±0.5

Figure 5. We visualize three video frames to show the segmentation results. Red, green, blue, and cyan indicate refer to the segmentation
regions for the right Atrium (RA), left ventricle (LV), right ventricle (RV), and left atrium (LV), respectively.

Table 7. Analysis of different attentions. “None” denotes that no
attention module is applied in our framework, while the “Inter”,
“Intra”, and “Inter-Intra” refers to cross-domain, internal domain,
and dual (cross+internal) attention, respectively.

Method Site G −→ Site R
LVLA PALA LVSA A4C Avg.

None 68.1±2.2 69.8±0.9 71.4±1.3 73.3±0.4 70.7±1.2

Inter 70.5±1.5 72.6±1.3 72.0±0.8 73.5±0.4 72.2±1.0

Intra 72.1±0.5 71.5±0.8 75.2±1.7 74.6±0.7 73.4±0.9

Inter-Intra 73.9±1.2 75.5±1.3 76.8±0.4 76.3±0.7 75.6±0.9
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Figure 6. Dice score of the segmentation result for each frame in
a video example. The x-axis represents the frame indexes in the
video, and the y-axis is the corresponding Dice score.

the TCC module, figure 5 illustrates the segmentation result
generated by our framework with the TCC module is able
to present more consistent performance (marked by the red
line) in a video. The results without the TCC module or
disabling the domain adaptation perform worse on segmen-
tation consistency.
Effect of the types of attention. As shown in Table 7, we
compare different node attention methods. The results show

that inter-intra attention achieves the best performance in
our datasets, which indicates the relations between different
domains are important to improve the performance.
TCC can learn temporal information. Figure 5 shows
the Dice score for each frame in a video example. Com-
pared to results without using TCC, our method produces
better results with enhanced temporal consistency, showing
the effectiveness of the TCC module in learning temporal
information.

5. Conclusion and Limitation
In this paper, we introduced a newly collected Car-

diacUDA dataset and a novel GraphEcho method for car-
diac structure segmentation from echocardiogram videos.
Our GraphEcho involved two innovative modules, the
Spatial-wise Cross-domain Graph Matching (SCGM) and
the Temporal Cycle Consistency (TCC) module. These
two modules are motivated by the fact that the structure
of different cardiac structures is similar across different pa-
tients and domains and the cyclical consistency property of
echocardiogram videos. Our approach enables improved
UDA segmentation results by effectively aligning global
and local features from both source and target domains,
thereby preserving both inter-class differences and intra-
class similarities. Experimental results showed that our
GraphEcho outperforms existing state-of-the-art UDA seg-
mentation methods. In our future work, we will explore how
to represent objects with complex contours in other med-
ical domains with more efficient representation and con-
ducted the graph-based method on more complicated sce-
narios such as CT and MRI in future work.
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