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a b s t r a c t

In the last few years, there have been several revolutions in the field of deep learning, mainly headlined
by the large impact of Generative Adversarial Networks (GANs). GANs not only provide an unique
architecture when defining their models, but also generate incredible results which have had a direct
impact on society. Due to the significant improvements and new areas of research that GANs have
brought, the community is constantly coming up with new researches that make it almost impossible
to keep up with the times. Our survey aims to provide a general overview of GANs, showing the latest
architectures, optimizations of the loss functions, validation metrics and application areas of the most
widely recognized variants. The efficiency of the different variants of the model architecture will be
evaluated, as well as showing the best application area; as a vital part of the process, the different
metrics for evaluating the performance of GANs and the frequently used loss functions will be analyzed.
The final objective of this survey is to provide a summary of the evolution and performance of the
GANs which are having better results to guide future researchers in the field.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Generative Adversarial Networks (GANs) are specific Artificial
eural Networks (ANNs) architectures that were introduced in
014 by Ian GoodFellow [1]. Generative Adversarial Networks
GANs) are a type of generative models based on game theory
here ANNs are used to mimic a data distribution. Since they
ere firstly introduced, GANs have supposed a large change in
he synthesized data generated by Artificial Intelligence (AI).

Due to their success, the number of GAN related researches
as increased exponentially [2]. These researches have focused
n different aspects of the models, from optimizing their training
3,4] to applying GAN to new fields such as language genera-
ion [5], image generation [3,6], image-to-image translation [7,8],
mage generation in text description [9], video generation [10],
nd other domains [11] achieving state-of-the-art results.
GAN models are capable of replicating a data distribution

nd generating synthesized data, applying a certain standard
eviation to create new and never seen before data. Due to the
articularities of GANs, one of the fields were they have supposed
change in the quality of the synthesized data is in computer
2

vision. Although there were previous models [12–14], GANs have
shown to generate sharper results [15].

The main peculiarity of GANs lies in their training, where it is
based on game theory, where two neural networks compete in a
min–max game. Both networks must optimize their correspond-
ing objective functions, generating a situation where two players
compete for opposites objectives.

Fig. 1 shows how the GAN architecture is composed. Due to
this architecture complexity, GANs suffer from instability during
their training [16–18]. The instability of training in these models
gives rise to problems such as mode collapse, so that researches
have been made to tackle this kind of problems [19–23]. As [24]
defines, mode collapse happens when the GANs model generates
the same class outputs with different inputs.

Because of the considerable variety of fields in which GANs
are applied [25], the variety of different GAN architectures is
wide [7,8,26]. This research focuses on outlining the fields where
GANs have achieved better results. We will review the different
GAN architectures that exist, how they are structured, and how
they are adapted to fulfill the particularities of each problem.

Although we will explain different GAN architectures, it should
be noted that, when new GAN models are created, they usually
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Fig. 1. Architecture of a GAN model.

ombine the different results of previous researches. Most of the
odels that we will present are usually overlapped to achieve
etter results.
GAN surveys are usually focused on GAN models structure

16,27] or their application in certain tasks [28,29]. Because we
ill focus on novel GAN architectures, this survey can be identi-

ied as the first type. Nevertheless, in the final steps of this survey,
e will review how different GAN architectures are applied to
eal world problems.

This survey focuses on contextualizing the recent progress in
he GAN field, reviewing the different variants that have been
ately presented and how they address the main problems of
raining GANs. We provide a complete view of the GAN structure
nd particularities, then we contextualize the main problems that
he networks suffer. We also summarize how GAN performance
s measured, explaining the most used metrics that researchers
se. During the different sections we outline how the presented
rchitectures treat the different problems that we have charac-
erized. Finally we propose a classification of GANs based on their
pplication, for each class we review the progress that the main
ariants have followed and we compare their results.

. Related work

Several other surveys of GANs published during the last years
27,30–33] have been studied to investigate the recent trends.
or example, [16] focus on the instability issues that GANs suffer
nd show different ways to minimize it. The results suggest that
ome novel architectures try to control GAN’s training, while this
ontrol can be achieved by focusing on tuning hyper-parameters.
t also emphasizes that much of the theoretical work does not
ulfill in reality, which causes some GANs to convergence when
hey should not and not converge when they should.

Few surveys have been conducted to explore several ap-
roaches to optimize the loss function of GAN. This research
pproach tries to enhance the similarity between original and
ynthesized data distributions by defining an appropriate loss
unction. Surveys such as [34] are focus on analyzing the state-
f-the-art GANs and further analyzing the performance of a huge
ariety of networks. In addition, they propose a set of recom-
endations of which loss function works best for each case of
se.
Other works focusing on the applications of GANs instead of

heir composition or loss function. For example, [35] focus on
ow different GAN’s architectures have been used during the
ast years for different problems, while [28] shows the different
rchitectures for computer vision and their applications.
Due to the constant evolution of GANs during the last few

ears, these reviews are outdated almost instantaneously. As a
esult of some relevant and recent researches like [11,36,37]
3

cannot be found in any recent GAN review [25,38]. We consider
that a new and more complete review must be done, covering the
researches that previous reviews did not fill in and contributing
to a deeper and more thorough analysis of the state-of-the-art of
GANs.

3. Structure of this survey

This survey is structured as follows. Section 4 is a concise in-
troduction of GAN composition and principles, we will also sum-
marize the common problems that GANs suffer to then review
the different solutions proposed to each problem. The different
evaluation metrics are also reviewed, we address each metric
strengths and weaknesses.

Section 5 reviews the most important GANs proposed since
their introduction in 2014, paying special attention to the GANs
proposed in the recent years. This section is divided in two types
of GANs, the ones focused on improving the architecture of the
GAN and the ones that tries to improve the GAN performance by
changing its loss function behavior. This section also includes a
new taxonomy of the reviewed articles and a timeline to have a
clear vision of how the research in this field has been developed.

Section 6 summarizes the most important application of GAN
architecture related to computer vision tasks. This section also
includes GANs applied to other domains different than image
generation, paying special attention to the treatment of different
types of data, such as molecular composition or medical imaging.

Finally, Section 7 discuss the actual situation of GAN with
the development of new architectures such as diffusion models
or transformers. Here, we describe the potential of these new
models in comparison with GAN (see Table 1).

4. Generative Adversarial Networks (GANs)

In this section, we will review the basic characteristics of
GANs, their structure, composition, and common problems. We
will especially focus on GAN problems because most of the GAN
architectures [39,40] are created to minimize the training prob-
lems.

4.1. Definition and structure

GANs are an architecture composed of various neural net-
works, their objective is to replicate a data distribution in an
unsupervised way. To achieve it, they are composed of two neural
networks that play a two-player zero-sum game. In this game, the
network called the Generator (G) is in charge of creating new data
samples replicating, but not copying, the origin data distribution;
while the Discriminator (D) tries to distinguish real and generated
data.

From a formal point of view, D estimates p(y|x), that is, the
robability of a label y given the sample x; while G generates a

sample given a latent space z, which can be denoted as G(z).
This process consists in both networks competing. While G

tries to generate more realistic results, D improves its accuracy
detecting which samples are real and which not. In this process,
both competitors are synchronized, if G creates a better output,
it will be more difficult for D to differentiate them. On the other
hand, if D is more precise, it will be more difficult for G to fool
D. This process is a minimax game in which D tries to maximize
the accuracy and G tries to minimize it. The formulation of the
minimax game loss function can be denoted as:

min
G

max
D

L(D,G) = Ex∼pr log[D(x)] + Ez∼pz log[1 − D(G(x))] (1)

where x ∼ pr is the distribution of the real data and z ∼ pz
denotes the probability distribution of the latent space of G. z ∼
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z is commonly a Gaussian or uniform noise that G uses to model
new samples of data denoted as G(z). D function is to differ-
ntiate between the real distribution D(x) and the synthesized

distribution D(G(x)).
According to the equation, the initial publication where the

GANs where presented [1] proved the existence of a unique
solution. This solution is called Nash Equilibrium (NE) and it
happens when neither player can improve their loss [41].

Several researches have demonstrated that reaching the NE
might not be possible in practice [42,43] or the unique solution
[44].

4.2. Common problems

Due to GAN’s particularities previously described, there are
some aspects in GAN’s training [45] to which special attention
should be given.

In addition of summarizing the different main GANs problems,
during Section 5 we will connect the different GAN architectures
with the problems that they tackle. It should be noted that the
recent proposed architectures tries to minimize the different GAN
issues to optimize their models.

4.2.1. Mode collapse
The objective is to generate synthesized data from a latent

space, which requires not only quality in the generated data, but
generalization and diversity in the different synthesized samples.
In other words, GAN models should be able to recreate new
unseen data. Mode collapse occurs when the same class outputs
are generated by different inputs from the latent space [46].

There are studies [21] that shows how the quality and diver-
sity of GANs are correlated. Many efforts [20,47,48] have been
taken to tackle mode collapse, but it is still an open problem.

In practice, it is not common for GAN’s model to generate
always the same output with different inputs [49], this issue is
known as complete mode collapse. This type of error occurs rarely,
however, it is a common problem that occurs in a partial form
or partial mode collapse, in which a high number of outputs
are identical. For example, in image generation, partial mode
collapse happens when different outputs contain the same color
or texture. It has been proven [49] that mode collapse lacks the
convergence of the GANs even when NE is found.

Many of the recently proposed GAN variants tries to re-
duce the mode collapse problem. For example there has been
proven that Wasserstein GAN (WGAN) reduces mode collapse
[20,48,50].

4.2.2. Gradient vanishing
GAN’s training must be balanced, both G and D need to be syn-

chronized to learn together progressively [46,51]. A very accurate
D is capable to differentiate between the real and synthesized
data, this can be denoted as D(x) = 1 and D(G(z)) = 0. The
loss function in this case approaches to zero, generating gradients
close to zero and providing little feedback to the G. On the other
hand, a poorly accurate D cannot differentiate between real and
synthesized data, providing to G useless information.

4.2.3. Instability
Due to the particularity of GANs, the combination of two

models learning from each other is a complex task. GAN training
is based on a zero-sum game where both networks compete to
find its particular solution, playing a minimax game.

This architecture of models is based on cooperation to opti-
mize the global loss function, but the problems that D and G must
optimize are opposite. Due to the particularity of the objective
4

Table 1
Summary of the survey.
Section Content

4

Subsection Generative Adversarial Networks (GANs)
4.1 Definition and structure
4.2 Common problems
4.3 Evaluation metrics

5

Subsection GAN variants
5.1 Architecture optimization
5.1.1 DCGAN
5.1.2 CGAN
5.1.3 ACGAN
5.1.4 InfoGAN
5.1.5 Pix2Pix
5.1.6 CycleGAN
5.1.7 DualGAN
5.1.8 DiscoGAN
5.1.9 GANILLA
5.1.10 ProGAN
5.1.11 DGGAN
5.1.12 StyleGAN
5.1.13 Alias-Free GAN
5.1.14 SAGAN
5.1.15 BigGAN
5.1.16 YLGAN
5.1.17 QuGAN
5.1.18 EQGAN
5.1.19 CEGAN
5.1.20 SSD-GAN
5.1.21 MIEGAN
5.2 Loss function optimization
5.2.1 WGAN
5.2.2 WGAN GP
5.2.3 LS-GAN
5.2.4 lsGAN
5.2.5 UGAN
5.2.6 Realness GAN
5.2.7 SNGAN
5.2.8 CSGAN
5.2.9 MISS GAN
5.2.10 Sphere GAN
5.2.11 SRGAN
5.2.12 WSRGAN
5.3 GAN timeline

6

Subsection GAN applications
6.1 Image synthesis
6.2 Image-to-image translation
6.3 Video generation
6.4 Image generation from text
6.5 Language generation
6.6 Data augmentation
6.7 Other domains
6.7.1 GameGAN
6.7.2 Medical imaging GANs
6.7.3 GANs in agriculture
6.7.4 Drug discovery using GANs

7 Discussion

function of the networks, there can be times during the training
where a small change in one of the networks can lead to a big
change in the other, in turn producing further changes. Those
intervals in which both networks start to desynchronize their
states are very delicate since large changes in the gradients can
lead to a network losing its learning [26,52].

It should be noted that instability periods tend to generate
more instability, making the problem last longer. Networks can
reverse the instability process, but even if it happens, it will cost
the training performance.

Many of the last proposed GAN architectures are focused on
stabilize their training [3,26]. By stabilizing the training, it is
usually achieved a better performance of the networks, this is
why most of the last progress involve a more stable training.



G. Iglesias, E. Talavera and A. Díaz-Álvarez Computer Science Review 48 (2023) 100553

4

d
m
t
f
n
i
b

4

t
r
p
s
b
d

f
b
s
a
a

s

4

s
c
i

.2.4. Stopping problem
Traditional neural networks have to optimize a loss function

ecreasing monotonically, in theory, the cost function. Due to the
inimax game that GANs have to optimize, this does not happen

o them [44,53,54]. In a GAN training, the loss function does not
ollow any pattern, so it is not possible to know the state of the
etworks by their loss function. This causes that, when a training
s occurring, it is not possible to know when the models have
een fully optimized.

.3. Evaluation metrics

Due to GAN’s particularity, there is not an unique metric
o measure the quality of the synthesized data [5]. One of the
easons of why there is no consensus among researches is the
articularity of each GAN application. As mentioned in previous
ections, GANs can be used to replicate any data distribution,
ut it depends on the particular problem how to measure the
ifferences between the origin and synthesized distributions [55].
As there is not an unique universal metric to measure the per-

ormance of these kinds of models, during the last years there has
een developed different metrics. Each metric has its particular
trength and it should be noted that, in practice, different metrics
re used and compared to measure different aspects and to have
wider view of the GAN performance [49].
Since there is not an evaluation metric that fulfills all GAN pos-

ible applications, we will review the most widely used metrics:

.3.1. Inception Score (IS) and its variants
IS [45] measures the quality and diversity of the generated

amples of a GAN. To do so, it uses a pretrained neural network
lassifier called Inception v3 [56]. The model is pretrained us-
ng a dataset of real world images called Imagenet [57], it can
differentiate between 1.000 of classes of images.

The IS is calculated by predicting the probabilities of the
generated samples. A sample is classified strongly as one specific
class means that it has high quality. In other words, it is assumed
that low entropy and high quality data are correlated. The IS value
varies between 1 and the number of classes of the classifier.

One of the main problems of the IS is that it cannot handle
mode collapse. In this case, all generated samples by the GAN
will be practically the same, but the IS would be very high if the
images are strongly classified as one class. If this happens, the IS
could be high and the real situation is very bad.

Other particularity of this metric is that it is designed to
measure the quality of images since it uses an image classifier.

Based on IS, there are some modifications to the metric. For ex-
ample, Mode Score (MS) [58] is a evaluation metric that takes into
account the prior distribution of the labels over the data, i.e. it is
designed to reflect the quality and diversity of the synthesized
data simultaneously.

Other modification of IS is the modified-Inception Score (m-
IS) [59]. It measures the diversity within the same class category
output, trying to mitigate the mode collapse problem.

Some of them, like Fréchet inception distance (FID) [43] cal-
culate the mean and covariance of the synthesized images and
then calculate the distance between the real and generated image
distribution. The distance is measured using the Fréchet distance,
also known as the Wasserstein-2 distance. The FID is calculated as
follows:

FID = |µ − µw|
2
+ tr(Σ + Σw − 2(ΣΣw)1/2) (2)

where w denotes the synthesized data of the G.
The FID is the most common used metric to measure the

quality of generated images [3,6,60,61]. The use of a common
metric for different architectures allows to compare different
5

results using a common metric. In further sections we will go
through different results comparing them using FID.

One of the strengths of using this metric is that it takes into
consideration contamination such as Gaussian noise, Gaussian
blur, black rectangles, swirls, among others.

4.3.2. Multi-scale structural similarity for image quality (MS-SSIM)
is based on the comparison between two image structures,

luminance and contrast at different scales [62]. The MS-SSIM
provides a metric that compares the similarity between the real
and the synthesized dataset. One of the strengths of MS-SSIM is
that it correlates closer pixels with strong dependence. In com-
parison with other metrics such as Mean Squared Error (MSE),
that calculates the absolute error of an image, MS-SSIM provides
a metric based on the geometry and structure of the image.

The MS-SSIM scale is based on Structural Similarity Index
Measure (SSIM), and this metric is calculated as follows:
SSIM(x, y) = [lM (x, y)]αM

·

M∏
j=1

[cj(x, y)]βj [Sj(x, y)]γj
(3)

where x and y are two windows of image of common size, l is
the luminance of an image, c the contrast and S the structure.
The value of SSIM is a decimal between 0 and 1, the value of 1
represents two identical sets of data. Therefore, it is assumed that
the higher value of SSIM, the higher quality of the synthesized
images.

MS-SSIM is calculated using the average pairwise of SSIM
with N batches. This metric is commonly used with IS or its
variations [63] to provide a wider view of the generated data
quality.

4.3.3. Classifier Two-sample Test (C2ST)
To measure the quality of the generated distribution, a binary

classifier can be used [64]. The classifiers divide the samples into
synthesized and real ones, judging whether different samples
belong to the same data distribution.

It should be noted that this method is not constrained to image
evaluation, since a classifier can be used to classify any given data
distribution, it can be adapted to any type of input data.

1-Nearest Neighbor classifier (1-NN) [65] is a type of binary
classifier used to evaluate GAN performance. 1-NN is a variant of
C2ST that does not require hyper-parameter tuning. C2ST using
1-NN is known as C2ST-1-NN.

Neural networks can be used as a C2ST, as mentioned in
previous sections, D is indeed a classifier of real and generated
data. As is proposed in [65], a C2ST can be applied to GANs by
using the same composition of the discriminator, as is said in
the paper ‘‘training a fresh discriminator on a fresh set of data’’.
C2ST-Neural Network (C2ST-NN).

Using C2ST, we can measure the distance between the synthe-
sized and real data distributions. This provides a useful, human-
interpretable metric of GAN performance. C2ST has been applied
to different GANs architectures such as DCGAN or CGAN, using
C2ST-NN and C2ST-1-NN [65].

4.3.4. Perceptual path length
Using the well-known neural network classifier VGG16 [66]

the perceptual path length was designed [6] to measure the
entanglement of images. The embeddings of consecutive images
are calculated using VGG16, interpolating random latent space
inputs, then it is calculated how the synthesized images changes.

Drastic change means that, for a minimum change in the latent
space there are multiple features that are changing, that means
that those features are entangled under the same representation.
This metric measures how well the GAN is learning the different
features of the input images, measuring the entanglement of the
generated images.
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.3.5. Maximum Mean Discrepancy (MMD)
is used to measure the distance between two distributions

67]. A lower score for MMD means that the distributions that are
eing compared are closer, and that means that the synthesized
ata is similar to the original.
Given distributions P and Q and a kernel k. As it is defined

n [68], MMD can be denoted as:

k(P,Q) = ∥µP − µQ∥
2
H = EP[k(x, x′)]

−2EP,Q[k(x, y)] + EQ[k(y, y′)]
(4)

It should be noted that this method can be used with any type
of data.

4.3.6. Human rank (HR)
Human classification can be useful in some cases. Either to

complement other evaluation metrics, either because there is not
other metric that fulfills the particular problem, human evalua-
tion of the generated data can be done.

Due to the particularity of this method, it can only be used
when the synthesized data is comprehensive for a human.

For example, in [7,8] human classifications were applied via
Amazon Mechanical Turk (AMT) to evaluate the realism of the
outputs of the GAN. In this case, participants had to differentiate
between the generated and real images. The more images that
fool humans perception, the better.

This method can provide an approximation of how GANs
creation would be perceived by humans.

5. GAN variants

Since the first GAN was developed [1] there has been pub-
lished many different variations of it [3,6,8,26]. To have a broad
vision about recent GAN researches, we will review the recent
progress in this field.

This section is divided into GAN models according to their
main features. That said, we will divide the different GAN’s vari-
ations in architecture modification based and loss function mod-
ification based.

5.1. Architecture optimization

Some recent researches [3,6,7] are focused on the architecture
of the GAN is designed. Some of them [3] suggest a change in
GANs training, others [6] add changes to the structure of the G or
D models.

Despite this, we will review traditional GAN’s architecture, we
will focus on models that are relevant for GAN recent develop-
ment. It should be noted that the collection of architectures that
we will review should not be considered individually.

GAN model evolution is supported by constant optimization.
Therefore, to have a complete vision of GAN evolution, we will go
through the different models that have been relevant in the last
years.

5.1.1. Deep Convolutional GAN (DCGAN)
One year after, the first GAN was proposed in 2014 [1], the DC-

GAN was introduced [69] suggesting some changes to the original
architecture. The main objective of the DCGAN is to use con-
volutional layers instead of the firstly proposed fully connected
layers.

The main change to the fully connected GANs is the substi-
tution of the dense layers by convolutional layers. Convolutional
layers have been used during the last decade for computer vision
tasks. By applying different filters to the images, the convolu-
tional layers are able to extract the main features of the matrix
of pixels keeping the correlation between adjacent pixels.
6

Convolutional layers are used not only used for image process-
ing, but there are recent projects [70] that use matrices of data
to take advantage of using convolutional layers.

In addition to the convolutional layers, other changes were
suggested to stabilize the GAN’s training. Replacing the pool-
ing layers by strided convolution has shown better performance
[71,72]. Therefore, it is proposed to use strided convolutions in
both G and D.

The use of batch normalization layers in both G and D is
proposed, this has been shown to reduce the noise and improve
the diversity of the generated samples [73,74].

To activate the convolutional layers, it is proposed to use a
Rectified Linear Unit (ReLU) activation for the hidden layer of
G, hyperbolic tangent (tanh) for the output layer of G and leaky
rectified linear unit Leaky Rectified Linear Unit (LeakyReLU) for
D.

In addition to the mentioned changes in the architecture of
the GANs, the DCGAN paper also presents a technique to visualize
the filters learned by the models. This helps the comprehension
of GANs learning methods, confirming previous works related to
biology [75].

This architecture supposes a change in how GANs are designed
and trained. The innovations that were proposed in the paper are
applied in most of the following GAN models.

5.1.2. Conditional GAN (CGAN)
Proposed in 2014 [76], the CGAN architecture adds a latent

class label c along with the latent space. The new label is used
to split the processed data into different classes, thus the synthe-
sized data is generated according to the class of the input label.
There are some problems that require the generated data to be
classified into different classes [77–79].

Despite being a simple technique, it has proven to prevent
mode collapse. However, the training of a CGAN requires a labeled
dataset complicating its application to some problems.

CGAN architecture has influenced GANs model since its propo-
sition, there has been developed many variations [8,80,81].

5.1.3. Auxiliary Classifier GAN (ACGAN)
ACGAN [81] modifies the CGAN structure. The D of the ACGAN

does not receive the class label c as an input, instead D is used to
classify the probability of the image class. To train the model, the
loss function must be modified, dividing the objective function in
two parts, one for the correct source of data and the other for the
class label. ACGAN loss function can be denoted as:
Ls = E[logP(S = real|Xreal)]

+E[logP(S = fake|Xfake)]
(5)

Lc = E[logP(C = c|Xreal)]
+E[logP(C = c|Xfake)]

(6)

where Ls is the log-likelihood of the correct data distribution and
Lc is the log-likelihood of the correct class label.

5.1.4. Interpretable Representation Learning by Information Maxi-
mizing GANs (InfoGAN)

One of the mentioned deficiencies of conditional GANs was the
requirement of a labeled dataset. InfoGAN [80] provides an archi-
tecture to train conditional GANs with an unsupervised method.
To do so, the latent class label c is substituted by a latent code
vector.

The latent space and the latent code are maximized by using
the Mutual Information [82]. The mutual information term is
not easy to calculate because it requires the posterior P(c|x).
To optimize the training performance, an auxiliary distribution
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(c|x) is defined. Said so, the loss function of the InfoGAN is
efined as follows:
in

G,Q
max

D
VInfoGAN (D,G,Q ) = V (D,G)

−λLI (G,Q )
(7)

where λ is a hyperparameter that is in charge of the latent code
control. As it is proposed in the original paper [80] a λ equal to
1 is used when the latent code is discrete, for continuous latent
codes a smaller λ should be used. The reason for that is to control
the differential entropy.

5.1.5. Image-to-Image Translation with Conditional Adversarial Nets
(Pix2Pix)

The main objective of the Pix2Pix [8] architecture is to do
an image-to-image translation. That is, given an image from a
domain A, transform this image to other domain B. For example,
given a map of a street, transform the map to an aerial photo of
the street on the map.

The Pix2Pix architecture is based on an autoencoder, but skips
some connections. This architecture is known as U-Net, and it
is based on the idea of retrieving information at early stages of
the network. The same approaches of skipping connections have
been used before [83–86] showing great results and improving
the network performance.

In addition to the new architecture, a new loss function is
proposed that is denoted as:

LGAN (G,D) = Ey[logD(y)]
+Ex,z[log(1 − D(G(x, z)))]

(8)

As a follow-up of Pix2Pix, Pix2PixHD was proposed [87] im-
proving the quality of the generated images. Many later works
have used Pix2Pix [88–91] converting it to one of the most
popular architectures of the last decade.

The immediate application of these algorithms to images has
had a great impact on society, radically increasing its popularity
thanks to the applications developed.

5.1.6. Cycle-Consistent GAN (CycleGAN)
Cyclic consistency is the idea that, given a data x from a do-

main A, if the data is translated to a domain B and translated again
to the A domain it should be recovered the data x. In other words,
if a sample is translated to a domain and recovered from that
domain, it should not change. This process, where a data sample
is transformed and recovered, is known as cycle consistency, and
it has been widely used during the last decades [92,93].

This idea is the main base of CycleGAN [7]. The main strength
of the application of cycles is that paired data is not a require-
ment. GAN architecture adds a new mapping denoted as F, its
function is to do the inverse mapping to retrieve the original data.
In other words, the function of F is F (G(x)) = x. To train the
architecture, a new cycle consistency loss is proposed to train
the so-called forward and backward cycle consistency. The cycle
consistency loss is denoted as follows:

Lcycle(G, F ) = Ex pdata(x)[∥F (G(x)) − x∥1]

+Ey pdata(y)[∥G(F (y)) − y∥1]
(9)

Despite CycleGAN was first proposed for image-to-image
translation, it can be used for any data translation.

5.1.7. Unsupervised Dual Learning for Image-to-Image Translation
(DualGAN)

The architecture of DualGAN [94] is very similar to CycleGAN.
As it was with the CycleGAN, the DualGAN does not require
paired data to train its models. To learn the translation from one
data domain to another, DualGAN has two pairs of identical G and
D, each pair is responsible for their respective translation.
 m

7

To stabilize the training and prevent mode collapse, the loss
format of WGAN [26] is used. This marks the architecture of the
network and the construction of the objective function.

In order to train each pair of G and D a reconstruction error
term is defined. The reconstruction error objective is the same
that it was in CycleGAN, calculating the distance between the
original sample of data and its corresponding recovered sample.
The reconstruction error is defined as:
lg (u, v) = λU∥u − GB(GA(u, z), z ′)∥

+λV∥v − GA(GB(v, z ′), z)∥
−DB(GB(v, z ′)) − DA(GA(u, z))

(10)

hile U and V are both domains, λU and λV are two constant
arameters and z and z ′ are both random noises. λU and λV are
ormally set a value within [100.0, 1, 000.0], when the domain
contains real images (e.g. a human face photo) and V does not

e.g. a sketch of human face), it is more optimal to use a smaller
alue of λU than λV .
DualGAN has been widely used and modified [95–97]. For

xample, in [98] a DualGAN architecture was used to transform
n input speech emotion. In this application, given the Funda-
ental Frequency (F0) of a certain emotion, the trained network

s capable of changing the emotion of the sound. To do so, F0
s encoded using wavelet kernel learning [99] using the same
ethodology as [100].

.1.8. Learning to Discover Cross-Domain Relations with GANs
DiscoGAN)

DiscoGAN [101] is an architecture that follows the same struc-
ure as DualGAN and CycleGAN. The particularity that DiscoGAN
as is the usage of an autoencoder for the G. For D, it uses a
lassifier based on the encoder of the G.
Autoencoders have been used to other reconstruction

roblems [102–104], so applying of this architecture to domain-
o-domain translation problems can benefit from their partic-
larities. Autoencoders are based on the idea of reducing the
imensionality of the input data, then they reconstruct the same
nformation. By doing the dimensional reduction, the network is
apable of maintaining the essential features of the input data. In
he case of domain-to-domain translation, by using autoencoders,
he architecture is capable of maintaining the main features of
sample and translating this core information to other specific
omains.
The results presented in the original work show how GANs can

earn high-level relationships between two complete different
omains. In the experiments carried out in the research, it was
emonstrated how the networks discovered relationships such as
rientation. E.g., pairing images of chairs and car with the same
rientation.

.1.9. GANILLA
The GANILLA [105] architecture modifies the structure of the
of the GAN for image style transfer. The main objective of the

ariant is to maintain both the content and the style of an image,
revious methods usually lack one of this aspects in favor of the
ther. The main idea of the GANILLA is to do the style transfer of
n image balancing style and content.
The architecture of GANILLA uses low-level features to main-

ain the content of the image at the same time as the style
ransfer is done. The G model is based on two stages, one for
ownsampling the input image and the other for upsampling
he information of the first stage. This architecture ensures that
he style transfer maintains the input features of the image but,
n addition, some layers concatenate features of previous layers
uch as edges, shapes or morphological features. With these two

ethods, the architecture controls both content and style.
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Fig. 2. Structure of the proposed architecture of the GANILLA. Figure based on Ref. [105].
Fig. 3. Training schedule of ProGAN. Figure based on Ref. [3].
The downsampling stage is based on ResNet-18 [83] but with
kipped connections. This skipped connections then feed the up-
ampling module. The architecture of the GANILLA can be ob-
erved in Fig. 2
For training the models, the cyclic consistency method of the

ycleGAN [7] is used. This way, two pairs of G and D are used to
ap both domains.
The results of the GANILLA show the good performance, in

pecific for children’s book illustration dataset. Due to the partic-
larities of the images of children’s books, being highly contrasted
mages with abstract objects, previous architectures had difficulty
o do the style transfer. However, with the usage of low level
eatures of the GANILLA, it is achieved an improvement of the
verall performance.

.1.10. Progressive Growing of GANs (ProGAN)
Training a complex model can lead to strong instability. To

ackle the instability of GANs models, ProGAN [3] proposes a
raining methodology based on a growing architecture. The idea
f a progressive neural network was previously proposed [106].
The main idea behind progressive networks is the concatena-

ion of different training phases. In each phase, a model is trained
nd, as the trainings are developed, the model number of layers
ncreases. This way the created model scales up gradually stabi-
izing the training. The strength of this architecture is that, due
o the simplicity of the first model, the networks are capable to
earn properly the simplest form of the problem and then use the
earned characteristics to scale up little by little the complexity of
he problem. With each new phase, it is important to emphasize
hat the weights of the networks remain trainable, letting them
o adapt to the new phases. A scheme of the progressive training
f ProGAN can be seen in Fig. 3.
Due to the explained training methodology, ProGAN is capable

o stabilize the training of GANs, which is one of the most impor-
ant GAN problems. In addition, ProGAN’s training methodology
peeds up the training phase and produces images of state-of-
he-art quality, e.g. achieving an inception score of 8.8 in the

nsupervised CIFAR-10 [107] dataset.

8

The ProGAN described in the original paper used the Gra-
dient Penalty WGAN (WGAN-GP) [4] loss format, despite that
ProGAN architecture can be applied to any loss function. ProGAN
training methodology has been implemented in many recent
researches [108,109].

5.1.11. Dynamically Grown GAN (DGGAN)
DGGAN [110] proposes a new training methodology based on

ProGAN. The architecture of the networks of DGGAN not only
grow periodically, they rather grow dynamically adapting their
architecture and parameters during the training.

The DGGAN questions some aspects of GANs such as the
symmetry between G and D or layer choice. The new methodol-
ogy can automatically search the optimal parameters, respecting
ProGAN growing strategy was previously defined.

The DGGAN starts with a base D and G, the training alternates
between training steps and the growing of the network. To grow
the network, a set of child architectures are created. Each child
has the same architecture as the parent, but each child proposes
a different growing change to the network. During the training
children architectures are trained, initializing the weights of the
inherited parent layers with their respective parent weights.

In the proposed dynamic growing algorithm, each step chooses
among different growing possibilities: grow G with a certain
convolution layer, grow D with a certain convolution layer, or
grow both G and D to a higher resolution. A scheme of the training
methodology can be seen in Fig. 4.

If all children were preserved in each step, it will produce
an exponential growing that would lead to large inefficiency.
To avoid that, before the children generation, a prune is made.
Known as greedy prune, the prune is done by keeping the top K
children of each generation. Then each child becomes a parent
and generates a new batch of children. The process repeats until
the network grows to the desired size.

In the original research, the child search was made combining
different kernel sizes and number of filters, each parameter is
known as an action, and the number of total actions is denoted
as T . It can be easily noted that different hyperparameters can
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Fig. 4. Training methodology of DGGAN. Figure based on Ref. [110].
e searched by using this algorithm. To avoid a large increment
f the number of children, the algorithm proposes a probability
of a child to test a new parameter. A higher K , T and p

means a wider search, contributing to a better exploration of the
candidates but a slower training.

It should be noted that the search algorithm lacks the ef-
ficiency of the architecture by having to do multiples training
simultaneously. It also lacks the ability of growing, due to the
quick growing of the number of networks.

5.1.12. A Style-Based Generator Architecture for Generative Adver-
sarial Networks (StyleGAN)

StyleGAN [6] is based on the idea that, improving the pro-
cessing of the latent space, the quality of the generated data
will improve. Due to the particularities of the latent space, there
are many interpolations on the variables [111,112] that produces
entanglement in the learned characteristics of the G. The ar-
chitecture of the StyleGAN is based on previous style transfer
researches [113].

With the architecture of StyleGAN, G is capable to learn dif-
ferent styles of the input data disentangling high-level charac-
teristics. This produces an improvement on the quality of the
generated data and helps in the interpretation of the latent space,
previously poorly understood. Controlling the latent space leads
to better interpolation properties, enabling interpolation oper-
ations in different scales, e.g., interpolation of poses, hair or
freckles in human face images.

In the StyleGAN architecture, the input of G is mapped to an
intermediate latent space called W , then is used in each convo-
lution layer via an Adaptive Instance Normalization (ADAIN). In
addition to the latent space, gaussian noise is added to the output
of each convolution layer.

The StyleGAN architecture uses the training methodology used
in ProGAN, supporting the previously mentioned idea that each
research should not be considered as an isolated result. The
9

paradigm of investigation is supported by the continuous mixing
of new techniques.

Said so, the StyleGAN improves the quality of the generated
images of the ProGAN, achieving a FID score of 5.06 in CelebA-HQ
dataset and 4.40 in FFHQ dataset.

5.1.13. Alias-free GAN
During the last years, multiples architectures have been im-

proving the quality of the synthesized images. The previously
mentioned StyleGAN achieved one of the best results in image
generation, producing images of human faces with a quality never
seen before. Besides its good results, some problems remain
opened.

One of the most visible problems that generated images of
StyleGAN had was the known as texture sticking. It happens when
a certain image feature depends on absolute coordinates instead
depending on other feature localization. E.g. the texture of the
beard of a human face seems stuck when interpolating different
images. The texture sticking problem is noticeable especially
when interpolating images, e.g. changing the posture of a human
face image.

Alias-Free GAN [60] focus on solving the texture sticking prob-
lem of the StyleGAN. The main idea is to suppress the alias in
the generated images, this way the finer details will be attached
to the underlying surface of the image. To achieve this, each
layer of G is designed to be equivariant by applying rotations and
translations to the continuous input.

To achieve an equivariant G, many changes have been made.
A 10-pixel margin is used for the internal representations, due to
the assumption of infinite spatial extension for the feature maps.
The Leaky ReLU layers are wrapped between an upsampling and
a downsampling, this is implemented with a CUDA kernel for
optimization. The cutoff frequency of the StyleGAN is cut off to
ensure the alias frequencies are in the stopband. In addition,
the learned input constant of StyleGAN is substituted by Fourier
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Fig. 5. Self attention layer of SAGAN. Figure based on Ref. [116].
eatures [114,115]. Finally, the rotation equivariant version of
he network is obtained by reducing the kernel size of 3 × 3
convolutions to 1 × 1 and changing the sinc-based downsampling
to a radially symmetric jinc-based one.

5.1.14. Self Attention GAN (SAGAN)
SAGAN [116] architecture covers the problem of local spatial

information of images. I.e. images that have different components
correlated in different positions of the image can be difficult
to cover because the receptive field of the network is not big
enough. In SAGAN, the generation of different features is made
considering cues from all images. In addition, SAGAN D is capable
of evaluating the consistency of features along the image.

SAGAN uses self attention layers [117], these layers are ca-
pable to capture structural and geometric features of multiclass
datasets. The feature maps of each convolution are split into
a 1 × 1 convolution in query, key and value, then they are
multiplied to construct the output of the layer. This way the
network can learn long-range dependencies. The structure of the
self-attention layer can be seen in Fig. 5.

5.1.15. BigGAN
The BiGAN architecture [118] focuses on generating high res-

olution images from diverse datasets. Previous models results
were able of synthesize new samples of low dimensionality, they
had problems when scaling their results to bigger samples. The
results achieved by the BigGAN, in terms of FID and IS outperform
previous models.

The researches of the BigGAN claim that GANs have better
performance when they use higher dimensional data. The archi-
tecture of the BigGAN is based on the SAGAN [116] architecture.
The authors show that, by enlarging the number of channels of
the images used by a factor of 50%, the IS improve by a factor of
21%.

One innovation proposed in this article is the so-called ‘‘Trun-
cation Trick’’. Previous GAN models used a normal or uniform
distribution to generate the latent space of the G network. The
authors claim that by using a truncated normal distribution the
results, in terms of FID and IS, were better. This truncation trick
reduce the variety of values of the latent space by truncating
them towards zero. The main drawback produced by this is that
the variability of the generated samples is reduced. It exists a
relationship between the variety and fidelity of the generated
samples using this truncation. The more truncation applied to the
latent space, the less variety of images were produced.

Other aspect that is scaled up in this work is the batch size of
the GAN training, increasing it by a factor of 8. The authors show
that by using larger batches the gradients of each iteration are
better, reaching a better performance in less steps. This is caused
because the composition of each batch is more diverse, being able
of covering more modes of the data.
10
5.1.16. Your Local GAN (YLGAN)
YLGAN [61] proposes a new attention layer that substitutes

the SAGAN dense attention layer [116]. This new layer preserves
two-dimensional image locality and contributes the flow of in-
formation through the different layers. To preserve the two-
dimensional locality and quantify how information flows through
the model, the framework of Information Flow Diagram (IFD)
[119] is used.

The modification of the self attention layer of SAGAN in-
troduces sparse attention layers. This new method reduces the
quadratic complexity of the attention layer by splitting the atten-
tion into multiple subsets of data. The main problem of the sparse
attention layer is that, besides its computational optimization, it
lacks the information flow of the network. To tackle this infor-
mation flow graphs are introduced, these graphs will be used to
support Full Information through the layers of the network.

The results show how applying the new layer improves the
quality of the images compared to the SAGAN generated images.
The architecture of the SAGAN, modifying the dense attention
layer and preserving the rest parameters is called YLG-SAGAN.
YLG-SAGAN not only improves the FID of SAGAN, reducing it
score from 14.53 to 8.95, furthermore it optimizes the training
time to around a 40%.

5.1.17. A GAN Through Quantum States (QuGAN)
During the last decade, quantum computing has become a hot

topic in computer science. Since it was proposed in 1980 [121] it
has always been restricted to a few laboratories around the world.
Thanks to the progress made recently [122], it has made possible
to test the first algorithms, prototypes and ideas [123].

Thanks to quantum computing particularities, problems pre-
viously defined can be solved, or are optimized, reducing their
computation time. Using quantum superposition, the multiples
solutions can be evaluated simultaneously, then by using quan-
tum interference and entanglement the correct answer can be
defined.

QuGAN [124] proposes a GAN architecture powered by quan-
tum computing. By using quantum computing, GANs are hugely
optimized, reducing a 98.5% of its parameter set compared to
traditional GANs.

QuGAN architectures use qubits to create the quantum layers
of G and D, known as QuG and QuD. The data that the networks
use is transformed into quantum states.

5.1.18. Entangling Quantum GAN (EQGAN)
EQGAN [125] proposes a variation of the previously proposed

quantum GANs. Benefiting from the entangling properties of
quantum circuits, EQGANs guarantees the convergence to a NE.

The main particularity of EQGAN is that it performs quantum
operations on both synthesized and real data. This approach
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Fig. 6. Structure of the proposed enhanced D of the SSD-GAN. Figure based on Ref. [120].
produces fewer errors than swapping the data between quantum
and classical.

To apply EQGAN to real problems, a Quantum Random Access
Memory (QRAM) is used. By using the QRAMs, the EQGAN is
capable to improve the performance of the D.

5.1.19. Classification Enhancement GAN (CEGAN)
Data imbalance is a common problem when using real world

datasets. Dataset often contains a majority of samples of a certain
data class. In the case of GANs using unbalanced datasets, the
imbalance problem results in poor quality of the synthesized data
of the class with less samples.

CEGAN [40] tries to solve the data imbalance problem in GAN.
The objective is to enhance the quality of the synthesized data
and to improve the accuracy of the predictions.

The CEGAN architecture consists of 3 different networks, G, D
and a new network known as the classifier (C). The training of the
CEGAN divides in two steps. In the first step, the architecture is
normally trained, using D to differentiate between fake and real
samples, C is used to classify the class label of the input sample.
Then, in the second step, an augmented training dataset is formed
via generating new samples from G, and this new dataset is used
to train the C.

The methodology presented in CEGAN substitutes previous
techniques to deal with data imbalance. Unlike other methods
such as undersampling [126] or oversampling [127] CEGAN does
not modify the original dataset. This way, some problems of
the traditional methods are avoided, e.g. shortening the original
dataset by undersampling or redundant information by oversam-
pling with geometric transformations.

5.1.20. SSD-GAN
The SSD-GAN [120] tackles the problem of high frequency

samples in GANs. The described problem causes high spectrum
discrepancies between the real and the synthesized samples. The
SSD-GAN proposes to alleviate this discrepancy to enhance the
quality of the synthesized data.

The idea behind the architecture is to reduce the gap of spec-
trum discrepancy, combining the spectral realness and the spatial
realness of each sample, to do so a new D is defined. The new
proposed D is known as Dss and it combines D and a classifier C.
D is in charge of measuring the spatial realness of an image, this
is the same approach of the D of the traditional GAN [1]. The new
proposed C is in charge of the known as spectral classification, this
is, measure the difference of the specters of synthesized and real
11
data. The C objective function is called spectral classification loss
and it is defined as:
Lspectral = Ex∼pdata(x)[logC(φ(x))]

+Ex∼pg (x)[log(1 − C(φ(x)))]
(11)

One of the strengths of the SSD-GAN is its simplicity, easing
implementation and allowing its implementation on various net-
work architectures without excessive cost. The Fig. 6 shows how
both spatial and spectral information are processed by the new D
proposed for the SSD-GAN.

SSD-GAN results show the potential of the proposed architec-
ture. The quality of the images enhances the results of previous
architectures, e.g. reducing the FID score of the StyleGAN [6] from
4.40 to 4.06 by including the spectral classification.

5.1.21. Mobile Image Enhancement GAN (MIEGAN)
The MIEGAN [128] presents a novel architecture that aims

to improve the quality of images taken with a mobile phone.
To do so, two new networks are proposed, the so-called multi-
mode cascade generative network and the adaptive multi-scale
discriminative network. The generative network is composed of
an Autoencoder architecture. The encoder of this new generator
is divided into two streams, the inclusion of the second encoder
is in charge of improving the low luminance areas, where mobile
phones particularly lack in their clarity.

The discriminator network has a dual goal. First, the global dis-
criminator ensures overall image quality. Second, a local discrim-
inator maintains the local quality of small areas of the image. To
combine both objectives, an adaptative weight allocation module
is also proposed that is responsible for balancing the importance
of each discriminator.

A brief scheme reviewing all presented architecture variant
GANs can be seen in Fig. 7. We divide the different architecture-
based GANs in different groups based on the proposed changes.
The illustration gives a global view of how are interconnected
different researches of the last years.

5.2. Loss function optimization

Orthogonal to the architecture modification GANs, there are
many researches [18,26,129] that focuses on the objective func-
tion of GANs. For example, the instability problem of GANs is
actually caused by the Jensen–Shannon divergence, where D often
wins over G. Along with architecture optimization GANs, there
have been developed loss optimization researches, where both
approaches coexist and interact with each other.

In this section, we will review the different most important
and recent progress in variations of the loss function of the GANs.
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.2.1. WGAN
The base of the WGAN [26] is the application of the Earth

over (EM) distance, also known as Wasserstein-1 distance. The
asserstein distance is defined as:
(Pr ,Pg ) = inf

γ∈Π (Pr ,Pg )
E(x,y)∼γ [∥x − y∥] (12)

In other words, the Wasserstein distance calculates the cost
f transforming the distribution Pr to the distribution Pg . In the

case of GAN, the Wasserstein distance will measure the difference
between the real and synthesized data distributions.

In order to apply the new objective function, some changes
must be applied to the architecture of GANs. The D of the GAN
changes its objective, but previously D was used to distinguish
which data was real and which was synthesized in WGAN D
change its name to critic. The critic function is to measure the
realness of an image, e.g. the probability that the image belongs
to the real distribution. The weight change of the critic is fixed
between a window (e.g. between [-0.01, 0.01]) after each gradient
update. The weight clipping is done to make the parameters lie
in a compact space, due to the change of the critic network.

The EM distance has shown to produce better gradient behav-
ior than other metrics. The results of the original paper show that,
compared with the classical GAN loss function, the WGAN has
better behavior in terms of convergence, mode collapse avoiding
and stability. Particularly in low-dimensional manifold distribu-
tions, WGAN has shown to outperform traditional JS and KL
divergences [130]. Other important benefit of WGAN is that the
loss correlates with the quality of the synthesized samples and
converges to a minimum.

WGAN is one of the most adopted variants, due to its ca-
pacity to deal with instability and mode collapse. Many later
GAN variants [6,106] use the WGAN loss function along with
their own changes. For example, the Multi-marginal Wasserstein
GAN (MWGAN) [131] proposes a new objective function based on
WGAN for multi marginal domain translation.
12
5.2.2. WGAN-GP
In the original paper of WGAN, the authors suggest that weight

clipping is ‘‘a terrible way to enforce Lipschitz constraints’’. Weigh
clipping is one problem that the original WGAN had, but it
worked well enough and its implementation was easy. The
WGAN-GP [4] proposes a new technique to substitute the weight
clipping that leads to the WGAN with undesired behavior.

The proposed change involves constraining the critic gradient
norm output regarding to the input of the network. The constraint
is softened via a penalty on the gradient norm. say that the new
loss function is denoted as follows:

L = E∼
xPg

[D(
∼

x)] − Ex∼Pr [D(x)]+

λE∧
x∼P∧

x

[(∥∇∧
x
D(

∧

x)∥2 − 1)2]
(13)

The new change makes the WGAN-GP optimize its training,
stabilizing it with almost no hyperparameter tuning. The new loss
function also improves the quality of the generated images over
WGAN and converges faster.

5.2.3. Loss-Sensitive GAN (LS-GAN)
In order to measure the quality of the synthesized samples

of data created by G, a new loss function is used in the LS-GAN
[129]. The new loss function aims to use regularization theory
to improve the performance of GANs architecture. The main idea
behind the new loss function is that a real sample produces
smaller losses than a synthesized one, the margin between both
is predefined. Once this assumption is set, we can infer that
the training of G must aim at minimizing the loss margin be-
tween real and synthesized images. The proposed loss function
is denoted as follows:
min
D

LD = Ex∼pr Lθ (x) + λEx∼pr
z∼pz

(∆(x,G(z))
(14)
+Lθ (x) + Lθ (G(z)))+
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Fig. 8. Comparison between sigmoid cross entropy loss function (a) and least squares loss function (b).
Source: Figure from Ref. [18].
min
G

LG = Ez∼pz Lθ (G(z)) (15)

here λ is a hyperparameter for balancing and θ are the param-
eters of D.

The loss function is regularized via Lipschitz regularity condi-
tion over the density of the real data. Due to the regularization,
the created models are better in generalization of new data.

5.2.4. Least Square GAN (LSGAN)
The new loss function presented in LSGAN [18] aims to reduce

the vanishing gradient problem. The main objective of the LSGAN
is to punish the synthesized samples that are far from the real
data but still in the correct side of the decision boundary. The
least squares loss function is denoted as follows:

min
D

VLSGAN (D) =
1
2
Ex∼pdata(x)[(D(x) − b)2]

+
1
2
Ez∼pz (z)[(D(G(z)) − a)2]

(16)

in
G

VLSGAN (G) =
1
2
Ez∼pz (z)[(D(G(z)) − c)2] (17)

here a and b are the labels for fake and real data respectively
nd c is the label that G wants D to believe is real data. It should
e noted that the square of both equations is responsible for
unishing far from the decision boundary samples.
The LSGAN tries to generate more gradients while penalizing

amples that lie a long way from the decision boundary. This way
he gradients are forced to be higher, preventing the gradient van-
shing problem. Compared to the classical sigmoid cross entropy
oss function of GANs, the new least squares loss is flat only at
ne point as we can see in Fig. 8.

.2.5. Unrolled GAN (UGAN)
The UGAN [39] loss function is defined to prevent instability

n GANs training. The idea behind UGAN is to dynamically adapt
and D to prevent the situation of unbalance, where one of the
etworks is more trained than the other. Commonly, due to the
articularity of the problem to solve, the D problem is easier to
olve than the G one, producing an imbalance in favor of the D.
The training of UGAN is dynamically changed, the presented

oss is surrogated for training the G. The surrogate objective
unction is created by unrolling K steps of D for each update of
he G. Using the proposed loss function, the G behavior adapts to
13
the training state of the D. The surrogate loss function is defined
as follows:

dfK (θG, θD)
dθG

=
∂ f (θG, θK

D (θG, θD))
∂θG

+
∂ f (θG, θK

D (θG, θD))
∂θK

D (θG, θD)
dθK

D (θG, θD)
dθG

(18)

With the application of the proposed loss function, the UGAN
demonstrates to stabilize the training by adjusting and synchro-
nizing G and D networks. Furthermore, it prevents mode collapse,
avoiding the model to drop regions of the data distribution.
Despite this, the most important weakness of the UGAN is its
computational cost. When the generator loss is optimized, the
performance of the network drops. It depends on the particular
problem how many unrolls need to stabilize its training. In the
original paper, for example, it varies between 1 and 10.

5.2.6. Realness GAN
The new variation presented by RealnessGAN [132] is a gen-

eralization of the original version of the GAN. The proposed loss
function changes the output of D, making it a distribution of
the realness of the input data. In other words, the discriminator
function is to measure the potential realness of the input data.
The proposed loss function is defined as follows:

max
G

min
D

V (G,D) = Ex∼pdata [DKL(A1 ∥ D(x))]+

Ex∼pg [DKL(A0 ∥ D(x))]
(19)

where A0 and A1 are the fake and real distributions.
Using the new loss function, the RealnessGAN is capable of

recovering more modes than a standard GAN, preventing mode
collapse. Furthermore, RealnessGAN shows a better performance,
generating higher quality images in both real-world and synthetic
datasets.

One of the strengths of the RealnessGAN is its simple imple-
mentation, due to the fact that RealnessGAN is a generalization of
the original GAN. That said, despite being one of the most recently
proposed architectures, it is expected to be widely used due to its
good results and easy implementation.

5.2.7. Spectral Normalization for GANs (SN-GAN)
SN-GAN [133] proposes a new technique to normalize the

weights of D networks. A more stable training is searched through
spectral normalization.
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Respect previous normalizations [134] spectral normalization
s easier to implement. The previous methods imposed a much
tronger constraint on the network matrix. With the spectral
ormalization, it is possible to relax this constraint, allowing the
etwork to satisfy the local 1-Lipschitz constraint. The spectral
ormalization is defined as follows:

¯ SN := W/σ (W ) (20)

where W is the weight matrix of D and σ (W ) is the L2 normal-
ization of W.

As mentioned before, the proposed D network is very simple
and additionally its computational cost is small. It also requires
the tuning of one hyperparameter, the Lipschitz constant.

The generated images using SN-GAN are more diverse, achiev-
ing better comparative IS respecting other weight normalizations.

5.2.8. Cyclic-Synthesized GAN (CSGAN)
CSGAN [135] proposes a new loss function for image-to-image

translation problems. Previous works developed architectures
for concrete domains of translation, CSGAN proposes a common
framework for different domain translation.

The Cyclic-Synthesized Loss (CS) is proposed as the objective
function of CSGAN. The new loss objective is to evaluate the
differences between a synthesized image and its correspondent
cycled image. The proposed loss function is denoted as follows:

L(GAB,GBA,DA,DB) = LLSGANA + LLSGANB

λALcycA + λBLcycB + µALCSA + µBLCSB
(21)

ere LCSA and LCSB are the Cyclic-Synthesized loss of both do-
mains.

With respect to previous architectures, CSGAN produces im-
ages of better quality, notably reducing the artifacts of the syn-
thesized images. The results show better performance of CSGAN
in Chinese University of Hong Kong (CUHK) dataset [136] and
comparable performance in FACADES dataset [137]. The compar-
ison of the performance is made against GAN [1], Pix2Pix [8],
DualGAN [94], CycleGAN [7] and Photo-Sketch Synthesis using
Multi-Adversarial Networks (PS2MAN) [138].

5.2.9. Multi-IlluStrator Style GAN (MISS GAN)
The proposed architecture of MISS GAN [139] presents only

one trained model to generate illustrations for different image
styles. Previous methods used different G for each style, limiting
the practical application of the architectures, while MISS GAN
uses a unique model.

The proposed new G is based on the GANILLA [105] archi-
tecture, but it proposes some changes to the architecture of
the decoder of the GANILLA G. The new decoder contains three
residual blocks, these residual blocks are in charge of processing
the low-level features from previous layers. The composition of
each residual block can be seen in Fig. 9.
14
To train the MISS GAN models five different objective func-
tions are proposed.

The first loss function is called the adversarial objective (Ladv)
nd it is in charge of, taking the input image and the target
omain, ensure that the generated image style corresponds with
he target domain. To do so the Ladv takes two discriminator
redictions, one for the input image and other for the synthesized
mage.

The second loss function is denoted as style reconstruction
bjective (Lsty), and it enforces the G to use the mapping network
tyle code while receiving a generated latent code, to calculate
he Lsty the output of the G encoder over the generated image.

The third proposed objective function is called style diver-
ification objective (Lds) and it compares a pair of synthesized
mages, each image corresponds to a different style code, each
ne generated from a different latent code. The objective of this
oss function is to force G to produce diverse images, preventing
wo images with different latent codes from being the same.

The fourth objective function is the cycle consistency loss (Lcyc)
sed in the CycleGAN [7].
Finally, the fifth objective function is called content features

oss (Lcontent_feat ), and it computes the distance in the feature space
y using a VGG16 [66] network.
To combine the different objective function a total objective is

efined as follows:
ax
D

min
G,F ,E

Ladv + λstyLsty − λdsLds

+λcycLcyc + λfeatLcontent_feat

(22)

here E is the style encoder and F is the mapping network, all the
λ parameters correspond to a hyperparameter for each objective
function.

5.2.10. Sphere GAN
SphereGAN [140] proposes a new architecture based on inte-

gral probability metric (IPM). The main characteristic of Sphere-
GAN is that it bounds the IPMs objective function on a hyper-
sphere.

Compared with other architectures such as WGAN-GP [4]
SphereGAN loss function does not require any constraint term, re-
ducing the necessity of hyperparameter tuning. The loss function
of SphereGAN is defined as follows:

min
G

max
D

∑
r

Ex[drs (N,D(x))] −

∑
r

Ez[drs (N,D(G(z)))] (23)

where drs denotes the r-th moment distance between a sample
and the north pole of the hypersphere.

In the original paper, the mathematical properties of Sphere-
GAN are proved, showing that minimizing the objective func-
tion of SphereGAN is equivalent to reducing IPM. In addition,
it is proved that SphereGAN compared to WGAN can use r-
Wasserstein distances, unlike WGAN that could only use
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Fig. 10. Survey proposed division of loss function variants for GANs.
1-Wasserstein distance. This provides to SphereGAN a wider
function space.

The SphereGAN results show its good performance, achieving
a IS of 8.39 and FID score of 17.1 in CIFAR-10 [107] dataset.
Compared to WGAN-GP that achieved IS of 7.86 in the same
dataset.

5.2.11. Super Resolution GAN (SRGAN)
In order to apply GANs to image upscaling the SRGAN [141]

was proposed. The proposed GAN objective is to take an input
natural image and upscale it resolution by a factor of 4.

To achieve the super resolution, the new variant proposes
a couple of adversarial and content losses. Both functions are
combined using the called perceptual loss function, this function
s in charge of a solution respecting the relevant characteristics
f the data. The content loss is defined as follows:
SR

= lSRX + 10−3lSRGenl
SR
Gen (24)

here lSRGen is the adversarial loss and lSRX is the content loss.
The content loss used relies on a pre-trained VGG-19 model

66]. This model, respecting the usage of a loss function such as
SE is more invariant to changes in pixel space. This metric will
rovide the network information about the quality of the content
f the synthesized image. The new loss function is calculated as:

SR
VGG/i,j =

1
Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(IHR)x,y

−φi,j(GθG(ILR))x,y)2

(25)

where ILR refers to the low resolution images and IHR refers to the
high resolution image.

In addition to the content loss, the adversarial loss is defined
as being this part of the generative component of the GAN.
This function is responsible for pushing the generated images
to be realistic and indistinguishable from the real ones. The loss
function is defined as:

lSRGen =

N∑
n=1

−logDθD(DθG(ILR)) (26)

The application of SRGAN improves the results of previous

algorithms for image super resolution.

15
Since the introduction of the SRGAN it has been used in many
different applications [142–144]. In addition, there are works
such as [145] that presents some improvements in the SRGAN
structure, the new architecture is known as Super Resolution
Channel Attention GAN (srcaGAN). The architecture presented
in this papers adds a channel attention module to the models,
this module recovers the attention layer used in SAGAN [116].
The results presented in this new architecture outperforms the
SRGAN.

5.2.12. Weighted SRGAN (WSRGAN)
One of the characteristics of the SRGAN [141] was the combi-

nation of the content loss and adversarial loss during the training.
The WSRGAN proposes is changing the importance of each loss
and studying the effect of this action.

The main objective of the WSRGAN is to improve the per-
formance of the architecture by analyzing its performance in
different combinations of its objective functions. Then the new
weighted loss function is defined as follows:

lSRX = wlSRMSE + (1 − w)10−3
+ lSRVGG (27)

where w is the parameter that controls the impact of each loss
function on the final result.

After training the network with different weight configura-
tions, the paper concludes that the MSE loss is the most important
loss function, being supported by the VGG loss.

Additionally, the definition of the weight parameter is de-
clared dynamically, obtaining even better results than when it is
static.

A brief scheme reviewing the different presented loss function
variant GANs can be seen in Fig. 10. We divide the different GANs
in different groups based on the proposed changes in the loss
function.

5.3. GAN timeline

A timeline with the reviewed architectures is presented in
Fig. 11. The GANs that have been studied during Sections 5.1 and
5.2 are showed temporally. This timeline provides an overview of
the historical development of GANs.

As it can be seen, the timeline compiles the most impor-
tant works of the last decade. It is important to analyze that
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Fig. 11. Timeline of the reviewed GAN architectures.
ome researches have influenced posterior ones. In some cases
ome researches adopt innovation of previous works as a base to
hen propose new changes, e.g. the DCGAN that have influenced
everal posterior works. In other cases there are relationships
etween works can be seen as an unique research, linking each
rticle with each other by taking previous results and improving
hem, e.g. in the case of ProGAN, StyleGAN and Alias-Free GAN.

. GAN applications

As mentioned before, GANs are one of the most popular ap-
lications of machine learning of the last years. GANs models
an achieve results in fields where previous models could not, in
ther cases, GANs improve the previous results significantly.
In this section, we will review the most important fields where

AN architectures are applied, paying a special attention to the
AN models related to computer vision tasks and we will com-
are the different architecture results.
Most of the last researches focus on how to apply GANs to

enerate new synthesized data, replicating a data distribution.
ut, as we will review in this section GANs can be applied to other
ields, e.g. video game creation [11].

.1. Image synthesis

One of the most important fields in which GANs are applied
s in computer vision. In particular, realistic image generation is
he most widely used application of GANs [3,6,26].

Most of the proposed GAN variants are tested by generating
eal world images. Arguably, image synthesis is the first applica-
ion one might think of when thinking about GAN. Its popularity
s due to the good results that GAN can achieve. Compared with
revious methods, GANs provide sharper results [146]. Both in
cademic world and for the general public GAN has raised a lot
f interest.
One of the main reasons of the GAN success is its results

asy understanding. As the mainly generated output of GANs
re images, they can be easily understood by anyone. Even if a
erson does not have any technical understanding of artificial
ntelligence, it is possible to judge the results.

Within computer vision, image generation is the most used
ethod to test GANs. There are plenty of real world images
atasets that can be used to train GANs. The availability of
atasets that can be used for training neural networks is usually
he main drawback of artificial intelligence projects. Either by
ts availability or by its content [147] having a good dataset
s essential for machine learning. When real world images are
sed to train GAN models, the availability of good datasets is
ot a problem, there are a large variety of datasets [57,107] that
ave been widely tested and are well known in the academic

ommunity.

16
Since the first GAN publication [1] GAN architectures have
been used for synthesizing real world images. In the original
proposed GAN the models were used to generate images repli-
cating MNIST [148], CIFAR-10 [107] and Toronto Face Database
(TFD) [149] datasets. The generated images using the original
structure were very blurry and did not have good quality. Besides
that, the presented results supposed the presentation of the GAN
architecture.

One of the first improvements to the original architecture
was the DCGAN [69], it proposed structural changes and hyper-
parameter tuning respect the first proposed model. The results
of the DCGAN showed improvements in the performance and
generation of the networks, the generated images were clearer
and more recognizable. Despite that, the architecture still suffered
from instability and mode collapse.

The WGAN architecture [26] could reduce drastically the mode
collapse and instability of the previous models. Thus, later mod-
els adapted the loss function of the WGAN along with their
respective structural changes in the network.

Recently the ProGAN [3] introduced a new training method-
ology that achieved an improved performance of the networks.
With the new methodology came a huge improvement in the
quality of the generated images. The results showed not only a
more stable trainings but sharper, with finer details and more
diverse images. Due to the particularities of the applied method-
ology, it can be applied to other architectures, so in later works
the ProGAN training methodology will be used as its base.

Following the line of research of ProGAN the StyleGAN [6] was
presented. The results produced by the StyleGAN could improve
the results of the ProGAN. At this point some generated datasets,
e.g. human faces images, were indistinguishable from real images
from a human perception. Along with the high quality of the im-
ages the StyleGAN proposed style mixing, capable of generating
new images combining previous images. This allows to modify
image features at a high, medium and low level, allowing the
network to disentangle different features of an image, providing
more control of the generated images.

One of the main problems of the StyleGAN was the known
as texture sticking. This caused the generated images to have
a certain texture in an absolute position. When interpolating
different images it was noticeable that some parts of the images,
e.g. the hair of a human face, maintain the same texture in
spite of changing its position. The Alias-Free GAN proposed an
architecture that suppressed the texture sticking problem. By
eliminating the sticking problem, the interpolation of synthesized
images is smoothed, generating a continuum of images, not only
realistic individually but also as a set. The improvements of the
Alias-Free GAN together with the style mixing of StyleGAN allows
to create animations of, for example, a human face changing its
position, gender or features such as the smile.

The Table 2 summarizes the performance of the presented
GAN models during this section. The compared datasets are
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Table 2
Performance summary of image generation GANs.
Model CIFAR-10 CelebA-HQ FFHQ

Accuracy ↑ IS ↑ FID ↓ FID ↓

DCGAN 82.8% 6.58 – –
ProGAN – 8.80 7.79 8.04
StyleGAN – – 5.06 4.40
StyleGAN2 – – – 2.70
Alias-Free GAN – – – 3.07
MNIST [148], TFD [149], CIFAR-10 [107], CelebA-HQ [3] and
Flickr-Faces-HQ (FFHQ) [6]. The used metric for comparing the
different variants are accuracy of the models (the higher score the
better ↑ ), IS (the higher score the better ↑) and FID (the lower
core the better ↓)

.2. Image-to-image translation

Taking an image from one domain and converting it to the
ther domain is known as image-to-image translation. It was first
roposed with the Pix2Pix architecture [76], Pix2Pix is based on
GAN following the idea of generating images conditioned on
heir composition via a label input. With Pix2Pix the networks are
apable of learning how the same image is translated between
ne domain and another. The main drawback that Pix2Pix had
as the requirement of having a paired dataset of images in both
omains.
Following the steps of Pix2Pix CycleGAN [7], DualGAN [94]

nd DiscoGAN [101] were developed. These new architectures
ere based on the cyclic consistency idea. Cyclic consistency
as previously used in machine learning [92,93], it is based on
he idea that translating an image from one domain to another
nd then doing the reverse operation will recover the original
mage. Following this concept the new networks were capable
f translating images without a paired dataset. By not needing
paired dataset the number of possible applications of GAN to

mage-to-image translation increased considerably.
Later on the CSGAN was proposed [135] improving the re-

ults of previous architectures. The new proposed loss function
chieved better results in image generation, comparing with Cy-
leGAN [7], DualGAN [94], DiscoGAN [101] and PS2MAN [138].
his new architecture results follows the natural progression of
he GAN in image-to-image translation and promise an exciting
uture in what GAN can do.

The image-to-image translation is especially popular in so-
iety, because of the applications that have been developed in
he last years. With the architecture of the presented GANs the
eneral public is capable, for example, of taking a personal image
f themselves and transforming it into one of an old person with
is face. This type of applications have become popular in social
etworks, increasing their visibility even more.
This interaction between society and GAN development is

utually beneficial, the society uses the technological advances
f the last years while the academic community gain impact
nd repercussion. From an academic perspective this interaction
hould be considered positive and it should be noted that most of
he impact of machine learning during the last years have been
aused by the publicity given by the mass media and the social
etworks. Although most of the people are not interested in the
echnique behind GAN applications they act as a catalyst to make
ore people interested in artificial intelligence and, ultimately, it
ill bring more people to academic research in the field.
The Table 3 summarizes the performance of the presented

AN models in image-to-image translation tasks. The data is
btained from [135], where the SSIM (the higher score the better
), MSE (the lower score the better ↓), Peak Signal to Noise Ratio
17
(PSNR) (the higher score the better ↑) and Learned Perceptual
Image Patch Similarity (LPIPS) [150,151] (the lower score the bet-
ter ↓) are computed for different GAN variants. The comparison
is made for CUHK [136] and FACADES [137] datasets. The LPIPS
is a metric that measure the distance between the real and the
generated distribution via perceptual similarity.

6.3. Video generation

GANs have proven to generate state-of-the-art results in image
processing. Along with image generation comes the possibility to
generate a set of images generating a video. Video generation is a
more complex task than image generation. The issues associated
with image generation are included in video generation, but the
computational cost of training models that can process video is
high. In addition, the synthesized videos must be coherent.

One of the particular problems of video is the motion blur
generated by the networks [152]. When a video is generated, the
tracking of some objects can be difficult, generating fuzziness in
some portions of the image. Some works have tried to tackle this
problem [153–155], but it is still an open problem.

One of the most popular applications of video generation with
GANs is the known as deep fake. Deep fake consists in taking
a video of a person and changing the face of the human to be
someone else. Many works have been developed in the last years
in this field [156].

Deep fake is one of the most controversial applications of GAN,
the possibility of changing a face in a video allows to generate
fake videos that can be used to supplant a person. This problem
is magnified in the case of women [157] due to their position in
society. Even so, there are some applications of deep fake where
it can be beneficial [158], its application still raises doubts in the
society. This is why many recent researches have focused on how
to detect deep fake videos [159–162].

Other application of GANs to video generation are video-to-
video translation, which is indeed the general case of deep fake.
Many architectures of this type have been proposed during the
last years [163,164].

It should be noted that, in the case of video processing, the
standard is to use previous information, such as another video,
to generate the synthesized data. Unlike image generation, video
generation is more interesting if the new information is condi-
tioned by an external agent. In image processing, the only input
was the latent space, but the final images were conditioned by the
dataset of the training. When videos are generated, the degree
of freedom is extended, enabling the generated data to be less
controlled. Controlling the video output is necessary to maintain
the coherence of the final output, but it also eases the GAN
job, which is significantly more difficult with respect to image
processing.

6.4. Image generation from text

Since the introduction of CGAN the capabilities of GANs were
expanded. The possibility of constraint the synthesized informa-
tion that GANs produced made the networks have a wider range
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Table 3
Performance summary of image-to-image translation GANs.
Model CUHK FACADES

SSIM ↑ MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑ MSE ↓ PSNR ↑ LPIPS ↓

GAN 0.5398 94.8815 28.3628 0.157 0.1378 103.8049 27.9706 0.525

Pix2Pix 0.6056 89.9954 28.5989 0.154 0.2106 101.9864 28.0568 0.216
DualGAN 0.6359 85.5418 28.8351 0.132 0.0324 105.0175 27.9187 0.259

CycleGAN 0.6537 89.6019 28.6351 0.099 0.0678 104.3104 27.9489 0.248

PS2MAN 0.6409 86.7004 28.7779 0.098 0.1764 102.4183 28.032 0.221

CSGAN 0.6616 84.7971 28.8693 0.094 0.2183 103.7751 27.9715 0.22
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of application. By controlling the output of the generations of the
networks the applications of them can be much more specific
and interesting. One field were GANs have shown to outperform
previous techniques in image generation from text [165].

Stacked GANs (StackGAN) [166] was one of the firsts proposed
rchitectures for image generation from text. The architecture
plits in two stages, the generation problem, the objective is
o divide the main problem in sub-problems that are easier to
andle in the network. The known as Stage-I GAN is in charge
f producing a coarse sketch of the desired image, this way this
art of the network focuses on translating the text to a image
hat fulfills the description. Then, the Stage-II GAN takes the
enerated image from Stage-I GAN, increases its resolution and
efine the finer details. The StackGAN is able of producing images
hat match the input description while achieving sharp, high
uality samples. Later on the StackGAN++ (StackGAN-v2) [167]
as proposed, this new architecture resolved some problems of
he original StackGAN, stabilizing its training and improving the
verall quality of the synthesized images.
One problem of the StackGAN is that it is highly dependent on

he sketch generated by the Stage-I GAN. To solve this Dynamic
emory GAN (DM-GAN) proposed a new technique based on
emory networks [168,169] that divides the generation problem

n two steps. In the first one a initial image is generated and in the
econd step a memory network is used to refine the details and
roduce a high quality image. To connect the memory and the
AN a response gate is proposed, by controlling dynamically the
low of information the gate is capable of fusing the information
ppropriately. The results of the StackGAN shows a higher quality
especting all previous architectures.

Dual Attentional GAN (DualAttn-GAN) proposed a new ar-
hitecture based on two modules. The Visual Attention Module
VAM) is in charge of taking care of the internal representations
f the image information, capturing the global structures and
heir relationships. The Textual Attention Module (TAM) defines
he relations between the text and the image, defining the links
etween both. Finally a Attention Embedding Module (AEM) fuse
he visual with the textual information, concatenating them along
ith the input features of the image. The results of the DualAttn-
AN shows an improved performance respecting previously used
rchitectures.
Following the general architecture of StackGAN Deep Fusion

AN (DF-GAN) was proposed [170]. The DF-GAN architecture
nly have one stage of image generation, this backbone syn-
hesized new images conditioned by an input text using only
ne pair of G and D. Thus being a simpler structure, DF-GAN
chieves better performance and efficiency compared with pre-
ious variants. The new techniques that DF-GAN proposes are
new fusion module, known as deep text-image fusion block,

nd a new discriminator capable of promoting the generator to
ynthesize higher quality images without extra networks. The
esults of the DF-GAN shows an improvement on the quality of
he images, without committing to more complex models and
mproving the efficiency of the previous architectures.
18
The one-stream information approach followed in DF-GAN
as reused in Lightweight Dynamic Conditional GAN (LD-CGAN)
171]. The proposed architecture of the LD-CGAN consists on
ne G and two independent discriminators. The generator is
omposed by a Conditional Embedding (CE) that disentangles the
eatures of the input text by using unsupervised learning. Then
Conditional Manipulating Block (CM-B) provides continuously

he images features with the compensation information. Finally
sing the known as Pyramid Attention Refine Block (PAR-B) the
enerated image is enriched maintaining multiscale context and
patial multiscale features. The results of the architecture not
nly shows a higher quality image respecting previous methods,
ut also improves the performance decreasing the number of
arameters by 86.8% and the computation time by 94.9%.
The Table 4 summarizes the performance of the presented

AN models during this section. In addition to the mentioned
etworks the Generative Adversarial Text to Image Synthesis
GAN-INT-CLS) [172] and the Generative Adversarial What-Where
etwork (GAWWN) [173] are included, both of this networks act
s a reference of previous architectures. The compared metrics
re HR (the lower score the better ↓), IS (the higher score the
etter ↑) and FID (the lower score the better ↓). The com-
ared datasets are Common Objects in Context (COCO) [174],
altech-UCSD Birds (CUB) [175] and Oxford-102 [176].

.5. Language generation

GANs models have been used during the last years in Natu-
al Language Processing (NLP) tasks. The previously mentioned
ext-to-image field is one of the applications of GAN where nat-
ral language is involved. But there are some applications of
AN completely focused on how to produce new text using the
odels.
Previous methods to process natural language used the known

s Long Short-Term Memory (LSTM) [177]. LSTM is capable of
aintaining local relationships in space and time, this feature
rovides the networks the ability of process whole sentences,
aragraphs and text while maintaining global coherence. In ad-
ition to LSTM the previous methods used Recurrent Neural
etwork (RNN) to generate new texts [178].
The Text GAN (textGAN) [179] uses LSTM along with Con-

olutional Neural Network (CNN) to synthesize new text. The
roposed method applies the GAN training methodology via the
nown as adversarial training. The textGAN uses a LSTM as the G
f the network and a CNN as the D. One of the main problems
f the textGAN was the highly entangled features of the network,
aking the interpolation of different writing styles very difficult.
The textGAN approach to language generation, suffering from

he known as exposure bias. This bias is caused by the objec-
tive function of the network, that focus on maximizing the log
likelihood of the prediction. The exposure bias is visible in the
inference stage, when the G generates a sequence of words it-
eratively predicting each word based on the previous ones. The
problem comes when the prediction is based on words never seen



G. Iglesias, E. Talavera and A. Díaz-Álvarez Computer Science Review 48 (2023) 100553

f
c
p
T
s
e
c

y
G
o
3
g
T
d
t
N
a

6

d
b
r
o

i
i
t
w
p
I
s
d
s
r
t
d

[
c
o
d
S
c
u

Table 4
Performance summary of image generation from text GANs.
Model COCO CUB Oxford-102

HR ↓ IS ↑ FID ↓ HR ↓ IS ↑ FID ↓ HR ↓ IS ↑ FID ↓

GAN-INT-CLS 1.89 7.88 – 2.81 2.88 – 1.87 2.66 –
GAWWN – – – 1.99 3.62 – – – –
StackGAN 1.11 8.45 – 1.37 3.70 – 1.13 3.20 –
StackGAN-v2 1.55 8.30 81.59 1.19 4.04 15.30 1.30 3.26 48.68
DM-GAN – 30.49 32.64 – 4.75 16.09 – – –
DualAttn-GAN – – – – 4.59 14.06 – 4.06 40.31
DF-GAN – – 21.42 – 5.10 14.81 – – –
LD-CGAN – – – – 4.18 – – 3.45 –
c

before in the training stage. Some works were made to tackle
this problem [180] but the Sequence GAN (SeqGAN) [181] is the
architecture that betters the results produced.

The G of SeqGAN is trained using a stochastic policy of Rein-
orcement Learning (RL). The RL reward is calculated by judging a
omplete sentence made with the G of the model. Then, to com-
ute the intermediate steps a Monte Carlo Search is made [182].
he results of the SeqGAN shows a huge improvement in tasks
uch as language generation, poem composition and music gen-
ration. In addition, the performance of the models shows certain
reativity in the synthesized data.
Despite the good results of GAN in NLP tasks during the last

ears, there have been developed architectures that outperform
ANs in language generation. The most successful architecture
f this field is the Generative Pre-trained Transformer 3 (GPT-
) [183], which belongs to the GPT-n series. The GPT-3 is a
enerator model based on the transformer [117] architecture.
he extraordinary results presented by the GPT-3 are often very
ifficult to distinguish from human writing. The emergence of
he GPT-3 caused a lower interest in GAN models applied to
LP. Due to the good results of transformers in NLP, the GAN
pproximation to this field has been losing interest.

.6. Data augmentation

Other field where GANs have shown to be really useful is in
ata augmentation. Due to the particularities of the GAN they can
e used to obtain more samples of an origin data distribution,
eplicating its distribution. This way, by using GANs, the number
f samples of a dataset can be multiplied.
Traditionally, data augmentation was achieved via transform-

ng the initial data; e.g. cropping, rotating, shearing, or flipping
mages. One of the main drawbacks of these methods is that they
ransform the original data by slightly changing their structure,
ith the usage of GANs for data augmentation the new sam-
les tries to synthesize new data from the original distribution.
nstead of changing the samples of the dataset the generated
amples of GAN are synthesized from scratch. This way, the new
ata is replicated by imitating the original data distribution. It
hould be noted that data augmentation does not necessarily
eplace other methods of data augmentation, it proposes an al-
ernative that, in many cases, can be used together with other
ata augmentation algorithms.
For example, the Data Augmentation Optimized for GAN (DAG)

184] proposes an enhanced data augmentation method for GAN,
ombining it with data transformation such as rotation, flipping
r cropping. The DAG shows to improve the performance of
ata augmentation in GAN models, improving the FID of CGAN,
elf-supervised GAN (SSGAN) and CycleGAN. The proposed ar-
hitecture uses one D for each transformation of the data, but a
nique G.
19
Data augmentation with GANs have been used in cases where
obtaining a dataset is difficult. For example, in medical applica-
tions there is usually not many information available, in this cases
GANs can make the difference. This is why during the last years
GANs have been used in medical data augmentation [185–188].

6.7. Other domains

As mentioned before, due to the particularities of the GANs
they can be applied to many different fields. One of the main
strengths of the machine learning is that it adapts to different
situations without substantial changes in its structure. In partic-
ular, GAN can be adapted to any type of data distribution as long
as there is an available dataset.

6.7.1. GameGAN
One of the most interesting applications of GAN is the pre-

sented with the GameGAN [11]. The main purpose of GameGAN is
to generate entirely a video game using machine learning. To do
so, the complete Model-View-Controller (MVC) software design
patterns is replicated using artificial intelligence. The proposed
architecture is composed by three different modules.

The dynamics engine is in charge of the logic of the whole sys-
tem, maintaining the global coherence and updating the internal
state of the game. The dynamics engine, for example, controls
which actions of the game are possible (e.g. eating a fruit in pac-
man) and which ones are not (e.g. run through a wall in pac-man).
The dynamics engine is composed by an LSTM that updates the
state of the game in each frame, the LSTM provides the network
way to control the previous states of the game to calculate the
new information of the subsequent frames. This way, the network
can access to the complete history of the game, maintaining the
consistency of the system.

To save the state of the game a memory module is used. This
module focus on maintain long-term consistency of the game
scene. When the game is being played there are different ele-
ments of the scene that not always are visible, with the memory
module these elements are consistent over the time. This mem-
ory remembers the generated static elements of the game. The
memory module is implemented by using Neural Turing Machine
(NTM) [189].

The third module that composes the system is the rendering
engine, it is in charge of generating a visualization of the cur-
rent state of the game. This module focuses on representing the
different elements of the game realistically, producing disentan-
gled scenes. The rendering engine is composed by transposed
convolution layers that are initially trained using an autoencoder
architecture to warm up the system and then they train along
with the rest of the modules.

The adversarial training of GameGAN has three types of dis-
criminators. The single image discriminator evaluates the quality
of each generated frame, judging how realistic it is. The action-
onditioned discriminator determines if two consecutive frames
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re consistent with respect the input of the player. Finally the
emporal discriminator maintains the long-term consistency of
he scene, preventing elements from appearing or disappearing
andomly.

One of the basis of GameGAN is the disentangling of dynamic
nd static elements of the game. The static elements of a game
ould be, for example, walls while the dynamics elements of
game are elements such as nonplayable characters. By dis-

ntangling both types of elements, the game behavior is more
nterpretable for the model.

Finally, GameGAN introduces a warm-up phase where certain
eal frames are introduced in the network during the first epoch
f the training. Then the frequency of real frames is reduced
ittle by little until it disappears. This way the first epochs of the
raining, that are usually the most complex in the network, are
ontrolled and progressively the GAN gains more control over the
utput. This helps the network to understand the problem.

.7.2. Medical imaging GANs
One of the most popular application of the GAN architecture is

o enlarge datasets. The objective of synthesizing new data is to
roduce larger datasets that improve the performance of machine
earning models, which are very sensible with the number of
amples used in their training.
There are many fields where data augmentation can be ap-

lied, but in medical imaging to augment data have certain ben-
fits due to the particularities of the problem. First, the medical
atasets are usually small, because of the cost of obtaining the
mages, most of the time it is necessary to use measurement and
ecording machines such as radiography, magnetic resonance or
ltrasound. But, in addition to the cost of obtaining these images
here also exists ethical and legal problems related to the nature
f the data. Most of the time, obtaining images that expose the
ealth status of different people is impossible, which leads to
ven more lack of available data.
It should be noted that one of the benefits of generating data

ith GAN is that the new samples do not belong to any real
erson.
Because of all these factors, there has been lots of GAN works

elated to the medical imaging field [190–195]. In addition, the
ork of Chen et al. [196] analyzes the evolution of the field of
edical data augmentation and suggests that the research in this

ield remains strong in the year 2021, despite that the fact that
rom 2019 onwards the number of published works have been
he same.

.7.3. GANs in agriculture
Similar to the medical imaging field, obtaining images to train

he computer vision models of agricultural image analysis is
ot an easy task. These models benefit from having large-scale
alanced datasets but the cost of obtaining high quality labeled
ata makes the data augmentation a crucial task in these datasets.
Many different GAN models have been applied to agricultural

ata, such as [197–199]. These works aim to generate new im-
ges of plant with different diseases, augmenting the number of
amples by using GAN.
In these cases the use of GAN improves the results of the

achine learning models by enlarging the number of available
ata. The agricultural images have different particularities that
ake the analysis of them a difficult task. For example the biolog-

cal variability between two samples of the same species makes
rucial to have many different samples to learn all the modes of
he data. In particular, the same leaf of a fruit can drastically differ
rom one individual to another.

Other important factor is that the labeling of the data can be
ery costly, specially for specific applications such as the disease

etection of certain plant, e.g. tomato leaf [197].

20
In addition, the environment where the images are taken,
most of the time in crops, can lead to many variance in the
images, such as lighting changes or object occlusion.

6.7.4. Drug discovery using GANs
The process of discovering and designing new drugs has re-

cently been impulsed by the field of Deep Learning [200,201]. In
particular, GANs are an useful technique to synthesize new useful
samples of data. In the drug environment, the GAN architecture
can process the drug compound using graphs or Simplified Molec-
ular Input Line Entry Specification (SMILES), to then generate
synthetic samples of drugs.

Due to the flexibility that ANNs have in terms of operating
with different data types, it is possible to use the same archi-
tectures in different fields. In this case the overall GAN design
can be adapted to molecular data, being able to transfer the same
principles of the image generation to new data types.

The research followed by Kadurin et al. [202,203] generates
new drug compounds for anticancer therapy, using biological and
chemical datasets. In particular, in [203] it is used an Adversarial
Autoencoder that uses molecular fingerprints as inputs of the
network. By using this architecture the researches are able of
define the desired properties of the synthesized drugs. Some of
the new synthetic drugs discovered by the Deep Learning ar-
chitecture corresponded with previous known anticancer drugs.
This led the researches to suggest that the remaining unknown
drugs generated by the GAN could be used to further study their
properties.

The work presented in [204] proposes the generation of new
drugs combining GANs with reinforcement learning techniques.
In particular, the proposed G takes as input a random latent space
and process it with RNN to produce a sequence of drug by using
SMILES representation. The D on its side uses a 1 dimensional
CNN to distinguish the real data from the synthesized one. The
results of the paper suggest that the new drugs discovered were
unique and diverse. This may alleviate the first phases of drug
development, which are very expensive in terms of time.

The Federated Generative Adversarial Network for Graph-
based Molecule Drug Discovery (FL-DISCO) architecture [205]
aims to combine the generation potential of GAN with the pro-
cessing of molecules using graphs of the Graph Neural Networks
while maintaining the privacy of the data using Federated Learn-
ing [206]. By using graph representation of the molecules instead
of SMILES as previous works, the represented samples have
more realistic structures, maintaining structural relationships of
the connected atoms of the molecules. The Federated Learning
framework is based on using different clients to train a specific
neural network model, each client has its respective portion of
the data, which uses to train the network. This way each client
knows a portion of the data and uses it to update the central
model, but it maintains the privacy due to the fact that the clients
are not able to communicate with each other. The results of this
research show progress in terms of novelty and diversity of the
synthesized drugs respect previous works.

7. Discussion

Since their introduction in 2014 GANs have been the most
important generative architecture in computer vision. The results
provided by the developed GANs were notoriously better than
previous architectures, such as Variational Autoencoders. This
leaded to a constant improvement of the model, solving problems
like stabilization or mode collapse.

With the introduction of the Diffusion models [207–209], the
results of GANs have been surpassed by this new models solving

some of its most important problems. Some aspects in which
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iffusion models outperform GANs are better stability, they do
ot suffer from mode collapse and they provide more diverse
esults. This is mainly caused because of the fact that they are
ikelihood-based [210]. Despite the better results of diffusion
odels they still have shortcomings in some aspects such as the
ost of synthesizing new samples, which makes them difficult to
eing applied in real-time problems.
In [211] it was developed a diffusion model to perform an

mage-to-image translation. The results showed in this research
how that their solution outperforms GANs without special atten-
ion to the hyper-parameter tuning or any kind of sophisticated
echnique or loss function. Moreover this research shows the
reat stability of the diffusion model architecture.
Despite the fact that Diffusion models are a novel architecture

ith not many works published, it is a very potential architecture
o surpass GAN results in a near future. At present, there are
ot enough results or applications of diffusion models to data
eneration, but the potential of this new architecture could lead
o a significant improvement in the results of data synthesis. We
onsider that this models could replace GANs because of their
tability and not needing fine-tuning in their hyperparameters.
Other new architectures have been used to enhance the re-

ults of GANs, such as transformers, to improve their results.
ransformer architecture is a time-series-based architecture that
dopts the self-attention layers [117] making possible to design
arger models. Transformers have been used as the base neural
odel of the G and D of the GAN architecture, improving the
erformance of the model.
The TransGAN [212] presents a GAN architecture free of con-

olutions that makes possible to generate high resolution images
y using transformer in both G and D of the GAN. The results of
he article shows an improved results respect to the IS and FID
n CIFAR-10 dataset [107].
Another work that showcases the interaction between GANs

nd transformers is the one presented in [213]. This work uses the
enerative model to predict pedestrian paths, using the memory
hat the transformer architecture has. In this sense, the GAN
akes possible to train the network to predict future paths of
edestrians, while the transformer provides the memory to pro-
ess an historical sequence of the latest movements.

. Conclusion

This report summarizes the recent progress of GANs, going
rom the basic principles in which GAN are sustained to the
ost innovative architectures of the last years. In addition, the
ifferent problems that GANs can suffer are categorized and the
ost common evaluation metrics are explained and discussed.
Respect the recent progress in the field, a taxonomy for the

AN variants is proposed. The researches are divided in two
roups, one with the GANs that focus in architecture optimization
nd the other with the GANs that focus in objective function
ptimization. Despite being two separate groups of variants, it
hould be noted that the different researches benefit from the
rogress of the rest. These ecosystem where there are various
pproaches for GAN development is connected with the main
roblems that are reviewed in this survey, since normally each
esearch focus in trying to solve a certain problematic of previous
esearches.

Finally the different application of the GANs during the last
ears are summarized. The different applications of GAN are in-
luenced by the development of the field, its impact in the society
nd in the industry. We conclude with a comparison between
he different architectures performance to provide a quantitative
iew of the evolution of GANs.
21
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