

OAK RIDGE NATIONAL LABORATORY operated by

UNION CARBIDE CORPORATION NUCLEAR DIVISION
for the

U.S. ATOMIC ENERGY COMMISSION

A PROGRAM FOR CALCULATING OPTIMUM DIMENSIONS OF ALPHA RADIOISOTOPE CAPSULES EXPOSED TO VARYING STRESS AND TEMPERATURE

J. P. Nichols

D. R. Winker

$2 B_{B N L T-T M-1735}=N D$
 24 ANASA CR -72172 2 - 1 B
 Contract wo 25^{25} w 7405 -eng $-26-29 \mathrm{~A}$

CHEMICAL TECHNOLOGY DIVISION

3 a program for caicutating optimum dimensions of alpha RADIOISOTOPE CAPSULES EXPOSED TO VARYING STRESS AND TEMPERATURE 6

> 6 J. P. Nichols
> D. R. Winkler 9

These evaluation studies at ORNL were supported by the National Aeronautics and Space Administration, Lewis Research Center, under an Interagency Agreement with the Atomic Energy Commission - C-64217-A.

9 APRIL 196710

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee operated by
UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION

CONTENIS

Page
Abstract 1
1.0 Introduction 1
2.0 Mathematical Model 2
3.0 CAPSUL Program 7
3.1 Least Squares Analysis of Creep Data (MOPT = 1). 9
3.1.1 ISTSQ 11
3.1.2 MATQ 11
3.1.3 Input Information 11
3.2 Calculation of Capsule Dimensions for Maximum Specific Power (MOPT = 2 or 3). 13
3.2.1 DR 17
3.2.2 WR 18
3.2.3 DF 18
3.2.4 RZERO 19
3.2.5 LTMITT 19
3.2 .6 WHTT 20
3.2.7 VSU, CONVETT 20
3.2.8 MAX 20
3.2.9 Input Information 21
3.3 Capsule Lifetime Analysis (MOPT = 4) 22
4.0 Results of Analysis of Creep Data 22
4.1 Predicted Creep Life Functions 23
4.2 Analysis of Errors in Time Extrapolations 30
4.3 Analysis of Constant Stress Rate Tests 36
References 39
Appendix A - Units and Glossary of Symbols 41
Appendix B - Example Problems 48
Appendix C - CAPSUL Program List 56

A PROGRAM FOR CAICUIATING OPTIMUM DIMENSIONS OF AIPHA RADIOISOTOPE CAPSUTES EXPOSED TO VARYING STRESS AND TEMPERATURE

J. P. Nichols
D. R. Winkler

ABSTRACT

A method and computer program were developed for calculating the creep and optimizing the dimensions of capsules filled with alpha-emitting radioisotopes. The method solves an integral equation that was developed assuming linear accumulation of partial creep lives and relating life to timedependent stress and temperature using the Larson-Miller parameter. The computer program, CAPSUL, is written in Fortran language for the IBM $360 / 75$ computer. The program makes a least squares fit of the creep life function using conventional constant stress, constant temperature creep data. Dimensions of capsules having maximum thermal power per unit of weight, volume, or area are calculated for a given creep life and pressure-temperature history using a numerical Lagrange Multiplier formulation. The program also calculates the life to a prescribed strain for capsules of given dimensions and pressure-temperature history. The method has been used to analyze creep data for the alloys 304 stainless steel, Hastelloy N, $\mathrm{Cb}-1 \% \mathrm{Zr}, \mathrm{FS}-85$, and $\mathrm{T}-222$.

1.0 INIRODUCTION

In capsules containing alpha-emitting radioisotopes for use in space power packages, it is desirable to provide maximum power per unit of weight, volume, or projected area within the constraints imposed by the need to maintain capsule integrity during normal operation and in the event of one or more accidental conditions. Because of the continuous generation of helium gas, together with decay of the thermal power, such capsules are characterized by time-dependent stress and temperature. Very high initial temperatures cause creep to be an important consideration in the design.

A model and computer program were formulated for calculation of the strain and optimum dimensions of capsules within the desired constraints.

The following sections will describe the model and the computer program and present an analysis of experimental creep data that tend to confirm the model. A glossary of symbols, example problems, and a program list are included as appendices.

2.0 MATHEMATICAL MODEL

We wish to develop a phenomenological model of creep resulting from time-varying stress and temperature in certain metals for which the only available experimental data are ultimate strength properties at low temperatures and constant load, constant temperature creep properties at high temperatures. A precise analysis of the problem requires an equation of state that relates strain rate to stress, temperature, strain, and time. No single equation is available, but approximate equations may be developed for restricted classes of materials. One such equation, which has been substantiated for a number of metals ${ }^{1,2}$ and plastics, ${ }^{3}$ assumes that the fractional creep life for a given stress and temperature is independent of other fractions sustained under different conditions and that these fractions may be accumulated linearly. Stated mathematically:

$$
\begin{equation*}
1=\int_{0}^{\Theta} \frac{d t}{\theta[\sigma(t), T(t)]} \tag{1}
\end{equation*}
$$

where
$\theta[\sigma, T]=a$ function, hereafter called the "creep life function," that determines the life to a prescribed strain or rupture for a given stress, σ, and temperature, T, $t=$ time since application of the load, $\Theta=$ resultant life to prescribed strain or rupture for timevarying stress and temperature.

A suitable creep life function can be determined by empirically fitting an equation to experimental data for stress as a function of a time-temperature parameter. Several time-temperature parameters, including those of Orr, Sherby, and Dorn; Manson and Haferd; and Larson and Miller, have been evaluated for this purpose; and it was found that the Larson-Miller
parameter provided the most accurate correlation for a wide selection of metals. ${ }^{4}$ Larson and Miller ${ }^{5}$ have related the creep life at a given stress to the absolute temperature by an equation that may be derived from the Arrhenius rate law,
$T \ln \kappa \theta=$ constant, Larson-Miller parameter .
The constant K has the physical connotation of "maximum rupture rate." The common logarithm of K is called the Larson-Miller constant and is in the range of 10 to 30 for most metals when time is measured in hours.

The development of the creep life function for the present model is illustrated in Fig. 1. Shown is a typical plot relating the logarithm of measured nominal, uniaxial stress to the Larson-Miller parameter. The creep data are obtained at temperatures generally above one-third the absolute melting temperature by measuring the time to a specified strain or rupture under conditions of constant load (constant nominal stress) and temperature. The data for ultimate strength (or stress for a specified "instantaneous" elastic and plastic strain) as a function of temperature are determined under conditions of constant imposed strain rate which is not necessarily the "natural" strain rate measured in creep experiments. We have assumed that the actual life measured in ultimate strength tests is a good approximation of the equivalent creep life, particularly for those materials which exhibit little strain hardening (nearly constant nominal stress for nominal strain greater than the yield), because (l) the life approximates unity and has little effect on the $\kappa \theta$ product, and (2) the stress is insensitive to the Larson-Miller parameter in the low-temperature range at which the ultimate strength data are used to supplement creep data.

As temperature increases the creep (or time dependent) strain for a given finite life becomes a progressively larger fraction of the total strain and the fractional strain from elastic and "instantaneous" plastic strain becomes progressively more negligible. At high temperatures the logarithm of the applied stress for many materials ${ }^{4,5}$ is a linear function of the Larson-Miller parameter having intercept $\ln \alpha$ and slope m. We have assumed that the creep component of stress, σ_{c}, has this linear form at all temperatures.

ORNL DWG 66-11005 R1

1. For T large, $\sigma \cong \sigma c$

$$
\ln \frac{\sigma c}{a}=-m(T \ln K \theta)
$$

2. For T small, $\sigma \cong \sigma u$

$$
\frac{1}{\sigma^{\gamma}}=\frac{1}{\sigma_{u} \gamma}+\frac{1}{\sigma c^{\gamma}}
$$

$$
\sigma=\left[\frac{a^{\gamma} \sigma u^{\gamma}}{a^{\gamma}+\sigma u^{\gamma}(K \theta)^{\gamma m T}}\right] \frac{1}{\gamma}
$$

$$
\theta=\frac{1}{\mathrm{~K}}\left(\frac{a}{\sigma \sigma u}\right)^{\frac{1}{m T}}\left(\sigma_{u^{\gamma}}-\sigma^{\gamma}\right)^{\frac{1}{\gamma m T}}
$$

Fig. 1. Derivation of $\theta(\sigma, \mathrm{T})$.

At temperatures below approximately one-third the absolute melting temperature the creep strain becomes negligible with respect to the elastic and plastic strain. In this region the stress is generally constant, σ_{u}, over a large domain of the parameter. This behavior, as well as the behavior at high temperatures, is accommodated by a resultant stress function that is generated by adding reciprocals of the time dependent (creep) and time independent components of stress. An empirically fitted constant, γ, provides for appropriate curvature in the transition region.

The computer program, to be described in the next section, has provision for determination of the constants, α, m, and κ by least squares analysis of a set $[\sigma, T, \theta]$ of creep data. The constants σ_{u} and γ are selected by the investigator by analysis of a curve of ultimate strength as a function of temperature and/or by iteration to determine the best fit of combined ultimate strength-creep data in a time-temperature domain of interest.

The general formulation of the approximate equation of state is obtained by substituting the creep life function (Fig. l) in Eq. (l) and making provisions for individual safety factors on ultimate strength, S_{u}, and creep strength, S_{c}.

$$
I=\kappa \int_{0}^{\Theta}\left\{\frac{\mathrm{s}_{\mathrm{c}}{ }^{\gamma}{ }^{\sigma_{u}{ }^{\gamma}{ }^{\prime}{ }^{\gamma}(t)}}{\alpha^{\gamma}\left[\sigma_{u}{ }^{\gamma}-S_{u}{ }^{\gamma}{ }^{\gamma}{ }^{\gamma}(t)\right]}\right\}^{\frac{1}{\gamma \mathrm{mII}(t)}} d t=D
$$

In principle, the integral in Eq. (2) can be evaluated numerically for any time behavior of stress and temperature. For radioisotope fuel capsules we have chosen to neglect the effect of strain on the volume of the capsule and reinforcing effects by layers other than the primary structural material. End effects are also neglected since the capsules have length-to-diameter ratio greater than 2. The stress is considered to be the maximum nominal tensile stress, the circumferential stress at the inner wall of the primary container

$$
\begin{equation*}
\sigma(t)=\frac{P(t)}{E}\left[\frac{R(4)^{2}+R(3)^{2}}{R(4)^{2}-R(3)^{2}}\right] \tag{3}
\end{equation*}
$$

where
$P=$ pressure in the capsule,
E = weld efficiency,
$R(4)=$ outer radius of primary container,
$R(3)=$ inner radius of primary container.
The time-dependent pressure is calculated from the ideal gas law since the helium gas is well above the critical point. The volume of gas is the void volume at the center of the capsule plus any additional void in the fuel region. The moles of gas are those that are present initially plus those that are formed by decay of the radioisotope.

The heat flux is in transient equilibrium with the power in capsules containing long-lived radioisotopes. Assuming that the overall heat transfer coefficients do not vary appreciably with temperature, the temperature of the helium gas and the container wall vary with time in the following way:

$$
\begin{equation*}
T(t)=T a+\left(T^{0}-T a\right) e^{-\lambda t}, \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{T}^{\bullet} & =\text { initial temperature }, \\
\mathrm{Ta} & =\text { ambient temperature }, \\
\lambda & =\text { decay constant } .
\end{aligned}
$$

Explicit formulae for the individual temperatures, volumes, etc., are given in the following section which describes the program, CAPSUL.

Equation (2) reduces to one previously derived by Kennedy ${ }^{6}$ under conditions of high constant temperature and constant stress rate, $\dot{\sigma}$. High temperature implies $\sigma=\dot{\sigma} t \ll \sigma_{u}$; therefore, if the safety factors are unity, Eq. (2) reduces to:

$$
\begin{equation*}
I=\kappa \int_{0}^{\Theta}\left(\frac{\dot{\sigma} t}{\alpha}\right)^{\frac{1}{m T}} d t=\kappa(\dot{\sigma} / \alpha)^{\frac{1}{m \mathrm{~T}}} \frac{\frac{1}{m \mathrm{~T}}+1}{\frac{1}{m \mathrm{TI}}+1} \tag{5}
\end{equation*}
$$

where $\frac{l}{\mathrm{mT}}$ and α / K^{mT} are the constants " n " and "A" used by Kennedy.
Kennedy, ${ }^{6}$ and later McCoy, ${ }^{7,8,9}$ verified that this equation is valid for several materials (including 304 and 309 stainless steels, T-111,

T-222, and $\mathrm{Cb}-1 \% \mathrm{Zr}$) by comparing creep rupture lives obtained at high constant temperatures and constant stress with those at the same temperature but constant stress rate. These data serve, indirectly, to validate Eq. (2). The use of the CAPSUL program to re-evaluate these constant stress rate experiments by direct numerical integration is described in Sect. 4.3. The adequacy of the model can be tested for other materials and at lower temperatures by performing experiments in which stress and temperature are known functions of time and evaluating the integral in Eq. (2) either analytically or numerically.

3.0 CAPSUL PROGRAM

CAPSUL is a Fortran program for the IBM $360 / 75$ computer. The program calculates the life to a prescribed creep strain and optimam dimensions of alpha radioisotope fuel capsules exposed to varying stress and temperature. The capsules (Fig. 2) are right cylinders with multilayered walls and elliptical end caps. Independent variables are $R O$, the inside radius of the capsule; $X(2)$, the thickness of the fuel layer; and $X(4)$, the thickness of the primary container wall.

The program has eight principal and eleven subsidiary subroutines. ISTSQ determines constants (α, κ, m) in an equation for rupture life (or life to a prescribed strain) as a function of stress and temperature by a least squares fit of creep-ultimate strength data. Once the constants are determined, LSTSQ is normally bypassed for calculations with the same material and design life criterion. The subroutine MAX ${ }^{10}$ uses a numerical Lagrange multiplier formulation to find a maximum of one of three thermal power functions (thermal power per unit projected area of a flat array of capsules, per unit volume of a rectangular parallelepiped that encloses a capsule and its auxiliary structural material, or per unit weight of capsule, each calculated in subroutine WR) subject to a time-integrated stresstemperature constraint (subroutine DR) that is dictated by a prescribed mpture or strain life. The subroutine RZERO calculates the allowable inside radius as a function of thermal power, if it is required that the capsule surface temperature not exceed a given value if the capsule is buried in an infinite medium of earth. The subroutine LIMIT examines the

Fig. 2. Reference Design of Fuel Capsule
dimensions of the optimized capsules for adherence to limits dictated by engineering considerations. If the wall thickness or radius of the capsule is too small or too large, the appropriate dimension is fixed at its nearest limit and MAX or the subroutine DF is used to determine the maximum power function in the remaining variable(s). The subroutine DF calculates a single remaining variable to satisfy the stress-temperature constraint. The program subroutine IHETAC calculates the rupture life or life to a prescribed strain of a capsule with specified dimensions. It is used to determine the life of capsules that have been optimized on the basis of another criterion. The subsidiary programs are WHP, which calculates the weight of the fuel capsule; CONVERT and VSU, which convert the capsule dimension variables to and from the MAX nomenclature; and SETUP, GTAIAM, VECT, CONVG, OUIPUT, ARITH, MATQ, and STEP, which are used by MAX. Library subroutines are SQRT, ABS, ALOG, ALOGIO, SETFAULT, and EXP.

The main program, CAPSUL, reads and writes all input data, guides the selection of subroutines for prescribed options, and prints pertinent results. The program operates in any of four sequences. Each sequence selection requires a complete complement of data cards and is termed a "case." There is no upper limit on the allowable number of cases per mun.

The sequence for a given case is determined by an input integer, MOPT. The first sequence (MOPT $=1$) is used to provide a fit of the creep life function (Fig. 1) by a least squares analysis of creep data. The second sequence (MOPT = 2) fits the creep life function and calculates optimum capsule dimensions for a prescribed life. The third sequence (MOPT = 3) calculates optimum capsule dimensions when the constants of the creep life function are given as input. The fourth sequence (MOPT = 4) calculates the life (or safety factor for a prescribed life) of a capsule with given dimensions and material properties. The following sections will describe the formulation of the subroutines for these sequences and provide input information. A list of the program is given in Appendix C.
3.1 Least Squares Analysis of Creep Data (MOPT = 1)

This sequence begins with the reading of the constants MOPT, K, $\operatorname{SIGU}\left(\sigma_{u}\right)$, and GAMMA (γ). Next, the programs reads and stores information
from K data cards containing K triples [SIGMA(I), $T(I)$, THETA(I)] of creep and/or ultimate strength data. Values of SIGMA.(I) greater than SIGU are not permitted. The main program calls subroutine LSTSQ (which, in turn, calls MATQ) and values of the fitted constants (ALPHA, XM, XKO) are computed. The main program then computes the following quantities:

1. The value of stress, SIGB(I), predicted by the fitted creep life function for each pair [T(I), THETA(I)].
2. The value of life, THETB(I), predicted by the fitted creep life function for each pair [SIGMA(I), $T(I)]$.
3. The Larson-Miller parameter, $\operatorname{IMP}(I)=T(I) \log _{10}[(X K O)(\operatorname{THETA}(I))]$, for each triple of data.
4. DIIH(I), the common logarithm of the ratio THETA(I) to THETB(I).
5. DISG(I), the common logarithm of the ratio SIGMA(I) to SIGB(I).
6. SELITH, SELSG, and RESIG, the standard errors in the common logarithm of creep life, conmon logarithm of stress, and relative stress, respectively.

The quantities SELTH, SELSG, and RESIG are calculated as follows:

$$
\begin{gathered}
\text { SELITH }=\left[\frac{1}{K-3} \sum_{I=1}^{K}(\operatorname{DLITH}(I))^{2}\right]^{I / 2} \\
\text { SEISG }=\left[\frac{1}{K-3} \sum_{I=1}^{K}\left(\operatorname{DISG(I))^{2}}\right]^{1 / 2}\right. \\
\text { RESIG }=\left[\frac{1}{K-3} \sum_{I=1}^{K}\left(\frac{\operatorname{SIGMA}(I)-\operatorname{SIGB}(I)}{\operatorname{SIGB}(I)}\right)^{2}\right]^{1 / 2}
\end{gathered}
$$

The program prints the values K, SIGU, GAMMA, ALPHA, XM, XKO, SELITH, SEISG, and RESIG and the array I, SIGMA(I), $T(I)$, THETA(I), LMP(I), THETB(I), SIGB(I), DITH(I), DLSG(I).

The program then reads another data card containing the integer K . If the new value of K is greater than the previous value, the program reads an additional number of triples of creep data equal to the difference in the two values of K . These new data are stored together with the previous data and the entire calculational procedure is repeated. This procedure, which permits a sequential analysis of data which are ordered with respect to one of the variables [usually THETA(I)], continues until the program reads a card with $K=0$. After reading a card with $K=0$, the program proceeds to the next case.

Execution time of this sequence is less than one minute for analysis of 500 (the maximum allowable) number of triples of creep data that are read in at a single time.

3.1.1 LSTSQ

This subroutine prepares the elements of a matrix equation for determination of the constants $\operatorname{AIPHA}(\alpha), \mathrm{XM}(M)$, and XKO (κ) by a least squares analysis of the creep life function (Fig. l). The function is linearized by writing it in logarithmic form (see Appendix C). This procedure is an approximation in the sense that the sum of the squares of the residuals of the logarithms are minimized rather than those of the original variables.

3.1.2 MATQ

This subroutine solves the matrix equation $A X=Y$ for X using modified Gaussian elimination (pivotal reduction using column pivots). A CO-OP description of this subroutine is given by Clark and Kam. 10

3.1.3 Input Information

The sequence, MOPT = l, uses only the data cards of type "a", "b", and "c", shown in Table 1. The cards of type "a" and "b" are followed by K cards of type "c". For sequential analysis the initial set is followed by stacks having a single card of type "b" followed by $\mathrm{K}^{\prime}-\mathrm{K}$ cards of type " c ". Here, K ' and K are the present and immediately preceeding values of K, respectively. The last card of type "c" in a case

Table 1. The Format of Input Data Cards for the CAPSUL Program

Card Type	Format	MOPT	Data
a	3 I2	1,2,3,4	MOPT, MMAX, NQ
b	I3,2F10.0	1,2	K, SIGU, CAMMA
c	3 F 20.0	1,2	SIGMA (I), T(I), THETA(I)
d	8F10.0	2,3,4	GAMMA, RR, E, PS, TS, H, ZM, TA
e	8 F 10.0	2,3,4	T8, A, ETA, BETA, DELTA, C, G, TAI
f	E10.3, 213	2,3,4	IAMDA, N, NN
g	9F8.0	2,3,4	$\mathrm{X}(\mathrm{I}), \mathrm{I}=1,9$
h	9F8.0	2,3,4	$\mathrm{P}(\mathrm{I}), \mathrm{I}=1,9$
i	9 F 8.0	2,3,4	XK(I), $I=2,10$
j	3 E 10.0	3,4	ALPHA, YK, XM
k	4 F 10.0	2,3	X4U, X4L, R3U, R3L
1	4E20.0	2,3,4	SIGU, SC, SU, PHI
m	4E20.0	2,3	Q, DELRO, DELX2, DEIX4
n	4E20.0	2,3	TAU, T81, T82, XID
\bigcirc	4E20.0	2,3	RO, $X(2), \mathrm{X}(4)$, THET
p	5 I 4	2,3	IX, NLAM, NITER, ITER, IMOST
q	4F10.0	2,3	G, C, CRIT, AIAM
r	4E20.0	4	Q, DELTH, DELOME, THMAX
s	4E20.0	4	TAU, T81, XID, RO
t	3E20.0	4	$\mathrm{X}(2), \mathrm{X}(4), \mathrm{THET}$

is followed by a card of type " b " with $K=0$. The last case is followed by a card of type "a" with MOPT $=0$.

3.2 Calculation of Capsule Dimensions for Maximum Specific Power

$$
(\text { MOPT }=2 \text { or } 3)
$$

The sequence begins by reading and writing MOPT, NMAX, and NQ plus 46 normally unchanging constants. If MOPT $=2$, the program calls the entire sequence for MOPT $=1$ to generate the three constants in the creep life function from experimental data; if MOPT $=3$, these constants are read in and written. The program then reads and writes an additional 29 constants. Next, the program iterates (calling VSU and DR) to modify the initial estimates of $X(2)$ and $X(4)$ such that the constraining function is approximately satisfied $(0.3 \leq D \leq 4.0)$. The iteration proceeds by multiplying the previous value of $X(2)$ by 0.95 if D is too large or by multiplying the previous $X(2)$ by 1.05 and the previous $X(4)$ by 0.95 if D is too small. The calculation stops, prints pertinent data, and proceeds to the next case if an appropriate value of D is not determined in 100 iterations.

The subroutine VSU generates a set of independent variables [AIF(K) and their increments, $\operatorname{DEL}(K)$ and $W E L(K)]$ for the MAX format from the capsule-dimension variables. The set of capsule-dimension variables to be used in a case is determined by the integer NMAX.

```
NMAX = 1 Variables are RO, X(2), and X(4).
NMAX = 2 Variables are RO and X(2).
NMAX = 3 The outer radius R(8) is specified. This
    option is used to generate capsules with given
    outside dimensions.
NMAX = 4 The radius R(3) is specified.
NMAX = 5 The radius RO is to be computed by the sub-
routine RZERO, assuming that the capsule is
buried in an infinite medium.
```

The subroutine $D R$ performs a numerical integration of Eq. (2) and generates a value of the constraining function D for a current set of variables. The subroutine $D R$ calls the subroutine CONVERT if NMAX $\neq 0$ and $\mathbb{N Q} \neq 0$. The subroutine CONVERT reconverts the MAX variables to capsule dimensions, depending on the value of NMAX. If NMAX $=5$, the subroutine CONVERT calls the subroutine RZERO to generate a burial-limited value of RO that is compatible with the current values of $X(2)$ and $X(4)$.

The main program calls the subroutine MAX if values of the variables are determined that approximately satisfy the constraining equation. MAX uses a numerical Lagrange multiplier formulation to find stationary values of the function W subject to the constraining equation $D=C$ (C is the constrained value). The numerical technique seeks a minimum in a defined function YSQ by making successive linear approximations along the path of steepest descent. The function YSQ is the square of a vector that is zero when the constraining equation is satisfied and the gradients of the functions D and W are parallel, the condition for a local maximum or minimum in the function W. The function W is to be maximized in the present calculation; the minimum value is zero if $X(2)=0$. The calculation proceeds by making outer and inner iterations. The outer iterations (counted by M) are steps in the domain of the function YSQ resulting from the linear approximation. Inner iterations (counted by LSTOP) prevent overstepping which might result in a divergent sequence.

The subroutine MAX calls the subroutines $D R$ and $W R$ to generate values of the constraining function D and the thermal power function W for use in tests and numerical computation of derivatives. The function W for a given case is chosen by the input integer NQ:
$\mathbb{N Q}=1 \quad$ Thermal power per unit of projected area ($\mathrm{W}=\mathrm{W} \mathrm{L}$).
$N Q=2 \quad$ Thermal power per unit volume of a circumscribed rectangular parallepiped ($W=W 2$).

NQ $=3 \quad$ Thermal power per unit of weight $(W=W 3)$.
After each iteration, MAX writes current values of the following quantities:

M	Number of the outer iteration.
D	Value of the constraining function.
W	Value of the thermal power function (WI, W2, or W3, depending on N) that is to be maximized.
YSQ	The function which has a value of zero at the desired solution point. The square of a vector Y.
Z	$Y S Q \cdot C^{2}$ (equal to $Y S Q$ for $C=1$).
ISTOP	Number of the inner iteration within the outer iteration M.
$Y(K)$	Components of the solution vector Y .
$\operatorname{ALF}(\mathrm{K}), \mathrm{K}=1, \mathrm{NR}$	Values of the independent variables and the Lagrange multiplier.
$R(I), I=0,9$	Outer radius of the nine regions of the capsule.
L	Length of the capsule.
Av2	Thermal power of the capsule.
W1, W2, W3	The specific thermal power functions.
WT	Weight of the capsule.

The MAX calculation stops when either the function YSQ becomes smaller than a prescribed convergence criterion, (CRIT) ${ }^{2}$, or a prescribed number of inner ($M \leq$ ITER) and outer (IMOST \leq ISTOP) iterations is exceeded. It is recommended that the present type of calculation be stopped by the number of iterations since it is very difficult to predict an acceptable maximum value of the solution vector. The selection of a maximum allowable number of iterations has one disadvantage; it is often the case that variables determined in other than the last iteration provide a better solution of the problem. Since the properties of the capsule are completely described after each iteration, the "best" set of dimensions can be
determined by reviewing the printed matter and selecting the iteration for which (1) the constraint $D=1.00$ is approximately satisfied, (2) the value W is maximum, and (3) YSQ is minimum.

When the MAX calculation stops, control is returned to the main program. The last set of calculated dimensions are then examined by the subroutine LIMIT to determine if the variables $R(3)$ and $X(4)$ are within the preselected domains R3L $\leq R(3) \leq R 3 U$ and $X 4 L \leq X(4) \leq X 4 U$. If the variables [first $X(4)$, then $R(3)$] are too small or too large, the appropriate dimension is fixed at its nearest limit; NMAX is changed to reflect a decrease in the number of independent variables; and control is returned to the main program. If the previous value of NMAX was I (new value 2 or 4), the entire calculation is repeated (starting with the iteration to determine suitable values of the variables and proceeding into the MAX subroutine) using the last computed values of RO and $X(4)$ or $X(2)$ and $X(4)$ as initial estimates. If the previous value of NMAX was $2,3,4$, or 5 , the routine $D F$ is called to calculate a value of the single remaining independent variable, $X(2)$, that satisfies the constraining equation, $\mathrm{DH}=1.00$. When the calculation is completed, the main program writes a final list of the variables; these numbers are different from those computed in the last MAX iteration only if the program DF has been called.

The MAX calculational procedure does not insure convergence to the constrained maximum value of the function W. If the investigator is unsure of the neighborhood of the solution point, he should submit several cases with different initial estimates of the variables. If results are erratic, the tolerance limits on the functions (PHI and Q) may not be sufficiently small. Increments in the variables (DELRO, DELX2, and DELX4) must be chosen such as to cause only small changes in the functions.

The execution time of this sequence for 100 iterations (inner plus outer) with 100 initial increments (N) in the domain of integration is approximately 3.5 minutes. The execution time is approximately proportional to the product of IIER and N.

3.2.1 DR

Subroutine DR calculates the value, $D H$, of the constraining function, D, using Simpson's rule with N increments. An abbreviated formulation of the function, the more important internal dependent variables (the integrand and stress and temperature functions) follows. More specific formulations are relegated to the list of the subroutine (Appendix C). Symbols are defined in Appendix A.

$$
\begin{gathered}
\mathrm{DH}=\int_{\mathrm{TNIT}}^{\text {TERM }} F d t \\
F=\kappa\left[\frac{S_{c} \sigma_{u} \sigma}{\alpha}\right]^{\frac{1}{\mathrm{mI}^{4}}}\left[\sigma_{u}{ }^{\gamma}-S_{u}{ }^{\gamma}{ }_{\sigma}{ }^{\gamma}\right]^{-\frac{1}{\gamma \mathrm{~m}^{4} 4}}
\end{gathered}
$$

$$
\begin{aligned}
\sigma= & \frac{R R}{E(V O+\eta \cdot V 2)}\left[\frac{R(4)^{2}+R(3)^{2}}{R(4)^{2}-R(3)^{2}}\right]\left[\frac{P S(V O+\eta V 2)}{R R \cdot T S}+\frac{H \cdot V 2 \cdot P(2)}{X M}\left(1-e^{-\lambda \cdot T}\right)\right] \\
& x\left[T A+(T O-T A) e^{-\lambda \cdot T}\right]
\end{aligned}
$$

$$
T^{4}=T A+\left(T^{4} 0-T A\right) e^{-\lambda T}
$$

$$
T 40=T 8+\frac{A V 2}{2 \pi \cdot I 2} \sum_{J=4}^{8} \frac{1}{X K(J)}\left[\frac{R(J)}{R(J+1)}\right]
$$

$$
T 0=T^{4} 40+\frac{A V 2}{2 \pi \cdot I 2 \cdot X K(3)} \quad \ln \frac{R(3)}{R(2)}+\frac{A}{4 \cdot X K(2)}\left[R(2)^{2}-R(1)^{2}-2 \cdot R(1)^{2} \ln \frac{R(2)}{R(1)}\right]
$$

$D R$ doubles the number of increments in the domain of integration a maximum of 16 times to satisfy a convergence criterion, PHI. The input number PHI is compared to the ratio of the difference in the last two values of D to the last value. The statement "failed to converge" is
written if 16 N increments are not sufficient. The library subroutine SEIFAUTT is used to set exponential underflows to zero.

The subroutine DR will accommodate functions other than those for which it is primarily intended (constant stress and/or temperature and constant derivatives of stress) by such devices as redefining the constants, setting T8 = TA, and dropping terms by setting leading constants equal to zero. In making such formulations, one must avoid negative arguments of logarithms (including values that are to be raised to a power) and division by zero.

3.2.2 WR

This subroutine calculates values of one of three specific thermal power functions for use as the function W in MAX. Choice of the function is determined by the current value of NQ. If the subroutine is called with $N Q=0$, the values of all three thermal power functions are calculated. If $\mathbb{N}=3$, the subroutine calls subroutine WHT to calculate the capsule weight. The three functions are:

$$
\begin{aligned}
& \mathrm{W} 1=\frac{\mathrm{AV} 2}{4 \cdot \mathrm{XID} \cdot \mathrm{R}(8) \cdot[\mathrm{R}(8)+\mathrm{BETA}]} \\
& \mathrm{W} 2=\frac{\mathrm{AV} 2}{8 \cdot \mathrm{XID} \cdot \mathrm{R}(8) \cdot[\mathrm{R}(8)+\mathrm{BETA}] \cdot[\mathrm{R}(8)+\mathrm{DELTA}]} \\
& \mathrm{W} 3=\frac{\mathrm{AV} 2}{\sum^{9} \mathrm{~V}(I) \cdot P(I)} \\
& \\
& I=1
\end{aligned}
$$

3.2.3 DF

This subroutine uses Newton's method to calculate a value of $X(2)$ to satisfy the constraint $D=1$. The calculation proceeds until $D-1 \leq Q$.

3.2.4 RZERO

This subroutine calculates RO from the following equation that relates the outside radius of a cylindrical capsule buried in an infinite conducting medium to the thermal power and temperature difference (difference between the maximum capsule surface temperature and ambient temperature of the conducting medium).

$$
R O+\sum_{J=1}^{8} x(J)=\frac{A V 2 \cdot \sinh ^{-1}(X L D)}{4 \pi \cdot X K(10) \cdot X I D \cdot(182-T A)}
$$

In this equation AV2 (see list for subroutine WR) is a function of RO. The variable RO is initially estimated by an approximate formula and then calculated by iteration using Newton's method until the relative change in AV2 is less than 10^{-6} or 10 iterations have occurred. Convergence is normally accomplished in less than five iterations because the initial approximation is good and the derivatives are computed analytically. If the current values of the variables $X(2)$ and $X(4)$ are such that $R O$ is negative, $R O$ is set equal to 0.2 .

3.2.5 LTMIT

This subroutine examines the last set of variables computed by MAX to determine if $X(4)$ and $R(3)$ are within the preselected domains $X 4 L \leq X(4) \leq X 4 U$ and $R 3 L \leq R(3) \leq R 3 U$. If the current value of NMAX is 1 and $X(4)$ is too large or too small, the variable $X(4)$ is set at its nearest limit and the entire MOPT sequence is repeated for $\operatorname{NMAX}=2$. If the current value of NMAX is 1 and $X 4 L \leq X(4) \leq X 4 U$, but $R(3)$ is too large or too small, the variable $R(3)$ is set at its nearest limit and the calculational sequence is repeated for NMAX $=4$. If the current value of NMAX is 2 and $R(3)$ is too large or too small, $R(3)$ is set at its nearest limit and the independent variable $X(2)$ is calculated to satisfy the constraint $D=1.00$. If the current value of NMAX is 3,4 , or 5 and $X(4)$ is too large or too small, $X(4)$ is set at its nearest limit and $X(2)$ is, again, calculated by the subroutine DF.

3.2 .6 WHT

This subroutine calculates the radii, length, and weight of the fuel capsule using the current values of the variables $R O, X(2)$, and $X(4)$. The weight, WT, is calculated as the sum of the product of volume and density of each region.

3.2.7 VSU, CONVERT

These two subroutines convert the capsule dimension variables to and from the variables used in MAX. Depending on the current value of NMAX, VSU generates the variables $\operatorname{AIF}(\mathrm{K})$ from $R O, X(2)$, and or $X(4)$ and the increments DEL(K) $=$ WEL(K) from DELRO, DELX2, and/or DELX4. CONVERT reconverts to capsule dimensions and calls RZERO if NMAX $=5$.

3.2 .8 MAX

The MAX program, used as a subroutine in the CAPSUL program, was written by F. H. S. Clark and F. B. K. Kam of ORNL. The reader is referred to their report ${ }^{10}$ or to the program list (Appendix C) for detailed information. The following will describe the sequence of calculations in MAX and a few changes that were made in the program for use in CAPSUL.

The main routine MAX begins by computing numbers that are to be used as convergence criteria and setting the outer iteration index M equal to one. Subroutine SETUP is then called. SETUP, which calls the subroutines $D R$ and $W R$, produces values of the functions D and W and all their first and second derivatives at the current trial set of independent variables, ALF(K). When control returns from SETUP to MAX, a test is made on the input number NLAM. If NLAM $=0$, the subroutine GTAIAM is called to generate an initial estimate of AIAM, the Lagrange multiplier. A value of NLAM other than zero signals that the initial estimate of AIAM has been provided as input. Subroutine VECT is called next to generate components of the solution vector Y.

Subroutine CONVG is next called. This subroutine tests to determine if YSQ is less than the product of $G(<1)$ and its value in the previous iteration. If either (1) M is equal to one, (2) YSQ is less than the computed product, or (3) the input integer LMOST is equal to zero (a
change), an index, JWAY, is set equal to one. If these criteria are not satisfied, JWAY is set equal to zero and the components of the step that was last made in the domain of the function Y are multiplied by 0.5 . The index JWAY is set equal to -1 if the number of these (JWAY $=0$) inner iterations has exceeded the input integer, IMOST.

After CONVG, subroutine OUTPUT writes current values of the pertinent indices, variables, and functions and returns control to MAX. The MAX program then tests the index, JWAY, to determine whether to stop the case and proceed to the next one (JWAY $=1$), to try an inner iteration with a reduced step in the domain of the function (JWAY $=0$), or to proceed with convergence tests (JWAY $=1$). If JWAY $=0$, the function YSQ is reevaluated with the reduced increments until either the conditions for JWAY $=1$ or -I are met.

If JWAY $=1$, tests are made to determine if the trial solution is converged or if the prescribed number (IIER) of outer iterations in M have been made. If either of these questions is answered affirmatively, the calculation is halted and input for the next case is called. Otherwise, subroutine ARITH is called. In this subroutine elements of a matrix (A) are evaluated at the new trial point. Next, subroutine MATQ is called. This solves for X the matrix equation (A) $X=Y$. The index M is increased by one and subroutine STEP is called, with subsequent operations following as previously described.

3.2.9 Input Information

The sequence for MOPT $=2$ or 3 requires, in order, one each of the data cards "a" and "d" through "i" (Table l). For MOPT = 2, these initial cards are followed by cards of type "b" and "c", stacked in the same order as for MOPT = 1; again, the last card of type "c" is followed by a card " b " with $\mathrm{K}=0$. The next card, of type " j ", is included only if MOPT $=3$. One each of the remaining data cards of type " k " through " q " then follows for either MOPT $=2$ or 3 . The last case is followed by a card of type "a" with MOPT $=0$. The input constants T81, TAI, and $\mathbb{N N}$ are not used for MOPT = 2 or 3 ; consequently, these fields may be left blank.

3.3 Capsule Iifetime Analysis (MOPT = 4)

This sequence begins by reading and writing 67 input constants, the first of which is MOPT (NMAX and NQ must be zero). The program then calls the subroutine THETAC. This subroutine uses the subroutine DR and Newton's method with an initial estimate of life, THET, to calculate a value of the resultant life, THETA, that satisfies the constraint $D=1.00$. In this case, D is the sum of two integrals. The first integral, over the time domain from zero to the input number TAU, uses the value $T 8$ as the initial steady state temperature of the outer surface of the capsule and TA as the temperature of the environment. The second integral, over the time period TAU to THET, uses T81 as the initial (time zero) steady state temperature of the surface of the capsule and TAl as the temperature of the environment. A value of TAU $=0$ sets the first integral equal to zero.

If, on any iteration, THET is larger than an input constant, THMAX, and D is less than one, THET is set equal to THMAX and a new variable, OMEGA, is computed by Newton's method to satisfy the constraint $D=1$. OMEGA is a number that maltiplies the safety factors $S C$ and SU.

After each iteration, the program writes the current values of either THETA, D, and the contribution of the second integral to D; or THMAX, D, and OMEGA. The calculation stops and returns control to the main program when $D-1$ is less than the input number, Q.

Execution time of the program with $\mathrm{N}=\mathrm{NN}=100$ is generally less than 20 seconds.

The sequence for MOPT $=4$ requires, in order, one each of the data cards "a", "d" through "J", "l", and "r" through "t" (Table l). The last case is followed by a card of type "a" with MOPT $=0$.

4.0 RESUITS OF ANALYSIS OF CREEP DATA

Creep data for several alloys have been analyzed to confirm the applicability of the model used in the CAPSUL program. The following sections will present a statistical analysis of the predicted creep life functions for three comercial materials, an analysis of the errors in time extrapolations, and results obtained in predicting constant stress rate data from conventional, constant stress, creep data.

4.1 Predicted Creep Life Functions

Creep life functions for three commercial alloys (304 stainless steel, Hastelloy N , and $\mathrm{Cb}-1 \% \mathrm{Zr}$) were generated using the MOPT $=1$ option of the CAPSUL program. The fitted creep life function for mupture of 304 stainless steel (Fig. 3) was made using 189 reduced creep data points 11 for 18 heats of bar and plate, covering the temperature domain from 900 to $1700^{\circ} \mathrm{F}$ and rupture life to $100,000 \mathrm{hr}$. The reported data, at decade intervals, were generated by interpolation or extrapolation of the larger body of experimental creep data for a given heat of material and temperature. Only three of the $100,000-\mathrm{hr}$ data points were obtained from experiments terminated at approximately $100,000 \mathrm{hr}$. The other thirteen data points were obtained by extrapolation of data from experiments terminated at earlier times in the 10,000 to $100,000-\mathrm{hr}$ decade. The constants γ and σ_{u} were chosen prior to the least squares analysis to force a fit of the ultimate strength vs temperature ($0.1-\mathrm{hr}$ rupture) data in the temperature domain above $400^{\circ} \mathrm{F}$. A parametric plot of the derived creep rupture function (Fig. 4) shows that the fit is good over the entire range of the variables. The frequency distribution of the error (Fig. 5) in the logarithm of the measured life and stress with respect to values predicted by the fitted function is approximately gaussian. The distribution of the error in relative stress is also approximately normal; the relative standard error in stress is 0.17 (68% confidence level).

The fitted creep life function (Fig. 6) for rupture of Hastelloy N (INOR-8) was made using 93 data points 12,13 for five heats of rods, sheet, and plate, covering the domains in temperature from 1100 to $1800^{\circ} \mathrm{F}$ and rupture life to $14,400 \mathrm{hr}$. A parametric plot of the predicted function and data at four temperatures is shown in Fig. 7. In this case, the distribution of error (Fig. 8) is not gaussian, but the frequency peaks on both sides of the fitted function. This phenomenon is explained by the fact that approximately half of the data were obtained with the commercial Hastelloy N alloy which is somewhat stronger than the initial version of the alloy, which was called INOR-8. If it is assumed that the frequency distribution is gaussian, the relative standard error in stress is 0.16.

Fig. 3. Master Larson-Miller Plot for Creep Rupture in 304 Stainless Steel. 18 heats. 189 data points. $1360 \leqslant T \leqslant 2160$. $10 \leqslant \theta \leqslant 100,000$.

Fig. 4. Parametric Plot of the Derived Creep Rupture Function for 304 Stainless Steel Compared with Experimental Data. 18 heats of bar and plate. $1360 \leqslant T \leqslant 2160 . \quad \theta \leqslant 100,000 \mathrm{hr}$.

Fig. 5. Distribution of the Error in the Logarithm of Measured Rupture Life and Stress for 304 Stainless Steel with Respect to Values Predicted by a Least-Squares Fit of the Creep Rupture Function. Area normalized to 1.00 .

Fig. 6. Master Larson-Miller Plot for Creep Rupture in Hastelloy N. 5 heats. 93 data points. $1560 \leqslant T \leqslant 2260$. $\Theta \leqslant 14,400 \mathrm{hr}$.

Fig. 7. Parametric Plot of the Derived Creep Rupture Function, θ (σ, T), for INOR-8 Compared with Experimental Data. The function was determined by a least-squares fit of an assumed functional type using 93 data points measured with 5 heats at 7 temperatures over a rupture life range of 0.5 to $14,000 \mathrm{hr}$.

Fig. 8. Distribution of the Error in Measured Rupture Life and Stress for Hastelloy N with Respect to Values Predicted by a Least-Squares Fit of the Creep Rupture Function. Area normalized to 1.00 .

The creep life function for rupture of $\mathrm{Cb}-1 \% \mathrm{Zr}$ (Fig. 9) was generated using data ${ }^{14,15}$ from 25 heats of sheet, bar, and plate, covering the temperature domain from 1600 to $2200^{\circ} \mathrm{F}$ and rupture life to 1733 hours. The abnormally large amount of scatter in the data, shown in the parametric plot (Fig. 10), is caused, primarily, by changes that were made in the composition and heat treatment of the alloy that resulted, accidentally or deliberately, between the periods of testing. The frequency distribution of the error (Fig. 11) is approximately gaussian. The relative standard error in stress is 0.14 .

The analysis of these creep data indicates that the general creep life function chosen for the model can provide a good description of constant stress, constant temperature creep behavior in 304 stainless steel, Hastelloy N , and $\mathrm{Cb}-1 \% \mathrm{Zr}$. Based on the results of others ${ }^{4,5}$ who have correlated creep data with the Larson-Miller parameter (but, generally not extending the fit into the ultimate strength range), we assume that the same conclusion will apply to many other metals and alloys (probably including most alloys of copper, nickel, iron, aluminum, and the refractory metals). It is apparent from the analysis that the ultimate strength data are useful for complementing the creep data in the highstress, low-temperature region.

The parametric plots of the fitted functions and data show that the distribution of data with respect to the fitted functions tends to be random in that the relative error does not vary significantly over the domain of the variables. In general, we have found that the frequency distribution function is most nearly gaussian when either one heat or many heats of an alloy are analyzed. There may be significant deviation from gaussian behavior if only a few heats of material, of varying properties, are analyzed.

4.2 Analysis of Errors in Time Extrapolations

The accuracy of the model for extrapolation of creep life in the three commercial alloys was investigated by making fits of constant stress and temperature creep data with rupture life less than a selected time; using these fitted functions to predict the stress as a function of

ORNL DWG. 66-10996

Fig. 9. Master Larson-Miller Plot for Creep Rupture in $\mathrm{Cb}--1 \% \mathrm{Zr} .25$ heats. $2060 \leqslant \mathrm{~T} \leqslant 2660$. $\theta \leqslant 1733 \mathrm{hr}$.

Fig. 10. Parametric Plot of the Derived Creep Rupture Function of $\mathrm{Cb}-\mathrm{l} \% \mathrm{Zr} \mathrm{All}$ oy Compared with Experimental Data. 25 heats. 104 data points. $2060 \leqslant T \leqslant 2660 . \quad \theta \leqslant 1733$. ORNL data points closed; Pratt \& Whitney data points open.

Fig. 11. Distribution of the Error in the Logarithm of Measured Rupture Life and Stress for $\mathrm{Cb}--1 \% \mathrm{Zr}$ with Respect to Values Predicted by a Least-Squares Fit of the Creep Rupture Function. Area normalized to 1.00 .
temperature to cause rupture at a greater time; and comparing the predicted stress with the actual average stress which caused failure at the greater time. The accuracy of the extrapolation, expressed in terms of the maximum relative error (or bias) in the predicted stress as a function of temperature, is then compared to the standard error (error at 67 percent confidence level since the distribution of stress data is approximately gaussian) in relative stress caused by the normal scatter of data about the predicted best-fit function. The model is then known to provide for adequate extrapolation of creep within the time range such that the bias in the predicted stress is small as compared to the standard error.

The first column of Table 2 shows the material, number of heats, and temperature range of the creep data that were analyzed. The next two columns show the values of the selected times and the corresponding number of data points (with rupture life less than the selected time) for which best-fit functions were evaluated. The fourth column shows the values of rupture life for which stress as a function of temperature was predicted by the model. The fifth column shows the standard error in relative stress for each of best-fit functions. The last column shows the maximum bias in the predicted stress, defined as the ratio of the maximum difference between the predicted and mean-measured stress to the mean-measured stress within the temperature range of the experiments.

Two very striking, but tenuous, conclusions may be drawn based on the results of Table 2 .

1. It appears that,for a large number of metals, the present creep model can provide a fit of creep data such that the standard error in relative stress will not exceed 15 to 17 percent. Knowledge of the statistics of the fit and the frequency distribution function will permit the choice of a design stress for a predetermined confidence level.
2. In each of the commercial alloys analyzed, the bias in predicted stress for a long-time extrapolation becomes small, using only 100 to $200-\mathrm{hr}$ creep data. For these alloys, the creep data for times greater than 100 to 200 hours is superfluous. The data seem to suggest that if
Table 2. Statistics and Predictability of Creep Rupture Data for Several Alloys

Material No. of Heats Temp. Domain, ${ }^{\circ} \mathrm{F}$	No. of Data Points	Maximum Lifetime in Data (hr)	```Life to be Predicted (hr)```	Relative Standard Error in Stress	Maximum Absolute Relative Bias in Predicted Stress
$\begin{aligned} & 304 \text { Stainless } \text { Steel }^{a} \\ & 18 \text { heats } \\ & 900 \leq \mathrm{T} \leq 1700 \end{aligned}$	15	10	100,000	0.03	-1.0
	63	100	100,000	0.13	-0.10
	123	1,000	100,000	0.14	-0.09
	173	10,000	100,000	0.16	-0.05
	189	100,000	100,000	0.17	0.0
$\begin{aligned} & \text { Hastelloy } \mathrm{N} \\ & 5 \text { heats } \\ & 1100 \leq \mathrm{T} \leq 1800 \end{aligned}$	26	100	10,000	0.16	0.2
	40	200	10,000	0.16	0.08
	55	500	10,000	0.17	-0.04
	69	1,000	10,000	0.16	-0.02
	81	2,000	10,000	0.16	0.008
	93	15,000	10,000	0.16	0.0
$\mathrm{Cb}-1 \% \mathrm{Zr}$ 25 heats $1600 \leq \mathrm{T} \leq 2200$	49	80	1,500	0.09	0.25
	66	150	1,500	0.10	0.07
	83	300	1,500	0.12	-0.04
	92	750	1,500	0.13	0.05
	104	1,800	1,500	0.14	0.0

${ }^{\text {a }}$ Note use of previously reduced data described on p .23.
creep data are available that span two to three decades in time (1 to 200 hours, for example), then a fitted function can be determined that will permit extremely long extrapolations in time with the error of the extrapolation being less than the normal scatter in moderate-time creep rupture data. This conclusion assumes, of course, that the longterm environment is the same as the test environment.

The data also suggest a possible method for avoiding experiments of unnecessarily long term in creep determinations. The creep program would begin by generating first short time; then, progressively, longer time data. The composite data would then be fitted, sequentially, as each new, longer-time data point is generated; and the fitted function would be used to predict the conditions to cause failure (or a given strain) at a very long time (perhaps 100,000 hours). The creep program would be terminated when sufficient data are generated such that sequential data cause small and random (as opposed to monotonic) changes in the predicted conditions to cause long-term failure.

4.3 Analysis of Constant Stress Rate Tests

The accuracy of the model in predicting creep, under conditions of varying stress, was investigated by analyzing constant stress rate tests with the CAPSUL program. The time to rupture of the alloy T-222 and time to 1 percent strain of the alloy FS-85 exposed to a constantly increasing stress rate and constant temperature were calculated (Fig. 12) using a creep life function that was generated using conventional creep and ultimate strength data 9,16 over a wide range of stress and temperature. The predicted stress rates agree with the measured data for the alloy T-222 within experimental error. Agreement with the FS-85 data is satisfactory, but it appears that the predicted results are biased at the particular temperature at which the experiments were conducted.

McCoy ${ }^{8}$ has analyzed these same creep data using a simpler, but less general, model. McCoy fitted conventional creep data, at the specific temperature of interest, by assuming that the logarithm of stress is linearly related to the logarithm of the creep life, an assumption that

Fig. 12. Predicted and Observed Creep Behavior of T-222 and FS-85 at a Constant Stress Rate and Constant Temperature.
is equivalent to the assumption used in the present method if the temperature is high. McCoy's predictions are also good, but no better than those predicted by the present method in spite of the fact that his model was based on data only for the specific temperature of interest. McCoy required two equations to provide a good fit of the FS-85 data over the stress rate domain of the experiments.

The procedure for determining the l-percent-creep function for the FS-85 is shown as an example of the MOPT $=1$ sequence of the CAPSUL program in Appendix B. Also shown is one of the constant stress rate calculations for rupture of the $T-222$ alloy as an example of the MOPT $=4$ sequence.

1. E. L. Robinson, Trans. Am. Soc. Mech. Engrs. 74(5), 778-81 (1952).
2. S. V. Serenson and V. S. Strelayev, "Creep Resistance and Low-Cycle Fatigue of Fibreglass Plastics," pp. 3-93 to 3-98 in Proceedings of Joint International Conference on Creep, Institute of Mechanical Engineers, 1963.
3. A. J. Kennedy, Processes of Creep and Fatigue in Metals, Wiley, New York, 1963, pp. 402-28.
4. E. C. Larke and N. P. Inglis, "A Critical Examination of Some Methods of Analyzing and Extrapolating Stress-Rupture Data," pp. 6-33 to 6-47 in Proceedings of Joint International Conference on Creep, Institute of Mechanical Engineers, 1963.
5. F. R. Larson and J. Miller, Trans. Am. Soc. Mech. Engrs. 74(5), 765-75 (1952).
6. C. R. Kennedy, Metals and Ceramics Div. Ann. Progr. Rept. May 31, 1962, ORNL-3313, pp. 44-45.
7. H. E. McCoy, Metals and Ceramics Div. Ann. Progr. Rept. June 30, 1965, ORNL-3870, pp. 122-23.
8. H. E. McCoy, "Creep-Rupture Properties Under Conditions of Constant and Varying Stresses," Nucl. Appl. 2(6), 481-84 (1966).
9. H. E. McCoy, Creep Rupture Properties of the Tantalum-Base Alloy T-222, ORNL-TM-1576 (Sept. 1966).
10. F. H. S. Clark and F. B. K. Kam, A Generalized One-Constraint Lagrange Multiplier Numerical Formulation, ORNL-3742 Rev. (June, 1965).
11. W. F. Sinmons ana J. A. Van Echo, The Elevated Temperature Properties of Stainless Steels, American Society for Testing and Materials, Philadelphia, Pa., 1965.
12. R. W. Swindeman, The Mechanical Properties of IVOR-8, ORNL-2780 (Jan., 1961).
13. J. T. Venard, Tensile and Creep Properties of INOR-8 for the Molten Salt Reactor Experiment, ORNL-TM-1017 (February, 1965).
14. H. E. McCoy, Creep Properties of the $\mathrm{Nb}-1 \% \mathrm{Zr}$ Alloy, ORNL-TM-905 (August, 1964).
15. Creep Rupture Data for Cb-1 Zr Alloy, CNLM-4267, Pratt and Whitney (Sept. 1962).
16. R. L. Stephenson, Creep-Rupture Properties of FS-85 Alloy and Their Response to Heat Treatment, ORNL-TM-1456 (July 1966).

APPENDIX A

Units and Glossary of Symbols

Units

Length	-	inch
Mass	-	pound
Time	-	hour
Temperature	-	degrees Renkine
Heat	-	Btu

Symbols

A, AO, A2
ALAM, $\operatorname{AIF}(I X+1)$
$\operatorname{ALF}(\mathrm{K}), \mathrm{K}=1,19$
ALPHA, α

Av2
BETA

C
CRIT

D, DH
$\operatorname{DEL}(\mathrm{K}), \mathrm{K}=1,19$

DELOME
DELTA

DELRO

Thermal power per unit of fuel region.
The Lagrange multiplier.
Independent variables in MAX.
The fitted value of creep stress for a Larson-Miller parameter of zero.

Thermal power of the fuel region.
One-half the surface-to-surface distance between parallel columns of capsules.

Constrained value of DH .
An input value of a convergence criterion for MAX.

Value of the constraining function, Eq. (2).
The increment in the variables $\operatorname{AIF}(\mathrm{K})$ in calculating DH.

The increment in OMEGA.
Thickness of the structural liner surrounding the capsule.

The increment in RO.

DELTH	The increment of THET.
DELX2	The increment in $\mathrm{X}(2)$.
DEEX4	The increment in $\mathrm{X}(4)$.
$\operatorname{DLSG}(\mathrm{I}), \mathrm{I}=1,500$	The common logarithm of SIGMA(I)/SIGB (I).
$\operatorname{DLTH}(\mathrm{I}), \mathrm{I}=1,500$	The common logarithm of THETA(I$) / \mathrm{THETB}$ (1).
E	Capsule weld efficiency.
ETA	Volume fraction of gas space in the fuel region.
F	Integrand of the constraining function.
G	A number slightly less than 1.0 in the convergence criterion for MAX.
GAMMA, γ	A constant in F, usually 1.0 or 2.0 .
H	Weight fraction of alpha-emitting isotope in the fuel.
I	An index.
IIER	Maximum number of outer iterations in MAX.
IX	Number of independent variables in MAX.
J	An index.
JAM	An integer that counts and limits to 100 the number of iterations to adjust input estimates of $X(2)$ and $X(4)$ such that $0.3 \leq \mathrm{DH} \leq 4.0$.
K	Maximum number of data points in LSTSQ. Elsewhere an index.
L	An index in THETAC. Overall length of the fuel capsule in the main program.
12	Length of fueled section of capsule.
I4	Length of the straight section of the capsule.
IAMDA, λ	Decay constant of the radioisotope.

LMOST
$\operatorname{LMP}(I), I=1,500$
ISTOP

M

MOPT

N, NN

NITER

NLAM

NMAX

NNN

NQ

NR
OMEGA, $\mathrm{XK}(1)$
$P(I), I=1,9$

PHI

Maximum number of inner iterations in MAX.
Value of the Larson-Miller parameter.
An index which counts inner iterations in MAX.

An index which counts outer iterations in MAX. An index in RZERO.

An input index which decides the sequence to use in the main program

The initial number of (even) increments for Simpson's rule integration in DR. If MOPT $=2$ or $3, \mathrm{~N}$ is the initial number of increments in the time domain 0.0 to THET. If $\operatorname{MOPT}=4$, N is the initial number of increments in the domain 0.0 to TAU and NN is the initial number of increments in the doma in TAU to THET.

An input index to determine if a convergence criterion is to be used in MAX.

An input index to determine if GTALAM is to be used to estimate the initial value of the Lagrange multiplier.

An input index that specifies the set of independent capsule dimension variables that are subject to optimization.

An index that causes additional creep data cards to be read and analyzed by LSTSQ together with data previously in storage.

An input index that decides the function to be maximized.

The index of the Lagrange multiplier, IX +1 .
A number that multiplies the safety factors SC and SU in THETAC to satisfy $\mathrm{DH}=1.0$ if THET > THMAX.

Density of the material in region I of the capsule.

An input convergence criterion for the Simpson's Rule integration in DR.

PS	Initial pressure in the fuel capsule.
Q	An input convergence criterion on DH for use in the subroutines DF and THETAC.
$R(I), \quad I=1,8$	Outer radius of region I of the capsule.
RESIG	The standard error in relative stress for the fitted creep life function.
RK	YSQ.G, a test quantity in MAX.
RO	The outer radius of the void region of the capsule.
R3L	The imposed lower limit for the outer radius of region 3 of the capsule.
R3U	The imposed upper limit for the outer radius of region 3 of the capsule.
$\mathrm{SC}, \mathrm{S}_{\mathrm{c}}$	The safety factor on creep stress.
SELTH	The standard error in the common logarithm of creep life for the fitted creep life function.
SEISG	The standard error in the common logarithm of stress for the fitted creep life function.
$\operatorname{SIGB}(\mathrm{I}), \mathrm{I}=1,500, \sigma$	The value of stress predicted by the fitted creep life function for the values $T(I)$ and THETA(I).
$\operatorname{SIGMA}(\mathrm{I}), \mathrm{I}=1,500$	The measured value of stress in the input creep data.
SIGT	The current value of stress as a function of time in DR.
SIGU, σ_{u}	An imposed upper limit on stress as a function of the Larson-Miller parameter.
SU, S_{u}	The safety factor on SIGU.
T, t	Time since application of the stress.
$T(I), \quad I=1,500$	The measured value of absolute temperature in the creep data.
TA	Ambient temperature of the earth (MOPT $=2$ or 3) and the first environment (MOPT = 4).

Ambient temperature of the second environment (MOPT = 4), see T81.

TERM

THET, THETA, \oplus

THETA(I), $I=1,500$
$\operatorname{THEIB}(I), I=1,500, \theta$

THMAX

TNIT

TS

TO

T4

T40

T8

T81

Lifetime in the initial service environment for use in THETAC.

The upper limit of the integral in DR either TAU or THET.

Resultant life of the fuel capsule exposed to varying stress and temperature.

The measured value of life to a prescribed creep criterion in the input creep data.

The value of life predicted by the fitted creep life function for the values SIGMA(I) and $T(I)$.

An imposed upper limit on the value of THET in THETAC.

The lower limit of the integral in $D R$, either zero or TAU.

Temperature of the gas when the capsule is sealed.

The initial steady state temperature of the helium gas in the fuel capsule as calculated in $D R$.

The instantaneous value of the steady state temperature of the inner wall of the primary structural material.

The initial steady state temperature of the inner wall of the primary structural material.

The imposed initial steady state of the outer surface of the capsule. In THETAC this is the initial temperature in the time period zero to TAU.

In subroutine THETAC the imposed initial steady state temperature of the surface of the fuel capsule in the time period TAU to THETA expressed as the temperature at zero time (i.e., at full thermal power).

T82	The initial steady state temperature of the surface of the capsule assuming that it becomes buried in an infinite medium of conductivity $\mathrm{XK}(10)$ at zero time.
$\mathrm{V}(\mathrm{I}), \mathrm{I}=1,9$	Volume of region I of the capsule.
vo	Volume of the void region.
V2	Volume of the fuel region.
W, WH	The specific thermal power function that is to be maximized (W1, W2, or W3).
WEL(K$), \mathrm{K}=1,19$	The increment in the variables $\operatorname{ALF}(K)$ in calculating WH.
WT	Weight of the fuel capsule.
Wl	Thermal power of the capsule per unit of projected area.
W2	Thermal power of the capsule per unit of volume of a circumscribed rectangular parallepiped.
W3	Thermal power of the capsule per unit of weight.
$X(I), \quad I=1,9$	Thickness of region I of the capsule.
$\mathrm{X}(\mathrm{K}, \mathrm{I}), \mathrm{XX}(\mathrm{K}, 1), \mathrm{K}=1,19$	An increment in the variable ALF (K).
XID	The overall length-to-diameter ratio of the capsule.
XM, m	A fitted constant in the creep life function.
XKO, YK, H	A fitted constant in the creep life function.
$\mathrm{XK}(\mathrm{I}), \mathrm{I}=2,8$	Thermal conductivity of region I of the capsule.
$\mathrm{XK}(9)$	Thickness of the capsule bushing (see Fig. 2).
XK(10)	Temperature averaged thermal conductivity of the infinite medium in which the capsule is immersed.
X4L	The imposed lower limit on the thickness of the primary structural material of the capsule.

X4U

YK

YSQ

ZM

The imposed upper limit on the thickness of the primary structural material of the capsule.

See XKO.
The square of the vector \bar{y}, which is the function minimized in MAX.

Atomic weight of the alpha-emitting radioisotope.

Capsule Regions (Fig. 2)

0

Helium
Inner fuel liner
Radioisotope fuel
Outer fuel liner
Primary containment wall
Diffusion barrier
Gas gap
Corrosion barrier
Radiant coating
Fuel spacer
An infinite heat conducting medium

APPENDIX B

Example Problems

B1. $\mathrm{MOPT}=1$
This sequence is used to generate constants in the creep life function for 1 percent strain in the alloy FS-85. A photograph of the output is shown in Table B1. The creep data are the 28 data points ($K=28$) reported by Stephenson. ${ }^{16}$ The ultimate strength at room temperature (SIGU) is taken to be 80,000 psi. A moderately large value of 2.0 is chosen for the constant GAMMA to provide a rather abrupt change in the behavior of the function in the transition range. Shown on the second and third rows of the output are the computed constants (AIPHA, XM, XKO) and the standard errors in life and stress (SEITH, SELSG, and RESIG) relative to the fitted function. The array of basic experimental data [SIGMA(I), $T(I), \operatorname{THETA}(I)]$ is shown in columns two through four of the output. Other columns list pertinent calculated results [IMP(I), $\operatorname{THETB}(I), S I G B(I), \operatorname{DISH}(I)$, and $D I S G(I)]$ for each data point.

B2. \quad MOPT $=3$

This problem requires determination of the dimensions of a capsule for ${ }^{244} \mathrm{Cm}_{2} \mathrm{O}_{3}$ fuel having maximum power per unit of volume. Restrictions on the capsule are: (1) The primary container material, fuel liners, and the bushing are to be made of Hastelloy N. (2) The fuel liners and bushing are to be 0.010 in . thick. (3) The outer surface temperature of the capsule is not to exceed $2100^{\circ} \mathrm{R}$ if the capsule becomes buried in dry sand $[\mathrm{XK}(10)=0.0167]$ immediately after incapsulation. (4) The capsule is to be designed such that the probability of rupture in 5 years is 0.001 . This condition (see Sect. 4) is approximately satisfied by designing for rupture in 5 years with a stress safety factor of 2.0. (5) $0.05 \leq x(4) \leq 0.5,0.01 \leq R(3) \leq 3.0$.

The input data for this problem are tabulated in the first 19 rows of the printed output (Table B2). Initial estimates of the variables R), $X(2)$, and $X(4)$ are $0.3,0.1$, and 0.16 , respectively. In this problem, it is chosen to use only outer iterations in the MAX calculations (IMOST = 0). The variables and their increments for use in this calculation are so small that inner iterations would sometimes fail because of loss of significance (the IBM 360/75 carries only seven significant figures in this program).

The minimum value of YSQ (57.36) for which the constraint ($D=1.0000$) is satisfied and W is maximum ($59.15 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{in}^{3}$) occurs in iteration number $48(M=48)$. The iterations that follow produce the same computed values indicating that YSQ is trapped at either a stationary point or an absolute minimum that may be obtained with the current set of variables and their increments. Calculations with higher and lower starting estimates of $X(4)$ indicated that this solution provides maximum power within the range of interest in the variables $R(3)$ and $X(4)$. The last array of computed values in the output is the same as in the last iteration produced by MAX, indicating that LTMIT did not call DF because $R(3)$ and $X(4)$ were within the preselected limits.

Table B2 (continued)

Table B2 (continued)

B3. $\operatorname{MOPT}=4$
We will illustrate the use of this sequence to calculate the rupture life of an alloy exposed to a constant stress rate, a problem different from the normal one of calculating the life of a capsule. The alloy $\mathrm{T}-222$ is subjected to a constantly increasing stress rate, σ, of $3500 \mathrm{psi} / \mathrm{hr}$ at a temperature of $2460^{\circ} \mathrm{R}$. The input constants (some are redefined), printed on the first 14 rows of the output (Table B3) are determined as follows:

1. Let $T A=A=B E T A=D E L T A=P S=T A=\operatorname{MMAX}=N Q=T A U=R O=0$.

Let $E T A=C=G=T S=X(I), I=1,9$ but $\neq 4=P(I), I=1,9=X K(I)$, $I=2,10$ but $\neq 9=S C=S U=X L D=1.0$.
2. The constants GAMMA, SIGU, ALPHA, YK, and XM are chosen from a fit of T-222 rupture data.
3. Let $T A l=T 81=2 M=2460$. ZM cancels $T A 1$ in the expression for SIGT.
4. Choose THET such that $\dot{\sigma} \cdot$ THET < SIGU; therefore, THET $=25$.
5. Choose LAMBDA such that LAMBDA•THET <0.01; therefore LAMBDA $=10^{-4}$. This causes the expression $[1-\operatorname{EXP}(-I A M B D A \cdot T)]$ to produce LAMBDA•T.
6. Choose $H=10^{4}$ to cancel IAMBDA.
7. Let $R O=0$ and $\mathrm{XK}(9)=3$; therefore $R(3)=X K(9)$ and $V O=0$.
8. Let $X(4)=2$ and $E=2.125$. This causes E to cancel the term $\left[R(4)^{2}+R(3)^{2}\right] /\left[R(4)^{2}-R(3)^{2}\right]$.
9. Let $R R=\dot{\sigma}=3500$.
10. Let $P H I=10^{-4}, Q=10^{-3}$, DELTH $=\operatorname{DELOME}=10^{-2}$, and THMAX $=10^{6}$.

The computed value of THETA, determined in five iterations, is
19.33 hours; this compares with an experimentally determined value of
19.1 hours. The value of OMEGA is one since THMAX was not exceeded.
Table B3

OMEGA $=0.100000 \mathrm{E} 01$
20

APPENDIX C

List of CAPSUL Program


```
    WRITF(51.890) MOPT,NMAX,NQ
    103 FGRMAT (BHOAL. PHA \(=, E 15.5 . / .5 \mathrm{H} X M=, E 15.5 . / .5 \mathrm{H} \quad \mathrm{YK}=, \mathrm{E} 15.51\)
```



```
        WRITF(51,891) \((X(I), I=1,9),(P(I), I=1,9),(X K(I), I=2,10)\)
    891 FORMAT(OIHE FOLLOWING THREE ROWS ARE THE CONTENTS OF THE \(X, P\), AN
        10 XK ARRAYS'.//.(9F12.4))
        GO TO \((10.10 \cdot 20 \cdot 30)\), MOPT
C.*** CRNSTANTS FOR LSTSO ROUTINE
    10 READ(50.101) K. SIGU, GAMMA. (SIGMA(I), T(I),THETA(I),I =NNN,K)
        IFIK.FO.O) GO TO 95
    101 FOKNAT (I3.2F1C.0./(3F20.01)
        C.ALL LSTSO (K, SIGU.GAMMA,SIGMA.T,THETA.ALPHA, XM, XKO)
        SFI TH=0.0
        \(S F L S G=0.0\)
        RFSIG \(=0.0\)
        DO1109 \(\mathrm{I}=1 . \mathrm{K}\)
        EX=1.O/XN/T(I)
        IHFTA(I) \(=1.0 / X K 0 * 1.01 * A L P H A / S I G M A(I) / S I G U) * * E X * S I G U * *\)
    1 GAMMA-SIGMA(I)*कGAMMA)**(EX/GAMMA)*100.**EX
    SIGR(I) = ( (ALPHA**GAMMA*SIGU**GAMMA)/IALPHA**GAMMA + SIGU**GAMMA*
    1(XKO*THETA(I))**(GAMMA*XM*T(I))))**(1.0/GAMMA)
        LMP(I) =T(1)*ALOG10(XKO*THETA(I))
        DISG(I)=ALOG]O(SIGMA(I)/SICB(I))
        SEL SG \(=\) SELSG + ODLSG(I) ) **2
        DLTH(I)=ALCGIO(THETA(I)/THETB(I))
        SEITH=SEITH+(DLTH(I))**2
        RESIG=RESIG +(ISIGMA(I)-SIGR(I))**2)/SIGB(I)**2
    1109 CONTINUF
        SFLTH=SGRT(SELTH/(K-3.0))
        SELSG=SORT (SELSG/(K-3.0))
        RESIG = SGRT(RESIG/(K-3))
        WRITF(51.527) K, SIGU. GAMMA. ALPHA. XM. XKO, SELTH. SELSG,
        IRFSIG.iI, SIGMA(I). Tili, THFTA(I). LMP(I), THETB(I), SIGB(I).
        2DLTH(I). DLSG(I). I=1,K)
```



```
        1. ALPHA =', E15.6.5X, 'XM =', E15.6.5X.'XKO =', E15.6.1,
```



```
        3' 1'.Th,'S1GMA(I)',T16.'T(1)',T23.'THETA(I)', T38, 'LMP(I)',
```



```
        5114.FS.0,F7.O.F11.2.2X.E12.5.2X,E12.5.2X,E12.5.2X.E12.5,2X.E12.5)।
        NNN \(=K+1\)
        GO TO 10
    95 GO 10 (90.25). MOPT
C*** CONSTANTS FOR USE IN MAX
    20 READ(5C.110) ALPHA,YK,XM
        WRITF(51.103) ALPHA. XM, YK
    25 COATINUE
        RFAD(50.111) X4U. X4L. R3U. R3L
```

WRITEI51.1261 X4U. X4L. R3U, R3L
 1T82. XLD. RO, X(2), X14). THET
241 FORMAT(4E20.0)
WRITE151.242) SIGU. SC. SU. PHI. D, DELRO, DELX2, DELX4, TAU. T81,
ITR2. XLD, RO, X(2), X(4). THET

4^{\prime} THETA $={ }^{\circ}$. E12.4)
RFAD(50.407) IX, NLAM, NITER, ITER, LMOST, G. C, CRIT, ALAM
407 FORMAT(514./.4F10.0)
WRITE(51,403)IX, NLAM. NITER, ITER, LMOST, G, C, CRIT, ALAM

2 F6.3)
900 NMAXI = NMAX
$J A M=0$
CALI VSU
61 CALL DR
$J A M=J \Delta M+1$
IFIJAM.GT. 100 I GO 1066
IFIDH.GT.4.01 62.63
63 IFIDH.LT. 0.3164 .65
66 WRITF(51.4) RO, (R(I),I=1.8). L. AV2, W1. W2, W3, WT
GO TO 90
$67 \times(2)=0.95 * \times(2)$
CALL VSU
GGi TO 61
$64 \times(2)=1.05 * \times(2)$
$x(4)=0.95 * \times(4)$
CALL VSU
GO TO 61
65 CONTINUF
CALL MAX (NLAM)
NQ1=NG \& $N Q=0$
CALL WR
CAIL IIMIT
$\mathrm{NC}=\mathrm{NOI}$
WRITE(51.4) RO. (R(1), I=1,8), L, AV2, W1, W2. W3. WT

TF(NMAX.EQ.NMAXI) SC.900
C.*** THF FOLLOWING ARE THE CONSTANTS USEE IN CALCULATING THETA

30 RFAD(5C. 110$)$ ALPHA, YK.XM
RFAC(50.210) SIGU, SC, SU, PHI, Q, DELTH, DELOME, THMAX, TAU, T8I,

```
    1 XID. RO. X(?). X(4).THET
210 FORMAT(4F20.0)
        WRITF(51,211) SIC!!. SC, SU. PHI, O, UELTH, DELOME, THMAX, TAU,
    I TRI, XLD, RC, X(?), X(4), THET, ALPHA, YK, XM
```



```
    1 F1O.7.1.' O ='. F10.2.5x.'DFLTH =',F10.2.5X,'DELOMF =',ElO.2,
    75X.'THMAX ='. F10.3.1.' TAU =', E10.3.5X,'T81 ='F%.1,5X,'XLO =',
    3F7.3.5X.,RO=1FG.3.1.' X(2)=, FG.3.5X.'X(4)=, FG.3.5X,'THET =',
    4 F1?.3./.' ALPHA ='.El2.4,5X.'YK =',El2.4.5X.'XM =',F12.4)
        C.ALI THFTAC.
        WRITF(51,7P) THET.CMFGA
    72 FORMAT('OTHFTA='F15.6.5X.'LGNEGA ='E15.6)
        GO TO 90
    13 FND
        SLRROIUTINF LSTSO (K.SIGU.GAMMA.SIGMA.T,THETA,ALPHA,XM, XKO)
        DINTNSION SIGMA(50)I. T(500). THETA(500). Y(500). L(500),
    1 A(3.3). X(3)
        SIG=SIGU**GAMMA
        DO 10 I=1,K
        SIGI = SIGNA(I)##GAMMA
        Y(I) = ALOG(SIG*SIGI/(SIG-SIGI))
    1071I)= T(I)*ALOG(THETA(1))
        0n >0 I=1.3 & x(I) = 0.0
        %O 20 J=1.3
    20 A(I..J)=0.0
    DO 30 I = 1.K
    A(1.7) = A(1.7) + T(I)
    A(1.3)=A(1.3)+Z(I)
    A(7.)) = A(7.7) + T(1)**2
    A().3) = A(?.3) + T(I)*2(I)
    A(3.3)=A(3.3)+7(1)**2
    X(1)=X(1) - Y(I)
    X(7) = X(7) - T(I)#Y(I)
    30 X(3)=X(3)-7(1)*Y(I)
    A(1.1) = -K& &(?.1) = -A(1.2)
    A(3.1) = -A(1.3) $ A(3.2) = A(2.3)
    C.A1! MATC(A,X.3.1.CFT,3.3)
    \Deltal=x(1) & A 2 = x(%) $ A = x(3)
    ALPHA = EXP(A1/GAMMA)
    XM= \triangle3/GAMMA
    XKC=EXP(AZ/GAMMA/XM)
    RFTIJRN
    FNC
    SURROUTINE CONVEKTINMAX,X,ALF,R,ROI
    DIMFNSION X(9). ALF(19).R(8)
    GO TO (10.20.30.40.50).NMAX
    10RO=ALF(1)
```

```
    x(2)=\DeltaLF(2)
    X(4)=ALF(3)
    RFTURN
20 RO=ALF(1)
    X(つ)=ALF(2)
    RETURN
30 X (2)=\triangleLF(1)
    X(4)=\DeltaLF(?)
    R0=R(8)-x(1)-x(2)-x(3)-x(4)-x(5)-x(6)-x(7)-x(8)
    RETIJRN
40 X(2)=\triangleLF(1)
    X(4)=\DeltaLF(2)
    RO=R(3)-x(1)-x(2)-x(3)
    RFTURN
50. X(2)=\triangleLF(1)
    X(4)=\triangleLF(2)
    CAII RTFRO
    RFTURN
--_END
SURROUTINE WR
        COMMON/MAX/IX,M,ALAM,ALF(19),C,CSO,DH,WH
        CRNMIN/CON/K, SIGU, ALPHA, YK, XM, PHI, D, DELTA, DFLOME, THMAX,
    1TAll. TR], T&\. XLD, RO, R(8), GAMMA, RR, E, PS, IS, H, LM, LAMRDA,
    TTA. NQ. X(9). P(9). XK(10). A. ETA. BETA. TNIT, TERM. T8. SC, SU,
    3N. NN. DELTH. AV2. NMAX, I.WI.W2, W3. THET, WT, TAI
    RFAL I\triangleMPDA. L
    C.AII CCNVERT(NMAX,X,ALF,R,RO)
    R(1)=RO+X(1)
    00 4C. I= 2.8
40R(I)=R(I-1)+X(I)
    X: ᄀ=2.0*(XLO-.575)*R(8)-.5*(1.0+R(4))-2.0*(X(1)+X(9))
    \DeltaVフ=\Delta*X1 P*3.14155*(R17)**2-R(1)**2)
    GO TO 110.20.30) NG
10WH = AVP/14.0**(D)*R(8)*(R(8) + BETA))
    IFING.NF.OI KETURN
    Wl=WH
20WH=AV)/(8.0*)LD*R(8)*(R(8) + BETA)*(R(8) + DELTA))
    IF(NQ.NF.O) RETURN
    W2 = WF
30 CALL WHT
    WH=\DeltaVZ/WT
    W3=WH
    RFTURN
    FND
    SGPROUTINE WHT
    CCNMEN/CCN/ K. SIGU. ALPHA, YK. XM, PHI, Q, DELTA, DELCME, THMAX,
1TAU. T&1. TR2. XLD. RO, R(8). GAMMA, RR, E. PS, IS. H, ZM, LAMBDA,
```

```
    2TA.NO. X(9). P(9), XK(10), A, ETA, BETA. TNIT. TERM, T&, SC. SU,
    3N. NN. DHLTH, AV?. NMAX, L, W1, W2, W3, THET, WT, TAI
    RFAL L.12.14.V(S)
    L = ?.0*XLO*R(8)
    L4=2.C*(XLU -. .575)*R(8)
    L? = L4-.5*(1.0 +R(4))-2.0*(X(1) + X(9))
    R(1) = RC + X(1)
    EO 6C I = ?.8
60R(I)=R(I-1)+X(I)
    V0 = 3.1416*RU#*2*L2 + 2.4CS*((R(3)-XK(G))**3) + 1.5708*((R)(3)-
    1 XK(9))**2)*(1.C+R(4))
    V(1) = 3.1416*(L) + 2.0*X(1))*(R(1)**2 - RO**2)
    V(フ)= =.1416*L2*(R(2)**2-R(1)**2)
    V(3)=3.1416*(1.? + 2.0*X(1))*(R(3)**? - R(2)**2)
    V(4)=3.1416*L4*R(4)**? + 2.40%*R(4)**3-V(1)-V(2)-V(3)
    1-6. \H3*R(3)**2*X(9) - V0
    V(5)=3.1416*L4*(R(5)**2-R(4)**2)+2.409*(R(5)**3-R(4)**3)
    V(6)=3.1416*L4*(R(6)**2-R(5)**2) + 2.409*(R(6)*** - R(5)**3)
    V(7) = 3.1416*(L -.575*R(8))*(R(7)**2 - R(6)**?) + 3.1416*R(7)**2
    1*X(7)+1.204*(R17)**3-R(6)**3)
    V(8)=3.1416*(L-.575*R(8))*(R(8)**?-R(7)**2) + 3.1416*R(8)**2
    1*x(8) + 1.204*(R(8)**3 - R(7)**3)
    V(9)=6.283*K(3)**2*X(9)
    WT = 0.0
    DO 70 I=1.9
70WT = WT + V(I)*P(I)
    RETURN
    ENT)
    SIIRROUTINF VSU
    CGMNTN/CON/ K, SIGU, ALPHA, YK, XM, PHI, O, DELTA, DELOME, THMAX,
```



```
    2TA. NO, X(9), P(y), XK(10), A, ETA, BETA, TNIT, TERM, TY, SC, SU,
    3N. NN. DFLTH. AV2. NMAX, L, W1, W2. W3. THET, WT, TAl
    CIINMGN/SETUP/W.D.WFO(19).UFO(19),WSD(19.19),DSD(19.191.DEL(19),WEL
    1(19)
    CCNMON/MAX/IX,M.ALAM,ALF(19),C.,CSO,DH,WH
    C.OMMCN/DFLS/DFLRO. DELXP, DFLX4
    TERM=THFT $TNIT=0.0
    G0 TH 110.20.30.40.50).NMAX
10 DFI(1)=WFL(1)=DELRO
    DEL(2)=WFL(2)=DELX?
    DEL(3)=WFL(3)=DELX4
    ALF(1)=R0
    AL,f(2)=X(2)
    ALF(3)=X(4)
    IX=3
    RFTURN
20 DFI(1)=WEL(1)=DELRO
```

DFI(1) =WFL(つ)=DELX2
$\Delta L F(1)=R 0$
$\Delta L F(2)=X(2)$
$\mathrm{IX}=$?
RFTURN
30 DEL(1)=WEL(1)=DELX2
DEL(?)=WEL(?)=OELX4
ALF(1) $=x(2)$
AI $F(2)=x(4)$
IX=?
RETURN
40 DEL(1) $=W E L(1)=\operatorname{DELX2}$
DFI($121=W F L(2)=$ DELX4
$R 0=R(3)-x(1)-x(2)-x(3)$
$\Delta 1 F(1)=x(2)$
AIF(2) $=x(4)$
$\mathrm{I} x=$?
RETURN
50 DEI (1) $=$ WEL(1) $=$ DELX2
DE1 (2)=WEL(2)= DEL $\times 4$
$\Delta L F(1)=X(2)$
AI $F(2)=X(4)$
I $\mathrm{X}=$?
RFTURN
END
SURROUTINE RZERO
CIMMON/CON/ K. SIGU, ALPHA. YK, XM, PHI. Q. DELTA, DELOME, THMAX, 1TAU. T81. T82. XLD. RO, R(8). GAMMA, RR, E, PS, TS. H, Z. LAMBDA, 2TA. NO. X(9). P(9). XK(10). A. ETA. BETA, TNIT, TERM, T8. SC, SU. 3N. NN, DELTH. AV?. NMAX. L, W1, W2, W3. THET, WT, TAL REAL L2
C*** SUBRQUTINE CALCULATFS A RO BY NEWTONS METHOD $M=0$
HSJN $=A L O G(X L D+\operatorname{SORT}(X L O * * 2+1.01)$
$B=4.0 * \times K(10) * \times L D *(T 82-T A) / A / H S I N$
$R O=B /(4.0 * X(2) *(X L D-.825))-X(1)-X(2) / 2.0$
$35 R(A)=R 0$
DO $10 \quad I=1,8$
$10 \mathrm{R}(8)=\mathrm{R}(8)+X(I)$
$12=2.0 *(X L D-.575) * R(8)-.5 *(1.0+R 0+X(1)+X(2)+X(3)+$
$1 \times(4))-2.0 *(\times(1)+\times(9))$
VPPIE $=L 2 *(2.0 * x(2) *(R 0+x(1))+x(2) * * 2)$
IF(ABS($(R * R(8)-V 2 P I E) / B / R(8)) . G T .1 .0 E-6) 30.31$
$30 \mathrm{RO}=\mathrm{RO}-(\mathrm{B} * \mathrm{R}(8)-V 2 \mathrm{PIE}) /(\mathrm{R}-2.0 *(X L D-.825) *(2 . * \times(2) *(\mathrm{RO}+\mathrm{X}(1))+$
1X(2)**) - 2.0*×(2)*L2)
$M=M+1$
IF(M.GT. 10) GO TO 31
GO TO 35

```
    31 CONTINUE
        IFIRO.GT.O.OI RETURN
    RC=.70
    RETURN
    END
    SURRCUTINE LINIT
    COMMON/LIM/X4U. X4L. R3U, R3L
    COMMON/CON/ K. SIGU. ALPHA, YK, XM, PHI, Q, DELTA, DELOME, THMAX,
    1TAU. T&1. T&2. XLD. RO. R(8). GAMMA, RR, E, PS, TS. H, Z, LAMBDA,
    7TA.N(J. X(9). P(9), XK(10). A. ETA. BFTA, TNIT, TERM, T8, SC. SU,
    3N. NN. DELTH, AV?. NMAX. L. W1. W2. W3, THET, WT, TAl
    GO TO (10.20.30). NMAX
    10 IF{X(4).GT.X4U) 40.50
    40X(4)= X4U & NMAX = 2
    RFTURN
    50 IF(X(4).LT.X4L) 6C.70
    60 X(4)= X4L NMAX=2
    RFTURN
    70 TF(R(3).GT.R 3U) BC. 90
    ROR(3)=R3U $ NMAX = 4
    KFTURN
    S0 IF(R(3).LT.R3L) 100. 110
100 R(3) = R3L $ NMAX=4
110 RFIURN
    20 IF(R(3).GT.R3U) 120. 130
170R(3)=R3U$GU TO 160
130 IF(R(3).1T.R3L) 140. 150
140 R(3)=R3L $GU TO 160
150 RFIURN
160RO = R(3)-X(1)-x(2)-X(3)
    C.ALL DF
    RFTURN
    30 JF(X(4).GGT.X4U) 170.180
170\times(4)= 人411 & GO T0 210
180 IF(X(4).IT.X4L) 190.200
190\times(4)= X41 $ (i0 T0 }21
200 RFTURN
210 CAII DF
        RFTIJN
        FND
            SURKCUTINE CF
            COMMON/MAX/IX.M.ALAM,ALF(IGI,C,CSQ.DH.WH
            COMMON/CON/ K. SIGU, ALPHA, YK. XM, PHI, O. DELTA, DELIME, THMAX,
        1TAll. T&l, TR?, XLD, RO. R(8), GAMMA, RR, E, PS, TS, H, Z, LAMBOA,
        2TA. NQ. X(9). P(9). XK(10). A. ETA. BETA, TNIT, TERM. TR, SC, SU,
        3N. NN. DFLTH, AVZ. NMAX, L. Nl. W2, W3, THET, WT, TAL
        GOMMOM/OFLS/DELRO. DELX2. DELX4
```

```
33 C.AIL DR
    Cl=DH
    IF(ABS(CL-1.0).LF.Q) 30. 31
    31 X(7) = X(つ) + DELX?
    CALL DR
    X(7) = x(?)- OELX2-(C1-1.0)/(DH-D1)%UELX2
    GO TO(10.10.33).NMAX
    10 RO=R(3)-X(1)-X(2)-x(3)
    GO TO 33
    30 RFTURN
    END
    SURROUTINE THETAC
    CONMON/MAX/IX,M,ALAM,ALF(19),C,CSO,DH,WH
    EQUIVALFNCF (XK(l),OMEGA)
    CCNMGN/CON/ K, SIGU. ALPHA, YK. XM. PHI, O, DELTA, DELOME, THMAX,
    1TAU, TAL. TR2. XLD, RO, R(8), GAMMA. RR, E. PS, TS, H, LM, LAMBDA,
    2TA. NG. X(G), P(9). XK(10), A, ETA, BETA, TNIT, TERM, T8, SC, SU,
    3N. NN. DELTH, AV2. NMAX. L. W1. W2.W3. THET, WT, TAL
    RFAL LANPDA, L
NSTOR=N & TRO=T8
    TAO=TA
    D3= [.4=TNIT =0.0
    L=0
    OMEGA =1.0
    SCI = SC $ SUl = SU
    TFRM=TAU $ N=NN
    IF(INIT.EO.TERM) GO TO 10
    CALL DR
    D3 = DH
10 TNII=TAU & T8=T8I
    IA=TA1
20 JFRM=THFT $ N=NSTCR
    CALI DR
    D4 = DH+C3
    WRITF(51.1CO) THET.D4.0H
100 FORMAT(3F20.7)
    IF(D4.LT.1.0.AND.THET.GE.THMAX) GU TO 40
    IF(ARS(D4-1.0).LE.O) KETURN
    TFRM = TERM + DELTH
CAIL IR
    05=03+DH
    THET = TERM - DFLTH - (D4-1.C)*DELTH/(D5-D4)
    GO TO 20
40 TNIT=0.0 $ T8=T80
    TA=TAO
    TERN=TAU $ N=NN
    OMEG:A1=CMEGA+UFLCME
    SC=OMEGAl*SCl $ SU=OMEGAl*SUl
```

```
    D3=D4=0.C
    IF(TNIT.EG.TERMI GO TO 41
    CALL DR
    D.3=DH
    SC=OMFGA*SC1 $ SU=CMEGA*SU1
    CAIL CR
    C4=DH
    41 TNIT=TAU $ T8=T8l
    TA=TA1
    TFRM=THMAX $ N=NSTCR
    SC=OMFGA1*SC1 $ SU=OMEGA1*SU1
    CAlL CR
    C:5=DH
    SC.=ПMFGA*SC.1 $ SU=CMEG,A*SU1
    CALI DR
    DG=DH
    D9=C4+06
    WRITE(51.100) TFRM. D9. OMEGA
    IF(ARS(C4+DG-1.C).GT.D) 30. 31
    30 OMFGA=CMFGA - (L4+D0-1.0)*DELOME/(D2+U5-04-D6)
    l=1+1
    IF(I.GT.10) 31.4C
    31 THFT = TERN
    RFTURN
    END
    SURROUTINE DR
    GOMMON/CON/ K, SIGU, ALPHA, YK, XM, PHI, O, DELTA, DELOME, THMAX.
    ITAU. IGl. TR7, XLO. RO. R(8), GANMA. RK,E, PS, TS. H. ZM. LAMBDA,
    วTA. NO. X(9), P(9), XK(1U), A. ETA, BETA, TNIT, TERM, T8, SC, SU,
    3N. NN. DEITH. AV2. NMAX. L,W1.W2. W3. THET.WT. TAL
    C,CMMON/MAX/IX,M,ALAM,ALF(I9),C,CSQ,DH,WH
    RFAI I AMPLA. L.L?,L4
    FQUIVAIFNCE (XKC.YK). (AO.A.A?)
    DIFF=TFRN-TNIT
    IF(NNAX.NF.O.AND.NO.NE.O) CALL C.CNVEKT(NMAX,X,ALF,R,RO)
    D1=SUM=C.O & NT=1
    R(1)=X(1) +R0
110DO &O I = % 8
    ROR(I) = R(I-I) + X(I)
    OO 190 J=4.8
190 SUN = SUM + 1.0/XK(J)*ALRG(R(J)/R(J-1))
    12= 2.0*(X10 -.575)*R(8) -.5*(1.0+R(4))-2.0*(x(1) + X(9))
    VO=3.141G*RC** 汭2 + 2.40G*((R(3)-XK(G))**3) + 1.5708*((R)3)-
    1 XK(9) 1**2)*(1.O+R(4))
    V2=3.14159*12*(R(2)**)-R(1)**2)
    T4O=TA+(IB-TA+A*V2/6.7832/L2*SUM)
    TO=140+AO*V2/(6.2831&*L2*XK(3))*ALGG(R(3)/R(2)) + A0/4.0/XK(2)
    1*(R(つ)**? - R(l)**2 - 2*R(1)**2*ALOG(R(つ)/R(1)))
```

```
        C.1 =RR/E/(VO + ETA*V2)*(R(4)**2 + R(3)**2)/(R(4)**2-R(3)**2)
        C2 = T8 - TA + A2*V2/6.28318/L2*SUM
        D2 = 0.0 $ N1 = N
        C.3=PS*(V0+ET\Delta*V2)/RR/TS
        C4=P(7)*V?*H/ZM
        CALL SFTFAULT(5,5HEU=-1)
        DO 9C T=TNIT.TERM.EIFF
        SIGT = C1*(C3 + C4*(1.0-EXP(-LAMBDA*T)))*(TA +(TO - TA )*
        IEXP(-LAMPDA*T))
            T4 = TA + C2*EXP(-LAMBDA*T)
    90D1=D1 + XKO*(SC**GAMMA*SIGU**GAMMA*SIGT**GAMMA/ALPHA**GAMMA/
        1 (SIGU**GAMMA - SU**GAMMA*SIGT**GAMMAI)***(1.0/GAMMA/XM/T4)
        SIGG=SIGU**GAMMA $ SUGA = SU**GAMMA
    302 NPT = 1 $ D2 = 0.0
        \capO 10 J=1,Nl-1
        EX=FXP(-LAMBDA*(TNIT+J*DIFF/NI))
    29 SIGT = C1*(C3 + C4*(1.0-EX))* (TA +(TO - TA)*EX)
        T4 = TA + C2*EX
        F=XKO*ISC**GAMMA*SIGG*SIGT**GAMMA/ALPHA**GAMMA/ISIGG - SUGA*
        1 SIGT**GAMMA))**(1.0/GAMMA/XM/T4)
        GO TO (11.17).NPT
    11DP=DP + 4.C*F $NPT = N $ GO TO 10
    1) D2 = DP + ?.O*F $ NPT = 1
    10 CONTINUE
        GO ID (300.301).NT
    3CC 03=DIFF*(D1+D2)/3.0/N1 $N1=2*N1 $NT=2 $ GO TO 302
    301 D2=D1+D? $ D2=DLFF*O2/3.0/N1
        IF(ABS((D2-D3)/0)).LT.PHI) 304. 305
    30503=02$N1=2*N1
    IF(NI.GT.16*N) 306. 302
    306 WRITF(51.747)
    747 FCRMATI' FAILED TO CONVERGE'।
    304 DH = D?
        CALL SFTFAULT(4,4HEU=0)
        END
        SURROUTINE MAX(NLAM)
        CCMMEN/CONVG/XX(19,L),RK,LMOST,LSTOP,JWAY,G
        COMMON/MAX/IX,M,ALAM,ALF(19),C,CSO,CH,WH
        C[MMCN/MATO/A(19.19).X(19.1),NR.YSO.Z
        COMMON/NIC/CRIT. NITER. ITER
        CRITSO=CRIT**?
        CSO=C*C
        NR=IX+1
        M=1
    4 CALI. SETUP
        IF(NLAM)10.5.10
        5 CALL GTALAM
C. FIRST LANBCA COMPUTED IN SURR. GTALAM
```



```
    CALL DR
    D2=DH
    AIF(I)=STORI+DEL(I)
    CALL CR
    DI=DH
    ALF(J)=STORJ-DEL(J)
    CALL DR
    D4=DH
    ALF(I)=STORI-DEL(I)
    ALF(J)=STORJ
    DSD(I.J)=(D1+03-D2-D4)/(4.*DEL(1)*DEL(J))
    GO TO 3
    40 ALF(I)=STORI
        CALL WR
C COMPUTE FIRST AND SECOND DERIVATIVES OF FCN W
        W=WH
        DO 60 I=1.IX
        STCRI=ALF(I)
        ALF(I)=ALF(I)+WEL(I)
        CALL WR
        WP=WH
        ALF(I)=STORI-WELII)
        CALL WR
        WM=WH
        WFD(I)=(WP-WM)/(2.*WEL(I))
        WSD(I.I)=(WP+WM-2.*W)/(WEL(I)**2)
        J=1
    74 IF(IX-J)60.21.21
    21IF(J-1)213.23.22
    213 WSD(I.JI=WSC(J.I)
    23 J=J+1
        G0 TO 24
2) STORJ=ALF(J)
        AIF(J)=ALF(J)-WEL(J)
        CALL WR
        W3=WH
        ALF(J)=STORJ+WEL(J)
        CALL WR
        W?=WH
        ALF(I)=STORI+WEL(I)
        C.ALL WR
        Wl=WH
        AIF(J)=SIORJ-WEL(J)
        CALL WR
    W4=WH
    ALF(I)=STORI-WEL(I)
    AIF(J)=STORJ
    WSD(I*J)=(W1+W3-W)-W4)/(4.*WEL(I)*WEL(J))
    GO TO }2
```

```
    60 ALF(I)=STORI
        RETURN
        END
        SURROUTINE GTALAM
        C.OMMON/SETUP/W.D.WFO(19),DFD(19),WSO(19,19),OSD(19,19),DEL(19),WEL
        1(39)
        COMMON/MAX/IX,M,ALAM,ALF(191,C,CSO,OH,WH
C COMPUTES AVERAFE LAMBDA FOR IST ITERATION
        SUM=0.
        DEN=O.
        D014J=1.IX
        IF{DFD(J))13.14.13
    13 SUM=SUM+WFD(J)/CFD(J)
        DEN=DEN+1.
    14 CONTINUE
        IF(DEN)16.15.16
    15 CALL ERRCR
    16 AL AM=SUN/DEN
        RFTURN
        END
        SURROUTINE VECT
        COMMON/MAX/IX.M.ALAM.ALF(19),C,CSO.DH.WH
        COMMON/SETUP/W.D.WFD(19), DFD(19),WSD(19.19),DSD(19,19),DEL(19),WEL
        1(19)
        COMMON/MATO/A(19.19),Y(19,1),NR,YSO,Z
    C }\quad\DeltaX=Y NR=IX+
    C COMPUTES Y.YSO.AND Z
        YSO=O.
        DO15.J=1, IX
        Y(J.l)}=-(WFD(J)-ALAM*DFD(J)
    15YSO=YSO+Y(J.1)*Y(J.1)
        Y(NR.1)=C-D
        YSO=YSC+Y(NR.1)**2
        Z=YSC/CSG
        RETURN
        END
        SUBROUTINE CONVG
        COMMON/CONVG/XX(19,1),RK,LMOST,LSTOP,JWAY,G
        COMMON/MAX/IX.M.ALAM,ALF(19).C,CSO,DH.WH
        COMMON/MATO/A(19.19),X(19,1),NR,YSO.Z
    C TESTS WHETHER MCRE INNER ITERATIONS ARE REQUESTED AND COMPUTES A
    C VFGTOR INCREMENT ONE HALF THE MAGNITUDE OF THE LAST SUCH VECTOR
    C INCREMFNT TRIED, IF NEEUED
        IF(M-1) 1.2.8
    1 CAIL ERRCR
    8 IF(LMOST.GT.O) GO TO 3
```

```
    2 RK=YSO*G
    JWAY=1
    GO 10 100
    3 IF(YSO-RK)2.4.4
    4STOP=LSTOP+1
        IF(LMOST-LSTOP) 5.6.6
    5. JWAY=-1
    20 TO 100
    6 DO 7 K=1,NR
    XX(K.1)=.5* XX(K.1)
    7 x(K.1)=x (K(K.1)
        JWAY=0
    100 RETURN
    END
    SURROUTINE OUTPUT
    COMMCN/CON/ K. SIGU. ALPHA. YK. XM. PHI, Q. DELTA, DELOME, THMAX,
    1TAU. T81. T82. XLD. RO, R(B), GAMMA, RR.E. PS, TS. H. ZM. LAMBDA,
    2TA. ND, X(9), P(9), XK(10),ABC,ETA. BETA, TNIT, TERM, T8, SC, SU,
    3N. NN, DELTH. AV2. NMAX, L, Wl, W2, W3, THET, WT, TAl
    CIMMMN/SETUP/W.D.WFO(19),DFD(19),WSD(19.19),DSD(19.19),DEL(19).
    1WFL(19)
    COMMON/MATQ/A(19.19),Y(19.1).NR.YSO.Z
        COMMON/MAX/IX,M,ALAM,ALF(19),C,CSQ,DH,WH
        COMMCN/CONVG/XX119.1).RK.LMOST.LSTOP,JWAY,G
        WRITF (51.1)M.D.W,YSQ.Z.LSTOP
    1 FORMAT(1H03X2HM=16,5H\quadD=E14.6,5H W=E14.6.7H\quadYSQ=E14.6,
    15H 7=E14.6.9H LSTOP=16)
        WRITE(51.2)((Y)[.1),ALF(I)).I=1,NR)
    > FORMAT(1HO2F16.6)
        NQ1=NO $ NQ=0
        CALL WR
        NO=NOl
        WRITF(51.4) RO, (R(I),I=1,8), L, AV2, W1, W2, W3, WT
    4 FORMATI'ORADII ARE',9F10.5.1.' L =',EL2.5.3X,'AV2 ='.E12.5.3X.
    1.Wl ='.E12.5.3X.*W2 =, E12.5.3X.'W3 =',E12.5.3X.'WT =',E12.51
        RETURN
        END
        SURROUTINE ARITH
        GOMMON/SFTUP/W,D.WFD(19),DFD(19).WSD(19,19),DSD(19.19),DEL(19),WEL
        11191
        C.OMMON/MAX/IX,M,ALAM,ALF(19),C,CSO,DH,WH
        COMMON/MATQ/A(19.19),X(19.1),NR,YSO,Z
C. COMPUTES ELEMFNTS OF MATRIX A. NR=IX+1
        DO 10 I=1.IX
        DO 11 J=1.1x
    11 A(I.J)=WSD(I.J)-ALAM*DSD(I.J)
    A(I.NR)=-DFD(I)
```

```
10 A(NR.I)=DFD(I)
    A(NR,NR)=0.
    RFTURN
    FND
    SURRDUTINE MATQ(A,X,NR,NV,DET,NA,NX)
    DIMENSION A!10),X(10)
    DET=1.0
    NRI=NR-1
        DO 5 K=1,NRJ
        IRI=K+1
        PIVCT=0.0
        DO 6 I=K.NR
        IK= (K-1)*NA+I
        7=ABSF(A(IK))
        JFIZ-PIVCTI6.6.7
7. PIVOT=7
    IPR=I
b CONTINUF
    IFIPIVOTIR.9.8
9 DET=0.0
    RFTURN
8 IF(IPR-K)10.11.10
10DO 12 J=K.NR
    IPRJ=(J-1)*NA+IPR
    7=A|IPRJ)
    KJ=(A-1) #NA+K
    A(IPRJ)=A(KJ)
12 }A(K,J)=
    DO 13 J=1.NV
    IPRJ=(J-1)*NX+IPR
    7=X(IPRJ)
    KJ=(J-1)*NX+K
    x(IPRJ)= X(KJ)
13 }\times(k,J)=
    DFT=-DET
11KK=(K-1)*NA+K
    DET=DET*A(KK)
    PIVOT =1.0/\Delta(KK)
    DO 14 J=IRI.NR
    KJ=(J-1)*NA +K
    A(KJ)=A(KJ)*PIVOT
    OO 14 I=IR1,NR
    IJ=(J-1)*NA+I
    IK=(K-1)*NA+I
14 A(IJ)=A(IJ)-A(IK)*A(KJ)
    DO 5 J=1.NV
    K.J=(J-1)*NX+K
    IF{X(kJ)\ 15.5.15
```

$15 \mathrm{X}(\mathrm{KJ})=\mathrm{X}(\mathrm{KJ}) * \mathrm{PIVOT}$
DO $16 I=I R 1, N R$
$I J=(J-1) * N X+I$
$I K=(K-1) * N A+I$
$16 \times(I J)=X(I J)-A(I K) * X(K J)$
5 CONTINUE NRNR $=(N R-1) * N A+N R$
IF(A(NRNR)) 17.9.17
17 DET $=D E T * \Delta($ NRNR $)$
PIVOT=1.C/A(NRNR)
DO $18 \mathrm{~J}=1$. NV
$N R J=(J-1) \neq N X+N R$
$X(N R J)=X(N R J) * P I V O T$
DO $18 \mathrm{~K}=1$, NR 1
$I=N R-K$
SUM $=0.0$
DO 19 L=1.NR1
$I L=L * N A+I$
$L J=(J-1) * N X+(L+1)$
19 SUM $=$ SUM $+A(I L I \# X(L J)$
$I J=(, J-1) * N X+I$
$18 \times(I J)=X(I J)-S U M$
RETURN
END
SURROUTINE STEP
CCMMEN/CONVG/XX(19.1).RK.LMOST.LSTOP.JWAY,G
CCMMON/MAX/IX.M.ALAM,ALF(19),C.CSO,DH,WH
C.OMMCN/MATO/A(19,19),X(19,1),NR,YSO.Z

DIMENSION ALFX(19)
C COMPUTES NEW ALPHAS AND LAMBDA. NR $=1 X+1$ IF(JWAY)S.5.9
5 DO7K=1,NR
7 ALF $\{K)=A L F(K)-X(K, 1)$
GO TO 11
$9 \mathrm{ALF}(\mathrm{NR})=\mathrm{ALAM}$
DO10K=1.AR
$X X(K, 1)=X(K, 1)$
$\operatorname{ALFX}(K)=A L F(K)$
$10 \operatorname{ALF}(K)=A L F(K)+X(K, 1)$
$11 A L A M=A L F(N R)$
DO $20 \mathrm{~K}=1$. IX
IF(ALF(K).LT.0.0) 19. 20
$19 \operatorname{ALF}(K)=0.5 * A L F X(K)$
$X x(K, 1)=-1,0 * A L F(K)$
20 CONTINUF
RFTURN
END

Internal Distribution (Contd)

$$
\begin{aligned}
& \text { 53-54. } \text { Central Research Library } \\
& 55-56 . ~ Y-12 ~ D o c u m e n t ~ R e f e r e n c e ~ S e c t i o n ~ \\
& 57-63 . \text { Laboratory Records } \\
& 64 . \text { Laboratory Records-RC }
\end{aligned}
$$

External Distribution
65. AEC Patent Office
66-68. AEC, Washington, Attn: R. L. Carpenter, W. Kern, L. Topper
69-70. Aerojet-General Corporation (NASA)
71. Aerojet-General Nucleonics
72. Aerojet-General Nucleonics (NASA)
73-74. Aeronautical Systems Division
75. Aerospace Corporation
76. Air Force Headquarters
77. Air Force Surgeon General
78-80. Air Force Weapons Laboratory
81. Air University Library
82. AiResearch Manufacturing Company, Los Angeles
83. Albuquerque Operations Office
84. Argonne National Laboratory
85. Army Missile Command
86. Army Reactors Field Group
87. ARO, Inc.
88-93. Atomic Energy Commission, Washington
94-95. Atomics International
96. Battelle Memorial Institute
97-101. Battelle-Northwest
102. Bendix Corporation (NASA)
103. Brookhaven National Laboratory
104. Canoga Park Area Office
105. Chicago Patent Group
106. Director of Defense Research and Engineering
107-108. Du Pont Company, Aiken
109. Du Pont Company, Wilmington
110. Electro-Optical Systems, Inc.
111. General Atomic Division
112. General Dynamics/Fort Worth
113. General Electric Company, Cincinnati
114. General Electric Company (FPD)
115-116. General Electric Company (MSVD)
117. General Electric Company, San Jose
118. Hittman Associates, Inc.
119. Hughes Research Laboratories
120. Institute for Defense Analyses
121. Jet Propulsion Iaboratory
122. Johns Hopkins University (APL)

Internal Distribution

1. T. A. Arehart
2. S. E. Beall
3. R. J. Beaver
4. P. R. Bell
5. M. Bender
6. R. B. Briggs
7. R. E. Brooksbank
8. C. A. Burchsted
9. T. G. Chapman
10. T. E. Cole
11. W. B. Cottrell
12. F. L. Culler
13. J. E. Cunningham
14. S. T. Ewing
15. D. E. Ferguson
16. A. P. Fraas
17. J. H. Frye, Jr.
18. J. H. Gillette
19. H. E. Goeller
20. W. O. Harms
21. H. W. Hoffman
22. A. S. Householder
23. G. R. Jasney, Y-12
24. F. B. K. Kam
25. E. Lamb
26. M. I. Lundin
27. R. N. Lyon
28. A. J. Miller
29. E. C. Miller
30. H. E. McCoy
31-32. Paul Nelson
33-36. J. P. Nichols
31. E. L. Nicholson
32. R. A. Robinson
33. M. W. Rosenthal
34. A. F. Rupp
35. R. W. Schneider
36. M. J. Skinner
37. R. L. Stephenson
38. R. W. Swindeman
39. W. E. Unger
40. V. R. R. Uppuluri
41. A. M. Weinberg
42. J. R. Weir
43. M. E. Whatley
44. D. R. Winkler
45. R. G. Wymer
46. Gale Young

External Distribution (Contd)

123. Lockheed-Georgia Company
124. Lockheed Missiles and Space Company (SAN)
125. Los Alamos Scientific Laboratory
126. Martin Company, Denver
127. Martin Company (NY)
128. Martin-Marietta Corporation
129. Massachusetts Institute of Technology (EVANS)
130. Minnesota Mining and Manufacturing Company
131. Monsanto Research Corporation
132. Mound Laboratory
133. NASA Ames Research Center

134-135. NASA Goddard Space Flight Center
136-142. NASA Langley Research Center, Attn: P. J. Bobbitt, J. R. Dawson,
W. N. Gardner, L. A. Harris, R. N. Parker, Library (2 copies)

143-160. NASA Lewis Research Center, Attn: D. T. Bernatowicz,
J. E. Dilley, R. E. English, B. Lubarsky, T. A. Moss,
L. I. Shure (3 copies), L. Soffer, J. J. Ward, J. J. Webber, Library (7 copies)
161-165. NASA Manned Spacecraft Center, Attn: J. Briley, D. Denby, A. Redding, W. E. Rice, Library

166-169. NASA Marshall Space Flight Center
170-177. National Aeronautics and Space Administration, Washington, Attn: T. J. Albert, H. B. Finger, T. B. Kerr, B. Leefer, H. D. Rochen, F. Schulman, Library (2 copies)

178-181. National Reactor Testing Station (INC)
182. Naval Air Development Center
183. Naval Air Systems Command
184. Naval Missile Center

185-187. Naval Ordnance Systems Command
188. Naval Radiological Defense Laboratory
189. Naval Research Laboratory
190. Naval Ship Systems Command Headquarters
191. Naval Weapons Laboratory
192. Navy Marine Engineering Laboratory
193. New York Operations Office

194-195. Nuclear Materials and Equipment Corporation
196. Office of Naval Research
197. Office of the Chief of Naval Operations

198-199. Office of the Chief of Naval Operations (OP-O3EG)
200. Pratt and Thitney Aircraft Division (NASA)
201. Radio Corporation of America (NY)
202. Radio Corporation of America, Lancaster
203. Rand Corporation
204. Republic Aviation Division
205. San Francisco Operations Office
206. Sandia Area Office

207-212. Sandia Corporation, Attn: V. E. Blake, A. J. Clark, R. D. Stromberg, Library (3 copies)

External Distribution (Contd)

213. Savannah River Operations Office
214. Tracerlab, Richmond
215. TRW Systems (SAN)
216. University of California, Livermore
217. Westinghouse Electric Corporation, Lima (AF)
218. Westinghouse Electric Corporation (NASA)
219. Westinghouse Electric Corporation (WALO
220. D. C. Davis, $A E C$, ORO
221. Division of Research and Development, AEC, ORO
222-223. Reactor Division, AEC, ORO
224-238. Division of Technical Information Extension, DTIE
