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Floer theory and reduced cohomology on open manifolds

YOEL GROMAN

We construct Hamiltonian Floer complexes associated to continuous, and even lower
semicontinuous, time-dependent exhaustion functions on geometrically bounded
symplectic manifolds. We further construct functorial continuation maps associated to
monotone homotopies between them, and operations which give rise to a product and
unit. The work rests on novel techniques for energy confinement of Floer solutions
as well as on methods of non-Archimedean analysis. The definition for general
Hamiltonians utilizes the notion of reduced cohomology familiar from Riemannian
geometry, and the continuity properties of Floer cohomology. This gives rise, in
particular, to local Floer theory. We discuss various functorial properties as well as
some applications to existence of periodic orbits and to displaceability.
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1274 Yoel Groman

1 Introduction

Floer theory is a machine that associates algebraic structures to objects of symplectic
geometry. Over the years, it has come to play central role in all aspects of the field,
from mirror symmetry to quantitative symplectic topology. In this paper we extend the
range of applicability of Floer theory, focusing on Hamiltonian Floer theory, to open
symplectic manifolds which are geometrically bounded.

There are a number of reasons why one would be interested in studying Floer theory on
open manifolds. First and foremost, many symplectic manifolds which arise naturally
are open. Among these we count the cotangent bundle, the magnetic cotangent bundle,
affine varieties, coadjoint orbits of noncompact groups, Hitchin moduli spaces, and
many more. More specifically related to Floer theory, there are phenomena which only
become apparent on open manifolds. For example, on a closed manifold the Hamiltonian
Floer cohomology reduces as an abelian group to the singular cohomology, and is thus
often too coarse to see much of the symplectic topology. On open manifolds, new
invariants, such as symplectic cohomology, make their appearance and encode purely
symplectic phenomena; see for instance Cieliebak, Floer and Hofer [15], Oancea [41],
Seidel [56] and Viterbo [63].

There is a vast literature studying these invariants and their structural properties. For
example, symplectic cohomology of a Liouville domain has been shown to play a
key role in homological mirror symmetry by encoding the Hochschild homology of
the Fukaya category; see for instance Abouzaid [1], Ganatra [24; 25] and Seidel [55].
In another related direction, there are numerous results relating Floer theory of a
symplectic manifold with the Floer theory of embedded local models; see eg Cieliebak
and Oancea [18], Ganatra, Pardon and Shende [26], Seidel [55] and Varolgunes [61].
But the existing literature focuses mostly on examples which are convex at infinity, a
condition which does not cover, for instance, most of the examples mentioned in the
previous paragraph. As another example, in the study of the Fukaya category by the
method of localization away from a divisor as in [55], one does not necessarily wish
to restrict attention to ample divisors; see eg Auroux [8; 7], Daemi and Fukaya [19]
and Groman [29]. Studying Floer theory in more general settings would contribute to
our understanding of mirror symmetry, the geometric Langlands program, and many
branches of symplectic topology.

The class of geometrically bounded manifolds contains those that are convex at infinity,
but is much larger. Geometric boundedness has appeared as a relevant condition already
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Floer theory and reduced cohomology on open manifolds 1275

in Gromov’s seminal paper [31], and in numerous works since. A couple of early
ones are Audin, Lalonde and Polterovich [6] and Sikorav [57]. Geometrically bounded
symplectic manifolds are the most general setting in which holomorphic curve theory
is known to work without resorting to the methods of symplectic field theory.

The novelty in the present paper is twofold. One is showing how to apply geometric
boundedness of the underlying manifold to carry out Floer-theoretic constructions
beyond J–holomorphic curves. Such constructions are central, for instance, to the
notion of wrapped Floer theory. The other is showing that the invariants constructed by
choosing a geometrically bounded metric at infinity are independent of the choice. The
results here provide a unified and flexible framework which incorporates the various
constructions in the literature (see eg Cieliebak, Floer and Hofer [15], Oancea [42],
Ritter [47] and Viterbo [63]), works in full generality, and has transparent symplectic
invariance properties.

It should be emphasized that while we do not mention the Fukaya category elsewhere
in this paper, the difficulties posed by noncompactness are virtually the same for the
Hamiltonian version of Floer theory as for its Lagrangian intersection version. Thus,
this paper sets the stage for the study of the (wrapped) Fukaya category on open
manifolds such as those mentioned above, insofar as one can overcome the usual
difficulties already present in the closed case.

We shall assume familiarity with the basic machinery of Hamiltonian Floer theory
and symplectic cohomology such as can be acquired from the first three lectures in
Salamon [52] together with Oancea [41]. For the discussion of the product structure we
shall assume also some familiarity with treatments such as Abouzaid [4] or Ritter [48].
The latter is not necessary for most of the novel ideas in this paper.

1.1 The main result

A symplectic manifold .M; !/ is said to be geometrically bounded if there is an !–
compatible almost complex structure J , a constant C > 1, and a complete Riemannian
metric g with sectional curvature bounded from above and injectivity radius bounded
away from 0, such that

1

C
g.v; v/� !.v;Jv/� Cg.v; v/

for all tangent vectors v. Note that the almost complex structure J is not part of the data.
Examples include closed symplectic manifolds, cotangent bundles of arbitrary smooth
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1276 Yoel Groman

manifolds, manifolds whose end is modeled after the convex half of the symplectization
of a compact contact manifold (as in Sikorav [57]), twisted cotangent bundles (as
in Cieliebak, Ginzburg and Kerman [17]), and there are many more. The class of
geometrically bounded symplectic manifolds is closed under products and coverings.

It should be emphasized at the outset that an open symplectic manifold of finite volume,
such as the unit ball in Cn, cannot be endowed with a metric that is at once complete
and satisfies the above bounds on sectional curvature and radius of injectivity and
thus is not geometrically bounded. Floer theory for open finite-volume symplectic
manifolds, such as Liouville domains, will be discussed, in the context of local Floer
theory, when they are embedded in a geometrically bounded symplectic manifold.

Recall that .M; !/ is said to be semimonotone if there exists a constant � � 0 such
that for any A 2 �2.M / we have !.A/ D �c1.A/, where c1 is the first Chern class.
.M; !/ is said to be Calabi–Yau if c1.A/ D 0 for every A 2 �2.M /. Henceforth,
.M; !/ is a geometrically bounded symplectic manifold which is either semimonotone
or Calabi–Yau. In particular, for any class A 2 �2.M / we have

c1.A/ < 0 D) !.A/� 0:

We hasten to emphasize that this assumption is made for definiteness only. The methods
introduced herein are orthogonal to the usual questions of transversality and can be
adapted to any regularization scheme.

Fix a field R and denote by ƒR the universal Novikov field and by ƒR;! the Novikov
field associated with !; see Section 7.3. We shall use the notation K to denote either
ƒR or ƒR;! . Note that K is a graded field. That is, a commutative even graded
field in which every nonzero homogeneous element is invertible. In the entire text,
ƒR coefficients should be assumed by default whenever the coefficient field is not
indicated in the notation.

Denote by J the space of smooth R=Z parametrized families of almost complex
structures which are compatible with !. Denote by Hsm the space of smooth functions
on R=Z�M which are proper and bounded from below. Consider the category F
of Floer data whose objects are elements .H;J / 2 Hsm �J and in which there is a
single morphism .H1;J1/! .H2;J2/ between objects whenever the order relation
defined by

.H1;J1/� .H2;J2/ () H1;t .x/�H2;t .x/ for all .t;x/ 2R=Z�M

is satisfied.
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The main contribution of this paper is summarized in the following theorem.

Theorem 1.1 There exists a full subcategory Fd;reg � F , referred to as the regular
dissipative Floer data, for which the Floer cohomology

.H;J / 7! HF�.H;J IK/

is well defined as a functor to Z–graded non-Archimedean (semi )normed K–modules.
Namely, there is a functorial norm-preserving continuation map

HF�.H1;J1IK/! HF�.H2;J2IK/

whenever H1 �H2 2 Fd;reg. The subcategory Fd;reg satisfies the following:

(a) It is invariant under the action of the symplectomorphism group

 � .H;J / 7! .H ı ; �J /:

(b) It is final and cofinal in F .

(c) It contains all pairs .H;J / for which J is geometrically bounded and H has suf-
ficiently small Lipschitz constant and is (nearly) time independent near infinity.

(d) The continuation map HF�.H1;J1IK/! HF�.H2;J2IK/ is an isomorphism
if H2�H1 is bounded on M.

Theorem 1.1 relies on the dissipative method introduced herein for controlling compact-
ness of various Floer moduli spaces. This is done by systematically replacing the more
conventional reliance on maximum principles by a combination of the monotonicity
inequality for J–holomorphic curves and a certain quantitative nondegeneracy condition
to control the ends. A more detailed discussion of this method is given in Section 3.1.
This method should be of independent interest for researchers wishing to apply Floer
theory methods in any way to open symplectic manifolds. We emphasize that the Floer
data which are typically used in the literature on symplectic cohomology mostly fit
into the dissipative framework. For a discussion of the case of Liouville domains, see
Example 6.14 below.

The true power of the dissipative method is revealed when considering the functoriality
statement in Theorem 1.1, which is one of the main contributions of this paper. To
demonstrate this we first remark that a particular consequence of the functoriality is
the independence of Floer cohomology of a dissipative .H;J / on the choice of J .
This is new even for the case H D 0, ie for J–holomorphic curves. We use this in
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1278 Yoel Groman

Theorem 4.15 below to show that in a number of contexts where invariants on open
manifolds are defined using a geometrically bounded almost complex structures J , the
resulting invariants do not depend on the choice of such a J . The difficulty in proving
this is that given two geometrically bounded compatible almost complex structures
which are not metrically equivalent, it is not likely they can be homotoped to one
another through geometrically bounded almost complex structures. Our solution is to
introduce the notion of intermittent boundedness, or, i–boundedness, which requires
boundedness only on an appropriate infinite sequence of hypersurfaces. We then show
that any two such almost complex structures can be homotoped to one another through
intermittently bounded almost complex structures. For the rest of the introduction we
thus drop J from the notation and consider dissipativity as a property of a Hamiltonian
function.

As an illustration of the use of functoriality we indicate an easy proof of the Künneth
formula in symplectic cohomology of Liouville domains; cf [42]. This requires com-
paring the direct limit of Floer cohomologies over a sequence of linear Hamiltonians
on the smoothing of a product of Liouville domains to the direct limit over a sequence
of linear split Hamiltonians on the product itself, all with slope going to infinity. Since
one can squeeze a sequence of linear Hamiltonians between a sequence of split linear
ones, the Künneth formula follows from Theorem 1.1 as soon as one establishes that
both linear and split linear Hamiltonians are dissipative. The latter is immediately
implied by Examples 5.24 and 6.20. The line of argument can be shown to extend to
Liouville domains with arbitrary corners.

1.2 Reduced Floer cohomology for general Hamiltonians

Our next theorem combines the result of Theorem 1.1 with certain continuity properties
of Floer cohomology, to extend the definition of Floer cohomology to more arbitrary
Floer data. Namely, we extend a certain version of Floer cohomology as a functor on
the category .Hd;reg;�/ of regular dissipative Hamiltonians to the category .Hsc;�/ of
all generalized lower semicontinuous functions R=Z�M !R[1 which are proper
and bounded from below.

Before proceeding we introduce the concept of reduced Floer cohomology HF�.H / of a
nondegenerate dissipative Hamiltonian H . The ordinary Floer cohomology HF�.H / is
the homology of a chain complex which is complete with respect to a non-Archimedean
norm. Thus the group HF�.H IK/ is naturally seminormed. However, in general, the
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differential needn’t have closed image. In such a case HF�.H IK/ contains nontrivial
elements of norm 0. The reduced Floer cohomology HF�.H / is the quotient of HF�.H /

by the elements of norm 0. A similar construction is familiar from Riemannian geometry
in the context of L2–cohomology; see Cheeger, Goresky and MacPherson [11], Dai [20]
and Lück [36]. The precise statement of the following result requires some further
preparation. We therefore present first an informal statement. Theorem 3.3 below is a
more precise restatement.

Theorem 1.2 The reduced Floer cohomology functor H 7! HF�.H IK/ extends in
a natural way from a functor on the category Hd of dissipative Hamiltonians to a
functor on the category Hsc of all lower semicontinuous exhaustion functions. More-
over , HF�.H IK/ arises as the reduced cohomology of a certain non-Archimedean
Banach chain complex, which is associated to H up to an appropriate notion of
quasi-isomorphism , and which specializes to the Floer chain complex for dissipative
Hamiltonians.

Theorem 1.2 employs the method of Floer theory by approximation. This is explained in
more detail in section Section 3.2. Among other things, Theorem 1.2 can be interpreted
as saying that, at least if one is concerned with reduced cohomology, one needn’t
worry about the question of whether a given Floer datum is dissipative or not. In a
forthcoming note, joint with U Varolgunes, we show that Theorem 1.2 actually holds
for the unreduced version of Floer cohomology. For a more extensive discussion of
this, see comment (d) right after the statement of Theorem 3.3.

1.3 The product structure

To state the final main theorem we introduce the notion of symplectic cohomology
on an arbitrary geometrically bounded symplectic manifold. Let H�Hsc be a subset
consisting of time-independent Hamiltonians such that for any H1;H2 2H we have
that 2 maxfH1;H2g 2 H. We call H a monoidal indexing set. For each monoidal
indexing set H we define a group

SH�.M IH/ WD lim
��!

H2H
HF�.M /:

The set of monoidal indexing sets is partially ordered by the relation H1 �H2, which
is defined to hold if and only if for any H 2H1 there is a constant C and an H2 2H2
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1280 Yoel Groman

such that H1 �H2CC . Before proceeding to the statement of the following theorem,
we note that there is a decomposition

SH�.M IH/D
M

˛2ŒS1;M �

SH�;˛.M IH/;

where for a free homotopy class ˛, the group SH�;˛.M IH/ arises from the periodic
orbits in the homotopy class ˛. In particular, in the following theorem we refer to
the subgroups SH�;0.M IH/ which arise from considering only contractible periodic
orbits.

Theorem 1.3 The groups SH�;0.M IH/ have the following properties:

(a) For any monoidal indexing set H, there is a product structure

�W SH�;0.M IH/˝ SH�;0.M IH/! SH�;0.M IH/;

which is associative , and supercommutative.

(b) The small quantum product on QH�.M IK/ WDH�.M IK/ is well defined and
for any monoidal indexing set H there is a natural PSS homomorphism

QH�.M IK/! SH�;0.M IH/

such that the image of 1 2 QH�.M IK/ acts as the unit in SH�;0.M IH/.

(c) Given monoidal indexing sets H1 �H2, the natural continuation map

SH�;0.M IH1/! SH�;0.M IH2/

is a unital algebra homomorphism.

The proof of Theorem 1.3 is carried out in Section 9.4. The restriction to contractible
periodic orbits is done for the sake of brevity in the proof. See Remark 9.6 below
for an extended discussion. Theorem 1.3 allows the construction of various flavors of
symplectic cohomology as a unital algebra. Essentially the same proof can be used
to construct operations associated with any family of nodal Riemann surfaces and
parametrized Floer data. Moreover, it is possible to carry out a Lagrangian intersection
variant of the results of this paper. Thus, the TQFT structure presented for the case of
Liouville domains in [48] can be transferred in its entirety to the present setting.
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Organization of the paper

The paper is organized as follows. Section 2 discusses various notions of symplectic
cohomology and gives some applications of the main theorems. Section 3.1 provides
an overview of the techniques going into the proof of Theorem 1.1 while Section 3.2 is
devoted to explaining Theorem 1.2. Sections 4 through 6 are devoted to constructing
the dissipative Floer data featuring in Theorem 1.1. The proof of the latter is carried
out in Section 7. In Section 8 we prove Theorem 1.2 (restated as Theorem 3.3). In
Section 9 we prove Theorem 1.3. In Section 10 we carry out the proofs of the properties
and applications mentioned in Section 2.
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2 Symplectic cohomology

In the following subsections we use Theorems 1.2 and 1.3 to construct symplectic
cohomology rings and discuss some of their functorial properties and applications. One
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of the main lessons is that there are two different notions of symplectic cohomology
associated with two different topologies that one can consider on the colimit of a
sequence of Banach chain complexes. The first of these involves completing at the
chain level so as to obtain a Banach space. The details at the chain level are described
in Section 8.3, or, at the cohomology level, in equation (64). The Banach topology
gives rise to local invariants and corresponds under mirror symmetry to locally defined
analytic polyvector fields. Similar constructions have been carried independently in
[62; 61], but the construction has roots back in [15]. We refer to this as local symplectic
cohomology.

A second topology one may consider is one in which no completion is applied to
the direct limit. As a topological space we consider the direct limit with the final
topology described in Section 9.5. We refer to this as global symplectic cohomology.
Global symplectic cohomology is a generalization of the construction in [63]; see also
[56, Section 3e], which is more explicit in this regard. It gives rise to global invariants
and can be thought to correspond under mirror symmetry to the ring of algebraic
polyvector fields. While this distinction, referred to in [56] as quantitative vs qualitative
symplectic cohomology, has been previously known, its significance appears to have
been masked to a large extent in the literature so far due to the emphasis on Liouville
domains with trivially valued coefficient fields, where various different invariants
coincide. In general, different topologies may give rise to completely different vector
spaces. For an example of this phenomenon see [62].

2.1 Local symplectic cohomology

Let K �M be a compact set. Let

HK .x/ WD

�
0 if x 2K;

1 if x 2M nK:

The local symplectic cohomology at K is defined by

SH�.M jKIK/ WD HF�.HK IK/:

The following theorem lists the basic properties of SH�.M jKIK/, which can be almost
readily read off Theorems 1.2 and 1.3. As before, there is a decomposition

SH�.M IH/D
M

˛2ŒS1;M �

SH�;˛.M IH/;

and we denote by 0 the class of contractible loops.
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Theorem 2.1 (a) The map K 7! SH�.M jKIK/ is contravariantly functorial with
respect to inclusions.

(b) Any symplectomorphism  WM !M induces an isometry

 � W SH�.M jKIK/! SH�.M j .K/IK/:

(c) The group SH�;0.M jKIK/ is a unital K–algebra with respect to the operation �
induced from the identification SH�;0.M jKIK/D SH�;0.M I fHK g/.

(d) We have a commutative triangle of K–algebras

(1)

H�.M IK/

�� ))

SH�;0.M jK2IK/ // SH�;0.M jK1IK/

(e) For any H 2H which is bounded on K we have a continuous and functorial map

HF�.H IK/! SH�.M jKIK/;

which increases the valuation1 by at most c D supK H .

The proof of Theorem 2.1 appears at the end of Section 9.

Remark 2.2 Suppose M is symplectically aspherical and for a pair of compact sets
KDK1;K2, we have that HK can be approximated by Hamiltonians whose nontrivial
periodic orbits have action positive and bounded away from 0. Then the commutative
triangle (1) can be refined to a commutative square

H�.K2IK/

��

// H�.K1IK/

��

SH�.M jK2IK/ // SH�.M jK1IK/

Combined with (3) below, this reproduces Viterbo’s commutative square for Liouville
domains [63].

Remark 2.3 We comment on the name local symplectic cohomology. Assume M

is symplectically aspherical and the boundary of K is stable Hamiltonian. Then it
can be shown that elements of SH�.M jK/ are represented by linear combinations of

1By definition, the valuation is val WD log k � k.
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constant periodic orbits inside K and the Reeb orbits of @K. If the boundary is not
stable Hamiltonian, these can be represented by, in addition to constant orbits inside,
periodic orbits lying arbitrarily close to @K. Thus, at least when M is aspherical,
SH�.M jK/ can be thought of as symplectic cohomology relative to the complement
of K; that is, as localized at K. When M is not aspherical, this type of locality is far
from clear. This question is taken up in forthcoming work. Theorem 2.4 below can be
seen as a particular manifestation of locality in the general case.

Theorem 2.4 Let H be a smooth Hamiltonian such that H�1.0/D @K.

(a) Suppose ˛ is a nontrivial free homotopy class of loops. Suppose also that
SH�;˛.M jKIK/¤ 0. Then there is a sequence an > 0 converging to 0 such that
H�1.an/ has a periodic orbit representing ˛.

(b) If SH�;0.M jKIK/ ¤ H�.KIK/, then there is a sequence an > 0 converging
to 0 such that H�1.an/ has a contractible periodic orbit.

Theorem 2.4 is proven in Section 10.6. Some applications of local Floer cohomology
to embedding and displaceability problems are given in Section 2.3 below.

We conclude with some comments on the relation of these groups with similar work of
others.

(a) When M is symplectically aspherical and K is the closure of an open set U, the
groups SH�

Œa;b/
.M jK/ coincide with the corresponding symplectic cohomology groups

of U as defined in [15] using Hamiltonians which are constant at infinity.

(b) In [62] the notion of completed symplectic cohomology is introduced and studied
for Liouville cobordisms W inside monotone symplectic manifolds. The computations
in [62] show that the local symplectic cohomology groups depend nontrivially on K.
The choice of Floer data in [62] is such that the Floer chain complexes have finite
boundary depth; see Remark 3.2. In particular, ordinary and reduced Floer cohomology
coincide for these Floer data. A consequence of Theorem 3.3 is that the invariant
of [62] is the local Floer cohomology as defined here.

(c) In [61] an invariant which is closely related to local symplectic cohomology as
defined here is studied and is shown to fit into a local-to-global spectral sequence when
the compact sets involved are invariant sets of an involutive system of Hamiltonians.
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2.2 Global symplectic cohomology

Consider the set Huniv �Hsc of smooth time-independent exhaustion functions on M.
Then Huniv is a monoidal indexing set. By Theorem 1.3 we thus obtain for any
geometrically bounded symplectic manifold a k–algebra which is a symplectic invariant.

Definition 2.5 The universal symplectic cohomology is defined by

SH�univ.M / WD SH�.M IHuniv/:

For any choice of H the algebra SH.M IH/ carries a topology, called the final topology,
as a direct limit of topological vector spaces. This topology is not guaranteed a priori
to be Hausdorff, and its Hausdorff completion is not guaranteed to be metrizable.
However, in the few cases where something is known about it, SH�univ turns out to be a
reasonably well-behaved object. Example 9.20 below should give some sense of what
universal symplectic cohomology is like in nice cases.

Note that for a compact set K we have Huniv � HK . Thus there is a natural unital
map SH�univ.M /! SH�.M jK/ for any compact set. One way to utilize it is if one
finds a monoidal indexing set H �Huniv for which SH�.M IH/D 0, it then follows
that SH�.M jK/D 0 for all compact K �M. Observe that since we do not complete
after taking the direct limit, the algebra SH�.M IH/ is not sensitive to behavior on
compact sets. Indeed, if we define an equivalence relation H1 �H2 by H1 �H2 and
H2 � 1, then the associated symplectic cohomologies are canonically isomorphic. On
the other hand, if H consists of continuous functions, the �–equivalence class of H
is unaffected by any alterations on any compact set. Thus, for H�Huniv the algebra
SH�.M IH/ is only sensitive to the growth at infinity. For this reason we refer to this
type of symplectic cohomology as global SH.

Before applying SH�univ.M / we discuss some settings where something can be said
about it.

Let .M; !/ be a compact symplectic manifold and let  WM !M be a symplecto-
morphism. Denote by zM the associated symplectic mapping torus; see Section 10.2
for the definition. Denote by HF�.M;  / the fixed-point Floer homology of  as
introduced in [21]. The following theorem allows us to distinguish mapping tori by
fixed-point Floer homology. zM carries a distinguished closed 1–form dt pulled back
from the natural map zM ! S1. The 1–form dt induces a grading on SH�univ since
continuation maps are homotopies. We denote by SH�;kuniv.

zM / the k th graded piece.
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Theorem 2.6 (cf [22]) There is a mapM
k2Z

HF�.M;  k/! SH�univ.
zM /;

which is injective and dense. Moreover , for each k 2 Z there is a natural isomorphism

HF�.M;  k/D SH�;kuniv.M /:

In particular , let  i WM !M be a symplectomorphism for i D 0; 1. Suppose there
exists a symplectomorphism

� W zM 1
! zM 2

which preserves the class of dt . Then � induces an isomorphism HF�.M;  1/ D

HF�.M;  2/.

Theorem 2.6 is proven in Section 10.2.

Theorem 2.7 (Künneth formula) Let M1 and M2 be geometrically bounded sym-
plectic manifolds. Then there is a natural map

(2) SH�univ.M1/˝ SH�univ.M2/! SH�univ.M1 �M2/;

which is injective with dense image. A similar claim holds if one restricts to SH�;0univ.

Theorem 2.7 is proven in Section 10.4.

The following theorem refers to the additional grading on SH�univ.M / by free homotopy
classes of loops as discussed in the paragraph preceding Theorem 1.3.

Theorem 2.8 (nearby existence)

(a) Suppose SH�;0univ.M / D 0. Then for any Hamiltonian H W M ! R which is
proper and bounded from below, the subset of levels containing a contractible
periodic orbit is dense in H.M /�R. The claim holds also if we merely assume
SH�;0univ.M /D f0g, where f0g is the closure of 0 2 SH�;0univ with respect to the final
topology on SH�;0univ.

(b) Suppose ˛ is a nontrivial free homotopy class of loops. Suppose also that
SH�;˛.M / ¤ f0g. Then there is a compact K �M such that for any smooth
proper and bounded below H W M ! R and any a 2 R for which H.K/ �

.�1; a�, the set of x 2 Œa;1/ for which H�1.x/ has a periodic orbit represent-
ing ˛ is dense in Œa;1/.

Theorem 2.8 is proven in Section 10.6.
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Remark 2.9 Examples satisfying the hypotheses of the first part of Theorem 2.8 are
complete toric varieties M such that c1.M / D 0. This follows from the vanishing
criterion of Theorem 10.9. See Example 10.12. There are manifolds in this class of
examples which, unlike C, contain nondisplaceable sets. Examples are the canonical
bundles over P2 and over P1 �P1. By the Künneth formula, the product of such a
manifold with any geometrically bounded symplectic manifold of vanishing Chern
class will again satisfy the hypothesis.

An example of an M and ˛ satisfying the hypotheses of the second part of Theorem 2.8
is given by the cotangent bundle of the torus and any nontrivial homotopy class ˛. This
can be deduced from Theorems 2.6 and 2.7. From this we obtain many examples by
taking the product with an arbitrary compact manifold or with a geometrically bounded
one for which symplectic cohomology does not vanish, and considering homotopy
classes pulled from the cotangent factor.

We can also use the methods of this paper to produce periodic orbits with prescribed
action. Namely, for a dissipative Hamiltonian H , call a class a 2 HF�.H / essential if
it maps to a nonzero class in SH�univ.M /. Suppose M is symplectically aspherical. If
H1 �H2 are dissipative then for any essential class a in HF�.H1/ there is a periodic
orbit of H2 in the same homotopy class with action bounded by val.a/. Indeed, the
map HF�.H1/! SH�univ.M / factors through HF�.H2/ by the continuation map which
is action decreasing.

Example 2.10 On a Liouville domain, for any function H which is convex at infinity,
all nonzero classes in HF�.H / are essential. This follows from Theorem 2.11 below.
The same holds for the product of a Liouville domain with a compact aspherical
manifold. These claims require working over R instead of over ƒR, but this is not
problematic in this restricted setting since the action spectrum is bounded below and
so the topology is discrete.

2.3 Liouville domains and displaceability

Let M be the completion of a Liouville domain U. Denote by SH�Viterbo.U IK/ the
symplectic cohomology as defined in [63] by taking a direct limit of the Floer coho-
mology groups HF�.H;J / over all .H;J / where H is linear at infinity and J is of
contact type. See Section 10.1 for notation and definitions. Denote by L�H the set of
Hamiltonians which are linear at infinity. Then L is a monoidal indexing set. We have

SH�Viterbo.U IK/D SH�.M IL;K/;
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and therefore a natural map

f W SH�Viterbo.U IK/! SH�univ.M IK/:

We prove in Theorem 10.2 below:

Theorem 2.11 The map f is an isomorphism for KDR coefficients.

Corollary 2.12 For a Liouville manifold M of finite type , SH�Viterbo.M IR/ is inde-
pendent of the choice of primitive of !.

Remark 2.13 Theorem 2.11 can generally not be expected to be true over a nontrivially
valued field. See Remark 10.3 for an explanation on this point.

It is also not hard to show that for any Liouville subdomain V �M we have a natural
isomorphism of vector spaces

(3) SH�.M jV IR/D SH�Viterbo.V IR/:

Note however that the left-hand side of (3) is naturally a normed vector space while
the right-hand side is not. The equation will thus cease to be true over a nontrivially
valued field. The generalization of (3) for the nontrivially valued case is the excision
principle

(4) SH�.M jV IƒR/D SH�. yV jV IƒR/

whenever M is a Liouville manifold and V is a Liouville subdomain with yV its
completion. This follows by the no-escape lemma near the concave boundary of M nV .
See [48]. We now formulate a theorem showing that this independence of the ambient
manifold holds under more general conditions for skeleta of Liouville domains. In the
following, we denote by SH�;0.M jV / the subgroup consisting of periodic orbits that
are contractible in M. The proofs of the following theorems as well as some pertinent
definitions are given in Section 10.1.

Theorem 2.14 Let M be symplectically aspherical and let U be a Liouville domain
with Liouville field Z. Let i W U ! M be an embedding with the property that
i� WH1.U IR/!H1.M IR/ is injective. Then , denoting by Skel.U;Z/ the skeleton
of U with respect to Z,

SH�;0.M jSkel.U;Z/IK/D SH�;0.U jSkel.U;Z/IK/:

Remark 2.15 The restriction to contractible periodic orbits in Theorem 2.14 can be
removed by adding the assumption that M is symplectically atoroidal.
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Theorem 2.14 implies:

Theorem 2.16 Let U;Z and M be as in Theorem 2.14 and suppose that

(5) SH�Viterbo.U /¤ 0:

Then Skel.U;Z/ is not displaceable.

Taking U the cotangent disc bundle, this is a well known theorem by Gromov. Namely,
Cn contains no simply connected Lagrangians. The particular case M D yU , the
completion of U, is a theorem of [33]. We remark that Theorem 2.16 follows from
Theorem 2.14 by a general vanishing principle for the localized Floer cohomology
of a displaceable set. We prove this for M aspherical. In [61] this is proven without
the asphericity assumption. Note however that the asphericity assumption in the
last two theorems cannot be removed. Indeed, there are examples of displaceable
Lagrangian spheres [2; 44]. However, there are quantitative counterparts which should
hold assuming essentially only geometric boundedness.

Theorem 2.17 Suppose that M is monotone or Calabi–Yau , and let U ,! M be
a Liouville domain. Then there is a ı > 0 for which SH�;0Viterbo.U IR/ embeds into
SH�;0

Œ0;ı/
.M jSkel.U;Z/IK/ with valuation 0 as an R–subspace.

Theorem 2.18 Let M be aspherical and let U ,!M be a Liouville domain satisfying
SH�Viterbo.U /¤ 0. Then Skel.U;Z/ has positive displacement energy.

Remark 2.19 It should not be hard to remove the asphericity assumption. Once this
is done, and taking U to be the cotangent disk bundle, we recover a classical theorem
by Chekanov [13] stating that Lagrangian submanifolds have positive displacement
energy.

3 Overview

3.1 Diameter control of Floer trajectories

In the next couple of sections we wish to investigate the conditions under which a
Floer datum F 2 F gives rise to Floer homology groups. What it comes down to are
conditions under which Gromov compactness holds. To sketch an outline of what is
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Figure 1: Two types of divergence: type 1, left; type 2, right.

to come, let us first discuss how compactness might fail. Fix the coordinates .s; t/ on
R�R=Z. Let un WR�R=Z be a sequence of solutions to Floer’s equation

(6) @suCJ.@tu�XH /D 0

which satisfies, for some positive number E and some compact set K �M,

E.u/ WD
1

2

Z
k@suk2 �E; u.R�R=Z/\K ¤∅:

In general there are two ways in which such a sequence may diverge. First there might
be (after possibly reparametrizing) a fixed value s and a compact set K0 such that
un.s; � / intersects K0 but the diameter of un.s; � / is not bounded uniformly in n. We
refer to this as a divergence of type 1; see Figure 1, left. Second, there might be a
sequence sn!1 such that un.sn; � / converges to infinity. This is referred to as type 2

divergence; see Figure 1, right.

In the text below we introduce two conditions, one for ruling out each type of divergence.
For the first type of divergence we introduce the condition of intermittent boundedness,
or i–boundedness. It involves bounds on the geometry of an associated metric on the
Hamiltonian mapping torus which are required to hold on a sufficiently large subset
of M. This condition is introduced first for the case where H D 0 in Section 4, where
we show that it provides diameter control for pseudoholomorphic curves. The condition
of i–boundedness is framed so as to allow homotopies between any two elements, as
well as higher homotopies, for which the diameter estimate continues to hold. This is
the content of Theorem 4.7. Note that it is not reasonable to expect that any two almost
complex structures which induce a geometrically bounded metric are connected by a
path of the same kind of almost complex structures. Figure 2 illustrates the kind of
homotopy that intermittent boundedness allows.
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So far, the discussion only pertains to pseudoholomorphic curves. In Section 5 we
discuss a trick which allows us to obtain the same diameter control for H nonzero,
provided we restrict attention to fixed compact sets of the domain. When H is nonzero,
we are considering a geometry which is determined not just by J but also by H . Most
of Section 5 is devoted to studying the geometry of this metric.

To rule out the divergence of type 2 we introduce a condition called loopwise dis-
sipativity. It is a variant of the Palais–Smale condition, which has played a role in
early variational arguments for existence of symplectic capacities [38, Chapter 12].
This condition is not contractible, but this is not a problem since it only needs to be
satisfied on the ends. In this it is similar to the nondegeneracy condition which is
usually required in Floer theory. Note that unlike the property of i–boundedness, the
property of loopwise dissipativity is not readily verifiable on nonexact submanifolds
for Hamiltonians that do not have a small Lipschitz constant. In those cases it requires
some understanding of the Hamiltonian flow.

Floer data satisfying these conditions are called dissipative. Theorem 6.3 states that
dissipative Floer data satisfy a priori C 0 estimates. A variant which works under a
slightly weaker condition on exact symplectic manifolds is given in Theorem 6.12.

We discuss three classes of examples of dissipative .H;J /.

(a) H is Lipschitz with respect to gJ with sufficiently small Lipschitz constant
outside of a compact set. More generally, mainly to allow a cofinal set, we
require the Lipschitz condition only on a sufficiently large subset of M. This
class of examples is sufficient for all the theoretical constructions of this paper.

(b) M is exact and the action functional satisfies the Palais–Smale condition. For the
details see Section 6.4. Strictly speaking, as noted in the beginning of Section 6.4,
the Palais–Smale condition is slightly weaker than the dissipativity condition.
Nevertheless it fits into the general dissipative framework.

(c) The Hamiltonian flow of H is sufficiently close to being invariant with respect
to a radial parameter. See Section 6.5.

3.2 Floer theory by approximation

This subsection is devoted to clarifying the statement of Theorem 1.2 and its underlying
philosophy. We first discuss the notion of reduced Floer cohomology. The Floer
cohomology associated by Theorem 1.1 to a dissipative Floer datum .H;J / is the
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homology of the Floer complex CF�.H;J / constructed in Section 7.3. The complexes
CF�.H;J / can be considered as non-Archimedean Banach spaces over ƒR, as we
explain momentarily. The chain complex CF�.H;J / is generated by an appropriate
Novikov covering of the space of 1–periodic orbits of H . Thus Floer cohomology can
be considered as the Morse cohomology of a single-valued action functional AH . Our
conventions are set up so that action decreases along gradient lines. See Section 5.1
for precise definitions. Thus our chain complexes carry a decreasing filtration by AH .
Moreover, the continuation maps of Theorem 1.2 are induced by certain chain maps
which preserve this filtration.

CF�.H;J / is thus normed with norm given by (54). The fact that the differential
and continuation maps are action decreasing means they are bounded with respect
to this norm, and, in particular, continuous. On an open manifold, CF�.H;J / will
typically not be finitely generated over the Novikov ring. For the differential and
continuation maps to be well defined we need to consider the completed complexcCF�.H;J /. Moreover, the differential can generally not be expected to have a closed
image.

Definition 3.1 Let .C �; d/ be a normed complex. The reduced cohomology of C � is

H�.C �; d/ WD 1ker d�=im d��1;

with the hat denoting completion with respect to the norm, and the bar denoting the
closure inside the completion. For a dissipative H , we denote the reduced Floer
cohomology by HF�.H /.2

Remark 3.2 When the Floer complex is finitely generated over a field, the differential
has closed image. So, in that case, reduced Floer cohomology coincides with ordinary
Floer cohomology. The same is true whenever the Floer complex has finite boundary
depth, meaning that the differential has a bounded right inverse [60]. For Liouville
domains, the Floer differential for a strictly convex Hamiltonian has a closed image if
one is working over R, but not necessarily when working over ƒR.

Denote by HN;�
d;reg the set of sequences fHig of regular dissipative Hamiltonians satisfying

Hi.x/�HiC1.x/ for all i and for all x 2R=Z�M. The set HN;�
d;reg carries a natural

order relation. Namely, fH 1
i g � fH

2
i g is defined to hold if and only if for any i there is

2We suppress J in the notation since the homology is independent of J as a consequence of part (c) of
Theorem 1.1.
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a j such that H 1
i �H 2

j . General nonsense about filtered complexes leads to a certain
extension of the functor HF� to the category HN;�

d;reg as follows. For a dissipative Floer
datum .H;J / and an interval Œa; b/�R we can consider the action-truncated Floer
cohomology HF�

Œa;b/
.H /. See (55) for its definition. Given intervals Œa; b/ and Œa0; b0/

such that a0 � a and b0 � b, there is a natural map HF�
Œa;b/

.H /! HF�
Œa0;b0/

.H / which
behaves functorially with respect to continuation maps. We then define

(7) HF�.fHig/ WD lim
 ��

a

lim
��!
b;i

HF�Œa;b/.Hi/:

The motivation behind this definition will be clarified in Theorem 3.3 and the comments
following it.

On the other hand, by Dini’s theorem from basic calculus, there exists a functor, that is,
an ordered map

sup W .HN;�
d;reg;�/! .Hsc;�/;

which takes fHig to the function x 7! supi Hi.x/.

Theorem 3.3 The map sup is surjective. Moreover , if sup.fH 1
i g/D sup.fH 2

i g/, there
is a natural isomorphism

(8) HF�.fH 1
i g/D HF�.fH 2

i g/:

In particular , there is an induced Floer cohomology functor HF� from the category Hsc

to the category of Z–graded non-Archimedean Banach spaces over K. This definition
of HF� coincides on the subcategory Hd;reg �Hsc with the previous definition which
is implied by Theorem 1.1.

Theorem 3.3 is proved towards the end of Section 8.2 right before Lemma 8.14.

Let us unpack the meaning of Theorem 3.3.

(a) Theorem 3.3 allows one to talk about reduced Floer cohomology of a smooth
proper exhaustion Hamiltonian H without first establishing that H is dissipative. The
further extension to lower semicontinuous functions is of interest since the characteristic
function of an open set is lower semicontinuous. This is used in the discussion of local
Floer cohomology of compact sets (defined as Floer cohomology of the characteristic
function of the complement).

Geometry & Topology, Volume 27 (2023)



1294 Yoel Groman

(b) The heart of the proof of the isomorphism (8) is Theorem 8.9, which can be
interpreted as saying that the truncated Floer cohomology is continuous with respect
to convergence on compact sets. This continuity is a consequence of the quantitative
nature of our main C 0 estimate Theorem 6.3. Namely, Floer trajectories connecting
regions that are far apart must have high energy. Thus, for fixed action truncation,
regions that are sufficiently far apart don’t interact Floer-theoretically.

This continuity statement is not true for the reduced Floer cohomology HF�.H /. Indeed,
it is easy to construct examples of a monotone sequence Hi of regular dissipative Hamil-
tonians converging on compact sets to a regular dissipative Hamiltonian H for which

lim
i

HF�.Hi/¤ HF�.H /D HF.fHig/:

The discrepancy between the leftmost side and rightmost side in the last equation arises
because of the interchange of direct and inverse limits. For example, on a Liouville
domain, H can be taken to be a quadratic Hamiltonian, while the sequence Hi can be
taken to consist of Hamiltonians whose slope near infinity is constant and less than
the smallest period of a Reeb orbit. This can be done so that for each compact set
the sequence still converges uniformly to H . Then it can be shown that for each i

we have HF�.Hi/ D H�.M /. This is the case since, up to isomorphism, the Floer
cohomology HF�.Hi/ D H�.M / depends only on the slope at infinity. Thus the
left-hand side is isomorphic to singular cohomology, whereas the right-hand side is not
generally isomorphic to singular cohomology. The reason for the discrepancy is that
the Hamiltonians Hi will have many periodic orbits whose action is arbitrarily close to
�1. These cancel the contribution to HF�.Hi/ coming from the high-action nontrivial
periodic orbits. However, when truncating below at any fixed value as in the procedure
described by (7), the contribution of the high-action periodic orbits remains uncanceled.

(c) Continuity of truncated Floer cohomology with respect to uniform convergence, and
hence an extension of the definition of truncated Floer homology to C 0 Hamiltonians,
has to the author’s knowledge first been observed in [63].

(d) In the text, a much stronger statement than the isomorphism of (8) is proven.
Namely, it is shown that to each of j D 1; 2 one can associate a complete filtered chain
complex cCF�.H j

i /, after making some additional choices, such that HF�.fH j
i g/ is the

reduced cohomology of cCF�.H j
i /. It is then shown that these complexes are filtered

quasi-isomorphic. See Definition 8.15. Filtered quasi-isomorphism is an equivalence
relation which implies isomorphism of the reduced Floer cohomology. In a forthcom-
ing note, joint with U Varolgunes, we show that filtered quasi-isomorphism in fact
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implies quasi-isomorphism in the usual sense. Thus Theorem 3.3 can be strengthened to
a statement concerning unreduced Floer cohomology. This will be a great advantage as
it will allow the application of tools from homological algebra. The notion of reduced co-
homology is still central however to our construction of the product in symplectic coho-
mology, as it is purely cohomological. Chain level constructions involving colimits are
generally extremely involved, as one needs to keep track of higher homotopical data. The
construction at the chain level is carried out in Theorem 8.16 by taking an appropriate
kind of chain level limit, which takes the Banach topology of the complexes CF�.H j

i /

into account. This builds on a construction from [5] and has also been utilized in [62; 61].

(e) Theorem 3.3 relies on the possibility of approximating any element in Hsc from
below by a sequence of functions which have small Lipschitz constant and are thus
dissipative by Theorem 1.1. Proper functions which are not bounded below would
require considering, in addition, inverse limits. We do not pursue this here.

(f) The comment (a) allows one to adapt Floer-theoretic constructions to the geometry
of the specific setting one is interested in without having to worry about complicated
compactness questions. For an example of this, see the derivation of the Künneth
formula in Hamiltonian Floer cohomology in Section 10.3. Two cautionary remarks
are in order, however:

(i) For there to be a relation between the reduced Floer cohomology and periodic
orbits of the Hamiltonian we are investigating, we must at least rule out divergence
of the second type, described in Section 3.1 below. Namely, we need to establish
loopwise dissipativity, or some related property. In the geometrically interesting
settings that the author is aware of, this is straightforward, but it would be
interesting to have a better understanding of this property.

(ii) It is theoretically possible for there to exist Floer data .H;J / which are not
dissipative, but for which, due to some accident, all the Floer moduli spaces are
compact and, moreover, give rise to reduced Floer homologies differing from
HF�.H;J / as stipulated by Theorem 3.3. This cannot happen for .H;J / which
satisfy the following robustness property enjoyed by dissipative Floer data:

The set of Floer solutions intersecting a given compact set K and having
energy at most E does not change if the Floer datum is changed outside
of a sufficiently large ball around K.

Note that the usually employed maximum principles are global in nature and
so do not imply this property.
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Sections 4 through 6 are devoted to the construction of dissipative Floer data. They are
organized as follows. Sections 4 and 5 are concerned with ruling out type 1 divergence.
In Section 4 we introduce the notion of i–boundedness, establish its contractibility
and derive various versions of diameter estimate it implies. In Section 5 we introduce
the Floer equation and the Gromov metric. We introduce the notions of i–bounded
and geometrically dissipative almost Floer data. Finally, we study the geometry of
the Gromov metric for translation-invariant Floer data. Section 6 is concerned with
ruling out type 2 divergence. In it we introduce and study the property of loopwise
dissipativity, and establish a diameter estimate as well as some effective criteria.

4 I–bounded almost complex structures

For a Riemannian metric g on a manifold M and a point p 2M we denote by injg.p/
the radius of injectivity, and by Secg.p/ the maximal sectional curvature at p. We drop
g from the notation when it is clear from the context.

Definition 4.1 Let .M;g/ be a complete Riemannian manifold. For a>0, the metric g

is said to be a–bounded at a point p 2M if inj.x/ � 1=a and jSec.x/j � a2 for all
x 2 B1=a.p/.

We say that g is intermittently bounded, abbreviated i–bounded, if there is an exhaustion
K1 �K2 � � � � of M by precompact sets and a sequence faigi�1 of positive numbers
such that:

(a) We have d.Ki ; @KiC1/ >
1

ai
C

1

aiC1
.

(b) The metric g is ai–bounded on @Ki .

(c) We have

(9)
1X

iD1

1

ai
2
D1:

The data set fKi ; aigi�1 is called taming data for .M;g/.

More generally we allow a slight weakening in the definition and say that a Riemannian
metric g is i–bounded if there exists a metric g0 that is i–bounded as above, with taming
data .Ki ; ai/ and a sequence of constants Ci such that:
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(a) We have

(10)
1X

iD1

1

.Ciai/
2
D1:

(b) The metric g is Ci–quasi-isometric to g0 on B.@Ki ; 1=ai/. Namely,

1

Ci
kXkg � kXkg0 � CikXkg

on B.@Ki ; 1=ai/.

In this case we will refer to the sequence .Ki ; ai ;Ci/ as the taming data of g.

For a symplectic manifold .M; !/, an !–compatible almost complex structure J is
called i–bounded if gJ is i–bounded. The symplectic form ! is said to be i–bounded
if it admits an i–bounded almost complex structure. For an i–bounded .M; !/, denote
by Jib.M; !/ the space of i–bounded almost complex structures.

A k–parameter family .gt /t2Œ0;1�k of i–bounded Riemannian metrics on M is said to
be uniformly i–bounded, or u.i.b., if there is an � > 0 such that for each t0 2 Œ0; 1�

k the
taming data fKi ; ai ;Cig can be chosen fixed on the � neighborhood of t0. A family fJtg

of almost complex structures is called u.i.b. if the corresponding family fgJt
g of

Riemannian metrics is uniformly i–bounded.

Example 4.2 If J is geometrically bounded, meaning that gJ is a–bounded every-
where for some a, it is i–bounded. In this case, we can take the taming data to be
fKi D B3i=a.p/; ai D ag, for some arbitrary point p 2M.

Example 4.3 Suppose now that f WM !R is the distance from some point p 2M

and that at each point x 2 M the metric gJ is f .p/–bounded. Then gJ is still i–
bounded. For this case consider the sequence of real numbers bi obtained from the
set

S1
nD1fnC k=n j 0 � k < ng � R with its standard order. Then the sequence

.Ki D f
�1.0; b3i/; ai Ddb3ie/ constitutes taming data for gJ . Indeed, by assumption,

the metric is ai bounded on Ki and the series
P

1=a2
i is readily seen to diverge.

Remark 4.4 The condition of uniform i–boundedness is framed so that it simultane-
ously guarantees the conclusions of Theorems 4.7 and 4.11 below. Namely, on the one
hand, the condition is contractible in the sense that any two homotopies satisfying the
condition are connected by a homotopy satisfying the same condition. On the other
hand, it still allows a priori control of the diameters of J–holomorphic curves. If we
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were to require boundedness everywhere, not just near @Ki , it appears unlikely that we
would get a contractible condition as required in invariance proofs.3

Remark 4.5 Theorem 4.7 below will remain true if we impose more stringent require-
ments on the numbers ai , say, that they be bounded by a given constant. The reason we
allow the numbers ai to diverge (subject to (10)) is that in the context of Floer theory,
sometimes there naturally arise almost complex structures with associated metrics that
do not have uniformly bounded sectional curvature. Examples are the Sasaki metric
on the cotangent bundle and the induced metric on the mapping torus of a quadratic
Hamiltonian on the completion of a Liouville domain.

Remark 4.6 If J is i–bounded and J 0 is such that kJ �J 0kgJ
is bounded, then J 0 is

i–bounded.

Theorem 4.7 The space Jib.M; !/ is connected. Moreover , any two elements can
be connected by a u.i.b. family. Similarly, any two u.i.b. k–parameter families can be
connected by a u.i.b. .kC1/–parameter family.

Remark 4.8 The idea of the proof is very similar to the that of [14, Proposition 11.22].

Proof Let J0;J1 2 Jib. Suppose we are given taming data fKi
n; a

i
n;C

i
ngn�1 for Ji ,

i D 0; 1. For the rest of the proof we assume C i
nD 1, the adjustment to the general case

being trivial. Let .ci
n; d

i
n/n�1 be sequences of positive integers constructed inductively

such that:

(a) K0
d0

nCc0
n
�K1

d1
n

and K1
d1

nCc1
n
�K0

d0
nC1

for all n.

(b)

d i
nCcn�1X

kDd i
nC1

�
1

ai
k

�2

�
1

n
for i D 0; 1.

Write
V i

n WDKi
d i

nCci
n
nKi

d i
n

for i D 0; 1:

The sets V i
n are all disjoint by (a). Let fJsg/s2Œ0;1� be a smooth homotopy connecting

J0 and J1 which is fixed and equal to J1 on the subsets V 0
n for all s 2

�
0; 2

3

�
and to J1

3As evidence for this, consider that one can show, using the result of [40], that the space of complete
Riemannian metrics inducing a given volume form and having bounded geometry is disconnected. In fact,
it has infinitely many connected components.
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J

M

Figure 2: A zigzag homotopy from J0 (light) to J1 (dark).

on the subsets V 1
n for all s 2

�
1
3
; 1
�
. We refer to such a homotopy as a zigzag homotopy;

see Figure 2. Set

Ai
WD

[
n

Œd i
nC 1; d i

nC ci
n� 1�\N

for i D 0; 1. By (a) and (b), the data

fKi
ni

k
; ai

ni
k
gni

k
2Ai ; i D 0; 1;

constitute taming data for Js on the intervals
�
0; 2

3

�
and

�
1
3
; 1
�
, respectively. Moreover,

for each s 2 Œ0; 1� the metric gJs
is complete. Indeed, the distance of @Ki

nk
from any

fixed point goes to1 for i D 0 and s 2
�
0; 2

3

�
, and for i D 1 and s 2

�
1
3
; 1
�
. We have

thus connected J0 and J1 in a uniformly i–bounded way.

We now generalize to the k–parameter case. Let fJi;tgt2Œ0;1�k for i D 0; 1 be two
smooth k–parameter families. Let C be an open cover of the cube Œ0; 1�k by open cubes
of side length � for � so small that the taming data for both families can be chosen
fixed on each such cube. For each c 2 C and i 2 f0; 1g, we construct precompact open
subsets fV i;c

n g in such a way that:

(a) V
i1;c1

n1
is disjoint from V

i2;c2
n2

whenever .i1; c1; n1/¤ .i2; c2; n2/.

(b) There is taming data supported in
S1

nD1 V
i;c

n for fJi;tgt2c , where we say that
the taming data fKi ; aigi�1 is supported in an open set V �M if V contains
all the balls B1=ai

.@Ki/.
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Such sets can be constructed inductively along the same lines as in the 0–parameter
case. We can then take any smooth homotopy

fJs;tg.s;t/2Œ0;1��Œ0;1�k

which is fixed on all the subsets fV 0;c
n g for s 2

�
0; 2

3

�
, and on all the subsets fV 1;c

n g

for s 2
�

1
3
; 1
�
.

For a J–holomorphic curve u W S !M, denote by E.uIS/ the energyZ
S

u�!

of u on S . We drop S from the notation when it is clear from the context.

The following theorem is taken from [57].

Theorem 4.9 (monotonicity) Let gJ be a–bounded 4 at p 2M. Let † be a compact
Riemann surface with boundary and let u W†!M be J–holomorphic such that p is in
the image of u and such that

u.@†/\B1=a.p/D∅:

Then there is a universal constant c such that

E
�
uIu�1.B1=a.p//

�
�

c

a2
:

If gJ is quasi-isometric to an a–bounded metric with quasi-isometry constant A, the
same inequality holds but with c replaced by c=A2.

Proof This is just a reformulation of the monotonicity inequality in [57]; see Proposi-
tion 4.3.1(ii) and the comment right after Definition 4.1.1 there. For completeness, we
add a statement and proof of that comment in Lemma 4.10, as we didn’t find a proof
of it in the literature.

Lemma 4.10 Let g be Riemannian metric which is a–bounded at p 2M. Then any
loop  W S1! B1=.2a/.p/ bounds a disk of area less than 1

2
`2. /.

Our proof is taken from [37], the only addition being the precise dependence on the
curvature.
4As the proof shows, we only need an estimate from above on the sectional curvature. The stronger
requirement is needed later in Section 5.5.
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Proof Set  .0/Dq. Let z WS1!TqM be the unique path such that expq z .�/D  .�/.
Consider the disk u.t; �/D expq t z .�/. Using the triangle inequality one shows that u

maps into the ball B1=a.p/. Since the geodesics emanating from q minimize distance
within B1=a.q/, we have

(11) k@tuk D kz .�/k D d.q;  .�//� 1
2
`. /:

We need to estimate the Jacobi field J.t; �/ WD @�u.t; �/. More precisely, we need
to estimate the component J? which is perpendicular to z .�/. For this we use the
generalized Rauch estimate [34, 1.8.2], according to which the function

f .t/D
kJ?.t; �/k

sin t

is nondecreasing on the interval .0; �/.5 Observe that  0.�/D J.1; �/. So,

kJ?.t; �/k �
sin t

sin 1
k 0.�/k for t � 1:

Applying the last estimate and equation (11) we get

Area.u/D
Z 1

0

Z 2�

0

k@�ukk@tuk sin.†.@�u; @tu// d� dt

D

Z 1

0

Z 2�

0

k@�u?kk@tuk sin.†.@�u?; @tu// d� dt

�

Z 1

0

Z 2�

0

k 0.�/k1
2
`. / d� dt D 1

2
`2. /:

The following theorem is fundamental for all that follows. It gives a priori control over
the diameter of a J–holomorphic curve u W†!M with free boundary in terms of its
energy.

Theorem 4.11 Let J 2 Jib.

(a) For any compact set K �M and E 2RC there exists an R> 0 such that for any
connected compact Riemann surface † with boundary , and any J–holomorphic
map

u W .†; @†/! .M;K/

satisfying E.uI†/�E, we have u.†/� BR.K/. Moreover , if the geometry is
uniformly bounded , R can be taken to be independent of K. In fact , it can be
taken to be proportional to E.

5Observe the coordinate t is related to the coordinate r of [34, 1.8.2] by r D kzkt , and that kzk � a,
where a2 plays the role of � in [34, 1.8.2].
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(b) Let † be a connected compact Riemann surface with boundary. For any compact
set K �M, any compact subset S of the interior of †, and any E 2RC, there
exists an R such that for any J–holomorphic map

u W†!M

satisfying E.uI†/�E and u.S/\K ¤∅, we have u.S/� BR.K/.

In both cases , besides the dependence on E and on S , R depends only on taming data
of J inside BR.K/. That is , given J 0 which has the same taming data as J on BR.K/,
the claim will hold with the same R for J 0–holomorphic curves with energy at most E.

Remark 4.12 The reader is cautioned that in case (b), where there is no control over
the image of the boundary, to control the diameter of u.S/ we need control of the
energy in the larger surface †.

Remark 4.13 Concerning the dependence of R on the geometry in case (b), in addition
to the dependence on the taming data and on E, we have that R depends on an estimate
from below of the distance d.S; @†/, and from above on the area and curvature of †,
all with respect to an arbitrarily chosen conformal metric.

Proof Let fKi ; ai ;Cig be taming data for J . The argument will be given for the case
Ci D 1 for all i 2 N. Let N 2 Z be such that K � KN . Let i0 > 0 and xi0

2 † be
such that u.xi0

/ 2 @Ki0CN . If no such i0 and xi0
exist, we take R D d.K;KNC1/

and we are done. Otherwise, there is a sequence xi 2 † such that u.xi/ 2 @KNCi

for 0 < i � i0. In case (a) we argue as follows. For each 1 � i � i0, we have
B1=aNCi

.u.xi//\u.@†/D∅. Also,

d.u.xi/;u.xj // >
1

aNCi
C

1

aNCj

whenever i ¤ j . By Theorem 4.9 we obtain

E.uI†/�

i0X
iD1

E
�
uIu�1

�
B1=aNCi

.u.xi//
��
�

i0X
iD1

c

a2
iCN

:

By (10) this implies an a priori upper bound on i0. Let i0 be the largest possible such.
The claim then holds with RD d.K;KNCi0C1/.

In case (b) we argue as follows. Pick an area form !† on † which together with
j† determines a metric whose sectional curvature is bounded in absolute value by 1.
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Let AD
R
† !† and let � WD d.S; @†/. Let

zu WD Id�u W†!†�M

be the graph of u, and let zJ be the product almost complex structure on †�M. Then
zu is J–holomorphic and E.zu/DE.u/CA. For any x 2†, any p 2M and any a� 1

such that .M;gJ / is a–bounded at p, we have that .†�M;g zJ / is a–bounded at .x;p/.
Moreover, defining xi as before for points xi 2 S , the ball of radius minf1=aiCN ; �g

around zu.xi/D .xi ;u.xi// does not meet zu.@†/. Thus, arguing as before, we have

E.uI†/CADE.zuI†/�

i0X
iD1

c min
�

1

a2
iCN

; �2

�
:

The claim follows as before.

The final ingredient we shall need is the following elementary observation, whose proof
we leave for the reader.

Theorem 4.14 The pullback of a u.i.b. family by a uniformly continuous map is u.i.b.

Theorems 4.7 and 4.11 have consequences for symplectic invariants on open manifolds,
which we state as the following theorem.

Theorem 4.15 The following invariants , whose definition requires fixing a geometri-
cally bounded almost complex structure J, are independent of the choice of such J.

(a) The Gromov–Witten theory on geometrically bounded manifolds studied in [35].

(b) Symplectic homology of relatively compact open sets studied in [17].

(c) Rabinowitz Floer homology of tame stable Hamiltonian hypersurfaces in geo-
metrically bounded manifolds [16].6

Proof By Theorem 4.7 we can connect any two such almost complex structures J0

and J1 via a uniformly i–bounded path Js of compatible almost complex structures.
We outline how to prove invariance in each case separately.

(a) As a particular consequence of Theorem 4.11, the Js–holomorphic curves repre-
senting a given homology class and nontrivially intersecting a compactly supported
cohomology class are all contained in a fixed compact set K. Thus the moduli space of
such spheres with s varying from 0 to 1 generically gives rise to a cobordism between
the moduli spaces associated with J0 and J1.

6See Remark 3.3 in [17] and likewise the beginning of Section 4.5 in [16], where this question is raised.
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(b) The symplectic homology is defined by considering compactly supported Hamil-
tonians. In that setting, geometric boundedness gives rise to C 0 estimates as follows.
Suppose u is a Floer trajectory connecting periodic orbits inside some open set U

where some Hamiltonian H is supported. Then the intersection of the image of u with
M nU is J–holomorphic. Moreover, the symplectic energy is bounded a priori in
terms of the action difference across u. It is clear by Theorem 4.11 that i–boundedness
is sufficient to obtain the same type of C 0 estimate. We show that the continuation
map associated with the 1–parameter family Js fixing H also satisfies a C 0 estimate.
Note that we cannot directly appeal to Theorem 4.11, since we are now considering a
domain-dependent J . To overcome this difficulty we apply the Gromov trick. Namely,
we consider the graph

zu WR�R=Z!R�R=Z�M

for a continuation map u. Let zJ WD j �J , where j is the standard complex structure
on the cylinder. Then zu is zJ–holomorphic outside of U. Consider the area form on the
cylinder obtained by identifying it with the twice punctured sphere. Then the associated
metric g zJ is i–bounded. Moreover, the energy of the part of zu mapping outside of U

is still bounded a priori in terms of the periodic orbits connected by u.7 Appealing to
Theorem 4.11, the path Js gives rise to a chain homotopy between the Floer homologies
of any fixed Hamiltonian with respect to the two choices of J . In the same way, given
H �K, and a homotopy Hs of Hamiltonians, the concatenations .K;Js/ # .Hs;J0/

and .Hs;J1/#.H;Js/ can be interpolated by a homotopy .Hs;� ;Js;� / such that Hs;� is
compactly supported and Js;� is uniformly i–bounded. A C 0 estimate for the homotopy
is immediate from Theorem 4.11. Thus the continuation maps in the directed system
defining symplectic homology also coincide generically for different choices of J . It
follows that the two invariants coincide.

(c) Rabinowitz Floer homology for a stable Hamiltonian hypersurface † in a geo-
metrically bounded manifold is considered with Hamiltonian vector fields that are
supported on some compact set K containing †. A gradient trajectory in Rabinowitz
Floer homology consists of a pair .v; �/, where v W R �R=Z!M and � W R! R

satisfy a certain equation. The part of V which maps out of K is J–holomorphic with
a priori bounded energy for a gradient connecting critical points. Compactness of the
space of gradient trajectories consists in first establishing a C 0 estimate on V and once

7Later, when considering a nonzero Hamiltonian, we will generally have i–boundedness only if we
consider the cylindrical metric, which has infinite area. For this reason we will need to complement
i–boundedness with the additional requirement of loopwise dissipativity.
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V is confined to a compact region, deriving an estimate on � and appealing to Gromov
compactness. As in the previous part, i–boundedness is sufficient for the C 0 estimates
on V . This holds as well for s dependent J . The argument for invariance now follows
as before.

Remark 4.16 The question of what kind of deformation of the symplectic structure
preserves which of these invariants appears to be more subtle and is not studied here.
In [30], the question is taken up for a particular type of deformation on Liouville
domains.

Remark 4.17 It is not known to the author whether the class of i–bounded symplectic
manifolds is strictly larger than the class of geometrically bounded symplectic manifolds.
It appears likely that it might be easier to characterize the class of i–bounded symplectic
manifolds in terms of the topology of !. It is easy to see that a punctured Riemann
surface cannot be assigned an i–bounded compatible metric, even though there is
a compatible complete metric of bounded curvature. This motivates the following
question. Suppose M is such that for any disconnecting compact hypersurfaces †,
a component of M n† which has finite volume is precompact in M. Are there any
obstructions to finding a compatible i–bounded J?

It is also an interesting question whether finiteness of the total volume is an obstruction
to weak boundedness, as it is to boundedness. In dimension 2 the answer is positive, as
remarked above, but in higher dimension this is not clear to the author. If the answer is
negative, it is possible that there are contact manifolds whose symplectizations admit
i–bounded almost complex structures, allowing one to define Floer-theoretic invariants
on them without recourse to symplectic field theory. This remark is due to A Oancea.

5 Floer solutions and the Gromov metric

5.1 Floer’s equation

Let .M; !/ be a symplectic manifold. Let LM WD C1.R=Z;M / denote the free
loop space. For a smooth function H 2 C1.R=Z �M / and for any t 2 R=Z, de-
note by XHt

its Hamiltonian vector field. This is the unique vector field satisfying
dHt . � /D!.XHt

; � /. For each component LMa of LM pick a base loop a and define
a (multivalued) functional AH W LM !R by

AH . / WD �

Z
! �

Z 2�

0

H. .t// dt;
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where the integral of ! is taken over a path in loop space from a to  . Later, in
Section 7.3, we will consider AH as a single-valued functional on an appropriate cover
of the loop space.

Denote by P.H / � LM the set of 1–periodic orbits of XH . This is the same as
the critical point set of AH . Given an R=Z–parametrized family of almost complex
structures Jt on M, the gradient of AH . / at  is the vector field

rAH . /.t/ WD Jt

�
P .t/�XHt

. .t//
�

along  . Note that the gradient field is independent of the choice of base paths and
is single-valued. A gradient trajectory is a path in (a covering of) loop space, whose
tangent vector at each point is the negative gradient at that point. Explicitly a gradient
trajectory is a map

u WR�R=Z!M

satisfying Floer’s equation

(12) @suCJt .@tu�XHt
ıu/D 0:

We refer to such solutions as Floer trajectories. A Floer trajectory is nontrivial if there
is a point such that @tu¤XH .

More generally, let† be a finite type Riemann surface with cylindrical ends. This means
that † is obtained from a compact Riemann surface † by removing a finite number
of punctures. Moreover, near each puncture we fix a conformal coordinate system
.s; t/ W .a; b/�R=Z!† such that either .a; b/D .�1; 0/ or .a; b/D .0;1/. In the first
case we call the puncture negative, and in the second, positive. Let H2�1.†;C1.M //

be a 1–form with values in smooth Hamiltonians such that near each puncture there
is an H 2 C1.R=Z�M / for which H D H dt in the cylindrical coordinates. We
denote by XH the corresponding 1–form with values in Hamiltonian vector fields. Let
J 2C1.†;J .!// and suppose J is independent of the coordinate s on the cylindrical
ends. The datum .H;J / is called a domain-dependent Floer datum.

Let u W†!M be smooth. For a 1–form  on † with values in u�TM, write

 0;1
WD

1
2
. CJ ı  ı j†/:

A Floer solution on † is a map u W†!M satisfying Floer’s equation

(13) .du�XH.u//
0;1
D 0:
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Note that equation (12) is equivalent to a special case of equation (13). We refer to J

and H as the Floer data of u. The geometric energy of u on a subset S �† is defined as

(14) EH;J .uIS/ WD
1

2

Z
S

kdu�XHk
2
J dvol†:

We omit any one of H, J or S from the notation when they are clear from the context.
We define the topological energy Etop.u/ of a Floer solution u as follows. Consider H
as a 1–form on †�M and let zu W†!†�M be the product map zuD Id�u. Then

(15) Etop.u/ WD

Z
u�!C d zu�H:

Floer’s equation reduces to the nonlinear Cauchy–Riemann equation when H.v/ D

 ˝ const for  a 1–form on †. In this case the two definitions of the energy coincide.
Namely, we have the identity

(16) 1

2

Z
S

kdu�XHk
2
D

1

2

Z
S

kduk2 D

Z
S

u�!:

5.2 The Gromov metric

Let u W †!M be a Floer solution for the Floer data F D .H;J /. Define an almost
complex structure JF on †�M by

JF .z;x/ WD

�
j†.z/ 0

XH.z;x/ ı j†.z/�J.z;x/ ıXH.z;x/ J.x/

�
:

Let
zuD .Id;u/ W†!†�M:

Then zu is JF –holomorphic. This construction is known as Gromov’s trick; see for
instance [37, Chapter 8.1].

Henceforth, given a Riemann surface † with cylindrical ends, we shall
assume that it comes equipped with an area form which is compatible with
the complex structure and coincides with the standard one, ds ^ dt , on
the ends.

Note that JF is not generally tamed by the product symplectic structure

! zM D �
�
1!†C�

�
2!M :

However, we have the following lemma.
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Lemma 5.1 Suppose fH;Hg D 0, ie for any z 2† and any pair v1; v2 2 Tz†, we have

(17) fH.v1/;H.v2/g D 0:

Now consider H as a 1–form on †�M which is trivial in the directions tangent to M.
Assume that for each .z;x/ 2†�M we have

(18) dH.z;x/jTz† � 0:

That is , it is positive with respect to the orientation determined by j†, the complex
structure. Then the 2–form

!H WD �
�
1!†C�

�
2!M C dH

is a symplectic form on †�M, which is compatible with JF .

Proof We only show that !H is a symplectic form. Closedness is clear, so we only
need to show nondegeneracy. In local coordinates on † write

HDH dt CG ds:

Then
dHD dH ^ dt C dG ^ dsC .@sH � @tG/ ds ^ dt:

Suppose there is a vector v D .v1; v2/ 2 T .†�M / for which �v!H D 0. Then, in
particular, the restrictions of �v z! to the fibers of �2 vanish, giving

��v2
!M D dt.v1/ dH C ds.v1/ dG:

So, v2 D aXH C bXG for appropriate constants a; b 2R. Since fH;Gg D 0 it follows
that �v2

.dH ^ dt C dG ^ ds/D 0. Thus,

�v1
.!†C .@sH � @tG/ ds ^ dt/D 0:

Our assumption is that the coefficient of ds^dt is nonnegative. It follows that v1 D 0,
which in turn implies v2 D 0.

Remark 5.2 More generally, if we replace the estimate (18) by

(19) dH.z;x/jTz† � �a ds ^ dt

for some constant a, we have that the form !H;a WD !HC a ds ^ dt is symplectic.

The Poisson bracket condition (17) may also be weakened to the requirement that for
any point z 2 � and vectors v1; v2 2 Tz†, we have

(20) jfH.v1/;H.v2/g.x/j< akv1kkv2k for all x 2M:

In that case, the form !H;a will again be a symplectic form.
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Lemma 5.3 Let † be a Riemann surface with cylindrical ends and let .H;J / be
a domain-dependent Floer datum on †. For any .H;J /–Floer solution u W †!M

satisfying (17) and (18), and for any Borel subset A�†, we have

(21) E.uIA/ WD

Z
A

kdu�XHk
2 dvol† �Etop.uIA/:

Proof Write in local coordinates HDH dt CG ds. Then using the Floer equation
and denoting by d 0 the exterior derivative in the M direction,

kdu�XHk
2 ds ^ dt D !.@tu�XH ;XG � @su/ ds ^ dt

D u�!C .d 0H.@su/C d 0G.@tu// ds ^ dt

D u�!C dH� .@sH ıu� @tG ıu/ ds ^ dt

� u�!C dH:

We have used the conformal invariance of energy,

kdu�XHk
2 dvol† D kdu�XHk

2 ds ^ dt:

Henceforth, we shall denote by gJF
the Riemannian metric determined by !H and JF

and refer to it as the Gromov metric. When HDH dt we will also use the notation
JH and gJH

.

Example 5.4 Let H D H dt , where H W M ! R is smooth. Then one finds by a
straightforward computation that

(22) gJH
D ��1 gj C�

�
2 gJ Cgmixed;

where �i are the natural projections and

(23) gmixed D�gJ .XH ; � / dt � dt gJ .XH ; � /CkXH k
2dt2:

In order to define the notion of i–boundedness for Floer data we need a relative notion
of intermittent boundedness.

Definition 5.5 Let† be a Riemann surface with cylindrical ends. A Riemannian metric
on†�M is said to be intermittently bounded relative to the projection � W†�M !M

if there is an exhaustion of †�M by a sequence of open sets Ki such that for any
precompact open U � †, the sets ��1.U \Ki/ are precompact, and such that the
rest of Definition 4.1 holds for these Ki . Let z! be a symplectic form on † �M.
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An z!–compatible almost complex structure J on †�M is said to be intermittently
bounded relative to � if the associated metric gJ is. We denote the set of all these
by Jib.† �M; z!; �/. For an open set U � † we denote by Jib.U �M; z!/ the
set of z!–compatible almost complex structures on U �M that are restrictions of a
J 2 Jib.†�M; z!; �/.

The following lemma is an obvious variant of Theorem 4.11(b), the only difference
being the need to restrict to J–holomorphic sections.

Lemma 5.6 Let U � † be an open precompact subset. Let J 2 Jib.U �M; z!; �/.
Suppose kd�k is uniformly bounded from above with respect to some fixed conformal
metric on†. For any compact set K�M, any compact subset S �U, and any E 2RC,
there exists an R such that for any J–holomorphic section

u W U ! U �M

satisfying E.uIU /�E and u.S/\K ¤∅, we have u.S/� BR.S �K/.

Proof The assumption on kd�k guarantees that for any z 2† we have B�.u.z//�

u.B�.z//. The argument is then word for word that of Theorem 4.11(b) .

Remark 5.7 The dependence of R on U and S is spelled out in Remark 4.13.

Lemma 5.8 For the Gromov metric gJF
associated with F any Floer datum satisfying

(17) and (18), we have kd�k � 1.

Proof For any vector v tangent to†�M we have kvkD��!†.v;JFv/C!F .v;JFv/.
The second term is nonnegative by Lemma 5.1 since Lemma 5.1 holds for any choice
of !†. The first term equals !†.��v; j†��v/ by holomorphicity of � .

Definition 5.9 Let† be a Riemann surface with cylindrical ends. A domain-dependent
Floer datum .H;J / on † is called i–bounded if:

(a) H satisfies (17) and (18) (or, more generally, inequalities (20) and (19)).

(b) There exists a finite open cover C of † such that for each U 2 C we have
JHjU�M 2 Jib.U �M; !H/ (or, more generally, JH 2 Jib.U �M; !H;a//.

Definition 5.10 Let S be a compact manifold with corners. A smooth family †fs2Sg
of (broken) Riemann surfaces with cylindrical ends together with a smooth choice of
domain-dependent i–bounded Floer data .Hs;Js/ is called admissible if the following
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holds. Denote by � W zS! S the tautological bundle. Then we assume there is a smooth
choice �s of area forms on †s and a finite cover of zS by connected opens consisting
of elements of two types: ThickS and ThinS . The elements of ThickS are assumed to
be subsets of zS which are trivializable to the form U D V �W, where W � S and
V is a bordered Riemann surface whose area is uniformly bounded on W. The fibers
of � restricted to elements of ThinS are generically cylinders (of finite, half-infinite
or infinite length), which may degenerate to nodes at the corners. Moreover, for the
thin elements we require that the Floer data be translation invariant on the fibers of �
and that the area forms coincide with ds ^ dt . We say that the family S is uniformly
i–bounded if for any thick element U D V �W there exist taming data on V �M

which are constant on W , and for any thin element U there exist taming data on
Œ�1; 1��R=Z�M which are constant on �.U /.

For the rest of the section we wish to establish criteria for i–boundedness of JF .
This is not strictly necessary for the proof of the main theorems in the introduction.
Lemma 5.11, to be stated presently, is all we shall need for that purpose. The proof is
left to the reader.

Lemma 5.11 Let .H1;J / be a Floer datum , and H2 a time-dependent Hamiltonian
such that kXH2

k � C for some constant C . Then gH1CH2
is C 2–quasi-isometric

to gH1
. In particular , when J is i–bounded and H is such that kXH k is bounded , we

have that JH is i–bounded.

However, for applications in practice we need effective criteria. For example, we
need to show that Floer data that has been hitherto used in the literature fits into the
dissipative framework. To do this we need, first of all, a criterion for completeness of
the metric gJF

. Then we need to discuss how to compute the curvature of gJF
and

control its radius of injectivity in terms of the Floer data J and H. We do this in the
case where HDH dt for a time-independent Hamiltonian H as in Example 5.4. Since
intermittent boundedness is preserved under quasi-isometry, this is quite sufficient for
applications insofar as Floer trajectories are concerned. The consideration of more
general Floer solutions will be reduced to that of Floer trajectories.

5.3 Completeness

Definition 5.12 Let J be an almost complex structure. We say that an exhaustion
function H WM !R is J–proper if H factors as H D f ı h for some proper smooth
function h WM !R satisfying krhk � 1 with respect to the metric gJ on M.
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Lemma 5.13 Let H be a smooth time-independent J–proper Hamiltonian , ie H D

f ıh with krhk � 1. For any function g W Œa; b�!R and any  W Œa; b�!M , we have

(24) jh. .b//� h. .a//j2 � .b� a/

Z b

a

kg.t/XH � 
0.t/k2 dt:

Remark 5.14 More generally, if H is time-dependent, and factors as Ht D f ı ht

where ht is a smooth proper time-dependent function satisfying jrht j � 1, we have

(25) jhb. .b//� ha. .a//j
2

� .b� a/

�Z b

a

kg.t/XH � 
0.t/k2 dt C sup

t2Œa;b�

@tht ı  .t/

�
:

Proof We have

jh. .b//� h. .a//j2 D

ˇ̌̌̌Z b

a

hrh;  0.t/i dt

ˇ̌̌̌2
D

ˇ̌̌̌Z b

a

hrh;  0.t/�g.t/XH i dt

ˇ̌̌̌2
� .b� a/

Z b

a

kg.t/XH � 
0.t/k2 dt :

We used Cauchy–Schwarz, krhk � 1, and the fact that XH ?rh.

Lemma 5.15 Suppose H is smooth time-independent and J–proper. Then the metric
gJH

on zM WDR�R=Z�M is complete.

Proof Let H D f ı h, where h WM !R is proper and satisfies krhk � 1. We show
that the pullback zh of h to zM is Lipschitz with respect to gJH

. It suffices to show that
for any path z W Œa; b�! zM lifting a path  W Œa; b�!M , we have

jzh.z .b//� zh.z .a//j2 � .b� a/

Z
kz 0k2gJH

:

For each x 2 Œa; b� we can gHJ
–orthogonally decompose

z 0.x/D v.x/Cg.x/.XH C @t /C @s;

where v.x/ 2 TM. We have

kz 0.x/k2gHJ
� kv.x/k2 D k 0.x/�g.x/XH k

2
gJ
:

Since zh is independent of s, the claim follows by Lemma 5.13.
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To see that gJH
is complete note first that by translation invariance it suffices to prove

completeness of the restriction of gJH
to the mapping torus s D const. For this, note

that the restriction of zh to the set s D const is still Lipschitz and, moreover, it is proper
since H is. Thus for any x we have that the ball of radius R around x in R=Z�M is
contained in the compact subset

zh�1.Œzh.x/�R; zh.x/CR�/:

Completeness now follows by Hopf–Rinow.

We conclude with a criterion for J–properness. Call a function f WR! Œ1;1/ tame if
the primitive of 1=f is unbounded from above.

Lemma 5.16 Suppose there is a tame function such that

krHkgJ
� f .H /:

Then H is J–proper.

Proof Let g be a primitive of 1=f . We have

kr.g ıH /k D g0 ıHkrHk D
1

f ıH
krHk � 1:

By assumption, h WD g ıH is proper. Moreover, g is monotone (primitive of a positive
function). So H D g�1 ı h.

5.4 Curvature

We introduce some notation and recall some basic formulae in Riemannian geometry.
We refer to [45] for details. Let .M;g/ be a Riemannian manifold and let r WM !R be
a distance function; that is, a function satisfying krrkD 1. Write @r WD rr and denote
by S the tensor r@r . Denote by Ur the level sets of r . Denote by R the curvature
tensor of M, by Rt the tangential component of R restricted to T Ur and by Rr the
curvature tensor of Ur . Also, write R@r

DR. � ; @r /@r .

The following formulae, together with the symmetries of the curvature tensor, show
that the full curvature tensor on M is determined by the curvature of the level sets of r ,
by the tensor S and by its first derivative:

�R@r
D S2

Cr@r
S;(26)

Rt .X;Y /Z DRr .X;Y /Z �S.X /^S.Y /Z;(27)

R.X;Y /@r D .rX S/.Y /� .rY S/.X /:(28)
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The vectors X , Y and Z in the above formulae are all tangent to Ur . In what follows,
given a vector V 2 TM we will use the notation �g;V for the dual to V with respect
to g and will drop g from the notation when there is no ambiguity. We utilize the
following formula for the covariant derivative of a vector field X :

(29) 2�g;rX D d�g;X CLX g:

This formula presents the decomposition of �g;rX into a symmetric and an antisym-
metric bilinear form. For a proof see [45, page 26].

Let HDH dt , where H WM !R is smooth. Since gJH
is translation invariant with

respect to s, we restrict attention to submanifolds of R�R=Z�M with fixed values
of s, or, in other words, to R=Z�M with the metric gJH

as computed in Example 5.4.
The function t (which is locally single-valued) is a distance function on R=Z�M with
respect to this metric. To see this, note that by (22) we have dt D gJH

.XH C @=@t ; � /.
That is, rt DXH C @=@t . One verifies that kXH C @tk

2
gJH
D 1.

Theorem 5.17 We have rrt D 1
2
.rgJ XH Cr

gJ X �
H
/ ı � , where the superscript

denotes conjugation with respect to the metric gJ and � W T .R=Z�M /! TM is the
gJH

orthogonal projection.

Proof Write N Drt . By equation (29) we have

2�rN D d�N CLN gJF
:

Since �N D dt , we have d�N D 0. We claim that LN gJF
D ��LXH

gJ . To see this,
denote by  t the time t flow of XH and let

� W .��; �/�M �R=Z�M !R=Z�M

be the map .t;p/ 7! .t;  t .p//. Then

��jT .ft0g�M / D  t0;� and ��@t D @t CXH DN:

In particular, ��gJF
jR=Z�M D �

� �t gJ C dt2. Thus,

(30) ��LN gJF
D L@t

��gJF

D @t .�
� �t gJ C dt2/

D �� �t LXH
gJ

D ����LXH
gJ :
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By (29) we have
LXH

gJ D Œ�rXH ;gJ
�;

where Œ˛. � ; � /� denotes the symmetrization. Thus,

S D 1
2
.rgJ XH Cr

gJ X �H / ı�:

We say that a Hamiltonian H WM ! R is Killing (with respect to some compatible
almost complex structure J ) if the flow of XH preserves gJ .

Corollary 5.18 Suppose H is Killing. Then rrt � 0.

5.5 Injectivity radius

We turn to discussing the control of the radius of injectivity of gJH
. In the following

lemmas fix a point x0 D .s0; t0;p0/ 2R�R=Z�M.

Lemma 5.19 For any r < 1
2

we have

VolgJH
.Br .x0// >

1
9
r2 VolgJ

.Br=3.p0//:

Proof Denote by  t the Hamiltonian flow of H . Since XH C @t is perpendicular,
with respect to gJH

, to hypersurfaces of constant t , we have that Br .x0/ contains the
cylinder

C D
[

t2Œt0�r=3;t0Cr=3�

�
s0�

1
3
r; s0C

1
3
r
�
� ftg � t .Br=3.p0//:

Since  t preserves the gJ –volume we have

VolgJH
.C /D 1

9
r2 VolgJ

.Br=3.p0//:

Lemma 5.20 Let .M;g/ be an n–dimensional Riemannian manifold. Let a> 0 and
let p 2M be such that

Volg
�
B1=a.p/

�
� v0

�
1

a

�n
;

and such that jSecg.x/j � a2 on B1=a.p/. Then there is a constant f D f .v0; n/,
independent of a, such that injg.p/� f .v0; n/.

Proof For aD 1, this is an immediate consequence of [12, Theorem 4.3]. The claim
follows by scaling.
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Lemma 5.21 Suppose .M;g/ satisfies , for some p 2M , that

injg.p/� a and jSecg.x/j � a2

on B1=a.p/. Then there is a constant C D C.n/ > 0 such that

Volg.B1=a.p//� C
�

1

a

�n
:

Proof By scaling, the claim is equivalent to the claim that there is a constant C.n/ > 0

such that a geodesic ball of radius 1 with sectional curvature bounded by 1 has volume
at least C.n/. By the Jacobi equation, sectional curvature controls the derivatives of
the metric in geodesic coordinates [10, Chapter 5]. In particular there is an a priori
estimate from below on the determinant of the metric in these coordinates for a small
enough ball around the origin. The claim follows.

Theorem 5.22 There is a constant i D i.n/ such that if gJ is a–bounded at p0 2M ,
then injgJH

.x/� i.n/=a.

Proof Combining Lemmas 5.19 and 5.21 we have that there is a constant such that

VolgJH
.B1=a.x//�

1

3nC2
C.n/

�
1

a

�nC2
:

The claim follows by Lemma 5.20.

5.6 Some criteria for boundedness

Lemma 5.23 Suppose gJ is a–bounded at p 2 M and H is a time-independent
Hamiltonian such that

(31) maxfkrXH .p/k
2; kr2XH k; krXH

.rXH CrX T
H /kg< a2:

Then for a constant c D c.n/ independent of a, we have that gJH
is ca–bounded at p.

Proof We need to estimate the sectional curvature and radius of injectivity of gJH
.

Up to multiplication by a constant dependent on n, estimating sectional curvature is
the same as estimating the coefficients of the curvature tensor in an orthonormal basis.
Since J is a–bounded, it remains to estimate only coefficients involving the direction
@t CXH at least once. In light of formulae (26)–(28) we need to estimate rS and S2,
where S Drt . Theorem 5.17 provides us with an estimate on S2 and the tangential
restriction of rS in terms of rXH and r2XH . It remains to estimate the right-hand
side of (26). For this it is preferable to use the formula

�RN D LN S �S2:
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See [45]. Each summand vanishes on N . So it remains to estimate LN S applied to a
tangential vector. Let V be a tangential vector field which commutes with N . Then

LXHC@t
.SV /D LXH

.SV /Dr
gJ

XH
.SV /�r

gJ

SV
.XH /

D .r
gJ

XH
S/V CS.r

gJ

V
XH /�r

gJ

SV
.XH /:

This shows that estimate (31) implies SecgJH
.p/� c2a2 for an appropriate c D c.n/.

Theorem 5.22 provides us with the estimate on injgJH
in terms of injgJ

.p/. The claim
follows.

Example 5.24 Let .†; ˛/ be a contact manifold and let

.M DRC �†;! D er .d˛C dr ^˛//

be the convex end of its symplectization. Let R be the Reeb vector field on†. Fix an !–
compatible translation-invariant almost complex structure J satisfying JRD @r . Then

(32) gJ D er .dr2
Cg†/

for some metric g† on †. Since the metric gJ scales up, the radius of injectivity of gJ

is bounded away from 0, and in fact goes to1 with r . Pick local coordinates on † and
use the function r as the coordinate on the RC factor. Then the Christoffel symbols
of the metric (32) are O.1/ in these coordinates. Therefore

hr@i
@j ; @ki � er :

Since k@ik
2 � er , for some constant C we have kr@ik � C . Similarly,

kr
2
ij@kk

2
� er ;

allowing us to deduce that
kr

2@kk � e�r=2:

Suppose H is a function on the symplectization which is given outside of a compact
set by H D h.er /. Then there are some constants ai such that

XH D h0.er /
X

ai@i :

First suppose h0.er / is constant. Then by the reasoning above, we conclude that the
induced metric gJH

is uniformly bounded for Hamiltonians which are linear at infinity
with a bound that is proportional to the slope h0.er /.

Example 5.25 Continuing with the previous example, assume now that h0.er / is at
most linear in the distance from †. Caution: this means it is at most linear in er=2.
Then there is a bound on the geometry of gJH

, which is also linear in the distance.
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To see this note that for a point p which is a distance d from †, the metric gJH
is

uniformly equivalent on a neighborhood of size 1 to the metric associated with the
slope h0.er.p//. It follows by Example 4.3 that the metric associated to H is i–bounded.
Note that while this allows superlinear Hamiltonians, it does not include quadratic
Hamiltonians h0 � er .

Example 5.26 Consider the cotangent bundle T �M of a compact manifold M, let
g be a Riemannian metric on M and let J be the Sasaki almost complex structure on
T �M. It is defined as follows: the Levi-Civita connection on T �M induces a splitting
T T �M D V ˚H into horizontal and vertical vectors. Moreover, we take J W V 'H

to be the natural isomorphism identifying an element of V with an element of T �M,
then via ! with an element of TM and finally with an element of H via horizontal
lifting. Identifying TM DT �M, in standard local Darboux coordinates fqi ;pi D dqig,
where qi are geodesic coordinates centered at a point q, J is given in the fiber over q by

J
@

@pi
D

@

@qi
:

Then it is easy to show that the metric gJ is kpk–bounded at the point .p; q/. In
particular, J is i–bounded (but not bounded). Consider a Hamiltonian of the form
H D

p
ajpj2CV ı� , where � WT �M!M is the standard projection and V WM!R

is smooth. Then JH is i–bounded. Indeed, denoting by M the maximum of
p
jV j

over M , we have in local coordinates as above,

kXH k D aM
1

2kpk

X
i

pi
@

@qi

� aM:

So, the claim follows from Lemma 5.11. Note that mechanical Hamiltonians of the
form jpj2CV ı� are not i–bounded with respect to the Sasaki metric.

6 Loopwise dissipativity

6.1 Diameter control of Floer trajectories

Suppose .H;J / is i–bounded, let u be a Floer trajectory, and let zu be its graph. Suppose
that for some precompact U �R�R=Z, we have control over u.@U /. Theorem 4.11
above then provides control over u.U / in terms of

E.zuIU /DE.uIU /CArea.U /:
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This indicates that the only source of noncompactness in the moduli space of finite-
energy Floer trajectories comes from the potential existence of finite-energy solutions
with one end converging to infinity. This motivates the following definition.

We refer henceforth to a Floer solution on a possibly finite cylinder Œa; b��R=Z as a
partial Floer trajectory. For H WR=Z�M !R proper and an !–compatible almost
complex structure, define a function �H ;J .r1; r2/ as the infimum over all E for which
there is a partial Floer trajectory u of energy E with one end of u� t contained in
H�1.Œ�r1; r1�/ and the other end in H�1.R n .�r2; r2//. Note that �H ;J .r1; r2/ may
take the value of infinity.

Definition 6.1 We say that .H;J / is loopwise dissipative (LD) if for any fixed r1 we
have �H ;J .r1; r/!1 as r !1. If this holds for some function � W RC �RC!

RC[f1g satisfying �H ;J � � , we say that .H;J / is �–LD. We say that .H;J / is
robustly loopwise dissipative (RLD) if there is a function � WR�R!R and an open
neighborhood8 of .H;J / in C 1 �C 0, all elements of which are �–LD.

Definition 6.2 Denote by F .0/
d
.M / the set of i–bounded Floer data .H;J / which are

RLD. Elements of F .0/
d
.M / are referred to as dissipative Floer data.

Our next theorem shows that dissipativity is all we need for diameter control. In
the ensuing sections we show both that on a geometrically bounded manifold there
is always a sufficient supply of dissipative Floer data, and that this property can be
verified directly in various settings.

In the following theorem, recall Definitions 5.9 and 5.10 of an i–bounded Floer datum
and family of Floer data.

Theorem 6.3 Let .S;Fs2S D .Hs;Js// be a uniformly i–bounded family of connected
(broken) Riemann surfaces decorated with Floer data and equipped with a thick–thin
decomposition as in Definition 5.10. Let .Hi ;Ji/ 2 F

.0/

d
be Floer data such that on the

i th component of ThinS , we have that Fs coincides with .Hi ;Ji/ for all s 2 S. Then
for any compact K �M and any real number E, there is an RDR.E;K/ such that
for any s 2 S, any Fs–Floer solution .†s;u/ with E.u/ � E and intersecting @K is
contained in BR.K/. Moreover , if K is a level set of H with no degenerate periodic
orbits in a neighborhood of @K, we can take R.E;K/! 0 as E! 0.
8Here and hereafter the topology can be taken to be the uniform topology with respect to gJ . However
what is truly necessary is that open sets are sufficiently thick to allow perturbations for achieving regularity.
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Definition 6.4 We refer to families .Fs2S D .Hs;Js// satisfying the hypotheses of
Theorem 6.3 as dissipative families. When S consists of a single element, we refer to
it as a dissipative Floer datum.

Proof of Theorem 6.3 By assumption, we can decompose †s into a thick part
consisting of components Ai with area bounded by a constant CS , independently of
s2S, and a thin part consisting of components Bi on which the Floer data are translation
invariant and given by .Hi ;Ji/. Moreover, there is a number NS which bounds the
number of components independently of s 2S. For each Ai , the graph zuD Id�u WAi!

Ai �M is JF –holomorphic and satisfies E.zu/�ECArea.Ai/. Furthermore we may
assume for some � > 0 that we have JF jB�.Ai /�M 2 Jib.B�.Ai/�M; !H/.

We construct an R0 DR0.E;K/ such that if u.Ai/\K ¤∅ for some component Ai ,
then u.Ai/� BR0

.K/ and moreover for all components Bj which share a boundary
with Ai , we have u.Bj / � BR0

.K/. A similar R0 can be constructed starting with
a component Bi . Since the total number of components is bounded by NS this will
inductively give rise to an R as in the statement of the present theorem.

To construct R0, suppose u.Ai/ intersects some compact set K. Then, since zu extends
to a neighborhood of Ai , by Lemma 5.6 we have that zu.Ai/ is contained in a ball
B zR.K �Ai/ for some zR D zR.K;E C 2CS/ depending additionally on the taming
data associated with Fs and thus on S. From this we deduce the same for u.Ai/,
with perhaps a different radius R. It follows that each of the components Bj whose
closure intersects Ai has a boundary component contained in BR.K/. Let aj be such
that BR.K/�H�1

j .Œ�aj ; aj �/. By loopwise dissipativity there is a bj > aj such that
�Hj ;Jj .aj ; bj / >E. Writing Bj D I �R=Z for some interval I , we have, by definition
of �Hj ;Jj , that u.fsg�R=Z/ intersects H�1.�bj ; bj / for each s 2 I . Restricting u to
.s�1; sC1/�R=Z and invoking Lemma 5.6 again, we obtain an R0 such that for any
s 2 I , we have u..s�1; sC1/�R=Z/�BR0.H

�1.�bj ; bj //. It follows that the same
holds for u.Bj /. Now take R0 such that BR0.H

�1.�bj ; bj //� BR0
.K/ for each j .

For the last statement of the theorem we rely on the following property of Floer
trajectories, which is stated in [52]. There are constants c and „ such thatZ

Br .s;t/

k@suk2 < „ D) k@suk2.s; t/ <
8

�r2

Z
Br .s;t/

k@suk2C cr2:

Once we know that a solution is contained in an a priori compact set, we can take all
the constants to be fixed by that compact set. By taking r DE.u/1=4 we deduce that
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for an appropriate constant,

k@tu�XH k
2
D k@suk2 < CE.u/1=2

once E.u/ is small enough. It follows that making E.u/ arbitrarily small, u will be
contained in an arbitrarily small neighborhood of some periodic orbit.

We conclude this subsection with a counterexample showing that geometric bounded-
ness alone does not guarantee loopwise dissipativity.

Example 6.5 Consider .M; !/D .R�R=Z; ds ^ dt/. Let H be a smoothing of the
function

.s; t/ 7! s� ln.jsjC 1/;

and let J be multiplication by i . Then kXH k is bounded, so .H;J / is i–bounded
by Lemma 5.11. But it is not LD. Indeed, the map u W RC �R=Z!M defined by
u.s; t/D .ln.sC1/; t/ is an .H;J /–partial Floer trajectory of finite energy and infinite
diameter.

6.2 Hamiltonians with small Lipschitz constant

Theorem 6.6 Let J be a geometrically bounded almost complex structure compatible
with !. There is an � > 0 such that for any Hamiltonian H W M ! R which is
proper and satisfies , with respect to gJ , that kXH k< � outside of some compact set ,
the datum .H;J / is dissipative. The claim remains true when H is C 0–close to a
time-independent Hamiltonian.

The proof of Theorem 6.6 is carried out at the end of this section.

Lemma 6.7 Let u W Œa; b��R=Z!M be a differentiable map. Then we have

.b� a/�

Z
t2R=Z

d2.u.a; t/;u.b; t//Z
Œa;b��R=Z

k@suk2
:

Proof By the Cauchy–Schwarz inequality we have

.b� a/

Z
Œa;b��R=Z

k@suk2 �

Z
t2R=Z

`2.u.t � Œa; b�// dt

�

Z
t2R=Z

d2.u.a; t/;u.b; t//:

Geometry & Topology, Volume 27 (2023)



1322 Yoel Groman

Lemma 6.8 Let H W R=Z �M ! R be a proper smooth function. Suppose J is
a compatible almost complex structure. Suppose H factors as H D f ı k, where
k WR=Z�M !R is proper and has uniformly bounded gradient with respect to gJ ,
and f WR!R is monotone. Then .H;J / is LD if and only if there exists a sequence
hi!1 and a constant ı > 0 such that

(33) �H ;J .h2i ; h2iC1/ > ı:

If hi and ı can be fixed for an open neighborhood of .H;J /, it is RLD.

Proof The forward implication is obvious from the definition. For the other direction
we use the following characterization of loopwise dissipativity:

Let Ki WDH�1Œ�h2i ; h2i ��R=Z�M. For any E � 0 and for any natural i there is
an i 0.i;E/ such that if u is a partial solution with one end of t �u contained in Ki and
satisfying E.u/ <E, then the other end intersects KiCi0 .

For ease of exposition we assume for the rest of the proof that H is time-independent,
the general case being similar. We prove loopwise dissipativity by induction on the
smallest integer n bounding E.u/=ı.

When nD 1, this is just reformulating the assumption. Suppose we have proven the
statement for all solutions u satisfying E.u/ � nı. Let u be a solution with one end
in Ki and E.u/� .nC 1/ı. Without loss of generality we assume ua �Ki . Here and
henceforth ua WD u.a; � /. Let

s1 D inffs 2 Œa; b� W us �M nKiC1g:

If this set is empty there is nothing to prove. Otherwise, let

s2 D inf .fs 2 Œs1; b� W k@suk< 1g[ fbg/ :

Finally, take
s0 D sup .fs 2 Œa; s1� W k@suk< 1g[ fag/ :

We have
E.u/�

Z s2

s0

k@suk2 ds >

Z s2

s0

ds D s2� s0:

So, by Lemma 6.7, there is a t 2R=Z such that

(34) d.us0
.t/;us2

.t// <E:

We find an i0.i/ such that us0
� Ki0

. Indeed, if a D s0 there is nothing to prove.
Otherwise, we have krAH .us0

/k� 1. Since s0< s1, we have that us0
intersects KiC1.
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Factor H as H D f ı k, as in the formulation of the present lemma. Since f is
monotone,

(35) min
t

kt .us0
.t// < f �1.h2.iC1// and max

t
kt .us0

.t// > f �1.�h2.iC1//:

From Lemma 5.13 we get an a priori estimate c on the oscillation of k on us0
for

the time-independent case. Here c depends only on the bound on jrkj. In the time-
dependent case we appeal to (25) for this a priori estimate. Let i0 satisfy

hi0
�
˙

maxff .f �1.h2.iC1//C c/;�f .f �1.�h2.iC1//� c/g
�
:

Combined with (35), this gives the a priori estimate

us0
�Ki0

:

By (34) we get from this an i1 D i1.i;E/ such that us2
meets Ki1

. If s2 D b,
this concludes the proof. Otherwise, as for s1, we find an i2 such that us2

� Ki2
.

We have E.ujŒs2;b��R=Z/ � nı since s2 > s1 and by the hypothesis of the lemma
E.ujŒa;s1�R=Z�/ > ı. So, by the inductive hypothesis, there is an i3 depending on i

and n such that ub meets Ki3
. The first part of the claim now follows. The second part

is clear since i 0.i;E/ is constructed using only the data of fKig and ı.

Lemma 6.9 Let J be a geometrically bounded almost complex structure compatible
with !. There are constants R, � and ı, depending on the bounds on the geometry
of gJ , such that the following holds. Let H W M ! R be a proper Hamiltonian
satisfying , for some h 2R,

(36) kXH k< � for all x 2H�1.Œh; hCR�/:

Then �H ;J .h; hCR/ > ı. This remains true if H is merely assumed to be C 0–close to
a time-independent Hamiltonian. Moreover , the estimate is unaffected if H is arbitrarily
time-dependent away from H�1.Œh; hCR�/.

Proof We first prove the claim when the left-hand side of (36) is taken to hold for
all x 2M. We consider the strictly time-independent case, leaving adjustments for
the slightly more general case to the reader. For some R> 0 let u W Œa; b��R=Z!M

be a solution to Floer’s equation with one end in H�1.�h; h/ and the other end in
H�1.R n Œ�h�R; hCR�/. Write AD Œa; b��R=Z. Then by positivity of energy,

(37) E.uIA/D

Z
A

u�!C

Z
@A

u�H dt �

ˇ̌̌̌
ˇ
ˇ̌̌̌Z

A

u�!

ˇ̌̌̌
�

ˇ̌̌̌Z
@A

u�H dt

ˇ̌̌̌ˇ̌̌̌
ˇ:
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We will show that if we take � small enough, there are constants ı1 and ı2 such that

(38) E.uIA/ < ı1 D)

ˇ̌̌̌Z
u�!

ˇ̌̌̌
< ı2:

Since ˇ̌̌̌Z
@A

u�H dt

ˇ̌̌̌
�R;

it will then follow from (37) that if R > 2ı2, then E.uIA/ > minfı1; ı2g. This will
prove the claim.

Let ı > 0 be so small that any loop of length 2ı has diameter less than a tenth of
the radius of injectivity of M with respect to gJ . The isoperimetric inequality of
Lemma 4.10 guarantees that any loop of length < 2ı is fillable by a disk v WD!M

such that
Area.v/ < 2ı2:

We take � D ı. Given u as above, and denoting by `.u.s; � // the length of the loop
t 7! u.s; t/, let

I D fs 2 Œa; b� j `.u.s; � // > 2ıg:

For any interval .c; d/� I we have the estimate

(39)
ˇ̌̌̌Z
.c;d/�R=Z

u�!

ˇ̌̌̌
� Area.uj.c;d/�R=Z/� 3E.uI .c; d/�R=Z/:

The first of these is Wirtinger’s inequality, which says that for a compatible metric the
symplectic area is dominated by the Riemannian area. Note that the Riemannian area
is not sensitive to orientation, while the symplectic area is. For the second, note that

Area.u/�
Z
.c;d/�R=Z

k@sukk@tuk �
1

2

Z
.c;d/�R=Z

.k@suk2Ck@tuk
2/:

But

(40) 4ı2
�

Z
R=Z
k@tuk

2
�

Z
R=Z
k@tu�XH k

2
C

Z
R=Z
kXH k

2

�

Z
R=Z
k@suk2C �2

D

Z
R=Z
k@suk2C ı2

�

Z
R=Z
k@suk2C

1

4

Z
R=Z
k@tuk

2;

so Z
R=Z
k@tuk

2
� 2

Z
R=Z
k@suk2;

which implies the desired inequality.
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Suppose now that ˇ̌̌̌Z
.a;b/�R=Z

u�!

ˇ̌̌̌
> 20E.uI .a; b/�R=Z/;

and that for some constant c2 to be determined shortly, E.u/ < c2�
2. Denote by � the

Lebesgue measure on R. Then by these hypotheses and by equations (39) and (40) we
have �.I/ <min

˚
1
4
.a� b/; c2

	
. Let

a0 D inf Œa; b� n I and b0 D sup Œa; b� n I:

We will show that if c2 is assumed small enough, then

(41)
ˇ̌̌̌Z
.a0;b0/�R=Z

u�!

ˇ̌̌̌
< 4ı2:

We then haveˇ̌̌̌Z
.a;b/�R=Z

u�!

ˇ̌̌̌
< 4ı2

C

ˇ̌̌̌Z
I

u�!

ˇ̌̌̌
< 4ı2

C
1
3
E.u/

< 4ı2
C

1

60

ˇ̌̌̌Z
.a;b/�R=Z

u�!

ˇ̌̌̌
:

By picking ı1 D c2�
2 and ı2 D minf5ı2; 20ı1g, we get that with these values (38)

holds in any case.

It remains to prove (41). Let Œs0; s1� � Œa; b� be any interval such that s0; s1 62 fa; bg

and s1�s0� 2�.I/. Call such an interval admissible. Denote by uŒs0;s1� the restriction
ujŒs0;s1��R=Z. Each component of the boundary of uŒs0;s1� is contained in a geodesic
ball Bı.xi/�M. We claim that if c2 is taken small enough, then

(42) uŒs0;s1� � B2ı.x0/[B2ı.x1/:

Indeed, otherwise there is a point .s; t/ 2 Œs0; s1��R=Z such that writing x2 D u.s; t/

we have d.x2; fx0;x1g/ > 2ı, that is, the ball Bı.x2/�M does not meet the boundary
of uŒs0;s1�. As in Lemma 5.11, the metric gJH

is quasi-isometric to the product metric
of gJ on M with the flat metric on the cylinder, where we can take the quasi-isometry
constant to equal 2 if � < 2. Thus we can apply the monotonicity inequality of
Theorem 4.9 to obtain, for an appropriate constant c0 which is independent of �,

E.zuI Œs0; s1��R=Z/D s1� s0CE.uI Œs0; s1��R=Z/� c0ı2;

where zu is the graph of u. This implies

E.u/� c0ı2� c2:

Thus, if we take c2 �
1
4
c0ı2, equation (42) follows.
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Denote by u� a filling of uŒs0;s1� by discs contained in Bı.xi/. Then u� � B5ı.x0/

and so is contractible. In particular, the integral of ! over uŒs0;s1� can be replaced
by the integral of ! over these filling discs. Since Œa0; b0� can be subdivided into
admissible intervals, and the integrals over the filling discs cancel in pairs for all but
two, (41) follows.

This proves the theorem for the case when the left-hand side of (36) is taken to hold
for all x 2M.

For the more general case we argue as follows. Write Kx WDH�1.Œ�x;x�/. For some
R> 0 let u W Œa; b��R=Z!M be a solution to Floer’s equation with one end in Kh and
the other in M nKhCR . Let Œa0; b0�� Œa; b� be such that u.Œa0; b0��R=Z/ has one end
in KhCR=4 and the other in M nKhC3R=4. In each case assume the relevant boundary
of u.Œa0; b0��R=Z/ meets the boundary of the region Kx . We separate into two cases.
If u.Œa0; b0��R=Z/�KR, we have the estimate kXH k< � for ujŒa0;b0��R=Z, and the
entire argument goes through with no change. By taking R big enough, the claim
follows since �.h; hCR/� �.hCR=4; hC 3R=4/. Otherwise, for some c 2 fa0; b0g

we have that the oscillation of H along uc is at least R=4. Moreover, by the bound
on rH inside KR, a similar estimate applies to the diameter of uc with respect to
the metric gJH

. By the argument of Theorem 4.11 this implies a lower bound on the
energy E.uI Œa; b��R=Z/. We spell out the details, since the present case doesn’t fit
precisely into the stipulations of Theorem 4.11.

As above, denote by

zu W Œa; b��R=Z!R�R=Z�M

the graph of u. Since H has Lipschitz constant � on K, Lemma 5.16 implies the
metric gJH

is equivalent on K to the product metric with quasi-isometry constant
depending only on �. Thus, by Theorem 4.9 there are constants ı0 and r0, depending
only on J and �, such that for any point x in the domain of u for which

(�) Ax WD zu
�1.Br0

.x;u.x//� .a; b/�R=Z;

we have

E.uIAx/CArea.Ax/� ı0:

Here we consider the ball Br0
.x;u.x/ � zM with respect to the metric gJH

. Call a
point for which the hypothesis (�) holds a good point. Since the ends of the u map
entirely outside of KhCR it follows that for any x for which u.x/ 2KhCR�.1C�/r0

,
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we have that Ax is a good point and moreover, Ax � Br0
.x/. Indeed, for any x;x0 in

the domain we have

dgJH

�
.x;u.x//; .x0;u.x0//

�
� .1� �/dgJ

.u.x/;u.x0//:

For any N , by assuming R is large enough, we can find N good points xi 2 fcg�R=Z

such that dgH
.zu.xi/; zu.xj / > 2r0; that is, Axi

\Axj D∅ whenever i ¤ j . We then
have

E.u/C 2r0 �E.uI [Axi
/CArea.[Axi

/�N ı0:

By taking N large enough so that N ı0 � 2r0 > ı for some chosen ı > 0, the claim
follows.

Proof of Theorem 6.6 Lemmas 6.9 and 6.8 imply that .H;J / is RLD if kXH k<� for
� small enough. To establish dissipativity, we need to prove, in addition, i–boundedness.
This follows immediately from Lemma 5.11.

6.3 Bidirectedness

Theorem 6.10 For any smooth exhaustion function H WM � =R=Z! R and any
geometrically bounded !–compatible almost complex structure J , there are exhaustion
functions HC;H� such that .H˙;J / are dissipative Floer data and H� � H � HC

pointwise. In other words , the set of Hamiltonians which taken together with J are
dissipative Floer data is both final and cofinal in the set of all exhaustion functions.

Proof According to [27] there exists an exhaustion function f WM ! R such that
krf kDkXf k<�0 with respect to the metric gJ . Moreover, we may find a constant R0

such that d.f �1.x/; f �1.xCR0// is bounded away from 0 for x 2R. Indeed, f can
be taken to be C 0–close to a multiple of the distance function to some point. So,
.f;J / is dissipative by Theorem 6.6. Let h WR!R be any monotone function such
that h0.x/ D 1 on any of the intervals Œ2nR; .2nC 1/R/ and is arbitrary otherwise.
Here R is a constant as in Lemma 6.9, and without loss of generality R>R0. Then
the set of functions of the form h ıf is cofinal in the set of all exhaustion functions.
On the other hand, .h ı f;J / is dissipative. Indeed, h ı f is clearly J–proper, since
f is. The metric gXhıf

is uniformly bounded on each of the regions f �1.h; hCR/

by Lemma 5.11. So this metric is i–bounded. Lemmas 6.9 and 6.8 imply that h ı f

is RLD. This completes the proof of cofinality.
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By Theorem 6.6, to prove finality it suffices to exhibit an exhaustion function H� �H

which has sufficiently small gradient. Fix a point p 2M and let Ri be a monotone
increasing sequence such that BRi

contains H�1..�1; i �/. Denote by h WM !R the
distance function h.x/D d.x;p/. Define ai inductively by a0 D 0 and

ai Dminfi � 1; ai�1CRi �Ri�1g for i � 1:

Let f WRC!R be the piecewise linear function which is smooth at noninteger points
and satisfies fi D ai for i � 1. Note that f is monotone increasing, proper and has
slope at most 1 wherever the slope is defined. So the function g D f ıh is Lipschitz
with Lipschitz constant 1. Moreover, g � H everywhere. The function g can be
C 0–approximated by a smooth function k with krkk � 2; see [27]. Then k is an
exhaustion function, so taking H� WD k=C for C sufficiently large gives a function as
required.

6.4 Dissipativity on exact symplectic manifolds

Let .M; ! D d˛/ be an exact symplectic manifold. In this subsection we prove
Theorem 6.12, which is variant of Theorem 6.3 that works on exact symplectic manifolds
under slightly weaker hypotheses. Fix an !–compatible almost complex structure and
let H WR=Z�M !R. The pair .H;J / is said to be Palais–Smale if any sequence of
loops n with AH .n/< c<1 and krAH .n/kL2! 0 has a subsequence converging
to a periodic orbit of H . If J0;J1 are almost complex structures which are quasi-
isometric, and H0;H1 are Hamiltonians such that kr.H0�H1/k converges to 0 with
respect to either, then .H0;J0/ is Palais–Smale if and only if .H1;J1/ is.

Lemma 6.11 Suppose .H;J / is i–bounded and Palais–Smale. Then for any c and d

there is a real number ` and a compact set K with the following significance. For
any segment Œa; b� of length at least `, and any solution u W Œa� 1; bC 1��R=Z!M

to Floer’s equation such that AH .u.s; � // 2 Œc; d � for s 2 Œa � 1; b C 1�, we have
u.Œa; b��R=Z/�K.

Proof First, by the Palais–Smale condition, there are an � > 0 and a compact K0 �M

such that any loop ˛ with krAH .˛/kL2 < � and AH .˛/ < d is contained in K0.
Indeed the negation of this statement would allow us to produce a sequence of loops n

satisfying the hypotheses of the Palais–Smale condition which nevertheless has no
convergent subsequence. Suppose b�a> .d�c/=�. Then for all but a subset I � Œa; b�
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of total measure .d � c/=� we have that u.s; � / is contained in K0. This follows by the
energy estimate

d � c �AH .u.bC 1//�AH .u.a� 1//D

Z bC1

a�1

krAH .˛/kL2 :

Indeed, taking I to be the set of s for which u.s; � / is not contained in K0, the right-hand
side of the last equation dominates:Z

I

krAH .˛/kL2 � �

Z
I

dt:

It remains to control u.s; � / for s 2 I . Each connected component I 0 of I has at least
one boundary point s for which u.s; � /�K. Moreover, I 0 � I has a priori bounded
measure. Thus applying part (b) of Theorem 4.11 to the graph zujI 0�R=Z, we deduce
the image of I 0\ Œa; b��R=Z is contained in some larger compact set K depending
only on K0 and d � c.

Note that the Palais–Smale condition produces, by Lemma 6.11, an estimate which
is slightly weaker than loopwise dissipativity because it depends not only on energy
but also on action. Nevertheless, this is sufficient for proving the following variant of
Theorem 6.3.

Theorem 6.12 Suppose that .M; ! D d˛/ is an exact symplectic manifold and that
.S;Fs2S D .Hs;Js// is a uniformly i–bounded family of connected (broken) Riemann
surfaces with a thick–thin decomposition as in Definition 5.10. Let .Hi ;Ji/ be Palais–
Smale Floer data such that on the i th component of ThinS , we have that Fs coincides
with .Hi ;Ji/ for all s 2 S. Then for any interval Œc; d �, there is a compact set K �M

such that for any s 2 S and any solution .†;u/ associated with Fs for which the actions
of the periodic orbits on the ends all occur in the interval Œc; d �, the image of u is
contained in K.

Proof First observe that without loss of generality we may assume the all the compo-
nents of ThinS are of the form I �R=Z for I an interval of length at least `, where
` is as in Lemma 6.11. Namely, with this assumption, the areas of the elements of
ThickS are bounded a priori in terms of c and d . Under such identification it is a
consequence of Lemma 5.3 that for any s 2 I we have AHi

.us/ 2 Œc; d �. It thus follows
from Lemma 6.11 that there is a compact set K, depending only on c and d , such that
the images of the components of ThinS are all contained in K. As a consequence, the
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image of each component A of ThickS meets K. Since the energy of A is at most
d � c, we can as in the proof of Theorem 6.3 apply Theorem 4.11(b) to the graph of
ujA to obtain an RDR.d � c/ such that u.A/� BR.K/.

Example 6.13 Let ˛ be a primitive of ! and let Z be the !–dual of ˛. For any
time-independent Hamiltonian H , define the function f WM !R by

(43) f .x/D !.Z.x/;XH .x//�H.x/:

Suppose f is proper and bounded below and J is such that for some constant C ,

kZ.x/k2 < Cf .x/

outside a compact set. Then H is Palais–Smale.

Proof We have

(44) AH . /D

Z
R=Z

f . .t// dt C

Z
R=Z

!
�
Z. .t//;  0.t/�XH .t/

�
dt

�

Z
R=Z

f . .t// dt �krAH . /k

s
C

Z
R=Z

f . .t// dt :

Suppose AH . / � c and krAH . /k � 1. Since f is proper, estimate (44) implies
that there is a compact set K depending only on c such that  intersects K. Given a
sequence n of loops intersecting K such that

krAH . /kL2 �

Z
R=Z
kXH .t/� 

0
n.t/k! 0;

it is a standard fact that the sequence converges to an integral loop of XH .

In particular, consider the convex end of a symplectization RC�† as in Example 5.24.
Denote by r the coordinate on RC and by � the coordinate on †. If H satisfies

lim
r!1

er .@r H /.er ; �/�H.er ; �/!1;

and J is any almost complex structure satisfying

er˛.J@r/� C.er@r H.er ; �/�H.er ; �//

for some C , then H is Palais–Smale. This holds in particular for contact-type J ,
ie satisfying J@r D R, where R is the Reeb flow of ˛ on †. After a C 2–small
perturbation, .H;J / will satisfy the same estimates, so it will remain Palais–Smale. In
addition, it will be nondegenerate.
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Example 6.14 Continuing with the convex end of a symplectization, any function
which is of the form h.er / such that er h0.er /� h.er / � Cer for some constant C

is Palais–Smale. This holds, for instance, for h.x/ D x˛ with ˛ > 1. If we have
h0.er /� er=2 then by Example 5.25 H is dissipative. The cutoff appears to be ˛ D 3

2
,

which unfortunately excludes quadratic Hamiltonians, which are central in classical
mechanics. See also the discussion in Example 5.26. Nevertheless, as we shall see below,
Floer cohomology can be defined by approximation by slow Hamiltonians. Moreover,
similarly to the proof of Remark 10.3, it can be shown that for an arbitrary convex
Hamiltonian the resulting Floer cohomology coincides with the Floer cohomology
defined using contact-type J and relying on maximum principles.

When er h0.er /�h.er /! c <1 for some c which is not in the period spectrum, H is
still Palais–Smale even though this is not covered by the previous example, and in
particular, it is dissipative. A proof of this fact is given below in Example 6.20.

6.5 Some not necessarily exact examples

Let .M;g/ be a Riemannian manifold and V a time-dependent vector field on M. For
p in M define

f .p;V;g/ WD inf
f W Œ0;1�!M j.0/D.1/Dpg

�Z 1

0

k 0.t/�Vt ı  .t/k
2 dt

�
:

Clearly, f is continuous with respect to all variables in the C 0 norm. We drop g from
the notation when there is no ambiguity.

Lemma 6.15 Let .H;J / be such that gJH
has uniformly bounded geometry. Suppose

that there is a compact K � M and a ı > 0 such that for all p 2 M nK we have
f .p;XH ;gJ /� ı. Then .H;J / is RLD.

Proof Let u W Œa; b��R=Z be a partial solution with one boundary in a compact set
K0 �K and with energy E.u/�E for some E. Without loss of generality ua �K0.
Suppose ub �M nBR0

.K0/ for some R0. Then considering the graph of u as a JH –
holomorphic map, it has energy EC .b� a/. Theorem 4.11(a) applied to the compact
set @.BR0

.K0/ nK0/ then implies that for some constant C depending on the bound
on the geometry, we have R0 � C.EC .b � a//. The assumption on f .p;XH ;gJ /

implies b� a�E=ı. Taken together we obtain the estimate R0 � CE.1C 1=ı/.
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The quantity f .p;V;g/ can sometimes be estimated from below by the following
procedure. We say that the pair .V;g/ is of Lyapunov type if there exists a constant
�� 0 such that for any x;y 2M and any t � 0 we have

(45) dg.�t .x/; �t .y//� e�tdg.x;y/;

where �t denotes the time t flow of V . We refer to � as a Lyapunov constant for V .

Lemma 6.16 If V is time-independent and krV k � �, then � is a Lyapunov constant
for V .

Proof For x ¤ y close enough and for sufficiently short times, the function h.t/D

d.�t .x/; �t .y// is differentiable. Moreover, for each t there is a unique geodesic
s 7! ˛t .s/ realizing the distance between d.�t .x/; �t .y//. Denote by V �t .x/ the
parallel transport of V�t .x/ along ˛t . Considering that the gradient of the distance
function d.x;y/ for, say, x fixed is the tangent vector to the unit-speed geodesic from
x to y, it follows that

(46)
dh

dt
D h˛0t .1/;V�t .y/i � h˛

0
t .0/;V�t .x/i:

From this we obtain the differential inequality

(47)
dh

dt
� jV�t .y/�V �t .x/j � �h:

The claim for x;y sufficiently close and for sufficiently short times now follows by
Grönwall’s inequality. The claim for arbitrary x;y and sufficiently short times follows
by the triangle inequality. The claim for arbitrary long time follows since the flow �t

is autonomous.

Lemma 6.17 Suppose that V is a time-independent vector field of Lyapunov type with
Lyapunov constant �� 0. Then9

(48) dg.p; �1.p//
2
�

e2�� 1

2�
f .p;V;g/:

Remark 6.18 For V D XH with H time-independent and uniformly Lipschitz we
can replace the global requirement that (45) hold everywhere with the requirement that
it hold for points x;y 2U WDH�1.ŒH.p/��;H.p/C�� for some � > 0. We then get
an estimate from below on f .p;V;g/ by combining the present lemma, to estimate

9When �D 0 the coefficient on the right-hand side tends to 1.
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the energy of loops which map into U, with Lemma 5.13, to estimate the energy of
the loops at p which do not remain within U. Moreover, this estimate depends only
on the Lipschitz constant of the restriction H jU and remains valid if H is arbitrarily
time-dependent outside of U.

Proof of Lemma 6.17 Fix some � > 0, which will be later taken to be arbitrarily small.
Let  W Œ0; 1�!M be a loop based at p. Let r 2R be small enough so that for each point
q 2  .Œ0; 1�/ there is a chart .Uq �M;  q W B2r .0/! Uq/ with coordinate map  q

which is bi-Lipschitz with Lipschitz constant 1C �. By compactness of  .Œ0; 1�/, there
is a constant K such that for any q the vector field d �1

q V , considered as a map
B2r .0/!R2n, is Lipschitz with constant K.

Write
g.t/ WD k 0.t/�V.t/k and f .t/D

Z t

0

g.s/ ds:

Let
�t � r min

�
1

K
;

1

sup k .t/k
;

1

sup kV.t/k
;

1

max g.t/

�
:

Without loss of generality suppose N WD 1=�t is an integer. Suppose �t is made
smaller still so that f .t/ has an approximation by a piecewise linear function h.t/ such
that

(49) .1� �/h0.t/ < g.t/� h0.t/

and such that h is linear of slope �i on the intervals Œi=N; .iC1/=N �. Let ti D i=N . Let
i.t/ WD �t�ti

. .ti// and let xi D i.1/. Writing �xi WD d.xi ;xi�1/ for i D 1; : : :N

we have, by the Lyapunov condition,

�xi � e�.1�ti /dg.i.ti/; i�1.ti//:

On the other hand we have an estimate

(50) dg.i.ti/; i�1.ti//� .1C �/
�i

K
.eK�t

� 1/:

To see this note that both the path  and the path i�1 map the interval Œti�1; ti � into
the coordinate chart U.ti�1/. Let

(51) k.t/D d0. .t/; i�1.t//; t 2 Œti�1; ti �;

be the Euclidean distance. Then k.t/ satisfies the differential inequality

dk

dt
� j 0.t/�V.t/jC jV.t/�Vi�1.t/j � g.t/CKk.t/;
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with initial condition k.ti�1/D 0. By Grönwall’s inequality we get, for t 2 Œti�1; ti �,

dg. .t/; i�1.t//� .1C �/k.t/� .1C �/e
K.t�ti�1/

Z t

ti�1

e�Ksg.s/ ds

� .1C �/
�i

K
.eK.t�ti�1/� 1/;

implying (50). The right-hand side of (50) is � .1C �/2�i�t since �t � 1=K.

We have �1. .0//D x0 and  .1/D  .0/D xN . Thus,

d.x0;xN /�
X

�xi �

NX
iD1

.1C �/2�ie
�.1�ti /�t:

The last expression approximates the integral

.1C �/2
Z 1

0

h0.t/e�.1�t/ dt �

sZ 1

0

.h0.t//2 dt

s
e2�� 1

2�
:

Combining the last two inequalities gives the estimate

dg.p; �1.p//
2
D dg.x0;xN /

2
�
.1C �/2

.1� �/2
e2�� 1

2�
k 0�Vk

2
L2 :

Since � is arbitrary this proves the claim.

We say that a Floer datum .H;J / is of Lyapunov type if .XH ;gJ / is of Lyapunov
type.

Corollary 6.19 Suppose J is geometrically bounded , .H;J / is of Lyapunov type ,
and that outside of a compact set the quantity d.p;  1.p// is bounded away from 0.
Then .H;J / is RLD.

Proof This is an immediate consequence of Lemmas 6.17 and 6.15.

Example 6.20 Using the notation of Example 5.24, let M have an end modeled on
†�RC and let H0 be a function which is linear at infinity, with slope a not in the
period spectrum. Then H is of Lyapunov type. Indeed the flow on any level set of H

is of Lyapunov type by Lemma 6.16 and compactness. Since the flows on different
level sets are conjugate, the existence of a Lyapunov estimate follows also for x and y

not on the same level set. Let X DXH0
j†�f1g. Let J be a translation-invariant almost
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complex structure. Then from (48) it follows that f .p;XH0
/ is bounded away from 0,

and so H0 is LD.

Let ı be the distance of c to the period spectrum of †˛ and let H1 be any Hamiltonian
such that

kXH1
�XH0

k

kXH0
k

�
1
2
ı:

For example, this inequality will hold for our choice of J whenever kXH1�H0
k is

bounded. Then f .p;XH1
/ is bounded away from 0 at infinity. So, H1 is also LD.

Example 6.21 Let M1 be as in the previous example and let M2 be a compact
symplectic manifold. Let a be a real number not in the period spectrum of M1 and
let f WR=Z�M1 �M2 be any function which tends to 1 at infinity with derivatives
dominated by o.e�r=2/. Then, reasoning as in the previous example, the function
H WD afer is LD.

Lemma 6.22 Let the end of M be diffeomorphic to † � RC, with † a compact
hypersurface. Suppose the projection � W†�RC!† satisfies k��vk � kvk for any
tangent vector v 2 T .†�RC/. Let X be vector field on † with no 1–periodic orbits
and let H be such that ��XH converges uniformly to X. Then for some ı > 0 we have
f .p;XH / > ı > 0 and , in particular , XH is LD.

Proof Let � be such that f .p;X />�. For r large enough, the convergence assumption
implies

f .p; ��XH / >
1
2
�:

The nonincreasing assumption implies f .p;XH / > f .p; ��XH /.

Example 6.23 Let M , †, ˛, H0 and H1 be as in Example 6.20. Let � be a closed
two-form on †. Suppose � extends to a closed form on M which is invariant under
the Liouville flow near †. Then � can be extended in a translation-invariant way to
a closed two-form on the completion of M, still denoted by � . For t small enough,
the form !t� D �d˛C t� defines a symplectic form on the completion of M. By
rescaling � , assume this holds for t D 1. Then H0 and H1 are LD for the symplectic
form !� . Indeed, write X 0

H0
for the Hamiltonian vector field with respect to !� . Let X

be as in Example 6.20. Then all the requirements of Lemma 6.22 are satisfied for the
pair X 0

H0
;X . The claim for H1 now follows by comparison to H0.
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Example 6.24 In Example 6.20 assume the pair †; ˛ is not necessarily contact, but
stable Hamiltonian for the restriction !1 WD!j†�1, with stabilizing form ˛. Namely, ˛
satisfies ker! � ker d˛ and ˛^!n�1 > 0. Assume ! is of the form !˛ WD!Cd.er˛/

on † � R�0 and is symplectic for all r � 1. Assume further that there exists a
translation-invariant !˛–compatible almost complex structure J on †�R�0. Then the
forms !. � ;J / and d˛. � ;J / are separately nonnegative. So the projection �� is norm
nonincreasing. So if H0 is linear at infinity with slope not in the period spectrum, then
f .p;XH0

/ is bounded away from 0 and H0 is dissipative. The same will hold under a
sufficiently small deformation of ! or a sufficiently small Hamiltonian perturbation
of XH0

.

In all the examples of this section we have considered Hamiltonians which are roughly
linear at infinity. It is easy to use these examples to construct superlinear Hamiltonians
which are LD. It is an interesting question as to what Hamiltonians can be perturbed
to become LD. The property of being LD is clearly related to the behavior of the
function f .p;XH ;gJ /. Namely, if one can find an exhaustion for which this function
is appropriately bounded away from 0 near the boundaries, the Floer datum will be LD.

7 Proof of Theorem 1.1

7.1 Floer systems

For a symplectic manifold .M; !/, denote by J .M; !/ the set of !–compatible almost
complex structures on M. Let

F � C1.R=Z�M /�C1.R=Z;J .M; !//

denote the set of Floer data .H;J / such that H is proper and bounded from below,
the Hamiltonian flow of H is defined for all time, and the metric gJt

WD !. � ;Jt � / is
complete for any t 2R=Z. Denoting by �i the standard simplex, let

F i
� C1.�i ;F/

be the subset consisting of elements which are constant in a neighborhood of the
vertices. Furthermore, we require that for any F 2 F .1/, @sF � 0. Denote by �i;ı the
interior of the simplex. Fix once and for all diffeomorphisms

� WR!�1;ı;  WR� .0; 1/!�2;ı;
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t D const

s� �.t/D const

sC �.t/D const

Figure 3: The source and target of the map  .

and an increasing diffeomorphism

� W .0; 1/! .0;1/

for which
lim
t!1

 .sC �.t/; t/D f 0
ı �.s/;

lim
t!1

 .s� �.t/; t/D f 2
ı �.s/;

lim
t!0

 .s˙ �.t/; t/D f 1
ı �.s/;

uniformly on compact subsets of R. Here f i W�1! @�2 is the standard embedding
of the face missing the i th vertex. We extend the maps  ˙ WD  . � ˙ �. � /; � / to the
closure R� Œ�1; 1� in the obvious way. See Figure 3.

Definition 7.1 A Floer datum .H;J / 2 F .0/ is called well-behaved if for any E > 0

and any compact K �M there is an RD R.E;K/ > 0 such that any solution u to
Floer’s equation

@suCJ.@tu�XH /D 0

satisfying
E.u/ WD

1

2

Z
k@suk2 �E; u.R�S1/\K ¤∅

is contained in the ball BR.K/.

A homotopy F D .Hs;Js/2F .1/ is called well-behaved if the corresponding condition
holds for the solutions to

@suCJ�.s/.t/
�
@tu�XH�.s/

.t;u.s; t//
�
D 0:
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Finally, an element fFpgp2�2 2 F .2/ is called well-behaved if the corresponding
condition holds for the set of solutions to

@suCJ ˙.s;�/.t/
�
@tu�XH ˙.s;�/

.t;u.s; t//
�
D 0; � 2 Œ0; 1�;

with R.E;K/ independent of � . Denote by F .i/wb � F the subset consisting of well-
behaved elements.

Definition 7.2 A Floer system D on M consists of the data of subsets D.i/ � F .i/wb for
i D 0; 1; 2 such that the following hold:

(a) For any element F 2 D.i/ there is an open neighborhood F 2 V � C 1 �C 0

such that V � D.i/.
(b) A face of an element of D.i/ is an element of D.i�1/.

(c) For any pair Fi D .Hi ;Ji/ 2 D.0/, i D 0; 1, such that H1 � H0, there is a
homotopy fFsgs2Œ0;1� 2 D.1/ with endpoints F0 and F1.

(d) Given a pair F 0;F 00 2 D.1/ such that F 0
1
D F 00

0
, there is a G 2 D.2/ whose

restriction to the f0; 1g and f1; 2g faces coincides with F 0 and F 00, respectively.

(e) Given homotopies F01;F12;F02 2 D.1/ such that the endpoints of Fij are Fi

and Fj , there is a G 2 D2 whose face ij coincides with Fij .

A Floer system D is said to be invariant if it is invariant under the action of the
symplectomorphism group given by

� � .H;J /D .H ı�; ��J /:

Elements of D0 will be referred to as D–admissible. A function H 2 C1.M / is said
to be D–admissible if there is an almost complex structure J such that .H;J / 2 D.
A bi-directed Floer system is one in which for any admissible H1 and H2 there are
admissible H3 and H0 such that

H3 �maxfH1;H2g and H0 �minfH1;H2g:

In Theorem 7.5 below we show that on any geometrically bounded manifold there is a
canonically defined invariant bidirected Floer system.

Definition 7.3 Define the dissipative Floer system Fd to consist of the following data.
Let F .0/

d
.M / be the set of i–bounded Floer data .H;J / which are RLD. Let F .1/

d
be

the set of monotone paths .Hs;Js/s2Œ0;1� in F .0/ with endpoints in F .0/
d

such that the
domain-dependent Floer datum .s; t/ 7! .H.t; � /�.s/ dt;J.t; � /�.s// is i–bounded as in
Definition 5.9. Finally, F .2/

d
is defined as follows. Let Fp2�2 D .Hp;Jp/p2�2 2 F .2/
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with edges in D.1/. Associate to �2 and the map  W R � .0; 1/ ! �2 a family
C�2Œ0;1� of cylinders over the unit interval degenerating to a broken cylinder in the
obvious way. Let the domain-dependent Floer datum on C� be defined by F� .s; t/D

.H .s;�/.t; � / dt;J .s;�/.t; � //. Then F 2 F .2/
d

if and only if the family C with this
choice of domain-dependent Floer data is uniformly i–bounded as in Definition 5.10.

Remark 7.4 The set of all well-behaved Floer data is not necessarily connected. Thus
it is possible that there exist other Floer systems perhaps giving rise to inequivalent
theories. However, any Floer system for which the well-behavedness property of
Definition 7.1 holds in a sufficiently domain-local manner is equivalent to the dissipative
system by an argument similar to the proof of Theorem 4.7.

Theorem 7.5 Let .M; !/ be a monotone or Calabi–Yau geometrically bounded sym-
plectic manifold. Then Fd .M / is an invariant bi-directed Floer system on M.

Before proving Theorem 7.5 we need the following lemma.

Lemma 7.6 Let .Hi ;Ji/2F
.0/

d
.M / be such that H0�H1. There exists an i–bounded

monotone Floer datum on R�S1 which coincides with .H0;J0/ on fs� 0g and with
.H1;J1/ on fs� 0g. Moreover , the set of such Floer data is contractible in the same
sense as in Theorem 4.7.

Proof To conform with Definition 5.9, it suffices to produce an almost complex
structure on Œ0; 1� � R=Z �M of the form JHs

for some .Hs;Js/, such that the
following are satisfied:

� @sJHs
vanishes identically near the boundary of Œ0; 1� �R=Z �M , and thus

extends to an almost complex structure on R�R=Z�M interpolating between
JH0

and JH1
. We continue to denote this extended almost complex structure

by JHs
.

� Denoting by � W R �R=Z �M the projection to R �R=Z, we have that the
restriction of JHs

to each of ��1
��

1
3
;1

�
�R=Z

�
and to ��1

��
�1; 2

3

�
�R=Z

�
is intermittently bounded relative to � .

� @sHs � 0.

Other than the last condition, the construction would be the same as in the proof of
Theorem 4.7. We show that the monotonicity requirement does not affect the proof
of Theorem 4.7. For simplicity, assume Hi is time-independent. As in the proof of
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Theorem 4.7 fix two disjoint open sets V1;V2 �M such that there is taming data for
JHi

supported in Œ0; 1��R=Z�Vi for i D 0; 1. We may assume that each of the Vi is
a disjoint union of precompact sets. Let � WM ! Œ0; 1� be a function which equals 0 on
V0 and 1 on V1. Let f W Œ0; 1�! Œ0; 1� be a monotone function which is identically 0

near 0 and identically 1 on
�

1
3
; 1
�
. Let g WM � Œ0; 1�! Œ0; 1� be defined by

g.x; s/D f .1� s/f .s/�.x/C 1�f .1� s/:

Then g is monotone increasing in s, identically 0 for all x when s is near 0, and
identically 1 for all x when s is near 1. Take Hs D g.x; s/H1 C .1 � g.x; s//H0.
Then Hs is also monotone increasing in s. Moreover, H is fixed and equal to H0 on�
0; 2

3

�
�V0 and to H1 on

�
1
3
; 1
�
�V1. Let Js be any homotopy which is fixed and equal

to J0 on
�
0; 2

3

�
and to J1 on

�
1
3
; 1
�
. Then JHs

is i–bounded since it coincides with
JH0

on
�
0; 2

3

�
�V0 and with JH1

on
�

1
3
; 1
�
�V1. Contractibility of the set of all such

homotopies is similar.

Proof of Theorem 7.5 Let Fd .M / be as in Definition 7.3. We verify that Fd .M /

has all the required properties. Namely, that it is a Floer system and that it satisfies the
properties guaranteed in Theorem 7.5.

Well-behavedness This follows from the definition and Theorem 6.3.

Condition (a) We need to show that if .H;J / is dissipative, so is a nearby .H 0;J 0/.
The most involved case is when i D 2 which we treat. Near each vertex, we have
fixed Floer data so by definition we can pick an open neighborhood which maintains
RLD-ness for all three of these. The property of being u.i.b. depends on the metric
only up to quasi-isometry which is preserved for any uniform open neighborhood.

Condition (b) This follows by definition.

Condition (c) This is just Lemma 7.6.

Condition (d) Pick an R0 > 0 for which ��1.supp @sF 0/� Œ�R0;R0�, and similarly
for F 00. For any R> 0 define the homotopy IR D F 0 #R F 00 by

IR;s WD

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

F 0
�.0/

if s � �R�R0;

F 0
�.sCR/

if s 2 Œ�R�R0;�R�;

F 0
�.1/
D F 00

�.0/
if s 2 Œ�R;R�;

F 00
�.s�R/

if s 2 ŒR;RCR0�;

F 00
�.1/

if s �RCR0:

Define G by G .s;�/ WD I�.�/;s . It is immediate that G 2 F .2/
d

.
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Condition (e) First merge F01 with F12 as in the previous part. Then homotope to
F02 relying on contractibility in Lemma 7.6.

Invariance Evident from the definition.

Bi-directedness This follows by Theorem 6.10.

7.2 Transversality and control of bubbling

Definition 7.7 Denote by Jreg the set of almost complex structures for which all
moduli spaces

M�.AIJ /

of non-multiply-covered J–holomorphic spheres representing any class A2H 2.M IZ/

are smooth manifolds of expected dimension. For J 2 Jreg, let Hreg.J / denote that set
of all nondegenerate Hamiltonians satisfying the following conditions:

(a) The linearization Du of Floer’s equation at a Floer trajectory u is surjective for
all .H;J /–Floer trajectories.

(b) No Floer trajectory with index difference � 2 intersects a J–holomorphic sphere
of Chern number 0.

(c) No periodic orbit of H intersects a J–holomorphic sphere of Chern number � 1.

Write
F .0/reg WD

[
J2Jreg

Hreg.J /� fJ g:

Recall that M is said to be semipositive if for any class A 2 �2.M / we have

3� n� c1.A/ < 0 D) !.A/� 0:

Observe that if M is monotone or Calabi–Yau, then it is semipositive.

Theorem 7.8 Suppose M is semipositive. Let .H;J / 2 D.0/ and let V � F .0/wb be an
open neighborhood of .H;J / in C1\Fwb. Shrinking V, write V D V1�V2 �H�J .
The set Jreg is of second category in V2 and for each J 2 Jreg\V2, the set Hreg.J / is
of second category in V1.

Remark 7.9 Theorem 7.8 is formulated for time-independent almost complex struc-
tures following [32]. The same claim holds for time-dependent Hamiltonians after
appropriately modifying the regularity requirement. However, if we wish to construct
homotopies of such, we need to restrict to the case where M is monotone or Calabi–Yau.
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See Remark 7.12 below. One reason why one would wish to work with time-dependent
J is that once H has nondegenerate periodic orbits, for generic Floer data of the
form .H;J / with J time-dependent the moduli space of smooth Floer trajectories is a
smooth manifold of the expected dimension. See Theorem 5.1 in [23]. It then follows
easily that generic such .H;J / are regular.

Proof Since all the moduli spaces for all the Floer data in V intersecting a compact set
K and possessing energy E are contained, for some R<1, in BR.K/, this follows
from the compact case. For the compact case see eg [32].

Suppose that for i D 0; 1, we have well-behaved elements Fi 2 F
.0/
reg , and let

F01 WD fFs D .Hs;Js/gs2�1

be a well-behaved homotopy between them.

Definition 7.10 Call such a homotopy regular if the following hold:

(a) For any A 2H 2.M IZ/ write

M�.AI fJsg/ WD f.s;u/ j u 2M�.AIJs;t /g:

Then M�.AI fJsg/ is smooth and of the expected dimension.

(b) For any z1 and z2 the moduli spaces

M.z1; z2;F D fHs;Jsg/

of nontrivial continuation trajectories are smooth and of the expected dimension.

(c) There is no continuation trajectory u of index 0 or 1 for which there is a point
.s; t/ such that u.s; t/ is in the image of a Js–holomorphic sphere of Chern
number 0.

Similarly, let F 2F .2/, with edges corresponding to regular homotopies. For such an F ,
�.2/ parametrizes a family of time-dependent Floer data .H;J /. Write .Hs;�;Js;�/ WD

F .s;�/.

We say that F is regular if:

(a) The moduli space M�.AI fJs;�g/ is smooth of the expected dimension.

(b) The corresponding family fu�g of Floer solutions is smooth of the expected
dimension.
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(c) There is no � for which there is a point .s; t/ and a continuation trajectory u� of
index �1 or 0 such that u�.s; t/ intersects a Js;�–holomorphic sphere of Chern
number 0.

Denote by F .i/reg for i D 1; 2, respectively, the regular 1– and 2–simplices of Floer data.

For i D 1; 2 let F i 2 F .i/wb and let V .F i/ � F .i/wb be an open neighborhood. Let
V2.F

i/� V .F i/ be the set of elements whose H component coincides with that of F i .

To achieve transversality in the definition of continuation maps, we wish to avoid
perturbing H01 since it is required to satisfy a monotonicity condition. Thus we will
perturb J01 in an s–dependent manner.

Theorem 7.11 Suppose M is monotone or Calabi–Yau. Then F .i/reg \ V2.F
i/ is of

second category in V2.F
i/ for i D 1; 2.

Remark 7.12 The strengthening of the assumption relative to Theorem 7.8 is required
in the case i D 2. Indeed, in this case, the assumption of semipositivity does not rule
out the possibility that for an isolated .s; �/ there is a Js;�–holomorphic sphere with
negative Chern number. Once such a sphere is present, its multiple covers interact
with Floer trajectories in a nontransverse way. Invariance of Floer cohomology under
homotopies of J can still be established for the semipositive case by constructing chain
homotopies for truncated Floer homologies, since regularity for that case is easily seen
to be an open condition. We do not pursue this here.

Proof We need to verify that we can achieve regularity even though we avoid perturb-
ing H . For the generic smoothness of the moduli spaces see Section 16 in [48]. The
nonintersection property is a variation of the corresponding claim in [32]. Namely, for
i D 1, to show this is to show that the universal moduli space

N WD f.s; z;F D .Hs;Js/;u1;u2 j F 2 V2;u1.z/D u2.s; t/g

is a smooth separable Banach space of the expected codimension. Here u1 2M�.Js;t /

and u2 is an F continuation trajectory. For this it suffices that the evaluation map

R�S1
�S2

� fu 2M�.Js/ j Js 2 V2g !R�S1
�M

defined as
.s; t; z;u/ 7! .s; t;u.z//

is a submersion. For this, apply Lemma 3.4.3 from [37]. For i D 2 the argument is
similar.
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7.3 Floer’s theorem

In this section we assume throughout that M is monotone or Calabi–Yau. Moreover,
we assume M is connected.

Denote by LM the free loop space C1.R=Z;M /. Let I! ; Ic W�1.LM /!R be given
by integrating ! and the Chern class, respectively. Denote by eLM the Floer–Novikov
covering of LM; that is, the abelian covering space of LM for which i��1.eLM /D

ker I! \ ker Ic , where i� W �1.eLM / ,! �1.LM / is the natural inclusion. Explicitly,
the space eLM is constructed as follows. For each component LMa of LM choose
a base loop a. Then ALMa consists of equivalence classes of pairs .;A/ such that
 2 LMa, A is a homotopy class of paths in LMa starting at a and ending at  ,
and the equivalence relation is .;A1/� .;A2/ if and only if !.A1/D !.A2/ and
c1.A1/D c1.A2/.

For a smooth function H 2 C1.R=Z�M / and for any t 2R=Z, denote by XHt
its

Hamiltonian vector field. This is the unique vector field satisfying dHt . � /D!.XHt
; � /.

Define a functional AH W
eLM !R by

AH .Œ;A�/ WD �!.A/�

Z 2�

0

H. .t// dt:

Note that this functional depends on the choice of base loop a for the connected
component a 2 �0.LM /.

Denote by P.H /� LM the set of 1–periodic orbits of XH . Denoting by

� W eLM ! LM

the covering map, set
AP.H /D ��1.P.H //:

This is the same as the critical point set of AH .

We define an index
iRS W AP.H /! Z

as follows. For each homotopy class a2�0.LM / fix a trivialization of  �a TM. Then if
z D .;A/; trivialize  �TM along A by extending the existing trivialization from a.
With respect to this trivialization, the linearization t 7!D t; .t/ of the flow along  is
a path of symplectic matrices, to which is associated its Robbin–Salamon index [51].
We take iRS.z / to be the Robbin–Salamon index in this trivialization. Note that iRS is
independent of choices up to an integer shift na for each a 2 �0.LM /.
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For each homotopy class a 2 �1.M / let �a �R�2Z be the image of �1.LMa/ under
I! � Ic . We identify elements of �a with equivalence classes in �1.LMa/ modulo
ker I! \ ker Ic . For any ring R, define the Novikov ring ƒR;�a

by the set of formal
sums X

A2�a

�AT I!.A/e2Ic.A/; with �A 2R;

which satisfy for each constant c that

#fA 2 �a j �A ¤ 0; !.A/ < cg<1:

We have an action of �a on eLM a by

A � Œx;B� WD Œx;A # B�:

This is a covering action, so it restricts to an action on ePH .

Fix a Floer system D. Write Dreg WD Freg\D and let F D .H;J / 2 D.0/reg . We define
the Floer chain complex CF�.H;J IR/ as the set of formal sumsX

zx2eP.H /

�zxhzxi; with �zx 2R;

satisfying for each constant c that

(52) #fzx 2 AP.H / j �zx ¤ 0; AH .zx/ > cg<1:

CF�.H;J IR/ is a graded vector space over R with grading given by

(53) i.zx/ WD iRS.zx/C n:

Here nD 1
2

dim M. CF�.H;J IR/ can be considered as a non-Archimedean Banach
space over R with its trivial valuation. The norm on CF�.H;J IR/ for a linear
combination of generators is given by

(54)
X

i

ai zi

 WD max
fi jai¤0g

eAH .zi /:

For each homotopy class a, the vector space CF�;a.H;J IR/ generated by BPa.H / is a
graded Banach module over the Novikov ring ƒR;�a

via the action of �a on BPa.H /.
The set Pa.H / noncanonically defines a basis of CF�;a.H;J / overƒR;�a

by choosing
a lift to BPa.H /.
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Let � �R�Z be a subgroup. Denote by ƒR;� the ring

ƒR;� WD

�X
i

aiT
�i e2ni

ˇ̌̌
.�i ; ni/ 2 �; ai 2R; lim

i!1
�i D1

�
:

Let �! �R�Z be the subgroup generated by
S

a2�1.M / �a. Write ƒR;! WDƒR;�!

and ƒR WDƒR;R�Z. Assume R is a field. ƒR is referred to as the universal Novikov
field over R. Strictly speakingƒR;R�Z is only a graded field; that is, only homogeneous
elements with respect to the grading induced by projection R�Z! Z are invertible.
Henceforth let K be either ƒR or ƒR;! . Note that K carries a non-Archimedean norm
induced from kT �k WD e��. That is,10 val.T �/D��.

Let
CF�.H;J IK/ WD

M
a2�1.M /

CF�;a.H;J IƒR;�a
/ y̋ƒR;�a

K;

where the hat denotes completion with respect to the induced valuation.

Remark 7.13 The approach we follow here to Floer theory over the Novikov ring is
the one originally introduced by [32]. In the literature (compare [47; 50; 61]) there is
a slightly different construction of the Floer chain complexes over the Novikov ring,
where one tensors the space generated by P.H / with ƒR, instead of passing to a
covering space. In that version, the chain complexes do not have an action filtration
nor a grading, but they do have a Novikov filtration over ƒR. We do not pursue the
latter approach here.

We define a linear operator d on CF�.H;J IR/ by counting Floer trajectories in the
usual way. Namely, for any two elements

zx1; zx2 2
AP.H /

of index difference 1, denote by M.zx1; zx2IJ / the moduli space of Floer trajectories
which at �1 are asymptotic to zx1 and at C1 to zx2, divided by the action of R. By
the inclusion D0 � F .0/wb and Gromov–Floer compactness, M.zx1; zx2IJ / is compact.
Since F 2 F .0/reg we get that when the virtual dimension is 0,

#M.zx1; zx2IJ / <1:

We thus define

d zx1 D

X
zx2 j iRS.zx2/DiRS.zx1/C1

#M.zx1; zx2IJ /hzx2i:

10Caution: in many texts the convention is k � k D e�val. � /.
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Theorem 7.14 The Floer boundary map d is well defined and satisfies d2 D 0.

Proof We need to show that for any zx12
AP.H /we have that d zx2 satisfies the finiteness

condition (52). For any c, let

Ac WD fzx2 2
AP.H / jM.zx1; zx2IJ /¤∅; AH .zx2/ > cg:

For any zx 2 Ac there is a Floer trajectory of energy at most AH .zx1/� c connecting
zx1 and zx2. Well-behavedness of F thus implies that there is a compact set K �M

such that any zx 2 Ac is contained in K. The claim now follows by Gromov–Floer
compactness. Thus d is well defined. That d2 D 0 follows from the compact case
[52; 37] since all Floer trajectories under a given energy level are contained in an
a priori compact set.

By its definition, d commutes with the action of ƒR;�a
and thus induces a well-defined

operator on CF�.H;J IK/.

Theorem 7.15 (Floer’s theorem) Let M be a monotone or Calabi–Yau symplectic
manifold. Let D be a Floer system. Then there exists a dense subsystem Dreg such that :

(a) For any F D .H;J / 2 D.0/reg , the graded filtered complex

.CF�.H;J IK/; d/

is well defined.

(b) For any pair of elements F1 � F2 2 D
.0/
reg we have that

D.1/reg .F1;F2/¤∅:

Associated with any homotopy F12 2 D.1/reg .F1;F2/ is a chain map

fF 12 W CF�.F1/! CF�.F2/;

defined by counting the corresponding rigid Floer solutions. If F1�F2 D c and
F12 is of the form F12

s D .H Cf .s/;J /, then fF 12 is the identity.

(c) For any triple F0 � F1 � F2 2 D.0/reg and elements Fij 2 D.1/reg .Fi ;Fj /, the set
D.2/reg .F01;F12;F02/ is nonempty. Any element

F 2 D.2/reg .F01;F12;F02/

defines a chain homotopy between the map fF02
and the composition fF12

ıfF01

by counting the corresponding rigid Floer solutions.
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Proof We take as above Dreg WDD\Freg. By the theorems in the previous subsection,
Dreg is dense in D.

(a) This is just Theorem 7.14.

(b) Given zxi 2
AP.Hi/ for i D 1; 2, let M.zx1; zx2I fHs;Jsg/ be the moduli space of

Floer solutions for the Floer data fHs;Jsg with zx1 and zx2 as asymptotes. For any
element

u 2M.zx1; zx2I fHs;Jsg/;

we have the a priori estimate

E.u/�AH .zx1/�AH .zx2/

by Lemma 5.3 with F DHs dt . By the assumption that D consists of Floer data that
are well-behaved as in Definition 7.1, it follows that

M.zx1; zx2I fHs;Jsg/

is compact. We define the continuation map by counting the 0–dimensional moduli
space. Since action decreases along continuation maps, the finiteness condition is the
same as the case of the differential. The fact that fI 12 is a chain map is the same as in
the compact case [52; 37].

(c) It follows again from well-behavedness that all Floer solutions under a given energy
level for all the elements of the family are contained in an a priori compact set. The
claim thus follows again from the compact case.

Proof of Theorem 1.1 This follows by Definition 7.3 from Theorems 7.5, 6.6 and 7.15,
by passing to homology.

8 Hamiltonian Floer cohomology by approximation

8.1 Reduced cohomology

Definition 8.1 We refer to a chain complex which is a topological vector space with
continuous differential as a topological complex. For a topological complex .C; d/, the
differential is in general not closed. To stay within the realm of complete Hausdorff
topological vector spaces we define the reduced cohomology of complete Hausdorff
topological complexes .C; d/ by

H .C; d/ WD
ker d

im d
;
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where the bar denotes the closure. For general C � we first take the Hausdorff completion
and then take its reduced cohomology. Note that if C � is a Banach space then H .C; d/

is itself a Banach space with the induced quotient norm, which is defined by

kŒa�k WD inf
b2Œa�
kbk:

For the ensuing discussion, we consider the vector space CF�.H;J IK/ as a vector
space over R, forgetting the action of the Novikov parameter. For a > 0 define
CF�

.�1;a/
.H;J IK/ to be the R–subcomplex of CF�.H;J IK/ generated by periodic

orbits of action less than a. Define by CF�
Œa;b/

.H IK/ the quotient complex

(55) CF�Œa;b/.H;J IK/ WD CF�.�1;b/.H;J IK/=CF�.�1;a/.H;J IK/:

Denote by HF�
Œa;b/

.H;J IK/ the corresponding cohomology groups. These are vector
spaces over R.

Theorem 8.2 We have that :

(a) A continuous chain map between topological complexes induces a well-defined
map on the reduced cohomologies.

(b) A nullhomotopic map induces the zero map on reduced cohomology.

Proof For the first assertion, continuity implies that im d is mapped into im d . For
the second assertion, note that f maps all cycles into im d � im d .

Remark 8.3 A short exact sequence of topological complexes with continuous maps
induces a long sequence of reduced cohomologies. However, exactness of this sequence
only holds under special assumptions. A reference in the case of Hilbert complexes
is [36].

Let C � be a topological complex whose topology is induced by a filtration by sub-
complexes fC �t gt2R such that C �t � C �t 0 whenever t < t 0. For any element a 2 C � let
val.a/ WD infft j a2C �t g. Then val naturally induces a filtration on H�.C �/ defined by
val.Œa�/D infc2Œa� val c. Define a filtration on the vector space lim

 ��t
H�.C �=C �t / by

val.x/D inf
˚
t0 j x 2 ker

�
lim
 ��

t

H�.C �=C �t /!H�.C �=C �t0
/
�	

for x2 lim
 ��t

H�.C �=C �t /. Observe that the spaces lim
 ��t

H�.C �=C �t / and H�.C �=C �t0
/

are both complete with respect to the norm kak WD eval.a/, and are thus Banach spaces.
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Theorem 8.4 As Banach spaces ,

H�.C �/D lim
 ��

t

H�.C �=C �t /:

Proof Any two cycles in the Hausdorff completion of C � representing the same
element in H�.C �/ represent the same element of H�.C �=C �t / for each t . We thus
get a well-defined morphism

f WH�.C �/! lim
 ��

t

H�.C �=C �t /:

If c 2C � is a cycle and f .c/D 0, then c is a boundary mod C �t for each t . In particular
it is in the closure of the space of boundaries of C �, so Œc�D 0 in the reduced homology.
Thus f is injective. We now show that f is surjective. Let a 2 lim

 ��t
H�.C �=C �t /.

We can compute the inverse limit by taking a subset ftig of the index set R which is
discrete, bounded above and unbounded below. In this presentation, a is a sequence

.: : : ; Œai �; ŒaiC1�; : : : ; Œa0�/; with Œai � 2H�.C �=C �ti
/;

where Œai � maps to ŒaiC1� under the natural map induced on homology. We consider
the representatives ai as living in C � and claim that they can be chosen so that, already
at the chain level, ai maps to aiC1 mod C �tiC1

. Inductively, suppose this holds for all
i0 < i � 0. We have that there is a bi0

2 C � such that ai0C1� ai0
D dbi0

mod C �ti0C1
.

Replace ai0
by ai0

C dbi0
to get the claim for i0. The sequence faig converges as

i ! �1 to an element ya in the completion of yC �. By construction, dya D 0 and
f .Œya�/D a. Unwinding definitions one verifies that f preserves the valuations and is
thus a Banach space isometry.

Example 8.5 In this example we illustrate how reduced and unreduced cohomology
may differ from one another. Fix a field R and consider the vector space

C � D

1M
iD1

Rhxi ;yi
iŒq�=q2;

where the xi and yi are formal symbols of degree 0 and 1, respectively, for all i , and
q is a formal symbol of degree �1. Define a non-Archimedean valuation on C � by
taking val.xi/D 0D val.q/ and val.yi/D�i . Define a differential by

dxi
WD yi ; dyi

WD 0; d.qxi/D qyi
CxiC1

�xi ; d.qyi/D yi
�yiC1:

Suppose  2 C � is a finite sum of generators satisfying d D 0. Then  is a linear
combination of the yi and elements of the form qyi � xi C xiC1; that is, a linear
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combination of dxi and d.qxi/. Thus the homology of C � vanishes. Consider now
the complex yC � obtained by completing C � with respect to the valuation, and let

 WD x1
C

1X
iD1

.�1/iqyi :

Then  is well defined in yC �, and d D 0. We show that  is not a coboundary and
is not even approximated by a sequence of coboundaries. For this, consider its image
in C �=C �t . It is straightforward to verify that the class of  is equivalent mod C �t to
the class of xi for any i > �t , and that val.Œxi �/ D 0. In this case one verifies that
the image of the differential is closed. It follows that the reduced homology of the
completion yC � (which in this case equals the ordinary homology) is nonzero.

Consider now the subcomplex 3Rhxi ;yii of yC �. Let

 D
X

yi :

Then  is again a convergent sum. Moreover, for any t we have that  is a boundary
mod C �t . Indeed, for any N > t we have

 D d

NX
iD1

xi mod C �t :

But the sum on the right-hand side does not converge as i !1. One verifies in this
case that the reduced cohomology H�.3Rhxi ;yii/ vanishes while the unreduced one
does not.

8.2 Floer cohomology of lower semicontinuous exhaustion functions

Theorem 8.6 Let .H0;J0/ and .H1;J1/ be dissipative. Suppose

(56) H1� c �H0 �H1:

Then the canonical continuation map HF�.H0;J0/!HF�.H1;J1/ is an isomorphism
which decreases norms by a factor of at most e�c . In particular , when H0 DH1, the
continuation map is an isometry.

Proof Recall that for a monotone homotopy, the induced continuation map is valuation
decreasing. Consider the composition of continuation maps

HF�.H0;J0/! HF�.H1;J1/! HF�.H0C c;J0/:
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It coincides with the continuation map

HF�.H0;J0/! HF�.H0C c;J0/:

The latter stems from a naive identification of the underlying complexes with the
norm scaled by e�c . This shows that the map HF�.H0;J0/! HF�.H1;J1/ is right-
invertible and decreases norm by at most e�c . Left-invertibility is shown similarly.

Henceforth we drop J from the notation and talk about HF�.H /. Abusing notation we
will also drop J from the chain level notation. Accordingly, we refer to a Hamiltonian H

as dissipative if there exists a compatible almost complex structure J such that .H;J /
is dissipative.

As a consequence of Theorem 8.6 we may extend the definition of Floer cohomology
to some Hamiltonians which are degenerate or even nonsmooth.

Lemma 8.7 Suppose that Hi and Fi are pointwise monotone increasing sequences of
nondegenerate dissipative Hamiltonians , both converging uniformly in C 0 to the same
continuous function H. Then there is an isomorphism

lim
��!

i

HF�.Hi/! lim
��!

i

HF�.Fi/;

which is natural in that it commutes with all continuation maps involving dissipative
and nondegenerate Hamiltonians. We may thus define

(57) HF�.H / WD lim
��!

n

HF�.Hn/:

Define a seminorm on HF�.H / by

(58) kak WD inf
i
kaik;

where ai 2HF�.Hi/ maps to a under the natural map. Then k �k is a non-Archimedean
seminorm on HF�.H / which is independent of the choice of Hi . Moreover , when
H is smooth , dissipative and nondegenerate , the two definitions of HF�.H / as a
seminormed space coincide.

Proof Call a sequence Hn as in the hypothesis admissible if for each n there is a
constant cn > 0 for which H �Hn � cn. Given any two admissible sequences we
can squeeze a subsequence of one into a subsequence of the other. The first part
of the statement then follows by the universal property of the direct limit. Given a
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not necessarily admissible monotone sequence Hn converging to H , the sequence
Hnk WDHn� 1=k is admissible, monotone and converges uniformly to Hn. We thus
have a natural isomorphism

lim
��!

n

HF�.Hn/D lim
��!

n

lim
��!

k

HF�.Hnk/:

But the sequence Hnn is admissible and cofinal in the doubly indexed sequence Hnk ,
and so we have a natural isomorphism

lim
��!

n

lim
��!

k

HF�.Hnk/D lim
��!

n

HF�.Hnn/:

We have a similar relation for Fnk WD Fn � 1=k and Fnn. The sequences Hnn and
Fnn are admissible, monotone and converge uniformly to H . Combined with the
isomorphisms we just deduced, we obtain the isomorphism

lim
��!

n

HF�.Hn/D lim
��!

n

HF�.Hnn/D lim
��!

n

HF�.Fnn/D lim
��!

HF�.Fn/;

where all the isomorphisms are natural.

To see that k � k defines a non-Archimedean seminorm, note that by Theorem 8.6, the
sequence kaik is bounded below. Since it is monotone decreasing, it is convergent. So

kaC bk D lim
i
kai C bik � lim

i
max fkaik; kbikg Dmaxfkak; kbkg:

The homogeneity of k � k is obvious. In light of Theorem 8.6, the argument for the
independence of val on the choice of sequence is similar to the claim concerning the
natural isomorphism. Finally, for the last part of the claim, take Fn to be the constant
sequence Fn DH .

The definition of action-truncated Floer homology groups also extends.

Lemma 8.8 Let H and Hn be smooth nondegenerate and dissipative , and suppose the
sequence Hn is monotone and converges uniformly to H . Then the natural map

(59) lim
��!

n

HF�Œa;b/.Hn/! HF�Œa;b/.H /

is an isomorphism. If we drop the assumption that H is dissipative and define
HF�

Œa;b/
.H / by (59), the right-hand side is independent of the choice of Hn.

Caution: the claim does not necessarily hold if we consider other segments such as
.a; b�.
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Proof As in the proof of Lemma 8.7, the first part is proven by squeezing a sequence
of the form Hn� cnk into a sequence H � cn. The second part is proven by a similar
squeezing. The argument is spelled out in the proof of Lemma 8.7.

The next theorem is key for what follows. It shows that truncated Floer homology is
continuous with respect to convergence on compact sets.

Theorem 8.9 Let fHng be a monotone increasing sequence of dissipative Hamiltonians
converging pointwise to a dissipative Hamiltonian H . Then for any real a< b, we have
that the natural map

f W lim
��!

i

HF�Œa;b/.Hn/! HF�Œa;b/.H /

is an isomorphism.

Proof Fix an almost complex structure J for which .H;J / and .Hi ;J / are dissipative.
Without loss of generality we may assume that all the involved Floer data are regular
and nondegenerate. As in Lemma 8.8 we reduce to the case where H �Hn � cn > 0

for some cn > 0. By Dini’s theorem, the Hi converge to H uniformly on compact sets.
By squeezing in an appropriate sequence we may assume that there is an exhaustion
of M by compact sets Kn such that Hn D H � cn on Kn. For such a sequence we
have that for a fixed real number E > 0 and compact set K, the numbers R.E;K/

of Theorem 6.3, defined for each of the Hn, stabilize as n ! 1. So, given an i

and a cocycle  2 CF�
Œa;b/

.Hi/, there is a compact set K and an i0 > i such that
any continuation trajectory fi;i0. / or fi. / is contained mod CF�

.�1;a/
in K. Here

fi W CF�
Œa;b/

.Hi ;J /! CF�
Œa;b/

.H;J / and fi;i0 W CF�
Œa;b/

.Hi ;J /! CF�
Œa;b/

.Hi0 ;J / are
the natural continuation maps. Indeed, since we are considering only trajectories of
energy less than b� a, Theorem 6.3 provides an estimate on the diameter as required.
The same claim holds for composite trajectories of the form d ıfi;i0 and d ıfi , etc.

Since Hi jKi
DH jKi

�ci , we may identify those periodic orbits of Hi which are inside
Ki with the periodic orbits of H in the same region. For each periodic orbit  of H ,
the corresponding periodic orbit of Hi is mapped mod a by the continuation map to  .
Indeed, for i large enough, any continuation trajectory emanating from  and having
energy at most b�a is contained in Ki and so satisfies a translation-invariant equation.
To be rigid it must be trivial. Moreover, taking i still larger, the same claim is true
for the periodic orbits appearing in the expansion of d mod i . This shows that f is
surjective. Injectivity follows in the same way. Namely, suppose there is an i and a
ı 2CF�

Œa;b�
.H / such that fi. /D dı mod a in CF�.H /. For i large enough, the same

relation will hold in CF�.Hi/.
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We use the notation HF�.H / for the reduced cohomology of CF�.H;J /.

Corollary 8.10 For any dissipative Hamiltonian H and any sequence Hi of dissipative
Hamiltonians converging to H uniformly on compact sets , the natural map

(60) lim
 ��

a

lim
��!
b;i

HF�Œa;b/.Hi/! HF�.H /

is an isomorphism. Moreover , we have for any ˛ 2 HF�.H / that

(61) val.˛/D inf
a

˚
˛ 2 ker

�
HF�.H /! lim

��!
b;i

HF�Œa;b/.Hi/
�	
;

upgrading the isomorphism (60) to an isometry of Banach spaces.

Proof We have by Theorem 8.9 and by exactness of the direct limit,

(62) lim
��!
b;i

HF�Œa;b/.Hi/D lim
��!

b

HF�Œa;b/.H /D HF�Œa;1/.H /:

So by Theorem 8.4 we obtain the isomorphism of Banach spaces.

The last corollary will allow us to extend the definition of reduced Floer homology to
arbitrary lower semicontinuous exhaustion functions; that is, a lower semicontinuous
function H W R=Z�M ! R which is proper and bounded from below. But first we
need to formulate an approximation lemma for such functions.

Lemma 8.11 Let H WR=Z�M !R[f1g be a lower semicontinuous function which
is proper and bounded below. Let F WR=Z�M !R be a smooth proper exhaustion
function such that F < H � � pointwise for some � > 0. Then there is a pointwise
monotone sequence of smooth exhaustion functions Hn W R=Z �M ! R such that
Hn converges pointwise to H everywhere and such that for each n there is a compact
set Kn such that HnjMnKn

D F jMnKn
.

Proof It is a standard fact that H is the supremum of a monotone increasing sequence
H 0n of smooth functions. For each n take Hn to coincide with H 0n on H�1..�1; n//,
to equal n on the set

f.t;x/ WHt .x/� n� Ft .x/g;

and to equal F on F�1.n;1/. Then Hn is well defined and continuous. After a slight
perturbation it is smooth and satisfies all the requirements.

By Theorem 6.6 we can take F in the previous lemma to be a function with sufficiently
small Lipschitz constant outside of a compact set so as to be dissipative. Then all the
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functions in the sequence Hn are also dissipative, as they coincide with F outside of a
compact set. Thus, any lower semicontinuous exhaustion function is the pointwise limit
of a monotone sequence of dissipative Hamiltonians.

Lemma 8.12 Let H be a lower semicontinuous exhaustion function. Let Hn�Fn�H

be a pair of monotone sequences of dissipative Hamiltonians each converging pointwise
to H . Then for any a< b 2R, the natural continuation map

(63) lim
��!

i

HF�Œa;b/.Hi/! lim
��!

i

HF�Œa;b/.Fi/

is an isomorphism.

Proof For each n choose monotone sequences Hkn and Fkn such that the following
properties hold. First, for fixed n, they converge on compact sets to Hn and Fn,
respectively, as k!1. Secondly, there is an exhaustion of M by precompact sets
Uk such that Hkn and Fkn coincide with H1� 1=k on the complement of Uk . Such
sequences exist by Lemma 8.11. By Theorem 8.9 we have natural isomorphisms

lim
k!1

HF�Œa;b/.Hkn/D HF�Œa;b/.Hn/;

and a similar isomorphism relating the Floer cohomologies of Fkn and Fn. The map
appearing in equation (63) corresponds under this isomorphism to the natural map

lim
k;n!1

HF�Œa;b/.Hkn/! lim
k;n!1

HF�Œa;b/.Fkn/:

For each k we have that H �Hkn and H �Fkn are bounded away from 0. Moreover,
for each compact set K we can make Hkn and Fkn arbitrarily close to H on K by
adjusting k and n. It follows that for each k and n, we can find numbers k 0, n0, k 00

and n00 such that Fk00n00 >Hk0n0 > Fkn. Thus we can squeeze a cofinal subsequence
of Hkn into a cofinal subsequence of Fkn. The claim follows by the same argument as
in Lemma 8.7.

Lemma 8.13 Let H be a lower semicontinuous exhaustion function. Let Fn and Gn

be a pair of monotone sequences of dissipative Hamiltonians each converging pointwise
to H . Then there exists a monotone sequence of dissipative Hamiltonian Hn such that
Hn �minfFn;Gng and Hn converges pointwise to H .

Proof The function H 0n DminfFn;Gng is continuous. As in Lemma 8.11, let H 00n be
a continuous function which coincides with H 0n on H

0�1
n .�1; n/, and with some fixed

smooth dissipative function F � H1 everywhere else. Then H 00n is continuous, the
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sequence H 00n is monotone, and it still converges to H . Finally, replace H 00n by a smooth
Hn satisfying H 00n � 1=n�Hn �H 00n and which equals F outside some compact set.
Then all the requirements are satisfied.

Proof of Theorem 3.3 The surjectivity statement follows from Lemma 8.11 as stated
in the paragraph right after the proof of Lemma 8.11.

For a pointwise monotone sequence fHig of regular dissipative Hamiltonians, define

(64) HF�.fHig/ WD lim
 ��

a

lim
��!
b;i

HF�Œa;b/.Hi/;

with the norm given by the right-hand side of (61).

Let sup.fH 1
i g/D sup.fH 2

i g/DH for some H 2Hsc. By Lemma 8.13 we can find a
third sequence fHig of regular dissipative Hamiltonians such that Hi �minfH 1

i ;H
2
i g.

By Lemma 8.12 and equation (64) it follows that we have natural isomorphisms

HF�.H 1
i /D HF�.Hi/D HF�.H 2

i /:

For an arbitrary H 2 Hsc we define HF�.H / as the pushout over all approximating
sequences fHig of HF�.fHig/ under the natural isomorphisms just described. By
naturality we get an induced functorial continuation map for H1 �H2. This defines
the functor HF� on .Hsc;�/. To see that the restriction to .Hd;reg;�/ agrees with the
previous definition, note that any element H 2Hd;reg can be considered as a constant
sequence fHig with Hi DH .

In fact we have proven the following stronger lemma, which is used below.

Lemma 8.14 Let H be a lower semicontinuous exhaustion function. Let Hn and Fn

be a pair of monotone sequences of dissipative Hamiltonians each converging pointwise
to H . Such sequences are guaranteed to exist by Lemma 8.11. Then for any segment
Œa; b/ there exists an isomorphism

lim
��!

i

HF�Œa;b/.Hi/! lim
��!

i

HF�Œa;b/.Fi/:

This isomorphism is natural in the sense that it commutes with all induced continuation
maps. We thus define

(65) HF�Œa;b/.H / WD lim
��!

i

HF�Œa;b/.Hi/:

In other words , we have

(66) HF�.H /D lim
 ��

a

lim
��!

b

HF�Œa;b/.H /:
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In the next section we will see that it is actually possible to define HF� as the reduced
cohomology of an appropriate chain complex which is well defined up to filtered
quasi-isomorphism.

8.3 The chain level construction

We apply the telescope construction appearing in [5] to define HF�.H /, for general
lower semicontinuous H , as the cohomology of a certain complex. Namely, let .Hi ;Ji/

be a sequence of dissipative Floer data. Let q be a formal variable of degree�1 satisfying
q2 D 0. Write11

SC�.fHig/ WD

1M
iD1

CF�.Hi/Œq�;

and equip it with the differential

ı.aC qb/ WD .�1/deg adaC .�1/deg b.qdbC �.b/� b/;

where � denotes the continuation map CF�.Hi/ ! CF�.HiC1/ for each i . LetcSC�.fHig/ denote the completion with respect to the action filtration. It is shown
in [5] that, ignoring topology, there is a natural isomorphism

(67) lim
��!

i

HF�.Hi/DH�.SC�.fHig/; ı/:

This isomorphism arises as follows. Consider the underlying complexes CF�.Hi/

with differential ı.a/ WD .�1/deg ad.a/. This change does not affect anything at the
cohomology level, and continuation maps remain chain maps. The obvious embeddings
.CF�.Hi/; ı/ ,! SC�.fHig/ commute up to homotopy with the continuation maps,
thus giving rise to the map in (67). For more details see [5].

Definition 8.15 Let .C �i ; d/ for i D 1; 2 be complexes filtered by a valuation. We say
that a valuation-decreasing chain map f W C �

1
! C �

2
is a filtered quasi-isomorphism

if it induces an isomorphism on filtered homologies H�
Œa;b/

for a > �1. We say
that .C �

1
; d/ is filtered quasi-isomorphic to .C �

2
; d/ if there is a zigzag of filtered

quasi-isomorphisms starting at one and ending at the other.

Theorem 8.16 Let H be a lower semicontinuous exhaustion function and let .H 1
i ;J

1
i /

and .H 2
i ;J

2
i / be monotone increasing sequences of dissipative Floer data such that H

j
i

converges to H pointwise for j D 1; 2. Then cSC�.fH 1
i g/ is filtered quasi-isomorphic

11As usual we abuse notation, omitting mention of the almost complex structures.
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to cSC�.fH 2
i g/. If H is itself dissipative , they are both filtered quasi-isomorphic tocCF�.H /.

The proof of Theorem 8.16 is carried out after establishing the following few lemmas,
which are of interest in their own right.

Lemma 8.17 We have for any interval �1< a< b �1,

H�Œa;b/.
cSC�.fHig/; ı/D lim

��!
i

HF�Œa;b/.Hi/:

Further , we have an isometry of Banach spaces

H�.cSC�.fHig/; ı/D lim
 ��

a

lim
��!

i

HF�Œa;1/.Hi/;

where on the right-hand side we define the norm by equation (61), and on the left-hand
side we take the norm induced from the CF�.Hi/.

Proof The first half of the claim is what is shown in [5], since no topology is involved.
For the second half, the isomorphism of topological vector spaces follows from the
first half and Theorem 8.4. The fact that this is an isometry also follows from the first
half by unwinding definitions.

Lemma 8.18 Let F0Df.H 0
i ;J

0
i /g and F1Df.H 1

i ;J
1
i /g be two monotone sequences

of dissipative Floer data such that H 0
i � H 1

i . Let Hi;s be a monotone dissipative
interpolating family. Then there is a filtration-decreasing continuation map

�H WcSC�.fH 0
i g/!

cSC�.fH 1
i g/;

inducing , for each interval Œa; b/, the canonical continuation map

lim
��!

i

HF�Œa;b/.H
0
i /! lim

��!
i

HF�Œa;b/.H
1
i /:

If H1 and H2 are two homotopies interpolating between F0 and F1, there exists a
filtration-decreasing chain homotopy operator

K WcSC�.fH 0
i g/!

cSC�C1.fH 1
i g/

such that
�H1 ��H2 D ı ıKCK ı ı:

Proof Let ji W CF�.H 0
i /! CF�C1.H 1

iC1
/ be the chain homotopy operator satisfying

fHiC1
ı � � � ıfHi

D d ı ji C ji ı d:
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Define

� WcSC�.F0/!cSC�.F1/

by �.aC qb/ WD f .a/C qf .b/C j .b/. One verifies that this is indeed a chain map.
Inspecting isomorphism (67) one finds that the homology-level square

lim
��!

HF�
Œa;b/

.H 0
i /

��

// lim
��!

HF�
Œa;b/

.H 1
i /

��

H�
Œa;b/

.SC�.fH 0
i g//

// H�
Œa;b/

.SC�.fH 1
i g//

commutes. This proves the first half of the claim. To define the chain homotopy operator
K, let li W CF�.H 1

i /! CF�C1.H 2
i / be the chain homotopy operator associated to a

family of homotopies interpolating between H1 and H2. Let j n
i be the homotopies

between f n
iC1
ı � and � ıf n

i for nD 1; 2. Let

mi W CF�.H 1
i /! CF�C2.H 2

iC1/

be a degree 2 operator satisfying

d ımCm ı d D j 1
C � ı l � .l ı �C j 2/:

We show that such an m exists before proceeding. To see this note that each term on the
right-hand side is a chain homotopy operator from �ıf1 to f2ı� coming from appropri-
ate one-dimensional families of interpolating homotopies. By standard Floer theoretic
machinery, a generic two-dimensional family interpolating these one-dimensional
homotopies gives rise to an operator m as required. By energy considerations, m is
action decreasing.

Having established the existence of m, we define the chain homotopy

K.aC qb/ WD .�/deg.aC1/l.a/C .�1/deg.bC1/.ql.b/Cm.b//:

A straightforward but somewhat tedious calculation shows that K is indeed a chain
homotopy operator, as required.

Proof of Theorem 8.16 Use Lemma 8.13 to find a monotone sequence of dissipative
Hamiltonians fH 0

i g dominated by fH j
i g for j D 1; 2 and still converging pointwise

to H . By Lemmas 8.12 and 8.18, the continuation map induces a quasi-isomorphism
for each finite truncation.
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9 The product structure

9.1 Floer data for the pair-of-pants product

For time-dependent Hamiltonians H1;H2, let H1 �H2 WR=Z�M !R be the time-
dependent function

.H1 �H2/t D

�
2H1.t/ if t 2

�
0; 1

2

�
;

2H2.2t � 1/ if t 2
�

1
2
; 1
�
:

Note that H1�H2 depends discontinuously on t with jump discontinuities at tD 1
2
; 0�1.

The operation is introduced for notational convenience. A triple .H0;H1;H2/ is called
a (strict) product triple if H2 �H1 �H0 (H2 >H1 �H0).

Denote by † the pair of pants S2 n f0; 1;1g. For our convenience we pick cylindrical
ends which extend globally as follows. Consider the holomorphic map W†!R�R=Z

given by

z 7!
1

2�
Log z.z� 1/:

This defines cylindrical coordinates

s D
1

2�
log jz.z� 1/j; t D

1

2�
arg.z.z� 1//

in punctured neighborhoods of 0 and 1, coordinatized as inputs. For the cylindrical
end at1 we take

s D
1

2�
log jz.z� 1/j; t D

1

4�
arg.z.z� 1//:

Thus1 is coordinatized as an output. Henceforth we write

˛† WD
1

2�
darg z.z� 1/

and take h† W†!R to be the function

z 7! s D
1

2�
log jz.z� 1/j:

Then dh† ^˛† � 0, and h† has a single critical point at z D 1
2

. Note also that at the
output we have ˛† D 2 dt , while at each input we have ˛† D dt . We consider the
coordinate t to be well- defined on the complement of s D h† D

1
2

.

Definition 9.1 A Floer datum .H;J / is called superdissipative if for any f WR=Z!R

we have that .fH;J / is dissipative.
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Lemma 9.2 If H is a Lipschitz exhaustion function and h W R! R is a monotone
function satisfying limt!1 h0.t/! 0, then h ıH is superdissipative.

Proof The Lipschitz constant of f � h ıH is arbitrarily small outside of a sufficiently
large compact set. The claim follows by Theorem 6.6.

For a superdissipative .H;J /, let F.H;J / be the set of all pairs in C1.R=Z�M /�J
which coincide outside of some compact set with .fH;J / for some f WR=Z!RC.
Drop J from the notation when there is no ambiguity. A 1–form H 2�1.†;C1.M //

is called H–admissible if there is a function G W†�M !R such that HDG˝˛†

and such that for each x 2 M we have dH.x/ � 0, and for each z 2 † we have
G.z; � / 2 F.H /. A Floer datum .H;J 0/ is called H–admissible if, in addition, J 0 is
quasi-isometric to J . For an H–admissible product triple we denote by P.H0;H1;H2/

the set of H–admissible data on the pair of pants which for iD0; 1; 2 equals Hi dt at the
i th end. We refer to the set P.H0;H1;H2/ as product data for the triple .H0;H1;H2/.
Included in the set P.H0;H1;H2/ are broken Floer data, which are concatenations of
monotone continuation data in F.H / with H–admissible pairs of pants.

Lemma 9.3 (a) H–admissible one-forms satisfy the hypotheses of Lemma 5.3.

(b) H–admissible product data are dissipative.

(c) If .H 0;H 1;H 2/ 2 F.H /3 is a strict product triple , then

P.H 0;H 1;H 2/¤∅:

(d) P.H 0;H 1;H 2/ is connected , and the path connecting any two elements is
dissipative.

Proof (a) Equations (17) and (18) hold by construction.

(b) Loopwise dissipativity follows by the assumption of superdissipativity of H . As for
i–boundedness, observe that the metric gJH

is uniformly equivalent to the metric gJH
.

In fact, if H is Lipschitz, gJH
is uniformly equivalent to the product metric on †�M.

(c) Let F 2 F.H / be a time-independent Hamiltonian satisfying for all x 2M

2 maxfH 0
0 .x/;H

1
0 .x/g< F.x/ <minfH 2

0 .x/;H
2
1=2.x/g:

Such a Hamiltonian exists by assumption. Let

G0t .x/ WD

�
maxf2H 0

2t
.x/;F.x/g if t 2

�
0; 1

2

�
;

maxf2H 1
2t
.x/;F.x/g if t 2

�
1
2
; 1
�
:
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Then G0 satisfies

(i) .H 0;H 1;G0/ is a product triple,

(ii) for each x 2M there is a neighborhood U �M and I �R=Z of
˚
0; 1

2

	
such

that G0t .y/D F.x/ for .t;y/ 2 I �U, and

(iii) G0 <H2.

The function G0 has nonsmooth points away from t 2
˚
0; 1

2

	
but it can be smoothed

to a function G so that the properties (i), (ii) and (iii) still hold. Let Gs
t be a family

such that for s� 1
2

we have Gs DH2 and for s � 1
2

we have Gs DG, and such that
@sGs � 0. This can again be pieced together by an appropriate Urysohn function.

We define H 0z to equal Gh†.z/;t for z such that h†.z/�
1
2

. By property (ii), H 0z extends
smoothly beyond the branchpoint at z D 1

2
. On each input end we can smoothly

interpolate between the input Hi and 1
2
Gs in a monotone way by employing an Urysohn

function. The result H WDH 0˝˛† is an H–admissible product datum.

(d) If H 1˛ and H 2˛ are two (unbroken) H–admissible product data with the same
inputs and output, so is any convex combination. If H 1˛ is a broken product datum,
it can connected by a path to an unbroken one by gluing. Thus P.H0;H1;H2/ is
connected. Dissipativity is immediate as in part (b).

9.2 Construction of the pair-of-pants product

Lemma 9.4 Fix a superdissipative H . Suppose that .H0;H1;H2/ 2 F.H /3 consists
of nondegenerate Hamiltonians. Then for generic choice of element in P.H0;H1;H2/

and for a generic path in P.H0;H1;H2/, the associated 0– and 1–dimensional moduli
spaces of Floer solutions are compact , smooth and of the expected dimension.

Proof By construction, an admissible product datum satisfies the hypotheses of
Lemma 5.3. Therefore, given generators zi 2 CF�.Hi/, the pairs of pants of a fixed
dissipative Floer datum with i th end asymptotic to zi have energy estimated, according to
Lemma 5.3, by Etop.U /, equal to the action difference AH3

.z3/�AH1
.z1/�AH2

.z2/.
The first part of Lemma 9.3 and Theorem 6.3 thus imply that they are all contained
in an a priori compact set K depending on the differences bi � ai . The story is now
the same as the closed case, which is dealt with in the aspherical case in [54]. Sphere
bubbling is treated in the exact same way as for the differential, continuation maps
and chain homotopy operators, which was done in detail in Section 7.2. The upshot is
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that in the monotone or Calabi–Yau case, whether one is working with a single Floer
datum or with a family of parametrized ones, spheres occur in codimension 4. All
the arguments involve at most 1–dimensional families of Floer solutions. Generically,
there is no sphere bubbling for such families.

Theorem 9.5 Fix a superdissipative H . For any Floer datum .H;J /, denote by
CF�;0.H;J / the subcomplex generated by contractible periodic orbits. A generic
choice of admissible product datum for a generic product triple .H0;H1;H2/2F.H /3

determines a bilinear map

�W CF�;0.H0;J0/˝CF�;0.H1;J1/! CF�;0.H2;J2/

satisfying

(68) val.x1 �x2/� val.x1/C val.x2/:

Moreover , we have d.x1 � x2/D dx1 � x2C .�1/deg.x1/x1 � dx2. The induced map
on homology satisfies the following properties:

(a) It is independent of the choice of admissible product datum.

(b) If , in addition , H2 �H1 �H0, it is supercommutative.

(c) It commutes with all continuation maps in F.H /.

For the remainder of this section, unless indicated otherwise, all the Floer
cohomology groups are those arising from contractible orbits. We do not
indicate this further in the notation.

Remark 9.6 The reason we restrict our discussion of the pair-of-pants product to
contractible periodic orbits is in the formulation of the Floer complex we chose in
Section 7.3. In that formulation the Floer complex is generated over R by appropriate
equivalence classes Œ;A�, where  is a periodic orbit and A a path from a base loop
in the component of  . Concatenating two such data .0;A0/; .1;A1/ with a pair
of pants having output on some periodic orbit 2 does not give rise to an appropriate
path A2 unless all the involved periodic orbits i are contractible. To obtain a well-
defined product involving noncontractible orbits, additional choices need to be made.
This should not be hard, but we do not pursue the details. An alternative approach
which avoids this issue altogether is indicated in Remark 7.13. Note also that if the
symplectic form is exact or even merely aspherical and atoroidal, there is no issue.
Moreover, if one of the inputs is contractible, the pair-of-pants product is well defined
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without additional choices. Thus, as a result of the present subsection, we do get the
module structure of the full symplectic cohomology over the contractible part without
any additional work.

Proof of Theorem 9.5 Fix a regular pair-of-pants datum P 2 P.H0;H1;H2/. Let
zi 2 CF�.Hi/ for i D 0; 1; 2 be such that

iRS. z2/D iRS. z0/C iRS. z1/:

The product � is defined by counting the Floer solutions associated with p. The Leibnitz
rule is obtained by analyzing the boundary of the 1–dimensional moduli spaces. For
details see [4, Section 2.3.5]. Note that while [4] concerns the cotangent bundle, once
we fix a regular product datum, the analysis of the moduli spaces is exactly the same.

Behavior of the valuation under � follows by Lemma 5.3. Namely, by monotonicity of
the product data, any solution must have nonnegative energy.

Given two choices of admissible product data, Lemma 9.3 allows us to construct a
dissipative homotopy. We can perturb while maintaining dissipativity to get a sufficiently
generic homotopy inducing a chain homotopy between the appropriate complexes.
Commutation with continuation maps follows in the same way from Lemma 9.3 and a
standard gluing argument.

The claim about supercommutativity follows by pulling back the product datum P

by a biholomorphism of S2 which fixes 1 and commutes 0 and 1. For details see
[4, Lemma 2.3.24].

Lemma 9.7 The pair-of-pants product induces a map

�W HF�Œa1;b1/
.H1/˝HF�Œa2;b2/

.H2/! HF�Œmaxfa1Cb2;a2Cb1g;b1Cb2/
.H3/

for all F.H / admissible triples. Moreover , the product � fits into a commutative
diagram

(69)

HF�
Œa1;b1/

.H1/˝HF�
Œa2;b2/

.H2/

��

// HF�
Œmaxfa1Cb2;a2Cb1g;b1Cb2/

.H3/

��

HF�
Œa0

1
;b0

1
/
.H1/ y̋ HF�

Œa0
2
;b0

2
/
.H2/ // HF�

Œmaxfa0
1
Cb0

2
;a0

2
Cb0

1
g;b0

1
Cb0

2
/
.H3/

whenever a0i > ai and b0i > bi .
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Proof Recall the identity for any R–modules A;B;C;D,

A=B˝C=D DA˝C=.B˝C CA˝D/:

The first part of the claim follows by definition of CF�
Œa;b/

and the estimate (68). The
second part is clear if one works with representatives.

Lemma 9.8 Suppose H1;H2;H3 are a triple of lower semicontinuous exhaustion
functions satisfying

(70) H3 �H1 �H2

and Hi �H . Then there is a monotone sequence of admissible product triples Hik 2

F.H /; i D 1; 2; 3 such that Hik converges pointwise as k!1 to Hi .

Proof Pick constants a1; a2; a3< 1 such that a1Ca2< a3. According to Lemma 8.11,
we can find sequences Hik ; i D 1; 2; 3, which are monotone in k converging pointwise
to Hi and coinciding with aiH outside of a compact set. From (70) it follows that
for each k there exists an index ik such that H3;ik

> H1;k �H2;k . The sequence
H1;k ;H2;k ;H3;ik

is as required.

Lemma 9.9 The pair-of-pants product for Hamiltonians in F.H / induces a map

�H W HF�Œa1;b1/
.H1/˝HF�Œa2;b2/

.H2/! HF�Œmaxfa1Cb2;a2Cb1g;b1Cb2/
.H3/

for all triples .H1;H2;H3/ 2H3
sc that satisfy Hi �H . Moreover , the product �H fits

into a commutative diagram as in (69).

Proof Pick a monotone sequence .H0k ;H1k ;H2k/ of H–admissible triples converg-
ing to .H0;H1;H2/. As in (65),

HF�Œa;b/.Hi/ WD lim
��!

k

HF�Œa;b/.Hik/:

Since tensor product commutes with direct limits, we get an induced product as in
the statement of the lemma. Moreover, since the pair-of-pants product commutes
with all continuation maps in F.H /, the product �H is independent of the choice of
approximating sequence.

Lemma 9.10 Fix a superdissipative H. The pair-of-pants product on F.H / induces a
canonical product

�H W HF�.H0/ y̋ HF�.H1/! HF�.H2/

for all product triples .H0;H1;H2/ 2 H3
sc. The operation �H commutes with all

continuation maps and is supercommutative.
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Proof For i D 0; 1, let i 2 HF�.Hi/. By Lemma 8.17, HF�.Hi/ is the reduced
cohomology of an appropriate chain complex cCF�.Hi/ well defined up to filtered quasi-
isomorphism. Pick such chain complexes for H0 and H1. Let z0; z1 be representatives
of 0; 1 respectively. We construct an element 2D Œz1��H Œ z2�2HF�.H2/ as follows.
By (66), to give an element in HF�.H2/ it suffices to fix some c and give for each
a< c < b an element  ab

2
2HF�

Œa;b/
.H2/ so that the  ab

2
agree under the natural maps

(71) HF�Œa;b/.H2/! HF�Œa0;b0/.H2/;

defined whenever a< a0 and b < b0. For some � > 0 write bi D val.zi/C� for i D 0; 1.
Fix some b > b0 C b1 and for any a < b let a0 D a � b1 and a1 D a � b0. Then
by applying the operation �H of Lemma 9.9 to the classes of zi in HF�

Œai ;bi /
.Hi/ we

obtain an element  ab
2
2 HF�

Œa;b/
. Moreover,  ab

2
agrees with  a0b0

2
under the natural

maps (71). We thus obtain an element 2 2 HF�.H2/ which is well defined after
fixing representatives zi . We need to verify that 2 is independent of the choice of
representatives. For this it suffices to show that if zi is in the closure of the image of
the boundary for either i D 0 or i D 1, then 2 D 0. This amounts to showing that for
each a there exists a b such that  ab

2
D 0. For definiteness assume Œz0�D 02HF�.H0/.

By (66) we need to show that for each a there is a b such that

 ab
2 D 0 2 HFŒa;b/.H2/:

For this it suffices to show that there is a b such that we can find numbers ai ; bi for
i D 0; 1 such that

maxfa0C b1; a1C b0g � a< b0C b1 � b; bi > val.zi/;

and such that Œz0�D 0 2HF�
Œa0;b0/

.H0/. We choose b1 D val.z1/C � and a0 D a� b1.
Since z0 vanishes in reduced cohomology, there exists a b0 D b0.a0/ > val.z1/ such
that it vanishes in HF�

Œa0;b0/
.H0/. Pick a1 D a� b0. Then all the requirements are

satisfied. It is clear that changing the underlying complexes for HF�.Hi/ up to filtered
quasi-isomorphism does not affect the definition of �.

9.2.1 Independence of the choice of H at infinity

Lemma 9.11 Let F0�F1 be superdissipative. For i D 0; 1 let .H i
0
;H i

1
;H i

2
/2F.Fi/,

and suppose H 0
j � H 1

j for j D 0; 1; 2. Then the operation � commutes with the
continuation maps H 0

j ! H 1
j . In particular , the definition of the pair of products is

independent at the homology level of the choice of H in the approximating scheme.
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Proof Fix dissipative homotopies H 0
j !H 1

j . Gluing either the first two homotopies to
the input of the pair of pants in F.F0/ or the last one to the pair of pants in F.F1/ gives
rise to two pairs of pants from H 0

0
;H 0

1
to H 1

2
with 1–forms of the form Hi DGi˛†

such that dHi ^dh† � 0. We need a family .Gs;Js/ such that .Hs WDGs˛†;Js/ form
a dissipative interpolating family still satisfying

dHs ^ dh† � 0:

The proof of existence of such a .Gs;Hs/ is exactly as in Lemma 7.6.

9.2.2 Associativity

Lemma 9.12 Let H i for i D 1; 2; 3 and H 1;2;H 2;3 be elements of Hsc. Suppose
.H 1;H 2;H 1;2/ and .H 2;H 3;H 2;3/ are product triples. Let H 4 be such that

H 4
� 2 max

t2R=Z
fH

1;2
t ;H

2;3
t g:

Then the maps

HF�.H 1/˝HF�.H 2/˝HF�.H 3/! HF�.H 4/

coming from the two compositions in Figure 4 coincide.

Proof It suffices to prove the claim under the assumption that H i ;H i;j 2 F.H /

for some superdissipative H, since we can replace all the involved Hamiltonians by
approximating sequences in F.H /. Moreover, we may assume all inequalities are
strict. The assumption implies there is a time-independent H such that H 4 > H >

2 maxfH 1;2;H 2;3g. Thus if we prove associativity for the case where all the functions
are positive multiples of a single function, the general claim will follow by naturality
of the pair-of-pants product with respect to continuation maps. For this case the proof
is standard in the literature (see eg [5; 4]) but we spell out the details.

Consider H 1 D H 2 D H 3 D H , H 1;2 D H 2;3 D 2H and H 4 D 4H . Now let
f 1;2; f 2;1 W†!R be functions such that d.f i;j˛†/�0, df i;j is compactly supported,
and f i;j is equal to i at the input z0, to j at the input z1, and to 4 at the output.
We consider the 1–forms H1;1;2 WD H˛† and Hi;j ;4 WD f i;j H˛. The two possible
compositions correspond to the gluing of H1;1;2 to either H2;1;4 at the first input, or to
H1;2;4 at the second input. We must show that there exists a homotopy between the two
compositions. We write these glued 1–forms as H˛0 and H˛1; here ˛i are 1–forms
on S2 nf0; 1; z0;1g, where z0 is a point z0 near 0 for the first composition and z1 near
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H 1;2

H 3

H 1 H 2

H 1
H 2;3

H 2 H 3

Figure 4: Homotopy for associativity.

1 for the second composition. Note that d˛i � 0. We pick a smooth path z�2Œ0;1� in
the Riemann sphere. We show that we can lift this to a path ˛� of 1–forms satisfying
d˛� � 0 and connecting ˛0 to ˛1. Smooth four-punctured spheres are diffeomorphic
by a diffeomorphism which preserves the cylindrical ends. Thus the claim reduces
to finding such a homotopy on a fixed surface. But the condition d˛ � 0 is convex.
Thus we can find a path ˛� as required. The family H� WD H˛� gives the required
homotopy.

9.3 The PSS map

Theorem 9.13 Let M be geometrically bounded. Then the small quantum product on
H�.M IK/ is well defined.

Proof We take as our model of H�.M / the homology of the Morse complex CM�

arising from considering the positive gradient flow of some proper exhaustion function
f WM!R with nondegenerate critical points, together with a geometrically bounded J

such that the pair .f;gJ / is Morse–Smale. For this to compute cohomology (and,
indeed, for the Morse differential to be well defined) we take CM� WDKcrit.f /. Indeed,
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CM� thus defined is the dual of CM�, which consists of finite formal sums of critical
points with the differential defined by counting negative gradient lines. Since g is proper
and bounded below, the subcomplexes CM�a � CM� generated by critical points in the
sublevel set Ma WD f

�1.�1; a/ compute the singular homology of Ma by standard
Morse theory [39]. By taking colimits it follows that CM� computes singular homology
of M, and therefore, CM� computes singular cohomology. The small quantum product
is defined by counting the J–holomorphic spheres with three marked points intersecting
the unstable manifolds of some input critical points p; q and the stable manifold of an
output critical point r . Since f is proper and bounded below, the stable manifold of
any critical point is precompact. Thus by Theorem 4.11 all the spheres are contained in
a priori compact sets. The fact that the operation thus defined is indeed an associative
product is now standard; see eg [37, Section 12.2] and [46].

Remark 9.14 An alternative way to think of the construction of the small quantum
product is to observe that cohomology of a noncompact manifold is Poincaré dual to
Borel–Moore homology. That is, a homology where one allows locally finite sums
of singular chains. Given a triple 1; 2; 3 of Borel–Moore homology classes, the
coefficient of 3 in the quantum product 1�QH 2 is the three-pointed Gromov–Witten
associated with the triple 1; 2; 

�
3

, where  �
3
2H�.M / is the Poincaré dual of 3.

Now  �
3

is a cycle in ordinary homology and thus a finite chain. Therefore, by geometric
boundedness, the number of J–holomorphic spheres intersecting  �

3
and representing

a given homology class is finite.

Theorem 9.15 For any H 2Hsc there is a natural map

f PSS
H WH�.M IK/! HF�.H /:

Denote by � the product in Floer cohomology and by �QH the small quantum product.
Then f PSS satisfies for any product triple H0;H1;H2 and for any pair of classes
a; b 2H�.M IK/,

f PSS
H0

.a/�f PSS
H1

.b/D f PSS
H2

.a�QH b/:

In addition , for any x 2 HF.H1/,

f PSS
H0

.1/�x D fH1;H2
.x/;

where
fH1;H2

W HF�.H1/! HF�.H2/

is the natural continuation map.
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Proof In the compact case for smooth nondegenerate Hamiltonians this is [46]. In
the noncompact case, we achieve C 0 estimates for smooth dissipative nondegenerate
Hamiltonians by considering appropriate dissipative data on the plane. Namely, we
pick a geometrically bounded J and monotone homotopy Hz going from 0 for z in a
neighborhood of the origin and to H for z near1, and such that the associated Gromov
metric gJH

is i–bounded. This is done as in Lemma 7.6. Alternatively, we can restrict
the direct definition to the superdissipative case, and just take Hz D f .jzj/H for some
monotone increasing function. The definition for arbitrary H is by an approximation
scheme as in the definition of the pair-of-pants product. Write dt WD darg z. Then the
Floer datum .J;Hz dt/ on the complex plane is dissipative. Moreover, it is monotone,
so by Lemma 5.3 and Theorem 6.3 the solutions emanating from any critical point
of f to any critical point of AH are confined to an a priori compact set. This reduces
the claims to the compact case.

9.4 Proof of Theorems 1.3 and 2.1

Let H � Hsc be a subset consisting of time-independent Hamiltonians such that for
any H1;H2 2H we have that 2 maxfH1;H2g 2H. We call H a monoidal indexing set.
For each monoidal indexing set H, we define a group

SH�.M IH/ WD lim
��!

H2H
HF�.M /:

We denote by Hsm the monoidal indexing set consisting of all smooth functions which
are proper and bounded from below, and define

SH�univ.M / WD SH�.M IHsm/:

We now prove Theorem 1.3 from the introduction, which states that SH�.M IH/ is a
unital algebra over QH�.M IK/.

Proof of Theorem 1.3 (a) Given 0; 1 2 SH�.M IH/, we can find H0;H1 2 H
such that i lifts to an element still denoted by i 2 HF�.Hi/ for i D 0; 1. Since
H is a monoidal indexing set we can find an H2 2 H such that .H0;H1;H2/ form
a product triple. Pick a superdissipative Hamiltonian H � Hi , i D 0; 1; 2, and let
2 WD 0 �H 1 2 HF�.H2/, using the induced product �H from Lemma 9.10. By
Lemma 9.11, 2 is independent of the choice of H . We define 0 � 1 2 SH�.M IH/
to be the image of 2 under the natural map HF�.H2/ ! SH�.M IH/. Since �H

commutes with all continuation maps, 1 � 2 is independent of the choice of product
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triple .H0;H1;H2/ 2H3. Associativity and supercommutativity hold up to contin-
uation maps in H by Lemmas 9.12 and 9.10. Indeed, if H1;H2;H3 2 H, then so is
4 maxfH1;H2;H3g.

(b) This is an immediate consequence of Theorem 9.15.

(c) This is an immediate consequence of the naturality of the pair-of-pants product
with respect to the continuation maps.

We next turn to the proof of Theorem 2.1 concerning local symplectic cohomology,
but first we recall some definitions. Let K �M be a compact set. Let

HK .x/ WD

�
0 if x 2K;

1 if x 2M nK:

The local symplectic cohomology at K is defined by

SH�.M jKIK/ WD HF�.HK IK/:

Proof of Theorem 2.1 (a) We have

K1 �K2 () HK2
�HK1

:

Thus there is a continuation map

SH�.M jK2/D HF�.HK2
/! SH�.M jK1/D HF�.HK1

/:

(b) This is the symplectic invariance of the construction of HF�.

(c) We have that HK WD fHK g forms a monoidal indexing set. So SH�.HK / D

HF�.HK /, and the claim follows from Theorem 1.3.

(d) This is an immediate consequence of Theorem 1.3 and the functoriality of the
continuation maps.

(e) We have H � supK H � HK . On the other hand the map corresponding to
H !H C c is a conformal isomorphism decreasing valuation by c.

9.5 Symplectic cohomology as a topological vector space

There is more than one natural way to put a topology on SH�.H/ depending on the
purpose one has in mind. In the rest of the paper we shall consider the final topology
on SH�.M IH/. That is, the strongest topology for which all the continuation maps
HF�.H /! SH�.M IH/ for H 2 H are continuous. Note that this topology is not
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necessarily Hausdorff. We also do not address the continuity of the pair-of-pants
product. For applications later in this paper we will only need the following lemma.

Lemma 9.16 Let H be a monoidal indexing set consisting of continuous Hamiltonians.
Let K �M be a compact set. Then the natural map

SH�.H/! SH�.M jK/

is continuous.

Proof By Theorem 2.1(e), for any continuous Hamiltonian H , the continuation map
HF�.H /! SH�.M jK/D HF�.HK / is continuous. Continuity of the induced map
follows by definition of the final topology.

Remark 9.17 Since the spaces SH�.M jK/ are all Banach spaces, Lemma 9.16 will
still hold if one considers topologies on SH�.H/ which are weaker than the final
topology. We do not pursue this further, however.

We illustrate the various notions of symplectic cohomology by considering the case
M DR�R=Z. We will compare symplectic cohomologies for three different monoidal
indexing systems. Since M is a Liouville domain we no longer restrict the discussion
of the pair-of-pants product to contractible orbits.

Example 9.18 Consider the monoidal indexing set L consisting of Hamiltonians
which, outside of a compact set, are of the form

H.s; t/D ajsjC b:

According to a theorem by Viterbo [64] equating symplectic cohomology of a cotangent
with loopspace homology of the underlying manifold, for any coefficient field R we
have that

(72) SH�.M IL/DRŒx;x�1; @x �=@
2
x :

Thus, SH�.M IL/ is the exterior algebra of polyvector fields on Rnf0g. By the Künneth
formula [42], or by Viterbo’s theorem again, the same holds for M D T �Tn.

Example 9.19 Now let K �M D Œ�a; a��R=Z. To keep track of actions choose
the primitive s dt of the standard symplectic form. With this choice, one shows that
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SH�.M jK/ is obtained from SH�.M IL/ by completing with respect to the valuation
val.xi/ WD ji ja and val.@x/ WD 0. When the underlying ring R is trivially valued, this
completion is of no effect. However, when working over the universal Novikov ring
we obtain for example that SH0.M jK/ consists of all infinite Laurent series

1X
iD�1

bix
i with bi 2ƒ0;nov

satisfying
lim val.bi/Cji ja!�1:

This is the same as the set of analytic functions on the rigid analytic torus ƒ� which
converge on the subtorus fz 2 ƒ� j val.z/ 2 Œ�a; a�g. A reference for rigid analytic
geometry is [9]. Closer to home, [58] and [3] provide a closely related point of view
from the vantage point of Lagrangian Floer homology of the R=Z fibers.

Example 9.20 Finally we study SH�univ.R� S1/. We claim that over the universal
Novikov ring , SH0

univ.R�S1/ consists of formal Laurent series
P

bix
i that are rapidly

decreasing in the sense that there exists a superlinear convex function g such that
val.bn/D�g.n/.

To see this, observe that SH�univ.M / is computable by direct limit of HF�.H / over
functions H which outside of a compact set are of the form H.s; t/ D h.jsj/ for
h W RC! RC a convex function such that h0.t/ is unbounded as t !1.12 For any
such H there is a natural map

SH�.M IL/! HF�.H /;

by the universal property of the direct limit and the fact that for any H 0 2 L we have
H 0 � H outside of a compact set. Each monomial xi maps to a class associated
with a unique periodic orbit  i of H . It is not hard to show that HF�.H / is in fact
the completion of the algebra SH�.M IL/DRŒx;x�1; @x � with respect to the norm
val.xi/DAH .i/. This is computed as follows. Let si 2R be the unique real number
such that @sH.s; t/D i . Then

val.xi/D sih
0.si/� h.jsi j/D isi � h.jsi j/:

Writing f D h0 we have si D f
�1.i/ and the right-hand side of the last equation is

exactly g.i/ WD
R i

0 f
�1.t/ dt . Since f �1 is monotone and unbounded this means gi

is convex and superlinear. From this it is not hard to deduce the claim.
12Such a function is not necessarily dissipative. However, we may still talk about its Floer cohomology by
approximating by linear Hamiltonians.
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10 Computations and applications

10.1 Liouville domains

Let .†; ˛/ be a contact manifold with contact form ˛. Let .U; ! D d�/ be a compact
exact symplectic manifold with † as boundary such that ˛D �j@UD† and such that the
Liouville field Z, which is defined by �Z! D �, points outward at the boundary. Let
yU be the completion of U by attaching the cone †�R�0 with the symplectic form
!˛ D er .d˛C dr ^˛/. The vector field Z extends to yU and is given by Z D @=@r .

Denoting by �t the time t flow of Z, the skeleton of U relative to � is defined by

Skel.U;Z/D
\
t>0

�t .U /:

The map †�R! yU defined by .x; r/ 7! �r .x/ is a symplectic embedding of the
symplectization of †, whose image is yU n Skel.U; �/. A reference for these basic
definitions and claims is [14]. In particular, the function �r .x/ 7! er is defined and
smooth on yU n Skel.U;Z/. Moreover, it extends to a continuous function of yU, still
denoted by er, by defining er .p/ D 0 for p 2 Skel.U;Z/. Denote by L the set of
Hamiltonians that outside of a compact set containing the skeleton are of the form
aer Cb for a> 0 and b 2R. We refer to these Hamiltonians as being linear at infinity.
Similarly, Hamiltonians which outside of a compact set are of the form h.er / for
h convex are referred to as convex at infinity. Let J be of contact type; that is, J is an
!–compatible translation-invariant almost complex structure J satisfying JRD @r for
R the Reeb flow. As in [63], define SH�Viterbo.U /D lim

��!H2L HF�.H;J /.

Lemma 10.1 SH�Viterbo.U /D SH�. yU IL/.

Proof By Example 5.25, when paired with a contact type J , the elements of L are
i–bounded. Any H 2 L with slope at infinity not in the period spectrum of † is
dissipative by Example 6.14. It follows that HF�.H / D HF�.H /. So the directed
systems computing each side coincide.

In particular, we have a natural map

f W SH�Viterbo.U IR/D SH�. yU IL;R/! SH�univ.
yU IR/:

Theorem 10.2 The map f is an isomorphism.
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Remark 10.3 The proof below of Theorem 10.2 relies crucially on the fact that for
Hamiltonians which are convex at infinity, the action spectrum is bounded from below,
rendering the topology of HF�.H / discrete. This fails when working over a nontrivially
valued field. To see what sets trivially valued fields apart, consider the following. Given
two Hamiltonians H1 �H2 such that Hi D hi.e

r /, the continuation map

f12 W HF�.H1IR/! HF�.H2IR/

can be shown two be an isomorphism of vector spaces, and thus, since the topology
is discrete, of topological vector spaces. However the inverse of f12 will generally
not be bounded. Thus when working over ƒR, the map f12 will no longer be a
homeomorphism.

Proof of Theorem 10.2 We consider the set C of smooth Hamiltonians H for which
there is a compact K D fer < �g for some � > 0 such that H is C 2–small and negative
on K, and of the form H D h.er / outside of K. The action of any 1–periodic orbit
of such a Hamiltonian is positive. The set of Hamiltonians C is cofinal in the set of
all smooth Hamiltonians with respect to the order relation �, defined by

(73) H1 �H2 () H2.x/�H1.x/� C > �1 for all x 2M:

Pick a sequence Fi 2 C given outside of a compact set by Fi D hi.e
r / so that the

sequence Fi converges to H on compact subsets of M and such that near infinity hi is
linear of slope not in the period spectrum of ˛. The action of a periodic orbit is given
by the right-hand side of (43), which in this case specializes, for a nontrivial periodic
orbit  of Fi occurring at some level set er D t , to

AFi
. /D th0i.t/� hi.t/;

which is positive for hi convex. Positivity also holds for the trivial periodic orbits,
since they occur inside U where Fi < 0. We thus have that HF�

Œk;1/
.Fi/D HF�.Fi/

for all k � 0. A similar statement holds for H. From this we deduce, first, that
HF�.H /D HF�.H /, and, second, that HF�.H /D lim

��!i
HF�.Fi/.

The set Fi is cofinal in L with respect the order relation �. Therefore, we obtain an
isomorphism of R–modules

HF�.H /D lim
��!

i

HF�.Fi/! SH�.LregIR/:

Moreover, given two convex functions H1�H2, the continuation maps from H1 to H2

will commute with the above isomorphisms since they are all defined via continuation
maps between functions which are linear near infinity. The claim follows.
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We similarly prove:

Theorem 10.4 SH�. yU jSkel.U;Z/IR/D SH�. yU jU IR/

D SH�Viterbo.U IR/

D SH�univ.
yU IR/:

Proof Consider a monotone sequence Hi belonging to the set of convex Hamiltonians C
defined in the proof of Theorem 10.2, so that

lim
x!1

Hi.x/D

�
0 if x 2 U;

1 if x 2 yU nU:

Then, by positivity of the action spectrum,

SH�. yU jU IR/D lim
 ��

k

lim
��!

i

HF�Œk;1/.Hi/D lim
��!

i

HF�.Hi/:

The right-hand side equals SH�Viterbo.U IR/ by the same argument as Theorem 10.2. In
a similar way, SH�. yU jSkel.U;Z/IR/D SH�Viterbo.U IR/ by considering a sequence
Hi 2 C such that

lim
x!1

Hi.x/D

�
0 if x 2 Skel.U;Z/;
1 if x 2 yU nSkel.U;Z/:

Finally, the equality SH�Viterbo.U IR/D SH�univ.
yU IR/ is Theorem 10.2.

Proof of Theorem 2.14 We consider the radial coordinate t D er on U , which we may
assume surjects onto .0; 1/, with Skel.U / corresponding to t D 0. We use the notation
U.t0/ WD fp 2 U j t.p/ � t0g. We will consider a family of dissipative S–shaped
Hamiltonians Hc;�, which are defined as follows. H is equal to 0 on U.�/, to ct � c�

on U
�

1
2

�
nU.�/, and has small gradient and Hessian outside U

�
1
2

�
. Here it is understood

that we perturb slightly to get a smooth Hamiltonian which is transversely nondegenerate
on U

�
1
2

�
. By Theorem 1.1(c), the Hamiltonians Hc;� are dissipative. We construct a

monotone increasing sequence ci going to1 and a monotone decreasing sequence �i

going to 0, so that the distance of ci to the period spectrum of @U is more than 2�i . We
take �i even smaller so that the energy required according to Theorem 6.3 for a Floer
trajectory to meet both sides of U.1/nU

�
1
2

�
is more than �ici . Observe now that by our

assumption, the action functional on M restricted to loops in U which are contractible
in M coincides up to a constant with the action functional defined using the Liouville
form. Moreover, the periodic orbits outside of U

�
1
2

�
are constants with large value of H .

Thus, the set of periodic orbits of Hci ;�i
having nonnegative action are the constants
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inside U.�i/ as well as the periodic orbits appearing as the slope goes from 0 to ci . Their
actions are all at most ciıi . Thus, the Floer trajectories connecting orbits of nonnegative
action all remain inside U.1/. So SH�;0

Œ0;1/
.M jSkel.U /IR/D SH�;0Viterbo.U IR/.

It remains to show that the negative-action periodic orbits form an acyclic complex.
Consider an increasing 1–parameter family of Hamiltonians Ht D Hc.t/;�.t/ with
c.t/!1 as t !1, and fix an action window Œa; 0/. We cannot show that for an
arbitrary a there is a fixed t such that HF�

Œa;0/
.Ht /D 0 since as we increase the slope,

new negative periodic orbits keep appearing with action not far from 0. However, we
claim that for each t0 there is a t1 > t0 such that, denoting by ft0;t1

the continuation
map from t0 to t1, we have

ft0;t1
.HF�Œa;0/.Ht //D f0g:

Indeed, let  be a periodic orbit of @U with period T � c.0/. It will appear as a
periodic orbit of Hc.t/;�.t/ of action 1

2
.T �c.t//��.t/. Consider the cohomology class

˛.t/ D f0;t .˛/. By functoriality of the continuation maps, its action is a monotone
decreasing function of t . Moreover, since for any t the complex CF�

Œa;0/
.Ht / is finitely

generated, there is a discrete set of points fti 2 Œ0;1/g such that on the interval .ti ; tiC1/,
the cocycle ˛ is represented by the action minimizing cycle

P
 i

j . Let T i
j be the period

of  i
j as a Reeb orbit of @U and let T i be the maximal of these. Along the interval

.ti ; tiC1/, the action of ˛.t/ will be given by 1
2
.T i � c.t//� �.t/. Since the action

of ˛.t/ is nonincreasing, we must have that T i is nonincreasing. Since c.t/!1

it follows that the negative periodic orbits in U.1/ eventually fall out of any action
window under the continuation maps. The periodic orbits outside of U.1/ are constants
with action going to negative infinity. This means all the periodic orbits which lie
outside U.1/ are in the closure of the boundary operator in SC�.fHig/. Upon tensoring
SC�.fHig/ with ƒR, the same remains true.

Proof of Theorem 2.16 Let K be a compactly supported displacing Hamiltonian for
Skel.U /. Then K displaces an open neighborhood of Skel.U /, which we may take to
be U itself. Let F be a Hamiltonian which vanishes on a neighborhood of U [ supp K

and has small enough gradient and Hessian to be dissipative and have only critical
points as periodic orbits. Let Hi be a sequence of Hamiltonians which vanishes on
Skel.U /, increases on U.�i/ for some �i ! 0, and becomes a constant Ci outside
the u.�i/, with Ci!1. The sequence HiCF is monotone and converges to HSkel.U /,
and so computes SH�.M jSkel.U /IK/.
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Recall the notation H1 # H2 WDH1CH2 ı H1
, where  H is the time 1 Hamiltonian

flow of H . We have  H1#H2
D  H2

ı H1
. Observe that the sequence .Hi CF / # K

computes SH�.M jSkel.U /IK/ as a topological vector space. To see this, note that
there is a constant C such that jHi # K�Hi j< C , so we can factor

SC�.fHi CF �C g/! SC�.f.Hi CF / # Kg ! SC�.fHi CF CC g/;

and vice versa.

F CK D F # K is also a displacing Hamiltonian which, after slightly perturbing, we
can take to be nondegenerate. Moreover, all the fixed points of .Hi CF / # K coincide
with those of F # K. By a standard argument [59], adding Hi has the effect of shifting
the action spectrum by �Ci . The action spectrum of F #K is bounded from above since
all the positive action orbits lie in the compact set defined by F D 0. Thus the whole
action spectrum of .HiCF /#K moves to negative infinity. So SH�.M jSkel.U //D 0.
By Theorem 2.14, this implies SH�Viterbo.U /D 0.

Proof of Theorem 2.17 We consider the family of Hamiltonians Hc;� as in the proof
of Theorem 2.14. The periodic orbits of U that are contractible in U embed in an
action-preserving manner in LM. We take ı > 0 such that any Floer trajectory of
energy at most ı which meets U

�
1
2

�
is contained in U.1/. The classes Œx;A� with x a

contractible periodic orbit in U
�

1
2

�
and A a path in LU.1/� L.M / thus form a direct

summand of SC�
Œ0;ı/

.fHci ;�o
g/. Moreover, the proof of Theorem 2.14 shows that the

differential applied to contractible periodic orbits in U
�

1
2

�
coincides mod ı with the

differential computing SH�. yU jU /. This proves the claim.

Proof of Theorem 2.18 Consider Hamiltonians as in the proof of Theorem 2.16, and
denote by

f W SC�.fHi CFg/! SC�.f.Hi CF / # Kg/

a continuation map induced by an appropriate homotopy, by g the continuation map
in the other direction, and let H be the chain homotopy operator between the identity
and g ı f . Fix an action value a. By taking i0 large enough we have, as in the
proof of Theorem 2.16, that fi vanishes mod a for all i � i0. Therefore, starting our
sequences at i0, we have IdD H ı d C d ıH mod c for all c � a. But H can increase
the valuation by at most the Hofer norm of K. It follows that if val˛ D c > a and
d˛ D 0 mod c, the largest possible window Œc; d/ for which ˛ ¤ 0 2 HF�

Œc;d/
.HU /

has d � c < d.U / � kHkHofer. So taking a < 0 and ı as in Theorem 2.17, we get
d.e/ > ı.
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10.2 Mapping tori

Let .M; !/ be a compact symplectic manifold and let  WM !M be a symplecto-
morphism. Denote by M the mapping torus

M WD Œ0; 1��M=.0;p/' .1;  .p//:

Let z! be the 2–form on M i
obtained by pulling back ! via projection to M, and let

zM WDR�M ;

with the symplectic structure z!Cds^dt . Denote by HF�.M;  / the fixed-point Floer
homology of  as introduced in [21]. The closed 1–form dt induces a grading of the
Floer homologies by integrating over periodic orbits.

Denote by S W zM !R the natural coordinate .s; t;p/ 7! s. Let f WR!R be a proper
convex function which is linear at infinity of slope at greater than k for some integer k.
Let J be an almost complex structure for which the map � W zM !R�S1 defined by
.s; t;p/ 7! .s; t/ is J–holomorphic. Let H D f ıS . The following theorem is due to
M Abouzaid.

Theorem 10.5 Denoting conformal isomorphism by', we have

(74) HF�;k.H IƒR/D HF�;k.H IƒR/' HF�.M;  k
IƒR/:

Proof The Hamiltonian vector field of S is @t . So the periodic orbits of H D f ıS are
contained in fibers of H for which f 0 is an integer. The periodic orbits corresponding
to an integer k are the fixed points of  k . The periodic orbits corresponding to different
values of k have different homotopy classes. Thus the Floer differential only connects
orbits within a fiber. The .H;J /–Floer trajectories in zM project under � to maps
satisfying the inhomogeneous Cauchy–Riemann equation

@sS D @tT � 1; @sT D @tS:

Thus the function sC i t 7! S C i.T � t/ is holomorphic. By the maximum principle,
S must be constant. In particular, Floer trajectories connecting orbits within a fiber
of H must stay within that fiber. Also, we have T D t .

Recall the definition of the differential in fixed-point Floer homology. Namely, for
fixed points x and y of  k , it counts J–holomorphic strips asymptotic to x and y

satisfying the boundary condition u.s; 1/D  .u.s; 0//. Given such a u we obtain a
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Floer cylinder zu in the mapping torus by zu.s; t/ WD .t;u.s; t//. This sets up a bijection
between the Floer trajectories connecting periodic orbits in a fiber and fixed-point
holomorphic strips. The rightmost equality in (74) follows. For the other equality note
that since  k has a finite number of fixed points, CF�;k.H IƒR/ is finite-dimensional
and thus the differential has closed image.

Proof of Theorem 2.6 Let f be any proper convex function and let H D f ı S .
Consider a monotone sequence of convex functions fn which are linear of slope larger
than k near infinity, and which converge to f . Write Hn WD fn ıS .

Since Floer trajectories remain in fibers of S , we have by the isomorphism (74) that

HF�;k.H /D HF�;k.Hn/D HF�.M;  k/:

By the same reasoning, given convex functions f1 � f2 and writing Hi D fi ıS for
i D 1; 2, we get that the natural map HF�;k.H1/! HF�;k.H2/ is just the identity
under the above identification.

It follows that
SH�;kuniv.

zM /D HF�;k.M;  k/:

Observe that SH�univ amounts to completing the direct sumM
k2Z

SH�;kuniv.
zM /

by allowing certain infinite sums. The claim follows.

10.3 The Künneth formula for split Hamiltonians

For i D 1; 2, let Mi be symplectic manifolds and let .Hi ;Ji/ be dissipative Floer data
on Mi . Unless .Hi ;Ji/ are strictly bounded, the data .H1ı�1CH2ı�2; �

�
1

J1C�
�
2

J2/

will not be i–bounded. In that case we replace CF�.H / via the telescope construction
by a sequence of Hamiltonians which are strictly bounded, and continue to denote this
by CF�.H /. We have

(75) cCF�.H1 ı�1CH2 ı�2; �
�
1 J1C�

�
2 J2/D CF�.H1;J1/ y̋ CF�.H2;J2/;

where the hat denotes here and later the complete tensor product. This is defined by
taking the Banach norm k � k on the tensor product X ˝Y to be defined by

kzk WD inf
˚
max

i
fkxikkyikg W z D

X
xi ˝yi

	
for z 2X ˝Y:

It is straightforward to verify using (54) that this is indeed the norm induced by (75).
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Theorem 10.6 We have a natural isometry of Banach spaces over ƒR,

HF�.H1CH2IƒR/D HF�.H1IƒR/ y̋ HF�.H2IƒR/:

Proof We follow the proof of the finite-dimensional case from [28]. Isomorphism (75)
induces a norm-preserving map

HF�.H1/ y̋ HF�.H2/!H�.CF�.H1/ y̋ CF�.H2//D HF�.H1CH2/:

We show that this map is surjective. All spaces considered here are countably generated.
In particular, every closed subspace has a closed complement [53, Proposition 10.5].
We thus decompose the chain complexes CF�.Mi IHi/ into a direct sum Ci ˚Zi of
chains and cycles, and then further decompose Zi DKi ˚Bi , where Bi D @Ci .

Any cycle  2CF�.H1/ y̋ CF�.H2/ is, up to the closure of the boundary, an element of

B1 y̋ C2˚K1 y̋ C2˚C1 y̋ K2˚K1 y̋ K2˚C1 y̋ C2:

Now note that the images of the spaces under @ are contained, respectively, in

B1 y̋ B2; K1 y̋ B2; B1 y̋ K2; 0; B1 y̋ C2˚B2 y̋ C1;

which are pairwise disjoint. So each component of the boundary must vanish separately.
Thus if  is a cycle it must actually be an element of K1 y̋ K2, up to the closure of the
boundary. In particular, the map is indeed surjective.

10.4 The Künneth formula for universal symplectic cohomology

We shall need the following lemma. The author is grateful to Lev Buhovski for its
proof.

Lemma 10.7 Let M and N be smooth manifolds , and let P DM �N . The set of
functions of the form f ı�1Cg ı�2 is cofinal in C1.P /.

Proof Take an exhaustion K1 �K2 � � � � �M of M and an exhaustion L1 �L2 �

� � ��N of N by compact sets, and define positive locally bounded functions g1 WM!R

and g2 W N ! R by g1.x/D maxKi�Li
f and g2.y/D maxKr�Lr

f , where i is the
minimal positive integer such that x 2Ki , and r is the minimal positive integer such
that y 2Lr . Then we have f .x;y/6 g1.x/Cg2.y/ for any .x;y/ 2M �N . Now,
since g1 and g2 are locally bounded, one can find smooth functions f1 WM !R and
f2 WN !R such that g1.x/6f1.x/ for any x 2M , and g2.y/6f2.y/ for any y 2N ,
so then we have f .x;y/6 f1.x/f2.y/ for any .x;y/ 2M �N .
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Proof of Theorem 2.7 By the discussion preceding Theorem 10.6, we have a natural
map

lim
��!

.H1;H2/2H.M1/�H.M2/

HF�.H1IƒR/˝HF�.H2IƒR/! SH�univ.M1 �M2IƒR/:

By Lemma 10.7 we can consider the right-hand side as a direct limit over the same
indexing set of split Hamiltonians. So an element of the right-hand side lifts, for some
pair .H1;H2/, to an element of  2 HF�.H1 ı�1CH2 ı�2/. By Theorem 10.6 the
image of the natural map

HF�.H1/˝HF�.H2/! HF�.H1 ı�1CH2 ı�2/

is sequentially dense. The density part of the claim follows. Now suppose some
element x of the left-hand side maps to 0 in the right-hand side. Then there is an
.H1;H2/ such that the lift zx of x to HF�.H1/˝HF�.H2/maps to 0 in HF�.H1CH2/.
It follows from Theorem 10.6 that zx D 0.

Corollary 10.8 Suppose that SH�univ.M1/D f0g. Then SH�univ.M1 �M2/D f0g.

10.5 Vanishing results

Theorem 10.9 Let M be a geometrically bounded manifold such that c1.M / D 0.
Suppose there exists a proper dissipative nondegenerate Hamiltonian on M carrying no
periodic orbits of index 0. Then SH�univ.M IK/D 0.

Proof By definition, the natural map H�.M IK/ ! SH�.M IK/ factors through
HF�.M IK/. Since HF�.H IK/D 0, we get from Theorem 1.3 that SH�univ.M IK/ is
a unital algebra in which 1D 0.

Lemma 10.10 Let M be a geometrically bounded manifold such that c1.M / D 0.
The hypotheses of Theorem 10.9 are satisfied if M carries a circle action  �2S1 with
the following properties:

(a) It is generated by a Hamiltonian H which is proper and bounded from below.

(b) There is an equivariant compatible geometrically bounded almost complex
structure J such that the distance d.p;  1=2.p// under gJ is bounded away
from 0 outside of a compact set , and krHkgJ

� f .H / for some function
f WR! Œ1;1/ for which the primitive of 1=f is unbounded from above.
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Proof Assume that the flow of H has minimal period 1. Our assumptions imply that
for any integer k, the function

�
kC 1

2

�
H is dissipative. Indeed, invariance of J under

the flow implies the flow of H is Killing. Thus, by Corollary 5.18 and Lemma 5.16
the metric gJH

is geometrically bounded. The estimate on d.p;  1=2.p// implies
loopwise dissipativity by Lemma 6.17 and Corollary 6.19. Indeed, in this case, the
Lyapunov constant vanishes. Let P � M be a connected component of the set of
critical points of H . Then P is compact and Morse–Bott. Since the flow of H is
1–periodic, the Robbin–Salamon index iRS.p/ for any p 2 P is related to the Morse
index of H by 2iMorse.p/C dim P D iRS.p/C 2n. Suppose first that iRS.p/ ¤ 0.
The Robbin–Salamon index is additive with respect to concatenation, and invariant
under reparametrization. Thus, the absolute value of the Robbin–Salamon index of
the critical points p 2 P can be made arbitrarily large by multiplying H by a large
enough constant. Suppose now that iRS.p/D 0. Then 0� iMorse.p/D n� 1

2
dim P . We

have dim P < 2n since the action is nontrivial. So we can perturb P and obtain fixed
points with Robbin–Salamon indices lying in

�
�

1
2

dim P; 1
2

dim P
�
� .�n; n/. Since

the grading defined in equation (53) (for which the unit has degree 0) is by iRS.p/Cn,
we get that in either case, for k large enough, there are no periodic orbits of index 0.

Remark 10.11 Lemma 10.10 has the curious implication that on a closed symplectic
manifold M with c1.M /D 0 there are no Hamiltonian circle actions. This is in fact
proven in [43].

Example 10.12 Let M be a toric Calabi–Yau manifold obtained as the symplectic
reduction of CN by a torus preserving the holomorphic volume. Then M has an
induced almost complex structure which preserves the action of the residual torus. With
the induced Kahler metric, M can be shown to have bounded geometry, and the circle
action given by the diagonal action

� � Œz1; : : : ; zN �D Œe
i�z1; : : : ; e

i�zN �

can be shown to satisfy the conditions of Lemma 10.10. Thus SH�univ.M /D 0. This
generalizes the vanishing of the symplectic cohomology of Cn as well as the more
general result of [49] concerning the case where M is total space of a negative line
bundle over projective space and c1.M /D 0.

10.6 Existence of periodic orbits

Proof of Theorem 2.4 Let H W M ! R be a proper smooth function such that
H�1.�1; 0/DK. Suppose there is a ı > 0 such that the flow of H on H�1.0; ı/ has
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no periodic orbits representing ˛ in the first part or contractible in the second. We may
assume without loss of generality that H has sufficiently small Hessian everywhere so
that the only periodic orbits are critical points. Let hn WR!R be a monotone function
constructed inductively so that �1=n < hn.x/ < 0 for x 2 .�1; a�, hn.x/ D xC n

on .aC ı=n;1/ and hn.x/ � hn�1.x/ everywhere. Let Hn D hn ıH . Note that by
our assumption the only periodic orbits of Hn are critical points, or, in the first part,
periodic orbits not representing ˛. We have that Hn converges in a monotone way
to HK . So, by Lemma 8.17,

SH�.M jKIK/DcSC�.fHng/D lim
 ��

a

lim
��!

n

HF�Œa;1/.HnIK/:

The first part of the theorem now follows, since the complex cSC�;˛.fHng/ computing
SH�;˛.M jK/ is the zero complex. We prove the second part. We claim that for any n,
any �1 < a < b, and any x 2 HF�

Œa;b/
.HnIK/ supported on critical points lying

outside of K, there is an n0 such that x 7! 0 in HF�
Œa;b/

.Hn0 IK/. Indeed, if we choose
sufficiently generic time-independent almost complex structures we may assume that
for any triple of integers m; n1; n2, any simple Floer trajectory in the differential of
CF�..1=m/Hni

/ or in the continuation map CF�..1=m/Hn1
/ ! CF�..1=m/Hn2

/

is of the expected dimension. By a standard argument in Floer theory [32], all the
solutions are time-independent. Namely, since the Floer data and the asymptotic data
are all time-independent, a solution zu is either time-independent as well, or part of a
nontrivial S1 family of solutions. In the latter case, zu is an m–fold cover of a simple
time-dependent solution u associated to Hamiltonians 1

m
Hni

, which also appears in
an S1 family and is thus not of the expected dimension, contradicting the assumption.
Any time-independent trajectory is gradient-like for H . So if it emanates from a critical
point outside of K, it remains outside of K. Moreover, the action difference for a
continuation trajectory going from a critical point x1 of Hn1

to a critical point x2

of Hn2
, both lying outside of K, is just

�Hn2
.x2/CHn1

.x1/ < �.n2� n1/:

Thus, if n2 � n1 > val.x/C a, then x will map to 0 in HF�
Œa;b/

.Hn2
IK/. By similar

reasoning, if x is supported in K, it will map to itself under the obvious identification
of critical points of Hni

with those of H . The claim follows.

Proof of Theorem 2.8(a) For any compact set K, the map SH�univ ! SH�.M jK/
is unital. Moreover, the map SH�univ ! SH�.M jK/ is continuous by Lemma 9.16.
Therefore, f0g maps to 0 under this map. So the hypothesis implies SH�.M jK/D 0

for all K �M. The claim follows from Theorem 2.4.

Geometry & Topology, Volume 27 (2023)



1386 Yoel Groman

The proof of part (b) of Theorem 2.8 relies on the following lemma.

Lemma 10.13 Under the assumptions of Theorem 2.8(b), we have that for any smooth
J–proper Hamiltonian H WM !RC, there is an a2RC such that the set of x 2 Œa;1/

for which H�1.x/ has a periodic orbit representing ˛ is dense in Œa;1/.

Proof Suppose otherwise. Then there is a monotone increasing unbounded sequence
faig such that for x 2 .a2i ; a2iC1/ the flow of H has no periodic orbits representing ˛.
Fix a geometrically bounded almost complex structure J . For any R > 0 we may
assume without loss of generality that BR.H

�1.a2i�1//�H�1.a2i/. Fix a constant �
and consider the set E of functions h W RC ! RC such that krh ıHk < � outside
of the segments .a2i ; a2iC1/. Then the set fh ıH j h 2 Eg is �–cofinal in H, where
� is as defined in (73). Taking R large enough and epsilon small enough, the Floer
data .h ıH;J / will be dissipative by the proof of Theorem 6.10. Moreover, these
compositions have no periodic orbits representing ˛. Thus SH�;˛.M /D0, contradicting
the assumption.

Proof of Theorem 2.8(b) Suppose otherwise. Then for any K there is a proper
Hamiltonian H and real numbers 0< a< b such that K �H�1.Œ0; a�/ and there are
no periodic orbits in the interval .a; b/. Inductively choose an exhaustion by compact
sets Ki , and exhaustion Hamiltonians Hi with gaps .ai ; bi/ so that for all i we have

Ki �H�1.Œ0; ai �/�H�1.Œ0; bi �/�KiC1 and ai < bi < aiC1:

Let H be any proper Hamiltonian coinciding with Hi on H�1
i .Œai ; bi �/ and satisfying

bi <H.x/ < aiC1

on the region
fHi.x/ > big\ fHiC1 < aiC1g:

By taking a subsequence, we can assume further that H is J–proper. There is no a> 0

for which H satisfies nearby existence on Œa;1/, in contradiction to Lemma 10.13.

References
[1] M Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math.

Inst. Hautes Études Sci. 112 (2010) 191–240 MR Zbl

[2] M Abouzaid, Framed bordism and Lagrangian embeddings of exotic spheres, Ann. of
Math. 175 (2012) 71–185 MR Zbl

Geometry & Topology, Volume 27 (2023)

http://dx.doi.org/10.1007/s10240-010-0028-5
http://msp.org/idx/mr/2737980
http://msp.org/idx/zbl/1215.53078
http://dx.doi.org/10.4007/annals.2012.175.1.4
http://msp.org/idx/mr/2874640
http://msp.org/idx/zbl/1244.53089


Floer theory and reduced cohomology on open manifolds 1387

[3] M Abouzaid, Family Floer cohomology and mirror symmetry, from “Proceedings of
the International Congress of Mathematicians, II” (S Y Jang, Y R Kim, D-W Lee, I Yie,
editors), Kyung Moon Sa, Seoul (2014) 813–836 MR Zbl

[4] M Abouzaid, Symplectic cohomology and Viterbo’s theorem, from “Free loop spaces
in geometry and topology” (J Latschev, A Oancea, editors), IRMA Lect. Math. Theor.
Phys. 24, Eur. Math. Soc., Zürich (2015) 271–485 MR Zbl

[5] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol.
14 (2010) 627–718 MR Zbl

[6] M Audin, F Lalonde, L Polterovich, Symplectic rigidity: Lagrangian submanifolds,
from “Holomorphic curves in symplectic geometry” (M Audin, J Lafontaine, editors),
Progr. Math. 117, Birkhäuser, Basel (1994) 271–321 MR Zbl

[7] D Auroux, Mirror symmetry and T –duality in the complement of an anticanonical
divisor, J. Gökova Geom. Topol. 1 (2007) 51–91 MR Zbl

[8] D Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from
“Surveys in differential geometry, XIII: Geometry, analysis, and algebraic geometry”
(H-D Cao, S-T Yau, editors), Surv. Differ. Geom. 13, International, Somerville, MA
(2009) 1–47 MR Zbl

[9] S Bosch, Lectures on formal and rigid geometry, Lecture Notes in Math. 2105, Springer
(2014) MR Zbl

[10] M P do Carmo, Riemannian geometry, Birkhäuser, Boston, MA (1992) MR Zbl

[11] J Cheeger, M Goresky, R MacPherson, L2–cohomology and intersection homology
of singular algebraic varieties, from “Seminar on differential geometry” (S T Yau,
editor), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 303–340 MR Zbl

[12] J Cheeger, M Gromov, M Taylor, Finite propagation speed, kernel estimates for
functions of the Laplace operator, and the geometry of complete Riemannian manifolds,
J. Differential Geometry 17 (1982) 15–53 MR Zbl

[13] Y V Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic
curves, Duke Math. J. 95 (1998) 213–226 MR Zbl

[14] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back: symplectic geometry of
affine complex manifolds, American Mathematical Society Colloquium Publications 59,
Amer. Math. Soc., Providence, RI (2012) MR Zbl

[15] K Cieliebak, A Floer, H Hofer, Symplectic homology, II: A general construction,
Math. Z. 218 (1995) 103–122 MR Zbl

[16] K Cieliebak, U Frauenfelder, G P Paternain, Symplectic topology of Mañé’s critical
values, Geom. Topol. 14 (2010) 1765–1870 MR Zbl

[17] K Cieliebak, V L Ginzburg, E Kerman, Symplectic homology and periodic orbits
near symplectic submanifolds, Comment. Math. Helv. 79 (2004) 554–581 MR Zbl

Geometry & Topology, Volume 27 (2023)

https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2014.2/ICM2014.2.pdf
http://msp.org/idx/mr/3728639
http://msp.org/idx/zbl/1373.53120
http://dx.doi.org/10.4171/153
http://msp.org/idx/mr/3444367
http://msp.org/idx/zbl/1385.53078
http://dx.doi.org/10.2140/gt.2010.14.627
http://msp.org/idx/mr/2602848
http://msp.org/idx/zbl/1195.53106
http://dx.doi.org/10.1007/978-3-0348-8508-9_11
http://msp.org/idx/mr/1274934
http://msp.org/idx/zbl/0802.53001
http://www.gokovagt.org/journal/2007/auroux.html
http://www.gokovagt.org/journal/2007/auroux.html
http://msp.org/idx/mr/2386535
http://msp.org/idx/zbl/1181.53076
http://dx.doi.org/10.4310/SDG.2008.v13.n1.a1
http://msp.org/idx/mr/2537081
http://msp.org/idx/zbl/1184.53085
http://dx.doi.org/10.1007/978-3-319-04417-0
http://msp.org/idx/mr/3309387
http://msp.org/idx/zbl/1314.14002
http://dx.doi.org/10.1007/978-1-4757-2201-7
http://msp.org/idx/mr/1138207
http://msp.org/idx/zbl/0752.53001
http://msp.org/idx/mr/645745
http://msp.org/idx/zbl/0503.14008
http://projecteuclid.org/euclid.jdg/1214436699
http://projecteuclid.org/euclid.jdg/1214436699
http://msp.org/idx/mr/658471
http://msp.org/idx/zbl/0493.53035
http://dx.doi.org/10.1215/S0012-7094-98-09506-0
http://dx.doi.org/10.1215/S0012-7094-98-09506-0
http://msp.org/idx/mr/1646550
http://msp.org/idx/zbl/0977.53077
http://dx.doi.org/10.1090/coll/059
http://dx.doi.org/10.1090/coll/059
http://msp.org/idx/mr/3012475
http://msp.org/idx/zbl/1262.32026
http://dx.doi.org/10.1007/BF02571891
http://msp.org/idx/mr/1312580
http://msp.org/idx/zbl/0869.58011
http://dx.doi.org/10.2140/gt.2010.14.1765
http://dx.doi.org/10.2140/gt.2010.14.1765
http://msp.org/idx/mr/2679582
http://msp.org/idx/zbl/1239.53110
http://dx.doi.org/10.1007/s00014-004-0814-0
http://dx.doi.org/10.1007/s00014-004-0814-0
http://msp.org/idx/mr/2081726
http://msp.org/idx/zbl/1073.53118


1388 Yoel Groman

[18] K Cieliebak, A Oancea, Symplectic homology and the Eilenberg–Steenrod axioms,
Algebr. Geom. Topol. 18 (2018) 1953–2130 MR Zbl

[19] A Daemi, K Fukaya, Monotone Lagrangian Floer theory in smooth divisor comple-
ments, II, preprint (2018) arXiv 1809.03409

[20] X Dai, An introduction to L2 cohomology, from “Topology of stratified spaces” (G
Friedman, E Hunsicker, A Libgober, L Maxim, editors), Math. Sci. Res. Inst. Publ. 58,
Cambridge Univ. Press (2011) 1–12 MR Zbl

[21] S Dostoglou, D A Salamon, Self-dual instantons and holomorphic curves, Ann. of
Math. 139 (1994) 581–640 MR Zbl

[22] O Fabert, Contact homology of Hamiltonian mapping tori, Comment. Math. Helv. 85
(2010) 203–241 MR Zbl

[23] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic
action, Duke Math. J. 80 (1995) 251–292 MR Zbl

[24] S Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category,
preprint (2013) arXiv 1304.7312

[25] S Ganatra, Cyclic homology, S1–equivariant Floer cohomology, and Calabi–Yau
structures, preprint (2019) arXiv 1912.13510

[26] S Ganatra, J Pardon, V Shende, Covariantly functorial wrapped Floer theory on
Liouville sectors, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 73–200 MR Zbl

[27] R E Greene, H Wu, C1 approximations of convex, subharmonic, and plurisubhar-
monic functions, Ann. Sci. École Norm. Sup. 12 (1979) 47–84 MR Zbl

[28] P Griffiths, J Harris, Principles of algebraic geometry, Wiley, New York (1978) MR
Zbl

[29] Y Groman, The wrapped Fukaya category for semi-toric SYZ fibrations, preprint (2018)
arXiv 1805.03635

[30] Y Groman, W J Merry, The symplectic cohomology of magnetic cotangent bundles,
preprint (2018) arXiv 1809.01085

[31] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82
(1985) 307–347 MR Zbl

[32] H Hofer, D A Salamon, Floer homology and Novikov rings, from “The Floer memorial
volume” (H Hofer, C H Taubes, A Weinstein, E Zehnder, editors), Progr. Math. 133,
Birkhäuser, Basel (1995) 483–524 MR Zbl

[33] J Kang, Symplectic homology of displaceable Liouville domains and leafwise intersec-
tion points, Geom. Dedicata 170 (2014) 135–142 MR Zbl

[34] H Karcher, Riemannian comparison constructions, from “Global differential geometry”
(S S Chern, editor), MAA Stud. Math. 27, Math. Assoc. America, Washington, DC
(1989) 170–222 MR Zbl

Geometry & Topology, Volume 27 (2023)

http://dx.doi.org/10.2140/agt.2018.18.1953
http://msp.org/idx/mr/3797062
http://msp.org/idx/zbl/1392.53093
http://msp.org/idx/arx/1809.03409
http://msp.org/idx/mr/2796405
http://msp.org/idx/zbl/1232.58011
http://dx.doi.org/10.2307/2118573
http://msp.org/idx/mr/1283871
http://msp.org/idx/zbl/0812.58031
http://dx.doi.org/10.4171/CMH/193
http://msp.org/idx/mr/2563686
http://msp.org/idx/zbl/1188.53102
http://dx.doi.org/10.1215/S0012-7094-95-08010-7
http://dx.doi.org/10.1215/S0012-7094-95-08010-7
http://msp.org/idx/mr/1360618
http://msp.org/idx/zbl/0846.58025
http://msp.org/idx/arx/1304.7312
http://msp.org/idx/arx/1912.13510
http://dx.doi.org/10.1007/s10240-019-00112-x
http://dx.doi.org/10.1007/s10240-019-00112-x
http://msp.org/idx/mr/4106794
http://msp.org/idx/zbl/07209675
http://dx.doi.org/10.24033/asens.1361
http://dx.doi.org/10.24033/asens.1361
http://msp.org/idx/mr/532376
http://msp.org/idx/zbl/0415.31001
http://dx.doi.org/10.1002/9781118032527
http://msp.org/idx/mr/507725
http://msp.org/idx/zbl/0408.14001
http://msp.org/idx/arx/1805.03635
http://msp.org/idx/arx/1809.01085
http://dx.doi.org/10.1007/BF01388806
http://msp.org/idx/mr/809718
http://msp.org/idx/zbl/0592.53025
http://dx.doi.org/10.1007/978-3-0348-9217-9_20
http://msp.org/idx/mr/1362838
http://msp.org/idx/zbl/0842.58029
http://dx.doi.org/10.1007/s10711-013-9872-z
http://dx.doi.org/10.1007/s10711-013-9872-z
http://msp.org/idx/mr/3199480
http://msp.org/idx/zbl/1300.53070
http://proxy.math.uni-bonn.de/people/karcher/RiemCompConst.pdf
http://msp.org/idx/mr/1013810
http://msp.org/idx/zbl/0683.53040


Floer theory and reduced cohomology on open manifolds 1389

[35] G Lu, Virtual moduli cycles and Gromov–Witten invariants of noncompact symplectic
manifolds, Comm. Math. Phys. 261 (2006) 43–131 MR Zbl

[36] W Lück, L2–invariants: theory and applications to geometry and K–theory, Ergeb-
nesse der Math. (3) 44, Springer (2002) MR Zbl

[37] D McDuff, D Salamon, J–holomorphic curves and symplectic topology, American
Mathematical Society Colloquium Publications 52, Amer. Math. Soc., Providence, RI
(2004) MR Zbl

[38] D McDuff, D Salamon, Introduction to symplectic topology, 3rd edition, Oxford Univ.
Press (2017) MR Zbl

[39] J Milnor, Morse theory, Ann. of Math. Stud. 51, Princeton Univ. Press (1963) MR Zbl

[40] A Nabutovsky, Disconnectedness of sublevel sets of some Riemannian functionals,
Geom. Funct. Anal. 6 (1996) 703–725 MR Zbl

[41] A Oancea, A survey of Floer homology for manifolds with contact type boundary or
symplectic homology, from “Symplectic geometry and Floer homology: a survey of the
Floer homology for manifolds with contact type boundary or symplectic homology”,
Ensaios Mat. 7, Soc. Brasil. Mat., Rio de Janeiro (2004) 51–91 MR Zbl

[42] A Oancea, The Künneth formula in Floer homology for manifolds with restricted
contact type boundary, Math. Ann. 334 (2006) 65–89 MR Zbl

[43] K Ono, Some remarks on group actions in symplectic geometry, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 35 (1988) 431–437 MR Zbl

[44] M Pabiniak, Displacing (Lagrangian) submanifolds in the manifolds of full flags, Adv.
Geom. 15 (2015) 101–108 MR Zbl

[45] P Petersen, Riemannian geometry, 2nd edition, Graduate Texts in Math. 171, Springer
(2006) MR Zbl

[46] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and
quantum cohomology, from “Contact and symplectic geometry” (C B Thomas, editor),
Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171–200 MR Zbl

[47] A F Ritter, Deformations of symplectic cohomology and exact Lagrangians in ALE
spaces, Geom. Funct. Anal. 20 (2010) 779–816 MR Zbl

[48] A F Ritter, Topological quantum field theory structure on symplectic cohomology, J.
Topol. 6 (2013) 391–489 MR Zbl

[49] A F Ritter, Floer theory for negative line bundles via Gromov–Witten invariants, Adv.
Math. 262 (2014) 1035–1106 MR Zbl

[50] A F Ritter, I Smith, The monotone wrapped Fukaya category and the open-closed
string map, Selecta Math. 23 (2017) 533–642 MR Zbl

[51] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827–844 MR
Zbl

Geometry & Topology, Volume 27 (2023)

http://dx.doi.org/10.1007/s00220-005-1393-7
http://dx.doi.org/10.1007/s00220-005-1393-7
http://msp.org/idx/mr/2193206
http://msp.org/idx/zbl/1115.53064
http://dx.doi.org/10.1007/978-3-662-04687-6
http://msp.org/idx/mr/1926649
http://msp.org/idx/zbl/1009.55001
http://dx.doi.org/10.1090/coll/052
http://msp.org/idx/mr/2045629
http://msp.org/idx/zbl/1064.53051
http://dx.doi.org/10.1093/oso/9780198794899.001.0001
http://msp.org/idx/mr/3674984
http://msp.org/idx/zbl/1380.53003
https://www.jstor.org/stable/j.ctv3f8rb6
http://msp.org/idx/mr/0163331
http://msp.org/idx/zbl/0108.10401
http://dx.doi.org/10.1007/BF02247118
http://msp.org/idx/mr/1406670
http://msp.org/idx/zbl/0872.53030
https://ensaios.sbm.org.br/volumes/
https://ensaios.sbm.org.br/volumes/
http://msp.org/idx/mr/2100955
http://msp.org/idx/zbl/1070.53056
http://dx.doi.org/10.1007/s00208-005-0700-0
http://dx.doi.org/10.1007/s00208-005-0700-0
http://msp.org/idx/mr/2208949
http://msp.org/idx/zbl/1087.53078
http://msp.org/idx/mr/965009
http://msp.org/idx/zbl/0711.53025
http://dx.doi.org/10.1515/advgeom-2014-0025
http://msp.org/idx/mr/3300713
http://msp.org/idx/zbl/1311.53064
http://dx.doi.org/10.1007/978-0-387-29403-2
http://msp.org/idx/mr/2243772
http://msp.org/idx/zbl/1220.53002
http://msp.org/idx/mr/1432464
http://msp.org/idx/zbl/0874.53031
http://dx.doi.org/10.1007/s00039-010-0074-7
http://dx.doi.org/10.1007/s00039-010-0074-7
http://msp.org/idx/mr/2720232
http://msp.org/idx/zbl/1228.53092
http://dx.doi.org/10.1112/jtopol/jts038
http://msp.org/idx/mr/3065181
http://msp.org/idx/zbl/1298.53093
http://dx.doi.org/10.1016/j.aim.2014.06.009
http://msp.org/idx/mr/3228449
http://msp.org/idx/zbl/1294.53075
http://dx.doi.org/10.1007/s00029-016-0255-9
http://dx.doi.org/10.1007/s00029-016-0255-9
http://msp.org/idx/mr/3595902
http://msp.org/idx/zbl/1359.53068
http://dx.doi.org/10.1016/0040-9383(93)90052-W
http://msp.org/idx/mr/1241874
http://msp.org/idx/zbl/0798.58018


1390 Yoel Groman

[52] D Salamon, Lectures on Floer homology, from “Symplectic geometry and topology”
(Y Eliashberg, L Traynor, editors), IAS/Park City Math. Ser. 7, Amer. Math. Soc.,
Providence, RI (1999) 143–229 MR Zbl

[53] P Schneider, Nonarchimedean functional analysis, Springer (2002) MR Zbl

[54] M Schwarz, Cohomology operations from S1–cobordisms in Floer homology, PhD
thesis, Swiss Federal Institute of Technology Zurich (1995) Available at http://
www.math.uni-leipzig.de/~schwarz/diss.pdf

[55] P Seidel, Fukaya categories and deformations, from “Proceedings of the International
Congress of Mathematicians” (T Li, editor), volume 2, Higher Ed., Beijing (2002)
351–360 MR Zbl

[56] P Seidel, A biased view of symplectic cohomology, from “Current developments in
mathematics, 2006” (B Mazur, T Mrowka, W Schmid, R Stanley, S-T Yau, editors),
International, Somerville, MA (2008) 211–253 MR Zbl

[57] J-C Sikorav, Some properties of holomorphic curves in almost complex manifolds,
from “Holomorphic curves in symplectic geometry” (M Audin, J Lafontaine, editors),
Progr. Math. 117, Birkhäuser, Basel (1994) 165–189 MR Zbl

[58] J Tu, On the reconstruction problem in mirror symmetry, Adv. Math. 256 (2014)
449–478 MR Zbl

[59] M Usher, The sharp energy-capacity inequality, Commun. Contemp. Math. 12 (2010)
457–473 MR Zbl

[60] M Usher, Boundary depth in Floer theory and its applications to Hamiltonian dynamics
and coisotropic submanifolds, Israel J. Math. 184 (2011) 1–57 MR Zbl

[61] U Varolgunes, Mayer–Vietoris property for relative symplectic cohomology, Geom.
Topol. 25 (2021) 547–642 MR Zbl

[62] S Venkatesh, Rabinowitz Floer homology and mirror symmetry, J. Topol. 11 (2018)
144–179 MR Zbl

[63] C Viterbo, Functors and computations in Floer homology with applications, I, Geom.
Funct. Anal. 9 (1999) 985–1033 MR Zbl

[64] C Viterbo, Functors and computations in Floer homology with applications, II, preprint
(2018) arXiv 1805.01316

Einstein Institute of Mathematics, The Hebrew University of Jerusalem - Givat Ram
Jerusalem, Israel

ygroman@gmail.com

Proposed: Yakov Eliashberg Received: 20 September 2017
Seconded: Leonid Polterovich, Gang Tian Revised: 2 November 2021

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1016/S0165-2427(99)00127-0
http://msp.org/idx/mr/1702944
http://msp.org/idx/zbl/1031.53118
http://dx.doi.org/10.1007/978-3-662-04728-6
http://msp.org/idx/mr/1869547
http://msp.org/idx/zbl/0998.46044
http://www.math.uni-leipzig.de/~schwarz/diss.pdf
http://www.math.uni-leipzig.de/~schwarz/diss.pdf
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2002.2/ICM2002.2.ocr.pdf
http://msp.org/idx/mr/1957046
http://msp.org/idx/zbl/1014.53052
https://projecteuclid.org/euclid.cdm/1223654543
http://msp.org/idx/mr/2459307
http://msp.org/idx/zbl/1165.57020
http://dx.doi.org/10.1007/978-3-0348-8508-9_6
http://msp.org/idx/mr/1274929
http://msp.org/idx/zbl/0802.53001
http://dx.doi.org/10.1016/j.aim.2014.02.005
http://msp.org/idx/mr/3177298
http://msp.org/idx/zbl/1287.53077
http://dx.doi.org/10.1142/S0219199710003889
http://msp.org/idx/mr/2661273
http://msp.org/idx/zbl/1200.53077
http://dx.doi.org/10.1007/s11856-011-0058-9
http://dx.doi.org/10.1007/s11856-011-0058-9
http://msp.org/idx/mr/2823968
http://msp.org/idx/zbl/1253.53085
http://dx.doi.org/10.2140/gt.2021.25.547
http://msp.org/idx/mr/4251433
http://msp.org/idx/zbl/1475.53098
http://dx.doi.org/10.1112/topo.12050
http://msp.org/idx/mr/3784228
http://msp.org/idx/zbl/1398.53095
http://dx.doi.org/10.1007/s000390050106
http://msp.org/idx/mr/1726235
http://msp.org/idx/zbl/0954.57015
http://msp.org/idx/arx/1805.01316
mailto:ygroman@gmail.com
http://msp.org
http://msp.org


msp
Geometry & Topology 27:4 (2023) 1391–1478

DOI: 10.2140/gt.2023.27.1391
Published: 15 June 2023

Geodesic coordinates for the pressure metric
at the Fuchsian locus

XIAN DAI

We prove that the Hitchin parametrization provides geodesic coordinates at the
Fuchsian locus for the pressure metric in the Hitchin component H3.S/ of surface
group representations into PSL.3;R/.

The proof consists of the following elements: We compute first derivatives of the
pressure metric using the thermodynamic formalism. We invoke a gauge-theoretic
formula to compute the first and second variations of the reparametrization functions
by studying flat connections from Hitchin’s equations and their parallel transports.
We then extend these expressions of integrals over closed geodesics to integrals over
the two-dimensional surface. Symmetries of the Liouville measure then provide
cancellations, which show that the first derivatives of the pressure metric tensors
vanish at the Fuchsian locus.
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1 Introduction

The Weil–Petersson metric on Teichmüller space is a central object in classical Teich-
müller theory. Quite a bit is known about it: it is a negatively curved real analytic
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Kähler metric with isometry group induced from the extended mapping class group
(see Ahlfors [1], Tromba [36] and Masur and Wolf [25]). Although it is not complete
(see Wolpert [38] and Chu [11]), it resembles a complete negative curved metric and
shares many similar nice properties (see Wolpert [38; 39]).

In recent years, considerable attention has focused on higher-rank Teichmüller spaces;
see Goldman [13], Hitchin [15] and Labourie [19]. It is natural to seek metric structures
on these spaces with the hope that such structure will reflect important properties
of the spaces. To that end, Bridgeman, Canary, Labourie and Sambarino [8] have
extended the Weil–Petersson metric from Teichmüller space to an analytic Riemannian
metric by techniques from thermodynamic formalism, called the pressure metric on
Hitchin components. The Hitchin component Hn.S/, defined by Hitchin in [15], is a
special component of the representation space of the fundamental group of a closed
surface S of genus g � 2 into PSL.n;R/. In particular, the Teichmüller space T .S/,
identified as representations into PSL.2;R/, embeds in this component and is called
the Fuchsian locus. To define the pressure metric, we associate a geodesic flow to each
Hitchin representation and describe these reparametrized geodesic flows by some Hölder
functions, called reparametrization functions. Our pressure metric is defined on the
tangent space of a Hitchin component by taking the variance of the first variations of the
reparametrization functions that record the infinitesimal change of the representations.

Bridgeman, Canary, Labourie and Sambarino have proved that the pressure metric in
fact restricts to a multiple of the Weil–Petersson metric on the Fuchsian locus and is
invariant under the action of the mapping class group. Despite this nice coincidence,
very little is presently known about the pressure metric. Some C 0 properties of the
pressure metric have recently been identified by Labourie and Wentworth [20]. In
particular, they show that, when restricted to the Fuchsian locus, the pressure metric is
proportional to a Petersson-type pairing for variation given by holomorphic differentials.
Building upon their work, our goal in this paper is to investigate some variational C 1

properties of the pressure metric using tools from thermodynamic formalism.

One may be curious to what extent the pressure metric in Hitchin components resembles
Weil–Petersson geometry. Inspired by Ahlfors’ work [1] showing the Bers coordinates
are geodesic for Weil–Petersson metric, we will show that, for one particular case of
the Hitchin component, similar coordinates are geodesic for the pressure metric near
the Fuchsian locus. The Hitchin component we consider is H3.S/, which coincides
with the space of convex real projective structures; see Choi and Goldman [10]. It is a

Geometry & Topology, Volume 27 (2023)



Geodesic coordinates for the pressure metric at the Fuchsian locus 1393

prototypical example of higher-rank Teichmüller spaces. We expect similar results will
hold for general cases of Hitchin components Hn.S/.

Inspired by the methods of Labourie and Wentworth [20] for the C 0 properties of the
pressure metric, we will find and evaluate expressions for the derivatives of the pressure
metric at the Fuchsian locus for the case of PSL.3;R/ and its Hitchin component H3.S/.

The coordinates we choose are very natural in the setting of Hitchin components from
a Higgs bundle perspective. Picking .q1; : : : ; q6g�6/ to be a basis for H 0.X;K2/

over R and .q6g�5; : : : ; q16g�16/ to be a basis for H 0.X;K3/ over R, every element
of H3.S/ corresponds to some

m.�/D �1q1C � � �C �lql

with � D .�1; : : : ; �l/ 2Rl and l D 16g� 16.

The �i are coordinate functions and the coordinate system is realized by the Hitchin
parametrization H3.S/ŠH 0.X;K2/˚H 0.X;K3/. The Hitchin parametrization is
given by the Hitchin section of the Hitchin fibration, which was defined by Hitchin in
[15] and will be explained in the next section.

We will show:

Theorem 1.1 Let S be a closed oriented surface with genus g � 2. For any point
� 2 T .S/ � H3.S/, let X be the Riemann surface corresponding to � . Then the
Hitchin parametrization H 0.X;K2/˚H 0.X;K3/ provides geodesic coordinates for
the pressure metric at � .

More explicitly, if we denote components of the pressure metric at � by gij .�/ with
respect to the coordinates given by Hitchin parametrization, then @kgij .�/D 0 for all
possible i , j and k ranging from 1 to 16g� 16.

The proof will be a combination of techniques from the theory of thermodynamic
formalism and the theory of Higgs bundles. On the one hand, we will use thermo-
dynamic formalism to study the pressure metric and investigate its C 1 properties. On
the other hand, reparametrization functions and their variations need to be understood
via their Higgs bundle invariants. We now outline some important ingredients of our
computations and proofs.

Since there are two types of tangential directions in H3.S/— directions given by
quadratic differentials and directions given by cubic differentials (corresponding to
directions along the Fuchsian locus and transverse to it, respectively) — the derivatives
of the metric tensor will be divided into different cases according to this distinction:
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� The vanishing of a few types of first derivative of the metric tensor follows easily
from the geometric facts that the Fuchsian locus is a totally geodesic embedding into
the Hitchin component and that the Bers coordinates on Teichmüller space are geodesic.

� On the other hand, to compute the bulk of the components, we need to invoke ther-
modynamic formalism to obtain an explicit formula for first derivatives of the pressure
metric. We find a formula for the first variations of the pressure metric by computing
third derivatives of pressure functions using the theory of the Ruelle operator. This
expression involves the first and second variations of the reparametrization functions.

� We start from studying the first and second variations of the reparametrization
functions on closed geodesics. Because vectors tangent to periodic geodesics are dense
in tangent bundles of hyperbolic surfaces, the computation of the first and second
variations of the reparametrization functions on closed geodesics can be extended to the
unit tangent bundle after an argument that the natural extensions are Hölder functions.

� To study the first variations of the reparametrization functions on closed geodesics,
we recall a gauge-theoretic formula from [20]. We then interpret the resulting formula
as defining a system of homogeneous ordinary differential equations, which we proceed
to solve.

� Finding the second variations of the reparametrization functions is equivalent to
understanding the first variations of our gauge-theoretic formula from the previous
paragraph. The difficulty here is in describing how projections onto the eigenvectors
for the holonomy map vary when we have a family of representations in the Hitchin
component. Indeed, it turns out that we need to understand the variations of all of
the eigenvectors of our holonomy map. We interpret this problem in terms of solving
a system of nonhomogeneous ordinary differential equations with suitable boundary
conditions, which we then proceed to solve.

� For some types of metric tensors that involve both the tangential directions and
transverse directions to the Fuchsian locus, analyzing flat connections associated to
these directions require understanding the corresponding harmonic metrics that are
solutions of Hitchin’s equations. The harmonic metrics are no longer diagonalizable
when leaving the Fuchsian locus along these mixed directions. We break up the
infinitesimal version of Hitchin’s equation system and obtain nine scalar equations. We
analyze them by maximum principles and Bochner techniques to compute the second
variations of the reparametrization functions.
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� The evaluation of first derivatives of the pressure metric can be lifted to the Poincaré
disk following an idea from [20]. Here is where it becomes important that we are
taking first derivatives of the pressure metric rather than zero derivatives of the pressure
metric. In particular, we find formulas involving iterated integrals of these holomorphic
differentials. Specifying a point on the unit tangent bundle, we can identify the Poincaré
disk as our coordinate chart and write down the analytic expansions of our holomorphic
differentials on this chart. Using geodesic flow invariance and rotational invariance of
the Liouville measure, we find that no nonzero coefficients of our analytic expansions
remain after integration.

There are more cases of tangential directions along Fuchsian locus in Hn.S/ for n� 4,
where the harmonic metrics are not known to be diagonalizable. Despite the fact that
this makes the analysis difficult, the nD 3 case suggests the following conjecture:

Conjecture 1.2 Let S be a closed oriented surface with genus g � 2 and n� 4. For
any point � 2 T .S/ � Hn.S/, let X be the Riemann surface corresponding to � ;
the Hitchin parametrization

LiDn
iD2 H 0.X;Ki/ provides geodesic coordinates for the

pressure metric at � .

Recently, a Riemannian metric in Hn.S/ associated to periods given by the first simple
root length, L˛1

.�. //D log
�
�1.�. //=�2.�. //

�
, has been defined by Bridgeman,

Canary, Labourie and Sambarino [9], where �1.�. // and �2.�. // are the largest and
second largest moduli of eigenvalues of �. /. This Riemannian metric is called the
Liouville pressure quadratic form in [9]. Our methods of computing first derivatives
of metric tensors can be applied to the Liouville pressure quadratic form. We expect
similar geodesic coordinate results to hold in that setting as well.

Structure of the article In Section 2, we recall some fundamental results from the
theory of thermodynamic formalism and reparametrizations of geodesic flows. We
define the pressure metric. We also introduce Higgs bundles and Hitchin deformation
for defining our coordinates in Hitchin components. Section 3 is devoted to preliminary
proofs by thermodynamic formalism machinery. We compute the formula for third
derivatives of the pressure function. In Section 4, we start the proof of the main theorem
and divide the components of first derivatives of metric tensors into several types. We
also include a gauge-theoretic formula given by Labourie and Wentworth [20] here.
Then, in Section 5, we derive the second variations of the reparametrization functions
by studying infinitesimal variation of parallel transport equations. In Section 6, we
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evaluate the first derivatives of the pressure metric and show they are zero following
the steps explained above. We finally generalize the arguments to all types of metric
tensors in Section 7.
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2 Background and notation

In this section, we develop the notation and background material that we will need. We
begin in Section 2.1 with a discussion of reparametrization of geodesic flows. Then,
in Section 2.2, we recall the elements of thermodynamic formalism that we will need,
and finally, in Section 2.3, we conclude with some notation from the theory of Higgs
bundles which arises in our arguments.

Let S be a closed oriented surface with genus g � 2. We will define all the concepts
for introducing the pressure metric in the context of Hitchin components Hn.S/. The
reader can find a more general version in [8]. The Hitchin components Hn.S/ will be
briefly introduced in Section 2.3.

Equip S with a complex structure J such that X D .S;J / is a Riemann surface and
thus a point in Teichmüller space. Let � be the hyperbolic metric in the conformal
class of X. We denote the unit tangent bundle of X with respect to � by UX and the
geodesic flow on .X; �/ by ˆ.

2.1 Reparametrization function

We now introduce how we reparametrize the geodesic flow ˆ by reparametrization
functions. In particular, we introduce Livšic’s theorem and geodesic flows for Hitchin
representations.
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Suppose f W UX ! R is a positive Hölder function and a a closed orbit. We will
reparametrize the flow ˆ by the function f so that, for the new flow ˆf , the flow’s
direction remains the same everywhere but the speed of the flow changes. In particular,
for a ˆ–periodic orbit a, denoting its period with respect to ˆ by l.a/, we want the
period of a for the new flow ˆf to be

lf .a/D

Z l.a/

0

f .ˆs.x// ds;

where x is any point on a.

This leads to the following definition of reparametrization:

Definition 2.1 Let f W UX ! R be a positive Hölder continuous function. We
define the reparametrization of ˆ by f to be the flow ˆf on UX such that, for any
.x; t/ 2 UX �R,

ˆ
f
t .x/Dˆ˛f .x;t/.x/;

where �f .x; t/D
R t

0 f .ˆs.x// ds and f̨ W UX �R!R satisfies

f̨ .x; �f .x; t//D t:

Remark 2.2 Suppose O is the set of periodic orbits of ˆ. If a 2O, then its period as
a ˆft –periodic orbit is lf .a/ because

ˆ
f

lf .a/
.x/Dˆ˛f .x;lf .a//.x/Dˆl.a/.x/D x:

We introduce Livšic cohomology classes [22]. Livšic-cohomologous Hölder functions
turn out to reparametrize a flow in “equivalent” ways.

Let C h.UX / denote the set of real-valued Hölder functions on UX.

Definition 2.3 For f;g 2 C h.UX /, we say they are Livšic cohomologous if there
exists a Hölder continuous function V W UX ! R that is differentiable in the flow’s
direction such that

f .x/�g.x/D
@V .ˆT .x//

@t

ˇ̌̌̌
tD0

:

If f is Livšic cohomologous to g, then we will denote it by f � g.

We have the following important properties of Livšic-cohomologous functions:

(1) (Livšic’s theorem [23]) Two Hölder continuous function f and g are Livšic
cohomologous if and only if lf .a/D lg.a/ for every a 2O.

Geometry & Topology, Volume 27 (2023)



1398 Xian Dai

(2) If f and g are Livšic cohomologous, then they have the same integral over
any ˆ–invariant measure. This is because

R
UX V .ˆt .x// dmD const for any

ˆ–invariant measure m and any t 2R.

(3) [17, Proposition.19.2.8] If f and g are positive and Livšic cohomologous, then
the reparametrized flows ˆf and ˆg are Hölder conjugate, ie there exists a
Hölder homeomorphism h W UX ! UX such that, for all x 2 UX and t 2R,

h.ˆ
f
t .x//Dˆ

g
t .h.x//:

The procedure of reparametrizing geodesic flows can be applied to Hitchin components
Hn.S/ and provides reparametrization functions as codings for representations. This
idea was first introduced by Sambarino to study counting problems associated to Anosov
representations [33]. It has also been elaborated later in [34; 31] and other work of
Sambarino. In the setting we are working in, similar ideas lead to a construction of
a geodesic flow ˆ� associated to each (conjugacy class of a) Hitchin representation
� 2Hn.S/. We refer the reader to [8] for the explicit construction. In particular, this
flow relates Hn.S/ to thermodynamic formalism. We will describe here some of the
important properties of ˆ�:

� ˆ� is an Anosov flow.

� There exists a Hölder function f� W UX ! RC, called the reparametrization
function of �, such that the reparametrized flow ˆf� of ˆ is Hölder conjugate
to ˆ� [33].

� The period of the orbit associated to Œ � 2 �1.S/ is logƒ .�/, where ƒ .�/ is
the spectral radius of �. /, ie the largest modulus of the eigenvalues of �. /.

Remark 2.4 One can also reparametrize the geodesic flow by a Hölder function
with periods given by simple root lengths L˛1

.�. // D log
�
�1.�. //=�2.�. //

�
,

where �1.�. // and �2.�. // are the largest and second largest moduli of eigenvalues
of �. /. This will lead to the Liouville pressure quadratic form, which also gives rise to
a Riemannian metric in Hn.S/ (see [9, Theorem 1.6]). However we will mainly focus
on the spectrum radius length ƒ .�/ and its associated pressure metric in this paper.

2.2 Thermodynamic formalism

Next we will introduce some concepts arising from the thermodynamic formalism
needed for our proofs. The introduction of most of the material here can also be found
in [8]. After the introduction, we will define the pressure metric on Hitchin components.
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As usual, we let ˆ denote the geodesic flow on a hyperbolic surface .X; �/. We denote
by Mˆ the set of ˆ–invariant probability measures on UX. Recall l.a/ denotes the
period of the periodic point a with respect to ˆ. Let

RT D fa closed orbit of ˆ j l.a/� T g:

Definition 2.5 The topological entropy of ˆ is defined as

h.ˆ/D lim sup
T!1

log #RT

T
:

Recall, for a Hölder function f W UX !R, we write

lf .a/D

Z l.a/

0

f .ˆs.x// ds:

Definition 2.6 The topological pressure (or simply pressure) of a continuous function
f W UX !R with respect to ˆ is defined by

P .ˆ; f /D lim sup
T!1

1

T
log
� X

a2RT

elf .a/

�
:

Remark 2.7 From this definition, we see the pressure of a function f only depends
on the periods of f, ie the collection of numbers flf .a/g for any a 2O. From Livšic’s
theorem, we conclude the pressure of a function only depends on its Livšic cohomology
class.

In statistical mechanics, suppose we are given a physical system with different possible
states i D 1; : : : ; n and the energies of these states are E1;E2; : : : ;En with probability
pi that state i occurs. When energy is fixed, the principle “nature maximizes entropy h”
says that the entropy h.p1; : : : ;pn/ D

Pn
iD1�pi log pi of the distribution will be

maximized with right choices of pi . However, when the physical system is put in
contact with a much larger “heat source” which is at a fixed temperature T and energy
is allowed to pass between the original system and the heat source, “nature minimizes
the free energy” will instead apply by reaching the “Gibbs distribution”. The free
energy is E�kT h, where k is a physical constant and ED

Pn
iD1 piEi is the average

energy. In the thermodynamic formalism, energy potentials Ei of different states are
encoded by continuous functions and “Gibbs distributions” for discrete probability
spaces are generalized to equilibrium states. The principle “nature minimizes free
energy” motivates the following:
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Proposition 2.8 (variational principle) Denoting the measure-theoretic entropy of
ˆ with respect to a measure m 2Mˆ as h.ˆ;m/, the (topological ) pressure of a
continuous function f W UX !R satisfies

P .ˆ; f /D sup
m2Mˆ

�
h.ˆ;m/C

Z
UX

f dm

�
:

In particular , the topological entropy is the supremum of all measure-theoretic entropies ,

P .ˆ; 0/D sup
m2Mˆ

.h.ˆ;m//D h.ˆ/:

Remark 2.9 One can also take Proposition 2.8 as definitions of pressure and topologi-
cal entropies.

We shall omit the background geodesic flow ˆ in the notation of pressure and simply
write

P . � /DP .ˆ; � /:

Definition 2.10 A measure m 2Mˆ on UX such that

P .f /D h.ˆ;m/C

Z
UX

f dm

is called an equilibrium state of f.

Proposition 2.11 (Bowen and Ruelle [6]) For any Hölder function f WUX!R, with
respect to the geodesic flow ˆ, there exists a unique equilibrium state for f, denoted
by mf . Moreover , mf is ergodic.

Remark 2.12 By the definition of equilibrium states, if f �g is Livšic cohomologous
to a constant, then f and g have the same equilibrium states.

Definition 2.13 The equilibrium state m0 for f D 0 is called a probability measure of
maximal entropy. It is also called the Bowen–Margulis measure of ˆ. We also denote
it by mˆ. It satisfies

P .0/DP .ˆ; 0/D h.ˆ;mˆ/D h.ˆ/:

Remark 2.14 The Liouville measure mL, the normalized Riemannian measure on UX,
is a probability measure of maximal entropy for geodesic flows of closed hyperbolic
manifolds (see [16, Section 2]). Thus, when considering the geodesic flow ˆ of a
hyperbolic surface .X; �/, we have mL Dmˆ.
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Given f a positive Hölder continuous function on UX, denoting h.f /D h.ˆf / to be
the topological entropy of the reparametrized flow ˆf , we have the following lemma,
which allows us to “normalize” a Hölder function to have pressure zero:

Lemma 2.15 (Sambarino [33]; Bowen and Ruelle [6]) The pressure satisfies

P .�hf /D 0

if and only if hD h.f /D h.ˆf /.

Potrie and Sambarino show, in the Hitchin component Hn.S/, the topological entropy
is maximized only along the Fuchsian locus. In particular, it is a constant on the
Fuchsian locus.

Theorem 2.16 (Potrie and Sambarino [31]) If � 2 Hn.S/, then h.�/ � 2=.n� 1/.
Moreover , if h.�/D 2=.n� 1/, then � lies in the Fuchsian locus.

We start to define variance and covariance which will be important. The convergence
of them for mean zero functions is classical.

Definition 2.17 For g a Hölder continuous function on UX with mean zero with
respect to mf (ie

R
UX g dmf D 0), the variance of g with respect to f is defined as

(2-1) Var.g;mf /D lim
T!1

1

T

Z
UX

�Z T

0

g.ˆs.x// ds

�2

dmf .x/:

Definition 2.18 For g1 and g2 Hölder continuous functions on UX with mean zero
with respect to mf (ie

R
UX g1 dmf D

R
UX g2 dmf D 0), the covariance of g1;g2

with respect to f is defined as

(2-2) Cov.g1;g2;mf /

D lim
T!1

1

T

Z
UX

�Z T

0

g1.ˆs.x// ds

��Z T

0

g2.ˆs.x// ds

�
dmf .x/:

Note these expressions are finite:

Proposition 2.19 For g1 and g2 Hölder continuous function on UX with mean zero
with respect to mf , the covariance of g1 and g2 is finite:

Cov.g1;g2;mf / <1:

The convergence is guaranteed by decay of correlations (see [26]).
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Definition 2.20 We define an operator Pm W C
h.UX /! C h.UX / associated to a

probability measure m on UX to be

Pm.g/.x/D g.x/�m.g/;

where we use the notation m.g/D
R

UX g dm for a probability measure m.

The following corollary will be useful:

Corollary 2.21 It suffices to have mf .g1/ D 0 and mf .g2/ <1 to guarantee the
convergence of covariance and

(2-3) Cov.g1;g2;mf /D Cov.g1;Pmf .g2/;mf / <1:

The same applies to the case mf .g2/D 0 and mf .g1/ <1.

Proof We have

1

T

Z
UX

�Z T

0

g1.ˆs.x// ds

��Z T

0

g2.ˆs.x//�Pmf

�
g2.ˆs.x//

�
ds

�
dmf .x/

D
1

T

Z
UX

�Z T

0

g1.ˆs.x// ds

��Z T

0

mf .g2/ ds

�
dmf .x/

Dmf .g2/

Z
UX

Z T

0

g1.ˆs.x// ds dmf .x/ (as mf .g2/ is a constant)

Dmf .g2/

Z T

0

Z
UX

g1.ˆs.x// dmf .x/ ds (by Fubini’s theorem)

Dmf .g2/

Z T

0

Z
UX

g1.x/ dmf .x/ ds (as mf is ˆ–invariant)

D 0:

Letting T !1, we obtain the desired result.

We will also need the following characterization of covariance for later use:

Proposition 2.22 (Pollicott [29]) For g1 and g2 Hölder continuous functions with
mean zero with respect to mf (ie

R
UX g1 dmf D

R
UX g2 dmf D 0), the covariance of

g1 and g2 may also be written as

Cov.g1;g2;mf /D lim
T!1

Z
UX

g2.x/

�Z T=2

�T=2

g1.ˆs.x// ds

�
dmf .x/:
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Proof We have

Cov.g1;g2;mf /

D lim
T!1

1

T

Z
UX

�Z T

0

g1.ˆs.x// ds

��Z T

0

g2.ˆs.x// ds

�
dmf .x/

D lim
T!1

1

T

Z
UX

�Z T=2

�T=2

g1.ˆs.x// ds

��Z T=2

�T=2

g2.ˆs.x// ds

�
dmf .x/

(as mf is ˆ–invariant)

D lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//
1

T

�Z T=2

�T=2

g2.ˆs.x// ds

�
dmf .x/ dt:

Because m 2Mˆ, the following does not vary with s:

constD lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//g2.ˆs.x// dmf .x/ dt (for all s 2R)

D lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//
1

S

�Z S=2

�S=2

g2.ˆs.x// ds

�
dmf .x/ dt�

average over s 2
�
�

1
2
S; 1

2
S
��

D lim
S!1

lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//
1

S

�Z S=2

�S=2

g2.ˆs.x// ds

�
dmf .x/ dt

D lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//
1

T

�Z T=2

�T=2

g2.ˆs.x// ds

�
dmf .x/ dt

D Cov.g1;g2;mf /:

In particular, setting s D 0 gives

Cov.g1;g2;mf /D lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//g2..x// dmf .x/ dt:

Rearranging the integrals gives the desired result.

Higher correlation and higher covariance are introduced for Anosov diffeomorphism
in [18]. For geodesic flows, we define:

Definition 2.23 For g1, g2 and g3 Hölder continuous functions with mean zero with
respect to mf , we define the higher covariance by

Cov.g1;g2;g3;mf /

D lim
T!1

1

T

Z
UX

Z T

0

g1.ˆt .x// dt

Z T

0

g2.ˆt .x// dt

Z T

0

g3.ˆt .x// dt dmf .x/:
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Equivalently,

Cov.g1;g2;g3;mf /

D lim
T!1

Z
UX

g1.x/

�Z T=2

�T=2

g2.ˆs.x// ds

��Z T=2

�T=2

g3.ˆs.x// ds

�
dmf .x/:

This equivalence is clear from the proof of Proposition 2.22. The convergence of
Cov.h1; h2; h3;m/ is guaranteed by “exponential multiple mixing” for geodesic flow
on negatively curved compact surfaces (see Pollicott’s note [30]). These definitions
will be used later when we introduce first derivatives of the pressure metric.

We use the general notation in the sequel

(2-4) @sf .0/D
df .s/

ds

ˇ̌̌̌
sD0

; @2
sf .0/D

d2f .s/

ds2

ˇ̌̌̌
sD0

:

If there is more than one parameter, for example f .s1; s2; : : : ; sk/ and k � 2, then we
specify the indexes that we are taking derivatives of, such as

(2-5) @si1
:::sij

f .0/D
@jf .s1; s2; : : : ; sk/

@si1
� � � @sij

ˇ̌̌̌
s1Ds2D���D0

:

Theorem 2.24 (Parry and Pollicott [27]; McMullen [26]) Let fs be a smooth family
of functions in C h.UX /. Then:

(1) The first derivative of P .fs/ at s D 0 is given by

(2-6)
dP .fs/

ds

ˇ̌̌̌
sD0

D

Z
UX

@sf0 dmf0
:

(2) If the first derivative is zero , then

(2-7)
d2P .fs/

ds2

ˇ̌̌̌
sD0

D Var.@sf0;mf0
/C

Z
UX

@2
sf0 dmf0

:

(3) If the first derivative is zero , then Var.@sf0;mf0
/ D 0 if and only if @sf0 is

Livšic cohomologous to zero.

Remark 2.25 If f .s; t/ is a smooth two-parameter family in C h.UX /, then

(2-8)
@P .f .s; t//

@t @s

ˇ̌̌̌
sDtD0

D Cov
�
Pmf .0/.@sf .0//;Pmf .0/.@tf .0//;mf .0/

�
C

Z
UX

@stf .0/ dmf .0/:

Geometry & Topology, Volume 27 (2023)



Geodesic coordinates for the pressure metric at the Fuchsian locus 1405

Define P.UX / to be the set of pressure zero Hölder functions on UX, ie

P.UX /D ff 2 C h.UX / WP .f /D 0g:

The tangent space of P.UX / at f is the set

Tf P.UX /D ker dfP D

�
h 2 C h.UX /

ˇ̌̌ Z
UX

h dmf D 0

�
:

We define a pressure seminorm on the tangent space of P.UX / at f, by letting:

Definition 2.26 The pressure seminorm of g 2 Tf P.UX / is defined as

hg;giP D�
Var.g;mf /R
UX f dmf

:

One notices, for g 2 Tf P.UX /, the variance Var.g;mf /D 0 if and only if g is Livšic
cohomologous to 0, ie g � 0.

2.3 Higgs bundles and Hitchin deformation

We next introduce all the notation from the theory of Higgs bundles that will arise in
our arguments. We also introduce a coordinate system on the Hitchin component at the
end of the section.

Recall S is a closed oriented surface with genus g � 2 and X D .S;J / is a Riemann
surface.

Definition 2.27 A rank n Higgs bundle over X is a pair .E; ˆ/, where E is a holomor-
phic vector bundle of rank n and ˆ 2H 0.X;End.E/˝K/ is called a Higgs field. An
SL.n;C/–Higgs bundle is a Higgs bundle .E; ˆ/ satisfying det E DO and TrˆD 0.

Definition 2.28 (1) A Higgs bundle .E; ˆ/ is semistable if every properˆ–invariant
holomorphic subbundle F of E satisfies

deg.F /
rank.F /

�
deg.E/
rank.E/

and stable if this inequality is strict.

(2) A semistable Higgs bundle .E; ˆ/ is polystable if it decomposes as a direct sum
of stable Higgs bundles.
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Theorem 2.29 It is classical that , for a holomorphic vector bundle E with holomorphic
structure x@E and a Hermitian metric H, there exists a unique connection rx@E ;H

, called
the Chern connection , such that :

(1) r0;1
x@E ;H

D x@E .

(2) rx@E ;H
is unitary.

We will from now on restrict our interest to degree zero Higgs bundles.

Theorem 2.30 (Hitchin [14]; Simpson [35]) Let .E; ˆ/ be a rank n, degree zero
Higgs bundle on X. Then E admits a Hermitian metric H satisfying Hitchin’s equation
if and only if .E; ˆ/ is polystable. Here Hitchin’s equation is

(2-9) Fx@;H C Œˆ;ˆ
�H �D 0;

where Fx@;H is the curvature of the Chern connection rx@E ;H
and ˆ�H is the Hermitian

adjoint of ˆ.

Remark 2.31 Define a connection DH on .E; ˆ;H / as

(2-10) DH Drx@E ;H
CˆCˆ�H :

DH is flat if and only if Hitchin’s equation is satisfied.

We define the Higgs bundles moduli space and de Rham moduli space as:

Definition 2.32 � The space of gauge equivalence classes of polystable SL.n;C/–
Higgs bundles is called the moduli space of SL.n;C/–Higgs bundles and is
denoted by MHiggs.SL.n;C//.

� The space of gauge equivalence classes of reductive flat SL.n;C/ connections
is called the de Rham moduli space and is denoted by Mde Rham.SL.n;C//.

Remark 2.33 The Hitchin–Simpson theorem gives a one-to-one correspondence
between MHiggs.SL.n;C// and Mde Rham.SL.n;C// from the above remark. It is also
called the Hitchin–Kobayashi correspondence.

We will introduce the Hitchin fibration and Hitchin section following Baraglia’s work [2].
We refer the reader to [2, Section 2] for a more comprehensive exposition.

Given a principal 3–dimensional subalgebra sD spanfx; e; Qeg of sl.n;C/ consisting
of a semisimple element x and regular nilpotent elements e and Qe with commutation
relations

Œx; e�D e; Œx; Qe�D�Qe; Œe; Qe�D x;
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the Lie algebra sl.n;C/ decomposes into a direct sum of irreducible subspaces under
the adjoint representation of s,

sl.n;C/D
n�1M
iD1

Vi :

We take e1; : : : ; en�1 as highest-weight elements of V1; : : : ;Vn�1, where e1D e. With
these defined, there exists a basis of SL.n;C/–invariant homogeneous polynomials pi

of degree i on sl.n;C/, where 2 � i � n, such that, for all elements f 2 sl.n;C/ of
the form

f D QeC˛2e1C � � �C˛nen�1;

we have pi.f /D ˛i .

Definition 2.34 The Hitchin fibration is a map from the moduli space of SL.n;C/–
Higgs bundles over X to the direct sum of holomorphic differentials given by

p WMHiggs.SL.n;C//!
iDnM
iD2

H 0.X;Ki/; .E; ˆ/ 7! .p2.ˆ/; : : : ;pn.ˆ//;

where pi are the homogeneous invariant polynomials defined above.

Definition 2.35 A Hitchin section s of the Hitchin fibration is a map back fromLiDn
iD2 H 0.X;Ki/ to MHiggs.SL.n;C//. For qD .q2; q3; : : : ; qn/2

LiDn
iD2 H 0.X;Ki/,

we define s.q/ to be a Higgs bundle E DK.n�1/=2˚K.n�3/=2˚� � �˚K.1�n/=2 with
its Higgs field given by

ˆ.q/D QeC q2e1C q3e2C � � �C qnen�1:

More explicitly, we have

ˆ.q/D

266666666664

0 r1q2 r1r2q3 r1r2r3q4 � � �
Qn�2

iD1 riqn�1

Qn�1
iD1 riqn

1 0 r2q2 r2r3q3 � � � � � �
Qn�1

iD2 riqn�1

0 1 0 r3q2 r3r4q3 � � �
:::

:::
:::

: : :
: : :

: : :
: : :

:::
:::

:::
: : :

: : :
: : :

:::
:::

0 0 � � � 0 1 0 rn�1q2

0 0 � � � � � � 0 1 0

377777777775
WE!E˝K;

where ri D
1
2
i.n� i/ and K1=2 is a holomorphic line bundle with its square to be the

canonical line bundle K. The notation for ei we use here can be found in [2; 21].
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Remark 2.36 There exists an involutive automorphism � on sl.n;C/ such that

�.ei/D�ei ; �. Qe/D�Qe:

Composing with the compact real form � on sl.n;C/ given by �.X /D�X �, we can
obtain the split real involution given by �D � ı � . The fixed-point set of � is the real
split form sl.n;R/. A detailed exposition for this can be found in [2].

From the fact that �.ˆ.q//Dˆ.q/�, one can see the flat connection (2-10) has holo-
nomy in the split real form of sl.n;C/. Hitchin therefore shows that the Higgs bundles
in the image of the Hitchin section have holonomy in SL.n;R/ (see [15]). The repre-
sentation space of these Higgs bundles up to conjugacy equivalence forms a connected
component of the representation variety Rep.�1.S/;SL.n;R//, called the Hitchin com-
ponent Hn.S/. Here we recall that the representation variety Rep.�1.S/;SL.n;R// is
the space of conjugacy classes of reductive representations from �1.S/ to SL.n;R/.

Remark 2.37 The isomorphism between Hn.S/ and
LiDn

iD2 H 0.X;Ki/ yields a
parametrization of the Hitchin component Hn.S/. We call

LiDn
iD2 H 0.X;Ki/ the

Hitchin base. In particular, the tangent space at the Fuchsian point X is identified with
the Hitchin base.

Fixing E DK.n�1/=2˚K.n�3/=2 � � � ˚K.1�n/=2, we consider the following map as
an infinitesimal change of a family of Higgs fields ˆ� associated to q:

� W

iDnM
iD2

H 0.X;Ki/!�1;0.X; sl.n;R//; �.q/D

nX
iD2

qi ˝ ei�1:

In particular, the infinitesimal change of a family of flat connections (2-10) in the space
Mde Rham.SL.n;C// associated to q defines an isomorphism of

LiDn
iD2 H 0.X;Ki/

with the tangent space of the Hitchin component TX Hn.S/. Associated to �.q/, the
deformation of flat connections which is the infinitesimal version of (2-10) is:

Definition 2.38 At the Fuchsian point X, we define our Hitchin deformation associated
to q to be

'.q/ WD �.q/C�.�.q//;

where � is the antilinear involution for the split real form of sl.n;C/ defined above.

This type of deformation will be the tangential objects we consider for the pressure
metric.
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Remark 2.39 The Hitchin parametrization in Remark 2.37 gives a coordinate system
for Hn.S/ based at X. More explicitly, given a basis fqig

iDl
iD1

of
LiDn

iD2 H 0.X;Ki/

with l D 2.n2� 1/.g� 1/, the coordinate system is given by

m.�/D �1q1C � � �C �lql ;

where � D .�1; : : : ; �l/ 2 Rl . Because of the isomorphism between Hn.S/ andLiDn
iD2 H 0.X;Ki/, the vector � D .�1; : : : ; �l/ provides local parameters on Hn.S/

and �i WHn.S/!R is a coordinate function for 1� i � l .

2.4 The pressure metric on Hitchin components

We define the pressure metric for Hitchin components Hn.S/ in this subsection and
state some known results about it.

Recall H.UX / is the space of pressure zero Hölder functions modulo Livšic cobound-
aries. We relate H.UX / to the Hitchin component Hn.S/ by the following thermo-
dynamic mapping:

Definition 2.40 The thermodynamic mapping ‰ WHn.S/!H.UX / from a Hitchin
component Hn.S/ to the space H.UX / of Livšic cohomology classes of pressure zero
Hölder functions on UX is defined as

‰.�/D Œ�h.�/f��;

where h.�/ D h.f�/ D h.ˆf� / is the topological entropy of the reparametrized
flow ˆf� .

The mapping ‰ admits local analytic lifts to the space P.UX / of pressure zero Hölder
functions. In particular, the map z‰ WHn.S/! P.UX / given by z‰.�/D�h.�/f� is
an analytic local lift of ‰. This enables us to pull back the pressure form on P.UX /

to obtain a pressure form on Hn.S/.

We will from now on write f N
� D �h.�/f� for the normalized reparametrization

function.

Given an analytic family f�sgs2.�1;1/ of (conjugacy classes of) representations in the
Hitchin component Hn.S/, we define P�0 D @s�0 D @s�s.0/. Let ff�s

gs2.�1;1/ be
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associated reparametrization functions, we pull back the pressure form on P.UX / to
obtain

h P�0; P�0iP D hd z‰. P�0/; d z‰. P�0/iP

D

�
@.�h.�s/f�s

/

@s

ˇ̌̌̌
sD0

;
@.�h.�s/f�s

/

@s

ˇ̌̌̌
sD0

�
P

D h@s.f
N
�s
/.0/; @s.f

N
�s
/.0/iP

D�

Var.@s.f
N
�s
/.0/;mfN

�0

/R
UX f N

�0
dmfN

�0

:

It is proved in [8] that the pullback pressure form is nondegenerate and thus defines a
Riemannian metric on Hn.S/:

Definition 2.41 If f�sgs2.�1;1/ and f�tgt2.�1;1/ are two analytic families of (conju-
gacy classes of) representations in the Hitchin component Hn.S/ such that �0 D �0,
the pressure metric for P�0; P�0 2 T�0

Hn.S/ is defined as

h P�0; P�0iP D�

Cov
�
@s.f

N
�s
/.0/; @s.f

N
�s
/.0/;mfN

�0

�R
UX f N

�0
dmfN

�0

:

For simplicity, later we will also write @s.f
N
�s
/.0/D @sf

N
�0

and @s.f
N
�s
/.0/D @sf

N
�0

.
The principle is that we always first normalize a family of reparametrization functions
to be pressure zero and then take derivatives.

Because of the identification of
LiDn

iD2 H 0.X;Ki/ with the tangent space of the Hitchin
component TX Hn.S/, our Hitchin deformation '.q/ introduced in Definition 2.38 can
be thought of as tangent vectors in TX Hn.S/. With this understood, we introduce the
following important results of Labourie and Wentworth [20]:

Let qi be a holomorphic differential of degree k on X and let '.qi/ be the associated
Hitchin deformation. Labourie and Wentworth [20] show the pressure metric satisfies

h'.qi/; '.qi/iP D C.n; k/hqi ; qiiX ;

where C.n; k/> 0 is a constant that does not depend on � and hqi ; qiiX is the Petersson
pairing

hqi ; qiiX D

Z
X

qi Nqi�
�k.z/ dA�

with dA� D �.z/ dx ^ dy denoting the area form for the hyperbolic metric � .
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If qi and qj are holomorphic differentials of the same degree, then

h'.qi/; '.qj /iP D
1
4
Œh'.qi C qj /; '.qi C qj /iP � h'.qi � qj /; '.qi � qj /iP �

D
1
4
C.n; k/hqi C qj ; qi C qj iX �

1
4
C.n; k/hqi � qj ; qi � qj iX

D C.n; k/hqi ; qj iX :

If qi and qj are holomorphic differentials of different degrees on X, Labourie and
Wentworth [20] show that

(2-11) h'.qi/; '.qj /iP D 0:

We denote the pressure metric components with respect to the coordinates introduced
in Remark 2.39 by gij . Equivalently, the metric tensor gij .�/ means that the pressure
metric h � ; � iP is evaluated at � with tangential vectors parallel to the qi–axis and
qj –axis. In particular, at the point X, we have gij .0/D gij .�/D h'.qi/; '.qj /iP . It
is always possible to choose an orthonormal basis fqig with respect to our pressure
metric from the vector space

LiDn
iD2 H 0.X;Ki/ so that gij .ı/D ıij .

3 More thermodynamic formalism

Bowen and Ruelle’s work [3; 4; 6] guarantees that many of the results in the thermo-
dynamic formalism proved for subshifts of finite type by the Ruelle operator still hold
for Axiom A diffeomorphisms and Axiom A flows. We adopt this idea of simplifying
the rather complicated object “flow” by discretizing it and studying a relative simple
object “shift” given by symbolic coding. We will compute the formula for the third
derivatives of pressure functions using subshifts of finite type. The reader can find an
introduction for modeling hyperbolic diffeomorphisms by subshifts of finite type and
modeling hyperbolic flows by suspension flows through Markov partition and symbolic
dynamics in [5, Sections 3 and 4; 27, Appendix III].

Section 3.1 is devoted to the Ruelle operator and Ruelle–Perron–Frobenius theorem.
These are important tools for studying subshifts of finite types. Then, in Section 3.2,
we will compute the third derivatives of pressure functions in Lemma 3.8. These will
be important for the proof of the main theorem in the next section.

3.1 Ruelle operator and others

We start with a cursory introduction to the elements of thermodynamic formalism for
subshifts of finite types. A complete description is in [26; 27].
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Definition 3.1 Let A be a k � k matrix of zeros and ones; we define the associated
two-sided shift of finite type .†; �A/, where † is the set of sequences

†D fx D .xn/
1
nD�1 W xn 2 f1; : : : ; kg; n 2 Z; A.xn;xnC1/D 1g

and �A W†!† is defined by �A.x/D y, where yn D xnC1.

If instead we consider x D .xn/
1
nD0

with the same restriction given by the matrix A

and �.x/D y, ie yn D xnC1 for n� 0, then we obtain a one-sided shift of finite type.

The set f1; : : : ; kg is equipped with the discrete topology and the two-sided (or one-
sided) shift space †A is equipped with the associated product topology.

Given ˛ 2 .0; 1/, we can metrize the topology on the two-sided shift space † by
defining a metric d˛.x;y/D ˛

N, where N is the largest nonnegative integer such that
xi D yi for ji j<N. Similarly, we have a metric d˛ defined for one-sided shift space.

We let C.†/ be the space of real-valued continuous functions on † and C ˛.†/ be the
space of real-valued Hölder functions on † with Hölder exponent ˛ with respect to d˛ .

The two-sided (one-sided) shift of finite type .†; �A/ is called a subshift of finite type
if �A is topologically transitive.

We define the pullback operator on C ˛.†/ by .��
A
f /.y/ D f .�A.y//. Similarly to

Definition 2.3, we define:

Definition 3.2 f1 and f2 in C ˛.†/ are (Livšic) cohomologous if

f1�f2 D f3� �
�
Af3

for some f3 2 C ˛.†/.

From now on, we assume our subshift of finite type .†; �A/ to be one-sided unless
otherwise specified.

Definition 3.3 Given w 2 C ˛.†/, the Ruelle operator (or transfer operator) on f 2
C ˛.†/ is defined by

Lw.f /.x/D
X

�A.y/Dx

ew.y/f .y/:

Theorem 3.4 (Ruelle, Perron and Frobenius) Suppose .†; �A/ is topologically mix-
ing (ie AM

i;j > 0 for all i and j for some M > 0, also called irreducible and aperiodic)
and w 2 C ˛.†/. Then:
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(1) There is a simple maximal positive eigenvalue �.Lw/ of Lw W C ˛.†/! C ˛.†/

with a corresponding strictly positive eigenfunction e :

Lw.e /D �.Lw/e :

(2) The remainder of the spectrum of Lw (excluding �.Lw/) is contained in a disk
of radius strictly smaller than �.w/.

(3) There is a unique probability measure �w on † such that

Lw��w D e �w:

The pressure P .w/ of w, which can be defined in an analogous way as the pressure of
functions on UX by the variational principle Proposition 2.8, turns out to be related to
the spectral radius of the Ruelle operator: P .w/D log �.Lw/ (see [5, Theorem 1.22]).

Associated to �w is another measure mw D e �w . It is called the equilibrium measure
of w. It is a �A–invariant and ergodic probability measure and satisfies Lw�mw Dmw .

We will from now on assume P .w/ D 0. As pressure functions and equilibrium
measures depend only on cohomology class, we can modify w by a coboundary so that
Lw.1/D 1 and �w Dmw. One notices this implies Lw.��Af /D f.

Fixing mw, we define an inner product hf1; f2i WD
R
† f1f2 dmw on the Banach

space C ˛.†/.

For convenience, we also write Sn.f;x/D
Pn�1

iD0 f .�
i
A

x/.

The following two lemmas are applications of Ruelle operators and will be useful in
the next subsection:

Lemma 3.5 (McMullen [26, Theorems 3.2 and 3.3]) For any g 2 C.†/ and f 2
C ˛.†/ with

R
† f dmw D 0,

lim
n!1

�
g;

Sn.f /
2

n

�
D Var.f;mw/

Z
†

g dmw D 0;

where Var.f;mw/D limn!1.1=n/hSn.f /;Sn.f /i.

Lemma 3.6 For any f 2 C ˛.†/ with
R
† f dmw D 0,

lim
n!1

1

n

Z
†

.Sn.f //
3 dmw <1:

Proof This proof is similar to Theorem.3.3 of [26]. We have

1

n

Z
†

.Sn.f //
3 dmD

1

n

n�1X
iD0

n�1X
jD0

n�1X
kD0

hf ı � i
A �f ı �

j
A
; f ı �k

Ai:
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When k > j > i ,

hf ı � i
A �f ı �

j
A
; f ı �k

Ai D h�
�i
A .f �f ı �

j�i
A

/; ��iA .f ı �k�i
A /i

D hf �f ı �
j�i
A

; f ı �k�i
A i (by �A–invariance of mw)

D hf; f ı �
j�i
A
�f ı �k�i

A i

D hf; �
�.j�i/
A

.f �f ı �
k�j
A

/i

D hLj�i
w .f /; f �f ı �A

k�j
i

(as Lw.��Af /D f and Lw�mw Dmw)

D hf �Lj�i
w .f /; f ı �A

k�j
i:

We define a projection operator on C ˛.†/ by Pmw .h/.x/Dh.x/�
R
† h dmw . Because

Pmw .h/ has mean zero with respect to mw , the spectrum of the operator TwDLwıPmw

lies in a disk of radius r < 1 by the Ruelle–Perron–Frobenius theorem.

One has

(3-1) hh1; h2 ı �i D hTw.h1/; h2i

whenever h1 or h2 has mean zero.

Because f is mean zero with respect to mw, Tw.f /D Lw.f /. Moreover,

hf �Lj�i
w .f /; f ı �A

k�j
i D hf �T j�i

w .f /; f ı �A
k�j
i

D hT k�j
w .f �T j�i

w .f //; f i (by (3-1))

� kT k�j
kkT j�i

kkf k3

� C rk�i (for some C > 0);

where the norm for T is the operator norm.

Thus,

1

n

X
0�i<j<k�n�1

hf ı � i
A �f ı �

j
A
; f ı �k

Ai

�
C

n

n�1X
kD0

kX
iD0

.k � i/rk�i (by the estimate above)

D
C

n

n�1X
kD0

kX
sD0

sr s
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D
C r

1�r

�
1�

1

n

nX
kD1

rk

�
<1 (when n!1).

This shows limn!1.1=n/
R
†.Sn.f //

3 dmw <1.

3.2 Third derivatives of pressure functions

Our goal in this subsection is to compute the third derivatives of pressure functions in
Lemma 3.8. For this, we first need to compute the third derivatives of pressure functions
for subshifts of finite type by the method of the Ruelle operator and generalize it to our
setting of suspension flows.

We start from introducing suspension flows. We will also recall Bowen’s celebrated
results, applied to our setting, that suspension flows efficiently model the geodesic flow
on UX.

Definition 3.7 Suppose .†; �A/ is a two-sided shift of finite type. Given a roof
function r W†!RC, the suspension flow of .†; �A/ under r is the quotient space

†r D f.x; t/ 2†�R W 0� t � r.x/; x 2†g=.x; r.x//� .�A.x/; 0/

equipped with the natural flow �r
A;s
.x; t/D .x; t C s/

Any �A–invariant probability measure m on † induces a natural �r
A;s

–invariant proba-
bility measure on †r

(3-2) dmr D
dm dtR
† r dm

:

This correspondence gives a bijection between �A–invariant probability measures and
�r

A;s
–invariant probability measures.

Bowen [3] shows the construction of Markov partitions for Axiom A diffeomorphisms.
He then shows how to model Axiom A flows via the Markov partition and symbolic
dynamics in [4]. We illustrate the version of this celebrated result in our context (see
also [32]): the geodesic flow ˆ admits a Markov coding .†A; �; r/, where .†A; �A/ is
a topologically mixing two-sided shift of finite type, the roof function r W†A!RC

is Hölder continuous, and the map � W †A ! UX is also Hölder continuous. The
suspension flow �r

A;t
models ˆt effectively in the following sense:
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� � is surjective.

� � is one-to-one on a set of full measure (for any ergodic measure of full support)
and on a residual set.

� � is finite-to-one.

� ��r
A;t
Dˆt� for all t 2R.

Now we are able to state and prove the major result in this subsection:

Lemma 3.8 Let Fs be a smooth family in C h.UX / such that P .F0/ D 0 and
@sP .Fs/.0/. Then

(3-3)
d3P .Fs/

ds3

ˇ̌̌̌
sD0

DZ
UX

@3
s F0.x/ dmF0

.x/

C lim
r!1

1

r

�
3

Z
UX

Z r

0

@sF0.ˆt .x// dt

Z r

0

@2
s F0.ˆt .x// dt dmF0

.x/

C

Z
UX

�Z r

0

@sF0.ˆt .x// dt

�3

dmF0
.x/

�
:

In particular , if F.u; v; w/ is a smooth three-parameter family of Hölder functions
on UX such that P .F.0; 0; 0//D 0 and all of the first variations of P .F.u; v; w// are
zero , then

(3-4)
@3P .F.u; v; w//

@u @v @w

ˇ̌̌̌
uDvDwD0

DZ
UX

@u@v@wF.0/.x/ dmF.0/.x/

C lim
r!1

1

r

 Z
UX

�Z r

0

@uF.0/.ˆt .x// dt

��Z r

0

@vF.0/.ˆt .x// dt

�

�

�Z r

0

@wF.0/.ˆt .x// dt

�
dmF.0/.x/

C

Z
UX

�Z r

0

@uF.0/.ˆt .x// dt

��Z r

0

@vwF.0/.ˆt .x// dt

�
dmF.0/.x/

C

Z
UX

�Z r

0

@vF.0/.ˆt .x// dt

��Z r

0

@uwF.0/.ˆt .x// dt

�
dmF.0/.x/

C

Z
UX

�Z r

0

@wF.0/.ˆt .x// dt

��Z r

0

@uvF.0/.ˆt .x// dt

�
dmF.0/.x/

!
:
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Proof The proof proceeds in two steps. In the first step, we find a formula for the third
derivatives of pressure functions for topologically mixing shifts of finite type. In the
second step, we show how the computation can be carried to geodesic flows through
symbolic coding and suspension flows.

Step 1 The computation of the first and second derivatives of pressure functions for
aperiodic shifts of finite type is shown by Parry and Pollicott [27] using the Ruelle
operator. We will give a computation of the third derivative by the same method and
then generalize it to our flow case.

Let .†A; �A/ be a (one-sided or two-sided) shift of finite type that is topologically
mixing. We assume fs is a smooth family of functions on C ˛.†A/ such that P .f0/D 0

and @sP .fs/.0/. We will prove

(3-5) @3
s P .fs/.0/D lim

n!1

1

n

Z
X

.Sn.@sf0//
3 dmf0

C lim
n!1

3

n

Z
X

Sn.@sf0/Sn.@
2
sf0/ dmf0

C

Z
X

@3
sf0 dmf0

:

Any Hölder function on a two-sided shift space is cohomologous to a Hölder function
depending only on the corresponding one-sided shift space (see [27, Proposition 1.2]).
It suffices to prove (3-5) for one-sided shifts of finite type. We assume .†A; �A/ is
one-sided and fs is a smooth family of Hölder functions (with possibly a different
Hölder exponent from ˛) on †A.

We change f0 in its cohomology class so that Lf0
.1/D 1.

Following the method in [27], let Q.s/ be a projection-valued function which is analytic
in s and satisfies

Lfs
Q.s/DQ.s/Lfs

:

Let w.s/ W†A!R be w.s/.x/ WDQ.s/ � 1. So

(3-6) Lfs
w.s/D eP.fs/w.s/

and w.0/.x/DQ.0/ � 1D 1.

Iterate (3-6) n times and take third s–derivatives of both sides at s D 0:

(3-7) @3
s

� X
�AyDx

eSn.fs/.y/w.s/.y/

�
.0/D @3

s .e
nP.fs/w.s//.0/:
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Notice P .f0/D 0, @sP .fs/.0/D 0 and
R

UX @sf0 dmf0
D 0. Integrating both sides

of (3-7) with respect to mf0
yields

3n@2
s P .fs/.0/

Z
X

@sw.0/ dmf0
C n@3

s P .fs/.0/

D

Z
X

Sn.@
3
sf0/ dmf0

C 3

Z
X

.Sn.@sf0/
2
CSn.@

2
sf0//@sw.0/ dmf0

C 3

Z
X

Sn.@sf0/@
2
sw.0/ dmf0

C 3

Z
X

Sn.@sf0/Sn.@
2
sf0/ dmf0

C

Z
X

Sn.@sf0/
3 dmf0

:

Divide by n and take n!1. From ergodicity of mf0
, we may evaluate two of the

resulting terms:

lim
n!1

1

n

Z
X

Sn.@sf0/@
2
sw.0/ dmf0

D

Z
X

@sf0 dmf0

Z
X

@2
sw.0/ dmf0

D 0;

lim
n!1

1

n

Z
X

Sn.@
2
sf0/@sw.0/ dmf0

D

Z
X

@2
sf0 dmf0

Z
X

@sw.0/ dmf0
:

We also notice that, by applying Lemma 3.5 and the formula for second derivatives of
pressure functions,

@2
s P .fs/.0/

Z
X

@sw.0/ dmf0

D lim
n!1

1

n

Z
X

Sn.@sf0/
2@sw.0/ dmf0

C lim
n!1

1

n

Z
X

Sn.@
2
sf0/@sw.0/ dmf0

:

Therefore, we obtain a formal expression

@3
s P .fs/.0/D lim

n!1

1

n

Z
X

.Sn.@sf0//
3 dmf0

C lim
n!1

3

n

Z
X

Sn.@sf0/Sn.@
2
sf0/ dmf0

C

Z
X

@3
sf0 dmf0

:

We observe each term of the right-hand side converges: finiteness of the first limit has
been shown in Lemma 3.6 and that of the second is guaranteed by Corollary 2.21.

Step 2 We now explain how we obtain the flow version of the above formula.

Suppose Fs is a smooth family of functions in C h.UX / such that P .Fs/D 0. We have
a topologically mixing Markov coding .†A; �; r/ for UX. Because of the conjugacy
��r

A;t
Dˆt� between geodesic flow and the suspension flow of .†A; �; r/, it suffices

to prove (3-3) for Fs ı � W †A;r ! R on suspension space with pullback measure
��mF0

. For simplicity, we still write Fs ı� as Fs and ��mF0
as mF0

.
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We then want to reduce the problem of proving (3-3) for suspension flows to proving it
for subshifts of finite type. We construct a function yFs W†A!R from the function Fs

on the suspension space as

(3-8) yFs.x/D

Z r.x/

0

Fs.x; t/ dt:

As Fs and r are Hölder on †A;r and †A, respectively, the function yFs is clearly
Hölder. Denoting the set of �r

A
–invariant probability measures by M�r

A and the set of
�A–invariant probability measures by M�A , we have

P .�r
A;t ;Fs/D sup

mr2M
�r

A

�
h.�r

A;1;mr /C

Z
†A;r

Fs dmr

�

D sup
m2M�A

h.�A;m/C
R
†A

Fs dmR
†A

r dm
:

Let cs D P .�r
A;t
;Fs/, we have the relation between the pressure function of Fs and

the pressure function of yFs (also see [6])

(3-9) P .�A; yFs � csr/D 0:

Let @sc0 D @s.cs/.0/ and @ssc0 D @
2
s .cs/.0/.

We have the assumption @sc0 D 0. Without loss of generality, we can also assume
@2

s c0D 0. Otherwise, we consider the family of functions zFs WDFs�
1
2
s2@2

s c0. Clearly
@sP . zFs/.0/D @

2
s P . zFs/.0/D 0 and @3

s P . zFs/.0/D @
3
s P .Fs/.0/.

Now let’s take the third s–derivative of (3-9) with the assumptions @sc0 D @
2
s c0 D 0.

By (3-5),

0D @3
s P . yFs � csr/.0/

D lim
n!1

1

n

Z
†A

.Sn.@s
yF0//

3 dm yF0
C lim

n!1

3

n

Z
†A

Sn.@s
yF0/Sn.@

2
s
yF0/ dm yF0

C

Z
†A

.@3
s
yF0� @

3
s c0r/ dm yF0

:

This yields

@3
s c0 D @

3
s P .�r

A;t ;Fs/.0/D

�Z
†A

r dm yF0

��1

@3
s P .�A; yFs/.0/:
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Therefore, proving (3-3) for Fs is equivalent to proving

lim
r!1

1

r

Z
†A;r

�Z r

0

@sF0 dt

�3

dmF0
C lim

r!1

3

r

Z
†A;r

Z r

0

@sF0 dt

Z r

0

@ssF0 dt dmF0

C

Z
†A;r

@3
s F0 dmF0

D

�Z
†A

r dm yF0

��1

�

�
lim

n!1

1

n

Z
†A

.Sn.@s
yF0//

3 dm yF0
C lim

n!1

3

n

Z
†A

Sn.@s
yF0/Sn.@

2
s
yF0/ dm yF0

�
C

�Z
†A

r dm yF0

��1 Z
†A

@3
s
yF0 dm yF0

:

Each term on the left is actually equal to the corresponding term on the right. We show
here how to obtain

(3-10) lim
r!1

1

r

Z
†A;r

�Z r

0

@sF0.�
r
t .y// dt

�3

dmF0
.y/

D

�Z
†A

r dm yF0

��1

lim
n!1

1

n

Z
†A

.Sn.@s
yF0/.x//

3 dm yF0
.x/:

The other two terms follow a similar analysis.

To see (3-10), we begin by noting the identity [28], where y D .x;u/,

@sF0.�
r
A;t .x;u//D

X
n2Z

�Z r.�n
A

x/

0

@sF0.�
n
Ax; v/ı.uC t � v� rn.x// dv

�
;

where rn.x/D r.x/Cr.�Ax/C� � �Cr.�n�1
A

x/ for n> 0 and r0.x/D 0 and r�n.x/D

�.r.�A
�1x/C � � �C r.��n

A
x// for n� 1.

One has from Proposition 2.22, the measure correspondence (3-2) and (3-8) that

lim
r!1

1

r

Z
†A;r

�Z r

0

@sF0.�
r
A;t .y// dt

�3

dmF0
.y/

D

Z 1
�1

Z 1
�1

Z
†A;r

@sF0.y/@sF0.�
r
A;t .y//@sF0.�

r
A;v.y// dmF0

.y/ dt dv

D

�Z
†A

r dm yF0

��1Z 1
�1

Z 1
�1

Z
†A

Z r.x/

0

@sF0.x;u/@sF0.�
r
A;t .x;u//

� @sF0.�
r
A;v.x;u// du dm yF0

.x/ dt dv
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D

�Z
†A

r dm yF0

��1 X
m;n2Z

Z
†A

dm yF0
.x/

Z r.x/

0

@sF0.x;u/ du

�

Z r.�n
A

x/

0

@sF0.�
n
Ax; v/ dv

Z r.�m
A

x/

0

@sF0.�
m
A x; v/ dv

D

�Z
†A

r dm yF0

��1 X
m;n2Z

Z
†A

@s
yF0.x/@s

yF0.�
n
Ax/@s

yF0.�
m
A x/ dm yF0

.x/

D

�Z
†A

r dm yF0

��1

lim
n!1

1

n

Z
†A

.Sn.@s
yF0/.x//

3 dm yF0
.x/:

We therefore obtain a suspension flow version of (3-5) for Fs .

The arguments for three-parameter families are the same as the one-parameter case.
In fact, since the operator @u@v@w is a symmetric multilinear map in u, v and w that
is completely characterized by its values on the diagonal, one can deduce (3-4) for
multivariable cases directly from (3-3) for one-parameter families.

Next we introduce a formula for taking derivatives of integrals over varying measures
by tools of thermodynamic formalism. This formula will be very useful in later proofs.

Lemma 3.9 Suppose ffsgs2.�1;1/ is a smooth family of pressure zero Hölder functions
over UX and suppose fmfs

gs2.�1;1/ is the associated family of equilibrium states.
Suppose furthermore that fwsgs2.�1;1/ is another smooth family of Hölder functions
over UX. Then

(3-11) @s

�Z
UX

ws dmfs

�
.0/D Cov.w0; @sf0;mf0

/C

Z
UX

@sw0 dmf0
:

Proof We have

@s

�Z
UX

ws dmfs

�
.0/

D @s

�
@P .fsC tws/

@t

ˇ̌̌̌
tD0

�
.0/ (by (2-6))

D
@2P .fsC tws/

@s @t

ˇ̌̌̌
sDtD0

D Cov.Pmf0
.w0/;Pmf0

.@sf0/;mf0
/C

Z
UX

@sw0 dmf0
(by (2-8))

D Cov.Pmf0
.w0/; @sf0;mf0

/C

Z
UX

@sw0 dmf0

D Cov.w0; @sf0;mf0
/C

Z
UX

@sw0 dmf0
(by Corollary 2.21).
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4 Proof of the main theorem: initial steps

We first restate our main theorem:

Theorem 1.1 Let S be a closed oriented surface with genus g � 2. For any point
� 2 T .S/ � H3.S/, let X be the Riemann surface corresponding to � . Then the
Hitchin parametrization H 0.X;K2/˚H 0.X;K3/ provides geodesic coordinates for
the pressure metric at � .

We want to show @kgij .�/D 0 for the pressure metric components gij with respect to
the coordinates introduced in Remark 2.39 for all possible i , j and k.

4.1 Some geometrical observation

In this subsection, we conclude some derivatives of metric tensors vanish by a geometric
observation. Starting from the next section, we will develop a general method to
compute first derivatives of the pressure metric via the thermodynamic formalism.

From now on, we restrict ourselves to the Hitchin component H3.S/. Suppose fqig is a
basis of holomorphic differentials in H 0.X;K2/˚H 0.X;K3/ and suppose f'.qi/g is
the associated Hitchin deformation given in Definition 2.38. Recall we use the notation
gij .�/D h'.qi/; '.qj /iP to emphasize the metric tensor is evaluated at � 2 T .S/. We
also assume gij .ı/D ıij .

Furthermore, instead of using the Latin letters i , j and k to denote arbitrary holomorphic
differentials of degree 2 and 3, we let the Latin letters i , j and k only refer to quadratic
differentials qi ; qj ; qk 2 H 0.X;K2/ from now on. Therefore, the corresponding
Hitchin deformations '.qi/, '.qj / and '.qk/ are tangential directions to the Fuchsian
locus in TX H3.S/. We use the Greek letters ˛, ˇ and  to refer to cubic differentials
q˛; qˇ; q 2H 0.X;K3/. Then the corresponding Hitchin deformations '.q˛/, '.qˇ/
and '.q / are normal directions to the Fuchsian locus in TX H3.S/ with respect to the
pressure metric.

With the above notation understood, we have in total six types of first derivative of metric
tensors that need to be considered: @kgij , @j gi˛ , @˛gij , @ig˛ˇ , @ˇgi˛ and @g˛ˇ . Our
goal is to prove they all vanish.

We first notice the following facts:

(1) @kgij .�/D 0.
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To see this, note that the pressure metric is a constant multiple of the Weil–Petersson
metric on Teichmüller space T .S/. Because the coordinates system in terms of quadratic
differentials from the Hitchin reparametrization agrees with Bers coordinates through
second order in the case of T .S/ [37, Corollaries 5.2 and 5.4]. That the Bers coordinates
are geodesic [1] for the Weil–Petersson metric implies that, for the pressure metric,
@kgij .�/D 0.

(2) @j g˛i.�/D 0 implies @˛gij .�/D 0.

The contragredient involution � W PSL.3;R/ ! PSL.3;R/ given by �.g/ D .g�1/t

induces an involution O� on H3.S/ by O�.�/. /D �.�. //. Because O� is an isometry
of H3.S/ with respect to the pressure metric and the fixed-point set of O� is T .S/, the
Fuchsian locus is in fact totally geodesic in H3.S/ (see [7]). So, for zr the Levi-Civita
connection of the pressure metric and any X;Y 2 T�T .S/, we have

(4-1) ….X;Y /D .zrX Y /? D 0:

Thus, the Christoffel symbols for the connection zr satisfy �˛ij .�/D 0 and, because

�˛ij D
1
2
gˇ˛.@j giˇC @igjˇ � @ˇgji/ (since gk˛.�/D 0 and gk˛.�/D 0)

D
1
2
g˛˛.@j gi˛C @igj˛ � @˛gji/ (since g˛ˇ D �˛ˇ/;

it suffices to know @j gi˛.�/D 0 and @igj˛.�/D 0 to conclude @˛gij .�/D 0.

(3) @ˇg˛˛.�/D 0 implies @g˛ˇ.�/D 0, and @ig˛˛.�/D 0 implies @ig˛ˇ.�/D 0.

This is because

@g˛ˇ D
1
2
.@g˛Cˇ;˛Cˇ � @g˛˛ � @gˇˇ/;

@ig˛ˇ D
1
2
.@ig˛Cˇ;˛Cˇ � @ig˛˛ � @igˇˇ/:

The remaining four cases left to prove are as follows:

(i) @ˇg˛˛.�/D 0.

(ii) @ig˛˛.�/D 0.

(iii) @j g˛i.�/D 0.

(iv) @ˇg˛i.�/D 0.

We will have a general method to prove them. We first give a general formula for
first derivatives of the pressure metric in the next subsection. The computation for the
model case @ˇg˛˛.�/ will be shown in Sections 5 and 6. The other three cases will be
discussed in Section 7.
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4.2 First derivatives of the pressure metric

This subsection is devoted to a formula for first derivatives of the pressure metric. We
also prove we have some freedom to choose representatives for the variations of the
reparametrization functions from the Livšic cohomology classes.

Suppose f�.u; v; w/g.u;v;w/2f.�1;1/g3 is an analytic three-parameter family of represen-
tations in the Hitchin component Hn.S/with basepoint �.0; 0; 0/2T .S/ corresponding
to X. Suppose ff�.u;v;w/g.u;v;w/2f.�1;1/g3 are associated reparametrization functions.
For simplicity of notation, we denote the renormalized reparametrization functions by

F.u; v; w/D f N
�.u;v;w/ D�h.�.u; v; w//f�.u;v;w/:

We also write F.0/D F.0; 0; 0/ and �.0/D �.0; 0; 0/.

In the case of the Fuchsian representation, the topological entropy and the reparametriza-
tion function are simple. We have h.�.0//D 1 (see Theorem 2.16). Since ˆ�.0/ Dˆ,
the reparametrization function f�.0/ can be chosen to be 1 in the Livšic cohomology
class. Therefore, one can choose F.0/D�1.

The following characterization of the equilibrium measure for F.0/ is important:

Lemma 4.1 The equilibrium state mF.0/ for F.0/ is the Liouville measure mL.

Proof Since the Liouville measure mL coincides with the Bowen–Margulis measure
(Remark 2.14), this follows easily from the variational principle (Proposition 2.8).

The Liouville measure mL is both ˆt –invariant and rotationally invariant on UX, ie
.ei� /�mL DmL, where ei� acts on UX by usual multiplication. We will repeatedly
use these important properties of the Liouville measure for our proofs later.

Proposition 4.2 The first derivatives of the pressure metric at �.0/ satisfy

@w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D lim
r!1

1

r

�Z
UX

Z r

0

@uF.0/ dt

Z r

0

@vF.0/ dt

Z r

0

@wF.0/ dt dm0

C

Z
UX

Z r

0

@uF.0/ dt

Z r

0

@wvF.0/ dt dm0

C

Z
UX

Z r

0

@vF.0/ dt

Z r

0

@wuF.0/ dt dm0

�
;

where the flow ˆt .x/ is omitted for simplicity.
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Proof Starting from the Fuchsian point �.0/, along the ray with parametrization
f.0; 0; w/gw2.�1;1/, the pressure metric h � ; � iP W T.0;0;w/Hn.S/�T.0;0;w/Hn.S/!R

satisfies

h@u�.0; 0; w/; @v�.0; 0; w/iP

D�
Cov.@uF.0; 0; w/; @vF.0; 0; w/;mF.0;0;w//R

UX F.0; 0; w/ dmF.0;0;w/

D�
@v@uP .F.0; 0; w//�

R
UX @uvF.0; 0; w/ dmF.0;0;w/R

UX F.0; 0; w/ dmF.0;0;w/

(by (2-8)):

We first notice
R

UX F.0/ dm0 D�1 and, from (3-11),

@w

�Z
UX

F.0; 0; w/ dmF.0;0;w/

�
.0/D Cov.F.0/; @wF.0/;m0/C

Z
UX

@wF.0/ dm0

D 0:

Therefore,

@w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D @w@v@uP .F.0//� @w

�Z
UX

@uvF.0/ dmF.0;0;w/

�
.0/

D @w@v@uP .F.0//�Cov.@uvF.0/; @wF.0/;m0/�

Z
UX

@uvwF.0/ dm0 (by (3-11))

D lim
r!1

1

r

�Z
UX

Z r

0

@uF.0/ dt

Z r

0

@vF.0/ dt

Z r

0

@wF.0/ dt dm0

C

Z
UX

Z r

0

@uF.0/ dt

Z r

0

@vwF.0/ dt dm0

C

Z
UX

Z r

0

@vF.0/ dt

Z r

0

@wuF.0/ dt dm0

�
(by (3-4)).

Proposition 4.3 The formula in Proposition 4.2 for the first derivatives of the pressure
metric only depends on the Livšic class of each component function @uF.0/, @vF.0/,
@wF.0/, @wvF.0/ and @wuF.0/.

Proof We know from the proof of Proposition 4.2 that

@w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D @w@v@uP .F.0//�

Z
UX

@uvwF.0/ dm0�Cov.@uvF.0/; @wF.0/;m0/:
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By (2-8), in general, if we take two mean-zero Hölder functions h1 and h2 with respect
to m0, then

Cov.h1; h2;m0/D @u@vP .F.0/Cuh1C vh2/.0/:

As the value of the pressure function P only depends on the Livšic class, we see
changing h1 and h2 in its cohomology class does not change Cov.h1; h2;m0/. In
particular, this holds for Cov.@uvF.0/; @wF.0/;m0/.

Similarly, from (3-3), it is clear that

@w@v@uP .F.0//�

Z
UX

@uvwF.0/ dm0

D @w@v@uP
�
F.0/Cu@uF.0/C v@vF.0/Cw@wF.0/

Cuv@uvF.0/Cuw@uwF.0/C vw@vwF.0/
�
.0/:

Again the above pressure function P does not change value if we change each com-
ponent function. So, altogether, we know the first derivatives of the pressure metric
only depend on the Livšic class of each component function @uF.0/, @vF.0/, @wF.0/,
@wvF.0/ and @wuF.0/.

4.3 A gauge-theoretical formula

In [20], Labourie and Wentworth show the variations of the reparametrization functions
can be expressed by a gauge-theoretical formula. This formula will be crucial for
our computation in the next section. We include the formula and its proof here for
completeness. We add some assumptions which are natural for our case of Hitchin
components Hn.S/.

We consider .E;H / a rank n Hermitian bundle over the surface S equipped with a
Riemannian metric g. We let  be a closed curve on S with arc-length parametriza-
tion  .t/. Suppose DA0 is a flat connection on E whose holonomy has distinct
eigenvalues along  . Suppose � is one eigenvalue with a corresponding eigenline L
and H is the complementary hyperplane stabilized by the holonomy. We denote by
L .t/ the line generated by the parallel transports of L along  at time t , by H .t/
the hyperplane generated by complementary eigenvectors, and by �.t/ the projection
on L .t/ along H .t/. Then we have:

Proposition 4.4 (Labourie and Wentworth [20]) For DAs a smooth one-parameter
family of flat connections , we have a unique smooth function � .s/ such that , for
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s small enough , � .s/ is the eigenvalue of the holonomy of DAs with � .0/ D � .
Moreover ,

(4-2)
d log� .s/

ds

ˇ̌̌̌
sD0

D�

Z l

0

Tr.@sDA0.t/ ��.t// dt:

Here the notation is @sDA0.t/ WD @sDAs . P .t/ @=@t/.0/, where @sDA0 is an End.E/–
valued 1–form and P .t/ @=@t is the tangent vector field along  .t/.

Proof We prove (4-2) here.

Let fgsg be a family of gauge transformations acting on fDAsg with g0 D id. Define
the new connection 1–forms zAs WD g�s As . We first proveZ l

0

Tr.@sDA0.t/ ��.t// dt D

Z l

0

Tr.@sD zA0.t/ ��.t// dt:

Note here @sDA0.t/ is a 0–form since we have contracted the 1–form @sDAs .0/ with
the tangential vector field. Therefore, Tr.@sDA0.t/ ��.t// is a function in t or in P .t/.

Taking the derivative of zAs WD g�s As at s D 0 yields

@sD zA0 D @sDA0 CDA0 Pg;

where Pg, denoting @gs=@sjsD0, is a section of End.E/ and the connection DA0 acts
on Pg as DA0 Pg D d PgC ŒA0; Pg�.

We want to show Z l

0

Tr..DA0 Pg/�/ dt D 0:

To simplify the notation, we will always omit the variable t when writing our formulas.
For example, here .DA0 Pg/� WD .DA0.t/ Pg.t//�.t/.

We start by proving that � is a DA0–parallel section in End.E/. Given any section
v 2 �.E/, we can write it as a linear combination of eigenvectors of holonomy. Set
v.t/D

Pn
iD1 ai.t/ei.t/, where ei.t/ satisfies the parallel transport equation DA0

ei D 0

with boundary conditions ei.l /D �
i
 ei.0/ and kei.0/k D 1. In particular, we assume

�1
 D � and L .t/ is generated by e1.t/. Then

.DA0�/.v/D ŒDA0 ; ��v DDA0.�v/��.DA0v/

DDA0.a1.t/e1.t//��

� nX
iD1

.dai.t/ei.t/C ai.t/DA0ei.t//

�
D da1.t/e1.t/� da1.t/e1.t/

D 0:
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Thus,Z l

0

d

dt
.Tr. Pg ��// dt

D

Z l

0

Tr
�
@

@t
. Pg�/

�
dt

D

Z l

0

Tr.DA0. Pg�// dt (since Tr.ŒA0; Pg��/D 0)

D

Z l

0

Tr.ŒDA0 ; Pg��/ dt (notice Pg� 2 �.End.E//)

D

Z l

0

Tr.ŒDA0 ; Pg�� C PgŒDA0 ; ��/ dt

D

Z l

0

Tr..DA0 Pg/� C Pg.DA0�// dt (action of a connection on �.End.E//)

D

Z l

0

Tr..DA0 Pg/�/ dt (since DA0� D 0).

So Z l

0

Tr..DA0 Pg/�/ dt D

Z l

0

d

dt
.Tr. Pg ��// dt

D Tr. Pg.l /�.l //�Tr. Pg.0/�.0//

D 0:

As s varies, the eigenline Ls
 .t/ corresponding to � .s/ varies according to s and so

does the complementary hyperplane Hs
 .t/. By picking suitable gauges fgsg, we can

assume, for zAs WD g�s As , the eigenlines zLs
 .t/ and complementary hyperplanes zHs

 .t/

satisfy zLs
 .t/D L .t/ and zHs

 .t/DH .t/.

Without loss of generality, we assume DAs is itself the connection for a suitable gauge
and fes

i g are eigenvectors for As with es
1

corresponding to Ls
 . Thus,

DAs es
i .t/D 0; es

i .l /D �
i
 .s/e

s
i .0/:

In particular, we can assume

DAs es
1.t/D 0; es

1.t/D cs.t/e
0
1.t/; es

1.l /D �
1
 .s/e

s
1.0/; es

1.0/D e0
1.0/:

So

es
1.l /D cs.l /e

0
1.l /D cs.l /�

1
 .0/e

0
1.0/D �

1
 .s/e

s
1.0/D �

1
 .s/e

0
1.0/
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and thus cs.l /D �
1
 .s/=�

1
 .0/ and c0.l /D 1. Notice

H.e0
1
.t/;DAs e0

1
.t//

H.e0
1
.t/; e0

1
.t//

D
H
�
e0

1
.t/;DAs .es

1
.t/=cs.t//

�
H.e0

1
.t/; es

1
.t/=cs.t//

D
@t .1=cs.t//

1=cs.t/
D�

@.log cs.t//

@t
:

So Z l

0

Tr.@sDA0�/ dt D

Z l

0

H.e0
1
.t/; @sDA0e0

1
.t//

H.e0
1
.t/; e0

1
.t//

dt

D�

Z l

0

@

@s

�
@.log cs.t//

@t

�ˇ̌̌̌
sD0

dt

D�
d log�1

 .s/

ds

ˇ̌̌̌
sD0

:

5 Computation of the variations of the reparametrization
functions for a model case

In this section and the next, we consider the model case @ˇg˛˛.�/. Note the treatment
of this case will involve all the steps needed for the other cases. This justifies the
expositional decision that we consider it here first and in isolation.

In this case, we are given parameters .u; v/ 2 f.�1; 1/g2 with (conjugacies classes of)
representations {�.u; v/g in H3.S/ corresponding to

f.0;uq˛C vqˇ/g �H 0.X;K2/˚H 0.X;K3/

by Hitchin parametrization (see Remark 2.37). In particular, at the Fuchsian point
�.0/DX, we identify @u�.0; 0/ with '.q˛/ and @v�.0; 0/ with '.qˇ/, where ' is the
Hitchin deformation given in Definition 2.38. We suppose ff�.u;v/g is an associated
two-parameter family of reparametrization functions. By Proposition 4.2, the formula
for @ˇg˛˛.�/ is

@ˇg˛˛.�/D @v
�
h@u�.0; v/; @u�.0; v/iP

�
.0/

D lim
r!1

1

r

�Z
UX

�Z r

0

@uf
N
�.0/ dt

�2 Z r

0

@vf
N
�.0/ dt dm0

C 2

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@uvf
N
�.0/ dt dm0

�
:

Because @uh.�.u; 0//D @vh.�.0; v//D 0 on Fuchsian locus T .S/. By Theorem 2.16,
the variations of the reparametrization functions that need to be computed are the
following:
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(i) @uf
N
�.0/
D�@uf�.0/.

(ii) @vf
N
�.0/
D�@vf�.0/.

(iii) @uvf
N
�.0/
D�@uvh.�.0//� @uvf�.0/.

Before proceeding to compute (i), (ii) and (iii), we explain our general strategy to
compute the variations of the reparametrization functions. Our computation will be
based on Proposition 4.4 and tools from Higgs bundles theory. Let us first set up our
Higgs bundles.

In the component H3.S/ we are considering, the rank-3 holomorphic vector bundle
is fixed as E D K ˚ O ˚ K�1. Associated to a representation � in H3.S/ is a
Hermitian metric H on E that solves Hitchin’s equation (2-9) and a flat connection
DH Drx@E ;H

CˆCˆ�H, where rx@E ;H
is the Chern connection (see Theorem 2.29).

Given a parameter s 2 .�1; 1/, suppose we are considering a family of conjugacy
classes of representations f�sg in H3.S/. On the one hand, there is a family of flat
connections fDH .s/g given by (2-10) associated to f�sg. On the other hand, there
is a family of reparametrization functions ff�s

gs2.�1;1/ associated to f�sg from the
thermodynamical point of view. Recall our notation (2-4)–(2-5). For a family of flat
connections fDH .s/g, we write

@sDH .0/ D
@DH .s/

@s

ˇ̌̌̌
sD0

and, for a family of reparametrization functions ff�s
g,

@sf�0
D
@f�s

@s

ˇ̌̌̌
sD0

:

By Proposition 4.4 and Livšic’s theorem, the Hölder function �Tr.@sDH .0/�/.x/

and @sf�0
.x/ are in the same Livšic cohomology class. Recalling our notation in

Definition 2.3,

(5-1) @sf�0
.x/��Tr.@sDH .0/�/.x/:

Here we define Tr.@sDH .0/�/.ˆt .x// WD Tr.@sDH .0/.t/�.t//, following Proposition
4.4. The curve  .t/ in Proposition 4.4 from now on will be a unit-speed geodesic
starting from x. Therefore, x D P .0/ @=@t and ˆt .x/D P .t/ @=@t .

Proposition 4.3 allows us to consider the first and second variations of the reparametriza-
tion functions in terms of Livšic cohomology classes instead of individual functions.
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From now on, for the first and second variations of the reparametrization functions, we
will no longer distinguish cohomologous elements.

Because X is a hyperbolic surface and the geodesic flow is Anosov, the vectors tangent
to periodic geodesics are dense in TX. To recover the information of @sf�0

, it suffices
to compute Tr.@sDH .0/�/ on each closed geodesic. Similarly, to compute the second
variations of the reparametrization functions, it suffices to compute them on each closed
geodesic.

Now we start to give a complete computation of the first and second variations of the
reparametrization functions for the case @ˇg˛˛.�/. The steps of our argument are
divided into different subsections:

(1) We set up coordinates adapted to the closed geodesics we study and conclude
special properties of affine metrics with respect to chosen coordinates on these
geodesics.

(2) We first construct a homogeneous ODE arising from the parallel transport equa-
tion for the base flat connection at �.0/D � 2 T .S/. This leads to formulas for
the first variations of the reparametrization functions proved in [20].

(3) We consider a family of parallel transport equations associated to a family of
flat connections by solving Hitchin’s equations based at �.0/D � 2 T .S/. The
variation of this family of parallel transport equations at � gives rise to some
nonhomogeneous ODEs and yields solutions for the second variations of the
reparametrization functions on the closed geodesics we consider.

(4) We extend our computation from the closed geodesics to the surface.

5.1 Setting up coordinates on surfaces

In this subsection, we set up coordinates adapted to the closed geodesics we study.
We will obtain some important properties for the affine metric after setting up the
coordinates. They can be used in the computation of the first and second variations
of the reparametrization functions in the following sections. The first variations have
been computed in [20] by advanced Lie-theoretic methods.

The convention we use for a Hermitian metric H on E is it is C–linear in the second
variable and conjugate-linear in the first variable. Suppose on a coordinate chart .U; z/,
the bundle E D K˚O˚K�1 is trivialized as EjU Š U �C3. Locally we have a
holomorphic frame .s1; s2; s3/ on U. With respect to the local holomorphic frame and
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our convention of the Hermitian metric, the .1; 0/–part of the Chern connection rx@E ;H

is H�1 @H. The Hermitian conjugate is ˆ�H DH�1 x̂ tH. The connection 1–form A

of the flat connection DH is thus

ADH�1 @H CˆCˆ�H :

Associated to representations f�.u; v/g are a two-parameter family of flat connections
fDH .u;v/g. We will study their connection 1–forms in holomorphic frames with respect
to some carefully chosen coordinates on the surface X.

When the Higgs field is

ˆ.u; v/D

240 0 uq˛C vqˇ
1 0 0

0 1 0

35 ;
Baraglia proves the Hermitian metric H.u; v/ that solves Hitchin’s equation (2-9) is
diagonal (see [2]). Following Baraglia’s notation [2], we denote the Hermitian metric
by H.u; v/D e2�.u;v/. We have

H.u; v/D

24h.u; v/�1 0 0

0 1 0

0 0 h.u; v/

35 ;
where hD h.u; v/ is a section of K˝K and

�.u; v/D

24�!.u; v/ 0 0

0 0 0

0 0 !.u; v/

35
with !.u; v/D 1

2
log h.u; v/.

We denote the corresponding flat connection by

DH .u;v/ Drx@E ;H .u;v/
Cˆ.u; v/Cˆ.u; v/�H .u;v/:

The connection 1–form A.u; v/ 2 �.T �X ˝End E/ is thus

(5-2) A.u; v/D

24 �2 @!.u; v/ h.u; v/ uq˛C vqˇ
1 0 h.u; v/

h�2.u Nq˛C v Nqˇ/ 1 2 @!.u; v/

35 :
In fact, 2h.u; v/ is an affine metric for some hyperbolic affine sphere in the conformal
class of � (see [2]).

We let � D log.2h=�/. Note � D �.u; v; z/ is actually a globally well-defined function
on X that does not depend on coordinate systems. Hitchin’s equation (2-9), using the
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integrability condition for affine sphere (see [24]), can be written as an equation of �
as

(5-3) ���C 16kuq˛C vqˇk
2
�e�2�

� 2e� C 2D 0;

where k � k� is the induced norm on cubic differentials. It satisfies kqk2� D jqj
2=�3.

The notation we adopt for Laplacian is �� D 4@Nz@z=� .

For simplicity of notation, we sometimes omit variables and write � as �.u; v/ or �.z/
depending on our needs.

We have the following observation from (5-3):

� When .u; v/D .0; 0/, the only solution of (5-3) is � D �.0; 0/D 0. The affine
metric 2hD � is indeed the hyperbolic metric of constant curvature �1.

� Taking the u–derivative or v–derivative of (5-3) at .u; v/D .0; 0/ yields

���u� 2e��u D 0;(5-4)

���v � 2e��v D 0:(5-5)

Therefore, the fact that � D �.0; 0/ D 0 implies �u D �u.0; 0/ D 0 and �v D
�v.0; 0/D 0.

We now choose a special coordinate system that facilitates the study of holonomy
problems on a closed geodesic. Let z be a local holomorphic coordinate on X. Suppose
the affine metric in this coordinate is e .u;v;z/jdzj2 and the hyperbolic metric in this
coordinate is � D eı.z/jdzj2. Suppose  .t/ is any closed geodesic with respect to the
hyperbolic metric � on the Riemann surface X. Then, written in the z–coordinate, it is

 .t/D z.t/D Re  .t/C i Im  .t/

and
P .t/

@

@t
D .Re P .t/C i Im P .t// @

@z
C .Re P .t/� i Im P .t// @

@Nz
:

In particular, we can model  .t/ on a strip S D
˚
xC iy W jyj< �

2

	
with the hyperbolic

metric ds D jdzj=cos y and  .t/D .t; 0/. This coordinate around  is called a Fermi
coordinate and satisfies Re P .t/ D 1 and Im P .t/ D 0. Thus, it’s easy to check that,
on  , one has  � ds D jdzj and ı.z/D 0.

The variable t is then the arc-length parameter for our choice of coordinates. Therefore,
if one writes P .0/ @=@t D x 2 UX, then P .t/ @=@t D ˆt .x/. We will always assume
P .0/ @=@t D x in our discussion.
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With the Fermi coordinate understood, from the fact that the only solution of (5-3) is
� D 0, we conclude

 .z/D �.z/C ı.z/D ı.z/D 0:

From (5-4) together with (5-5) and their solutions �u D �v D 0, we obtain

 u.z/D �u.z/D 0;  v.z/D �v.z/D 0:

Also  .z/D 0 implies
 z.z/D ız.z/D 0:

All this information about the affine metric  with respect to the Fermi coordinate will
be important in computation in later sections.

5.2 Homogeneous ODEs for holonomy and first variations of the
reparametrization functions

In this subsection, we show a formula for the first variations of the reparametrization
functions from [20]. We also construct homogeneous ODEs arising from the parallel
transport equations for the base flat connection at � 2 T .S/. These serve as the first
step for the computation of the second variations in later subsections.

We first explain our notation. For qi D qi.z/ dz2 any quadratic differential and q˛ D

q˛.z/ dz3 any cubic differential, we also use qi and q˛ to denote Hölder functions on
the unit tangent bundle UX as follows. We let qi W UX !C and q˛ W UX !C be

qi.x/ WD qi.z/ dz2.x;x/D qi.z/.dz.x//2;(5-6)

q˛.x/ WD q˛.z/ dz3.x;x;x/D q˛.z/.dz.x//3:(5-7)

The first variations of the reparametrization functions for our cases have been computed
in [20] as follows:

Proposition 5.1 [20, Theorem 4.0.2] The first variations of the reparametrization
functions @uf�.0/ W UX ! R and @vf�.0/ W UX ! R for our model case @ˇg˛˛.�/

satisfy
�@uf�.0/.x/� Re q˛.x/; �@vf�.0/.x/� Re qˇ.x/;

where the notation � is Livšic equivalence (Definition 2.3).

Proposition 5.1 is proved in [20] as a consequence of (5-1).

We then study parallel transport equations for the connection DH .0/ arising from
holonomy problems based at �.0/ 2 T .S/. With the coordinates introduced in the
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last section, they become homogenous ODE systems that are easy to solve. We list
some important computations involved here. These will be important for the second
variations of the reparametrization functions.

The parallel transport equation for the connection DH .0/ on the closed geodesic  is

(5-8) DH .0/; PV D 0;

where V 2 �.E/ is a parallel section with boundary conditions

V .l /D �i.; �.0//V .0/:

Here �i.; �.0// is one of the eigenvalues for holonomy of DH .0/ on  for i D 1; 2; 3.
We want to write (5-8) on a specific holomorphic frame, which can be constructed as
follows.

We cover  by m charts f.Ui ; zi/g
m
iD1

such that zi WUi!zi.Ui/�C is a diffeomorphism
for 1 � i � m. We assume our holomorphic bundle E is trivialized on each Ui .
Furthermore, we assume the transition map on every overlap is either the identity
or a hyperbolic translation viewed on the universal cover D. Since dzi is a local
holomorphic section of K on Ui and @=@zi is a local holomorphic section of K�1

on Ui , we can define a local holomorphic frame si D .si
1
; si

2
; si

3
/ for EDK˚O˚K�1

on Ui , where si
1
D dzi and si

2
D 1 and si

3
D @=@zi . Setting .UmC1; zmC1/D .U1; z1/

and smC1
j D s1

j , this yields a well-defined holomorphic frame for  because, on each
overlap and for j D 1; 2; 3, we have si

j D siC1
j on  jUi

\  jUiC1 with 1� i �m.

We will simply write the holomorphic frame on  as sj for j D 1; 2; 3. With respect to
this frame, the parallel transport equation for V .t/D

P3
iD1 Vi.t/si.t/ becomes

@t

24V 1.t/

V 2.t/

V 3.t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524V 1.t/

V 2.t/

V 3.t/

35D 0:

There are three eigenvalues for this ODE system: �1.; �.0//D el , �2.; �.0//D 1

and �3.; �.0//D e�l . The solutions for V (assuming norm 1 at the starting point
with respect to the Hermitian metric H.0/), denoted by ei corresponding to �i. / for
i D 1; 2; 3, are

e1 D

p
2

2
et

24 1
2

�1

1

35 ; e2 D
1
2

24�1

0

2

35 ; e3 D

p
2

2
e�t

241
2

1

1

35 :
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We note at the Fuchsian point �.0/2T .S/, the eigenvectors e1, e2 and e3 are orthogonal.
In our holomorphic frame, the projection �.0/D �.�.0// can be computed as

�.0/D 1
2

264
1
2
�

1
2

1
4

�1 1 �1
2

1 �1 1
2

375 :
The eigenvectors ei and projection � will play important roles in later sections.

5.3 Inhomogeneous ODEs and the second variations of the
reparametrization functions

We will compute the second variation of the reparametrization functions @uvf�.0/ in
this and the next subsection. With our formula (5-1), we have

(5-9) @uvf�.0/ ��@v
�
Tr.@uDH .0;v/�.0; v//

�
.0/

D�Tr
�
@2DH .0/

@u @v
�.0/

�
�Tr.@uDH .0/@v�.0//

DW �I� II:

In this subsection, we compute @uvf�.0/ along a closed geodesic by computing I
and II. We study variation of holonomy problems along a closed geodesic and construct
associated inhomogeneous ODEs. In the next subsection, we extend the computation
of @uvf�.0/ to the whole surface.

Compute I With the holomorphic frames and Fermi coordinates setup as before, one
obtains, on  ,

@uvDH .0/.x/D

24�. z/uv.z/
1
2
 uv.z/ 0

0 0 1
2
 uv.z/

0 0 . z/uv.z/

35 :
Thus,

Tr
�
@2DH .0/

@u @v
.x/�.0/

�
D�

1
2
 uv.z/:

More explicitly, Tr..@2DH .0/=@u @v/�.0// W UX !R satisfies

Tr
�
@2DH .0/

@u @v
�.0/

�
.x/D�1

2
 uv

�
z.p.x//

�
D�

1
2
�uv.p.x//;

where p W UX !X is the projection from the unit tangent bundle to our surface and z

is the Fermi coordinate we choose evaluating at the point p.x/2X. Note that the affine
metric  is always real and � D  � � does not depend on the coordinates we choose.
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Compute II To study @v�.0/ takes some effort. We set uD 0 and take a family of
flat connections fDH .v/g with connection 1–forms A.0; v/ (recall (5-2)). Associated
to each of them is a parallel transport equation along the closed geodesic  on .S; �/,

(5-10) DH .v/; PV .v; t/D 0;

with the assumption kV .v; 0/kH .0/ D 1.

In [19], Labourie proves the images of every Hitchin representation are purely loxo-
dromic. For �.0; v/ in H3.S/, we know �.0; v/. / has distinct eigenvalues �1.; v/ >

�2.; v/ > �3.; v/. The holonomy problem for �.0; v/ has three distinct eigenvectors
which are parallel sections fei.v; t/g

3
iD1

along  .t/. Each section V .v; t/D ei.v; t/ sat-
isfies (5-10). In addition to the norm 1 condition at the starting point, kV .v; 0/kH .0/D1,
we also impose another boundary condition in order to guarantee these are eigenvectors.
The boundary conditions are, for i D 1; 2; 3,

(i) kei.v; 0/kH .0/ D 1;

(ii) ei.v; l /D �i.; v/ei.v; 0/.

The reader may notice that, up to now, there are two frames for E along  mentioned,
the holomorphic frame .s1; s2; s3/ and the frame spanned by eigenvectors .e1; e2; e3/.
On the one hand, we can write our holomorphic frames as linear combinations of
eigenvectors si.t/D

P3
jD1 aij .v; t/ej .v; t/ for i D 1; 2; 3. On the other hand, we can

write the eigenvectors as linear combinations of our holomorphic frames ej .v; t/ DP3
kD1 ejk.v; t/sk.t/ for j D 1; 2; 3. We have the following observation:

With respect to the holomorphic frame .s1; s2; s3/, the projection onto e1 along the
hyperplane spanned by .e2; e3/ in matrix form is

�.v; t/D
�
�.v; t/s1.t/ �.v; t/s2.t/ �.v; t/s3.t/

�
D
�
a11.v; t/e1.v; t/ a21.v; t/e1.v; t/ a31.v; t/e1.v; t/

�
D

24a11.v; t/e11.v; t/ a21.v; t/e11.v; t/ a31.v; t/e11.v; t/

a11.v; t/e12.v; t/ a21.v; t/e12.v; t/ a31.v; t/e12.v; t/

a11.v; t/e13.v; t/ a21.v; t/e13.v; t/ a31.v; t/e13.v; t/

35 :
To understand @v�.0/, we need to know @ve1.0/ and @v˛i1.0/ for i D 1; 2; 3. One can
check, in the holomorphic frame,

(5-11) Tr.@uDA.0/@v�.0//D q˛.@va11.0/e13.0/C a11.0/@ve13.0//

C 4 Nq˛.@va31.0/e11.0/C a31.0/@ve11.0//;
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where e11.0/ and e13.0/ are known. Thus, we need to compute @ve1.0/ and @va11.0/

and @va31.0/.

We first show how to obtain @ve1.0; t/ as the solution of an inhomogeneous ODE
system arising from taking the v–derivative for a family of parallel transport equations
(5-10) at v D 0,

@t

24@ve11.0; t/

@ve12.0; t/

@ve13.0; t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524@ve11.0; t/

@ve12.0; t/

@ve13.0; t/

35D�p2
2

et

24 qˇ.ˆt .x//

0

2 Nqˇ.ˆt .x//

35 ;
with boundary conditions

H.@ve1.0; 0/; e1.0; 0//D 0;

@ve1.0; l /D�el

�Z l

0

Re qˇ.ˆs.x// ds

�
e1.0; 0/C el @ve1.0; 0/:

The boundary conditions arise from taking the v–derivative for boundary conditions
(i) and (ii) of the parallel transport equation (5-10) that the maximum eigenvector e1

satisfies.

With these boundary conditions, we solve264@ve11.t/

@ve12.t/

@ve13.t/

375D
264�
p

2
2

R t

0
es.cosh.t�s/Re qˇCi Im qˇ/ ds
p

2
R t

0
es sinh.t�s/Re qˇ ds

�
p

2
R t

0
es.cosh.t�s/Re qˇ�i Im qˇ/ ds

375

C

2664
�

p
2

4
.e2l �1/�1

R l
0

e2s�t Re qˇ ds�
p

2
2

i.el �1/�1
R l

0
es Im qˇ ds

�

p
2

2
.e2l �1/�1

R l
0

e2s�t Re qˇ ds

�

p
2

2
.e2l �1/�1

R l
0 e2s�t Re qˇ dsC

p
2i.el �1/�1

R l
0 es Im qˇ ds

3775 :
Here qˇ refers to qˇ.ˆs.x// defined in (5-7).

We continue to compute @v˛11.0/ and @v˛31.0/. Combining

ej .v; t/D

3X
kD1

ejk.v; t/sk.t/ and si.t/D

3X
jD1

aij .v; t/ej .v; t/

gives

(5-12)
jD3X
jD1

aij .v; t/ejk.v; t/D �ik :
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Recall the ejk.0; t/ are known:

e1.0; t/D

24e11.0; t/

e12.0; t/

e13.0; t/

35D p2
2

et

24 1
2

�1

1

35 ;
e2.0; t/D

24e21.0; t/

e22.0; t/

e23.0; t/

35D 1
2

24�1

0

2

35 ;
e3.0; t/D

24e31.0; t/

e32.0; t/

e33.0; t/

35D p2
2

e�t

241
2

1

1

35 :
Then one obtains

a.0; t/D

24a11 a12 a13

a21 a22 a23

a31 a32 a33

35D
2664
p

2
2

e�t �1
p

2
2

et

�

p
2

2
e�t 0

p
2

2
et

p
2

4
e�t 1

2

p
2

4
et

3775 :
Taking the v–derivative of (5-12) at v D 0,

jD3X
jD1

@vaij .0; t/ejk.0; t/C

jD3X
jD1

aij .0; t/@vejk.0; t/D 0:

Solutions of @vaij .0; t/ can be expressed in terms of @ve1.0; t/, @ve2.0; t/ and @ve3.0; t/.
We have just solved @ve1. Similarly,@ve2.0/ and @ve3.0/ are solutions of another two
systems of nonhomogeneous ODEs deduced from (5-10). We now proceed to solve
@ve2.0; t/ and @ve3.0; t/.

(1) For @ve2.0; t/, we have

@t

24@ve21.0; t/

@ve22.0; t/

@ve23.0; t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524@ve21.0; t/

@ve32.0; t/

@ve23.0; t/

35D
24 �qˇ.ˆt .x//

0

2 Nqˇ.ˆt .x//

35
with boundary conditions

H.@ve2.0; 0/; e2.0; 0//D 0;

@ve2.0; l /D 2

�Z l

0

Re qˇ.ˆs.x// ds

�
e2.0; 0/C @ve2.0; 0/:

(2) For @ve3.0; t/, we get

@t

24@ve31.0; t/

@ve32.0; t/

@ve33.0; t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524@ve31.0; t/

@ve32.0; t/

@ve33.0; t/

35D�p2
2

e�t

24 qˇ.ˆt .x//

0

2 Nqˇ.ˆt .x//

35
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with boundary conditions

H.@ve3.0; 0/; e3.0; 0//D 0;

@ve3.0; l /D�e�l

�Z l

0

Re qˇ.ˆs.x// ds

�
e3.0; 0/C e�l @ve3.0; 0/:

We obtain respective solutions from24@ve21.t/

@ve22.t/

@ve23.t/

35D
264�

R t
0 Re qˇC i cosh.t � s/ Im qˇ ds

2
R t

0 i sinh.t � s/ Im qˇ ds

2
R t

0 Re qˇ � i cosh.t � s/ Im qˇ ds

375

C

2664
�

i
2

R l
0

Im qˇ..1� el /�1elCt�sC .1� e�l /�1e�l�tCs/ ds

i
R l

0
Im qˇ..1� el /�1elCt�s � .1� e�l /�1e�l�tCs/ ds

�i
R l

0
Im qˇ..1� el /�1elCt�sC .1� e�l /�1e�l�tCs/ ds

3775
and264@ve31.t/

@ve32.t/

@ve33.t/

375D
2664
�

p
2

2

R t

0
e�s.cosh.t�s/Re qˇCi Im qˇ/ ds
p

2
R t

0
e�s sinh.t�s/Re qˇ ds

�
p

2
R t

0
e�s.cosh.t�s/Re qˇ�i Im qˇ/ ds

3775

C

2664
�

p
2

4
.e�2l�1/�1

R l
0 et�2s Re qˇ ds�

p
2

2
i.e�l�1/�1

R l
0 e�s Im qˇ ds

p
2

2
.e�2l�1/�1

R l
0

et�2s Re qˇ ds

�

p
2

2
.e�2l�1/�1

R l
0

et�2s Re qˇ dsC
p

2i.e�l�1/�1
R l

0
e�s Im qˇ ds

3775;
where qˇ in the solutions again refers to qˇ.ˆs.x// defined in (5-7).

We are therefore able to solve @vaij .0; t/ from @ve1.0; t/, @ve2.0; t/ and @ve3.0; t/.
For a closed geodesic  of length l starting from P .0/D x, we compute, from (5-11),

(5-13) Tr.@uDA.0/@v�.0//.ˆt .x//

D Re q˛.ˆt .x//

Z t

0

.e2.t�s/
� e2.s�t//Re qˇ.ˆs.x// ds

C 2 Im q˛.ˆt .x//

Z t

0

.et�s
� es�t / Im qˇ.ˆs.x// ds

CRe q˛.ˆt .x//

Z l

0

�
e2.t�s/

e�2l � 1
�

e2.s�t/

e2l � 1

�
Re qˇ.ˆs.x// ds

C 2 Im q˛.ˆt .x//

Z l

0

�
et�s

e�l � 1
�

es�t

el � 1

�
Im qˇ.ˆs.x// ds:
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In particular, at t D 0,

(5-14) Tr.@uDA.0/@v�.0//.x/

D Re q˛.x/

Z l

0

�
e�2s

e�2l � 1
�

e2s

e2l � 1

�
Re qˇ.ˆs.x// ds

C 2 Im q˛.x/

Z l

0

�
e�s

e�l � 1
�

es

el � 1

�
Im qˇ.ˆs.x// ds:

Remark 5.2 Every point on the closed geodesic  plays an equivalent role. We can
always let y Dˆt .x/ be the initial point of our  and set up boundary conditions for
our ODEs based at y instead of x. The solution of this new ODE system is (5-14),
treating y D ˆt .x/ as the initial point. It is in fact the same as starting from x and
obtaining Tr.@uDA.0/@v�.0//.ˆt .x// from (5-13).

5.4 Hölder extension to the surface

The holonomy problems only yield solutions on closed geodesics as they can be
simplified as linear ODEs with boundary conditions. However, it is still possible to
extend the computation for the second variations of the reparametrization functions
from closed geodesics to the Riemann surface X. This will be our goal in this subsection.
In particular, We will prove in the end of this subsection the main proposition about
second variations of the reparametrization functions.

Proposition 5.3 The second variation of the reparametrization functions

@uvf�.0/ W UX !R

for our model case @ˇg˛˛.�/ satisfies

@uvf�.0/.x/�
1
2
�uv.p.x//� �.x/;

where we recall that � is defined in (5-3) and p W UX !X is the projection from the
unit tangent bundle UX to our Riemann surface X, and � W UX !R is given by

�.x/D�Re q˛.x/

Z 1
0

e�2s Re qˇ.ˆs.x// ds�Re q˛.x/

Z 0

�1

e2s Re qˇ.ˆs.x// ds

�2 Im q˛.x/

Z 1
0

e�s Im qˇ.ˆs.x// ds�2 Im q˛.x/

Z 0

�1

es Im qˇ.ˆs.x// ds:
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We will prove that �.x/ coincides with Tr.@uDA.0/@v�.0//.x/ on periodic orbits and
that �.x/ is a Hölder function. Denoting the subset of UX that consists of all unit
tangent vectors to closed geodesics by W, we first show:

Proposition 5.4 For any x 2W, �.x/D Tr.@uDA.0/@v�.0//.x/.

To prove Proposition 5.4, from the computation of Tr.@uDA.0/@v�.0//.x/ in (5-14),
we introduce an intermediate function  WW �RC!R, given by

 .x; r/D Re q˛.x/

Z r

0

�
e�2s

e�2r � 1
�

e2s

e2r � 1

�
Re qˇ.ˆs.x// ds

C 2 Im q˛.x/

Z r

0

�
e�s

e�r � 1
�

es

er � 1

�
Im qˇ.ˆs.x// ds:

Given x 2 W, if we denote the closed geodesic that x is tangential to by x , with
length lx

, then clearly Tr.@uDA.0/@v�.0//.x/D  .x; lx
/. To prove Proposition 5.4

for the set W, we need the following lemma, which states that  .x; r/ attains the same
value when r is any positive integer multiple of lx

:

Lemma 5.5  .x; klx
/D  .x; lx

/ for all x 2W and k 2 ZC.

Proof For any k 2 ZC, we haveZ klx

0

�
e�2s

e�2klx � 1
�

e2s

e2klx � 1

�
Re qˇ.ˆs.x// ds

D

kX
iD1

Z ilx

.i�1/lx

�
e�2s

e�2klx � 1
�

e2s

e2klx � 1

�
Re qˇ.ˆs.x// ds

D
1

e�2klx � 1

kX
iD1

Z ilx

.i�1/lx

e�2s Re qˇ.ˆs.x// ds

�
1

e2klx � 1

kX
iD1

Z ilx

.i�1/lx

e2s Re qˇ.ˆs.x// ds

D

Z lx

0

�
e�2s

e�2lx � 1
�

e2s

e2lx � 1

�
Re qˇ.ˆs.x// ds:

Similar arguments hold for
R lx

0
.e�s=.e�lx � 1/� es=.elx � 1// Im qˇ.ˆs.x// ds.

Thus, we obtain  .x; klx
/D  .x; lx

/.

Remark 5.6 This equality is clear if one understands that  .x; kl / is the solution of
the holonomy problem that goes around our closed geodesic  k times with the same
boundary conditions.
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Proof of Proposition 5.4 Instead of flowing from x to ˆlx
.x/, we view x as our

midpoint and consider our flow from ˆ�lx =2
.x/ to x and then from x to ˆlx =2

.x/.
From this point of view, we can write  .x; lx

/ as

 .x; lx
/D Re q˛.x/

Z lx =2

0

�
e�2s

e�2lx � 1
�

e2s

e2lx � 1

�
Re qˇ.ˆs.x// ds

CRe q˛.x/

Z 0

�lx =2

�
e2s

e�2lx � 1
�

e�2s

e2lx � 1

�
Re qˇ.ˆs.x// ds

C 2 Im q˛.x/

Z lx =2

0

�
e�s

e�lx � 1
�

es

elx � 1

�
Im qˇ.ˆs.x// ds

C 2 Im q˛.x/

Z 0

�lx =2

�
es

e�lx � 1
�

e�s

elx � 1

�
Im qˇ.ˆs.x// ds:

The above also holds if we replace lx
by klx

. We will now conclude by taking
k!1 in the above formula.

Suppose maxx2UX fjRe q˛.x/j; jIm q˛.x/j; jRe qˇ.x/j; jIm qˇ.x/jg DM. Then notice

j .x; klx
/� �.x/j � 2M 2

Z 1
klx =2

e�2s dsC 4M 2

Z 1
klx =2

e�s ds

C 2M 2

Z klx =2

0

ˇ̌̌̌
e�2s

e�2klx � 1
�

e2s

e2klx � 1
C e�2s

ˇ̌̌̌
ds

C 4M 2

Z klx =2

0

ˇ̌̌̌
e�s

e�klx � 1
�

es

eklx � 1
C e�s

ˇ̌̌̌
s

! 0 when k!1:

Thus, by Lemma 5.5, we obtain, for any x 2W,

Tr.@uDA.0/@v�.0//.x/D  .x; lx
/D lim

k!1
 .x; klx

/D �.x/:

We also need the following proposition about regularity of the function �:

Proposition 5.7 �.x/ W UX !R is a Hölder function.

Proof We start by showing
R1

0 e�s Im qˇ.ˆs.x// ds is Hölder. Let x and y be close,
with d.x;y/ D � � 1. It is classical for a hyperbolic surface .S; �/ that we have
standard ODE estimates on the geodesic flow

d.ˆs.x/; ˆs.y//�Nesd.x;y/D �Nes;
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where N > 0 is some constant and the distance function d on UX is induced from the
canonical (Sasaki) metric h � ; � i on UX.

Consider T D �log.�/. Then, dividing the integral into two parts, from 0 to T and
from T to1, yieldsˇ̌̌̌Z 1

0

e�s Im qˇ.ˆs.x// ds�

Z 1
0

e�s Im qˇ.ˆs.y// ds

ˇ̌̌̌
D

ˇ̌̌̌Z T

0

e�s
�
Im qˇ.ˆs.x//� Im qˇ.ˆs.y//

�
ds

ˇ̌̌̌
C

ˇ̌̌̌Z 1
T

e�s
�
Im qˇ.ˆs.x//� Im qˇ.ˆs.y//

�
ds

ˇ̌̌̌
�

Z T

0

e�sN1N�es dsC 2N2e�T

� �N1N� log.�/C 2N2�

� .N1N C 2N2/d.x;y/
1=2:

Here we use the fact that Im qˇ is smooth, so we can assume its Lipschitz constant to
be N1. We also use that UX is compact and we assume supx2UX Im qˇ.x/DN2.

It then follows easily that Im q˛.x/
R1

0 e�2s Im qˇ.ˆs.x// ds is also a Hölder function.
The arguments to show that the other three terms in �.x/ are Hölder are the same. We
therefore conclude that �.x/ is a Hölder function.

Finally, with Propositions 5.4 and 5.7, we are able to prove Proposition 5.3 about the
second variations of the reparametrization functions on the Riemann surface X.

Proof of Proposition 5.3 We have most of the necessary elements for this proof in
previous estimates. We assemble everything here. Because Tr.@uDA.0/@v�.0//.ˆt .x//

is a Hölder function and it equals the Hölder function �.x/ on a dense subset of UX,
we conclude it coincides with �.x/ everywhere on UX. We obtain

@uvf�.0/ ��@u

�
Tr.@vDH .0/�.0//

�
D�Tr

�
@2DH .0/

@u @v
�.0/

�
�Tr.@vDH .0/@u�.0//

D
1
2
�uv.p.x//� �.x/;

where we recall here �D log.2h=�/ is a globally well-defined function defined in (5-3)
evaluating at the point p.x/ 2 X and p W UX ! X is the projection from the unit
tangent bundle to our surface.
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6 Evaluation on the Poincaré disk for the model case

After the computation of the first and second variations of the reparametrization func-
tions on UX in the last two sections, we are able to evaluate @ˇg˛˛.�/. Our goal in
this section is to show the following:

Proposition 6.1 For � 2 T .S/, @ˇg˛˛.�/D 0.

Let’s first write down the expression for @ˇg˛˛.�/,

@ˇg˛˛.�/

D @v
�
h@u�.0; v/; @u�.0; v/iP

�
.0/

D lim
r!1

1

r

�Z
UX

�Z r

0

@uf
N
�.0/ dt

�2 Z r

0

@vf
N
�.0/ dt dm0

C2

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@uvf
N
�.0/ dt dm0

�
D lim

r!1

1

r

Z
UX

�Z r

0

Re q˛.ˆt .x// dt

�2 Z r

0

Re qˇ.ˆt .x// dt dm0

C lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

�@uvh.�.0//�@uvf�.0/.ˆt .x// dt dm0

DW IC II:

The formula for @uvf�.0/ is given in Proposition 5.3.

We aim to prove both I and II are zero. The following lemma will be crucial:

Lemma 6.2 For any t; s 2R, we haveZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/D 0;(6-1) Z
UX

Re q˛.x/ Im q˛.ˆt .x// Im qˇ.ˆs.x// dm0.x/D 0:(6-2)

We use the methods in [20] to show the integrals are zero. Similarly to the proof
of Theorem 6.3.1 in [20], the key is to use the symmetry properties of the Liouville
measure m0 DmL and homogeneity of holomorphic differentials viewed as functions
on UX. We transfer the problem of evaluating the integrals in (6-1) and (6-2) to
analyzing the Fourier coefficients of holomorphic differentials.
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Before we start our proof, we first explain the coordinates we will use to do the
computation following [20]. We take the Poincaré disk as our charts. Pick a point
x 2 UX. We identify the universal cover of .X; �/ with D by the unique isometry that
takes �.x/ 2X to 0 2D and identify the vector x 2 UX with the vector .1; 0/ 2 T0D.

We express our holomorphic differentials in these coordinates. The holomorphic cubic
differential q˛ has the analytic expansion in the coordinate based on x,

q˛;x.z/D

1X
nD1

an.x/z
n dz3:

Recall the hyperbolic distance dH in the Poincaré disk model satisfies

dH .0;Rei� /D r.R/D 1
2

log
�

1CR

1�R

�
:

Thus, @=@r D .1�R2/ @=@R and

dz
�
@

@r

�ˇ̌̌
Rei�
D .1�R2/ei� :

Denoting Qq˛;x.z/ WD Re.q˛;x.z/.@=@r ; @=@r ; @=@r//, one has

(6-3) Re q˛.ˆr .e
i�x//D Qq˛;x.Rei� /D Re

� 1X
nD0

an.x/R
n.1�R2/3ei.nC3/�

�
:

In particular, when r D 0,

lim
R!0

dz
�
@

@r

�ˇ̌̌
Rei�
D ei� :

Therefore,

(6-4) Re q˛.e
i�x/D Qq˛;x.0 � e

i� /

D lim
R!0

Re
�
q˛;x.Rei� /

�
@

@r
;
@

@r
;
@

@r

��
D Re.a0.x/e

i3� /:

Suppose the coefficients of the analytic expansion for qˇ are bn; then

(6-5) Re qˇ.ˆr .e
i�x//D Qqˇ;x.Rei� /D Re

� 1X
nD0

bn.x/R
n.1�R2/3ei.nC3/�

�
:

For the convenience of computation later for other cases, we also write down here two
analytic expansions for holomorphic quadratic differentials qi and qj , with coefficients
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cn and dn, respectively,

Re qi.ˆr .e
i�x//D Qqi;x.Rei� /D Re

� 1X
nD0

cn.x/R
n.1�R2/2ei.nC2/�

�
:(6-6)

Re qj .ˆr .e
i�x//D Qqj ;x.Rei� /D Re

� 1X
nD0

dn.x/R
n.1�R2/2ei.nC2/�

�
:(6-7)

Proof of Lemma 6.2 We begin with showing (6-1).

The proof of it will be divided into two cases:

(1) t � 0 and s � 0.

(2) t < 0 or s < 0.

In the first case, we work with the analytic expansions (6-3) and (6-5). We choose
two special situations: s D t and s D 1

2
t . We observe some symmetries in these two

situations and argue from these symmetries that (6-1) holds for the first case. We then
apply the results for the first case to the second case by flow-invariance properties
of mL. Equation (6-2) then follows easily from (6-1) once we find the relation between
them.

Since m0 DmL is rotationally invariant, ie .ei� /�mL DmL, we haveZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re q˛.e
i�x/Re q˛.ˆt .e

i�x//Re qˇ.ˆs.e
i�x// dm0.x/ d�:

(1) We restrict ourselves to the case t; s � 0 of (6-1) so that we can work with the
analytic expansions (6-3) and (6-5).

We let t.T /D 1
2

log..1CT /=.1�T // and s.S/D 1
2

log..1CS/=.1�S//. We first
consider t > 0 and s > 0. Then, if we first integrate over the �–variable, in terms of
the analytic expansion, we get

(6-8)
Z

UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D
1

4

1X
nD0

�Z
UX

Re.a0an
NbnC3/ dm0 T n.1�T 2/3SnC3.1�S2/3

C

Z
UX

Re.a0 NanC3bn/ dm0 T nC3.1�T 2/3Sn.1�S2/3
�
:
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We let An D
R

UX Re.a0an
NbnC3/ dm0 and Bn D

R
UX Re.a0 NanC3bn/ dm. To show

(6-1) holds for t; s � 0, it suffices to prove, for n� 0,

(6-9) An D Bn D 0:

If t D 0 or s D 0, equation (6-1) is equivalent to

A0 D B0 D 0;

which are included in (6-9). To prove (6-9), we consider two special cases of (6-1):
flow times s D t and s D 1

2
t .

By the ˆt –invariance of m0, flow time s D t satisfiesZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt .x// dm0.x/

D

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.x/ dm0.x/:

A convenient observation is that flowing from x backwards for time t is the opposite of
flowing forwards for time t from �x, ie ˆ�t .x/D�ˆt .�x/. Let y D�x and notice
.ei�/�m0 Dm0, so we haveZ

UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.x/ dm0.x/

D�

Z
UX

Re q˛.ˆt .y//Re q˛.y/Re qˇ.y/ dm0.y/:

Therefore,Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt .x// dm0.x/

D�

Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.x/ dm0.x/:

This implies

1X
nD0

.AnCBn/T
2nC3.1�T 2/6 D�B0T 3.1�T 2/3:

The coefficient of T 0 yields

(6-10) A0C 2B0 D 0:

Similarly, for flow time s D 1
2
t , we let y D�x and again use the fact .ei�/�m0 Dm0:
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Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt=2.x// dm0.x/

D

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.ˆ�t=2.x// dm0.x/

D�

Z
UX

Re q˛.ˆt .�x//Re q˛.�x/Re qˇ.ˆt=2.�x// dm0.x/

D�

Z
UX

Re q˛.ˆt .y//Re q˛.y/Re qˇ.ˆt=2.y// dm0.y/:

Thus,
R

UX Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt=2.x// dm0.x/D 0.

Recall t.T /D 1
2

log..1CT /=.1�T // and s D 1
2

log..1CS/=.1�S//. In the case
s D 1

2
t , we have T D 2S=.S2C 1/. The analytic expansion forZ

UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt=2.x// dm0.x/D 0

with condition T D 2S=.S2C 1/ simplifies to
1X

nD0

.An.S
2
C 1/3C 8Bn/

�
2S2

S2C 1

�n

D 0:

Let W D S2=.S2C 1/ with 0<W < 1
2

. Then the above is equivalent to
1X

nD0

�
An

1X
kD0

1
2
.kC 1/.kC 2/W k

C 8Bn

�
2nW n

D 0:

This give relations

2nC3BnC

nX
kD0

.n� kC 1/.n� kC 2/2k�1Ak D 0; n� 0.

When n D 0, combining with (6-10), we obtain A0 D B0 D 0. Then (6-10) yields
An C Bn D 0 for all n 2 N. This fact, combined with the above formula, gives
An D Bn D 0 and (6-1) holds for t; s � 0.

(2) For t < 0 or s < 0, there are three cases we need to discuss.

� If t � s and t < 0, then, as m0 is ˆt –invariant,Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.ˆs�t .x// dm0.x/:

This is the same as the s; t � 0 case.
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� If s < t � 0, thenZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.ˆs�t .x// dm0.x/

D�

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.ˆt�s.�x// dm0.x/

D 0:

This is from the observation that the analytic expansion of Re qˇ.ˆr .�ei�x// based
at x for r > 0 is

Re qˇ.ˆr .�ei�x//D Re qˇ.ˆr .e
i.�C�/x//D Qqˇ;x.Rei.�C�//

D Re
� 1X

nD0

bn.x/R
n.1�R2/3ei.nC3/.�C�/

�
and that, for n� 0,

e�i.nC6/�

Z
UX

Re.a0an
NbnC3/ dm0 D 0; ei.nC3/�

Z
UX

Re.a0 NanC3bn/ dm0 D 0:

� If s < 0� t , then we considerZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D

Z
UX

Re q˛.ˆt .�x//Re q˛.x/Re qˇ.ˆt�s.�x// dm0.x/

D 0:

The argument is essentially the same as the other cases. This finishes the proof of (6-1).

Equation (6-2) follows easily from (6-1) since, for all t; s 2R,

Re
�Z

UX

Re q˛.x/q˛.ˆt .x//qˇ.ˆs.x// dm0.x/

�
D

Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

�

Z
UX

Re q˛.x/ Im q˛.ˆt .x// Im qˇ.ˆs.x// dm0.x/

and

(6-11)
Z

UX

Re q˛.x/q˛.ˆt .x//qˇ.ˆs.x// dm0.x/D 0:
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This is easy to see from the fact that
R 2�

0 Re.a0.x/e
i3� /ei.nC3/�ei.mC3/� d� D 0 for

all n;m� 0 and thus, for t; s > 0,Z
UX

Re q˛.x/q˛.ˆt .x//qˇ.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re q˛.e
i�x/q˛.ˆt .e

i�x//qˇ.ˆs.e
i�x// dm0.x/ d�

D
1

2�

X
m;n�0

Z
UX

Z 2�

0

Re.a0.x/e
i3� /.an.x/T

n.1�T 2/3ei.nC3/� /

� .bm.x/S
mC3.1�S2/3ei.mC3/� / d� dm0.x/

D 0:

The argument for t � 0 or s� 0 can be transferred back to the t > 0 and s> 0 cases. One
needs the observation that �ˆ�t .�x/Dˆt .x/ and �ei�x D ei.�C�/x. We conclude
(6-11) holds for all t; s 2R and thus (6-2) holds.

Proof of Proposition 6.1 We start to show ID IID 0.

ID 0 reduces to (6-1) of Lemma 6.2 if we take r !1 in

1

r

Z
UX

�Z r

0

Re q˛.ˆt .x// dt

�2 Z r

0

Re qˇ.ˆt .x// dt dm0

D
1

r

Z r

0

Z r

0

Z r

0

Z
UX

Re q˛.ˆt .x//Re q˛.ˆs.x//Re qˇ.ˆ�.x// dm0 d� dt ds

(by Fubini’s theorem)

D
1

r

Z r

0

Z r

0

Z r

0

Z
UX

Re q˛.ˆt�s.x//Re q˛.x/Re qˇ.ˆ��s.x// dm0 d� dt ds

(since m0 is ˆt –invariant)

D 0:

We next look into II:

IID lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

�@uvh.�.0//� @uvf�.0/.ˆt .x// dt dm0

D� lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

@uvh.�.0// dt dm0

� lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Tr
�
@2DA.0/

@u @v
�.0/

�
.ˆt .x// dt dm0

C lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x//Tr.@vDA.0/@u�.0//.ˆt .x// dt dm0:
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There are three terms here. Since @uvh.�.0// is a constant, the first term is

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

@uvh.�.0// dt dm0

D lim
r!1

2@uvh.�.0//

Z
UX

Z r

0

Re q˛.ˆt .x// dt dm0:

Recall our expressions given by (6-3) and (6-6). ThenZ
UX

Z r

0

Re q˛.ˆt .x// dt dm0

D

Z r

0

Z
UX

Re q˛.ˆt .x// dm0 dt

D

Z r

0

Z
UX

Re q˛.x/ dm0 dt (since m0 is ˆt –invariant)

D
1

2�

Z r

0

Z
UX

Z 2�

0

Re q˛.e
i�x/ d� dm0 dt (since m0 is rotationally invariant)

D
r

2�

Z
UX

Z 2�

0

Re.a0.x/e
i3� / d� dm0

D 0:

The second term in II is

� lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Tr
�
@2DA.0/

@u @v
�.0/

�
.ˆt .x// dt dm0

D lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

1
2
�uv.ˆt .x// dt dm0;

recalling that � is a globally well-defined function on X (see formula (5-3)), and

1
2
�uv

�
p.ˆt .x//

�
D

1
2
�uv

�
p.ˆt .e

i�x//
�
:

So

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

1
2
�uv.ˆt .x// dt dm0

D
1

r

Z
UX

Z 2�

0

2

Z r

0

Re q˛.ˆt .e
i�x// dt

Z r

0

1
2
�uv

�
p.ˆt .e

i�x//
�

dt d� dm0

D
1

r

Z
UX

Z 2�

0

2

Z r

0

Re q˛.ˆt .e
i�x// dt

Z r

0

1
2
�uv

�
p.ˆt .x//

�
dt d� dm0

D
1

r

Z r

0

Z r

0

Z
UX

�uv

�
p.ˆt�s.x//

� Z 2�

0

Re q˛.e
i�x/ d� dm0 ds dt:
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Again by the fact
R 2�

0 Re q˛.e
i�x/ d� D

R 2�
0 Re.a0.x/e

i3� / d� D 0, we conclude

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛ dt

Z r

0

Tr
�
@2DA.0/

@u @v
�.0/

�
dt dm0 D 0:

It remains to show

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛ dt

Z r

0

Tr.@vDA.0/@u�.0// dt dm0 D 0:

This is

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

�.ˆt .x// dt dm0

D� lim
r!1

1

r

�Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

Re q˛.ˆ�.x//

Z 1
0

e�2s Re qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

Re q˛.ˆ�.x//

Z 0

�1

e2s Re qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

2 Im q˛.ˆ�.x//

Z 1
0

e�s Im qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

2 Im q˛.ˆ�.x//

Z 0

�1

es Im qˇ.ˆ�Cs.x// ds d� dm0

�
:

We have estimates for these tail terms

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Re q˛.ˆ�.x//

Z 1
r

e�2s Re qˇ.ˆ�Cs.x// ds d� dm0

C
1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Re q˛.ˆ�.x//

Z �r

�1

e2s Re qˇ.ˆ�Cs.x// ds d� dm0

�
4M 3

r
r2

Z 1
r

e�2s ds

D 2M 3re�2r r!1
����! 0:
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The other two tail terms with integrals involving Im q˛ and Im qˇ also go to zero for
the same reason. So, in fact,

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛ dt

Z r

0

Tr.@vDA.0/@u�.0// dt dm0

D� lim
r!1

1

r

�Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

Re q˛.ˆ�.x//

Z r

0

e�2s Re qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

Re q˛.ˆ�.x//

Z 0

�r

e2s Re qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

2 Im q˛.ˆ�.x//

Z r

0

e�s Im qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

2 Im q˛.ˆ�.x//

Z 0

�r

es Im qˇ.ˆ�Cs.x// ds d� dm0

�
:

Similar to I, the above equaling 0 reduces to (6-2). This finishes our proof of Proposition
6.1 and so concludes the discussion of the model case @ˇg˛˛.�/.

7 The remaining cases

We will show in this section the proofs of the remaining three cases, ie @ig˛˛.�/D 0,
@j g˛i.�/D 0 and @ˇg˛i.�/D 0. They provide a complete proof of Theorem 1.1.

7.1 The case of @i g˛˛.� /

In this case, given parameters .u; v/ 2 f.�1; 1/g2, we obtain a family of (conju-
gacy classes of) representations f�.u; v/g in H3.S/ corresponding to f.vqi ;uq˛/g �

H 0.X;K2/˚H 0.X;K3/ by the Hitchin parametrization. In particular, @u�.0; 0/ is
identified with '.q˛/ and @v�.0; 0/ is identified with '.qi/. The formula for @ig˛˛.�/
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is

@ig˛˛.�/D @v
�
h@u�.0; v/; @u�.0; v/iP

�
.0/

D lim
r!1

1

r

�Z
UX

�Z r

0

@uf
N
�.0/ dt

�2 Z r

0

@vf
N
�.0/ dt dm0

C 2

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@uvf
N
�.0/ dt dm0

�
;

where the first and second variations are

(i) @uf
N
�.0/
D�@uf�.0/;

(ii) @vf
N
�.0/
D�@vf�.0/;

(iii) @uvf
N
�.0/
D�@uvh.�.0//� @vuf�.0/.

7.1.1 First and second variations of the reparametrization functions We compute
the first and second variations for the case of @ig˛˛.�/ in this subsection.

We have Higgs field

ˆ.u; v/D

240 vqi uq˛
1 0 vqi

0 1 0

35 :
Following the steps and methods for our model case @ˇg˛˛.�/ in Section 5, we show
in this subsection:

Proposition 7.1 The first variations of the reparametrization functions @uf�.0/ WUX!

R and @vf�.0/ W UX !R for the case @ig˛˛.�/ satisfy

@uf�.0/.x/��Re q˛.x/; @vf�.0/.x/� 2 Re qi.x/

and the second variation of the reparametrization functions @vuf�.0/ W UX !R for the
case @ig˛˛.�/ satisfies

@uvf�.0/.x/�
1
2

Re y21.x/

� 2 Im q˛.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
;

where p W UX !X is the projection from the unit tangent bundle UX to our Riemann
surface X. Understanding a section of End.E/ as a linear map on each fiber of
E D K ˚ O ˚ K�1 over a point of X, the element y21 is the component of the
section Y D H�1@uvH that takes K to O. As a function on UX, y21 transforms as
y21.e

i�x/D e�i�y21.x/.

Geometry & Topology, Volume 27 (2023)



1456 Xian Dai

Proof The first variations are found in [20]. The computation of the second variation
of the reparametrization functions @uvf�.0/ of (5-9) is again divided into computations
of I and II.

Compute I The major difference between the case @ig˛˛.�/ and @ˇg˛˛.�/ is the
computation of this term. As before, our flat connection is

DH .u;v/ Drx@E ;H .u;v/
Cˆ.u; v/Cˆ.u; v/�H .u;v/:

For the computation of @uf�.0/ and @vf�.0/, when uD 0 or vD 0, the harmonic metric
H.u; v/ is diagonal and one obtains

@uDH .0/ D

24 0 0 q˛
0 0 0

4 Nq˛ 0 0

35 ; @vDH .0/ D

24 0 qi 0

2 Nqi 0 qi

0 2 Nqi 0

35 :
However, when u¤ 0 and v¤ 0 both hold, the harmonic metric H.u; v/ corresponding
to our Higgs fieldˆ.u; v/ is not diagonal. The computation of @2DH .0/=@u @v requires
an analysis of Hitchin’s equations.

We start from the family of Hitchin’s equations

(7-1) FDH .u;v/
C Œˆ.u; v/; ˆ.u; v/�H .u;v/�D 0:

We take u– and v–derivatives of Hitchin’s equations (7-1) at u; v D 0:

(7-2) @u@v
�
FDH .u;v/

C Œˆ.u; v/; ˆ.u; v/�H .u;v/�
�
.0; 0/.0/D 0:

We consider taking H�1@vuH as a variable. We define

Y DH�1@vuH D

24y11 y12 y13

y21 y22 y23

y31 y32 y33

35 :
Y DH�1@uvH is a section of End.E/.

We now work with local coordinates and local trivialization. When varying the real
parameters u and v, the holomorphic structure of our bundle E does not change. Thus,
fixing a local holomorphic frame for all u and v, the Chern connection 1–form under this
frame compatible with the Hermitian metric H.u; v/ is A.u; v/DH.u; v/�1 @H.u; v/.
The curvature term in our holomorphic frame is

FDH .u;v/
D dA.u; v/CA.u; v/^A.u; v/D x@.H.u; v/�1 @H.u; v//:

The section Y 2 �.End.E// in a local holomorphic frame has the following properties:
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(i) Tr.Y /D 0.

(ii) H.u; v/� D H.u; v/. Also, because u and v are real parameters, we have
@uvH D @uv.H

�/D .@uvH /� and Y � DH YH�1.

We can express @2DH .0/=@u @v in terms of Y on  . With respect to the local holo-
morphic frame introduced in the model case adapted to the Fermi coordinate, we have
@H D 0 on  . So

(7-3) @uv.DH .0//j

D @uv.H.u; v/
�1 @H.u; v/Cˆ.u; v/Cˆ.u; v/�H .u;v//.0; 0/.0/

D�YH�1 @H CH�1 @H Y C @Y Cˆ�H Y �Yˆ�H

D @Y Cˆ�H Y �Yˆ�H :

We want to simplify (7-2) as an equation about Y and then solve Y from (7-2).

Before we continue, we first fix some notation. We will write

H DH.0; 0/;

ˆDˆ.0; 0/;

@uH D
@H.u; v/

@u

ˇ̌̌̌
u;vD0

;

@vH D
@H.u; v/

@v

ˇ̌̌̌
u;vD0

;

@uvH D
@H.u; v/

@u @v

ˇ̌̌̌
u;vD0

:

As a generalization of the classic result of Ahlfors, the first variations of the harmonic
metric vanish at the Fuchsian point (see [20, Theorem 3.5.1]). In particular,

@uH D @vH D 0:

Taking H�1@uvH as a variable, one can verify from (7-2) that

(7-4) 0D x@@.H�1@uvH /�H�1@H ^x@.H�1@uvH /�x@.H�1@uvH /^H�1 @H

Cx@.H�1 @H /H�1@uvH �H�1@uvH x@.H
�1 @H /

C Œ@uˆ; .@vˆ/
�H �C Œ@vˆ; .@uˆ/

�H �C Œˆ; Œ�H�1@uvH; ˆ
�H ��:

Equation (7-4) can be simplified by the observation

x@.H�1 @H /H�1@uvH �H�1@uvH x@.H
�1 @H /C Œˆ; Œ�H�1@uvH; ˆ

�H ��

D ŒH�1@uvH; Œˆ;ˆ
�H ��� Œˆ; ŒH�1@uvH; ˆ

�H �� (Hitchin’s equation)

D ŒŒH�1@uvH; ˆ�; ˆ
�H � (Jacobi identity):

As Y DH�1@uvH, this yields

(7-5) x@@Y C Œˆ�H ; ŒY; ˆ���H�1 @H ^x@Y �x@Y ^H�1 @H

D�Œ@uˆ; .@vˆ/
�H �� Œ@vˆ; .@uˆ/

�H �:
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The PDE system (7-5) in local holomorphic frames is equivalent to the following nine
scalar equations about yij :

(1) x@@y11C h.y22�y11/D 0.

(2) x@@y22C h.y33� 2y22Cy11/D 0.

(3) x@@y33C h.y22�y33/D 0.

(4) x@@y21C h.y32�y21/C h�1 @h x@y21 D h�2qi Nq˛.

(5) x@@y32C h.y21�y32/C h�1 @h x@y32 D�h�2qi Nq˛.

(6) x@@y12C h.y23� 2y12/� h�1 @h x@y12 D h�1q˛ Nqi .

(7) x@@y23C h.y12� 2y23/� h�1 @h x@y23 D�h�1q˛ Nqi .

(8) x@@y31C 2h�1 @h x@y31 D 0.

(9) x@@y13C 2hy13� 2h�1 @h x@y13 D 0.

From property (ii) of Y, one can thus verify (4) is equivalent to (6), (5) is equivalent to
(7), and (8) is equivalent to (9). Thus, it suffices to consider the following six equations:

� x@@y11C h.y22�y11/D 0.

� x@@y22C h.y33� 2y22Cy11/D 0.

� x@@y33C h.y22�y33/D 0.

� x@@y21C h.y32�y21/C h�1 @h x@y21 D h�2qi Nq˛.

� x@@y32C h.y21�y32/C h�1 @h x@y32 D�h�2qi Nq˛.

� x@@y31C 2h�1 @h x@y31 D 0.

We first take a look at the first three equations. We deduce from them
x@@.y11Cy22Cy33/D 0;

x@@.y11�y33/� h.y11�y33/D 0;

x@@.y11Cy33/C h.2y22� .y11Cy33//D 0:

As Y DH�1@uvH is a section of End.E/, the components yii 2 �.O/ are actually
just functions on the surface X for i D 1; 2; 3. Recall our notation �� D 4@z@Nz=�

and the fact hD h.0; 0/D 1
2
� , so the above equations can be written independent of

coordinate charts on our surface as
�� .y11Cy22Cy33/D 0;

�� .y11�y33/� 2.y11�y33/D 0;

�� .y11Cy33/C 2.2y22� .y11Cy33//D 0:

We have the following observations:

Geometry & Topology, Volume 27 (2023)



Geodesic coordinates for the pressure metric at the Fuchsian locus 1459

� From the first equation, we obtain y11Cy22Cy33 D C, where C is a constant.

� Since all eigenvalues of �� should be nonpositive, the second equation can hold
only when y11�y33 D 0.

� The third equation is �� .y11C y33/� 6.y11C y33/D �4C. By a maximum
principle argument, one gets y11Cy33 D

2
3
C.

Thus, property (i) of Y gives y11 D y22 D y33 D 0.

We then continue on the other three equations. From them, we deduce

x@@.y21Cy32/C h�1 @h x@.y21Cy32/D 0;

x@@.y21�y32/� 2h.y21�y32/C h�1 @h x@.y21�y32/D 2h�2qi Nq˛;

x@@y31C 2h�1 @h x@y31 D 0:

Let w D y21Cy32. We want to compute �hkwk
2
h

, where the h–norm k � kh is defined
as

ksk2h D h�is Ns

for a section s 2 �.Ki/ and i 2 Z.

Because hD h.0; 0/D 1
2
� and � D eı.z/jdzj2 is a hyperbolic metric with curvature

K.�/D��� .log �/D�1, we have that h satisfies

(7-6) x@@hD
@h x@h

h
C

1
2
h2:

Note w 2 �.K�1/. The metric h induces a Chern connection rh on K�1 and, in our
local holomorphic frames, one has

r
h;.1;0/w D @wC h�1 @hw:

One recognizes rh;.1;0/w is a section of �.1;0/.K�1/D �.O/. Therefore,

(7-7) kr
h;.1;0/wk2h D .@wC h�1 @hw/.@wC h�1 @hw/:

Combining (7-6) and (7-7) gives

�hkwk
2
h D

4x@@.hw xw/

h
D 2kwk2hC 4k@ xwkhC 4krh;.1;0/wk2h � 0:

This is an inequality independent of coordinates valid on the Riemann surface. By
a maximum principle argument, kwk2

h
must be a constant M. If M ¤ 0, then 0 D

�h.M /� 2M > 0, leading to a contradiction. Thus, M D 0 and y21Cy32 D 0.
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We have similar arguments for x@@y31C 2h�1 @h x@y31 D 0. We begin with computing
�hky31k

2
h
.

Since y31 is a section of�.K�2/, in local holomorphic frames, the Chern connectionrh

induced from h in this case acts as rh;.1;0/y31 D @y31C h�2 @.h2/y31.

We obtain

�hky31k
2
h D

4x@@.h2y31 Ny31/

h
D ky31k

2
hC 4kx@y31khC 4krh;.1;0/y31k

2
h � 0:

Similar to the argument for w, this leads to y31 D 0.

We conclude up to this point that Y DH�1@vuH 2 �.End.E// in our local frame is
of the form

Y DH�1@uvH D

24 0 h Ny21 0

y21 0 �h Ny21

0 �y21 0

35
with x@@y21� 2hy21C h�1 @h x@y21 D h�2qi Nq˛.

With respect to the Fermi coordinate, we have h.z/D 1
2

and @zhD 0 on  . Also, we
know Y � DH YH�1, so we finally obtain on  , from (7-3),

Tr
�
@2DH .0/

@u @v
�.0/

�
.x/D Tr

�
@2DH .0/

@u @v
.x/�.0/

�
D�

1
2

Re y21.x/:

Remark 7.2 We have y21.x/ D y21.z/, where x D P .0/ is the starting point of  .
Recall y21 is the component of Y 2 �.End.E// taking K to O and y21.z/ is y21

evaluating at p.x/ in the trivialization given by the holomorphic frame adapted to the
Fermi coordinate z for  .

In particular, if we consider another closed geodesic 2 starting from  0
2
.0/ D ei�x

with its Fermi coordinate around 2 to be w, then y21.e
i�x/ D y21.w/. We have

y21.w/D y21.z/ dw=dz D y21.z/e
i� .

Because the vectors tangent to periodic orbits are dense in TX, we can extend y21 to
be everywhere defined on UX. We conclude that, as a function on UX, y21 transfers as

y21.e
i�x/D e�i�y21.x/:

This finishes the computation of I on UX. We now move to II; together, these provide
an expression for the second variations of the reparametrization functions.
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Compute II We have

Tr.@uDH .0/@v�.0//

D q˛.@va11.0/e13.0/C a11.0/@ve13.0//C 4 Nq˛.@va31.0/e11.0/C a31.0/@ve11.0//:

Similar to the model case @ˇg˛˛ , here @ve1.0/Dy is the solution of a nonhomogeneous
ODE system which arises from taking a v–derivative on the system of the parallel
transport equation (5-10) at v D 0,

@t

24y1.t/

y2.t/

y3.t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524y1.t/

y2.t/

y3.t/

35D p2
2

et

24 qi.ˆt .x//

�2 Re qi.ˆt .x//

2 Nqi.ˆt .x//

35 ;
with boundary conditions

H.y.0/; e1.0; 0//D 0; y.l /D el

�Z l

0

2 Re qi.ˆs.x// ds

�
e1.0; 0/C ely.0/:

The boundary conditions are set up based on the same consideration as the case of
@ˇg˛˛.�/. The solution is24@ve11.t/

@ve12.t/

@ve13.t/

35

D

264
p

2
2

R t
0 .e

t Re qi C ies Im qi/ ds

�
p

2
R t

0 et Re qi ds
p

2
R t

0 .e
t Re qi � ies Im qi/ ds

375C
264
p

2
2
.el � 1/�1

R l
0

ies Im qi ds

0

�
p

2.el � 1/�1
R l

0
ies Im qi ds

375 :
Similarly, one can compute @ve2.0/ and @ve3.0/ by this method. It turns out that

Tr.@uDH .0/@v�.0//.ˆt .x//

D 2 Im q˛.ˆt .x//

Z t

0

.es�t
� et�s/ Im qi.ˆs.x// ds

C 2 Im q˛.ˆt .x//

Z l

0

�
es�t

el � 1
�

et�s

e�l � 1

�
Im qi.ˆs.x// ds:

We therefore obtain, for a closed geodesic  of length l starting from P .0/D x,

Tr.@uDH .0/@v�.0//.x/D 2 Im q˛.x/

Z l

0

�
es

el � 1
�

e�s

e�l � 1

�
Im qi.ˆs.x// ds:

Similar to our model case of g˛˛;ˇ.�/, one can define a function � WW !R,

�.x/D 2 Im q˛.x/

�Z 1
0

e�s Im qi.ˆs.x// dsC

Z 0

�1

es Im qi.ˆs.x// ds

�
;

and we verify that �.x/ is Hölder, so that Tr.@uDH .0/@v�.0//.x/� �.x/ on UX.
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We conclude

@uvf�.0/.x/

��@v
�
Tr.@uDH .0/�.0//

�
.x/

D
1
2

Re y21.x/�2 Im q˛.x/

�Z 1
0

e�s Im qi.ˆs.x// dsC

Z 0

�1

es Im qi.ˆs.x// ds

�
:

This finishes the proof of Proposition 7.1.

Remark 7.3 Instead of starting from the first variation of the reparametrization
functions @uf�.0/.x/��Tr.@uDH .0/�.0//.x/, we can take the first variation of the
reparametrization functions to be @vf�.0/.x/ � �Tr.@vDH .0/�.0//.x/ by (5-1) and
consider

@vuf�.0/.x/��@u

�
Tr.@vDH .0/�.0//

�
.x/

D�Tr
�
@2DH .0/

@v @u
�.0/

�
.x/�Tr.@vDH .0/@u�.0//.x/:

By the same method, we get

Tr.@vDH .0/@u�.0//.ˆt .x//

D 2 Im qi.ˆt .x//

Z t

0

.es�t
� et�s/ Im q˛.ˆs.x// ds

C 2 Im qi.ˆt .x//

Z l

0

�
es�t

el � 1
�

et�s

e�l � 1

�
Im q˛.ˆs.x// ds:

One can verify, by Fubini’s theorem,Z l

0

Tr.@uDH .0/@v�.0//.ˆt .x// dt D

Z l

0

Tr.@vDH .0/@u�.0//.ˆt .x// dt:

This agrees with the fact that @v
�
Tr.@uDH .0/�.0//

�
.x/ and @u

�
Tr.@vDH .0/�.0//

�
.x/

should be in the same Livšic class by Livšic’s theorem.

7.1.2 Evaluation on the Poincaré disk With the computation in the last section, we
have

@ig˛˛.�/D @v
�
h@u�.0; v/; @u�.0; v/iP

�
.0/

D lim
r!1

1

r

�Z
UX

�Z r

0

Re q˛ dt

�2 Z r

0

�2 Re qi dt dm0

� 2

Z
UX

Z r

0

Re q˛ dt

Z r

0

@uvf
N
�.0/ dt dm0

�
;
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where @uvf
N
�.0/
D�@uvh.�.0//� @vuf�.0/ and

@uvf�.0/.x/

�
1
2

Re y21.x/� 2 Im q˛.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
:

We show in this subsection:

Proposition 7.4 For � 2 T .S/; @ig˛˛.�/D 0.

The argument for this proposition boils down to the following lemma:

Lemma 7.5 For any t; s 2R,Z
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆs.x// dm0.x/D 0;(7-8) Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qi.ˆs.x// dm0.x/D 0;(7-9) Z
UX

Re q˛.x/ Im q˛.ˆt .x// Im qi.ˆs.x// dm0.x/D 0:(7-10)

Proof The proof of this lemma is basically the same as the proof of Lemma 6.2 except
that flow time s D 1

2
t tells us nothing in this case. We instead choose the flow times to

be the three special cases s D t , s D 2t and s D 3t . We recall our analytic expansions
for qi and q˛ are

qi.ˆr .e
i�x//D

� 1X
nD0

cn.x/R
n.1�R2/2ei.nC2/�

�
;

q˛.ˆr .e
i�x//D

� 1X
nD0

an.x/R
n.1�R2/3ei.nC3/�

�
:

We have, when t; s > 0,Z
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re qi.e
i�x/Re q˛.ˆt .e

i�x//Re q˛.ˆs.e
i�x// dm0.x/ d�

D
1

4

1X
nD0

Z
UX

Re.c0an NanC2/ dm0T nSn.1�T 2/3.1�S2/3.S2
CT 2/:
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Consider t D s > 0. ThenZ
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆt .x// dm0.x/

D

Z
UX

Re qi.ˆ�t .x//Re q˛.x/Re q˛.x/ dm0.x/

D

Z
UX

Re qi.�ˆt .�x//Re q˛.�x/Re q˛.�x/ dm0.x/

D

Z
UX

Re qi.ˆt .y//Re q˛.y/Re q˛.y/ dm0.y/ (with y D�x).

The analytic expansions of the left- and right-hand sides of the above equation give

(7-11) 1

2

1X
nD0

Z
UX

Re.c0an NanC2/ dm0T 2n.1�T 2/6T 2

D
1

4

Z
UX

Re.a0a0 Nc4/ dm0.1�T 2/2T 4:

We let Cn D
R

UX Re.c0an NanC2/ dm0 and Dn D
R

UX Re.a0an NcnC4/ dm0 for n � 0.
We proceed to prove Cn D 0 for n� 0.

The coefficients of T 0 and T 2 yield

C0 D 0; 2C1� 8C0 DD0:

On the other hand, if we consider s D 2t and s D 3t , they lead toZ
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆ2t .x// dm0.x/

D�

Z
UX

Re qi.ˆt .x//Re q˛.x/Re q˛.ˆt .�x// dm0.y/

andZ
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆ3t .x// dm0.x/

D�

Z
UX

Re qi.ˆt .x//Re q˛.x/Re q˛.ˆ2t .�x// dm0.y/:

When s D 2t , we have S D 2T=.T 2C 1/ and S D 2T CO.T 3/. When s D 3t , we
have S D .3T CT 3/=.3T 2C 1/ and S D 3T CO.T 3/.

Compare coefficients of T 4 of the analytic expansions of the above two equations and
use the relations S D 2T CO.T 3/ and S D 3T CO.T 3/ to obtain D0D 0. Therefore,
from (7-11), we conclude Cn D 0 for n� 0 and (7-8) holds for t; s > 0. For s � 0 or
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t � 0, the argument for (7-8) to hold is an analogy of the @ˇg˛˛.�/ case. We omit it
here.

Equation (7-9) then follows from (7-8) by a ˆt –invariance argument for m0. To prove
(7-10), we just needZ

UX

Re q˛.x/qi.ˆt .x//qi.ˆs.x// dm0.x/D 0 for all t; s 2R:

The argument is the same as the argument for Lemma 6.2. This finishes the proof of
Lemma 7.5.

Proof of Proposition 7.4 We begin by showing

lim
r!1

1

r

Z
UX

2

Z r

0

@uf
N
�.0/ dt

Z r

0

Tr
�
@2DH .0/

@u @v
�.0/

�
dt dm0 D 0

by evaluating the integral on the Poincaré disk.

Recall from the last subsection that y21 is the solution of x@@y21�2hy21Ch�1 @h x@y21D

h�2qi Nq˛. Because qi and Nq˛ are real analytic and because hD h.0; 0/D 1
2
� is also

real analytic, we know y21 is real analytic by analytic elliptic regularity theory [12].

As discussed before, the function y21 on UX transfers as y21.e
i�x/ D e�i�y21.x/.

Similarly to the model case of g˛˛;ˇ, we write the real analytic expansion for y21 in
the coordinates given by the Poincaré disk model based on x,

y21;x.z/D
X

n;m�0

bn;m.x/z
n
Nzm @

@z
:

Define Qy21;x.z/ WD Re.y21;x.z/.dr//. Recall r.R/ D 1
2

log..1�R/=.1CR//. One
has

y21.ˆr .e
i�x//D Qy21;x.Rei� /D Re

� X
n;m�0

bn;m.x/R
nCm.1�R2/�1ei.n�m�1/�

�
:

Thus,

lim
r!1

1

r

Z
UX

2

Z r

0

@uf
N
�.0/ dt

Z r

0

Tr
�
@2DH .0/

@u @v
�.0/

�
dt dm0

D lim
r!1

1

r

Z
UX

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Re y21.ˆt .x// dt dm0

D lim
r!1

1

r

Z r

0

Z r

0

Z
UX

Re q˛.ˆt .x//Re y21.ˆs.x// dm0 dt ds

D lim
r!1

1

r

Z r

0

Z r

0

Z
UX

Re q˛.ˆt�s.x//Re y21.x/ dm0 dt ds:
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When �D t � s � 0,Z
UX

Re q˛.ˆ�.x//Re y21.x/ dm0

D
1

2�

Z
UX

Z 2�

0

Re q˛.ˆ�.e
i�x//Re y21.e

i�x/ d� dm0:

However,
R 2�

0 Re.e�i�b0;0/Re.anei.nC3/� / d� D 0 for all n � 0, which implies the
above is zero.

It also holds for �� 0 by simply observing that Re q˛.ˆ��.�x//D�Re q˛.ˆ�.x//.
Therefore, we conclude

lim
r!1

1

r

Z
UX

2

Z r

0

@uf
N
�.0/ dt

Z r

0

Tr
�
@2DH .0/

@u @v
�.0/

�
dt dm0 D 0:

Arguments for the other terms in @ig˛˛.�/ to be equal to zero are analogous to the
model case of @ˇg˛˛.�/. They all reduce to Lemma 7.5. We thus finish the proof of
Proposition 7.4.

7.2 The case of @j g˛i .� /

The proofs for the case of @j g˛i.�/ in this subsection and the case of @ˇg˛i.�/ in
the next subsection are basically the same as the cases for @ˇg˛˛.�/ and @ig˛˛.�/.
Although there are no new ingredients in the proofs, we include them here for com-
pleteness.

For @j g˛i.�/, we have three parameters f.u; v; w/g 2 f.�1; 1/g3. The representations
f�.u; v; w/g in H3.S/ correspond to f.vqiCwqj ;uq˛/g �H 0.X;K2/˚H 0.X;K3/

by Hitchin parametrization. In particular, we have @u�.0; 0; 0/ is identified with '.q˛/
and @v�.0; 0; 0/ is identified with '.qi/. Also @w�.0; 0; 0/ is identified with '.qj /.
The formula for @j g˛i.�/ is

@j g˛i.�/D @w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D lim
r!1

1

r

�Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@vf
N
�.0/ dt

Z r

0

@wf
N
�.0/ dt dm0

C

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@vwf
N
�.0/ dt dm0

C

Z
UX

Z r

0

@vf
N
�.0/ dt

Z r

0

@uwf
N
�.0/ dt dm0

�
;

where the first and second variations are:
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(i) @uf
N
�.0/
D�@uf�.0/.

(ii) @vf
N
�.0/
D�@vf�.0/.

(iii) @uwf
N
�.0/
D�@uwh.�.0//� @uwf�.0/.

(iv) @vwf
N
�.0/
D�@vwh.�.0//� @vwf�.0/.

7.2.1 First and second variations of the reparametrization functions Our Higgs
field in this case is

ˆ.u; v; w/D

240 vqi Cwqj uq˛
1 0 vqi Cwqj

0 1 0

35 :
Following the steps and methods from the cases @ˇg˛˛.�/ and @ˇg˛˛.�/, we have:

Proposition 7.6 The first variations of the reparametrization functions @uf�.0/ WUX!

R, @vf�.0/ W UX !R and @wf�.0/ W UX !R for the case @j g˛i.�/ satisfy

@uf�.0/.x/��Re q˛.x/; @vf�.0/.x/� 2 Re qi.x/; @wf�.0/.x/� 2 Re qj .x/;

and the second variations of the reparametrization functions @uwf�.0/ W UX !R and
@vwf�.0/ W UX !R satisfy

@uwf�.0/ �
1
2

Re y21.x/

�2 Im q˛.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
;

@vwf�.0/.x/�
1
2
�vw.p.x//

C2 Im qi.x/

�Z 1
0

Im qj .ˆs.x//e
�s dsC

Z 0

�1

Im qj .ˆs.x//e
s ds

�
;

where p W UX !X and y21 are defined as before.

Proof For the second variations of the reparametrization functions, we have computed
@uwf�.0/ in the @ig˛˛.�/ case:

@uwf�.0/ �
1
2

Re y21.x/

� 2 Im q˛.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
:

The computation of

@vwf�.0/ ��Tr
�
@2DA.0/

@w @v
�.0/

�
�Tr.@vDH .0/@w�.0//DW �I� II

is divided into computations of I and II.
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Compute I We set uD 0; the Higgs field is

ˆ.v;w/D

240 vqi Cwqj 0

1 0 vqi Cwqj

0 1 0

35 :
The harmonic metric H.v; w/ is diagonalizable and the computation of @vwDH .0/ is
the same as in the model case of @ˇg˛˛.�/.

With respect to the notation defined in the model case of @ˇg˛˛.�/, one obtains

Tr
�
@2DH .0/

@v @w
�.0/

�
.x/D�1

2
 vw

�
z.p.x//

�
D�

1
2
�vw.p.x//;

where p W UX !X is the projection from the unit tangent bundle to our surface and z

is the Fermi coordinate we choose evaluating at the point p.x/ 2X.

Compute II Both @vDH .0/ and @w�.0/ have been computed in the @ig˛˛.�/ case.
One can check

Tr.@vDH .0/@w�.0//.ˆt .x//

D qi.@wa11.0/e12.0/C a11.0/@we12.0/C @wa21.0/e13.0/C a21.0/@we13.0//

C 2 Nqi.@wa21.0/e11.0/C a21.0/@we11.0/C @wa31.0/e12.0/C a31.0/@we12.0//

D 2 Im qi.ˆt .x//

Z t

0

Im qj .ˆs.x//.e
t�s
� es�t / ds

C 2 Im qi.ˆt .x//

Z l

0

Im qj .ˆs.x//

�
et�s

e�l � 1
�

es�t

el � 1

�
ds:

In particular,

Tr.@vDH .0/@w�.0//.x/D 2 Im qi.x/

Z l

0

Im qj .ˆs.x//

�
e�s

e�l � 1
�

es

el � 1

�
ds:

Similarly to the cases of @ˇg˛˛.�/ and @ig˛˛.�/, one can then define a function
� W UX !R,

�.x/D�2 Im qi.x/

�Z 1
0

Im qj .ˆs.x//e
�s dsC

Z 0

�1

Im qj .ˆs.x//e
s ds

�
;

and verify that �.x/ is Hölder and such that Tr.@vDH .0/@w�.0//.x/� �.x/ on UX.

We finally obtain

@vwf�.0/.x/

��Tr
�
@2DH .0/

@v @w
�.0/

�
.x/�Tr.@vDH .0/@w�.0//.x/
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D
1
2
�vw.p.x//

C 2 Im qi.x/

�Z 1
0

Im qj .ˆs.x//e
�s dsC

Z 0

�1

Im qj .ˆs.x//e
s ds

�
:

7.2.2 Evaluation on the Poincaré disk We show in this subsection:

Proposition 7.7 For � 2 T .S/; @j g˛i.�/D 0.

For the same reasoning as before, the proof of the above proposition reduces to the
following lemma:

Lemma 7.8 For any t; s 2R,Z
UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆs.x// dm0.x/D 0;(7-12) Z
UX

Re qi.x/ Im qj .ˆt .x// Im q˛.ˆs.x// dm0.x/D 0;(7-13) Z
UX

Re q˛.x/Re qi.ˆt .x//Re qj .ˆs.x// dm0.x/D 0;(7-14) Z
UX

Re q˛.x/ Im qi.ˆt .x// Im qj .ˆs.x// dm0.x/D 0:(7-15)

Proof We just need to show (7-12). Equations (7-13), (7-14) and (7-15) follow easily
using the methods we developed in the former cases.

We start from a special case of (7-12), with qi D qj :

(7-16)
Z

UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆs.x// dm0.x/D 0 for all t; s 2R:

The proof of this case is an analogy of the case @ˇg˛˛.�/ since, for flow times s D t

and s D 1
2
t ,Z

UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆt .x// dm0.x/

D�

Z
UX

Re qi.x/Re qi.ˆt .x//Re q˛.x/ dm0.x/

and Z
UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆt=2.x// dm0.x/D 0:
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For t; s > 0, recall our analytic expansions given in (6-3) and (6-6) lead toZ
UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re qi.e
i�x/Re qi.ˆt .e

i�x//Re q˛.ˆs.e
i�x// dm0.x/ d�

D
1

4

1X
nD0

�Z
UX

Re.c0cn NanC1/ dm0T n.1�T 2/2SnC1.1�S2/3

C

Z
UX

Re.c0 NcnC3an/ dm0T nC3.1�T 2/2Sn.1�S2/3
�
:

Let En D
R

UX Re.c0cn NanC1/ dm0 and Fn D
R

UX Re.c0 NcnC3an/ dm0. We argue, for
n� 0,

(7-17) En D Fn D 0:

The case t D 0 or s D 0 of (7-16) is included in the nD 0 case of (7-17).

For flow time s D t , we have

(7-18)
1X

nD0

.EnT 2nC1.1�T 2/5CFnT 2nC3.1�T 2/5/D�F0T 3.1�T 2/2:

This implies

E0 D 0; E1 D�2F0:

For flow time s D 1
2
t , we obtain

1X
nD0

.EnT n.1�T 2/2SnC1.1�S2/3CFnT nC3.1�T 2/2Sn.1�S2/3/D 0;

where T D 2S=.1CS2/.

It simplifies to
1X

nD0

�
EnC 8Fn

S2

.S2C 1/3

��
2S2

S2C 1

�n

D 0:

Let W D S2=.1CS2/; we have

1X
nD0

�
En

1X
kD0

.kC 1/W k
C 8FnW

�
.2W /n D 0:
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This gives relations

(7-19) E0 D 0;

nX
kD0

2k.n� kC 1/Ek C 2nC2Fn�1 D 0; n� 1:

Combining with (7-18), we get E1 D F0 D 0. Therefore, the right-hand side of (7-18)
is zero and we obtain from it EnC1CFn D 0 for n� 0. Combining this with (7-19)
and by an induction argument, one concludes En D Fn D 0. This proves (7-17) for
s; t � 0. The case s; t < 0 is similar to before.

Now we proceed to prove (7-12). The above case implies, for qi ¤ qj ,Z
UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆs.x// dm0 D 0;Z
UX

Re qj .x/Re qj .ˆt .x//Re q˛.ˆs.x// dm0 D 0;Z
UX

Re.qi C qj /.x/Re.qi C qj /.ˆt .x//Re q˛.ˆs.x// dm0 D 0:

Therefore, for all t; s 2R,

(7-20)
Z

UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆs.x// dm0

C

Z
UX

Re qj .x/Re qi.ˆt .x//Re q˛.ˆs.x// dm0 D 0:

Recall the analytic expansion for qj is given in (6-7). Consider t; s > 0:Z
UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re qi.e
i�x/Re qj .ˆt .e

i�x//Re q˛.ˆs.e
i�x// dm0.x/ d�

D
1

4

1X
nD0

�Z
UX

Re.c0dn NanC1/ dm0T n.1�T 2/2SnC1.1�S2/3

C

Z
UX

Re.c0
NdnC3an/ dm0T nC3.1�T 2/2Sn.1�S2/3

�
:

Let Gn D
R

UX Re.c0dn NanC1/ dm0 and Hn D
R

UX Re.c0
NdnC3an/ dm0. We want to

show Gn DHn D 0 for n� 0.

Let m be an integer and m� 2. Consider the flow time s Dmt . ObserveZ
UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆmt .x// dm0.x/

D

Z
UX

Re qi.ˆ�t .x//Re qj .x/Re q˛.ˆ.m�1/t .x// dm0.x/
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D�

Z
UX

Re qj .y/Re qi.ˆt .y//Re q˛.ˆ�.m�1/t .y// dm0.y/

(let y D�x and ˆt .�y/D�ˆ�t .y/)

D

Z
UX

Re qi.y/Re qj .ˆt .y//Re q˛.ˆ�.m�1/t .y// dm0.y/ (by (7-20))

D�

Z
UX

Re qj .x/Re qi.ˆt .x//Re q˛.ˆmt .x// dm0.x/

(exchange the roles of qi and qj )

D�

Z
UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆ.m�1/t .�x// dm0.x/

When sDmt , we have S DS.m/D ..1CT /m�.1�T /m/=..1CT /mC.1�T /m/D

mT CO.T 3/. From the analytic expansion

1X
nD0

�
GnT nS.m/nC1.1�S.m/2/3CGnein�T nS.m� 1/nC1.1�S.m� 1/2/3

�
D�

1X
nD0

�
�Hnein�T nC3S.m�1/n.1�S.m�1/2/3CHnT nC3S.m/n.1�S.m/2/3

�
;

the coefficients of T 1 and T 3 and T 5 yield, respectively,

G0 D 0;

.m2
� .m� 1/2/G1 D 0;

.m3
C .m� 1/3/G2 D�.2m� 1/H1C .6m� 3/H0:

The cases mD 2, mD 3 and mD 4 together give H0 DH1 DG2 D 0. By induction,
assuming Gk DHk�1 D 0 for 1� k < n, the coefficient of T 2nC1 gives

.mnC1
C ein�.m� 1/nC1/Gn D .e

i.n�1/�.m� 1/n�1
�mn�1/Hn�1:

We conclude Gn DHn D 0 for n� 0 by choosing two different m. This finishes the
proof of (7-12) for t; s > 0. Equation (7-12) for t � 0 and s � 0 can be proved similarly
to the former cases.

7.3 The case of @ˇg˛i .� /

This is the last case. In this case, the representations f�.u; v; w/g in H3.S/ correspond
to f.vqi ;uq˛Cwqˇ/g �H 0.X;K2/˚H 0.X;K3/ by Hitchin parametrization. Our
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metric tensor is

@ˇg˛i.�/

D @w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D lim
r!1

1

r

�Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@vf
N
�.0/ dt

Z r

0

@wf
N
�.0/ dt dm0

C

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@vwf
N
�.0/ dt dm0

C

Z
UX

Z r

0

@vf
N
�.0/ dt

Z r

0

@uwf
N
�.0/ dt dm0

�
;

where the first and second variations are

(i) @uf
N
�.0/
D�@uf�.0/;

(ii) @vf
N
�.0/
D�@vf�.0/;

(iii) @uwf
N
�.0/
D�@uwh.�.0//� @uwf�.0/;

(iv) @vwf
N
�.0/
D�@vwh.�.0//� @vwf�.0/.

7.3.1 First and second variations of the reparametrization functions Our Higgs
field in this case is

ˆ.u; v; w/D

240 vqi uq˛Cwqˇ
1 0 vqi

0 1 0

35 :
Proposition 7.9 The first variations of the reparametrization functions @uf�.0/ WUX!

R and @vf�.0/ W UX !R for the case @ˇg˛i.�/ satisfy

@uf�.0/.x/��Re q˛.x/; @vf�.0/.x/� 2 Re qi.x/; @wf�.0/.x/��Re qˇ.x/;

and the second variations of the reparametrization functions @uwf�.0/ W UX !R and
@vwf�.0/ W UX !R satisfy

@uwf�.0/.x/

�
1
2
�uw.p.x//CRe q˛.x/

Z 1
0

e�2s Re qˇ.ˆs.x// ds

CRe q˛.x/

Z 0

�1

e2s Re qˇ.ˆs.x// dsC 2 Im q˛.x/

Z 1
0

e�s Im qˇ.ˆs.x// ds

C2 Im q˛.x/

Z 0

�1

es Im qˇ.ˆs.x// ds
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and

@vwf�.0/.x/

D @wvf�.0/.x/

�
1
2

Re y21.x/� 2 Im qˇ.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
;

where p W UX !X and y21 are defined as before.

Proof All of the computations have been done in the former cases.

7.3.2 Evaluation on the Poincaré disk We show in this subsection:

Proposition 7.10 For � 2 T .S/; @ˇg˛i.�/D 0.

For the same reasoning as before, the proof of the above proposition reduces to the
following lemma:

Lemma 7.11 For any t; s 2R,Z
UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆs.x// dm0.x/D 0;(7-21) Z
UX

Im q˛.x/ Im qˇ.ˆt .x//Re qi.ˆs.x// dm0.x/D 0;(7-22) Z
UX

Re q˛.x/ Im qˇ.ˆt .x// Im qi.ˆs.x// dm0.x/D 0:(7-23)

Proof We just need to show (7-21). Equations (7-22) and (7-23) follow easily, similar
to the former cases.

From the computation of @ig˛˛.�/, we knowZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qi.ˆs.x// dm0 D 0;Z
UX

Re qˇ.x/Re qˇ.ˆt .x//Re qi.ˆs.x// dm0 D 0;Z
UX

Re.q˛C qˇ/.x/Re.q˛C qˇ/.ˆt .x//Re qi.ˆs.x// dm0 D 0:

Geometry & Topology, Volume 27 (2023)



Geodesic coordinates for the pressure metric at the Fuchsian locus 1475

We deduceZ
UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆs.x// dm0

C

Z
UX

Re qˇ.x/Re q˛.ˆt .x//Re qi.ˆs.x// dm0 D 0:

Similar to @j g˛i.�/, we consider s Dmt for m 2N and m� 2. We observeZ
UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆmt .x// dm0

D

Z
UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆ.m�1/t .�x// dm0:

We recall the Poincaré disk model and our analytic expansion for q˛ , qˇ and qi in (6-3),
(6-5) and (6-7). For t; s � 0, the analytic expansionZ

UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re q˛.e
i�x/Re qˇ.ˆt .e

i�x//Re qi.ˆs.e
i�x// dm0.x/ d�

D
1

4

1X
nD0

�Z
UX

Re.a0bn NcnC4/ dm0T n.1�T 2/3SnC4.1�S2/2

C

Z
UX

Re.a0
NbnC2cn/ dm0Sn.1�S2/2T nC2.1�T 2/3

�
:

Denoting In D
R

UX Re.a0bn NcnC4/ dm0 and Jn D
R

UX Re.a0
NbnC2cn/ dm0 for n� 0,

we argue
In D Jn D 0:

When sDmt , we have S DS.m/D ..1CT /m�.1�T /m/=..1CT /mC.1�T /m/D

mT CO.T 3/. The analytic expansions give

1X
nD0

�
InT nS.m/nC4.1�S.m/2/2� Inein�T nS.m� 1/nC4.1�S.m� 1/2/2

�
D

1X
nD0

�
�JnT nC2S.m/n.1�S.m/2/2CJnein�T nC2S.m� 1/n.1�S.m� 1/2/2

�
:

The coefficients of T 4 yield

.m4
� .m� 1/4/I0 D�.2m� 1/J1C .4m� 2/J0:
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The cases mD 2, mD 3 and mD 4 give I0 D J0 D J1 D 0. By induction, assuming
Ik D JkC1 D 0 for 1� k < n, the coefficient of T 2nC4 gives

.mnC4
� ein�.m� 1/nC4/In D .e

i.nC1/�.m� 1/nC1
�mnC1/JnC1:

We conclude In D Jn D 0 for n � 0 by choosing two different m. This finishes the
proof of (7-21) for t; s > 0. Equation (7-21) for t � 0 and s � 0 can be proved similarly
to the former cases. Lemma 7.11 and also Proposition 7.6 therefore hold.

We have shown

(i) @ˇg˛˛.�/D 0,

(ii) @ig˛˛.�/D 0,

(iii) @j g˛i.�/D 0, and

(iv) @ˇg˛i.�/D 0.

This finishes the proof of our Theorem 1.1.
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APPENDIX BY CLAIRE VOISIN

We show that the intermediate Jacobian fibration associated to any smooth cubic
fourfold X admits a hyper-Kähler compactification J.X / with a regular Lagrangian
fibration � W J ! P 5. This builds upon work of Laza, Saccà and Voisin (2017),
where the result is proved for general X , as well as on the degeneration techniques
introduced in the work of Kollár, Laza, Saccà and Voisin, and the minimal model
program. We then study some aspects of the birational geometry of J.X /: for very
general X we compute the movable and nef cones of J.X /, showing that J.X / is
not birational to the twisted version of the intermediate Jacobian fibration, nor to
an OG10–type moduli space of objects in the Kuznetsov component of X ; for any
smooth X we show, using normal functions, that the Mordell–Weil group MW.�/ of
the fibration is isomorphic to the integral degree-4 primitive algebraic cohomology
of X , ie MW.�/ŠH 2;2.X;Z/0.
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Introduction

The geometry of smooth cubic fourfolds has ties to that of K3 surfaces and, more
generally, to that of higher-dimensional hyper-Kähler manifolds. For example, with
certain special cubic fourfolds one can associate a K3 surface via Hodge-theoretic
(Hassett [34]) or derived categorical (Kuznetsov [43]) methods. From a more geometric
perspective, given a smooth cubic fourfold X , hyper-Kähler manifolds of K3Œn�–type
are constructed geometrically, via parameter spaces of rational curves of certain degrees
on X (Beauville and Donagi [12] and Lehn, Lehn, Sorger and van Straten [49]), or as
moduli spaces of objects in the Kuznetsov component of X (Bayer, Lahoz, Macrì, Nuer,
Perry and Stellari [6] and Lahoz, Lehn, Macrì and Stellari [44]). These constructions
give rise to 20–dimensional families of polarized hyper-Kähler manifolds, the maximal
possible dimension of families of polarized hyper-Kähler manifolds of K3Œn�–type.
As the cubic fourfold becomes special, for example when it acquires more algebraic
classes, the geometry of these hyper-Kähler manifolds also becomes more interesting.
For example, when X has an associated K3 surface in the sense of Addington and
Thomas [2], Hassett [34], Huybrechts [37] and Kuznetsov [43], these hyper-Kähler
manifolds become isomorphic, or birational, to moduli spaces of objects in the derived
category of the corresponding K3 surface; see Addington [1] and Bayer, Lahoz, Macrì,
Nuer, Perry and Stellari [6].

Laza, Saccà and Voisin [47] constructed a Lagrangian fibered hyper-Kähler manifold
starting from a general cubic fourfold. This hyper-Kähler manifold is a deformation
of O’Grady’s 10–dimensional exceptional example. More precisely, let X � P5 be a
smooth cubic fourfold and let �U W JU ! U � .P5/_ be the family of intermediate
Jacobians of the smooth hyperplane sections of X . This fibration was considered by
Donagi and Markman in [25], where they showed that the total space has a holomorphic
symplectic form. The main result of [47] was to construct, for general X , a smooth
projective hyper-Kähler compactification J of JU , with a flat morphism J ! .P5/_

extending �U , and to show that this hyper-Kähler 10–fold is deformation equivalent
to O’Grady’s 10–dimensional example. In [80], Voisin constructed a hyper-Kähler
compactification J T of a natural JU –torsor J T

U
, which is nontrivial for very general X .

The two hyper-Kähler manifolds J and J T are birational over countably many hy-
persurfaces in the moduli space of cubic fourfolds. These two constructions give rise
to two 20–dimensional families of hyper-Kähler manifolds of OG10–type, each of
which forms an open subset of a codimension-two locus inside the moduli space of
hyper-Kähler manifolds in this deformation class.

Geometry & Topology, Volume 27 (2023)
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If one wishes to study the geometry of these hyper-Kähler manifolds as the cubic
fourfold becomes special, a first step is to check if a hyper-Kähler compactification of
the fibration JU ! U can be constructed for an arbitrary smooth cubic fourfold. The
starting result of this paper is that this can indeed be done.

Theorem 1 (Theorem 1.6) Let X � P5 be a smooth cubic fourfold , and let

�U W JU ! U � .P5/_

be the Donagi–Markman fibration. There exists a smooth projective hyper-Kähler
compactification J of JU with a morphism � W J ! .P5/_ extending �U .

The same techniques also give the existence of a Lagrangian fibered hyper-Kähler
compactification for the nontrivial JU –torsor J T

U
! U of [80] for any smooth X ; see

Remark 1.14. Moreover, with little extra work, the theorem is proved also for mildly
singular cubic fourfolds such as, for example, cubic fourfolds with a simple node; see
Proposition 1.17. For a general cubic fourfolds with one node, the existence of such a
Lagrangian fibered hyper-Kähler manifold provides a positive answer to a question of
Beauville [11]; see Remark 1.18.

We should point out that as a consequence of the “finite monodromy implies smooth
filling” results of Kollár, Laza, Saccà and Voisin [41], we prove in Proposition 1.5 that
JU admits projective birational model that is hyper-Kähler. Theorem 1 shows that
there exists a hyper-Kähler model with a Lagrangian fibration extending �U .

There are several ingredients in the construction of the hyper-Kähler compactification
of [47]: a cycle-theoretic construction of the holomorphic symplectic form, the problem
of the existence of so-called very good lines for any hyperplane section of X , a
smoothness criterion for relative compactified Prym varieties, the independence of the
compactification from the choice of a very good line. Here we have pursued a different
direction, and instead rely on the existence of a hyper-Kähler compactification for
general X , use the degeneration techniques introduced in [41], and implement some
results from birational geometry and the minimal model program, following Kollár [40]
and Lai [45]. One advantage of our method is that it opens the door to using birational
geometry to compactify Lagrangian fibrations.

The second result of this paper is concerned with the hyper-Kähler birational geometry
of J . We show that the relative theta divisor ‚ of the fibration is a prime exceptional
divisor and that for general X it can be contracted after a Mukai flop.

Geometry & Topology, Volume 27 (2023)
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Theorem 2 (Theorem 4.1) Let q be the Beauville–Bogomolov form on H 2.J;Z/.
The relative theta divisor ‚� J is a prime exceptional divisor with q.‚/D�2. For
very general X , there is a unique other hyper-Kähler birational model of J , denoted
by N , which is the Mukai flop p W JÜN of J along the image of the zero section. N

admits a divisorial contraction h WN ! xN, which contracts the proper transform of ‚
onto an 8–dimensional variety which is birational to the LLSv 8–fold Z.X /.

Thus, for very general X , J is the unique hyper-Kähler birational model with a
Lagrangian fibration, it is not birational to J T (Corollary 3.10), and its movable cone is
the union of its nef cone and the nef cone of N . This answers a question by Voisin [80].
As a consequence of this theorem we show that for very general X , J is not birational to
a moduli spaces of objects in the Kuznetsov component Ku.X / of X ; see Corollary 4.2.
In the opposite direction, it was recently proved by Li, Pertusi and Zhao [51] that
the twisted hyper-Kähler manifold J T is birational to a moduli space of objects of
OG10–type in Ku.X /. By objects of OG10–type, we mean objects whose Mukai vector
is of the form 2w, with w2D 2. As a consequence, the family of intermediate Jacobian
fibrations is the only known family of hyper-Kähler manifolds associated with cubic
fourfolds whose very general point cannot be described as a moduli space of objects in
the Kuznetsov component of X .

Given J DJ.X /, a hyper-Kähler compactification of the intermediate Jacobian fibration
for any smooth cubic fourfold X , a natural question to ask is how the geometry of J

changes as X becomes less general. One way to answer this question is the following
theorem, describing the Mordell–Weil group of � in terms of the primitive algebraic
cohomology of X . In Section 5 we prove:

Theorem 3 (Theorem 5.1) Let MW.�/ be the Mordell–Weil group of � W J ! P5,
ie the group of rational sections of � , and let H 2;2.X;Z/0 be the primitive degree-4
integral cohomology of X . The natural group homomorphism

�X WH
2;2.X;Z/0!MW.�/

induced by the Abel–Jacobi map is an isomorphism.

The proof of this result uses the theory of normal functions, as developed by Griffiths
and Zucker, as well as the techniques used by Voisin to prove the integral Hodge
conjecture for cubic fourfolds. A consequence of this is a geometric description of the
Lagrangian fibered hyper-Kähler manifolds with maximal Mordell–Weil rank, whose
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existence was proved by Oguiso in [64]: indeed, Oguiso’s examples are (birationally)
given by J D J.X /! P5, where X is a smooth cubic fourfold with H 2;2.X;Z/ of
maximal rank.

Plan of the paper

In Section 1 we prove the existence of a hyper-Kähler compactification for JU and
for J T

U
, in the case of any smooth, or mildly singular, X . This uses some results

from the minimal model program, which are briefly recalled. In Section 2 we review
some basic results about moduli spaces of OG10–type and we compute, using the
Bayer–Macrì techniques adapted to these singular moduli spaces by Meachan and
Zhang [58], the nef and movable cones of certain moduli spaces of OG10–type that
appear as limits of the intermediate Jacobian fibration. The main result of Section 3
is the computation that q.‚/D �2. Section 4 is devoted to the proof of Theorem 2
and its preparation: Given a family of cubic fourfolds degenerating to the chordal
cubic, we construct a certain degeneration of the intermediate Jacobian fibration and
identify the limit of the corresponding degeneration of the relative Theta divisor. By
the results of Section 2, the limiting theta divisor can be contracted after a Mukai flop
of the zero section and we deduce the analogous result for ‚. The computation of the
Mordell–Weil group occupies Section 5.

Finally, in the appendix by C Voisin, some applications to the Beauville conjecture on
the polynomial relations in the Chow group of a projective hyper-Kähler manifold are
given for J D J.X /, in the case of very general J of Picard number 2 or 3. This is
obtained as an application of the computation of q.‚/D�2 from Theorem 2.
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1 A hyper-Kähler compactification of the intermediate
Jacobian fibration for any smooth cubic fourfold

We denote by X � P5 a smooth cubic fourfold, by .P5/_ the dual projective space
parametrizing hyperplane sections Y DX\H �X , and by U � .P5/_ the open subset
parametrizing smooth hyperplane sections. The dual hypersurface of X , parametrizing
singular hyperplane sections, is denoted by X_ � .P5/_. Its smooth locus

U1 WD .P
5/_ nSing.X_/� .P5/_

parametrizes hyperplane sections of X that are smooth or have one simple node and
no other singularities. In what follows, we freely drop the _ from .P5/_ and write
simply P5. From the context it will be clear if we are referring to the projective space
parametrizing hyperplane sections of X or the projective space containing X . For a
smooth cubic threefold Y , the Griffiths intermediate Jacobian of Y will be denoted by

Jac.Y /ŠH 1.Y; �2
Y /
_=H3.Y;Z/:

It is a principally polarized abelian fivefold which parametrizes rational equivalence
classes of homologically trivial 1–cycles on Y [79, Theorem 6.24].

Over U consider the Donagi–Markman fibration

(1-1) �U W JU D JU .X /! U;

whose fiber over a smooth hyperplane section Y DX \H is the intermediate Jacobian
Jac.Y /. By [25], JU is quasiprojective and admits a holomorphic symplectic form �JU

,
with respect to which �U is Lagrangian. The main result of [47] is the following
theorem.

Theorem 1.1 [47] Let X be a general cubic fourfold. Then there exists a smooth
projective compactification J D J.X / of JU , with a flat morphism � W J ! .P5/_

extending �U , which has irreducible fibers and which admits a rational zero section
s W .P5/_Ü J . Moreover , J is an irreducible holomorphic symplectic manifold ,
deformation equivalent to O’Grady’s 10–dimensional exceptional example.

We will say that X is general in the sense of LSV if the construction of [47] works for
JU .X /, and we refer to J D J.X / as in Theorem 1.1 as the LSV fibration. A necessary
condition for this to happen is that the hyperplane sections of X are palindromic;
see [17]. For example, a cubic fourfold containing a plane is not general in the sense
of LSV.
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To extend the theorem above for any X , we use the existence of a hyper-Kähler compact-
ification for general X , the cycle-theoretic description of the holomorphic symplectic
form that was given in [47], the degeneration results from [41], and techniques from
the minimal model program, following [40; 45]. We start by recalling the construction
of a natural partial compactification of JU , which already appeared in [25; 47].

Lemma 1.2 [25; 47] For any smooth X , there is a canonical partial compactification
JU1
D JU1

.X / of JU , with a projective morphism �U1
W JU1

! U1 with irreducible
fibers extending �U . This JU1

is smooth and has a holomorphic symplectic form �JU1

extending �JU
.

Proof This is already proved in [25, Section 8.5.2 and Theorem 8.18]. Alternatively,
one can use [23, Corollary 2.38], and [47, Definitions 2.2 and 2.9, Proposition 1.4 and
Lemma 5.2].

Before giving an application of the cycle-theoretic construction of the holomorphic
symplectic form [47, Section 1], we recall the definition of symplectic variety.

Definition 1.3 A normal projective variety M is called symplectic if its smooth locus
carries a holomorphic symplectic form which extends to a regular (ie holomorphic)
form on any resolution of singularities of M .

Lemma 1.4 Let xJ be a normal projective compactification of JU . Then:

(1) The smooth locus of xJ admits a holomorphic two-form extending �JU
. In

particular , the canonical class K xJ of xJ is effective and is trivial if and only if
xJ is a symplectic variety.

(2) xJ is not uniruled.

Proof (1) The first statement is [47, Theorem 1.2(iii)], while the second follows
from the fact that the canonical class of xJ is the (closure of the) codimension-one locus
where the generically nondegenerate holomorphic two-form is degenerate.

(2) Let zJ ! xJ be a resolution of singularities. By (1), zJ has effective canonical class
and thus by [59] it is not uniruled.

The following is an application of the degeneration techniques of [41].
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Proposition 1.5 Let X be a smooth cubic fourfold and let JU D JU .X / be as above.
Then there exists a smooth projective hyper-Kähler manifold M birational to JU and
of OG10–type.

Proof Let X ! � be a family of smooth cubic fourfolds with X0 D X . Here � is
an open affine subset of a smooth projective curve, or a small disk. We will use the
notation t D 0 to denote a chosen special point in �, and t ¤ 0 to denote any other
point. Up to restricting � if necessary, assume that for t ¤ 0, Xt is general in the sense
of LSV. By [47, Proposition 2.10], we can assume that for any t ¤ 0 all the hyperplane
sections of Xt admit a very good line; see [47, Definition 2.9]. Consider the open set
V D .P5/_ �� n Sing.X_

0
/� f0g, so that Vt D .P5/_ for t ¤ 0 and V0 D U1 � f0g

parametrizes the hyperplane sections of X0 DX that have at most one nodal point and
no other singularities. The construction of [47, Section 5] can be carried out in families,
yielding a projective morphism

JV ! V;

which is fibered in compactified Prym varieties and is such that, denoting by Jt the
fiber of the induced smooth quasiprojective morphism JV ! � for t ¤ 0, Jt is the
LSV fibration J.Xt /, and J0 D JU1

.X /. Let zJ ! � be a projective morphism
extending JV ! �. The central fiber J0 has a multiplicity-one component which
contains JU1

as dense open subset. By Lemma 1.4, this component is not uniruled.
By [41, Corollary 5.2] there is a birational model M of JU1

.X / that is a hyper-Kähler
manifold, deformation equivalent to the smooth fibers Jt D J.Xt /, for t ¤ 0.

By [57], given a hyper-Kähler manifold M with a Lagrangian fibration � WM ! Pn,
the locus inside Def.M / where the Lagrangian fibration deforms is an open subset of
the hypersurface where the class ��O.1/ stays of type .1; 1/. However, this fact alone
is not enough to imply the existence of a hyper-Kähler compactification of JU1

for any
smooth X .

This is what we prove in the following theorem, whose proof uses the mmp following
Kollár [40, Section 8] and Lai [45]. In Section 1.1 we will recall some basic facts about
the mmp that are needed in the proof of Theorems 1.6 and 1.19. We refer to [42] and
to [32] for the basic definitions and fundamental results.

Theorem 1.6 For any smooth cubic fourfold X , there exists a smooth projective
hyper-Kähler compactification J D J.X / of JU .X /, with a projective flat morphism
� W J ! P5 extending �U .
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Proof Let xJ ! P5 be any normal projective compactification of JU1
with a regular

morphism x� W xJ ! P5. By Lemma 1.4, there is a holomorphic two-form x� on the
smooth locus of xJ extending �JU1

, the canonical class K xJ � 0 is effective, and K xJ D 0

if and only if xJ is a symplectic variety. Since K xJ is supported on the complement
of JU1

, codim x�.Supp.K xJ //� 2. By definition [40, Definition 7], this means that K xJ
is x�–exceptional, if it is nontrivial. If this is the case, then by [61, III 5.1] (see also
[45, Lemma 2.10]), K xJ is not x�–nef. More precisely, there is a component of K xJ that
is covered by curves that are contracted by x� and that intersect K xJ negatively.

Let zJ ! P5 be a smooth projective compactification of JU1
admitting a regular

morphism z� W zJ ! P5, and let K zJ be its canonical class. If the effective divisor K zJ
is not trivial, we use the mmp to contract Supp.K zJ / relatively to P5. Let H be a
z�–ample Q–divisor such that the pair . zJ ;H / is klt and K zJ CH is relatively big and
nef. The mmp with scaling over P5 (see Section 1.1 below) produces a sequence of
birational maps

(1-2) zJ D J0

 0Ü J1
 1Ü � � �Ü Ji

 iÜ � � �

over P5 — ie there are projective morphisms �i W J ! P5 such that �0 D z� and
�i WD �i�1 ı 

�1
i — and a nonincreasing sequence of nonnegative rational numbers

t0 D 1� t1 � : : : ti � � � � � 0, with the following properties:

(1) For every i � 0, KJi
C tiHi is �i–big and �i–nef.

(2) For every i � 0, Ji is a Q–factorial terminal compactification of JU1
. The fact

that the birational morphisms  i are isomorphisms away from JU1
follows from

the fact that the KJi
–negative rays of the mmp correspond to rational curves

that are contained in the support of KJi
. Thus, by Lemma 1.4, the smooth locus

of Ji carries a holomorphic two-form �i extending �JU1
.

(3) KJi
is effective and, if not trivial, it has a component covered by KJi

–negative
curves which are contracted by �i .

(4) The process stops if and only if there exists an i such that KJi
is �i–nef. This

holds if and only if KJi
D 0.

The number of irreducible components of the support of KJi
is nonincreasing, since

the birational maps of the mmp extract no divisors. In fact, we claim that this number
is eventually strictly decreasing. By (4) above, this happens if and only if the process
eventually stops. Suppose that this is not the case. Then by Lemma 1.13, lim ti D 0.
Recall, as already observed, that if KJk

¤ 0, then there exists a component that is
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covered by KJk
–negative curves that are contracted by �k . Since we are assuming

that lim ti D 0, this implies that for i � 0, ti is small enough that this component is
contained in the relative stable base locus B..KJk

C tiHk/=P
5/. Since by Lemma 1.12,

the divisorial components of B..KJk
C tiHk/=P

5/ are contracted by Jk Ü Ji , it
follows that for i�0, the number of irreducible components of the effective divisor KJi

is strictly less than the number of components of KJk
. Thus, the claim is proved and

for some i � 0, the process gives a model with KJi
D 0. By Lemma 1.4, xJ WD Ji is a

Q–factorial terminal symplectic compactification of JU1
. Finally, by Proposition 1.7

below, xJ is smooth and the theorem is proved.

Proposition 1.7 (Greb–Lehn–Rollenske) Let xM be a Q–factorial terminal symplec-
tic variety. Suppose that xM is birational to a smooth hyper-Kähler manifold M . Then
xM is smooth.

Proof This is [29, Proposition 6.5].

Remark 1.8 The techniques used to prove the theorem above can be applied to
similar contexts to give Q–factorial terminal symplectic compactifications of other
quasiprojective Lagrangian fibrations. We plan to come back to this in upcoming work.

As a consequence of Theorem 1.19 below, we will give a slightly stronger version of the
theorem just proved (see Remark 1.20) showing that, given a family of smooth cubic
fourfolds whose general fiber is general in the sense of [47], then up to a base change
and birational transformations, the corresponding family of LSV intermediate Jacobian
fibrations can be filled with a Lagrangian fibered smooth projective hyper-Kähler
compactification of the Donagi–Markman fibration of the limiting cubic fourfold.

Another approach to Theorem 1 would be to show that the rational map M Ü P5

induced by the birational map � WM Ü JU1
of Proposition 1.5 is almost holomorphic

[56, Definition 1]. By [56] this would imply the existence of a birational hyper-Kähler
model of M with a regular morphism to P5. It seems, however, that controlling the
mmp of Proposition 1.5 to ensure that M Ü P5 is almost holomorphic is not too far
from running the relative mmp as in the proof of Theorem 1.6.

Given a smooth cubic fourfold X , we will refer to both the Donagi–Markman fibration
JU and to any hyper-Kähler compactification J of JU as in Theorem 1.6, as the
intermediate Jacobian fibration. Hopefully, it will be clear from the context which one
we are referring to.
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Remark 1.9 Unlike the compactification of [47], the proof of Theorem 1.6 is not
constructive and, for a given X , the hyper-Kähler compactification that we show to
exist may not be unique. We will return to this question in Section 4.

1.1 The mmp with scaling

In this subsection we recall some basic tools and known results from the minimal model
program (mmp) that are used to prove Theorems 1.6 and 1.19. For the basic notions
and the fundamental results we refer to [42] and [32]. In this section, by divisor we
will mean a Q–divisor.

Let M be a normal Q–factorial variety with a projective morphism � WM ! B to
a normal quasiprojective variety B. Let � be an effective divisor on M and let H

be a general divisor on M that is ample (or big) over B. We assume that the pair
.M; �CH / is klt and that KM C�CH is nef over B.

The mmp with scaling of H [32, Section 5.E] produces a sequence of birational maps
 i WMiÜMiC1 over B, such that M0 DM , �iC1 D . i/��i , HiC1 D . i/�Hi

and  i is the flip or the divisorial contraction for a .KMi
C�i/–negative relative

extremal ray Ri over B. We let �i be the induced regular morphism Mi ! B. The
sequence is defined inductively in the following way. Let

ti D infft � 0 jKMi
C�i C tHi is nef over Bg:

If ti D 0, then KMi
C�i is nef over B and the process stops. Otherwise, there is a

0 < t 0 � ti such that KMi
C�i C t 0Hi is not nef over B. By the cone theorem (see

[42, Chapter 3] or [32, Theorem 5.4]) KMi
C�iC tiHi is nef over B and there exists

a .KMi
C�i/–negative extremal ray Ri over B such that .KMi

C�iC tiHi/ �Ri D 0.

Let ci WMi!Zi be the extremal contraction over B associated to Ri , which exists by
the “contraction” part of the cone theorem [32, (5.4.3)–(5.4.4)]. If dim Zi < dim Mi ,
then ci is a Mori fiber space and we stop. If ci is not a Mori fiber space then it is either
a divisorial or flipping contraction. In the first case, we let MiC1 DZi and  i D ci .
In second case, we let  i WMiÜMiC1 be the .KMi

C�iC t 0Hi/–flip (which exists
by [32, Corollary 5.73]). By construction,  i extracts no divisors, meaning that  �1

i

contracts no divisors.

By the contraction part of the cone theorem, the divisor KMiC1
C�iC1C tiHiC1 is

nef over B. The pair .Mi ; �iC1C tiHiC1/ is klt (see [42, Corollaries 3.42–3.44]) and
Mi is Q–factorial (see [42, Corollary 3.18]). If � D 0 and M is terminal, then so
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is Mi . As long as KMi
C�i is not �i–nef, tiC1 is nonzero and �iC1C tiHiC1 is big

over B. Thus we can keep going, producing a nonincreasing sequence ti � tiC1 � � � �

of nonnegative rational numbers and a sequence of birational maps  i WMiÜMiC1

over B. The process stops if there exists an N such that cN WMN ! ZN is a Mori
fiber space over B or such that KMN

C�N is nef over B. Otherwise, the sequence is
infinite.

The pair .Mi ; �i C tiHi/ is a log terminal model (ltm) for .M; �C tiH / over B; see
Definition 5.29 and Lemma 5.31 of [32]. We will need the following lemmas:

Lemma 1.10 For any i > j , let  ij WMj ÜMi be the induced birational morphism
over B. Then  ij is not an isomorphism.

Proof This is [32, Lemma 5.62].

Lemma 1.11 [32, Exercise 5.10] Let .M; �/ be a klt pair as above and suppose that
� is big over B and that KM C� is nef over B. Then KM C� is semiample over B,
ie there exists a projective morphism f WM !Z over B and an ample divisor L on B

such that KM C��Q;B f
�L.

Proof Since � is big over B, we can write ��Q;B ACC , where A is ample over B

and C � 0. Choose an 0< �� 1 such that .M; �0/ is klt, where �0 D .1� �/�C �C .
Then

.KM C�/� .KM C�
0/D �A

is ample over B. By the basepoint-free theorem (see eg [32, Theorem 5.1]), KM C�

is semiample over B.

Lemma 1.12 Let the notation be as above and for any i > 0, let �i W M Ü Mi

be the induced birational map over B. Then the divisors contracted by �i are the
divisorial components of B..KMi

C�i C tiHi/=B/, the stable base locus over B;
cf [32, Section 2.E]. Similarly,  ij WMj ÜMi contracts the divisorial components of
B..KMj

C�j C tiHj /=B/.

Proof Since .Mi ; �i C tiHi/ is klt, �i C tiHi is big over B, and KMi
C�i C tiHi

is nef over B, by the lemma above, KMi
C�i C tiHi is semiample over B.

Let W be a smooth birational model resolving �i , and let p and q be the induced
birational morphisms to M and Mi . By [32, Lemma 5.31] the pair .Mi ; �iC tiHi/ is
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a log terminal model for .M; �C tiH / over B; see [32, Definition 5.29]. Thus,

(1-3) p�.KM C�C tiH /D q�.KMi
C�i C tiHi/CE;

where
E D

X
F

.a.F IM; �C tiH /� a.F IMi ; �i C tiH //F

is an effective q–exceptional divisor whose support contains the divisors contracted
by �i . Since

p�1B..KM C�C tiH /=B/D B.p�.KM C�C tiH /=B/

D B.q�.KMi
C�i C tiHi/CE=B/

D Supp.E/;

the first statement follows. The second statement is proved in the same way, since by
[32, Lemma 5.31], the pair .Mi ; �iCtiHi/ is a log terminal model for .Mj ; �jCtiHj /

over B and hence the equivalent of (1-3) holds.

Lemma 1.13 Let the notation be as above. If the mmp with scaling does not terminate ,
then

lim
i!1

ti D 0:

Proof This is [26, Proposition 3.2]. The only difference is the relative setting, but the
proof is the same: Suppose the mmp does not terminate and that lim ti D t1 > 0. By
[13, Theorem E] there are finitely many log terminal models of .M; �C .t1C t/H /,
with t 2 Œ0; 1 � t1�. We have already observed that .Mi ; �i C tiHi/ is an ltm for
.M; �CtiH /D .M; �Ct1HC.ti�t1/H // over B. Thus, if the sequence is infinite
there are integers i > j such that the birational map Mj ÜMi is an isomorphism.
This gives a contradiction with Lemma 1.10 above.

1.2 Variants

In this section we give some variants of the results of the previous section. First we notice
that the compactification result of Theorem 1.6 holds also for the twisted intermediate
Jacobian fibration; see Remark 1.14. Then we consider the case of the intermediate
Jacobian fibration associated to a mildly singular cubic fourfold; see Proposition 1.15
and Remark 1.16. We then give a slightly stronger version of Theorem 1.6, in that we
show that the Lagrangian fibered hyper-Kähler compactification works in families; see
Proposition 1.17 and Theorem 1.19. As an application, we give a positive answer to a
question of Beauville; see Remark 1.18.
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Remark 1.14 (the twisted case) In [80], Voisin constructed a nontrivial JU –torsor
J T

U
!U defined from a class in H 1.U;JU Œ3�/, where JU is the sheaf of holomorphic

sections of JU ! U and where JU Œ3� � JU is the sheaf of 3–torsion points. The
nontriviality (for very general X ) of this class corresponds to the nonexistence, for the
universal family of hyperplanes sections of X , of a relative one-cycle of degree one. The
main result of the paper is to produce, for general X , a hyper-Kähler compactification
J T D J T .X / with Lagrangian fibration to P5 extending J T

U
! U . This builds on the

compactification of [47]. We will refer to this hyper-Kähler manifold as the twisted
intermediate Jacobian fibration. This hyper-Kähler manifold is deformation equivalent
to the nontwisted version J.X /, as they agree as soon as X has a two-cycle which
restricts to a one-cycle of degree one or two on its hyperplane sections. Lemma 1.4,
Proposition 1.5 and Theorem 1.6 work the same for the nontrivial torsor J T

U
!U , giving

a Lagrangian fibered hyper-Kähler J T D J T .X / for every smooth X . In Section 4.1
we will return to the twisted intermediate Jacobian fibration and in Corollary 3.10 we
prove that for very general X these two fibrations are not birational and that on J

there is a unique isotropic class in the movable cone of J . This fact will be used in the
appendix.

Finally, we show that the Lagrangian fibered hyper-Kähler compactification exists
generically also over C6, the divisor in the moduli space of cubic fourfolds whose
general point parametrizes cubics with one A1 singularity. The following proposition is
an adaptation of [47, Section 2] to the case of a cubic fourfold with mild singularities.

Proposition 1.15 Let X0 � P5 be a cubic fourfold with one simple node o 2X0 and
no other singularities. Let U � P5 be the open locus parametrizing smooth hyperplane
sections , and let �U W JU D JU .X0/! U be the Donagi–Markman fibration. Then
there exists a holomorphic symplectic form �U on JU , which extends to a holomorphic
two-form on any smooth projective compactification. As a consequence , Lemma 1.4
holds for JU , namely any projective compactification of JU has smooth locus admitting
a generically nondegenerate holomorphic two-form extending �U , and is not uniruled.
Similarly, for the twisted intermediate Jacobian , J T

U
D J T

U
.X0/.

Proof Let zX0 (resp. zP5) be the blowup of X0 (resp. P5) at the point o. Let E� zP5 be
the exceptional divisor. Projection from o determines an isomorphism zX0 ŠBLSP4,
where S is the .2; 3/ complete intersection in P3 parametrizing lines in X0 by o. The
surface S is a smooth K3 surface and thus H 1. zX0; �

3
zX0
/ is one-dimensional; let �

be a generator. The same argument as in [47, Theorem 1.2 ] shows that � induces
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a holomorphic two-form � on JU , with respect to which the fibers of JU ! U are
isotropic. To show that � is nondegenerate, it suffices to show that for any smooth
hyperplane section Y (which in particular does not pass by the point o), the map

(1-4) TŒY �U DH 0.Y;OY .1//!H 1.Y; �2
Y /DH 0.JU ; �

1
JU
/

induced by � , via the fact that the fibers of JU ! U are isotropic, is an isomorphism.
By [47, Theorem 1.2(ii)], this map is given by the cup product with a class �Y 2

H 1.Y; �2
Y
.�1// defined in the following way: let �jY 2 H 1.Y; .�3

zX0
/jY / be the

restriction of � to Y . Since H 1.Y; �3
Y
/D 0, the exact sequence

0!�2
Y .�1/! .�3

zX0
/jY !�3

Y ! 0

implies that �jY lifts to a class �Y 2 H 1.�2
Y
.�1//. By Griffiths residue theory

[47, Lemma 1.7], H 1.�2
Y
.�1// is one-dimensional and cup product with any nonzero

element induces an isomorphism H 0.Y;OY .1//!H 1.Y; �2
Y
/; more precisely, using

the canonical isomorphism �2
Y
.�1/ D TY .3/, this space is spanned by the class

of the nontrivial extension 0 ! TY ! .TP4/jY ! OY .�3/ ! 0. It follows that
to show that (1-4) is an isomorphism, we only need to show that �Y ¤ 0, which
amounts to showing that �jY ¤ 0. Under the isomorphism �3

zX0

D T zX0
.�3/.2E/,

the class of a generator of H 1. zX0; �
3
zX0

/ corresponds to the class of the extension
0 ! T zX ! .TzP5/j zX ! O zX .3/.�2E/ ! 0. Restricting to Y and considering the
tangent bundle sequence for Y in P4, we get the diagram of short exact sequences

0 // .T zX /jY
// .TzP5/jY // OY .3/ // 0

0 // TY
//

OO

.TP4/jY

˛

OO

// OY .3/ // 0

where the first two vertical arrows are injective. The extension class of the first row is
�jY and the second row is nonsplit, as we already observed. Since coker.˛/DOY .1/,
we have Hom.OY .3/; coker.˛//D 0. Thus any splitting of the first row would induce
a splitting of the second row, giving a contraction.

Remark 1.16 Proposition 1.15 holds, more generally, for any cubic fourfold with
isolated singularities, as long as a general one-parameter smoothing of it has finite
monodromy. This corresponds to the K3 surface S of lines through one of the singular
points having canonical singularities. The case of the degeneration to the chordal
cubic [34], which has finite monodromy but central fiber with 2–dimensional singular
locus, will be discussed at length in Section 4.2.
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Proposition 1.17 Let X0�P5 be as in Proposition 1.15 (or as in Remark 1.16) and let
�U W JU ! U be the corresponding intermediate Jacobian fibration. Then there exists a
hyper-Kähler compactification J DJ.X0/ of JU , with a regular flat morphism to .P5/_

extending �U . Moreover , if X ! � is a general family of smooth cubic fourfolds
degenerating to X0, then up to a base change , there exists a family of Lagrangian
fibered hyper-Kähler manifolds

J ! P5
�!�

such that for t ¤ 0, Jt D J.Xt / is the LSV compactification and , for t D 0, J0 is a
hyper-Kähler compactification of JU D JU .X0/. Similarly , the analogous statement
holds for the twisted intermediate Jacobian.

Proof By Proposition 1.15 above, JU has a holomorphic symplectic form that extends
to a regular form on any smooth projective compactification. As in Lemma 1.4, it
follows that JU is not uniruled. Let X ! � be a family of smooth cubic fourfolds
degenerating to X0 DX0 with the property that for t ¤ 0, Xt is general in the sense of
LSV. As in the beginning of Theorem 1.6, let JV ! V be such that the fiber over t ¤ 0

of JV !� is the LSV compactification J.Xt / and, over t D 0, is JU ! U . We are
thus in the position of applying Theorem 1.19 below, which proves the proposition.

A consequence of this proposition is a positive answer to a question of Beauville [11],
as explained in the following remark.

Remark 1.18 Given a smooth cubic threefold Y , let `� Y be a line. In [9; 26] it is
shown that the moduli space of Ulrich bundles on Y with rank 2, c1D 0 and c2D 2` is
birational to the intermediate Jacobian of Y ; more precisely, it can be identified with the
blowup of the intermediate Jacobian fibration along the Fano surface. Now let X0 be
cubic fourfold with one simple node and let S � P4 be the .2; 3/ complete intersection
K3 surface parametrizing lines through the singular point of X0. Consider the Mukai
vector vD 2v0D 2.1; 0;�1/2H�.S;Z/ and let zM2v0

.S/ be the symplectic resolution
of the singular moduli space of OG10–type; cf Section 2.

By considering the relative moduli spaces of Ulrich bundles supported on the five-
dimensional family of cubic threefolds containing S and by restricting the bundles
to S , Beauville [11, Section 5, Example d D 3] shows that there is a birational map
JU ÜMv.S/. This induces a rational map M2v0

.S/Ü P5, and Beauville asks
whether there exists a hyper-Kähler manifold birational to Mv.S/ which admits a
regular morphism to P5. Proposition 1.17 thus gives a positive answer to this question.
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The proof of the proposition above relies on the following theorem, which is the
Lagrangian fibration analogue of results from [41, Theorem 2.1 and Corollary 5.2].
Theorem 1.19 will be used also in Section 4 for the proof of Proposition 4.5 (and thus
also of Theorem 4.1). As usual, � is an open affine subset of a smooth curve, or a
small analytic disk. In both cases, we keep the notation t D 0 to denote a chosen special
point in �, and t ¤ 0 to denote any other point.

Theorem 1.19 Let zf W zJ !� be a projective degeneration of hyper-Kähler manifolds
of dimension 2n. Suppose that there is a commutative diagram

zJ

zf ��

z�
// Pn
�

p

��

�

where zJ ! Pn
�

is a projective fibration such that for t ¤ 0, Jt ! Pn
t is a Lagrangian

fibration. Assume that the central fiber zJ 0DY0C
P

i2I miYi has a reduced component
Y0 which is not uniruled. Suppose , furthermore , that there is an open subset of
Y0 n

S
i�1.Yi \ Y0/ such that the morphism to Pn

0
is a fibration JU0

! U0 � Pn
0

in
abelian varieties. Then:

(1) There exists a projective degeneration xf W xJ ! � of hyper-Kähler manifolds
such that

(a) xJ is Q–factorial , terminal and isomorphic to zJ over ��,

(b) the central fiber xJ 0 is a reduced , irreducible , and a normal symplectic variety
with canonical singularities and admitting a symplectic resolution , and

(c) there is a relative Lagrangian fibration x� W xJ ! Pn
�

compatible , via the
birational map xJ Ü zJ , with z� and such that , up to restricting the open set
U0 � Pn

0
, the morphism xJ 0! Pn

0
extends the abelian fibration JU0

! U0.

(2) Up to a base change �0!�, there exists a (not necessarily projective) family
J ! �0 of hyper-Kähler manifolds , with a birational morphism J ! xJ 0 WD
xJ ��0 � over �0, which is an isomorphism away from the central fiber and in

the central fiber is a symplectic resolution of xJ 0. Moreover , J has a family of
Lagrangian fibrations � 0 W J ! Pn

�0
compatible with the base change of x� .

Proof The proof follows ideas from [75; 40; 41]. Up to passing to a log resolution
of the pair . zJ ; zJ 0/, we can assume that zJ 0 D Y0C

Pk
iD1 miYi is a normal crossing

divisor. By [41, Theorem 2.1 and Corollary 5.2], running the mmp over � contracts the
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components Yi for i � 1, and yields a birational model of zJ with an irreducible central
fiber which is a symplectic variety. In particular, Y0 is the unique component of zJ 0

that is not uniruled; cf [41, Remark 2.2]. To prove the theorem we only need to show
that the birational maps required to contract the other components can be preformed
relatively to Pn

�
and, furthermore, that they induce isomorphism away from

S
i�1 Yi .

This is to ensure that the central fiber has a Lagrangian fibration extending JU0
! U0

(maybe up to restricting the open subset U0 � Pn
0

).

The canonical class K zJ is trivial over ��, so it is zf –equivalent to a divisor of the formPk
iD0 a0iYi . Following [75, Section 2.3, point (1)] we set r Dmin a0i=mi , so1

K zJ DQ;�

kX
iD0

aiYi ;

where ai D a0i � rmi � 0 are nonnegative rational numbers and ai D 0 for at least
one i . Let J ¨ f0; 1; : : : ; kg be the set of indices such that ai > 0 and let J c be its
complement. By [75, Proposition 5.1]:

(1) For every j 2 J , the irreducible component Yj is uniruled.

(2) If jJ cj � 2, then for every j 2 J c , the irreducible component Yj is uniruled.

Since Y0 is not uniruled, it follows that J D f1; : : : ; kg and thus

K zJ DQ;z�

kX
iD1

aiYi ; with ai > 0:

By assumption, for every i � 1, the closed subset Y0\Yi is in the complement of JU0

and, since the fibers of zJ 0 ! Pn
�

are connected, it follows that the induced map
Yi ! Pn

0
is not dominant. Thus, the codimension of z�.Yi/ in Pn

�
is greater or equal

to two. In other words, Yi is z�–exceptional.

We are in the same setting of Theorem 1.6, namely a projective morphism from a
smooth quasiprojective variety with a canonical class that is relatively Q–linearly
equivalent to an effective divisor all of whose components are relatively exceptional.
We can thus argue as in the proof of Theorem 1.6, running the mmp over Pn

�
with

scaling of an ample divisor in order to contract each of the Yi , for i � 1. This yields a
birational map zJÜ xJ over Pn

�
, where xJ !� has irreducible fibers and the fibration

1For a projective morphism f WA!B and two Q–Cartier divisors D and D0 on A, we write DDQ;B D0

or D �Q;f D0 if and only if D and D0 are Q–linearly equivalent up to the pullback of a Q–Cartier divisor
from B.
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xJ ! Pn
�

has Q–factorial terminal total space and is such that K xJ D z�
�B for some

Q–divisor B on Pn
�

. Since at each step the K–negative rays of the mmp are contained
in uniruled components of the central fiber, it follows that the birational map zJ Ü xJ
is an isomorphism away from

S
i�1 Yi . In particular, the central fiber xJ 0, which

is irreducible, has an open subset which is isomorphic to JU0
. Since .K xJ /jJt

D 0

for t ¤ 0, we get that BjPn
t
D0 for t¤0. In particular, B is p–trivial, where p WPn

�
!�

is the projection, and thus K xJ is zf –trivial. We can now argue as in the last part of
the proof of [47, Theorem 1.1] to show that xJ 0 is normal with canonical singularities.
As in [47, Corollary 4.2] it follows that xJ 0 is a symplectic variety and that, up to a
base change �0!�, there exists a smooth family J !�0 with a birational morphism
J ! xJ 0 WD xJ ��0 � with the desired properties.

Remark 1.20 Theorem 1.19 gives another proof of Theorem 1.6, as well as the
stronger statement of the existence of a relative intermediate Jacobian fibration J !P5

�

associated to any family X !� of smooth cubic fourfolds for which the general fiber
is general in the sense of LSV.

2 Moduli spaces of OG10–type

By [47, Corollary 6.3] (see also [41, Section 6.3]) any hyper-Kähler compactification J

of JU is deformation equivalent to O’Grady’s 10–dimensional example. We start this
section by recalling the basic definitions and first properties of those singular moduli
spaces of sheaves on a K3 surface whose symplectic resolutions are hyper-Kähler
manifolds in this deformation class. Then we use the methods of Bayer and Macrì, as
adapted by Meachan and Zhang to this class of singular moduli spaces, to study the
movable cone of certain moduli spaces that appear naturally as limits of the intermediate
Jacobian fibration, when the underlying cubic fourfold degenerates to the chordal cubic;
see Section 4.2.

We start by recalling the following fundamental theorem.

Theorem 2.1 [60; 82; 63; 50; 38; 66] Let .S;H / be a general polarized K3 surface
and let v0 2H�alg.S;Z/ be a primitive Mukai vector which we suppose to be positive in
the sense of [8, Definition 5.1], see also [18, Remark 3.1.1]. Let m� 2 be an integer.
The moduli space Mmv0;H .S/ of H–semistable sheaves on S with Mukai vector mv0

is an irreducible normal projective symplectic variety of dimension m2v2
0
C 2, which
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admits a symplectic resolution if and only if mD 2 and v2
0
D 2. When this is the case ,

the symplectic resolution zM2v0;H .S/!M2v0;H .S/ is the blow up of the singular
locus Sym2 Mv0;H .S/�M2v0;H .S/, with its reduced induced structure. Moreover ,
zM2v0;H .S/ is an irreducible holomorphic symplectic manifold and its deformation

class is independent of .S;H / and of v0; in particular , zM2v0;H .S/ is deformation
equivalent to O’Grady’s original 10–dimensional exceptional example.

We will refer to a Mukai vector of the form 2v0 with v2
0
D 2 as a Mukai vector of

OG10–type and to a hyper-Kähler manifold in this deformation class as a hyper-Kähler
of OG10–type.

2.1 Contracting the relative theta divisor on the relative Jacobian of curves

It is known [4; 7; 8; 5] that the birational geometry of moduli spaces of pure dimension
one sheaves on a K3 surface is related to Brill–Noether loci. For example, on the degree
g� 1 Beauville–Mukai system of a genus g linear system on a K3 surface, the relative
theta divisor can be contracted, possibly after performing a finite sequence of birational
transformations. This is the content of the following example.

Example 2.2 [4; 5] Let .S;C / be a general polarized K3 surface of genus g, with
NS.S/ D ZC . Set v D .0;C; 0/ 2 H�.S;Z/ and let Mv be the moduli space of
C –stable sheaves on S with Mukai vector2 v. Since we are assuming .S;C / to be
general in moduli, we are suppressing the polarization from the notation — thus Mv

will denote the moduli space of C –semistable sheaves on S with Mukai vector v;
when we consider instead a Bridgeland stability condition � , the corresponding moduli
space will be denoted by Mv;� . This moduli space is smooth and Mv ! Pg D jC j

is the degree g � 1 relative compactified Jacobian of the genus g linear system jC j
on S . There is a naturally defined effective, irreducible, relatively ample theta divisor
� �Mv which parametrizes sheaves with a nontrivial global section and which can
be realized as the zero locus of a canonical section of the determinant line bundle;
see [48, Section 2.3] or [3, Theorem 5.3]. Recall that there is a Hodge isometry
NS.Mv/Š v

? D h.0; 0; 1/; .1; 0; 0/i; see for example [7, Theorem 3.6].

2This Mukai vector is not positive in the sense defined above, since both the first and last entry are
zero. However, since for general .S;C /, tensoring by C induces an isomorphism with Mv0 , where
v0 D .0;C;g� 1/, the results of [7] still hold. See also [66] for other considerations about the last entry of
the Mukai vector.
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The class ` WD .0; 0; 1/ is the class of the isotropic line bundle inducing the Lagrangian
fibration Mv ! Pg while the theta divisor � corresponds to the class �.1; 0; 1/ D
�v.OS /; see [48, page 643] or also [7, Proposition 7.1 and Theorem 12.3].3 Since
�2 D �2, the irreducible effective divisor � is prime exceptional. By [27], it can be
contracted on a hyper-Kähler birational model of Mv. Since the rays corresponding
to divisorial contractions and to Lagrangian fibrations must be in the boundary of the
movable cone [36], it follows that

Mov.Mv/DR�0`CR�0h;

where hD .�1; 0; 1/ 2 �? \ v? is a big line which is nef on some birational model
of Mv; this also follows from [7, Theorem 12.3]. Using [7], the walls of the nef cones
of the various birational models can be computed. Since we don’t need this, we omit
the computation.

2.2 Movable cones of certain moduli spaces of OG10–type

If we consider a nonprimitive genus g linear system jmC j, with m � 2, then the
relative compactified Jacobian of degree g� 1 is singular. For singular moduli spaces
of OG10–type, ie when v D 2w with w2 D 2, Meachan and Zhang [58] adapted the
techniques of Bayer and Macrì [8; 7] to compute the nef and movable cones of these
moduli spaces. We refer to [16; 4; 8; 7] for the relevant definitions and main results on
Bridgeland stability conditions on K3 surfaces, and to [58] for the results on moduli
spaces of OG10 type.

By [58, Theorem 7.6(3)], all birational models of M2wDM2w;C which are isomorphic
to M2w in codimension one are isomorphic to a Bridgeland moduli space M2w;� for
some Bridgeland stability condition � on S . Moreover, by [58, Corollary 2.8],

(2-1) NS.M2w;� /Š w
?:

We now apply the results of [58] to describe the nef and movable cones of certain
singular models of OG10 appearing as limits of the intermediate Jacobian fibration.
By [67], the factoriality properties of a singular moduli space M2w of OG10–type
depend on the divisibility of the primitive Mukai vectorw 2H�alg.S;Z/. More precisely,
by [67, Theorem 1.1], M2w is factorial if and only ifw �u22Z for every u2H�alg.S;Z/.
Otherwise, M2w is 2–factorial. Since there can be different birational models with

3Compared to [7], there is a difference in a choice of sign in the isomorphism NS.Mv/Š v
?.
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different factoriality properties (cf Remark 2.3), it is important to choose the correct
model to work with.

Now let .S;C / be a general K3 surface of degree 2 and set

(2-2) vk WD .0;C; k � 2/:

The Le Potier morphism � WM2vk
! P5 realizes the singular moduli space M2vk

as
a compactification of the degree 2k relative Jacobian of the genus-five hyperelliptic
linear system j2C j. Composing � with the symplectic resolution m W zM2vk

!M2vk
,

we get a natural Lagrangian fibration

(2-3) z� W zM2vk
! P5:

By the result of Perego and Rapagnetta mentioned above, M2vk
is factorial if and only

if k is even. It turns out that the birational class of these moduli spaces is independent
of k, but the isomorphism class depends on the parity of k [18, Proposition 3.2.7]:
indeed, tensoring a pure dimension one sheaf by OS .C / determines an isomorphism

(2-4) M2vk

�
�!M2vkC2

:

Remark 2.3 Tensoring a line bundle supported on a smooth hyperelliptic curve of
genus 5 by the unique g1

2
on the curve defines a birational morphism M2vk

ÜM2vkC1
.

(I thank A Rapagnetta for pointing out this to me.) As a side remark, notice that the
map thus defined is not an isomorphism in codimension one. Indeed, it can be checked
that when passing to the birational morphism zM2vk

Ü zM2vkC1
between the two

resolutions, which is an isomorphism in codimension two, the exceptional divisor of
one model is exchanged with the proper transform of the locus parametrizing sheaves
on reducible curves on the other model.

In view of Lemma 4.4 below and the isomorphism (2-4), we will focus on the case
k D 0.

Remark 2.4 For general .S;C / it is not hard to check that the structure sheaf of
every curve in j2C j satisfies the numerical criterion for C –stability and hence that the
fibration M2v0

! P5 admits a regular zero section. Notice also that the image of this
section is not contained in the singular locus of M2v0

.

By [58, Corollary 2.8], NS.M2v0
/Š v?

0
DU Dh.0; 0; 1/; .�1;C; 0/i, where, as above,

(2-5) `D .0; 0; 1/
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is the line bundle inducing the Lagrangian fibration � WM2v0
! P5 D j2C j. Under

the isomorphism M2v2
ŠM2v0

induced by tensoring with OS .�C /, the relative theta
divisor is mapped isomorphically to the prime exceptional divisor

(2-6) � WD �.1;�C; 2/

parametrizing sheaves which receive a nontrivial morphism from the spherical object
OS .�C /; see also Lemma 2.6. Indeed, the relative theta divisor in M2v2

parametrizes
sheaves with a nontrivial morphism from OS and thus its image in M2v0

is exactly the
divisor � . Notice that

(2-7) �2
D�2:

For later use we highlight the following remark.

Remark 2.5 The effective divisor � �M2v0
with cohomology class (2-6) does not

contain the singular locus of M2v0
: using the description of � as the zero locus of

a section of the determinant line bundle [3, Theorem 5.3], which is compatible with
S–equivalence classes, it is enough to show that the section defining � is not identically
zero on the singular locus of M2v0

. It is therefore sufficient to show that there are
S–equivalence classes of polystable sheaves all of whose members have a zero space of
global sections. This is clear, since the generic semistable sheaf with Mukai vector 2v0

is an extension of two degree-one line bundles each supported on two distinct curves
of genus two.

The following lemma is an application of [58, Theorems 5.1–5.3] to M2v0
. (Note that

Example 8.6 of loc. cit. is for odd k, so in view of Remark 2.3 it is concerned with a
birational model of M2v0

which is not isomorphic in codimension one, and hence we
cannot immediately apply it here.)

Lemma 2.6 Let the notation be as above. Then

Nef.M2v0
/DR�0`CR�0h0; Mov.M2v0;C /DR�0`CR�0h;

where
`D .0; 0; 1/; h0 D .�1;C; 1/; hD .�1;C; 0/:

Moreover , the wall spanned by h0D .�1;C; 1/ contracts the zero section of M2v0
!P5

and the class corresponding to hD .�1;C; 0/ is big and nef on the Mukai flop of M2v0

along the zero section and contracts the proper transform of � .
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Proof Since `D��OP5.1/ is nef and isotropic, it is one of the two rays of both the Nef
and the movable cones of M2v0

. By [58, Theorem 5.3] there is a divisorial contraction
of BNU–type (notation as in loc. cit.), determined by the spherical class sD .1;�C; 2/,
which is orthogonal to v0. The second ray of the movable cone is thus determined by
s? \ v?

0
. We pick h D .�1;C; 0/ as a generator of this ray, since h � ` > 0. By the

same theorem in [58], the flopping walls are determined by w?\ v?
0

for w spherical
and such that w � v0 D 2. There is a unique ray in Mov.M2v0

/ that is of this form. It is
determined bywD .1; 0; 1/D v.OS / or, equivalently, byw0D .�1; 2C;�5/D 2v0�w.
We can choose h0 D .�1;C; 1/ as generator of this ray. As in [58, Remark 8.5], we
can see that this wall corresponds to the flop of the P5 corresponding to the sheaves
with a morphism from OS , ie of the image of the zero section.

Remark 2.7 It can be shown that the birational model on the other side of the wall
can be identified with the Gieseker moduli space M2w0

, where w0 D .2;C; 0/. Since
we don’t need this in the rest of the paper, we omit the proof.

Remark 2.8 The theta divisor � is Cartier, since by [66] M2v0
is factorial; see also

Section 2.2. Moreover, it is relatively ample over P5, since by the description of the
Nef cone of Lemma 2.6 we can write � as a sum of an ample line bundle and a multiple
of `D ��OP5.1/.

3 The relative theta divisor on the intermediate Jacobian
fibration

For any smooth cubic threefold Y , there is a canonically defined theta divisor in
Jac.Y / which is .�1/–invariant and whose unique singular point lies at the origin. For
the hyper-Kähler compactification J D J.X /! .P5/_ of the intermediate Jacobian
fibration associated to a smooth cubic 4–fold X , there is an effective relative theta
divisor ‚ � J , which is defined as the closure of the union of the canonical theta
divisor in the smooth fibers. More precisely, by [20; 21], see also [47, Lemma 5.4],
‚ can be defined as the closure of the image of the Abel–Jacobi difference mapping

(3-1) F �.P5/_ FÜ J; .`; `0;Y / 7! �Y .`� `
0/:

The relative theta divisor ‚ played an important role in [47], where it was shown that
for general X the divisor ‚ is �–ample and J is identified with the relative Proj of the
sheaf of OP5–algebras associated with this divisor. Another useful way of realizing the
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theta divisor is using twisted cubics [21]. Let Z DZ.X / be the Lehn–Lehn–Sorger–
van Straten 8–fold [49]. Then Z is the blowdown g WZ0!Z of a smooth 10–fold Z0

whose points parametrize nets of (generalized) twisted cubics. The exceptional locus
of g parametrizes non-ACM cubics and its image in Z is isomorphic to the cubic itself.
Let

r W PZ 0 !Z0

be the P1–bundle over Z0 whose fiber over a twisted cubic ŒC �2Z0 is the pencil P1
C

of
hyperplane sections of X containing†C WDX \hC i. Here hC iDP3 is the linear span
of the curve. By [47, Sublemma 5.5], see also [21, Section 4] or [41, Proposition 6.10],
the Abel–Jacobi map

(3-2) ' W PZ 0Ü J; .C;Y / 7! �Y .C � h2/;

is birational onto its image, which is precisely‚. Here h2 is the class of the intersection
of two hyperplanes in Y .

Remark 3.1 For later use, we note the following two facts. First of all, the restriction
of PZ 0 to the locus of nonCM cubics is mapped to the zero section of J ! P5 (which
lies in ‚). Second, using the Gauss map, see [20, Section 12] or also [33, Section 3],
one can see that if C is a twisted cubic in a smooth cubic threefold Y with the property
that �Y .C � h2/D 0 in Jac.Y /, then the cubic surface †C D Y \ hC i is singular.

For every X , the Néron–Severi group of J D J.X / has at least rank two, since

NS.J.X //� hL; ‚i:

Here L D ��OP5.1/ and ‚ is, as above, the relative theta divisor obtained as the
closure of the image of (3-1).

Lemma 3.2 For any smooth X , there is an isomorphism of rational Hodge structures
H 2.J;Q/tr ŠH 4.X;Q/tr. In particular , �.J /D rk H 2;2.X;Q/C 1.

Proof The first statement was already noted in [47], while the second follows from
the first and the fact that b2.J /D 24 and b4.X /D 23.

Remark 3.3 The locus, inside Def.J /, parametrizing intermediate Jacobian fibrations
is of codimension two and corresponds to the locus where the classes L and ‚ stay
of type .1; 1/. By [74, Theorem 6], a Lagrangian fibration with a section deforms,
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as Lagrangian fibration with a section, over a smooth codimension-two locus of the
deformation space of the underlying hyper-Kähler manifold. Since by Theorem 1.1 for
general X the LSV compactification J.X / has a section, it follows that the codimension-
two locus where L and ‚ stay algebraic is exactly the locus where the section deforms.

We highlight the following corollary for future reference.

Corollary 3.4 For very general X , we have that �.J /D 2. Thus:

(1) J is the only projective hyper-Kähler birational model of JU where L is nef. In
particular , any hyper-Kähler compactification of JU with a Lagrangian fibration
extending JU ! U is isomorphic to the compactification of [47].

(2) There is at most one prime exceptional divisor on J .

Proof (1) Since �.J /D 2, the boundary of the movable cone of J has two rays, of
which L is one.

(2) If there is a prime exceptional divisor, its class has to be orthogonal to the second
extremal ray of the movable cone [52, Theorem 1.5]. Since two prime exceptional
divisors with proportional classes have to be isomorphic [53, Corollary 3.6(3)], there is
at most one prime exceptional divisor.

The following lemma was communicated to me by K Hulek and R Laza. I thank them
for sharing this observation with me and for raising the question of computing q.‚/.

Lemma 3.5 We have that q.L; ‚/D 1. In particular , hL; ‚i is a primitive sublattice
of NS.J /, isomorphic to the standard hyperbolic lattice U of rank two. For very
general X , NS.J /D U .

Proof The computation of q.L; ‚/ goes as in [73, Lemma 1]: one expands in t the
Fujiki equality q.LC t‚/5 D c.LC t‚/10, where c D 945 is the Fujiki constant [71],
and uses the fact that ‚5L5 D .‚jJŒH �

/5 D 5!. The final statement follows from
Lemma 3.2.

I thank C Onorati for many discussions around ‚ and for his interest in the following
computation.

Proposition 3.6 The irreducible divisor ‚� J is prime exceptional. In particular , it
can be contracted on some projective birational hyper-Kähler model of J . Moreover ,
q.‚/D�2.
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Proof Let ' W PZ 0Ü ‚ be the Abel–Jacobi map as in (3-2) and let V � Z0 be a
nonempty open subset such that the restriction of ' to r�1.V /DW PV is regular. By
restricting V if necessary, we can assume that all twisted cubics parametrized by V are
such that †C is smooth and, in particular, that C is ACM.

Recall that for any twisted cubic ŒC � 2 V , we have set P1
C
D r�1.C /. The rational

curve '.P1
C
/� J is smooth because it maps to �.'.P1

C
//� P5, which is the pencil of

hyperplane sections of X that contain the curve C . Moreover, .� ı'/.PV / intersects
the dual variety X_ in a dense open subset and, similarly, '.PV / intersects ‚X_ , the
restriction of ‚ to X_, in a dense open subset. (This statement follows from [21] and
the fact, proven there, that for a cubic threefold with one A1 singularity the Abel–Jacobi
mapping is birational onto its image.)

We start by showing that for a general ŒC � 2 V , the smooth rational curve '.P1
C
/ is

contained in the smooth locus of ‚. The singular locus ‚sing of ‚ has an irreducible
component that is equal to the closure of the zero section of JU ! U , while any
other irreducible component of the singular locus is properly contained in ‚X_ , the
restriction of ‚ to X_. Since V parametrizes ACM curves, by Remark 3.1 it follows
that the intersection of '.PV / with the image of the zero section of J ! P5 is
contained in JX_ , the restriction of J to X_ � P5. Let B WD '�1.‚sing \ '.PV //

be the locus in PV parametrizing points mapped to the singular locus of ‚ and let
WV WD .� ı '/

�1.X_ \ .� ı '/.PV // be the locus in PV of pairs .C;Y / such that
Y is singular. By what we have observed, it follows that B �WV . Notice that WV

is irreducible of dimension 8, because it maps to an open subset of X_, with fibers
parametrizing equivalence classes of twisted cubics contained in a cubic threefold
with one A1 singularity; these form an irreducible subset of Z.X /, as follows from
[21, Section 3]. We have already observed that the general point of ‚X_ is contained
in the image '.PV /. Thus, if Y0 corresponds to a general point in X_, there is a twisted
cubic C � Y0, with ŒC � 2 V and such that '.C;Y0/D �Y0

.C / lies in the smooth locus
of ‚. It follows that B is strictly contained in WV . Since WV is irreducible, dim BD 7.
Thus B does not dominate V and hence the image of the open subset PV 0 WD r�1.V 0/,
where V 0 WD V n r.B/ is contained in the smooth locus of ‚.

For the general point in .C;Y /2PV , let R WD'.P1
C
/�‚ be the corresponding element

of the ruling. By generic smoothness, the differential of ' is of maximal rank at a
general point x 2R, so by [39, Chapter II, Proposition 3.4], the vector bundle .T‚/jR
is globally generated at x 2R. It follows that .T‚/jR D

L
OR.ai/, with ai � 0. By

Lemma 3.8 below, the restriction of the tangent bundle of J to the smooth rational
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curve R is of the form O˚8
R
˚OR.2/˚OR.�2/. Using this and the fact that R is

contained in the smooth locus of ‚, we find that .T‚/jR DOR.2/˚O˚8
R

and hence
that NRj‚ D˚O˚8

R
. In particular, ‚ �RD�2.

Consider the lattice embedding H 2.J;Z/�H 2.J;Z/_ DH2.J;Z/ induced by the
Beauville–Bogomolov form. We claim that under this embedding, the classes of R

and of ‚ are equal, ie that R �x D q.‚;x/ for every x 2H 2.J;Z/. This immediately
proves the proposition, as it implies that q.‚/D‚ �RD�2. By [53, Corollary 3.6(1)]
and [27, Proposition 4.5], the class of the ruling of a prime exceptional divisor is
proportional, via a positive constant, to the class of the exceptional divisor. Thus, to
prove the claim it suffices to show that‚ is prime exceptional, since the constant would
have to be equal to 1, as both R �L and q.‚;L/ are equal to 1.

To prove that ‚ is prime exceptional we use standard techniques on deformations of
maps from rational curves to hyper-Kähler manifolds, following [53, Section 5.1] or
also [19, Section 3]. We include a proof because the setting of Markman is different and
because the proof in [19, Section 3] is for projective families of hyper-Kähler manifolds.
Choose R�‚ a general element in the ruling and let Def.J /R�Def.J / be the smooth
hypersurface in the deformation space of J where the class of R stays of Hodge type.
Let Hilb! Def.J /R be the component of the relative Douady space containing the
point ŒR�. Since NRjJ D OR.�2/˚O˚8

R
, then by [70, Theorem 1] it follows that

the morphism � W Hilb! Def.J /R is smooth at R and of relative dimension 8. Let
T � Def.J /R be a general curve containing 0 (in particular we can assume that for
very general t 2 T , the Néron–Severi of the corresponding deformation Jt of J is
one-dimensional and spanned by a line bundle whose class is proportional to Rt , the
parallel transport of the class of R to Jt ) and let �T WHilbT ! T be the component of
the base change to T of Hilb! Def.J /R that contains ŒR�. Since � is smooth at ŒR�,
�T is dominant of relative dimension 8. Up to a base change and to restricting T , we
can assume that HilbT ! T has irreducible fibers for t ¤ 0. Let JT ! T be the base
change of the universal family to T ! Def.J / and let D � JT be the image of the
universal family over HilbT under the evaluation map. Then D is irreducible of relative
codimension one. Moreover, Dt is irreducible for t ¤ 0, and D WD D0 is a union of
effective uniruled divisors containing ‚ as an irreducible component (with a given
multiplicity m� 1). By the choice of T , for very general t , �.Jt /D 1. It follows that
the class of Dt is proportional to the class of Rt and hence that the class of D DD0 is
proportional to that of R. Moreover, the proportionality constant is positive, as both
D and R intersect positively with a Kähler class. Hence, since ‚ �R is negative, so
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is q.‚;D/. Moreover, since the product of two distinct irreducible uniruled divisors is
nonnegative, it follows that q.‚;D/�m q.‚;‚/. Thus q.‚;‚/ < 0, ie ‚ is prime
exceptional. Thus, as already observed, the classes of ‚ and of R have to be the same
and hence q.‚;‚/D�2.

Remark 3.7 A posteriori, once we know that ‚ is prime exceptional, we can use
[53, Lemma 5.1] to show that D0 D‚.

Lemma 3.8 Let M be a hyper-Kähler manifold of dimension 2n and R �M be a
smooth rational curve. Suppose R is a general ruling of a uniruled divisor. Then

.TM /jR DO˚2n�2
R

˚OR.2/˚OR.�2/;

and thus
NRjM DOR.�2/˚O˚2n�2

R
:

Proof Since TM is self dual, .TM /jR D
L

i OR.ai/˚
L

i OR.�ai/, where ai � 0.
Since R is general and its deformations sweep out a divisor, by [39, Chapter II,
Proposition 3.4], the rank of the evaluation map rkŒH 0.R; .TM /jR/˝OR! .TM /jR �

at a general point of R is equal to 2n � 1. Hence a2 D � � � D an D 0 and a1 � 2;
cf [27, Proposition 4.5]. Since the normal sheaf of R in M is torsion-free and contains
the quotient OR.a1/=TR DOR.a1/=OR.2/, it follows that a1 D 2.

Notice that the same argument as the last part of the proof of Proposition 3.6 shows
the following.

Proposition 3.9 Let M be a hyper-Kähler manifold of dimension 2n and let E �M

be an irreducible uniruled divisor. Suppose that a general curve R in the ruling is
smooth and that E �R< 0, eg if R is contained in the smooth locus of E. Then E is
prime exceptional and hence , under the lattice embedding H 2.M;Z/�H 2.M;Z/_D

H2.M;Z/ induced by the Beauville–Bogomolov form , the classes of E and R are
proportional by a positive constant.

Corollary 3.10 For very general X , the movable cone of J.X / is spanned by L

and H , where H is a generator of ‚? � NS.J / with q.H;L/ > 0 and q.H / > 0; ie

Mov.J /DR�0LCR�0H:

In particular , there is a unique hyper-Kähler model of J with a Lagrangian fibration ,
and J is not birational to the twisted intermediate Jacobian fibration J T .
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Proof We already know that one of the rays of the movable cone of J is spanned
by L. By [53, Theorem 1.5] the closure of the movable cone is spanned by classes that
intersect nonnegatively with all prime exceptional divisors. Since by Proposition 3.6,
‚ is prime exceptional, the second ray of the movable cone is determined by ‚?,
which is spanned by a class H which is big and nef on some birational hyper-Kähler
model of J . Thus, q.H / > 0 and q.H;L/ > 0. In particular, the movable cone is
strictly contained in the positive cone, implying that the only isotropic class that is
movable is L.

In terms of the other projective hyper-Kähler birational models of J , we can actually
prove something more precise. The main result of Section 4 describes, for general X ,
which birational model of J the proper transform of ‚ can be contracted on.

3.1 Induced automorphisms

For hyper-Kähler manifolds of K3Œn�–type, a considerable amount of literature has been
devoted to the study and classification of automorphism groups. This includes studying
the automorphisms induced from a K3 surface to the moduli spaces of sheaves on it.
In view of Theorem 1.6, a natural question is to study the induced action on J of the
automorphism group of X in relation to the Lagrangian fibration structures. I thank
G Pearlstein for asking questions that led me to the following observations.

Let X be a smooth cubic fourfold and let � be an automorphism of X . Then � acts on
the universal family of hyperplane sections of X and thus also on the Donagi–Markman
fibration JU ! U , which is identified with the relative Pic0 of the family of Fano
surfaces of the hyperplane sections of X . By abuse of notation we denote by

� W J Ü J

the induced birational morphism. Notice that � preserves ‚ and L, so the induced
action of �� is the identity on U D hL; ‚i � NS.J /.

Proposition 3.11 Let X be a smooth cubic fourfold and suppose that the fibers of
� W J ! P5 are irreducible. (By [47] this happens for general X .) Then:

(1) ‚ is �–ample and so is any B 2 NS.J / with q.L;B/ > 0.

(2) Any birational automorphism � W J Ü J which fixes LD ��O.1/ extends to a
regular automorphism.
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(3) L is nef on a unique hyper-Kähler birational model of J . In other words , if J 0 is
a birational hyper-Kähler model of J , with birational map f W J 0Ü J , and the
induced map � 0 W J 0Ü J ! P5 is regular , then f is an isomorphism.

Proof (1) Let H be an ample line bundle on J and let Jt be a smooth fiber of
J ! P5. Then ŒHjJt

� D mŒ‚jJt
� for a positive integer m, so the restrictions of H

and m‚ are topologically equivalent for any smooth fiber. Since the fibers of � are
irreducible, it follows that the restrictions of H and m‚ to any fiber are numerically
equivalent; see [80, Lemma 4.4]. By Nakai–Moishezon, m‚ is �–ample. Similarly,
if q.B;L/ > 0, then there exists positive integers a and b such that aB and b‚ are
numerically equivalent on every fiber.

(2) By assumption, ��L D L so q.��‚;L/ D q.‚;L/ D 1. As a consequence,
��‚ and ‚ are topologically equivalent on the smooth fibers and hence, as above,
numerically equivalent on every fiber. Thus, ��‚ is �–ample. It follows that � is a
regular morphism.

(3) Let H 0 be any ample line bundle on J 0 and let L0 D f �L D � 0
�O.1/. Then

0< q.L0;H 0/D q.L; f �H 0/, so by (1) f �H 0 is ample and f is an isomorphism.

In addition to birational automorphisms induced by the automorphisms of X , some
examples of birational automorphisms which preserve L are:

(1) The map � WJ!J induced by the action of .�1/ on the smooth fibers of J!P5.

(2) The map t˛ WJ!J induced by the translation of a rational section of ˛ WP5ÜJ ;
cf Section 5.

(3) More generally, any birational automorphism induced by an element of the
automorphism group of JK , the generic fiber of J ! P5.

Remark 3.12 As already mentioned just below Theorem 1.1, a necessary condition
for the irreducibility of the fibers of J ! P5 is given in [17]. This condition is satisfied
if and only if the hyperplane sections Y of X satisfy

d.Y / WD b2.Y /� b4.Y /D 0;

where bi.Y / denotes the i th Betti number of Y and where d.Y / is called the defect
of Y . It is easy to see that if Y contains a plane then d.Y / > 0.
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4 Birational geometry of J.X/ for general X

To describe the birational geometry of the intermediate Jacobian fibration we degenerate
the underlying cubic to the chordal cubic, following an idea already contained in [41].
There, it was observed that the central fiber of the corresponding family of intermediate
Jacobian fibrations can be chosen to be birational to a moduli space of sheaves of OG10–
type on a K3 surface of genus two. As in Section 2, by moduli space of OG10–type we
mean a moduli space of sheaves on a K3 surface with Mukai vector 2w, with w2 D 2.
We first refine the construction of this degeneration in order to have a central fiber that
is actually isomorphic to a certain singular moduli space of sheaves on the associated
K3 surface. In this way, we can keep track of the limits of the relative theta divisor
and of the line bundle inducing the Lagrangian fibration. This is done in Section 4.2.
The results of Meachan and Zhang [58], which were recalled in Lemma 2.6, imply
that the central fiber of the relative theta divisor can be contracted after a Mukai flop
of the zero section. For X general, we then deduce the same result for J.X / and, for
very general X , we compute the nef and movable cone of J.X /. This is the content of
Theorem 4.1.

Theorem 4.1 Let X be a smooth cubic fourfold and let J D J.X / ! P5 be a
hyper-Kähler compactification of the intermediate Jacobian fibration as in Section 1.

For very general X :

(1) There is a unique other hyper-Kähler birational model of J, denoted by N, which
is the Mukai flop p W J ÜN of J along the image of the zero section.

(2) There is a divisorial contraction h WN ! xN which contracts the proper transform
of ‚ onto an 8–dimensional variety which is birational to the LLSvS 8–fold
Z.X /.

In other words , we have Mov.J /DhL;H iDNef.J /[p�Nef.N /, Nef.J /DhL;H0i

and p�Nef.N /DhH0;H i, where H0 is a big and nef line bundle on J which contracts
the zero section of J ! P5 and H is as in Corollary 3.10.

For general X , the relative theta divisor ‚ can be contracted after the Mukai flop of the
zero section of J ! P5.

Before the proof of the theorem, which will be given in Section 4.2, we mention, as
a consequence of the theorem above, the relation between the intermediate Jacobian
fibration and moduli spaces of objects in the Kuznetsov component of X .

Geometry & Topology, Volume 27 (2023)



Birational geometry of the intermediate Jacobian fibration 1511

4.1 Comparison with moduli spaces of objects in the Kuznetsov component
of X

The recent paper [6] establishes the existence and the fundamental properties of moduli
spaces of objects in the Kuznetsov component Ku.X / of a smooth cubic fourfold X .
We refer the reader to Section 29 of loc. cit. for the relevant definitions and the precise
statements of the results.

Given a smooth cubic fourfold X , the extended Mukai lattice zH .Ku.X /;Z/ is a lattice
whose underlying group is the topological K–theory of Ku.X / and whose Mukai
pairing and weight-two Hodge structure are induced from those on X . The only classes
in zH .Ku.X /;Z/ that are of type .1; 1/ for very general X are contained in a rank-two
lattice A2, which is spanned by two classes �1 and �2 that satisfy �2

1
D �2

2
D 2 and

�1 ��2D�1; see [6, equation (29.1)]. A description of a full connected component of the
space of Bridgeland stability conditions on Ku.X / is also produced; see Theorem 29.1
of loc. cit. It is shown that, for a primitive Mukai vector with v2 � �2 and for a
v–generic stability condition � in this component, the moduli space M� .Ku.X /; v/
of Bridgeland stable objects in Ku.X / with Mukai vector v is a nonempty smooth
projective hyper-Kähler manifold of dimension v2C 2, deformation equivalent to a
Hilbert scheme of points on a K3 surface; moreover, the formation of these moduli
spaces works in families; see Theorem 29.4 of loc. cit. for the precise statement.

For a Mukai vector of OG10–type in the A2 lattice, ie of the form v D 2� with
�2 D 2, in [51] it is shown that, for a �–generic stability condition � , the moduli space
M� .Ku.X /; v/ is an irreducible normal projective symplectic variety of dimension 10

admitting a symplectic resolution which is deformation equivalent to a manifold of
OG10–type. The genericity condition here means that the polystable objects with
Mukai vector v are the direct sum of two stable objects with Mukai vector �. More
precisely, the singular locus of M� .Ku.X /; v/ is isomorphic Sym2 M� .Ku.X /; �/.

Moreover, in [51] it is shown that for general X the twisted intermediate Jacobian
fibration J T .X / is birational to M� .Ku.X /; 2�/, for �2 D 2. For the nontwisted case
we have the following corollary of Theorem 4.1 that goes in the opposite direction.

Corollary 4.2 For very general X , J.X / is not birational to a moduli space of the
form M� .Ku.X /; v/.

Proof First of all, by [6, Remark 29.3], if nonempty, the dimension of a moduli
space M� .Ku.X /; v/ is v2C 2. This dimension is equal to 10 if and only if either
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v is primitive (hence M� .Ku.X /; v/ is of K3Œ5�–type and thus cannot be birational
to J.X /) or else v D 2� with �2 D 2. By the results of [51] cited in the remark
above, for v D 2� with � 2 A2 and �2 D 2 and � a �–generic stability condition,
the singular locus of M� .Ku.X /; v/ is isomorphic to the second symmetric product
of a hyper-Kähler manifold of K3Œ2�–type. By dimension reasons, the symplectic
resolution zM� .Ku.X /; v/ ! M� .Ku.X /; v/ is not a small contraction. Suppose
by contradiction that J.X / is birational to zM� .Ku.X /; v/. Then by Theorem 4.1,
the symplectic resolution has to coincide with N ! xN , and M� .Ku.X /; v/ Š xN .
This implies that the singular locus of M� .Ku.X /; v/ has to be birational to the
Lehn–Lehn–Sorger–van Straten 8–fold Z.X /, which gives a contradiction. Indeed,
Z.X / cannot be birational to Sym2 M� .Ku.X /; �/ since, by Proposition 1.7, this
would imply that the latter has a symplectic resolution. This, however, is not true
because Sym2 M� .Ku.X /; �/ is a Q–factorial symplectic variety with singular locus of
codimension strictly greater than two and hence does not admit a symplectic resolution
(since it does not admit a semismall resolution).

Remark 4.3 We expect the more general statement to hold: for very general X ,
J.X / is not birational to a Bridgeland moduli space of objects on a 2–CY category
that is deformation equivalent to the derived category of a K3 surface. We present
a rough sketch of the argument. Assume there is a family of Bridgeland stability
conditions on the family of derived categories realizing the deformation. Then, as
in [6, Theorem 21.24], a relative moduli space exists as an algebraic space; by a
generalization of a theorem of Mukai [68, Theorem 1.4], the stable locus of each fiber
is smooth and has a holomorphic symplectic form; the singular locus parametrizing
strictly semistable objects of codimension � 2. One then expects such moduli spaces
to be normal and irreducible. As in the proof of the projectivity in [6, Theorem 29.4] it
follows that these moduli spaces are projective. Finally, a similar argument to the one
above shows that the contraction N ! xN cannot be the symplectic resolution of one
of these moduli spaces.

In the next subsection we construct the degeneration of the intermediate Jacobian
fibration that will allow us to prove Theorem 4.1. The proof of the theorem will be
given at the end of the section.

4.2 Degeneration to the chordal cubic

The secant variety to the Veronese embedding of P2 in P5 is a cubic hypersurface
isomorphic to Sym2 P2, called the chordal cubic. Such a singular cubic fourfold is
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unique up to the action of the projective linear group. Given a one-parameter family
of cubic fourfolds degenerating to the chordal cubic, it was proved in [41] that, up to
a base change, one can fill the corresponding degeneration of intermediate Jacobian
fibrations with a smooth central fiber that is birational to zM2v0

D zM2v0
.S/, where

.S;C / is the degree-two K3 surface associated to the degeneration of cubic fourfolds as
in [22; 34; 46], and where v0D .0;C;�2/ is as in (2-2). We will use this degeneration
to study the birational properties of the intermediate Jacobian fibration, at least for
general X . For this purpose, we need to control what happens to the line bundles L

and ‚ under the corresponding degeneration of intermediate Jacobian fibrations. We
achieve this by constructing a particular degeneration whose central fiber is precisely
the singular moduli space M2v0

and is such that the Lagrangian fibrations of the
members of this degeneration fit in a relative Lagrangian fibration. This is done in
Proposition 4.5. With this degeneration, we are not only able to identify precisely the
limits of L and ‚ (see Lemma 4.7), but we are also able to deform the results about
the birational geometry of M2v0

away from the central fiber (see Proposition 4.9),
eventually proving Theorem 4.1.

Let X !� be a one-parameter family of cubic fourfolds degenerating to the chordal
cubic. By this we will mean that � is a small disk or an open affine subset in the base
of a pencil of cubic fourfolds with the property that the general fiber is smooth and
the central fiber is isomorphic to the chordal cubic. The following facts were proved
in [34], see also [46] and [41]:

(a) The monodromy of this family has order two.

(b) To such a degeneration one can associate a degree-two polarized K3 surface
.S;C /.

(c) For a general pencil, the polarized K3 surface .S;C / is general in moduli.

Suppose that for t ¤ 0 the cubic fourfold Xt is general in the sense of LSV — ie in
the sense that the construction of the hyper-Kähler compactification of [47] works for
JU .Xt /— and let J � ! �� be the family of intermediate Jacobians associated to
the smooth locus X �!�� of the pencil, with corresponding family of Lagrangian
fibrations ��� W J �! P5

��
.

Lemma 4.4 [22; 41] Up to a degree-two base change , we can extend ��� WJ �!P5
��

to a projective morphism �V W JV ! V , where V � P5 �� is an open subset such that
Vt D P5 for t ¤ 0 and V0 � P5 is nonempty for t D 0, and where J0! V0 � P5 is
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identified with the restriction of M2v0
.S/! j2C j D P5 (cf (2-3)) to an open subset

V � j2C j. Moreover , JV! V has a zero section and is polarized by a relative principal
polarization.

Proof Let H �P5 be a general hyperplane. For the degeneration Y WDX\.H�P5/ of
a single smooth cubic threefold the statement is due to Collino [22]. In Proposition 1.16
of loc. cit., it is also shown that the class of the limit polarization is the theta divisor
of the Jacobian of the genus-five hyperelliptic curve, which is the limiting abelian
variety. For the statement about the limit of the intermediate Jacobian fibration, this is
[41, Section 6.3].

We now compactify the projective family JV of the lemma above to construct a family
of Lagrangian fibered holomorphic symplectic varieties in such a way that the central
fiber is exactly M2v0

DM2v0
.S/ (or zM2v0

D zM2v0
.S/); cf (2-3).

Proposition 4.5 Let X!� be as above a general family of smooth cubic fourfolds de-
generating to the chordal cubic. Suppose that for very general t 2�, Xt is very general.
Let .S;C / be the corresponding K3 surface of degree two as above. Then , possibly
up to a base change , there are two degenerations of the corresponding intermediate
Jacobian fibration , fitting in the commutative diagram

(4-1)

zM m
//

zf   

M

f
��

�

where:

(1) zf W zM!� is a family of smooth hyper-Kähler manifolds , with zMt D J.Xt /

for t ¤ 0 and zM0 D
zMv0

.S/. The family is equipped with a relative Lagrangian
fibration zM! P5

�
, where for each t the corresponding Lagrangian fibration is

the obvious one.

(2) f WM! � is a degeneration of hyper-Kähler manifolds , with Mt D J.Xt /

for t ¤ 0 and M0 D Mv0
.S/. The morphism m W zM ! M is proper and

birational , for t ¤ 0 it is an isomorphism and for t D 0 it is the natural symplectic
resolution m0 W

zM2v0
.S/ ! M2v0

.S/ of Theorem 2.1. Moreover , there is a
relative Lagrangian fibration M ! P5

�
where for each t the corresponding

Lagrangian fibration is the obvious one.
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Proof Start from the projective morphism �V W JV ! V of Lemma 4.4. There is an
isomorphism JV0

Š . zM2v0
/V , where . zM2v0

/V is the restriction of the Lagrangian
fibration z� W zM2v0

! P5 (cf (2-3)) to an open subset V � P5. Let JV ! P5
�

be any
projective morphism extending �V . Applying Theorem 1.19(2) to JV ! P5

�
yields,

possibly up to the base change, a family zg W zJ !� of smooth hyper-Kähler manifolds
(projective over .�/�), with a relative Lagrangian fibration zJ ! P5

�
. Let L be the line

bundle on zJ inducing it on every fiber. Let

(4-2) �0 W zJ 0Ü zM2v0

be the birational morphism induced by the isomorphism of open subsets JV0
Š . zM2v0

/V .
Then .�0/�L0 D

z̀WD z��OP5.1/.

We now use an argument very similar to that in the proof of [41, Theorems 1.3 and 1.7],
to construct a family which is isomorphic to J over� and whose central fiber is actually
isomorphic to zM2v0

.S/. Let ƒ be the OG10 lattice. Fixing a marking of the central
fiber and trivializing the local system R2zg�Z induces a marking �t WH

2. zJ t ;Z/!ƒ

of every fiber. Let D � P .ƒ˝Z C/ be the period domain and let P W �! D be the
period mapping induced by these markings. Let �0 D �0.�0/

� W H 2. zM2v0
;Z/! ƒ

be the induced marking on zM2v0
. Let �t WH

2. zMt ;Z/!ƒ be markings induced by
�0D �0.�0/

� on fibers of the universal family over Def. zM / and let P zM WDef. zM /!D
be the induced period mapping. Since P zM is a local isomorphism, we can lift P to a
map � W�! Def. zM2v0

/. Pulling back the universal family gives a family zf W zM!�

with central fiber zM0D
zM2v0

. As in [41] the two families zg W zJ !� and zf W zM!�

are relatively birational over �, since for every t 2 �, the marked pairs . zJ t ; �t /

and . zMt ; �t / are nonseparated points. To show that the two families zJ and zM are
isomorphic away from the central fiber, first recall that by [35, Theorem 4.3] (cf also
[52, Theorem 3.2]), for every t there exists an effective cycle

�t DZt C

X
Wi;t

of pure dimension 10 in zMt � zJ t such that Zt is the graph of a birational map, the
codimension of the images of the Wi;t in zMt and in zJ t are equal and positive, and
Œ�t �� is a Hodge isometry and is equal to ��1

t ı �t WH
2. zJ t ;Z/!H 2. zMt ;Z/. Let zL

be the line bundle on M such that zLt D �
�1
t �t .L/D Œ�t ��.Lt /. Since zL0D z�

�OP5.1/

induces a Lagrangian fibration on zM0D
zM2v0

, by [57] zL induces a Lagrangian fibration
on Mt for every t (maybe up to restricting �). For very general t , zLt D ŒZt ��.Lt /,
since the isotropic class ŒZt ��.Lt / lies in the movable cone of zMt and hence by
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Corollary 3.10 it has to be equal to zLt . Corollary 3.4 implies that for very general t , Zt

is the graph of an isomorphism between zJ t and zMt . The same countability argument
as in the proof of [41, Theorems 1.3 and 1.7] shows that there exists a component of the
Hilbert scheme parametrizing graphs of such cycles Zt � Jt �Mt that dominates �.
It follows that there is a cycle Z in the fiber product zJ �� zM which, maybe up to
restricting �, induces an isomorphism for t ¤ 0. The conclusion is that the family
zM!� is such that central fiber is zM0Š

zM2v0
while for t ¤ 0, we have zMt ŠJ.Xt /.

Now we construct the second family. By [62, Theorem 2.2] there is a finite morphism

„ W Def. zM2v0
/! Def.M2v0

/

induced by the symplectic resolution m0 W
zM2v0

! M2v0
and compatible with the

universal families on the two deformation spaces; for more details see Section 2
of loc. cit. Set � D„ ı � W�! Def.M2v0

/ and let

M!�

be the pullback via � of the universal family on Def.M2v0
/. Then the birational map

m W zM!M over � induced by [62, Theorem 2.2] has the desired properties.

Finally, the statement about the Lagrangian fibrations follows from the fact that, since
the Lagrangian fibration zM2v0

! P5 in the central fiber factors via zM2v0
!M2v0

,
the morphism zM! P5

�
factors via a morphism M! P5

�
.

As a consequence of the last part of the proof, notice that there is a line bundle LM on
M with

m�LM D zL

and whose restriction to the central fiber satisfies LM0
D `, where ` is as in (2-5).

For any t ¤ 0, let ‚t be the relative theta divisor in Mt D J.Xt /.

Lemma 4.6 For ?D zM or M, let ‚? be the divisor defined as the closure of
S

t¤0‚t

in ?. Then , ‚M is a Cartier divisor and hence the following compatibility conditions
hold (notation as in diagram (4-1)):

(4-3) ‚ zM0
Š .m�‚M/j zM0

Dm�0‚M0
;

where ‚?0
WD .‚?/j0 is the fiber of ‚? over t D 0.
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Proof Let I‚M �OM be the ideal sheaf of‚M in M. Since the morphism‚M!�

is flat, it follows that the restriction .I‚M/jM0
is the ideal sheaf of ‚M0

in M0.
By [66] (cf Section 2.2), M0 DM2v0

is factorial so .I‚M/jM0
is locally free. Hence,

so is I‚M . It follows that the divisors ‚ zM and m�‚M agree and so do their central
fibers.

The next lemma identifies the limit of‚t in M2v0
DM0 and shows that all line bundles

on M2v0
deform over M! �. Recall first that by (2-1), NS.M2v0

/ D U D h`; �i,
and for every t ,

NS.Mt /� Ut D hLt ; ‚t i;

with equality holding for very general t . Here ‚0 D ‚ zM0
. In particular, inside

NS. zM2v0
/ we have the following rank-two sublattices both of which are isomorphic

to the hyperbolic lattice U : the limit lattice U0 spanned by the limits L0 D
z̀ and ‚0,

and the pullback lattice m�
0

NS.M2v0
/D hm�

0
`;m�

0
�i.

Lemma 4.7 Let the notation be as above. Then:

(1) The two sublattices U0Dh
z̀; ‚ zM0

i and hm�
0
`;m�

0
�i of NS. zM2v0

/ are the same.

(2) The limit of the relative theta divisor in M0 is precisely � , the relative theta
divisor on M2v0

.S/ of (2-6).

Proof By Lemmas 4.4 and 4.6, the limit theta divisor .‚M/0 is an effective line bundle
on M0 DM2v0

, which restricts to a theta divisor on the smooth fibers of M2v0
! P5.

Thus ‚M0
is linearly equivalent to an effective line bundle of the form � C a` for

some integer a. We show that aD 0. By (4-3), ‚ zM0
Dm�

0
‚M0

Dm�
0
.� C a`/ and

zL0 Dm�
0
`. This is enough to conclude that the two sublattices

U D h‚ zM0
; zL0i and U Dm�0h�; `i Dm�0 NS.M2v0

/

of NS. zM2v0
/ are the same. This proves the first part of the lemma. By Remark 2.5

above, � does not contain the singular locus of M , thus m�
0
� coincides with its

proper transform and is irreducible. Since it has negative Beauville–Bogomolov square
(cf (2-7)), it is a prime exceptional divisor. By [53, Section 5.1], a prime exceptional
divisor deforms where its first Chern class remains algebraic. Thus m�

0
� deforms

to a relative effective prime exceptional divisor � zM on zM. By Corollary 3.4 and
Proposition 3.6, for very general t ¤ 0, the fiber over t of the two irreducible effective
divisors � zM and ‚ zM have to agree since there is only one prime exceptional divisor
on Mt . Thus � zM and ‚ zM have to be equal for every t . In particular, so are their
restrictions to the central fiber.
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Corollary 4.8 Let X be a general cubic fourfold and let � W J.X / ! P5 be the
intermediate Jacobian fibration of [47]. The natural rational zero section of � is regular.

Proof Consider a degeneration of cubic fourfolds to the chordal cubic as in Proposition
4.5 and let M! � be the corresponding family. By Lemma 4.6 the divisor ‚M is
Cartier and by Remark 2.8 it is relatively ample (up to restricting �). Since ‚M is
�1–invariant, it follows that the birational involution �1 is biregular. One component
of the fixed locus of this involution has the property that its restriction to every fiber is
precisely the closure of the corresponding rational zero section. Since by Remark 2.4, in
the central fiber the section is regular, it follows that for general t 2� the corresponding
rational section is also regular.

Consider the family M!� of Proposition 4.5, with its relative theta divisor ‚M. By
Druel [26] we know that for every t , the prime exceptional divisor‚t can be contracted
on a hyper-Kähler projective birational model of Mt . In the central fiber Mt DM2v0

we have, by Lemma 4.7, that ‚M0
D � . By Lemma 2.6 this divisor can be contracted

after a Mukai flop. We now show that the same is true for any t ¤ 0, namely, that after
a Mukai flop the relative theta divisor can be contracted, possibly up to restricting �.

Proposition 4.9 For general X , the relative theta divisor ‚ on J D J.X / can be
contracted after the Mukai flop of the zero section.

Proof Let M! P5
�

be as in Proposition 4.5. By Corollary 4.8, there is a relative
zero section s W P5

�
!M. Let T be its image. Then T is contained in the smooth locus

of the fibers of zM!�. Let
P WMÜN

be the relative Mukai flop of T in M. By Lemma 2.6, the Mukai flop of the zero section
in the central fiber M2v0

can be performed in the projective category. Thus, the central
fiber of N is projective and so are all the fibers of g W N ! � (since by Lemma 4.7
there is an ample class on the central fiber that deforms over �). For t ¤ 0, Nt is
smooth while the central fiber N0 has the same singularities as M0DM2v0

, since they
are isomorphic away from the flopped locus, which does not meet the singular locus.
Via the birational morphism P , which is a relative isomorphism in codimension one,
we can identify the second integral cohomology group of the fibers of the two families.
In particular, for every t 2� we have P�Ut � NS.Nt /, with equality holding for very
general t and for t D 0. In what follows we freely restrict �, if necessary, without any
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mention. As in Lemma 2.6, let H be the big and nef line bundle on N0 that contracts � ,
ie H is a generator of the ray �?. Since H 2 P�U0, by Lemma 4.7, H deforms
to a line bundle H on N . For very general t , its restriction Ht is a generator of the
one-dimensional space .Pt /�‚

?
t � NS.Nt /. By [27], .Pt /�‚t can be contracted on a

birational model of Nt . We now show that it can be contracted on Nt itself. For very
general t , the line bundle inducing the divisorial contraction has to be Ht , or rather
its proper transform on an appropriate birational model of Nt . It follows that for very
general t (and thus for all t ) Ht is big. Moreover, since H0 is big and nef and N0 has
rational singularities, H i.N0;Hk

0
/ D 0 for i > 0 and any k � 0. It follows that the

locally free sheaf g�Hk satisfies base change. Since H0 is semiample, so is Ht for
all t in �. For k � 0, the regular morphism ‰ W N ! P .g�g�Hk/, relative over �,
is birational onto its image and contracts ‚t for very general t and for t D 0. Up to
further restricting t , we can assume that the locus contracted on Nt is irreducible, and
hence that ‰t contracts precisely .Pt /�‚t for every t .

The proof of Theorem 4.1 is now complete:

Proof of Theorem 4.1 Let X be general. By Proposition 4.9 the Mukai flop p WJÜN

of J along the zero section is projective and on J there exists a big and nef line
bundle that contracts the zero section. For very general X , H0 is unique, up to a
positive rational multiple, and Nef.J / D hL;H0i. Moreover, we have shown that
for general X there is a divisorial contraction N ! xN , contracting p�‚. Since the
divisorial contraction N ! xN contracts the ruling of ‚ (cf Proposition 3.6), by (3-2)
it follows that the image of ‚ in xN is birational to the LLSvS 8–fold Z.X /. For
very general X , Nef.N /D hp�H0;p�H i, where p�H is the unique (up to a positive
multiple) big and nef line bundle inducing the contraction. By [36, Proposition 4.2],
H is the second ray of the movable cone of J , ie Mov.J /D hL;H i.

5 The Mordell–Weil group of J.X/

Let a WA!B be a projective family of abelian varieties over an irreducible basis B and
suppose that a admits a zero section. The Mordell–Weil group MW.a/ of a WA!B is
the group of rational sections of a W A! B. Equivalently, if K denotes the function
field of B, MW.a/ is the group of K–rational points of the generic fiber AK . For
Lagrangian hyper-Kähler manifolds, the study of the Mordell–Weil group of abelian
fibered hyper-Kähler manifolds was started by Oguiso in [65; 64]. The aim of this
section is to prove the following theorem.
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Theorem 5.1 Let X be a smooth cubic fourfold and let � W J D J.X / ! P5 be
as in Theorem 1.6, a smooth projective hyper-Kähler compactification of JU . Let
MW.�/ be the Mordell–Weil group of � , ie the group of rational sections of � , and
let H 2;2.X;Z/0 be the primitive degree-four integral cohomology of X . The natural
group homomorphism

�X WH
2;2.X;Z/0!MW.�/

induced by the Abel–Jacobi map (5-1) is an isomorphism.

Corollary 5.2 The group MW.�/ is torsion-free.

Remark 5.3 In [64] Oguiso proved the existence of Lagrangian fibered hyper-Kähler
manifolds whose Mordell–Weil group has rank 20. This is the maximal possible rank
among all the known examples of hyper-Kähler manifolds, as follows from the Shioda–
Tate formula of [65]; see also Proposition 5.4 below. Oguiso considers deformations of
the abelian fibration zM2v0

! P5 (cf (2-3)) preserving both the Lagrangian fibration
structure and the zero section; among these deformations, Oguiso shows the existence
of Lagrangian fibration with rank 20 Mordell–Weil group [65, Theorem 1.4(2)]. The
general deformation of zM2v0

! P5 for which both the Lagrangian fibration structure
and the zero section are preserved (this is a codimension-two condition) is, up to
birational isomorphism, J.X /; see Remark 3.3. By the theorem above, Lagrangian
fibrations of the form J.X /, for X with rk H 2;2.X;Z/D 22, satisfy rk MW.�/D 20.
Thus, they provide an explicit description of Oguiso’s examples.

The following proposition is essentially a reformulation of results from [65; 64].

Proposition 5.4 Let � WM ! Pn be a projective hyper-Kähler manifold with a fixed
(rational ) section. Let K DC.Pn/ be the function field of the base and let MK be the
base change of M to the generic point of Pn. There is a commutative diagram

0

��

0

��

0 // ZL˚
L

i ZDi
// L?

��

// Pic0.MK / //

��

0

0 // ZL˚
L

i ZDi
// NS.M /

rb

����

rK
// Pic.MK / //

����

0

Z NS.MK /
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where LD ��OPn.1/ and where the D1; : : : ;Dk are the irreducible components of
the complement of the regular locus of � that do not meet the section. In particular ,
rk.MW.�//D rk.NS.M //� rk ZL˚ZDi � 1D rk.NS.M //� k.

Proof The column on the left is exact by definition. By [76], for b in the locus
U �Pn parametrizing smooth fibers of � , ImŒrb WNS.M /!H 2.Mb/�DZ. The same
argument as in Lemma 3.5 shows that a line bundle D on M lies in L? if and only if
Dn �LnD .DjMb

/nD 0. Since rk rb D 1, this holds if and only if D �LnDDjMb
D 0,

which is equivalent to D 2 ker rb . This shows that the central column is exact. The same
argument of [64, Theorem 1.1], which was used to show that rk NS.MK /D 1, shows
that any element in ker.rb/D L? goes to zero in NS.MK /. Thus there are induced
horizontal morphisms L?!Pic0.MK / and Z!NS.MK /. Since NS.M /!Pic.MK /

is surjective, the bottom horizontal morphism is an isomorphism. The natural morphism
ZL˚ZDi ! NS.M / is injective, since by [65, Lemma 2.4] it has maximal rank
over Q and NS.M / is torsion-free. Clearly, ZL˚i ZDi � ker.rK /. To show the
reverse inclusion, let D be any line bundle on M that goes to zero in Pic.MK /. Then,
by what we have already proved, for any smooth fiber we have rb.D/D ŒDjMb

�D 0.
It follows that D is a linear combination of L D ��OPn.1/ and boundary divisors,
ie D 2ZL˚i ZDi . As rk.MW.�//D rk Pic0.MK /, the last statement also follows.

Remark 5.5 The study of the Mordell–Weil group for the Beauville–Mukai system is
being carried out in joint work in progress with Chiara Camere.

Corollary 5.6 Let J D J.X /! P5 be a hyper-Kähler compactification of the inter-
mediate Jacobian fibration. Then

rk MW.�/D rk NS.J /� 2D rk H 2;2.X;Z/0:

Proof The discriminant locus of � is irreducible and the fibers of � over the general
point of the discriminant are also irreducible; cf Lemma 1.2. Thus, in the notation
of the proposition above, ker rK D ZL and the equality rk MW.�/ D rk NS.J /� 2

follows. The remaining equality follows from Lemma 3.2.

Remark 5.7 The corollary just proven, which relies on Oguiso’s Shioda–Tate formula
above, is the only part of this section where we use that JU admits a hyper-Kähler
compactification with a regular Lagrangian fibration extending JU ! U . Indeed, to
define the Abel–Jacobi map �X and to prove that it is injective (Section 5.3), we don’t
need to assume the existence of a hyper-Kähler compactification. However, we will
use this corollary in the proof of the surjectivity (Section 5.4).
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Remark 5.8 An interesting problem is to study the action on J of the birational
automorphisms induced by translation by a nontrivial element of MW.�/, as well
as to study the automorphism group of the generic fiber JK . A consequence of the
observations of Section 3.1 is that if J ! P5 has irreducible fibers, then the birational
automorphisms induced by translation are regular morphisms.

5.1 The Abel–Jacobi mapping

This sections uses some ingredients from the theory of normal functions (certain
holomorphic sections of intermediate Jacobian fibrations), as developed and used by
Griffiths [30; 31], Zucker [83; 84] and Voisin [78]. We refer to these papers, as well as
to [77, Sections 7.2.1 and 8.2.2], for the relevant theory.

The first task is to define the morphism �X W H
2;2.X;Z/0 ! MW.�/. One way to

do this is to use relative Deligne cohomology, which allows us to define an algebraic
section of the fibration JU ! U . See, for example, [78; 28].

A more geometric way to define the morphism �X is in terms of algebraic cycles and
Abel–Jacobi maps, which is what we use here. This is possible because the integral
Hodge conjecture holds for degree-four Hodge classes on X [78; 84]. It allows us
to avoid, in the current presentation, defining the normal function associated with a
cohomology class. The reader should keep in mind, however, that constructing an
algebraic section of the intermediate Jacobian fibrations with a Hodge class on X is a
key ingredient in the proof of the Hodge conjecture of [78; 84], so the shortcut is only
at the level of our presentation.

As already mentioned, the integral Hodge conjecture holds for degree-four Hodge
classes on X . In particular, for every class ˛ 2 H 2;2.X;Z/, there is an algebraic
cycle Z such that ŒZ� D ˛. Let V � P5 be the open subset parametrizing smooth
hyperplane sections of X that do not contain any of the components of Z. If ˛ is a
primitive cohomology class, then for b D ŒYb � 2 V , the one-cycle Zb satisfies

ŒZYb
�D 0 in H 4.Yb;Z/D Z;

and hence determines a point �Yb
.Zb/ 2 Jac.Yb/ in the intermediate Jacobian of Yb .

By Griffiths [31] (see also [77, Section 7.2.1]) the assignment

�Z W V ! JV ; b 7! �Yb
.Zb/;

defines a holomorphic section of the restriction of J to V � P5. By [83], this section
is, in fact, algebraic: indeed, consider a Lefschetz pencil Y 0! P1 of hyperplanes of X
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with P1 � V and with the property that none of the singular points of the members
of the pencil are contained in Z. By [83, Proposition (4.58)] the restriction of �Z to
the nonempty open subset V \ P1 of the pencil extends to a holomorphic function
on all of P1 and is thus algebraic; see also [28]. Since a holomorphic function that is
algebraic in each variable is algebraic (see for example [14, Chapter IX, Theorem 5]),
it follows that �Z actually defines a rational function on P5, ie

�Z 2MW.�/:

The holomorphic section �Z does not depend on the algebraic cycle representing ˛.
Indeed, since CH0.X / D Z, by [79, Theorem 6.24] it follows that the cycle map
CH2.X /!H 2;2.X;Z/ is injective. It follows that if Z and Z0 are homologous, then
they are rationally equivalent in X and hence so are their restrictions to a general
smooth hyperplane section. The conclusion of this discussion is that the Abel–Jacobi
map induces a well-defined group homomorphism

(5-1) �X WH
2;2.X;Z/0!MW.�/; ˛ D ŒZ� 7! �˛ WD �Z :

We prove injectivity of �X in Section 5.3 and surjectivity in Section 5.4. Since we
will restrict to general pencils in P5, we start by recalling a few standard facts about
Lefschetz pencils of cubic threefolds.

5.2 Preliminaries on Lefschetz pencils

We start by setting up the notation. Let P1 � .P5/_ be a Lefschetz pencil with base
locus a smooth cubic surface †�X . We have the diagram

†�P1

p1

||

� � i
// Y 0

p

||

q

  

†
� � // X P1

where Y 0 D Bl† X , q W Y 0 ! P1 is the fibration of threefolds, and i W †� P1 ! Y 0

is the inclusion of the exceptional divisor in Y 0. Let j W U 0 � P1 be the open subset
parametrizing smooth fibers.

The following lemma is standard. We include a proof for lack of reference.

Lemma 5.9 The homology and cohomology groups of a cubic threefold which is
smooth or has one A1 singularity have no torsion. Moreover , using notation as above ,

R1q�ZD 0; R2q�ZD Z; R3q�ZD j�j
�R3q�Z; R4q�ZD Z:
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Proof The statement about the homology groups of a cubic threefold with at most an
A1 singularity follow from [24, Example 5.3 and Theorem 2.1]; using the universal
coefficient theorem, the statements on the cohomology groups then follow. From loc. cit.
it also follows that H 4.Y;Z/DH4.Y;Z/

_ D Z, and hence R4q�ZD Z follows by
proper base change. The first two statements on the higher direct images follow from
the Lefschetz hyperplane section theorem. The third equality, which is also known as
the “local invariant cycle” property, is well known to hold with Q–coefficients, and we
now show it with Z–coefficients, as follows. By adjunction, there is a natural morphism

" WR3q�Z! j�j
�R3q�Z;

which is an isomorphism over U . To show " is an isomorphism over any point of
B WD P1 nU 0 we restrict, for every b0 2B, to a small disk � centered at b0. Then " is
an isomorphism around b0 if and only if the specialization morphism

H 3.Yb0
;Z/ŠH 3.Y 0;Z/!H 3.Yb;Z/

inv
D .j�j

�R3q�Z/b0

is an isomorphism (cf [69, pages 439–440]), where b 2�\U 0 and H 3.Yb;Z/
inv �

H 3.Yb;Z/ are the local monodromy invariants. Let ı 2H3.Yb;Z/ be the vanishing
cycle of Y 0�. By the Picard–Lefschetz formula, H 3.Yb;Z/

inv D Zı?, where ? is
taken with respect to the intersection product, which is nondegenerate since H 3.Yb;Z/

is torsion-free. By [77, Corollary 2.17], there is a short exact sequence

0! Zı!H3.Yb;Z/!H3.Y 0�;Z/ŠH3.Yb0
;Z/! 0;

where 0¤ ı 2H3.Yb;Z/ is the class of the vanishing cycle. Dualizing, we get a short
exact sequence

0!H 3.Yb0
;Z/!H 3.Yb;Z/! .Zı/_! 0:

(Recall the absence of torsion in the homology groups of Yb and Yb0
.) Using the

isomorphism H3.Yb;Z/ Š H 3.Yb;Z/ induced by Poincaré duality, we make the
identification Zı? D kerŒH 3.Yb;Z/! Zı_�D ImŒH 3.Yb0

;Z/!H 3.Yb;Z/�.

It is well known that for a Lefschetz pencil the Leray spectral sequence with coefficients
in Q degenerates at E2. For a Lefschetz pencil of cubic threefolds, this is true also for
Z coefficients. Again, we include a proof for lack of reference. For the whole family of
smooth hyperplane sections of X the Leray spectral sequence with integers coefficients
does not degenerate at E2; this is the starting point of the construction of the nontrivial
JU –torsor of [80], cf Remark 1.14.

Geometry & Topology, Volume 27 (2023)



Birational geometry of the intermediate Jacobian fibration 1525

Lemma 5.10 Let q W Y 0! P1 be as above. The Leray spectral sequence with Z coef-
ficients degenerates at E2. In particular , the Leray filtration on H 4.Y 0;Z/ is given by

(5-2)
ZDH 2.P1;R2f�Z/�L1 �H 4.Y 0;Z/�H 0.P1;R4f�Z/D Z;

0!H 2.P1;R2f�Z/!L1

�!H 1.P1;R3f�Z/! 0:

Proof Because of the many vanishings in the E2–page of the spectral sequence, the
only map we need to show is trivial is H 0.P1;R4q�Z/!H 2.P1;R3q�Z/. For this,
it is enough to show that H 4.Yb;Z/!H 0.P1;R4q�Z/ is surjective, which is clearly
true since both groups are generated by the class of a line.

Consider the decomposition

(5-3) H 4.Y 0;Z/DH 4.X;Z/˚H 2.†;Z/˚H 0.†;Z/

given by the blowup formula. The inclusion of the first summand is given by the
pullback p�; we freely omit the symbol p� when viewing H 4.X;Z/ as a subspace of
H 4.Y 0;Z/. The inclusion of the second factor is via the map H 2.†;Z/!H 4.Y 0;Z/
given by C 7! i�.C �P1/. Finally, the inclusion of the last summand is through the
map H 0.†;Z/DH 0.†;Z/˝H 2.P1;Z/!H 4.Y 0;Z/ that sends Œ†�D Œ†�p� 7!

i�.Œ†�p�/, where p 2 P1 is a point. We highlight the following results for later use.

Lemma 5.11 There is a natural isomorphism H 0.†;Z/Š H 2.P1;R2q�Z/ which
allows the identification of the inclusion

H 0.†;Z/ŠH 0.†;Z/˝H 2.P1;Z/
i�
�!H 4.Y 0;Z/

of (5-3) with the inclusion H 2.P1;R2q�Z/!H 4.Y 0;Z/ induced by the Leray filtra-
tion of Lemma 5.10.

Proof The closed embedding i W†�P1 ,! Y 0 determines an isomorphism p2�ZŠ

R2q�Z of constant local systems. Here, p2 W†�P1! P1 is the projection onto the
section factor. Since H 2.P1;p2�Z/DH 0.†;Z/˝H 2.P1;Z/ the lemma follows.

Via p�, we identify H 4.X;Z/0 ŠL1\H 4.X;Z/ and set L
2;2
1
DL1\H 2;2.Y 0;Z/.

Here L1 �H 4.Y 0;Z/ denotes the second piece of the Leray filtration; see (5-2).

Corollary 5.12 The surjective morphism  WL1!H 1.P1;R3q�Z/ of (5-2) restricts
to an injection

x WL1\ .H
2;2.X;Z/˚H 2.†;Z//ŠL

2;2
1
= ker. /!H 1.P1;R3q�Z/:
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Proof From Lemmas 5.10 and 5.11 above, it follows that ker. /DH 2.P1;R2q�Z/D

H 0.†;Z/. Thus, by (5-3), it follows that H 4.X;Z/˚H 2.†;Z//\ ker. / D f0g.
Since H 0.†;Z/�L1 and

(5-4) L1\
�
H 2;2.X;Z/˚H 2.†;Z/˚H 0.†;Z/

�
DL1\

�
H 2;2.X;Z/˚H 2.†;Z/

�
˚H 0.†;Z/;

the corollary follows.

Lemma 5.13 The restriction morphism H 1.P1;R3q�Z/ ! H 1.U 0;R3qU 0�Z/ is
injective.

Proof The Leray spectral sequence for the open immersion j W U 0! P1, applied to
the sheaf j �R3q�ZDR3qU 0�Z, gives a five-term exact sequence starting with

0!H 1.P1; j�j
�R3q�Z/!H 1.U 0;R3qU 0�Z/! � � � :

This concludes the proof, since by Lemma 5.9, R3q�ZD j�j
�R3q�Z.

5.3 Injectivity of �X

The proof of injectivity uses the Hodge class of a normal function; see [83] and
[77, Section 8.2.2].

For a pencil Y 0! P1 as above, set

H 2;2.Y 0;Z/0 WDL
2;2
1
D kerŒH 2;2.Y 0;Z/!H 0.P1;R4q�Z/�DL1\H 2;2.Y 0;Z/;

and let
� 0 D J 0! P1 and JU 0 ! U 0

be the restriction of the intermediate Jacobian fibration to P1 and to U 0. Choosing a
set of generators for H 2;2.X;Z/0, let Y 0! P1 be a general enough pencil that the
restriction morphism

(5-5) �0X WH
2;2.X;Z/0!MW.� 0/

is well-defined. Here, MW.� 0/ is the group of rational sections of � 0. Similarly, we get
a group homomorphism �0Y 0 WH

2;2.Y 0;Z/0!MW.� 0/. Moreover, if ˛2H 2;2.X;Z/0,
then

�0Y0.p
�˛/D �0X .˛/ 2MW.� 0/:

Recall the Hodge class of a normal function; see for instance [77, Section 8.2.2] and
[83, Proposition (3.9)]. Let H3 DR3qU 0�Z˝Z OU 0 be the Hodge bundle associated
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to the weight-three variation of Hodge structure of the pencil and let F�H3 be the
Hodge filtration. The sheaf JU 0 of holomorphic sections of the intermediate Jacobian
fibration fits into the exact sequence

0!R3f 0U 0�Z!H3=F2H3
! JU 0 ! 0;

and the coboundary morphism

H 0.U 0;JU 0/
cl
�!H 1.U 0;R3f�Z/; � 7! cl.�/;

associates to every holomorphic section � of JU 0!U 0 a class cl.�/ in H 1.U 0;R3q�Z/,
called the Hodge class of �— in the present context, this class is of Hodge type with
respect to the Hodge structure on H 1.U 0;R3q�Z/ induced from that on H 4.Y 0;Z/
via the degeneracy of the Leray spectral sequence; see [83, Section 3].

Lemma 5.14 Let Y 0! P1 be a general pencil. The homomorphism

�0X WH
2;2.X;Z/0

ˇ
�!MW.� 0/

of (5-5) is injective.

Proof By [83, Proposition (3.9)] — see also [77, Lemma 8.20] — the diagram

(5-6)

H 2;2.X;Z/0
p�
//

�0
X ''

H 2;2.Y 0;Z/0

�0Y0
��


// H 1.P1;R3p�Z/

"
��

H 0.U 0;JU 0/ cl
// H 1.U 0;R3f 0�Z/

is commutative. The map " is injective by Lemma 5.13, and p� ı  is injective by
Corollary 5.12. Hence, cl ı�0

X
is injective and thus so is �0

X
.

5.4 Surjectivity of �X

There are three ingredients in the proof of surjectivity:

� the fact that rk MW.�/D rk H 2;2.X;Z/0, as proved in Corollary 5.6;

� the restriction, once again, to Lefschetz pencils;

� the techniques used in [78; 84] for the proof of the integral Hodge conjecture
for cubic fourfolds.
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We remark that we use their argument in a slightly different way. To prove the Hodge
conjecture one starts with a cohomology class, uses it to define a normal function,
and then uses the normal function to construct an algebraic cycle representing the
cohomology class (possibly up to a multiple of a complete intersection surface). See [78]
for more details. Here we start with a rational section of the intermediate Jacobian
fibration, we restrict to a general pencil, and use the same method of Voisin to construct
an algebraic cycle inducing the section via the Abel–Jacobi map. Then we have to check
that the cohomology class representing this cycle is primitive, that it is independent of
the pencil, and that it induces, via �X , the section we started from.

Since by Corollary 5.6 the cokernel of the injection �X W H
2;2.X;Z/0 ! MW.�/

is finite, for any � 2 MW.�/ there is an integer N and a cohomology class ˛ 2
H 2;2.X;Z/0 such that

(5-7) �˛ WD �X .˛/DN�:

We will show, again using Lefschetz pencils, that given � and ˛ as above, there exists a
x̌0 2H 2;2.X;Z/0 such that ˛ DN x̌0. This will give the desired surjectivity. Before
we do so, let us introduce some results that we will need.

For a general pencil Y 0! P1, let

.J T /0! P1

be the restriction of the intermediate Jacobian fibration J T !P5 of [80] (compare with
Remark 1.14) to the pencil. For a conic C �†, consider the relative one-cycle of degree
two in Y 0! P1 — any other degree-two relative one-cycle that comes from † will do.
This defines a section of .J T /0! P1, which trivializes the torsor .J T /U 0 inducing
an isomorphism J 0

U 0
Š .J T /U 0 . It is easily seen that this extends to an isomorphism

tC W J
0 Š .J T /0 over P1. For any � 0 2 H 0.U 0;JU 0/, we may consider the induced

section
.�T /0 WD tC ı �

0
2H 0.U 0;J T

U 0/:

The following result is proved in Voisin [78]; see also [84, Theorem (3.2)], where the
result is proved over Q.

Proposition 5.15 [78, Section 2.3] For any section � 0 2MW.� 0/, there is a relative
one-cycle Z on Y 0 of degree two such that the cohomology class

ˇ0 D ŒZ�� ŒC �P1� 2H 2;2.Y 0;Z/0

satisfies �0Y 0.ˇ
0/D � 0 in MW.� 0/.
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Proof For the reader’s convenience, we give a brief sketch of the argument. By a
result of Markushevich and Tikhomirov [54] and Druel [26] there is a relative birational
morphism c2 WM0U 0 ! J T

U 0
, where M0

U 0
! U 0 is the relative moduli space of sheaves

on Y 0U 0 ! U 0 with c1 D 0 and c2 D 2`. The morphism associates to every sheaf
corresponding to a point in M0

U 0
the Abel–Jacobi invariant of its second Chern class.

Given a section .�T /0 2H 0.U 0;J T
U 0
/ as above, Voisin uses M0

U 0
! U 0 to construct a

family CU 0 of degree-two curves in the fibers of Y 0U 0 ! U 0 with the property that for
every b 2 U 0, the curve Cb represents the c2 of a sheaf over .�T /0.b/. By construction,
letting Z be the closure of CU 0 in Y 0 and setting ˇ0 WD ŒZ�� ŒC �P1� 2H 2;2.Y 0;Z/0,
we have �0Y0.ˇ

0/D � 0 in H 0.U 0;JU 0/.

Let � 2MW.�/. For a general pencil P1 � P5, let � 0 D �jP1 be the restriction of �
to P1, and let ˇ0 be as in the proposition above so that �0Y0.ˇ

0/D � 0. It is tempting to
say that, via �X , the class ˇ0 induces � globally and not just on that pencil. This is
indeed the case, though we first need to check that ˇ0 lies in the primitive cohomology
of X and that ˇ0 is independent of the pencil as well as of the chosen isomorphism
tC W J

0 Š .J T /0. More precisely, we need to check that ˇ0 induces � over an open
subset of P5 and not just on the chosen pencil. Before checking this, we have the
following proposition.

Recall that we have set H 2;2.Y 0;Z/0 DL1\H 2;2.Y 0;Z/.

Proposition 5.16 [83, Theorem (4.17)] The Abel–Jacobi morphism

�Y0 WH
2;2.Y 0;Z/0!MW.� 0/�H 0.U 0;JU 0/

is surjective and defines an isomorphism

x�Y0 WL1\ .H
2;2.X;Z/˚H 2.†;Z//!MW.� 0/:

Proof By diagram (5-6) and the fact that " is injective, ker.�Y0/D ker  , which by
Lemma 5.10 is equal to H 0.†;Z/. Since �Y0 is surjective by the proposition above,
the induced morphism x�Y 0 WH 2;2.Y 0;Z/0=H 0.†;Z/!MW.� 0/ is an isomorphism.
Finally, by (5-4), H 2;2.Y 0;Z/0=H 0.†;Z/ŠL1\ .H

2;2.X;Z/˚H 2.†;Z//.

We can now end the proof of surjectivity. For � 2 MW.�/, let ˛ 2 H 2;2.X;Z/0
be as in (5-7). Restricting to a pencil Y 0 ! P1, set � 0 D �jP1 and let ˇ0 be as in
Proposition 5.15 such that �Y 0.ˇ0/D � 0. Finally, let x̌0 be the projection of ˇ0 onto
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L1 \ .H
2;2.X;Z/˚H 2.†;Z//. In an abuse of notation, we are omitting p� from

the inclusion of H 4.X;Z/ in H 4.Y 0;Z/ and we will write ˛ instead of p�˛. We have

�Y0.˛/D .�X .˛//jP1 DN� 0 DN�Y0.ˇ
0/D �Y 0.Nˇ

0/:

By Proposition 5.16, ˛ DN x̌0 2L1\ .H
2;2.X;Z/˚H 2.†;Z//. Since

˛ 2H 2;2.X;Z/0 �L1\
�
H 2;2.X;Z/˚H 2.†;Z/

�
;

it follows that x̌0, too, has to lie in H 2;2.X;Z/0�H 2;2.Y 0;Z/. Moreover, the class x̌0,
which a priori depends on the chosen Lefschetz pencil, is independent of the pencil.
Set � x̌0 D �X . x̌

0/. Then, for any sufficiently general Lefschetz pencil P1 � P5, we
have an equality of sections

.� x̌0/jP1 D �jP1 ;

and hence the two rational sections � x̌0 and � coincide. This proves surjectivity.

Appendix On the Beauville conjecture for LSV varieties
by Claire Voisin

In this appendix we explain a consequence of Corollary 3.10 on the following conjecture
made by Beauville in [10].

Conjecture A.1 Let M be a projective hyper-Kähler manifold. Any polynomial
cohomological relation P .d1; : : : ; dr /D 0 in H�.M;Q/, where di are divisor classes
on M , already holds in CH.M /.

Here CH.M / denotes the Chow groups of M with rational coefficients. Let now
M ! B be a projective hyper-Kähler manifold of dimension 2n equipped with a
Lagrangian fibration, and let L 2 Pic M D NS.M / be the Lagrangian class pulled
back from B; see [55]. We have q.L/ D 0 by the Beauville–Fujiki relations, since
L2n D 0. Let also h 2 Pic M D NS.M / be the class of an ample divisor on M , so
that the intersection pairing q restricted to hL; hi is nondegenerate by the Hodge index
theorem. The same argument as in [15] shows that the polynomial cohomological
relations between L and h are generated by the relations

(A-1) ˛nC1
D 0 in H 2nC2.M;Q/ when q.˛/D 0 for ˛ 2 hL; hi:

Here we can restrict to rational cohomology classes because we know that there is
an isotropic class in hL; hi. We consider now, more specifically, an LSV variety J
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(which is of dimension 10, so n D 5) constructed in [47] as a Lagrangian fibration
over P5. The Picard group of a very general such variety is a rank-two lattice which
contains as above the Lagrangian class L and an ample class, but we take as a basis the
classes L and ‚, where ‚ was introduced in [47] and is studied in the present paper.
Riess proved in [72] that a hyper-Kähler manifold M which has a Lagrangian fibration
and satisfies the “RLF conjecture” characterizing classes associated to Lagrangian
fibrations, satisfies Beauville’s conjecture. However we do not know that the LSV
varieties satisfy the RLF conjecture. We prove here the following result.

Theorem A.2 The relations (A-1) hold in CH.J / for the lattice hL; ‚i of an LSV
variety J. Conjecture A.1 is thus satisfied by an LSV variety with Picard number two.

Proof There are, up to multiples, exactly two classes L and L0 in hL; ‚i satisfying
q.L/D 0; q.L0/D 0. Obviously L6D 0 in CH.J / since L comes from the base which
is of dimension 5, so we only have to prove that L0

6
D 0 in CH.J /. We use Riess’

argument in [72], however, in a different way. As a consequence of fundamental results
of Huybrechts in [36], Riess proved the following:

Theorem A.3 [72, Theorem 3.3] Let K be an isotropic class on a projective hyper-
Kähler manifold M of dimension 2n. Then there exists a cycle � 2 CH2n.M �M /

such that �� acts as an automorphism of CH.M / preserving the intersection product ,
the action of �� on H 2.M / preserves the Beauville–Bogomolov form qM , and ��K
belongs to the boundary of the birational Kähler cone of M .

Here the birational Kähler cone of M is defined as the union of the Kähler cones of
hyper-Kähler manifolds M 0 bimeromorphic to M (the bimeromorphic map M 0ÜM

inducing an isomorphism on H 2). We apply this theorem to our class L0 on J and
thus get a correspondence � as above. The class ��L0 is an isotropic class, hence it
must be proportional to either L0 or L. Furthermore, it belongs to the boundary of the
birational Kähler cone. We now have:

Lemma A.4 The class L0 does not belong to the boundary of the birational Kähler
cone.

Proof This is proved in Corollary 3.10 of the present paper.

By Lemma A.4, we conclude that ��L0 is proportional to L. As L6 D 0 in CH6.J /

and �� is an automorphism of CH.J / preserving the intersection product, we conclude
that L0

6
D 0 in CH6.J /.
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If we consider the case of Picard rank three, where the Picard lattice N of J is
generated by three classes L, ‚ and D with q.L;D/D 0 and q.‚;D/D 0, there are
now, according to [15], 13 degree-six cohomological relations between L, ‚ and D,
generated by the classes ˛6 2 S6N � S6H 2.J;Q/, where ˛ belongs to the conic
q.˛/D 0. Among these relations, two of them, namely those involving only L and ‚,
are established in CH.J / by Theorem A.2. We also have the relations

(A-2) L5D D 0 and L0
5
D D 0 in H 12.J;Q/;

which are obtained by differentiating the relation (A-1) at ˛ D L or ˛ D L0 in the
direction given by D, which is tangent to the conic at these points since q.D;L/D 0

and q.D;L0/D 0. We prove the following:

Theorem A.5 The relations (A-2) are satisfied in CH6.J /.

Proof The first relation is proved by applying the following result from [81], which
works in a more general context and needs a mild assumption on the infinitesimal
variation of Hodge structure of a family of abelian varieties at the generic point of the
base. More generally, let M !B be a fibration into abelian varieties and let A2Pic M

be a line bundle whose restriction to the general fiber Mb is topologically trivial.

Proposition A.6 Assume that at the generic point t 2 B, there exists a class ˛ 2
H 1;0.Mb/ such that xr.˛/ W TB;b!H 0;1.Mb/ is surjective. Then there exists a point
b 2 B such that Mb is smooth and AjMb

is a torsion line bundle.

If all fibers Mb have the same class F in CH.M /, it thus follows that F:A D 0 in
CH.M /.

Coming back to our situation, we have to check that the assumption on the infinitesimal
variation of Hodge structures is satisfied in our situation. Let J be the LSV variety
of a cubic fourfold X . The infinitesimal variation of Hodge structure for the fibers of
the Lagrangian fibration J ! .P5/_ is thus canonically isomorphic to the variation
of Hodge structure on the H 3 of the hyperplane section XH � X . If Y is a smooth
cubic threefold in P4 defined by an equation f D 0, Griffiths’ theory of IVHS of
hypersurfaces says that there are isomorphisms

H 2;1.Y /ŠR1
f and H 1;2.Y /ŠR4

f

such that the infinitesimal variation of Hodge structure on H 3.Y;C/ is given (using
the identification R3

f
ŠH 1.Y;TY /) by the multiplication map R3

f
! Hom.R1

f
;R4
f
/.

Now consider the case where Y is a hyperplane section XH , defined by a linear
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equation H, of the cubic fourfold X. It is immediate to see that the inclusions
XH � X � P5 determine a quadratic polynomial QX ;H 2 R2

f
such that the nat-

ural map � W H 0.XH ;OXH
.1// ! R3

f
, defined as the first-order classifying map

for the deformations of XH in X , is given by multiplication by QX ;H . Combin-
ing these facts, we conclude that the desired infinitesimal criterion for the fibration
J ! .P5/_ holds if there exist a smooth hyperplane section XH � X and a linear
form x 2H 0.XH ;OXH

.1//DR1
f

such that, with the above notation, the product map

xQX ;H WR
1
f !R4

f

by xQX ;H is an isomorphism. It is quite easy to show that the existence of such a
hyperplane section is satisfied by X in codimension one in the moduli space of cubic
fourfolds, hence at the generic point of any Hodge locus in this moduli space, or
equivalently any Noether–Lefschetz locus for the corresponding LSV variety J . The
relation L5D D 0 in CH6.J / is thus satisfied at the generic point of the deformation
locus of J preserving the Hodge class D, hence everywhere by specialization.

To conclude the proof of Theorem A.5, we have to prove the relation L0
5
D D 0 in

CH6.J /. This follows however from the relation L5D D 0 in CH6.J / by the same
argument as in the proof of Theorem A.2, using the specialization of the cycle � and
observing that �� acts by ˙1 on H 2.J;Q/?hL;‚i, hence on D.
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Cohomological �–independence for
moduli of one-dimensional sheaves

and moduli of Higgs bundles

DAVESH MAULIK

JUNLIANG SHEN

We prove that the intersection cohomology (together with the perverse and the Hodge
filtrations) for the moduli space of one-dimensional semistable sheaves supported
in an ample curve class on a toric del Pezzo surface is independent of the Euler
characteristic of the sheaves. We also prove an analogous result for the moduli
space of semistable Higgs bundles with respect to an effective divisor D of degree
deg.D/ > 2g�2. Our results confirm the cohomological �–independence conjecture
by Bousseau for P 2, and verify Toda’s conjecture for Gopakumar–Vafa invariants for
certain local curves and local surfaces.

For the proof, we combine a generalized version of Ngô’s support theorem, a dimen-
sion estimate for the stacky Hilbert–Chow morphism, and a splitting theorem for the
morphism from the moduli stack to the good GIT quotient.
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0.1 Cohomological �–independence

Let C be a nonsingular irreducible projective curve of genus g � 2. The moduli space
Nn;� of (slope-)semistable vector bundles E with

rank.E/D n and �.E/D �

is an irreducible projective variety, whose topology has been studied intensively for
decades. When we fix the rank n, tensor product and duality induce natural iso-
morphisms between the moduli spaces indexed by different Euler characteristics (or
degrees):

(1) Nn;� 'Nn;�Cn; Nn;� 'Nn;.2�2g/n��:

Under the assumption gcd.n; �/D 1, so that the moduli spaces Nn;� are nonsingular,
Harder and Narasimhan proved in [20, Theorem 3.3.2] that the Poincaré polynomials
of Nn;� are distinct unless the moduli spaces are related via (1).

In this paper, we are interested in moduli spaces where the cohomological information
does not depend on the Euler characteristic �. More precisely, we consider the following
two types of moduli spaces M L

ˇ;�
and zMn;�:

(A) M L
ˇ;�

is the moduli space of 1–dimensional semistable sheaves F with

Œsupp.F/�D ˇ and �.F/D �

on a nonsingular toric del Pezzo surface S . Here the semistability is with respect
to a polarization L on S , supp.�/ denotes the Fitting support, and ˇ is an ample
curve class.

(B) zMn;� is the moduli space of semistable Higgs bundles .E ; �/ with respect to an
effective divisor D of degree deg.D/ > 2g� 2 on C with

rank.E/D n and �.E/D �:

We refer to Section 2 for more details on these moduli spaces. When � is chosen so
that there are no strictly semistable objects, the moduli spaces M L

ˇ;�
and zMn;� are

nonsingular, and we consider their singular cohomology. However, for arbitrary values
of �, these moduli spaces can be singular, due to the presence of strictly semistable
objects. In this case, it is more natural for us to study their intersection cohomology.
Our main result states that, unlike the case of curves, the intersection cohomology of
these spaces is independent of the choice of �:

Geometry & Topology, Volume 27 (2023)
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Theorem 0.1 For any �; �0 2 Z, there are isomorphisms of graded vector spaces

IH�.M L
ˇ;�/' IH�.M L

ˇ;�0/; IH�. zMn;�/' IH�. zMn;�0/;

where IH�.�/ denotes the intersection cohomology. Moreover , these isomorphisms
respect perverse and Hodge filtrations carried by these vector spaces.

This phenomenon is surprising, since there is no direct geometric relationship other than
those parallel to (1) between these moduli spaces with different Euler characteristics,
and the result applies to both smooth and singular moduli spaces. For example in the
case (B), the moduli space is nonsingular if and only if gcd.n; �/D 1. Nevertheless,
the result on intersection cohomology holds uniformly. Regarding the second part of
the theorem and compatibility with filtrations, see Theorem 0.4 for further refinements.

Theorem 0.1 proves the cohomological �–independence conjecture (see Bousseau
[3, Conjecture 0.4.3]) of the moduli space of 1–dimensional semistable sheaves on P2,
which further proves [2, Conjecture 0.4.2] on the BPS numbers of the log K3 surface
.P2;E/; see Bousseau [2, Theorem 0.4.5]. Its refinement (Theorem 0.4) proves Toda’s
conjecture [48, Conjecture 1.2] on the Gopakumar–Vafa invariants in the cases of
certain local curves and local toric del Pezzo surfaces with ample curve classes; see
Theorem 0.6. In case (A), when S D P2, it was proven by Bousseau [2, Theorem
0.5.2] that the dependence of the (intersection) Betti numbers on � only relies on
gcd.deg.ˇ/; �/, using connections with Gromov–Witten theory for the log K3 surface
.P2;E/ and scattering diagrams. In case (B), when gcd.n; �/ D 1, the equality of
Poincaré polynomials was proved by a direct calculation in work of Mozgovoy and
Schiffmann [39] and Mellit [36], as well as in Groechenig, Wyss and Ziegler [19] by
p–adic integration. We discuss connections between our theorems and enumerative
geometry in Section 0.3 in more detail.

Remark 0.2 By Demazure [15], a nonsingular del Pezzo surface belongs to one of
the following types:

(a) P2.

(b) P1 �P1.

(c) The blow-up of P2 at n very general points with 1� n� 8.

Hence Theorem 0.1 recovers the case when a del Pezzo surface belongs to (a), (b),
or (c) with n� 3. We note that the Fano condition is essential (see Section 0.4), but the
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toric condition is due to a technical result (Proposition 2.6), which we expect to hold
for all del Pezzo surfaces. In other words, if the inequality (40) of Proposition 2.6 is
proven for any del Pezzo surface S , then Theorem 0.1 (as well as Theorem 0.4 below)
also holds for any del Pezzo surface.

Remark 0.3 Although we will not require it further, our proof of Theorem 0.1 actually
provides a natural isomorphism between these spaces, well-defined up to a scalar, which
is compatible with the perverse and Hodge filtrations.

0.2 A support theorem

Comparing to Nn;�, a key feature of a moduli space M of type (A) or (B) is that it
admits a morphism h WM ! B that behaves like a completely integrable system. Here
h is the Hilbert–Chow morphism

(2) h WM L
ˇ;�! B WD PH 0.S;OS .ˇ//; F 7! supp.F/;

in the case (A), and the Hitchin fibration

(3) h W zMn;�! B WD

nM
iD1

H 0.C;O.iD//; .E ; �/ 7! char.�/;

in the case (B). In either case, there is a maximal Zariski open subset U �B parametriz-
ing nonsingular curves in the linear system jˇj or nonsingular spectral curves over C .
We denote by � W C! U the smooth map given by the universal curve over U .

Theorem 0.4 Let M be a moduli space of (A) or (B), and let h W M ! B be the
morphism given by (2) or (3), respectively. Let � W C! U � B be the universal curve
of genus d . Then there is an isomorphism

(4) Rh� ICM '

2dM
iD0

IC
�Vi

R1��QC
�
Œ�i C d �

in the bounded derived category Db MHM.B/ of mixed Hodge modules on B.

Since the righthand side of (4) clearly does not depend on L or �, Theorem 0.4
implies Theorem 0.1 immediately by taking global cohomology. The sheaf-theoretic
nature of (4) further yields refinements of Theorem 0.1 involving perverse and Hodge
filtrations.
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Although Theorem 0.4 concerns mixed Hodge modules, it suffices to work with perverse
sheaves for the proof. In fact, it is not difficult to check (4) over U :

(5) Rh�Qh�1.U / '

2dM
iD0

Vi
R1��QŒ�i �;

an isomorphism which only concerns the variation of Hodge structures of abelian
varieties; see Proposition 2.2. In view of the decomposition theorem of Saito [42] for
Hodge modules, to prove (4) from (5), we only need to verify that every semisimple
component of Rh� ICM has full support B. This can be checked completely via the
decomposition theorem due to Beı̆linson, Bernstein and Deligne [1] of Rh� ICM in
terms of (shifts of) semisimple perverse sheaves. In particular, Theorem 0.4 can be
viewed as a support theorem for the moduli spaces (A) and (B).

Ngô [40] introduced a support theorem, which determines the supports of the direct
image complex Rf�Q for certain morphisms f WM !B called weak abelian fibrations.
It played a crucial role in his proof of the fundamental lemma of the Langlands program.
After that, support theorems become powerful tools in various branches of mathematics;
see for example Maulik and Shen [31], Maulik and Yun [33], Migliorini and Shende [37],
Yun [49], Yun and Zhang [50], de Cataldo, Hausel and Migliorini [5] and de Cataldo,
Rapagnetta and Saccà [7].

In our proof of Theorem 0.4, we systematically develop techniques for applying Ngô’s
support theorem to a more general setup. More precisely, we do not assume that the
total space M is nonsingular, and we work with more general objects K 2 Db

c .M /

than the trivial local system Q on M . Theorem 1.1 reduces a support inequality of Ngô
type to a relative dimension bound (see the condition (c)) for the complex Rf�K. Then
we introduce techniques to check this bound when M is a moduli space of type (A)
or (B), and K is the intersection cohomology complex ICM .

0.3 Enumerative geometry

The cohomological �–independence phenomenon is expected to be part of a much more
general phenomenon in the context of enumerative geometry of curves on Calabi–Yau
3–folds, specifically the proposal for Gopakumar-Vafa invariants developed in Maulik
and Toda [32] and Toda [48].

Let X be a Calabi–Yau 3–fold with ˇ 2H2.X;Z/ a curve class, and let � 2Pic.X /C be
an element in the complexified ample cone of X . Following Davison and Meinhardt [14],
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and conditional on the conjectural existence of a certain orientation, Toda introduced
in [48] the BPS sheaf

�BPS 2 Perv.M �
ˇ;�/;

which is a perverse sheaf on the moduli space M �
ˇ;�

of �–semistable sheaves on X .
Consider the Hilbert–Chow map

h WM �
ˇ;�! Chowˇ.X /; F 7! supp.F/:

For any  2 Chowˇ.X /, the Gopakumar–Vafa (GV) invariant (see [48, Definition 1.1])
is defined by the identity

(6) ˆ� .; �/ WD
X
i2Z

�
�
pHi.Rh��BPS/j

�
yi
2 ZŒy;y�1�:

If � is chosen so there are no strictly semistables, this definition specializes to the
definition of Gopakumar–Vafa invariants in Maulik and Toda [32]. For any choice
of � and � , these invariants are conjectured to encode the same information as the
Gromov–Witten invariants of X in the curve class ˇ and arbitrary genus. Since the
latter invariants are independent of � and � , in order for this conjecture to be well-posed,
the Gopakumar–Vafa invariants should be independent of this extra data as well. More
precisely, in [48, Conjecture 1.2] Toda made the following conjecture concerning the
structure of GV invariants, extending [32, Conjecture 3.3].

Conjecture 0.5 (Toda) The invariant (6) is independent of � and �.

The invariants (6) specialize to a certain case of the Joyce–Song generalized Donaldson–
Thomas (DT) invariants [24], and Conjecture 0.5 is expected to refine the Joyce–Song
conjecture [24, Conjecture 6.20] on the generalized DT invariants, which in turn
implies the strong rationality conjecture for Pandharipande–Thomas invariants, in
Pandharipande and Thomas [41] and Toda [47].

Although currently the existence of the BPS sheaf is conjectural for most cases, it is
known to exist for local curve and surface geometries; Meinhardt [34, Theorem 1.1]
proved that when X is a local curve TotC .OC .D/˚KC .�D// with deg.D/ > 2g�2

or a local del Pezzo surface Tot.KS /, the BPS sheaf coincides with the intersection
cohomology complex of the moduli space.

Theorem 0.6 Conjecture 0.5 holds when X is a local curve TotC .OC .D/˚KC .�D//

with D effective of deg.D/ > 2g� 2 and ˇ D nŒC �, or a local toric del Pezzo surface
Tot.KS / and ˇ is an ample curve class on S .
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In fact, Toda showed in [48, Theorem 7.3] that (6) is independent of the stability
parameter � under certain conditions which hold for local curves and local surfaces.
Hence we may assume that � is given by a rational polarization, and the �–independence
of (6) follows from the �–independence of the complex Rf� ICM for a moduli space
of type (A) or (B) with the Hilbert–Chow map (2) or (3), respectively. The latter is
given by Theorem 0.4.

Cohomological �–independence for Higgs bundles has also been studied systematically
with connections to Kac polynomials and quivers. See Schiffmann [44] for more details.
For contractible curves on Calabi–Yau threefolds, cohomological �–independence has
been studied by Davison [12], who has proposed a representation-theoretic approach
in that case via the cohomological Hall algebra. For other places where GV invariants
arise geometrically, see Shen and Yin [45] and Chuang, Diaconescu and Pan [9] for
connections with hyper-Kähler geometries (de Cataldo, Hausel and Migliorini [5]) and
the P DW conjecture (de Cataldo, Maulik and Shen [6]), respectively.

0.4 K3 surfaces and O’Grady 10

As illustrated in the following example of K3 surfaces, the “Fano” condition for the
surface S in (A) and the condition deg.D/ > 2g � 2 for Higgs bundles in (B) are
essential for the �–independence to hold for intersection cohomology groups.

Let
.S;L/ with LDOS .ˇ/; ˇ

2
D 2;

be a general polarized K3 surface of degree 2. The linear system jˇj is 2–dimensional
whose general member is a genus 2 nonsingular curve. The linear system j2ˇj is
5–dimensional. We consider the moduli space of semistable sheaves on S supported
in the curve class 2ˇ.

If � D 1, the moduli space M L
2ˇ;1

is nonsingular and deformation equivalent to the
Hilbert scheme of 5 points on a K3 surface. When �D 0, the moduli space M L

2ˇ;0
is

singular which admits a symplectic resolution. The resolved variety provides O’Grady’s
10–dimensional “sporadic” example of compact hyper-Kähler manifolds. As a key step
in their analysis of the topology of the O’Grady 10 variety, de Cataldo, Rapagnetta and
Saccà [7] study the fibrations (2):

M L
2ˇ;0

h0 $$

M L
2ˇ;1

h1zz

j2ˇj
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where hi.F/ D supp.F/. Combining Corollary 3.6.5 and Proposition 4.7.2 of [7],
we observe that

(7) Rh1� ICDRh0� IC˚S Œ3�;

where S is a semisimple object supported on the divisor Sym2.jˇj/� j2ˇj. Further-
more, by [7, Proposition 4.6.1], the object S (which is denoted by S �

†
in [7]) has

nontrivial global cohomology. Hence we see from (7) that the �–independence fails
for the K3 surface S both sheaf theoretically (Theorem 0.4) and cohomologically
(Theorem 0.1).

A similar phenomenon as above is expected to hold for the Higgs bundles with DDKC .

Failure of the �–independence for the “Calabi–Yau” case is due to the fact that the
BPS sheaf is different from the intersection cohomology complex on the moduli space.

Plan of the paper

In Section 1, we formulate and prove a generalized version of Ngô’s support theorem,
which applies to singular varieties and more general complexes. In order to apply this
support theorem to intersection cohomology complexes, we need to prove a bound for
IC-complexes (which holds automatically in the smooth case). This is accomplished in
Sections 2 and 3, where we combine techniques from algebraic stacks, nilpotent Higgs
bundles, moduli of framed objects, and unbounded complexes. Then in Section 4, we
follow a strategy of Chaudouard and Laumon to show that the support inequalities
are sufficient to deduce our theorems for moduli of 1–dimensional sheaves and Higgs
bundles.

Acknowledgements We are grateful to Bhargav Bhatt, Pierrick Bousseau and Johan
de Jong for helpful discussions, and Pinka and Peter Pinkerton for further assistance. We
would like to thank Pierrick Bousseau and Tudor Padurariu for their careful reading of
an early draft of the paper and pointing out several typos. We also thank the anonymous
referee for careful reading and numerous useful suggestions. Shen was supported by
the NSF grant DMS-2134315.

1 A support theorem for self-dual complexes

1.1 Overview

The purpose of this section is to formulate and prove a generalized version of Ngô’s
support theorem for self-dual complexes. Throughout Section 1, until Section 1.7, we
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assume that the base field k is a finite field with xk its algebraic closure. We assume
that l is a prime number coprime to the characteristic of k when we work with l–adic
sheaves. For notational convenience, we omit Tate twists when it does not cause
confusion.

Let B be a scheme over k. Let g W P ! B be a smooth B–group scheme with
geometrically connected fibers, and let f WM ! B be a proper morphism with M

quasi-projective. Assume that the group scheme P acts on M via

(8) a W P �B M !M:

We say that the triple .M;P;B/ is a weak abelian fibration of relative dimension d if

(i) every fiber of the map g is pure of dimension d , and M has pure dimension

(9) dim M D d C dim B;

(ii) the action (8) of P on M has affine stabilizers, and

(iii) the Tate module T xQl
.P / associated with the group scheme P is polarizable.

The notion of weak abelian fibration was introduced by Ngô [40] modeled on Hitchin’s
integrable systems [21; 22]. We refer to Section 1.3 for a brief review of Tate modules
and their polarizations.

For a closed point s 2 B, we denote by ı.s/ the dimension of the affine part of the
algebraic group Ps . This defines an upper-semicontinuous function

ı W B!N; s 7! ı.s/:

For a closed subvariety Z�B, we define ı.Z/ to be the minimal value of the function ı
on Z.

The following is our main theorem.

Theorem 1.1 Let .M;P;B/ be a weak abelian fibration of relative dimension d .
Let K 2 Db

c .M; xQl/ be a P–equivariant bounded complex satisfying the following
properties:

(a) Decomposition theorem The direct image complex admits a (noncanonical )
decomposition

(10) Rf�K'
M

i

pHi
.Rf�K/Œ�i �:

Geometry & Topology, Volume 27 (2023)



1548 Davesh Maulik and Junliang Shen

Moreover , after a base change to BxkDB�k
xk, the perverse sheaves pHi.Rf�K/

are semisimple of the form

pHi
.Rf�K/D

M
˛

ICZ˛;i .L˛;i/;

where Z˛;i is a closed irreducible subvariety of Bxk and each L˛;i is a pure
simple local system of weight i on an open dense subset of Z˛;i . We call these
Z˛;i the supports of the decomposition (10).

(b) Duality We have an isomorphism

D.K/' KŒ2 dim M �

with D.�/ the dualizing functor on M.

(c) Relative dimension bound For the standard truncation functor �>�.�/, we
have

�>2d .Rf�K/D 0:

Then for any support Z of the decomposition (10), we have the inequality

(11) codim Z � ıZ :

In [40], Ngô worked with the trivial local system xQl on M , where he assumed that
the conditions (a) and (b) hold. Furthermore, he assumed that every fiber of f is pure
of dimension d , where the condition (c) follows automatically by the base change.
Therefore, Theorem 1.1 is a generalization of Ngô’s support theorem [40, Theorem 7.2.1
and Proposition 7.2.2]. We note that (c) is a crucial condition for the support theorem
to hold for general K as in Theorem 1.1. We first illustrate this in the following special
case of Theorem 1.1 — the Goresky–MacPherson inequality.

1.2 The Goresky–MacPherson inequality

If the group scheme P is affine and its action on M is trivial, Theorem 1.1 then
specializes to the following theorem, which is known as the Goresky–MacPherson
inequality when M is nonsingular and KD xQl .

Theorem 1.2 Let f WM ! B be a proper map with dim M D dim BC d . Assume
K 2Db.M; xQl/ satisfies (a), (b) and (c) of Theorem 1.1. Then any support Z of (10)
satisfies the inequality

codim Z � d:
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We first provide a proof of Theorem 1.2 since it contains the main ingredients in the
proof of Theorem 1.1, and in particular demonstrates the role played by the conditions
(a), (b) and (c).

Proof Let Z be a support. We write

occ.Z/ WD fi 2 Z W pHi
.Rf�K/ contains a simple factor with support Zg;

amp.Z/ WDmax.occ.Z//�min.occ.Z//:

By (b), the set occ.Z/ is symmetric with respect to the integer dim M . This allows us
to pick m 2 occ.Z/ with m� dim M . In particular, we have pHm.Rf�K/¤ 0. Hence
by (a) there exists an open subset U � Z and a local system L on U such that the
shifted perverse sheaf

.LŒdim Z�/Œ�m�D LŒdim Z �m�

is a direct-sum component of the complex .Rf�K/jU . We obtain that

(12) Hm�dim Z .Rf�K/¤ 0 2Db
c .B;

xQl/:

By (12) and the condition (c), we conclude that

dim M � dim Z �m� dim Z � 2d;

where the first inequality follows from the choice of m. This completes the proof of
Theorem 1.2 thanks to (9).

As observed by Ngô [40, Proposition 7.3.2], for a weak abelian fibration .M;P;B/

and an object K as in Theorem 1.1, if we have

(13) amp.Z/� 2.d � ıZ /;

then the integer m in the proof of Theorem 1.2 can be chosen so that

m� dim M C .d � ıZ /:

An identical argument as above implies (11).

In conclusion, the following proposition implies Theorem 1.1.

Proposition 1.3 Under the assumption of Theorem 1.1, the inequality (13) holds for
any support Z of Rf�K.
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The rest of Section 1 is devoted to proving Proposition 1.3. We will further reduce
Proposition 1.3 to a fiberwise “freeness” statement as stated in Proposition 1.5. Essen-
tially, the arguments of [40, Section 7] can be modified to prove this more generalized
version of “freeness” under our assumptions. We point out the necessary modifications
(see Propositions 1.4 and 1.6) and sketch all major steps in the proof, which follows
[40, Section 7], for the reader’s convenience.

1.3 Actions of the group scheme

As part of the data of a weak abelian fibration .M;P;B/, the group scheme g WP !B

is smooth over B with d–dimensional geometrically connected fibers, which defines a
complex

ƒP WDRg!
xQl Œ2d �

on the base B. The stalk of each cohomology sheaf H�i.ƒP / over a closed point
s 2 B computes the i th homology of the group Ps ,

H�i.ƒP /s DH 2d�i
c .Ps; xQl/DHi.Ps; xQl/:

The Tate module associated with g W P ! B is defined to be

(14) T xQl
.P / WDH�1.ƒP /:

Note that the complex ƒ.�/ and the sheaf T xQl
.�/ are defined for any smooth group

scheme over B. In our setting, as shown in [40, Section 7.4.3], the group structure
� W P �B P ! P induces a convolution product

� WƒP ˝ƒP !ƒP :

Furthermore, it is also shown there that equation (14) extends to a natural isomorphism

ƒP D

MVi
T xQl

.P /Œi �;

compatible with the multiplication action on each side.

We consider the Chevalley decomposition of the nonsingular commutative group Ps

(15) 1!Rs! Ps!As! 1

over any geometric point s 2 B where Rs is affine and As is an abelian variety. This
induces the short exact sequence of Tate modules

(16) 0! T xQl
.Rs/! T xQl

.Ps/! T xQl
.As/! 0:
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Following [40, Section 7.1.4], we say that the Tate module (14) is polarizable if étale
locally there exists a bilinear form

T xQl
.P /�T xQl

.P /! xQl

which induces a nondegenerate pairing on T xQl
.As/ for any s 2B via the quotient map

of (16).

The following proposition generalizes the cap product action constructed in Section 7.4.2
of [40].

Proposition 1.4 Let .M;P;B/ be a weak abelian fibration of relative dimension d ,
and let K 2 Db

c .M; xQl/ be a P–equivariant object. Then the P–action (8) on M

induces an action of ƒP on Rf�K,

(17) c WƒP ˝Rf�K!Rf�K:

Furthermore , the compositions c ı .� ˝ id/ and c ı .id˝c/ define the same morphism

ƒP ˝ƒP ˝Rf�K!Rf�K:

Proof The trace map
Ra!
xQl Œ2d �! xQl

on M associated with (8) induces a morphism

(18) Ra!
xQl Œ2d �˝K! K:

We consider the Cartesian diagram

(19)
P �B M M

P B

pM

pP f

g

with pM and pP the projections. The lefthand side of (18) is equal to

Ra!.xQl Œ2d �˝ a�K/DRa!.xQl Œ2d �˝p�MK/:

Here we used the projection formula and the isomorphism � W a�K' p�
M

K given by
the P–equivariance of K. Hence we obtain the morphism

Ra!.xQl Œ2d �˝p�MK/! K:

Geometry & Topology, Volume 27 (2023)



1552 Davesh Maulik and Junliang Shen

Applying the functor Rf� to the morphism above and noticing that Rf� D Rf!, we
have

Rf! Ra!.xQl Œ2d �˝p�MK/!Rf�K;

where the lefthand side can be rewritten as

Rf! Ra!.xQl Œ2d �˝p�MK/DRf!RpM!.xQl Œ2d �˝p�MK/

DRf!.RpM!
xQl Œ2d �˝K/

DRf!

�
RpM!.p

�
P
xQl Œ2d �/˝K

�
DRf!.f

�Rg!
xQl Œ2d �˝K/

DRg!
xQl Œ2d �˝Rf!K;

where the first equality follows from

f ı aD g�B f W P �B M ! B;

the second equality is given by the projection formula, the third equality follows from
p�

P
xQl D

xQl , the fourth equality is the base change

RpM !p
�
P D f

�Rg!

with respect to the diagram (19), and the last equality is again given by the projection
formula.

To show the second claim of the proposition, we apply the same construction from
above to the commutative diagram

(20)

P �B P �B M P �B M

P �B M M

idP �a

��idM a

a

Again using the trace map, each path defines a morphism

ƒP ˝ƒP ˝Rf�K!Rf�K:

The path via the lower-left corner gives the morphism c ı .� ˝ id/ and the path via
the upper-right corner gives the morphism c ı .id˝c/. The equivariant structure on K
implies a cocycle condition on the isomorphism � after pullback to P �B P �B M ;
this cocycle condition implies that these two morphisms agree.

This completes the proof of Proposition 1.4.
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1.4 Actions on each support and freeness

We denote by I the set of the supports Z � Bxk of Rf�K. In view of the condition (a)
of Theorem 1.1, we have a canonical decomposition of the perverse sheaf pHi.Rf�K/
in terms of the supports

pHi
.Rf�K/D

M
˛2I

Ki
˛;

where Ki
˛ has support Z˛ indexed by ˛ 2 I. We collect all the direct summands of

Rf�K with support Z˛,

(21) K˛ WD
M

i

Ki
˛:

In the following four steps, we prove that Proposition 1.3 can be reduced to a freeness
property concerning stalks of (21).

Step 1 For any support Z˛ of Rf�K, we may find an open dense subset V˛ � Z˛

such that

(i) the restriction of Ki
˛ to V˛ is of the form Li

˛ Œdim V˛ � with Li
˛ a pure local system

of weight i ,

(ii) the restriction P˛ of the group scheme P to the support Z˛ admits a Chevalley
decomposition

(22) 1!R˛! P˛!A˛! 1;

whose induced short exact sequence of Tate modules

0! T xQl
.R˛/! T xQl

.P˛/! T xQl
.A˛/! 0

satisfies that T xQl
.R˛/ is a pure local system of weight �2, and

(iii) for any other support Z˛0 , we have Z˛0 \V˛ D∅ unless Z˛ �Z˛0 .

Since (i) and (iii) are standard and (ii) only concerns the group scheme P , this follows
identically from [40, Section 7.4.8].

Step 2 In [40, Section 7.4.6], we replace Rf!
xQl by Rf!K, and we replace the cap

product action
ƒP �Rf!

xQl !Rf!
xQl

of [40, Section 7.4.2] by the action (17) constructed in Proposition 1.4:

ƒP ˝Rf!K!Rf!K:
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As a consequence, for each ˛ 2 I and i we obtain an morphism

(23) T xQl
.P˛/˝Ki

˛! Ki�1
˛ :

The last statement follows from an identical argument as in Sections 7.4.6 and 7.4.7
of [40]. More precisely, perverse truncation functors yield

T xQl
.P˛/˝

pHi
.Rf!K/! pHi�1

.Rf!K/;

which can be further written asM
˛2I

T xQl
.P˛/˝Ki

˛!

M
˛2I

Ki�1
˛

in terms of the supports Z˛. This gives the canonical morphism (23).

Step 3 Now we combine Steps 1 and 2. Consider the restriction of K˛ to V˛ of Step 1,

L˛ WD
M

i

Li
˛ Œ�i �:

Using the last part of Proposition 1.4, the morphisms (23) extend to an action of the
local system of graded algebras ƒP˛ D

LVi
T xQl

.P˛/Œi � on L˛.

As explained in [40, Section 7.4.9], the first paragraph of page 121, an argument using
weights shows that (23) passes through an action of the abelian variety part T xQl

.A˛/

of the Tate module T xQl
.P˛/. As a result, we have a graded module structure on L˛ of

the graded algebra ƒA˛ associated with the abelian scheme A˛ in (22),

(24) ƒA˛ ˝L˛! L˛:

Note that we use the assumption that k is a finite field here.

Step 4 As commented in the paragraph after [40, Proposition 7.4.10], Proposition 1.3
can be deduced from the following proposition.

Proposition 1.5 We follow the same notation as in Steps 1–3 above. Let u˛ 2 V˛ be
any geometric point. Then the stalk L˛;u˛ of L˛ is a free graded module of the graded
algebra ƒA˛;u˛ under the action (24).

We complete the proof of Proposition 1.5 in the next two sections.
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1.5 Freeness

In this section we prove the following proposition, generalizing [40, Proposition 7.5.1].
Then in Section 1.6 we eventually reduce Proposition 1.5 to Proposition 1.6.

Proposition 1.6 Assume X is projective over xk and admits an action of an abelian
variety A over xk with finite stabilizers. Let E 2Db

c .X;
xQl/ be an A–equivariant object.

Then the graded cohomology group

(25)
M

i

H i.X; E/Œ�i �

is naturally a free graded module of the graded algebra ƒA D˚iH
i.A; xQl/Œ�i �.

Proof Since the A–action preserves the connected components of X , we may assume
that X is connected. We consider the quotient map

q WX ! Y WDX=A

with X=A an Artin stack with finite inertia. Thanks to the projectivity of A, the
morphism q is smooth and proper. For the A–equivariant object E , there exists an
object E 0 on Y such that

q�E 0 D E ;

and the projection formula yields

(26) Rq�E DRq� xQl ˝ E 0:

In particular, the complex Rq�E admits a natural ƒA–action through the first factor of
the righthand side of (26). This shows that (25) is a natural graded ƒA–module.

Now since q is smooth and proper, we have a decomposition1

(27) Rq� xQl '

M
i

Riq� xQl Œ�i �:

Moreover, we consider the Cartesian diagram, with all the arrows smooth maps,

A�X X

X Y

q0

q0 q

q

1As explained in the proof of [40, Proposition 7.5.1], the decomposition here is induced by the cup-product
with an relative ample class. We also refer to [46] as a general reference for the decomposition theorem
for Artin stacks with affine stabilizers.
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By the base change, we obtain the canonical A–equivariant isomorphism of local
systems

(28) q�Riq� xQl DRiq0�.q
0� xQl/:

We have that q0
� xQl is a trivial local system of rank 1 and an A–equivariant structure on

it is trivial by the connectedness of A; cf [51, Lemma A.1.2]. In particular, q�Riq� xQl

is a trivial local system equipped with the trivial A–equivariant structure by (28).
Consequently, each Riq� xQl is canonically isomorphic to the trivial local system taking
values in H i.A; xQl/. The filtration .���Rq� xQl/˝ E 0 of Rq�E induces the spectral
sequence

H j .Y;Riq� xQl ˝ E 0/DH j .Y; E 0/˝H i.A; xQl/)H iCj .X; E/;

which degenerates thanks to (26) and the decomposition (27). Hence we obtain a
filtration stable under the ƒA–action, whose graded pieces are the free graded ƒA

modules

H j .Y; E 0/˝
�M

i

H i.A; xQl/

�
:

This proves the freeness of the entire module H�.X; E/D
L

i H i.X; E/Œ�i �.

1.6 Proof of Proposition 1.5

We deduce Proposition 1.5 from Proposition 1.6 by a descending induction on the
dimension of the support Z˛. This is parallel to [40, Section 7.7].

We complete the induction in the following three steps.

Step A The induction base follows from Proposition 1.6, which we explain as follows.
We assume Z˛0

DBxk and V˛0
is an open dense subset of Z˛0

as in Step 1 of Section 1.4.
All the other Z˛ with ˛ ¤ ˛0 do not intersect with V˛0

, and

pHi
.Rf�K/jV˛0

D Li
˛0
Œdim B�:

Therefore, for any geometric point u˛0
of V˛0

with

�u˛0
WMu˛0

,!M

the corresponding fiber, we have the identification

(29)
M

i

Li
˛0;u˛0

Œ�i C dim B�D
M

i

H i.Mu˛0
; ��u˛0

K/Œ�i �
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by the base change. Parallel to Step 3 of Section 1.4, (29) admits a natural ƒA˛0;u˛0
–

action induced by the action of ƒP˛0
;u˛0

.

As explained in the last paragraph of [40, Section 7.7.1], we may assume that the
geometric point u˛0

is defined over a finite field. So there exists a quasi-lifting
A˛0;u˛0

!P˛0;u˛0
(see [40, Proposition 7.5.3]) such that the ƒA˛0

;u˛0
–action on (29)

is induced by the A˛0;u˛0
–action on Mu˛0

. By the axiom (ii) of weak abelian fibrations,
the A˛0;u˛0

–action on Mu˛0
passing through P˛0;u˛0

has finite stabilizers. Hence
Proposition 1.6 implies that (29) is free over ƒA˛0

;u˛0
. This completes the proof of

the induction base.

Step B Since Proposition 1.5 is a local statement, we may work with a strictly
Henselian base. Assume that B˛ is the strict Henselization of a geometric point u˛

defined over a finite field lying in V˛�Z˛ . By the choice of V˛ in Step 1 of Section 1.4,
the stalk Ki

˛0;u˛
is nonzero only if Z˛ is strictly contained in Z˛0 . In this case, the

induction assumption implies that, for any m 2 Z, the graded xQl–vector spaceM
i

H m.Ki
˛0;u˛

/Œ�i �

is equipped with a natural free ƒA˛;u˛–action induced by (17). This is explained
in [40, Proposition 7.7.4], which essentially relies on the polarizability of P , ie the
axiom (iii) of weak abelian fibrations. (Since this part only concerns the group scheme P ,
the proof of [40, Proposition 7.7.4] applies identically here.)

Step C We complete the induction argument.

The condition (a) of Theorem 1.1 — ie the decomposition theorem for Rf�K — implies
the degeneracy of the spectral sequence

(30) H j .pHi
.Rf�K/u˛ /)H iCj .Mu˛ ; �

�
u˛

K/;

where �u˛ WMu˛ ,!M is the geometric fiber over u˛. This induces a ƒA˛;u˛
–stable

filtration F�H on the total cohomology

H WD
M

i

H i.Mu˛ ; �
�
u˛

K/Œ�i �;

whose mth graded piece is

(31) FmH=FmC1HD
M

i

H m.pHi
.Rf�K/u˛ /Œ�i �m�:
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In addition, we have the following:

(a) By picking a quasi-lifting A˛;u˛ ! P˛;u˛ as in the last paragraph of Step A,
it follows from Proposition 1.6 and the P–equivariance of K that H is a free
graded ƒA˛;u˛

–module.

(b) Since M
i

pHi
.Rf�K/jB˛ Œ�i �D

M
˛0

M
i

Ki
˛0;u˛

Œ�i �;

the graded piece (31), as a graded ƒA˛;u˛
–module, is a direct sum of the graded

ƒA˛;u˛
–modules M

i

H m.Ki
˛0;u˛

/Œ�i �m�

over all ˛0 with Z˛ �Z˛0 .

(c) By Step B, the induction assumption implies that eachM
i

H m.Ki
˛0;u˛

/Œ�i �

is a free graded ƒA˛;u˛
–module when Z˛ �Z˛0 .

(d) The graded ƒA˛;u˛–module vanishes:M
i

H m.Ki
˛;u˛

/Œ�i �D
M

i

H mCdim V˛ .Li
˛;u˛

/Œ�i �D 0

if m¤�dim V˛ for degree reasons, since Li
˛;u˛

is a skyscraper sheaf supported
at u˛.

Recall the filtration F �H associated with the spectral sequence (30), whose graded
pieces are given by (31). We arrive at exactly the situation of the last paragraph
of [40, page 131]: the spectral sequence (30) induces a 3–layer filtration of ƒA˛;u˛–
modules

0� FnC1H� FnH�H; nD�dim V˛ D�dim Z˛;

where

� H is free by (a), and

� FnC1H and H=FnH are free by (c) and (d). In fact, (d) ensures thatM
i

H m.Ki
˛;u˛

/Œ�i �

vanishes when m¤ n, and therefore FmH=FmC1H is free by (c).
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This implies the freeness for

FnH=FnC1HD

�M
i

Li
˛;u˛

Œ�i � n�

�
˚

� M
˛0¤˛

M
i

H n.Ki
˛0;u˛

/Œ�i � n�

�
;

which completes the induction; see [40, pages 131–132].

Remark 1.7 We fixed some minor typos in [40, Section 7.7.2]: the correct formula
for the mth graded piece [40, page 131, line 9] of the Leray spectral sequence is

H m

�M
n

pHn
.Rf� xQl/s0

�
Œ�n�m�;

which is not equal to

H m

�M
n

pHn
.Rf� xQl Œ�n�/s0

�
Œ�m�

as stated in [40]. As consequences, the following statements in the last paragraph of
[40, page 131] are incorrect:

� For ˛0 ¤ ˛, we have that H m
�L

n2Z Kn
˛0;u˛

Œ�n�
�

is a free ƒAu˛
–module.

� For ˛ D ˛0, we have that H m.K˛;u˛ /D 0 unless mD�dim Z˛.

Their corrected versions are given in (b), (c) and (d) of Step C above.

1.7 Spread out for C

As a corollary of Theorem 1.1, the following theorem concerns the intersection coho-
mology complex of a weak abelian fibration .M;P;B/ over the complex numbers C.

Theorem 1.8 Suppose that .M;P;B/ is a weak abelian fibration over C of relative
dimension d , ie the triple satisfies (i)–(iii) of Section 1.1. Assume that

(32) �>2d .Rf� ICM Œ�dim M �/D 0:

Then any support Z of the decomposition for Rf� ICM satisfies the inequality

codim Z � ıZ :

Proof By a standard spreading out argument (see for example [1, Section 6]), we
may reduce Theorem 1.8 to the same statement over finite fields. More precisely,
we spread out the weak abelian fibration .M;P;B/ over Spec R where R is a DVR
of characteristic 0, such that the geometric fiber over a general prime p 2 Spec R

is a weak abelian fibration in characteristic p as in the beginning of Section 1.1.
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Moreover, the condition (32) holds over a general prime in Spec R. Therefore, if
a support Z of the decomposition theorem associated with .M;P;B/ violates the
inequality codim Z � ıZ , then by spreading out, this inequality is violated by a
support over a general prime p 2 Spec R as well, which contradicts our assumption
that Theorem 1.8 holds over finite fields..

In our setting, note that the complex

KD ICM Œ�dim M �

is P–equivariant, which satisfies (a)–(c) of Theorem 1.1 by the decomposition theorem,
Verdier duality, and the condition (32), respectively. Hence we conclude Theorem 1.8
from Theorem 1.1.

In order to apply the support theorem to the intersection cohomology complex for a
weak abelian fibration with singular ambient space M , the crucial point is to verify the
“relative dimension bound” (32). We discuss systematically in the next two sections
how to obtain such a bound for the moduli of 1–dimensional sheaves and the moduli
of semistable Higgs bundles.

2 Moduli of 1–dimensional sheaves and Higgs bundles

2.1 Overview

Throughout the rest of the paper, we work over the complex numbers C. We show in this
section that the morphisms (2) and (3) admit the structures of weak abelian fibrations.

A crucial technical result is Proposition 2.6, concerning a dimension bound for certain
moduli of pure 1–dimensional sheaves. As a consequence, we verify in Theorem 2.3 the
irreducibility of the moduli spaces M L

ˇ;�
of (A), which may be of independent interest.

The dimension bound given by Proposition 2.6 will be used again in Section 3, which
plays an important role in the proof of our main theorems.

2.2 Curves in del Pezzo surfaces

Let S be a del Pezzo surface, ie a nonsingular projective surface with �KS ample.

Lemma 2.1 Let E be an effective divisor on S . Then

dim H 1.S;OS .E//D dim H 2.S;OS .E//D 0:

In particular , we have dim H 0.S;OS .E//D
1
2
E � .E �KS /C 1.
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Proof By Serre duality, we obtain

H 2.S;OS .E//DH 0.S;OS .KS �E//_ D 0:

Now we prove the vanishing of

(33) H 1.S;OS .E//
_
DH 1.S;OS .KS �E//:

We consider the short exact sequence

0!OS .KS �E/!OS .KS /!OE.KS /! 0;

which induces the long exact sequence

(34) � � � !H 0.S;OE.KS //!H 1.S;OS .KS �E//!H 1.S;OS .KS //! � � � :

The vanishing H 0.S;OE.KS //D 0 follows from degE.KS / < 0, and Serre duality
yields the vanishing H 1.S;OS .KS //D 0. Hence (34) implies the vanishing of (33).

The last statement follows from the Riemann–Roch formula.

Let ˇ be an ample and effective class on S . Then Lemma 2.1 implies that the base
B D PH 0.S;OS .ˇ// of (2) is of dimension

dim B D 1
2
ˇ � .ˇ�KS /:

We define � W CB ! B to be the universal curve for the linear system jˇj. Since ˇ
is ample, it is basepoint free on the del Pezzo surface S . Hence the Bertini theorem
implies that a general member of jˇj is a nonsingular and integral curve of genus

gˇ D
1
2
ˇ � .ˇCKS /C 1:

In particular, there exists a Zariski open dense subset U � S such that the restriction
of CB to U is smooth,

� W C! U � B:

We consider the relative degree-0 Picard variety

P WD Pic0.CB=B/

parametrizing line bundles on the fibers of � W CB ! B whose restrictions to each
irreducible component are of degree 0. The projection morphism

�P W P ! B

has fibers of pure dimension gˇ. The restriction of P to U gives a smooth abelian
scheme

�P W PU

�
WD Pic0.CU =U /

�
! U:
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We also consider the relative degree e Picard variety over U

�Pe W P e
U

�
WD Pice.CU =U /

�
! U

for any integer e. We recall the following well-known fact [5, Lemma 1.3.5] concerning
the variation of Hodge structures for Picard varieties of smooth curves.

Proposition 2.2 For any e 2 Z, we have an isomorphism of variations of Hodge
structures on U :

Ri�Pe�QPe
U
'
Vi

R1��QC :

2.3 Moduli spaces of 1–dimensional sheaves

Now assume that S is a toric del Pezzo surface with a polarization L. The moduli space
M L
ˇ;�

parametrizes S–equivalence classes of pure 1–dimensional (Gieseker-)semistable
sheaves F on S with

supp.F/D ˇ; �.F/D �:

Here the semistability is with respect to the slope function

�.E/D
�.E/

c1.E/ �L
:

We recall the Hilbert–Chow morphism

h WM L
ˇ;�! B; F 7! supp.F/;

defined by taking the Fitting support [29]. The open subvariety h�1.U / � M L
ˇ;�

parametrizes line bundles supported on the nonsingular curves in jˇj. Hence every fiber
of h over a closed point b 2 U is an abelian variety of dimension gˇ, and we have

(35) h�1.U /D Pice.CU =U /; e D �� 1Cgˇ:

The moduli space M L
ˇ;�

can be viewed as a compactification of the relative Picard
variety (35).

The following theorem is of independent interest, and we postpone its proof to
Section 2.6.

Theorem 2.3 The moduli space M L
ˇ;�

is irreducible of dimension

dim M L
ˇ;� D ˇ

2
C 1D dim BCgˇ:
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The group scheme �P W P ! B acts naturally and fiberwise on the moduli space M L
ˇ;�

via tensor product,

L �F D L˝F for L 2 Pb D �
�1
P .b/; F 2 h�1.b/;

with b 2 B a closed point.

Proposition 2.4 The triple .M L
ˇ;�
;P;B/ with h and �P above form a weak abelian

fibration of relative dimension gˇ.

Proof We need to check (i)–(iii) of Section 1.1. Recall from Section 2.2 that the group
scheme �P W P ! B is smooth and its fibers are of pure dimension gˇ. Hence the
condition (i) follows from Theorem 2.3. The affineness of the stabilizers (condition (ii))
is proven in [7, Lemma 3.5.4], and the polarizability of the Tate module (condition (iii))
associated with the group scheme P is given by [4, Theorem 3.3.1] as explained in
[7, Lemma 3.5.5].

2.4 Moduli stacks

For the polarized surface .S;L/, the moduli of semistable sheaves can be constructed
as a GIT-quotient of the corresponding Quot-scheme (denoted by Quot),

M L
ˇ;� D Quotss ==GLm;

where the semistable part of the Quot scheme Quotss and m rely on the Hilbert poly-
nomial dim H 0.S;F˝L˝n/ of a semistable sheaf F with supp.F/Dˇ and �.F/D�.
We also consider the moduli stack of semistable sheaves

ML
ˇ;� D ŒQuotss=GLm�

such that the natural projection

q WML
ˇ;�!M L

ˇ;�

induces a good moduli space of the Artin stack ML
ˇ;�

.

Lemma 2.5 The stack ML
ˇ;�

is nonsingular of dimension

dimML
ˇ;� D ˇ

2:

Proof The obstruction space for a semistable sheaf F 2ML
ˇ;�

is

(36) Ext2S .F ;F/D HomS .F ;F ˝!S /
_; !S DOS .KS /:

We prove in the following that (36) vanishes.
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By the semicontinuity of HomS .F ;F ˝!S /, it suffices to show the vanishing

HomS .F ;F ˝!S /D 0

when F is a polystable sheaf on S . Hence we only need to prove the vanishing

(37) HomS .F1;F2˝!S /D 0

for two stable sheaves F1 and F2 on S with the same slope

�.F1/D �.F2/:

Since �KS is effective for the del Pezzo surface S , we have a short exact sequence

0! F2˝!S ! F2! F2jE! 0;

where E is a curve in the linear system j�KS j. The induced long exact sequence gives

(38) 0! HomS .F1;F2˝!S /! HomS .F1;F2/! HomS .F1;F2jE/:

When F1 ¤ F2, by the stability we have HomS .F1;F2/ D 0. When F1 D F2, the
second map of (38) is injective:

HomS .F1;F1/DC � id ,! HomS .F1;F1jE/:

In particular, (37) vanishes in either case. This implies the vanishing of the obstruction
(36) and proves that ML

ˇ;�
is nonsingular. Consequently, we have

dimML
ˇ;� D dim Ext1S .F ;F/� dim HomS .F ;F/D��.F ;F/D ˇ2:

Combining with the Hilbert–Chow morphism h WM L
ˇ;�
! B, we obtain a morphism

(39) hM WML
ˇ;�! B:

Proposition 2.6 Let S be a toric del Pezzo surface. For any closed point b 2 B, we
have the following dimension bound for the fiber of (39):

(40) dim h�1
M .b/� 1

2
ˇ � .ˇCKS /:

When b represents an integral nonsingular curve, then h�1
M .b/ is exactly a connected

component of its Picard stack whose dimension gˇ � 1 matches the righthand side
of (40).

We prove Proposition 2.6 in Section 2.5. Then in Section 2.6 we use Proposition 2.6 to
complete the proof of Theorem 2.3.
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2.5 Proof of Proposition 2.6

We reduce Proposition 2.6 to a dimension bound for the nilpotent cone of Higgs bundles.

Let C be a nonsingular curve of genus g, and let D be a degree d effective divisor
on C with

(41) d > 2g� 2:

We denote by Mnil
n;� the moduli stack of nilpotent Higgs bundles

.E ; �/ with � W E! E ˝OC .D/; rank.E/D n; �.E/D �;

where we do not impose any (semi)stability conditions.

The stack Mnil
n;� is essentially the central fiber of the (stacky) Hitchin fibration. Al-

ternatively, by the spectral correspondence, Mnil
n;� parametrizes pure 1–dimensional

sheaves F with
supp.F/D nC; �.F/D �;

on the total space Tot.OC .D// of the line bundle OC .D/. Here the spectral correspon-
dence is induced by the pushforward along the standard projection Tot.OC .D//! C .

Proposition 2.7 (cf [8]) We have

(42) dimMnil
n;� � n.g� 1/C 1

2
n.n� 1/d:

Proof The dimension formula for the stack of the nilpotent cone and the comparison
to the righthand side of (42) are given in lines 2 and 6 of [8, page 725, Section 10].
Although it is assumed in the beginning of [8] that the curve C has genus g � 2, the
dimension calculation of [8, Section 10] does not require this constraint as long as (41)
holds.2

Now we prove Proposition 2.6.

We consider the maximal open torus T � S whose action on S induces T–actions
on both the moduli stack ML

ˇ;�
and the base B. By a semicontinuity argument

(cf [18, Proof of Corollary 1]), it suffices to show (40) for all T –fixed points b 2 B.
Since we are only concerned with dimension counts, we prove the following stronger
statement for toric divisors without imposing (semi)stability conditions.

2An alternative proof of this dimension bound can be obtained using the method of [43, Proposition 3.1].
We note that the last equation of [8, Section 10] shows that (42) still holds if d D 2g� 2.
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Claim For an effective divisor

E D
X

i

niEi ; ni > 0;

with each Ei a nonsingular irreducible toric divisor , we have

(43) dimME;� �
1
2
E � .ECKS /:

Here ME;� stands for the moduli stack of pure 1–dimensional sheaves supported on
E � S .

We prove (43) by induction on the number of the irreducible components fEig.

For the induction base, we consider E D nE0 with E0 irreducible. Then E0 ' P1 and
the normal bundle OE0.d/ of E0 in S satisfies

(44) d DE0
2
D�2CE0 � .�KS / > �2:

Since the formal neighborhood of an irreducible toric divisor only depends on the
degree of the normal bundle, the thickened curve E D nE0 � S is isomorphic to the
nth thickening

nE0 � Tot.OE0.d//

of the 0–section in the total space of OE0.d/. Hence by Proposition 2.7, where the
condition (41) is guaranteed by (44), we have

dimMnE0;� � �nC 1
2
n.n� 1/d D nE0 � .nE0CKS /:

Here we used E02 D d and E0 �KS D �d � 2 in the last identity. This proves the
induction base.

To complete the induction, we assume that E DE0CE00. Here

E0 D
X

i

niE
0
i and E00 D

X
i

miE
00
i ;

with E0i ;E
00
j irreducible toric divisors satisfying E0i ¤E00j for any i; j .

Lemma 2.8 Let F be a pure 1–dimensional sheaf supported on E. Then there exists a
canonical short exact sequence

0! F 0! F ! F 00! 0;

where F 0 and F 00 are pure 1–dimensional sheaves supported on E0 and E00, respectively.
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Proof We take

F 00 WD .F jE00/=maximal 0–dimensional subsheaf of F jE00 2 Coh.E00/;

F 0 WD Ker.F � F jE00 � F 00/ 2 Coh.E0/:

Since F 0 is a subsheaf of F , it is pure, supported on E0.

Two sheaves F 0 and F 00 (as in Lemma 2.8) with different supports satisfy

HomS .F 00;F 0/D HomE0.i
�F 00;F 0/D 0;

where i WE0 ,! S is the embedding and i�F 00 is 0–dimensional on E0. Serre duality
further implies

Ext2S .F
00;F 0/D HomS .F 0;F 00˝!S /D 0:

Hence by Lemma 2.8, after decomposing the stack ME;� into strata, we obtain a
morphism to G

�0C�00D�

ME0;�0 �ME00;�00 ;

whose closed fiber over .F 0;F 00/ has dimension upper bound

dim Ext1.F 00;F 0/D �.F 00;F 0/DE0 �E00:

Combining with the induction assumption on the dimensions of ME0;�0 and ME00;�00 ,
we conclude that

dimME;� �
1
2
E0 � .E0CKS /C

1
2
E00 � .E00CKS /CE0 �E00 D 1

2
E � .ECKS /:

This completes the induction.

2.6 Proof of Theorem 2.3

We first prove the irreducibility of M L
ˇ;�

. Equivalently, we prove the irreducibility of
the stack ML

ˇ;�
.

Recall the open subset U � B formed by nonsingular curves in the linear system jˇj.
The open substack h�1

M .U / parametrizes line bundles on these curves with Euler
characteristic �. In particular, h�1

M .U / is Zariski open and dense in an irreducible
component of the relative Picard stack associated with the universal curve � W C! U .
Assume ML

ˇ;�
has another irreducible component M0 which does not contain h�1

M .U /.
By Lemma 2.5 it has dimension

dimM0 D ˇ2;

Geometry & Topology, Volume 27 (2023)



1568 Davesh Maulik and Junliang Shen

and it maps to the complement B nU under the morphism (39). This implies that a
general fiber of

hMjM0 WM
0
! B nU

has dimension at least

dimM0� .dim B � 1/� ˇ2
�

1
2
ˇ � .ˇ�KS /C 1> 1

2
ˇ � .ˇCKS /;

which contradicts Proposition 2.6. This completes the proof of the irreducibility
of M L

ˇ;�
.

2.7 Higgs bundles

Most of the statements for M L
ˇ;�

discussed above hold identically for the moduli spaces
zMn;� of Higgs bundles in the case of (B). This is due to the fact that zMn;� can be

viewed as the moduli space of 1–dimensional semistable sheaves F on Tot.OC .D//

with
Œsupp.F/�D nŒC �; �.F/D �;

via the spectral correspondence. We summarize these results in the following, for the
reader’s convenience.

Recall the universal spectral curve

� W CB! B

with �P W P D Pic0.CB=B/! B the relative degree 0 Picard variety. Similar to the
case of M L

ˇ;n
, the group scheme P acts on zMn;� via tensor product

L �F D L˝F ; with L 2 ��1
P .b/ and F 2 h�1.b/ for all b 2 B:

Here we view a Higgs bundle as a pure 1–dimensional coherent sheaf supported on the
spectral curve

��1.b/� Tot.OC .D//:

The moduli stack of semistable Higgs bundles admits a morphism

q W zMn;�!
zMn;�;

which induces
hM D h ı q W zMn;�! B:

Proposition 2.9 Assume deg.D/D d > 2g� 2.The following statements hold :

(a) The fiber of hM over a closed point b 2 B satisfies

dim h�1
M .b/� n.g� 1/C 1

2
n.n� 1/d:
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(b) The stack zMn;� is irreducible and nonsingular of dimension

dim zMn;� D n2d:

(c) The moduli space zMn;� is irreducible of dimension

dim zMn;� D n2d C 1:

(d) The triple . zMn;�;P;B/ form a weak abelian fibration of relative dimension

gn D n.g� 1/C 1
2
n.n� 1/d C 1:

Proof These statements are parallel to Proposition 2.7, Lemma 2.5, Theorem 2.3,
and Proposition 2.4. Statement (a) follows from a semicontinuity argument and
Proposition 2.7. Statement (b) follows from Serre duality for semistable Higgs bundles
[39, Corollary 2.6]. Statement (c) follows from (a) and (b), as explained in Section 2.6.
Statement (d) is deduced by an identical proof as for Proposition 2.4.

2.8 Assumptions on the curve class ˇ

In Section 2, the ampleness assumption of the curve class ˇ is used for the following
properties:

(I) The linear system jˇj is basepoint free.

(II) A general curve in jˇj is integral and nonsingular.

We may replace the ampleness assumption for ˇ by the conditions (I) and (II) above.

Proposition 2.10 Theorem 2.3 and Proposition 2.4 hold for any curve class ˇ which
contains an integral curve in the linear system jˇj.

Proof Assume C0 2 jˇj is integral. By the adjunction formula, either C0 ' P1 is an
exceptional divisor or C 2

0
> 0. In the first case, the moduli space is a reduced point. In

the second case, we obtain that the divisor C is integral and nef. Therefore (I) and (II)
follow from [16, Corollary 4.7] and the Bertini theorem.

3 Intersection cohomology complexes

We prove in this section a support inequality for the moduli spaces M L
ˇ;�

and zMn;�.

Theorem 3.1 Let h WM ! B be the morphism (2) or (3). We define the ı–function
on B from the associated group scheme P as in Section 1. Then any support Z of
Rh� ICM satisfies

codim Z � ıZ :
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By Theorem 1.8 and Propositions 2.4 and 2.9(d), it suffices to prove the following
proposition concerning the intersection cohomology complex.

Proposition 3.2 We have

(45) �>2R.Rh� ICM Œ�dim M �/D 0; R WD dim M � dim B:

3.1 Sketch of the proof of Proposition 3.2

Although Proposition 3.2 only concerns bounded complexes on schemes, our proof
relies on unbounded complexes on Artin stacks. From now on, we work with the derived
category Dc.�;Ql/ of constructible sheaves with Ql–coefficients for Artin stacks as
in [26; 27]. We denote by Db

c .�;Ql/, D�.�;Ql/ and DC.�;Ql/ the subcategories
of complexes which are bounded, bounded from above, and bounded from below,
respectively. In this section, we assume that all Artin stacks are of finite type. We use
the six operations for Artin stacks following [26; 27; 28]. Furthermore, by [28], we
also have the perverse t–structure in the unbounded setting.

Recall the morphism from the moduli stack to the moduli space of 1–dimensional
semistable sheaves/Higgs bundles

q WM!M:

The composition of q and h WM ! B induces a morphism

hM D h ı q WM! B:

We consider the (unbounded) complexes

RhM!Ql 2D�.B;Ql/; Rq�Ql 2DC.M;Ql/:

We first prove Proposition 3.2 assuming the following two propositions which concern
the stack M.

Proposition 3.3 We have

(46) �>2R�2.RhM!Ql/D 0:

Proposition 3.4 There exists a splitting

(47) Rq�Ql ' ICM Œ�dim M �˚ E 2DC.M;Ql/:

Proof of Proposition 3.2 Applying the dualizing functor to the isomorphism (47), we
obtain

D.Rq�Ql/' ICM Œdim M �˚ E 0; E 0 2D�.M;Ql/:
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Since M is nonsingular, the lefthand side is isomorphic to

Rq!D.Ql/DRq!Ql Œ2 dimM�DRq!Ql Œ2 dim M � 2�:

Combining the two equations above, we conclude that

Rq!Ql ' ICM Œ�dim M C 2�˚ � � � 2D�.M;Ql/:

Hence, thanks to properness of h WM !B, we have Rh!DRh�, and the lefthand side
of (45) (shifted by degree 2) is a direct sum component of the lefthand side of (46). In
particular, Proposition 3.2 follows from Proposition 3.3.

In the rest of Section 3, we prove Propositions 3.3 and 3.4.

3.2 Proof of Proposition 3.3

Proposition 3.3 is a consequence of the following well-known vanishing and the
dimension bounds (Proposition 2.6 for (A) and Proposition 2.9(a) for (B)) obtained in
Section 2.

Lemma 3.5 Let Y be an irreducible Artin stack of dimension r . Then for n> 2r we
have the following vanishing for compactly supported cohomology:

(48) H n
c .Y;Ql/D 0:

Proof In the special case when Y is nonsingular, (48) follows from the Verdier duality

H n
c .Y;Ql/

_
DH 2r�n.Y;Ql/D 0; 2r � n< 0:

In general, since we are only concerned with the constructible sheaf Ql , we may assume
that Y is reduced. Then by stratifying Y into locally closed nonsingular substacks and
the excision sequences ([28, Example 2.1(iv)]), we reduce (48) for general Y to the
nonsingular ones.

Let b 2 B be a closed point. We denote by Mb the substack

Mb WD h�1
M .b/�M:

Propositions 2.6 and 2.9(a) yield

dimMb �R� 1; where RD dim M � dim B:
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Combining with Lemma 3.5, we conclude that the complex

.RhM!Ql/b DH�c .Mb;Ql/

is concentrated in degrees � 2.R� 1/ for any closed point b 2 B. In particular,

.�>2R�2.RhM!Ql//b D �>2R�2..RhM!Ql/b/D 0 for all b 2 B:

This completes the proof of Proposition 3.3.

3.3 Moduli of framed objects

The main difficulty for proving Proposition 3.4 is the nonproperness of the morphism
q WM!M . In order to apply the decomposition theorem [1] to q, we use the moduli of
framed objects [34] to “approximate” the stack M. See [10; 11; 13; 14; 35; 38; 30] for
applications of such techniques in the study of quivers representations and Donaldson–
Thomas theory.

Let M and M be the moduli space and the moduli stack of (A) or (B) in Section 0.1.
Since in either case M can be realized as a moduli space of semistable sheaves on an
algebraic surface, we obtain (see Section 2.4) that M can be realized as a GIT-quotient
of a Quot-scheme

M D Quotss ==GLm;

where the semistable locus Quotss
� Quot is with respect to a GLm–linearized polar-

ization Lm on Quot. The morphism q is induced by the morphism from the stack to
the corresponding good GIT-quotient:

(49) MD ŒQuotss=GLm�
q
�! Quotss ==GLm DM:

Proposition 3.6 For any N >0, there exist a nonsingular scheme Mf and a nonsingular
Artin stack Xf with a commutative diagram

(50)

Mf Xf

M
pM

j

pX

satisfying the following properties:

(a) pX is an affine space bundle ,

(b) j WMf ,! Xf is an open immersion ,
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(c) the composition Mf
pM
��!M q

�!M is projective , and

(d) for the complement Zf WD Xf nMf , we have

codimXf .Zf / >N:

Proof We complete the proof of Proposition 3.2 in the following three steps.

Step 1 (quiver moduli) For a fixed integer f >m, let Qf be a quiver of two vertices
P1 and P2 such that the dimension vector is .1;m/ and there are f arrows from P1

to P2. Following King [25], the representation space

A WD Hom.C;Cm/f 'Cmf

of the quiver Qf admits a natural action of the group

Gm WD GL1 �GLm:

Moreover, for any � > 0, the character

�� WGm!C�; .g1;gm/ 7! det.g1/
�m�
� det.gm/

� ; where gi 2 GLi ;

yields a stability condition on A. Here the stability is given by GIT associated with the
trivial line bundle O�A, equipped with the Gm–linearization induced by �� . We denote
by Ass

�
�A the semistable locus with respect to � .

Claim We have
codimA.A nAss

� /!1 when f !1:

Proof If we view A as the parameter space of m� f matrices, the GIT-unstable loci
are contained in the determinantal variety Dm�1 �A formed by matrices of rank <m.
Hence we have

dim.A nAss
� /� dim Dm�1 D .m� 1/.f C 1/;

which implies that

codimA.A nAss
� /�mf � .m� 1/.f C 1/D f C 1�m!1

when f !1.

Step 2 (moduli of framed objects) The moduli space of framed objects [34] combines
the quotients (49) and the quiver Qf , which provides the scheme Mf and the stack Xf
for Proposition 3.6. We recall the construction as follows.
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Consider the natural Gm–action on the product

Quot�A;

where the action on the first factor passes through the obvious GLm–action and the
action on the second factor is given in Step 1. Since the diagonal torus

GL1 ,! GL1 �GLm DGm

acts trivially on both Quot and A, the Gm–action on Quot�A further passes through a
PGm.WDGm=GL1/–action.

We choose a> 0 such that a>m� , and we consider the Gd –linearization

(51) La;�
WD L˝a

m �O�A

on Quot�A. Let
.Quot�A/ss

� Quot�A

be the GIT-semistable locus associated with (51). By a calculation using the Hilbert–
Mumford criterion, it was proven in [34] (under a more general setup) that we have the
open immersions

(52) Quotss
�Ass

� � .Quot�A/ss
� Quotss

�A:

Here the first inclusion is given in [34, Remark 3.40] and the second inclusion is given
in [34, Proposition 3.39].

We define

(53) Mf WD .Quot�A/ss==Gm D .Quot�A/ss=PGm; Xf WD .Quotss
�A/=PGm:

Note that by [34, Proposition 3.39], the scheme Mf can be interpreted as the moduli
of framed objects, which is nonsingular by [34, Corollary 3.41].

Step 3 (properties) We show that Mf and Xf defined in (53) fit into the commutative
diagram (50) and satisfy the properties (a)–(c). Moreover, they also satisfy (d) when
f !1.

The open immersion
j WMf ,! Xf

is induced by the second inclusion of (52). The quotient stack Xf admits a natural map
to M via the natural projection

pX W Xf D .Quotss
�A/=PGm! Quotss =PGm DM;
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which is an A–bundle. By setting pM D pX ı j , we obtain the commutative diagram
(50) and (a) and (b) immediately. The property (c) follows from [34, Theorem 3.42].

We note that the morphism from Mf to M has a natural geometric interpretation. In
fact, we have

M D .Quotss
�A/==Gm

by [34, last paragraph before Section 3.7]. Therefore the contraction

q ıpM WMf D .Quot�A/ss==Gm! .Quotss
�A/==Gm DM

can be viewed as a variation of GIT from the Gm–linearization (49) to the Gm–
linearization

La;0
WD L˝a

m �OA

with the trivial Gm–action on the second factor.

It remains to prove (d). By (52) and the claim in Step 1, we have

codimXf .Zf /� codimA.A nAss
� /!1 when f !1:

3.4 Proof of Proposition 3.4

To construct the desired splitting, we follow the approach of [34]. Namely we use
the construction in the previous section to approximate M with Mf and apply the
decomposition theorem to the proper morphism q ıpM WMf !M.

Fix N > 0 and choose f as in Proposition 3.6. Let i W Zf ,!Mf denote the closed
immersion which has codimension larger than N. Consider the excision triangle on Xf ,

(54) i!i
!Ql !Ql !Rj�j

�Ql ! i!i
!Ql Œ1�:

Since Xf is nonsingular, we have

i !Ql D !Zf Œ�2 dimXf �:

Also, from Section V.2 of [23], we have that the complex !Zf is concentrated in degrees
Œ�2 dimZf ;1�. By combining these with the codimension bound for Zf , we have
that the complex i !Ql is supported in degrees Œ2N;1�.
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If we push forward the excision triangle (54) to M along

q ıpX W Xf !M;

we obtain the triangle

(55) R.q ıpX /�i!i
!Ql !R.q ıpX /�Ql !R.q ıpX /�Rj�j

�Ql

!R.q ıpX /�i!i
!Ql Œ1�:

Since the derived pushforward functor preserves the subcategory D�0 and its shifts,
the leftmost term of (55) is supported in degrees Œ2N;1� as well. Furthermore, by
[28, Lemma 3.3], after changing N by a bounded amount, we have the same support
result for perverse cohomology sheaves. In other words, we have the vanishing

p��2N R.q ıpX /�i!i
!Ql D 0

and, by (55), the quasi-isomorphism

(56) p�<2N R.q ıpX /�Ql
��!

p�<2N R.q ıpX /�Rj�j
�Ql :

Finally, since pM W Xf !M is an affine space bundle, so that RpX �Ql DQl , we can
rewrite (56) as

(57) p�<2N Rq�Ql
��!

p�<2N R.q ıpM/�Ql :

By the decomposition theorem for the proper, surjective morphism q ıpM WMf !M ,
the righthand side of (57) can be noncanonically written as a direct sum of its (shifted)
perverse cohomology sheaves:

(58) p�<2N R.q ıpM/�Ql '

2N�1M
kDdim M

Pk Œ�k�:

The lowest perverse cohomology sheaf Pdim M occurs in degree dim M, because of
surjectivity of the morphism. After restricting to an open subset V �M over which
q ı pM is smooth, it is given by the shifted local system whose fiber over x 2 V

is H 0.Mf;x;Ql/, with Mf;x the closed fiber of Mf over x. In particular, Pdim M

contains ICM as a direct summand.

If we combine the splitting (58) with (57), we see that the composition

ICM Œ�dim M �! Pdim M Œ�dim M �! p�<2N Rq�Ql

admits a splitting
uN W

p�<2N Rq�Ql ! ICM Œ�dim M �:
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As Ext-groups between perverse sheaves vanish outside of bounded degree, for N

sufficiently large, we have the stabilization

Hom.p�<2N Rq�Ql ; ICM Œ�dim M �/D Hom.p�<2NC1Rq�Ql ; ICM Œ�dim M �/:

In other words, for the canonical morphism

vN W
p�<2N Rq�Ql !

p�<2.NC1/Rq�Ql ;

the splittings uN are compatible in the sense that uN D uNC1 ı vN .

By [26, Lemma 4.3.2], we have that the unbounded complex Rq�Ql is the homotopy
colimit of its truncations, ie

Rq�Ql D hocolim
N!1

p�<2N Rq�Ql :

So as a result, the splittings uN yield a splitting

u WRq�Ql ! ICM Œ�dim M �;

and consequently, a direct summand decomposition (47) as desired.

4 Proof of the main theorem

4.1 Overview

We complete the proof of Theorem 0.4. For the approach, we combine the support
inequality of Theorem 3.1 and techniques of [8; 4].

4.2 ı–inequalities for integral curves

As in Section 2.2, we consider the relative degree 0 Picard variety

Pic0.CB=B/! B

associated with a family of curves �B W CB!B. We obtain the ı–invariants computing
the dimensions of the affine parts of the group schemes

ı.b/ WD dim.Pic0.Cb/
aff/; b 2 B;

where Cb is the fiber of �B over b. For a closed subvariety Z � B, we define ıZ to
be ı.b/ for a general point in Z.
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In Section 4.2, we first focus on the case of a flat family of integral curves

�B W CB! B

satisfying that the compactified Jacobian

Pic0.CB=B/� J CB

(parametrizing degree 0 torsion-free sheaves on the curves Cb) is nonsingular.

The following lemma is the “Severi inequality”, which is parallel to [4, (41)] for Higgs
bundles. The proof of [4, (41)] works identically here since the only structure used for
the spectral curves CB! B in [4] is the smoothness of J CB . We give a proof for the
reader’s convenience.

Lemma 4.1 For any subvariety Z � B, we have

codim Z � ıZ :

Proof Let Cuniv ! Buniv be a semiuniversal family of curves such that the family
CB! B is induced by a map

� W B! Buniv:

Let Bıuniv � Buniv be the locus given by fb 2 B W ı.b/D ıg. Since J CB is nonsingular,
by the paragraph following [17, Theorem 2], the image �.B/ � Buniv meets Bıuniv
transversally. Hence for any irreducible subvariety Z � B whose general points lie
in Bıuniv, we have

dim Z � dim.�.B/\Bıuniv/D dim�.B/C dim Bıuniv� dim Buniv � dim B � ı;

where the equality follows from the transversality. We conclude that

codim Z D dim B � dim Z � ı D ıZ :

Our major application of Lemma 4.1 is for curves in a linear system on a del Pezzo
surface.

Corollary 4.2 Let ˇ be a curve class on a del Pezzo surface , let

(59) �B W CB! B D PH 0.S;OS .ˇ//

be the universal curve in the linear system , and let �ı
B
W Cı ! Bı be the restriction

of (59) to the subset Bı � B of integral curves. Then for any irreducible subvariety
Z � B whose generic point lies in Bı, we have

codim Z � ıZ :
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Proof Since the compactified Jacobian J CCı associated with �ı
B
W Cı ! Bı is an

open subvariety of the moduli of stable pure 1–dimensional sheaves supported in the
class ˇ, we deduce the smoothness of J CCı from the smoothness of the moduli stack
(cf Lemma 2.5). Hence Corollary 4.2 follows by applying Lemma 4.1 to the family
�ı

B
W Cı! Bı.

When the integral locus Bı � B is nonempty, by Proposition 2.10 the moduli space
M L
ˇ;�

is irreducible for any polarization L and � 2 Z satisfying that

dim M L
ˇ;� D dimJ CBı D ˇ

2
C 1:

We define the following invariant associated with the curve class ˇ:

(60) ˆˇ WD dim Pic0.Cı=Bı/� 2 dim B D dim M L
ˇ;� � 2 dim B D 1Cˇ �KS ;

where the last equality follows from Lemma 2.1.

4.3 ı–Inequalities for linear systems

In Section 4.3, we assume that ˇ is an ample curve class on a del Pezzo surface S . We
introduce a stratification of

B D PH 0.S;OS .ˇ//

analogous to the stratification introduced in [8, Section 9] and [4, Section 5.2] for Higgs
bundles.

We consider the s–tuples

(61) ˇ D ..m1; ˇ1/; .m2; ˇ2/; : : : ; .ms; ˇs//;

where s � 1, mi � 1, and ˇi are (not necessarily distinct) curve classes on S such that

(i)
Ps

iD1 miˇi D ˇ, and

(ii) there exists an integral curve in jˇi j for each 1� i � s.

The objects (61) are called types of the curves in the linear system B D jˇj. Two such
objects

ˇ D ..m1; ˇ1/; .m2; ˇ2/; : : : ; .ms; ˇs//;

ˇ0 D ..m01; ˇ
0
1/; .m

0
2; ˇ
0
2/; : : : ; .m

0
s; ˇ
0
s0//;

are said to give the same type if s D s0 and there exists a bijection

� W f1; 2; : : : ; sg ! f1; 2; : : : ; sg
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such that ˇi D ˇ
0
�.i/

and mi Dm0
�.i/

. We have a stratification according to the types
of the curves in jˇj,

B D
G
ˇ

Bˇ;

where each Bˇ is a locally closed subset of B formed by curves in jˇj of type ˇ:

Bˇ D

�
E D

X
i

miEi 2 jˇj

ˇ̌̌̌
Ei 2 jˇi j; Ei are distinct integral curves

�
:

Proposition 4.3 Let Z � B be an irreducible subvariety whose general points have
type

ˇ D ..m1; ˇ1/; .m2; ˇ2/; : : : ; .ms; ˇs//:

Then we have
ˆˇC codim Z �

sX
iD1

ˆˇi
C ıZ :

Proof We apply a similar argument as in [4, Corollary 5.4.4] for Higgs bundles.

For a curve class ˇi , we denote by jˇi j
ı the open subvariety of jˇi j DPH 0.S;OS .ˇ//

consisting of integral curves. We define

(62) Cıˇi
! jˇi j

ı; Picˇi
! jˇi j

ı;

to be the universal curve and the corresponding relative degree 0 Picard variety over jˇi j
ı.

For a type ˇ as in (61), we have a finite morphism

�ˇ W B
0
ˇi
WD

sY
iD1

jˇi j ! B; .Ei/
s
iD1 7!

sX
iD1

miEi ;

whose image is
Im.�ˇ/D Bˇi

� B:

The morphism �ˇ sends the open subvariety
Qs

iD1 jˇi j
ı � B0

ˇi
to Bˇi

� B.

Now we assume that � 2 B is the generic point of Z. By the first two paragraphs of
[4, Proof of Corollary 5.4.4], there exists a point

�0 D .�1; �2; : : : ; �s/ 2 �
�1
ˇ .�/� B0ˇi

; �i 2 jˇi j
ı;

satisfying that

(i) dim f�g D dim f�0g D dim Z,

(ii) dim.Picˇ;�/ab D
Ps

iD1 dim.Picˇi ;�i
/ab.
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Here for any connected commutative group scheme P , we use the notation P ab to
denote its abelian variety part in the Chevalley decomposition (15). Since by definition
(see (60)) we have

dim.Picˇ;�/
ab
DˆˇC dim B � ıZ ; dim.Picˇi ;�i

/ab
Dˆˇi

C dim jˇi j � ıf�i g
;

we obtain from (ii) that

(63) ıZ C

sX
iD1

ˆˇi
�ˆˇ D dim B �

sX
iD1

dim jˇi jC

sX
iD1

ı
f�i g

:

Applying Corollary 4.2 to (62), we have

ı
f�i g
� dim jˇi j � dim f�ig;

which implies that the righthand side of (63) is

� dim B �

sX
iD1

dim f�ig D dim B � dim Z D codim Z:

4.4 Higgs bundles

The analog of Proposition 4.3 for the moduli of Higgs bundles is exactly the inequality
(75) of [4, Corollary 5.4.4]. Although the paper [4] works with Higgs bundles with
gcd.n; �/D 1, Corollary 5.4.4 only concerns the group scheme — the degree 0 Picard
variety associated with the universal spectral curve, which is not constrained by the
coprime assumption.

We now rewrite the inequality (75) of [4, Corollary 5.4.4] in Proposition 4.4 parallel to
the form of Proposition 4.3.

Consider the Hitchin fibration
h W zMn;�! B

associated with C , n, � and an effective divisor D with degree deg.D/> 2g�2. Recall
from [4, Section 5.2] that the Hitchin base

B D

nM
iD1

H 0.C;O.iD//

admits a stratification

(64) B D
G

.n�;m�/

Bn�;m� :
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Here a type of spectral curve is given by .n�;m�/ with

s � 1; n� D .n1; n2; : : : ; ns/; m� D .m1;m2 : : : ;ms/;

sX
iD1

mini D n;

and Bn�;m� are formed by spectral curves E�Tot.OC .D// of the form ED
P

i miEi ,
with Ei distinct integral spectral curves that are degree ni covers of the zero section C .
This actually coincides with the notion of (61) since the class of any spectral curve
in the surface Tot.OC .D// is of the form ˇi D ni ŒC � with ŒC � the curve class of the
zero section C � Tot.OC .D//. We refer to [4, Section 5] for more details about the
stratification (64).

We define the invariant, similar to (60),

ˆn D dim zMn;� � 2 dim B D 1C .2g� 2� deg.D//n;

where we use the dimension formulas of [4, (77)] in the last identity.

Proposition 4.4 Let Z � B be an irreducible subvariety whose general points have
type .n�;m�/. Then we have

ˆnC codim Z �

sX
iD1

ˆni
C ıZ :

Here ıZ is defined via the relative degree 0 Picard variety associated with the spectral
curves.

4.5 Proof of Theorem 0.4

We complete the proof of Theorem 0.4 in this section. Let

h WM L
ˇ;�! B

be the morphism (2). By Lemma 2.5, the open subvariety of stable sheaves

M
L;s
ˇ;�
�M L

ˇ;�

is nonsingular. So we have

.ICM L
ˇ;�
/j

M
L;s

ˇ;�

DQŒdim M L
ˇ;��:

In particular, the restriction of the direct image complex Rh�ICM L
ˇ;�

to the open subset
U � B of nonsingular curves in jˇj satisfies

(65) Rh� ICM L
ˇ;�
jU '

2dM
iD0

Vi
R1��QŒdim M L

ˇ;� � i �:
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Here � W C! U � B, and (65) is an isomorphism of variations of Hodge structures
by Proposition 2.2. Hence, in order to prove Theorem 0.4, it suffices to show that the
lefthand side of (4), as a bounded complex of perverse sheaves, has full support B.

Assume that the irreducible subvariety Z � B is a support whose general point has
type ˇ. We combine the inequalities of Proposition 4.3 and Theorem 3.1 to obtain

ˆˇC codim Z �

sX
iD1

ˆˇi
C ıZ �

sX
iD1

ˆˇi
C codim Z;

which implies ˆˇ �
Ps

iD1ˆˇi
. Therefore,

(66) 1� s �

�
ˇ�

X
i

ˇi

�
� .�KS /:

Since �KS is ample and ˇ�
P

i ˇi � 0, the only possibility for (66) to hold is s D 1

and mi D 1. Equivalently, we have Z D B. This completes the proof of Theorem 0.4
for M L

ˇ;�
.

The proof for zMn;� is identical, where we apply Theorem 3.1 and Proposition 4.4.
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Coarse injectivity, hierarchical hyperbolicity
and semihyperbolicity

THOMAS HAETTEL

NIMA HODA

HARRY PETYT

We relate three classes of nonpositively curved metric spaces: hierarchically hy-
perbolic spaces, coarsely injective spaces and strongly shortcut spaces. We show
that every hierarchically hyperbolic space admits a new metric that is coarsely in-
jective. The new metric is quasi-isometric to the original metric and is preserved
under automorphisms of the hierarchically hyperbolic space. We show that every
coarsely injective metric space of uniformly bounded geometry is strongly shortcut.
Consequently, hierarchically hyperbolic groups — including mapping class groups of
surfaces — are coarsely injective and coarsely injective groups are strongly shortcut.

Using these results, we deduce several important properties of hierarchically hyper-
bolic groups, including that they are semihyperbolic, they have solvable conjugacy
problem and finitely many conjugacy classes of finite subgroups, and their finitely
generated abelian subgroups are undistorted. Along the way we show that hierar-
chically quasiconvex subgroups of hierarchically hyperbolic groups have bounded
packing.

20F65, 20F67, 51F30

1 Introduction

A principal theme of geometric group theory is the study of groups as metric spaces.
This includes studying groups via the types of metric spaces they act on. In this vein,
the study of groups acting on spaces satisfying various forms of nonpositive curvature
conditions has been especially fruitful. In this article, we are concerned with three
classes of spaces exhibiting nonpositive curvature: hierarchically hyperbolic spaces,
coarsely injective spaces and strongly shortcut spaces.
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1.1 The setting

The first of our three classes is that of hierarchically hyperbolic spaces, which exhibit
hyperbolic-like behaviour. Behrstock, Hagen and Sisto introduced these in [11] and,
with Martin [9], showed they include many quotients of mapping class groups, while
Hagen and Susse [48] added all known cubical groups to a growing body of interesting
examples. The theory has had a number of successes: Behrstock, Hagen and Sisto [12]
proved Farb’s quasiflats conjecture for mapping class groups, and Abbott, Ng, Spriano,
Gupta and Petyt [3] established uniform exponential growth for many cubical groups.
We postpone describing the hierarchy structure until Section 3.1.

The next class we consider is that of coarsely injective spaces. A metric space is said to
be coarsely injective if there is a constant ı such that, for any family fB.xi ; ri / W i 2 I g
of balls with d.xi ; xj /6 ri C rj for all i; j 2 I, the ı–neighbourhoods of those balls
have nonempty total intersection. This property was first considered by Chepoi and
Estellon in [30].

As the term suggests, this notion is closely related to that of injective metric spaces. A
metric space is injective (also called hyperconvex) if, for any family fB.xi ; ri / W i 2 I g of
balls with d.xi ; xj /6 riC rj for all i; j 2 I, the balls have nonempty total intersection.
In other words, it amounts to taking ı D 0 in the definition of coarse injectivity. (There
are multiple equivalent ways to define injectivity of a metric space, by a theorem
of Aronszajn and Panitchpakdi [6].) A construction of Isbell [57], which was later
rediscovered by Dress [36] and by Chrobak and Larmore [32], shows that every metric
space has an essentially unique injective hull. More precisely, the injective hull of a
metric spaceX is an injective metric spaceE.X/, together with an isometric embedding
e W X ! E.X/, such that no injective proper subspace of E.X/ contains e.X/. For
convenience, we will often identify X with its image e.X/. A nice description of the
construction of the injective hull is given by Lang in [60, Section 3].

The classes of coarsely injective spaces and injective spaces are tied together by the
following useful fact, the proof of which is identical to that of Chalopin, Chepoi,
Genevois, Hirai and Osajda [26, Proposition 3.12]. A subset Y of a metric space X is
coarsely dense if there exists r such that every x 2X is r–close to some y 2 Y.

Proposition 1.1 A metric space is coarsely injective if and only if it is coarsely dense
in its injective hull.
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Moreover, if a group acts properly and coboundedly on a coarsely injective space, then
it acts properly and coboundedly on the injective hull of that space (see Lemma 3.10).
Here and throughout the paper, a group G is said to act properly on a metric space X
if fg 2 G W gB \B ¤ ∅g is finite for every metric ball B of X. This is sometimes
referred to as a metrically proper action.

Injective metric spaces satisfy a number of properties reminiscent of nonpositive
curvature and, in particular, of CAT(0) spaces. For instance, they admit a conical
geodesic bicombing [60], and proper injective spaces of finite combinatorial dimension
have a canonical convex such bicombing; see Descombes and Lang [34]. Also, every
bounded group action on an injective metric space has a fixed point, and the fixed-point
set is itself injective [60]. These properties are what allow us to draw our conclusions for
hierarchically hyperbolic groups. Although it will not be needed here, it is interesting
to note that injective spaces are also complete [6] and contractible [57].

The second author introduced the strong shortcut property for graphs [52] and then
generalised it to roughly geodesic metric spaces [51]. A Riemannian circle S is the
circle S1 endowed with a geodesic metric of some length jS j. A roughly geodesic
metric space .X; �/ is strongly shortcut if there exists K > 1 such that, for any C > 0,
there is a bound on the lengths jS j of .K;C /–quasi-isometric embeddings S !X of
Riemannian circles S in .X; �/. A group is strongly shortcut if it acts properly and
coboundedly on a strongly shortcut metric space. Many spaces and graphs of interest
in geometric group theory and metric graph theory are strongly shortcut, including
Gromov-hyperbolic spaces, 1–skeletons of finite-dimensional CAT.0/ cube complexes,
Cayley graphs of Coxeter groups, and asymptotically CAT.0/ spaces. Despite being
such a unifying notion, it remains possible to draw conclusions about strongly shortcut
groups, including that they are finitely presented and have polynomial isoperimetric
function, and so have decidable word problem.

1.2 Comparison of the classes

Our main result is the definition of a new metric on hierarchically hyperbolic spaces
and, more generally, on coarse median spaces satisfying a nice approximation property
of median intervals by CAT(0) cube complexes.

Our construction is directly inspired by work of Bowditch [20], in which he constructs
an injective metric on any finite-rank metric median space. Indeed, if one endows a
finite-dimensional CAT(0) cube complex with the piecewise `1 metric, it becomes an
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injective metric space. The new metric we construct is weakly roughly geodesic and
has the property that balls are coarsely median convex; see Theorem 2.13.

We then prove a hierarchical generalisation of a very nice result of Chepoi, Dragan and
Vaxès [29] about pairwise close subsets of hyperbolic spaces. Combining this with
work of Russell, Spriano and Tran [71] enables us to deduce a coarse Helly property
for balls.

Theorem A (Proposition 2.16 and Corollary 3.6) Let .X;S/ be a hierarchically
hyperbolic space with metric d . There exists a metric � on X such that .X; �/ is
coarsely injective and quasi-isometric to .X; d/. Moreover , � is invariant with respect
to the automorphism group of .X;S/.

Our second result relates the class of coarsely injective spaces to that of strongly
shortcut spaces. A metric space has uniformly bounded geometry if, for any r > 0,
there exists a uniform N.r/ 2N such that every ball of radius r contains at most N.r/
points.

Theorem B (Theorem 4.2) Every coarsely injective metric space of uniformly
bounded geometry is strongly shortcut.

Huang and Osajda [55] proved that weak Garside groups of finite type and Artin groups
of FC type are Helly, so we have the following corollary of Theorem B:

Corollary C Weak Garside groups of finite type and Artin groups of FC type are
strongly shortcut.

Combining Theorem A with Theorem B, we deduce the following:

Corollary D Every hierarchically hyperbolic space admits a roughly geodesic metric
in its quasi-isometry class that satisfies the strong shortcut property.

In fact, in the case of hierarchically hyperbolic groups, the metric we construct is equi-
variant, by the “moreover” statement of Theorem A (also see Remark 3.9). Therefore,
every hierarchically hyperbolic group acts properly cocompactly on a coarsely injective
space, and any group admitting such an action is a strongly shortcut group. Moreover,
these three classes can be distinguished. Indeed, the second author showed [50] that
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the .3; 3; 3/ Coxeter triangle group is strongly shortcut but not coarsely injective, and
type-preserving uniform lattices in thick buildings of type Cn are coarsely injective [26],
but, by work of the first author [46], they cannot be hierarchically hyperbolic groups,
because they do not admit any nonelementary actions on hyperbolic spaces.

One can also ask how Helly groups, as defined in [26], fit into this framework. A
Helly graph is a locally finite graph in which any set of pairwise intersecting balls
in the vertex set have nonempty total intersection, and a group is Helly if it acts
properly cocompactly on a Helly graph. Helly groups have some strong properties,
including biautomaticity [26, Theorem 1.5]. Hughes and Valiunas [56] have constructed
a hierarchically hyperbolic group that is not biautomatic and hence not Helly, though it
is CAT(0) and acts properly cocompactly on an injective metric space.

It is clear that every Helly group is coarsely injective. Recall that, according to Bridson
(see [22]), mapping class groups are not CAT(0). Note that any Helly group acts
properly cocompactly on a space with a convex geodesic bicombing (see [34]). So we
suspect that mapping class groups are not Helly groups.

We can summarise the relations between these classes with the following diagram,
in which A) B denotes the statement “any group that is A is necessarily B”, and
A 6) B denotes “there is an example of a group that is A but not B”:

HHG

coarsely injective strongly shortcut

Helly

= =

=
=

=

1.3 Metric consequences

We now describe some of the consequences of Theorem A for hierarchically hyperbolic
spaces. Recall that a quasigeodesic bicombing on a metric space .X; �/ is a map
 WX�X�Œ0; 1�!X such that, for each distinct pair a; b2X, the map Œ0; �.a; b/�!X

given by t 7! a;b.t=�.a; b// is a quasigeodesic from a to b with uniform constants.

There are various fellow-travelling conditions that a bicombing may enjoy. We say that
a bicombing is roughly conical if there is a C > 0 such that, for all a; b; a0; b0 2X and
t 2 Œ0; 1�,

�.a;b.t/; a0;b0.t//6 .1� t /�.a; a0/C t�.b; b0/CC I
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and it is roughly reversible if it satisfies the following coarse version of symmetry:
there is a C � 0 such that, for all a; b 2X and t 2 Œ0; 1�,

�.a;b.t/; b;a.1� t //� C:

From the existence of conical, reversible, isometry-invariant geodesic bicombings on
injective metric spaces [60], we deduce the following:

Corollary E (Corollary 3.7) Let .X;S/ be a hierarchically hyperbolic space. Then
.X; �/ admits a roughly conical , roughly reversible , quasigeodesic bicombing that is
coarsely equivariant under the automorphism group of .X;S/. More strongly, the
combing lines are rough geodesics for the metric � .

In particular, this applies to Teichmüller space with either of the standard metrics, with
equivariance under the action of the mapping class group. This particular application
was unknown to us until comparing results with Durham, Minsky and Sisto [38].

Corollary E gives a positive answer to Question 8.1 of Engel and Wulff [40], as any
roughly conical bicombing is coherent and expanding, in their terminology. Engel and
Wulff proved that the existence of such a bicombing has a large number of K–theoretic
consequences. This positive answer also allows one to apply work of Fukaya and Oguni
(see [42]) to deduce the coarse Baum–Connes conjecture for hierarchically hyperbolic
groups. The coarse Baum–Connes conjecture is also a consequence of finite asymptotic
dimension, which is a known property of uniformly proper hierarchically hyperbolic
spaces [10].

1.4 Consequences for groups

We now turn to the case of hierarchically hyperbolic groups, which, as we have seen,
act properly cocompactly on coarsely injective spaces. Here we describe some of the
consequences of such an action.

Following Alonso and Bridson [4], we say that a bicombing is bounded if it satisfies
the following weak two-sided fellow-traveller property: there is a C > 0 such that, for
all a; b; a0; b0 2X and t 2 Œ0; 1�,

�.a;b.t/; a0;b0.t//6 C max.�.a; a0/; �.b; b0//CC:

Note that, if a bicombing is roughly conical, then it is bounded. A finitely generated
group is said to be semihyperbolic if it has a Cayley graph that admits an equivariant
bounded quasigeodesic bicombing.
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Among other results, Alonso and Bridson proved that semihyperbolicity implies the
existence of a quadratic isoperimetric function, that the group has soluble word and
conjugacy problems, and that an algebraic flat torus theorem holds [4]. For more
discussion of the consequences of semihyperbolicity, see Bridson and Haefliger [24].
Semihyperbolicity was introduced as a response to Gromov’s call for a weaker form of
hyperbolicity in his original essay on hyperbolic groups, and it fits into the framework
of algorithmic properties developed by Epstein, Cannon, Holt, Levy, Paterson and
Thurston [41]. For example, semihyperbolicity is implied by biautomaticity, but not by
automaticity. A survey can be found in [23].

For hierarchically hyperbolic groupsG, the freeness of the regular action ofG on .G; �/
allows the bicombing of Corollary E to be pulled back to the Cayley graph of G [4].

Corollary F (Corollary 3.11) Every hierarchically hyperbolic group is semihyper-
bolic. In particular , the mapping class group of a surface of finite type is semihyperbolic.

The mapping class group case also follows from unpublished work of Hamenstädt [49],
and is related to Mosher’s automaticity theorem [62].

We should emphasise that the same result for mapping class groups has been obtained
by rather different methods, simultaneously and independently, by Durham, Minsky
and Sisto (see [38]). This will be discussed more in Section 1.6.

It is well known that mapping class groups have finitely many conjugacy classes
of finite subgroups (see Bridson [21]), a property that they share with hyperbolic
groups. However, to the authors’ knowledge, all existing proofs of this fact rely on
deep results that do not generalise to other settings, such as Kerckhoff’s celebrated
solution of the Nielsen realisation problem [59]. It is interesting to ask whether there is
a proof that avoids such powerful machinery, and indeed a more general question about
hierarchically hyperbolic groups was asked by Hagen and Petyt [47]. The question of
whether all hierarchically hyperbolic groups have finitely many conjugacy classes of
finite subgroups has resisted a number of attempted resolutions.

The fact that hierarchically hyperbolic groups act properly cocompactly on coarsely
injective spaces makes the following a simple consequence of Lang’s result about
bounded actions on injective spaces [60, Proposition 1.2]:

Theorem G (Corollary 3.12) Hierarchically hyperbolic groups have finitely many
conjugacy classes of finite subgroups.
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It is interesting to note that this applies in particular to many quotients of mapping
class groups [10; 9]. It is also a simple consequence that residually finite hierarchically
hyperbolic groups are virtually torsionfree.

We now summarise the consequences for hierarchically hyperbolic groups of the results
described above (also see Remark 3.9 for a comment on their generality).

Corollary H Every hierarchically hyperbolic group G has the following properties:

� G acts properly cocompactly on a proper coarsely injective space.

� G has finitely many conjugacy classes of finite subgroups.

� G is semihyperbolic. In particular ,

– the conjugacy problem in G is soluble , and it can be solved in doubly
exponential time;

– any polycyclic subgroup of G is virtually abelian;

– any finitely generated abelian subgroup of G is quasi-isometrically embed-
ded ;

– the centraliser of any finite subset of G is finitely generated , quasi-isometri-
cally embedded and semihyperbolic.

� [40, Theorem C] For any ring R, if the cohomological dimension cdR.G/ is
finite , then cdR.G/6 asdim.G/C 1.

� G is a strongly shortcut group.

The result about polycyclic subgroups can also be deduced from the Tits alternative for
hierarchically hyperbolic groups established by Durham, Hagen and Sisto [37]. The
result about finitely generated abelian subgroups was proved by Plummer [67]. The
other consequences are new, however. The result about the conjugacy problem extends
work of Abbott and Behrstock [1], showing that it can be solved in exponential time
for Morse elements of hierarchically hyperbolic groups, and generalises the fact that,
in mapping class groups, it can always be solved in exponential time; see Masur and
Minsky [61] and Tao [74; 8]. In the case of cubical groups, a beautiful result of Niblo
and Reeves [63] states that every cubical group is biautomatic, and semihyperbolicity
is a direct consequence of this. We emphasise, though, that the class of hierarchically
hyperbolic groups is considerably larger than just cubical groups and mapping class
groups.
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1.5 Bounded packing

The bounded packing property for subgroups of finitely generated groups was in-
troduced as a metric abstraction of tools used to prove intersection properties of
subgroups of hyperbolic groups by Gitik, Mitra, Rips and Sageev [45] and Rubinstein
and Sageev [70], and in turn as a stepping stone towards ensuring cocompactness of
the cube complex associated with a finite collection of quasiconvex codimension-1
subgroups; see Sageev [72], Niblo and Reeves [64] and Hruska and Wise [54]. We
recall the definition in Section 3; see Hruska and Wise [53; 54] for more motivation and
background. The prototypical example is that of a quasiconvex subgroup of a hyperbolic
group. That such subgroups have bounded packing was first established by Gitik, Mitra,
Rips and Sageev, using compactness of the boundary [45], and another proof was given
by Hruska and Wise [53], using induction on the height of the subgroups.

More general examples have been provided by Antolín, Mj, Sisto and Taylor [5], who
use induction on height to show that finite collections of stable subgroups in any finitely
generated group have bounded packing. Stable subgroups were introduced by Durham
and Taylor [39], and they are always hyperbolic. More generally, Morse subgroups were
introduced independently by Tran [75] and Genevois [43], and the notion is implicit
in earlier work of Sisto [73]. Notably, Tran proved that any finite collection of Morse
subgroups has bounded packing [75, Theorem 1.2], again by using induction on height.

Theorem I (Corollary 3.13) Every finite collection of hierarchically quasiconvex
subgroups of a group that is a hierarchically hyperbolic space (in particular , of any
hierarchically hyperbolic group) has bounded packing.

For many groups that are HHSs (including all HHGs), every stable subgroup is hierar-
chically quasiconvex; see Abbott, Behrstock and Durham [2] and Russell, Spriano and
Tran [71]. Theorem B also applies to subsurface stabilisers in the mapping class group,
which are neither Morse nor stable. See Section 3.1 for the definition of hierarchical
quasiconvexity.

Our proof of this result is purely geometric. It relies on a very strong result for
quasiconvex subsets of hyperbolic spaces that was proved by Chepoi, Dragan and
Vaxès [29]; we state it as Theorem 3.4. Their theorem does not seem to have garnered
the notice it deserves in geometric group theory. For instance, it yields what appears to
be the simplest and most natural proof of bounded packing for quasiconvex subgroups
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of hyperbolic groups. One case of our hierarchical generalisation of their result can be
stated as follows:

Theorem J (Theorem 3.5) Let X be a hierarchically hyperbolic space , and let Q be
a finite collection of hierarchically quasiconvex subsets of X. If every pair of elements
of Q is r–close , then there is a point of X that is R–close to every element of Q, where
R does not depend on the cardinality of Q.

1.6 Comparison to the work of Durham, Minsky and Sisto [38]

Let us now say a few words about the difference between the present article and the
work of Durham, Minsky and Sisto [38]. As noted, both articles independently prove
that mapping class groups are semihyperbolic, but the approaches differ greatly. In
both cases, this fact is deduced from a stronger statement in a more general setting, but
those two statements are very different in flavour. Their results hold for hierarchically
hyperbolic spaces with the extra assumption of colorability, and they deduce interesting
corollaries about bicombings on the Teichmüller space with the Teichmüller metric,
and the existence of barycentres. These results are also consequences of Theorem A
and Corollary E.

Our construction is built on the fact that intervals in hierarchically hyperbolic spaces
can be approximated by finite CAT(0) cube complexes (proved in [12]). The main
result of Durham, Minsky and Sisto is that these approximations are furthermore stable,
meaning that a small change in the endpoints of the interval induces a small change in
the approximating CAT(0) cube complex. This stability result may prove extremely
useful for other purposes.

If we want to compare the bicombing we obtain to the one from [38] in the simplest case
of a CAT(0) cube complex, our bicombing looks like the geodesic CAT(0) bicombing,
whereas their bicombing is more similar to (but not the same as) Niblo–Reeves normal
cube paths [63]. One notable difference is that our bicombing is roughly conical and
their bicombing is merely bounded, which is not enough to deduce the consequences
of Section 1.3. On the other hand, their bicombing paths are known to be hierarchy
paths, whilst ours are not.

Structure of the article

In Section 2, we recall basic definitions of coarse median spaces, and we explain the
extra property we need, a stronger approximation of median intervals by CAT(0) cube
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complexes. We then define a new distance, and we prove that it is quasi-isometric to
the original one and is weakly roughly geodesic, and that its balls are coarsely median
convex.

In Section 3, we treat hierarchical hyperbolicity, and prove that hierarchically quasi-
convex subsets satisfy a coarse version of the Helly property. We use this to show that
the new distance makes hierarchically hyperbolic spaces coarsely injective, and deduce
semihyperbolicity of hierarchically hyperbolic groups. We also show that hierarchically
quasiconvex subgroups have bounded packing.

In Section 4, we recall the definition of a strongly shortcut group, and prove that coarse
injectivity implies the strong shortcut property.

Acknowledgements We thank Mark Hagen and Anthony Genevois for many helpful
comments and suggestions, and Victor Chepoi, Alexander Engel and Damian Osajda
for interesting discussions. We would like to thank Matthew Durham, Yair Minsky and
Alessandro Sisto for friendly discussions about our their work and ours. We thank the
referees for their careful and thorough reading of the article.

Haettel was supported by the French grant ANR-16-CE40-0022-01 AGIRA.

Hoda was supported by the ERC grant GroIsRan.

2 Coarse median spaces with quasicubical intervals

2.1 Background on coarse median spaces

Coarse median spaces, defined by Bowditch in [17], are a generalisation of CAT(0) cube
complexes and Gromov-hyperbolic spaces, and the class is rich enough to encompass
mapping class groups of finite-type surfaces. The general idea is to associate to every
triple of points in the space a point that satisfies the axioms of a usual median up to
controlled error. This point will be called the coarse median.

Let us recall here that a median � WX3!X on a set X is a map satisfying (where we
write equivalently �.x; y; z/ or �x;y;z to increase readability)

� �.x; y; z/ is symmetric in x, y and z;

� �.x; x; y/D x for all x; y 2X ; and

� �.a; b; �x;y;z/D �.�a;b;x; �a;b;y ; z/ for all a; b; x; y; z 2X.
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The pair .X; �/ is called a median algebra. The rank of .X; �/ is the supremum of
all � 2N such that there exists an injective median homomorphism from the �–cube
f0; 1g� into X.

Every finite median algebra can be seen as the 0–skeleton of a CAT(0) cube complex
(see [28; 69]).

Let .X; d/ be a metric space. For any x; y 2X, let

Id .x; y/D fz 2X j d.x; z/C d.z; y/D d.x; y/g

denote the interval between x and y. The metric space .X; d/ is called metric median
if Id .x; y/\Id .y; z/\Id .x; z/ is a singleton — say f�.x; y; z/g— for all x; y; z 2X.
In this case, � defines a median on X. Examples of median metric spaces include trees,
1–skeletons of CAT(0) cube complexes with the combinatorial distance, and L1 spaces.

In a Gromov-hyperbolic space X, the three intervals joining three points may not
intersect precisely in a singleton, but by definition they do coarsely intersect with
uniformly bounded diameter. This suggests defining a map X3 ! X that satisfies
the axioms of a median up to bounded error. This is made precise by the following
definition, due to Bowditch [17], generalising the centroid defined for mapping class
groups in [14]:

Definition 2.1 (coarse median space) Let .X;d/ be a metric space. A map� WX3!X

is called a coarse median if there exists h WN! .0;C1/ such that:

� For all a; b; c; a0; b0; c0 2X, we have

d.�.a; b; c/; �.a0; b0; c0//6 h.0/.d.a; a0/C d.b; b0/C d.c; c0//C h.0/:

� For each finite nonempty set A�X with jAj6 n, there exists a finite median
algebra .Q;�Q/ and maps � W A ! Q and � W Q ! X such that, for every
˛; ˇ;  2 Q, we have d.��Q.˛; ˇ; /; �.�˛; �ˇ; �// 6 h.n/, and, for every
a 2 A, we have d

�
a; �.�.a//

�
6 h.n/.

We say that the triple .X; �; d/ is a coarse median space. If Q can always be chosen
to have rank at most �, we say that � has rank at most �. As with median algebras, we
shall write �a;b;c D �.a; b; c/ interchangeably. Note that we are also free to assume
that �.a; b; c/ is symmetric in a, b and c, and that �.a; a; b/D a [17, page 73].

We now recall the definitions of intervals and coarse convexity in coarse median spaces.
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Definition 2.2 (median interval) For a pair of points a; b 2 X, the median interval
between a and b is defined as

Œa; b�D f�.a; b; x/ j x 2Xg:

Definition 2.3 (coarse median convexity) For a constant M � 0, a subset Y of X is
said to be M–coarsely median convex if

d.Y; �.x; y; y0//�M for all y; y0 2 Y; x 2X:

We finish by introducing some terminology.

Definition 2.4 (weakly roughly geodesic) Recall that a metric space .X; d/ (or, more
briefly, the metric d ) is called roughly geodesic if there exists a constant Cd > 0 such
that, for any a; b 2X, there exists a .1; Cd /–quasi-isometric embedding of the interval
f W Œ0; d.a; b/�!X such that f .0/D a and f .d.a; b//D b.

We say that a metric space .X; d/ is called weakly roughly geodesic if there exists a
constant C 0

d
> 0 such that, for any a; b 2X and any nonnegative r � d.a; b/, there is

a point c 2X with jd.a; c/� r j � C 0
d

and d.a; c/C d.c; b/� d.a; b/CC 0
d

.

Remark 2.5 Every roughly geodesic metric space is weakly roughly geodesic. More-
over, any metric space .X; d/ that is weakly roughly geodesic with constant C 0

d
is

necessarily .4C 0
d
; 4C 0

d
/–quasigeodesic. Indeed, given x; y 2 X, one can repeatedly

take r D 3C 0
d

in the definition of weak rough geodesicity to get a sequence x D w0,
w1; : : : , wnDy such that d.wi ; wiC1/2 Œ2C 0d ; 4C

0
d
� and d.wi ; y/�d.wi�1; y/�C 0d ,

and the points of this sequence form a quasigeodesic from x to y.

2.2 Construction of a new metric

Let .X; �; d/ be a coarse median space. Following Bowditch’s construction of an
injective metric on a median metric space [20], we shall define a new metric � on X.

Definition 2.6 (contraction) For a constant K > 0, a map ˆ W X ! R is called a
K–contraction if:

� ˆ is .1;K/–coarsely Lipschitz, ie jˆ.x/�ˆ.y/j6 d.x; y/CK for all a; b 2X.

� ˆ is a K–quasimedian homomorphism, ie

jˆ.�.a; b; c//��R.ˆ.a/;ˆ.b/;ˆ.c//j6K for all a; b; c 2X;

where �R denotes the standard median on R.
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Definition 2.7 (new metric) For K > 0, we define a new metric � on X as follows.
Given a; b 2X, let �.a; b/ denote the supremum of all r > 0 such that there exists a
K–contraction ˆ WX !R such that ˆ.a/D 0 and ˆ.b/D r .

The assumption that K is nonzero is needed to ensure that � separates points in the
setting of coarse median spaces. In the special case where X is a CAT(0) cube complex,
we may take K D 0. More precisely, if X is a CAT(0) cube complex endowed with the
piecewise `p length metric for p 2 f1; 2;1g, for instance, then the new metric � for
K D 0 is the piecewise `1 length metric on X.

Lemma 2.8 The function � is a metric on X.

Proof Let a; b 2X be distinct. Consider the map ˆ WX ! f0;Kg that sends b to K
and everything else to 0. It is a K–contraction, and so �.a; b/>K > 0.

The proof of the triangle inequality is identical to [20, Lemma 3.1]. For the reader’s
convenience, we repeat it here. Let a; b; c 2 X. For each r < �.a; b/, there exists
a K–contraction ˆr W X ! R such that jˆr.a/ � ˆr.b/j � r . We certainly have
�.a; c/� jˆr.c/�ˆr.a/j and �.b; c/� jˆr.b/�ˆr.c/j, so

�.a; c/C �.c; b/> supfjˆr.c/�ˆr.a/jC jˆr.b/�ˆr.c/j W r < �.a; b/g

� supfjˆr.b/�ˆr.a/j W r < �.a; b/g D �.a; b/:

Remark 2.9 Although the construction of � depends on the choice of a positive
constant K, the actual choice of K will not matter to us here. If K1 < K2, then any
K1–contraction is automatically a K2–contraction, so �K1

� �K2
. On the other hand, if

ˆ is a K2–contraction, then .K1=K2/ˆ is a K1–contraction, so �K1
� .K1=K2/�K2

.
Thus, any two choices of K give bi-Lipschitz metrics.

We record the following simple consequence of the definition of � :

Lemma 2.10 If a group G is acting isometrically on a coarse median space .X; �; d/
by median isometries , in the sense that g�.x; y; z/D �.gx; gy; gz/ for all g 2G and
x; y; z 2X, then the induced action of G on .X; �; �/ is isometric.

Proof For any g 2 G and x; y 2 X, if ˆ is a K–contraction with ˆ.x/ D 0 and
ˆ.y/D r , then ˆ0 Dˆg�1 is a K–contraction with ˆ0.gx/D 0 and ˆ0.gy/D r .
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In order to help understand the metric � , we shall work with coarse median spaces that
have the following property, which is a strengthening of the second axiom of coarse
median spaces for sets AD fa; bg with cardinality 2. We require an approximation of
the entire median interval Œa; b� with uniform constants, and also that the comparison
map be a quasi-isometry and not just coarsely invertible.

Definition 2.11 (quasicubical intervals) Let .X; �; d/ be a coarse median space.
We say that it has quasicubical intervals if it has finite rank � and there exists � > 1

such that the following holds: for every a; b 2 X, there exists a finite CAT(0) cube
complex Q of dimension at most �, endowed with the `1 metric dQ and the median
�Q, such that there exists a map � WQ! Œa; b� satisfying:

� � is a .�; �/–quasi-isometry, ie � is �–coarsely onto and
1

�
dQ.˛; ˇ/� � 6 d.�.˛/; �.ˇ//6 �dQ.˛; ˇ/C � for all ˛; ˇ 2Q:

� � is a �–quasimedian homomorphism, ie

d
�
�.�Q.˛; ˇ; //; �.�.˛/; �.ˇ/; �.//

�
6 � for all ˛; ˇ;  2Q:

Obviously this is satisfied by finite-dimensional CAT(0) cube complexes, or indeed by
any space with a global quasimedian quasi-isometry to a CAT(0) cube complex.

Proposition 2.12 Hierarchically hyperbolic spaces have quasicubical intervals , as do
coarse median spaces satisfying the axioms (B1)–(B10) in [18].

Proof In hierarchically hyperbolic spaces, the notion of median intervals used here
coincides coarsely with the hierarchically quasiconvex hull of a pair of points defined
in [13], by [71, Corollary 5.12; 19, Lemma 8.1]. The first statement is thus a special
case of [12, Theorem 2.1]. The second statement is exactly [18, Theorem 1.3].

As noted by Bowditch, every hierarchically hyperbolic space satisfies the axioms (B1)–
(B10) in [18]. It is not known whether all cocompact cube complexes can be given a
structure that satisfies these axioms.

We can now state the main result of this section. It sums up Lemma 2.10, Propositions
2.16 and 2.21, and Lemma 2.23, and the proof is split over the next three subsections.

Theorem 2.13 Assume that the coarse median space .X; �; d/ has quasicubical inter-
vals and is roughly geodesic. The metrics � and d are quasi-isometric , � is weakly
roughly geodesic , and balls for � are uniformly coarsely median convex. Moreover ,
� is invariant under the group of median isometries of .X; �; d/.
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2.3 The metrics d and � are quasi-isometric

Here we shall prove that the new distance � is quasi-isometric to the original distance d .
We need the following technical result for coarse median spaces, which is a special
case of Lemmas 2.18 and 2.19 of [65]:

Lemma 2.14 In any coarse median space .X; d; �/, there exists a constant H5 > 0

such that , for any a; b; x; y; z 2X,

d.�.a; b; �x;y;z/; �.�a;b;x; �a;b;y ; z//6H5;

d.�.a; b; �x;y;z/; �.�a;b;x; �a;b;y ; �a;b;z//6H5:

We will now prove that, up to multiplicative and additive constants, one can restrict to
contractions defined on the interval between two points for the definition of � .

Lemma 2.15 For each a; b 2X, let � 0.a; b/ denote the supremum of all r > 0 such
that there exists a K–contraction ˆ0 W Œa; b�!R for which ˆ0.a/D 0 and ˆ0.b/D r .
There exists L> 1 such that , for each a; b 2X, we have �.a; b/6 � 0.a; b/6L�.a; b/.

Proof It is immediate that �.a; b/ 6 � 0.a; b/. Consider r > 0 and a K–contraction
ˆ0 W Œa; b� ! R such that ˆ0.a/ D 0 and ˆ0.b/ D r . Define ˆ W X ! R by c 7!
ˆ0.�.a; b; c//. Since the map c 7!�.a; b; c/ is .h.0/; h.0//–coarsely Lipschitz and ˆ0

is .1;K/–coarsely Lipschitz, we deduce that ˆ is .h.0/; h.0/CK/–coarsely Lipschitz.

Now let x; y; z 2X. According to Lemma 2.14, we have

d.�.a; b; �x;y;z/; �.�a;b;x; �a;b;y ; �a;b;z//6H5:

Hence, since ˆ0 is .1;K/–coarsely Lipschitz,

jˆ0.�.a; b; �x;y;z//�ˆ
0.�.�a;b;x; �a;b;y ; �a;b;z//j6H5CK:

But ˆ0 is also a K–quasimedian homomorphism, and so

jˆ0.�.�a;b;x; �a;b;y ; �a;b;z//��R.ˆ
0.�a;b;x/; ˆ

0.�a;b;y/; ˆ
0.�a;b;z//j6K:

Combining these and recalling the definition of ˆ enables us to conclude that

jˆ.�x;y;z/��R.ˆ.x/;ˆ.y/;ˆ.z//j6H5C 2K:

Thus, if we setLDmaxfh.0/; 1Ch.0/=K; 2CH5=Kg, then .1=L/ˆ is aK–contraction,
and so � 0.a; b/6 L�.a; b/.
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We can now deduce that � is quasi-isometric to d in the setting of Theorem 2.13.

Proposition 2.16 If .X; �; d/ has quasicubical intervals , then d and � are quasi-
isometric.

Proof Fix a; b 2X. First of all, since any K–contraction is .1;K/–coarsely Lipschitz,
�.a; b/6 d.a; b/CK.

According to the quasicubicality of intervals, there exists a finite CAT(0) cube complex
Q of dimension at most � and a map � W .Q; dQ/! Œa; b� that is a .�; �/–quasi-isometry
and a �–quasimedian homomorphism. Then � has a quasi-inverse � W Œa; b�! .Q; dQ/

that is a .�0; �0/–quasi-isometry and a �0–quasimedian homomorphism, where �0 is a
constant depending only on � and h.0/.

Note that we shall in fact useQ to denote the vertex set, dQ to denote the combinatorial
(piecewise `1) distance onQ, and �Q to denote the median onQ. Let us denote by �Q
the piecewise `1 distance on Q; we have �Q 6 dQ 6 ��Q.

Since Q is a CAT(0) cube complex, there exists a 0–contraction ˆQ W .Q; dQ/! Z

such that ˆQ.�.a// D 0 and ˆQ.�.b// D �Q.�.a/; �.b// (see [20, Section 7; 7,
Corollary 2.5]). Let us consider ˆ0 D .minf1;Kg=�0/ˆQ� W Œa; b�!R. Since � is a
.�0; �0/–quasi-isometry and ˆQ is 1–Lipschitz, we deduce that ˆ0 is .1;K/–coarsely
Lipschitz. Furthermore, for every x; y; z 2 Œa; b�,

jˆQ�.�x;y;z/��R.ˆQ�.x/;ˆQ�.y/;ˆQ�.z//j

6
ˇ̌
ˆQ�.�x;y;z/�ˆQ

�
�Q.�.x/; �.y/; �.z//

�ˇ̌
C
ˇ̌
ˆQ

�
�Q.�.x/; �.y/; �.z//

�
��R.ˆQ�.x/;ˆQ�.y/;ˆQ�.z//

ˇ̌
6 dQ

�
�.�x;y;z/; �Q.�.x/; �.y/; �.z//

�
� �0;

so ˆ0 is K–quasimedian.

The map ˆ0 is therefore a K–contraction on Œa; b�, and ˆ0.a/ D 0 and ˆ0.b/ D
.minf1;Kg=�0/�Q.�.a/; �.b// > .minf1;Kg=��0/dQ.�.a/; �.b//. Using Lemma
2.15, we deduce that dQ.�.a/; �.b//� .��0L=minf1;Kg/�.a; b/. But � is a .�0; �0/–
quasi-isometry, so we also have dQ.�.a/; �.b//� .1=�0/d.a; b/� �0.

In conclusion,
minf1;Kg

��02L
d.a; b/�

minf1;Kg
�L

� �.a; b/� d.a; b/CK

for all a; b 2X.
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2.4 The metric � is weakly roughly geodesic

Recall that .X; �; d/ is a coarse median space with corresponding function h, that X
has quasicubical intervals (though this will only be used for Proposition 2.21 in this
section) and that the metric d is Cd–roughly geodesic. We shall prove that the new
metric � is weakly roughly geodesic (see Definition 2.4). This will be the most difficult
part of the proof of Theorem 2.13.

Let a; b 2X, let E be a small positive constant and consider K–contractions ˆ1 WX!
Œ0; r� and ˆ2 W X ! Œr; r C s� (for some r; s > E) such that ˆ1.a/ � E and ˆ2.b/ �
r C s�E. We want to find a criterion to ensure that we can combine ˆ1 and ˆ2 into
a contraction ˆ such that ˆ.a/ D 0 and .r C s/�ˆ.b/ is bounded above by some
constant.

Lemma 2.17 Assume that a, b, ˆ1, ˆ2, r , s and E are as above. Let D D
h.0/.3K C 4Cd /C 4K C h.0/. If t 2 Œ0;minfr; sg �D CK � E� is such that the
sets

Z1 D fz 2X jˆ1.z/6 r � t �Kg and Z2 D fz 2X jˆ2.z/> r C t CKg

are disjoint , then �.a; b/> r C s� 2t � 2D� 2E.

Proof For m 2 f0; 1; 2g, let us write Y m1 D fx 2X jˆ1.x/6 r � t �DCmKg and
Y m2 D fx 2X jˆ2.x/> r C t CD�mKg. Note that, if m1 <m2, then Y m1

i � Y
m2

i .

Claim 1 d.Y 21 ; Y
2
2 />D� 4K:

Proof Let x1 2 Y 21 and x2 2 Y 22 . Since Y 22 � Z2, we have x2 … Z1, so ˆ1.x2/ >
r � t �K. We also have ˆ1.x1/6 r � t �DC 2K, so jˆ1.x1/�ˆ1.x2/j>D� 3K.
As ˆ1 is .1;K/–coarsely Lipschitz, we have jˆ1.x1/�ˆ1.x2/j6 d.x1; x2/CK, and
hence d.x1; x2/>D� 4K. G

Claim 2 d.Y 11 ; Y
1
2 /> 3KC 4Cd :

Proof Let x1 2 Y 11 and x2 2 Y 12 , and set y1 D �.a; b; x1/ 2 Œa; b� and y2 D
�.a; b; x2/2 Œa; b�. We know thatˆ1.y1/6�R.ˆ1.a/;ˆ1.b/;ˆ1.x1//CK. We also
haveˆ1.a/�E by assumption, andˆ1.x1/6 r�t�DCK. As this latter quantity is at
least E, �R.ˆ1.a/;ˆ1.b/;ˆ1.x1//6 r�t�DCK. Hence, ˆ1.y1/6 r�t�DC2K,
so y1 2 Y 21 . A similar argument shows that y2 2 Y 22 .
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According to Claim 1, d.y1; y2/>D�4K. Since � is .h.0/; h.0//–coarsely Lipschitz
with respect to each variable, d.y1; y2/6 h.0/d.x1; x2/C h.0/, so

d.x1; x2/>
d.y1; y2/� h.0/

h.0/
>
D� 4K � h.0/

h.0/
D 3KC 4Cd ;

as desired. G

Claim 3 The set f�x;y;z j x; y 2 Y 01 ; z 2 Xg is disjoint from Y 02 , and the set
f�x;y;z j x; y 2 Y

0
2 ; z 2Xg is disjoint from Y 01 .

Proof Fix x; y 2 Y 01 and z 2 X. Since ˆ1.x/;ˆ1.y/ 6 r � t �D, we deduce that
�R.ˆ1.x/;ˆ1.y/;ˆ1.z//6 r� t�D, and it follows that ˆ1.�x;y;z/6 r� t�DCK,
so �x;y;z 2 Y 11 . Because we showed in Claim 2 that d.Y 11 ; Y

1
2 /> 3KC 4Cd > 0, we

know that �x;y;z … Y 12 , and, in particular, �x;y;z … Y 02 . The other case is similar. G

Write Y DX X .Y 01 [Y
0
2 /, and consider ˆ WX ! Œ0; r C s� 2t � 2D� defined by

ˆ.x/D

8<:
ˆ1.x/ if x 2 Y 01 ;
ˆ2.x/� 2t � 2D if x 2 Y 02 ;
r � t �D if x 2 Y:

We have ˆ.a/ � E and ˆ.b/ � r C s � 2t � 2D � E, so, if we prove that ˆ is a
K–contraction, then we may deduce that �.a; b/> r C s� 2t � 2D� 2E, the desired
conclusion.

Claim 4 ˆ is .1;K/–coarsely Lipschitz.

Proof Notice that ˆ coincides on Y 01 [ Y with the composition of ˆ1 W X ! Œ0; r�

with the 1–Lipschitz map mt D min. � ; r � t �D/ W Œ0; r�! Œ0; r � t �D�. Hence,
if x; y 2 Y 01 [ Y, then jˆ.x/�ˆ.y/j 6 jˆ1.x/�ˆ1.y/j 6 d.x; y/CK. A similar
argument involving a maximum function applies if x; y 2 Y 02 [Y.

Now suppose that x 2 Y 01 and y 2 Y 02 . Since d is Cd–roughly geodesic, there
is a .1; Cd /–quasi-isometric embedding f W Œ0; d.x; y/� ! X with f .0/ D x and
f .d.x; y//D y. For any " > 0, there exists � such that f .�/ 2 Y 01 but f .� C ı/ … Y 01
for any ı > ". (Were f continuous, we could take "D 0 and use the maximal � with
f .�/ 2 Y 01 .) Write z1 D f .�/. We have d.x; z1/C d.z1; y/ � d.x; y/C Cd and
ˆ1.z1/� r � t �D. Moreover, for any ı > ",

ˆ1.z1/�ˆ1.f .� C ı//�
�
d.f .�/; f .� C ı//CK

�
> r � t �D� .ıCCd CK/;

and soˆ1.z1/�r�t�D�Cd�K�". We can now similarly construct z22Y 02 such that
d.z1; z2/Cd.z2; y/�d.z1; y/CCd and rCtCD�ˆ2.z2/� rCtCDCCdCKC".
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With these, we can compute

jˆ.x/�ˆ.y/j

� jˆ.x/�ˆ.z1/jC jˆ.z1/�ˆ.z2/jC jˆ.z2/�ˆ.y/j

D jˆ1.x/�ˆ1.z1/jC jˆ1.z1/� .ˆ2.z2/� 2t � 2D/jC jˆ2.z2/�ˆ2.y/j

6 .d.x; z1/CK/C .2Cd C 2KC 2"/C .d.z2; y/CK/

6 .d.x; y/CCd�d.z1; y/CK/C.2CdC2KC2"/C.d.z1; y/CCd�d.z1; z2/CK/

D d.x; y/� d.z1; z2/C 4KC 4Cd C 2"

6 d.x; y/CKC 2";

where the last line comes from Claim 2: d.z1; z2/ > d.Y 01 ; Y
0
2 / > d.Y 11 ; Y

1
2 / �

3KC 4Cd . This is sufficient, because " can be taken to be arbitrarily close to 0. G

Claim 5 ˆ is K–quasimedian.

Proof As noted in the proof of Claim 4, on Y 01 [Y we have ˆDmtˆ1. As mt is a
median homomorphism with respect to �R, if x; y; z 2 Y 01 [Y, then

jˆ.�x;y;z/��R.ˆ.x/;ˆ.y/;ˆ.z//j

D jmtˆ1.�x;y;z/��R.mtˆ1.x/;mtˆ1.y/;mtˆ1.z//j

6 jˆ1.�x;y;z/��R.ˆ1.x/;ˆ1.y/;ˆ1.z//j

�K;

and similarly if x; y; z 2 Y 02 [Y.

Assume now that x; y 2 Y 01 and z 2 Y 02 . We have that both ˆ.x/ and ˆ.y/ are
at most r � t � D. Moreover, ˆ.z/ D ˆ2.z/ � 2t � 2D > r � t � D, and the
fact that z … Y 01 implies that ˆ1.z/ > r � t �D. Thus, �R.ˆ.x/;ˆ.y/;ˆ.z// D

�R.ˆ1.x/;ˆ1.y/;ˆ1.z// � r � t �D. As ˆ1 is K–quasimedian, we deduce that
j�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ1.�x;y;z/j 6K. By Claim 3, we know that �x;y;z … Y 02 ,
and so ˆ.�x;y;z/ D mtˆ1.�x;y;z/. But �R.ˆ.x/;ˆ.y/;ˆ.z// 6 r � t �D, so we
conclude that j�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ.�x;y;z/j6K. A similar argument applies
when x; y 2 Y 02 and z 2 Y 01 .

Assume finally that x 2 Y 01 , y 2 Y, and z 2 Y 02 . Since ˆ.x/ D ˆ1.x/ 6 r � t �D,
ˆ.y/D r � t �D and ˆ.z/Dˆ2.z/� 2t � 2D > r � t �D, we have

�R.ˆ.x/;ˆ.y/;ˆ.z//D r � t �D:
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If �x;y;z 2 Y, then ˆ.�x;y;z/D r � t �D D �R.ˆ.x/;ˆ.y/;ˆ.z//. If �x;y;z 2 Y 01 ,
then ˆ.�x;y;z/Dˆ1.�x;y;z/>�R.ˆ1.x/;ˆ1.y/;ˆ1.z//�K > r� t�D�K, from
which it follows that j�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ.�x;y;z/j 6K. A similar argument
applies if �x;y;z 2 Y 02 .

We have shown that j�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ.�x;y;z/j6K in all cases. G

We have proved that ˆ is a K–contraction. As stated above, this shows that �.a; b/>
jˆ.a/�ˆ.b/j � r C s� 2t � 2D� 2E.

Recall that the convex hull Hull.A/ of a subset A of a CAT(0) cube complex Q is
the smallest convex subcomplex of Q containing A. Equivalently, it is the smallest
subcomplex that contains A and which is median convex, in the sense that �.q; a; b/ 2
Hull.A/ whenever a; b 2 Hull.A/. We regard a subset of Q.0/ as convex if the full
subcomplex spanned by it is convex. We need the following iterative description convex
hulls in CAT(0) cube complexes:

Lemma 2.18 Let Q be a CAT (0) cube complex of dimension at most �, and let
�Q WQ

.0/3!Q.0/ denote the median. Given A �Q.0/, set A0 D A, and , for each
i 2N, let

AiC1 D �Q.Q
.0/; Ai ; Ai /D f�Q.x; a; b/ j a 2 Ai ; b 2 Ai ; x 2Q

.0/
g:

Then A�0 D Hull.A/, where �0 Dmaxf1; � � 1g.

Note that the constant �0 is probably far from optimal. However, �0 does depend on A
and Q. For example, if A is the star of a vertex in a �–cube, then it can be seen that
the optimal value of �0 is dlog2 �e in this case.

Proof The result is trivial if A is convex. Otherwise, fix x 2 Hull.A/XA, and let H
be the collection of hyperplanes of Hull.A/ that are adjacent to x. For each H 2H, let
Q.0/DHCtH� denote the partition defined byH, where x 2HC. Let fH1; : : : ;Hng
be a maximal pairwise crossing family in H. We have n� �. For each i , let Hi denote
the set of elements of H that are disjoint from Hi , together with Hi . An important
observation is that H�i �H

C whenever H 2Hi X fHig.

If n D 1, then x is a cut-point or leaf of Hull.A/, so taking any a 2 A \HC and
b 2 A\H� gives x D �.x; a; b/, and we are done.

Geometry & Topology, Volume 27 (2023)



1608 Thomas Haettel, Nima Hoda and Harry Petyt

So suppose that n � 2. If for every a 2 A\H�1 we have a 2 H�2 , then for every
b 2 A\HC2 we have b 2HC1 , so, if we take z1 2 A\H�1 and z2 2 A\HC2 , then
�.x; z1; z2/ 2H

C\H 0C for every H 2H1 and H 0 2H2. We can reason similarly if
every element of A\H�2 lies in H�1 . Otherwise there exist z1 2 A\H�1 \H

C
2 and

z2 2 A\H
C
1 \H

�
2 , and we again have �.x; z1; z2/ 2HC\H 0C for every H 2H1

and H 0 2H2. Let y1 D �.x; z1; z2/ 2 A1.

We proceed inductively. Suppose that we have yi 2 Ai such that yi 2 HC for all
H 2

S
j�iC1Hj . Let ziC2 be any point of A that is separated from yi by HiC2, and

set yiC1 D �.x; yi ; ziC2/. Since x; yi 2HC for every H 2
S
j�iC1Hj , the same is

true of yiC1, and, since yi and ziC2 lie on opposite sides of HiC2, we also have that
yiC1 2H

C for all H 2HiC2.

By this procedure, we obtain yn�1 2 An�1\Hull.A/ that is not separated from x by
any hyperplane of Hull.A/, so we must have yn�1 D x.

In order to apply Lemma 2.17, we focus on contractions on CAT(0) cube complexes.
Recall that a chain of hyperplanes is an ordered sequence .H1; : : : ;Hn/ of pairwise
disjoint hyperplanes such that Hj separates Hi from Hk whenever i < j < k.

Lemma 2.19 Let Q be a CAT (0) cube complex of dimension at most �, and let
ˆ WQ.0/!R be a K 0–quasimedian , .K 0; K 0/–coarsely Lipschitz map (for the `1 met-
ric) with bounded image. There exists an interval Œu; v� of Z and a chain .Hn/u6n6v

of hyperplanes of Q satisfying the following:

� For each vertex x in Q, there exists a unique nD‰.x/ 2 Œu� 1; v� such that

– either u6 n6 v� 1 and x is between Hn and HnC1,

– or nD u� 1 and Hu separates x from HuC1,

– or nD v and Hv separates x from Hv�1.

� For each vertex x in Q, we have jˆ.x/� 4K 0�‰.x/j6 4K 0�.

Proof Fix n 2Z, and consider KnDˆ�1
�
.2An�A; 2An�

�
, where AD 2K 0�. Since

Q.0/ is 1–connected, ˆ.Q.0// is 2K 0–connected. In particular, the set of integers n2Z

such that Kn ¤ ∅ is an interval Œu� 1; v�. Furthermore, for each u 6 n 6 v� 1, we
know that Kn disconnects Q.

In the notation of Lemma 2.18, for all i � 0, if x 2 .Kn/i , then jˆ.x/�ˆ.Kn/j6K 0i .
Indeed, this is clear for i D 0 and, if x 2 .Kn/iC1, so that there exist a; b 2 .Kn/i with
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x D �Q.x; a; b/, then the fact that ˆ is K 0–quasimedian implies that

jˆ.x/��R.ˆ.x/;ˆ.a/;ˆ.b//j �K
0;

yielding the claimed inequality by induction. In particular, Lemma 2.18 tells us that
every x 2 Hull.Kn/ satisfies jˆ.x/�ˆ.Kn/j �K 0�.

As a consequence, if n¤m, then the convex subcomplexes Hull.Kn/ and Hull.Km/
are disjoint. Thus, for each u6 n6 v, there exists a hyperplane Hn of Q that separates
Hull.Kn�1/ from Hull.Kn/ [27, Corollary 1].

For each vertex x 2 Q.0/, let u� 1 6 n 6 v be such that ˆ.x/ 2 .2An� 2A; 2An�.
Then ‰.x/ is equal either to n� 1 or to n. So jˆ.x/� 2A‰.x/j6 2AD 4K 0�.

Before stating the next lemma, we remark that, given any chain H of hyperplanes
in a finite CAT(0) cube complex Q, there is an associated map Q.0/! Z: the cube
complex dual to H is a finite interval of Z, and each vertex ofQ determines a consistent
orientation of the hyperplanes in H. This is a special case of the restriction quotient
described in [25], and it is clearly a median map. Conversely, any 0–contraction on Q
can be realised as restriction quotient in this manner. Moreover, after a translation of Z,
we may assume that the codomain is contained in N if it is bounded.

Lemma 2.20 Let Q be a finite CAT (0) cube complex of dimension at most �. Let C
be a (necessarily finite up to translations of Z) family of 0–contractions on Q, ie each
‰ 2 C is a map Q.0/!N given by a chain .H‰;1; : : : ;H‰;n‰

/ of hyperplanes of Q.
Let �C denote the pseudometric on Q.0/ defined by

�C.˛; ˇ/Dmax
‰2C
j‰.˛/�‰.ˇ/j for all ˛; ˇ 2Q.0/:

Then , for each ˛; ˇ 2 Q.0/ and for each integer 0 6 r 6 �C.˛; ˇ/, there is a vertex
 2 Œ˛; ˇ� and contractions ‰1; ‰2 2 C such that the following hold :

(1) �C.˛; /D r .

(2) �C.˛; /D j‰1.˛/�‰1./j and �C.; ˇ/D j‰2./�‰2.ˇ/j.

(3) If .H1;1; : : : ;H1;n1
/ is the maximal subchain of hyperplanes defining ‰1 that

separate ˛ from  and .H2;1; : : : ;H2;n2
/ is the maximal subchain of hyperplanes

defining ‰2 that separate  from ˇ, then .H1;1; : : : ;H1;n1
;H2;1; : : : ;H2;n2

/ is
a chain.
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Proof Fix ˛; ˇ 2Q.0/ and an integer 0 < r < �C.˛; ˇ/. Since �C is 1–Lipschitz with
respect to the combinatorial distance on Q.0/, we know that there exists  2 Œ˛; ˇ�
such that �C.˛; /D r . Among all possible choices, choose such  as far away from ˛

as possible, in the sense that, for  0 2 Œ˛; ˇ�,

�C.˛; 
0/D r and  2 Œ˛;  0� D)  0 D :

Let ‰2 2 C be such that �C.; ˇ/ D j‰2./�‰2.ˇ/j. Let .H2;1; : : : ;H2;n2
/ be the

maximal subchain of hyperplanes defining ‰2 that separate  from ˇ, numbered from
 to ˇ.

Let H be a hyperplane of Q adjacent to  and either equal to H2;1 or separating
 from H2;1, and let  0 2 Œ˛; ˇ� be the vertex adjacent to  such that H crosses
the edge Œ;  0�. First note that, since H2;1 separates  and ˇ, we deduce that H
separates  and ˇ. Thus, H does not separate ˛ and  , because  2 Œ˛; ˇ�. In particular,
 2 Œ˛;  0�. Since  is chosen as far from ˛ as possible among points at �C–distance
equal to r , and every hyperplane separating ˛ and  separates ˛ and  0, we deduce that
�C.˛; 

0/ > �C.˛; /D r , so �C.˛;  0/D �C.˛; /C 1.

Let ‰1 2 C be such that �C.˛;  0/ D j‰1.˛/�‰1. 0/j. Let .H1;1; : : : ;H1;n1C1/ be
the maximal subchain of hyperplanes defining ‰1 that separate ˛ from  0, numbered
from ˛ to  0. Since �C.˛;  0/ D �C.˛; /C 1, we know that H D H1;n1C1 and that
�C.˛; /D j‰1.˛/�‰1./j. In particular, H is disjoint from H1;1; : : : ;H1;n1

. We
deduce that H separates H1;1; : : : ;H1;n1

from H2;1; : : : ;H2;n2
, and the conclusion

follows.

We can now use these lemmas to prove that, in the setting of Theorem 2.13, the metric �
is weakly roughly geodesic (Definition 2.4).

Proposition 2.21 If .X; �; d/ has quasicubical intervals and is roughly geodesic , then
� is weakly roughly geodesic.

Proof Let a; b 2X. Since X has quasicubical intervals, there exists a finite CAT(0)
cube complex Q (with the `1 metric) of dimension at most � and a map � WQ! Œa; b�

that is a .�; �/–quasi-isometry and a �–quasimedian homomorphism. We can therefore
fix ˛; ˇ2Q such that d.�.˛/; a/6� and d.�.ˇ/; b/6�. According to Proposition 2.16,
there is a constant q � 1 such that d and � are .q; q/–quasi-isometric. It follows that
�.�.˛/; a/� q.�C 1/ and �.�.ˇ/; b/� q.�C 1/.
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For eachK–contraction ˆ WX!R, the composition ˆ� WQ!R is aK 0–quasimedian,
.K 0; K 0/–coarsely Lipschitz map, where K 0 D K C �. According to Lemma 2.19,
there exists a 0–contraction ‰ WQ! Z such that jˆ�.�/� 4K 0�‰.�/j6 4K 0� for all
� 2Q.0/. Let C denote the set of all 0–contractions ‰ WQ!Z such that there is some
K–contraction ˆ WX ! Z with jˆ�.�/� 4K 0�‰.�/j6 4K 0� for all � 2Q.0/.

We shall prove that � is weakly roughly geodesic with constant

C 0� D 64K
0�C 4q.�C 1/C 4�C 4KC 2D;

where D is the constant from Lemma 2.17.

Let r 2 Œ0; �.a; b/�. If r < C 0� , then clearly we can take c D a for the desired point.
Similarly, if r > �.a; b/ � C 0� , then we can take c D b. Otherwise, Lemma 2.20,
applied to ˛, ˇ, the family C and r 0 D br=4K 0�c, provides a vertex  2 Œ˛; ˇ� and
0–contractions ‰1; ‰2 2 C. Let c D �./ 2 Œa; b�.

Let us start by computing �.a; c/. By definition of the set C, for any K–contraction
ˆ W X ! R there is some ‰ 2 C (and, conversely, for any ‰ 2 C there exists a K–
contraction ˆ) such thatˇ̌
jˆ�.�/�ˆ�.�/j�4K 0�j‰.�/�‰.�/j

ˇ̌
�
ˇ̌
jˆ�.�/�4K 0�‰.�/jCjˆ�.�/�4K 0�‰.�/j

ˇ̌
� 8K 0�

holds for all �; � 2Q.0/. It follows that

(1) j�.�.�/; �.�//� 4K 0��C.�; �/j6 8K 0�:

By the choice of  , we have �C.˛; /D r 0. Thus, from (1) we obtain

j�.a; c/� r j � j�.�.˛/; �.//� 4K 0�r 0jC q.�C 1/C 4K 0�

� 12K 0�C q.�C 1/� C 0� :

The aim for the rest of the proof is to confirm the second restriction on c, namely that
�.a; c/C �.c; b/� �.a; b/CC 0� . The strategy is to apply Lemma 2.17.

Recall that ‰1; ‰2 2 C are the 0–contractions provided by Lemma 2.20: they sat-
isfy �C.˛; / D j‰1.˛/�‰1./j D r 0 and �C.; ˇ/ D j‰2./�‰2.ˇ/j D s0. After
translations of Z, we may also assume that ‰1.˛/ D 0, ‰1./ D ‰2./ D r 0 and
‰2.ˇ/ D r 0 C s0. By definition of C, there exist K–contractions ˆ1 and ˆ2 on X
such that jˆ1�.�/� 4K 0�‰1.�/j 6 4K 0� and jˆ2�.�/� 4K 0�‰2.�/j 6 4K 0� for all
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� 2 Q.0/. In particular, ˆ1.a/ � ˆ1�.˛/C � CK � 4K 0� C � CK. Moreover, by
using (1) we see that

ˆ2.b/� 4K
0�.r 0C s0/� 4K 0� � � �K

D 4K 0�.�C.˛; /C �C.; ˇ//� 4K
0� � � �K

� �.�.˛/; �.//C �.�./; �.ˇ//� 16K 0� � 4K 0� � � �K

� �.a; c/C �.c; b/� 20K 0� � 2q.�C 1/� � �K:

We are now in the setting of Lemma 2.17, with E D 20K 0� C 2q.� C 1/C � CK
and with the image of ˆ2 bounded above by �.a; c/C �.c; b/. Let us show that the
assumptions of the lemma are met if we take t D 12K 0�C �CK.

We must first note that r �DCK �E � C 0� �DCK �E � t , and secondly that
�.a; c/C�.c; b/�r�DCK�E � �.a; b/�r�DCK�E �C 0� �DCK�E � t .

It remains to prove that the subspaces Z1 D fz 2 X j ˆ1.z/ 6 r � t � Kg and
Z2 D fz 2X jˆ2.z/> rC tCKg are disjoint. Fix z 2X, let x D �.z; a; b/ and pick
any � 2Q.0/ such that d.�.�/; x/6 �.

If z 2 Z1, so that ˆ1.x/ 6 ˆ1.z/CK � r � t , then ˆ1.�.�// 6 r � t C �CK, and
hence

‰1.�/6
r � t C �CKC 4K 0�

4K 0�
6
r � 8K 0�

4K 0�
6 r 0� 1:

Similarly, if z 2Z2, then ‰2.�/> r 0C 1.

According to property (3) of Lemma 2.20, the halfspace of H‰1;r 0 containing ˛ is
disjoint from the halfspace of H‰2;1 containing ˇ. Thus, if � 2Q.0/, then we cannot
simultaneously have both ‰1.�/6 r 0� 1 and ‰2.�/> r 0C 1. As a consequence, we
cannot have both z 2Z1 and x 2Z2. This implies that Z1\Z2 D∅.

The conditions of Lemma 2.17 are therefore met, and, by applying it, we deduce that
�.a; b/� �.a; c/C�.c; b/�2t �2D�2E D �.a; c/C�.c; b/�C 0� . This completes
the proof that � is weakly roughly geodesic with constant C 0� .

2.5 Coarse convexity of balls

To complete the proof of Theorem 2.13, it remains to show that balls in .X; �/ are
uniformly coarsely median convex.
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Lemma 2.22 There is a constant � > 0 such that , for any x; y; z 2X with x 2 Œy; z�,
we have d.x; �.x; y; z//� �.

Proof According to [19, Lemma 8.1], there are constants r0 and r 00 such that x lies
at distance at most r 00 from a point x0 with d.x0; �.x0; y; z// � r0. Since the coarse
median � is coarsely Lipschitz, d.�.x; y; z/; �.x0; y; z// 6 h.0/d.x; x0/C h.0/ �

h.0/.r 00C1/. We deduce that d.x; �.x; y; z//� �, where �D r 00Cr0Ch.0/.r
0
0C1/.

Lemma 2.23 Suppose that .X; �; d/ has quasicubical intervals and is roughly ge-
odesic. There is a constant M such that each ball in .X; �/ is M–coarsely median
convex.

Proof Fix w 2 X and R > 0. Let y; z 2 B� .w;R/. Given any a 2 X, we want to
bound the distance from x D �.a; y; z/ to B� .w;R/.

Let r < �.w; x/ and let ˆ W X ! Œ0; r� be a K–contraction such that ˆ.w/ D 0 and
ˆ.x/� r . Lemma 2.22 tells us that d.�x;y;z; x/6 �, so jˆ.�x;y;z/�ˆ.x/j � �CK.
Since ˆ is a K–quasimedian homomorphism,

�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ.�x;y;z/�K �ˆ.x/� �� 2K � r � �� 2K:

This means that one of ˆ.y/ and ˆ.z/ must be at least r � �� 2K, and so �.w; x/6
maxf�.w; y/; �.w; z/gC �C 2K.

This proves that x 2 B� .w;RC �C 2K/. According to Proposition 2.21, � is weakly
roughly geodesic with constant C 0� . Applying Definition 2.4 with aDw, bDx and rD
minfR�C 0� ; �.w; x/g yields a point x02B� .w;R/with d.x0; x/� �C2KC3C 0� DM,
which shows that balls in .X; �/ are M–coarsely median convex.

3 Quasiconvexity and a coarse Helly property in HHSs

The goal of this section is to prove that hierarchically quasiconvex subsets of hier-
archically hyperbolic spaces satisfy a coarse version of the Helly property. Since
coarsely median convex subsets of a hierarchically hyperbolic space are hierarchically
quasiconvex [71, Proposition 5.11], this applies in particular to balls for the metric �
constructed in Section 2, by Theorem 2.13, allowing us to deduce Theorem A. We
also deduce the bounded packing property for hierarchically quasiconvex subgroups of
groups that are HHSs.
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3.1 Background on hierarchical hyperbolicity

Here we give a description of hierarchically hyperbolic spaces (HHSs) and hierarchically
hyperbolic groups (HHGs). For full definitions, see [13, Definitions 1.1 and 1.21].
Briefly, an HHS consists of a quasigeodesic space .X; d/, a constant E and a set S,
elements of which are called domains. Each domain U has an associated E–hyperbolic
space CU, and the various axioms give structure for extracting information about X
from these hyperbolic spaces. This includes:

� Each domain U has an associated E–coarsely onto, .E;E/–coarsely Lipschitz
projection map �U WX ! CU.

� S has a partial order @, called nesting, and a symmetric relation ?, called
orthogonality. If U @ V and V?W, then U?W. The relations Ĺ, ? and D are
mutually exclusive, and their complement, denoted by t, is called transversality.

� There is a bound on the size of Ĺ–chains and pairwise orthogonal sets.

� If U Ĺ V or U t V, then there is a set �UV � CV of diameter at most E.

� If U Ĺ V, then there is also a map �VU W CV ! CU. If  � CV is a geodesic and
dCV .; �

U
V / > E, then diam �VU ./6E.

This last point is referred to as bounded geodesic image. For x; y 2X, it is standard
to write dU .x; y/ in place of dCU .�U .x/; �U .y//, and similarly for subsets of X.
Moreover, we can always assume that X and the associated hyperbolic spaces are
graphs (for example by [33, Lemma 3.B.6]). In particular, we can and shall assume
that X and the CU are geodesic.

We say that X admits an HHS structure if there is an HHS whose underlying metric
space is X, and we write .X;S/ as shorthand for the entirety of a choice of HHS
structure. An HHG is a finitely generated group G whose Cayley graph admits an HHS
structure .G;S/ such that G acts cofinitely on S and elements of G induce isometries
CU ! CgU for all U 2S. (There are a couple of other natural regulatory assumptions
that we shall not concern ourselves with here.)

The idea behind two domains being orthogonal is that one can see a direct product of
associated sub-HHSs inside X. This is made precise by the partial realisation axiom.

Axiom (partial realisation) If fUig is a set of pairwise orthogonal domains, then, for
any choice of points pi 2 CUi , there is some x 2X with dUi

.x; pi /�E for all i , and
with dV .x; �

Ui

V /�E whenever Ui Ĺ V or Ui t V.

Geometry & Topology, Volume 27 (2023)



Coarse injectivity, hierarchical hyperbolicity and semihyperbolicity 1615

In fact, one of the main tools for dealing with HHSs is the realisation theorem [13,
Theorem 3.1], which extends the partial realisation axiom. Roughly, it says that any
consistent tuple is well approximated by the projections of some point in X. In other
words, performing constructions in X can be reduced to performing constructions in
the associated hyperbolic spaces and checking that the points produced by this process
are consistent.

Definition 3.1 (consistent tuple) For a constant � >E, a tuple .bU / 2
Q
U2S CU is

said to be �–consistent if

minfdU .bU ; �VU /; dV .bV ; �
U
V /g6 � whenever U t V

and
minfdV .bV ; �UV /; diam.bU [ �VU .bV //g6 � whenever U Ĺ V:

Axiom (consistency) For any x 2X, the tuple .�U .x//U2S is E–consistent.

It will be useful to be able to talk about consistency for subsets of S. Given u 2 CU
and v 2 CV, we say that u and v satisfy the consistency inequalities for U and V if

� U t V and minfdU .u; �VU /; dV .v; �
U
V /g �E, or

� (after relabelling) U Ĺ V and min
˚
dV .v; �

U
V /; diam.fug[ �VU .v//

	
�E.

Let us now state the realisation theorem, which will be the mechanism for our proof of
Theorem 3.5. We shall only need the existence part.

Theorem 3.2 (realisation [13, Theorem 3.1]) For each � � E, there are numbers
�e.�/ and �u.�/ such that , if .bU /U2S is a �–consistent tuple , then there is some
x 2 X with dU .x; bU / � �e.�/ for all domains U. Moreover , the set of such x has
diameter at most �u.�/.

A key application of the realisation theorem is for the construction of a coarse median
operation for HHSs. Given three points x, y and z in an HHS .X;S/, let .mU /U2S
be the tuple whose U –entry is the median of the triple .�U .x/; �U .y/; �U .z// in
the hyperbolic space CU. This tuple is consistent [13, Theorem 7.3], so we define
�.x; y; z/ to be a point obtained by applying the realisation theorem to the tuple .mU /.
(One also needs Proposition 10.1 of Bowditch [17] to conclude that .X; �; d/ is a
coarse median space.) When X is an HHG, one can arrange for � to be equivariant.
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The action on the index set is what distinguishes HHGs from groups that are HHSs,
and this turns out to be an important distinction. For example, the property of being an
HHS is invariant under quasi-isometries, but there are groups that are virtually HHGs
but not HHGs themselves. Indeed, the .3; 3; 3/ triangle group is virtually abelian, but,
as mentioned in the introduction, it is not coarsely injective [50], and it therefore cannot
be an HHG by Corollary H. A more direct proof, not relying on the results of this paper,
is given in [66]. On the other hand, any group that is an HHS can be equipped with a
coarse median [13], but this may fail to be equivariant if the structure is only an HHS
structure.

A related notion that is closed under taking subgroups is that of a group that acts on an
HHS .X;S/ by HHS automorphisms. In other words, it acts on X isometrically and
on S with the regulatory assumptions alluded to above, but the action on S need not
be cofinite. The median is still equivariant for such actions.

In the theory of hyperbolic spaces, an important class of subsets are the quasiconvex
subsets, because they inherit the structure of the ambient space. The natural analogue in
the setting of hierarchical hyperbolicity is that of a hierarchically quasiconvex subset.

Definition 3.3 (hierarchical quasiconvexity) A subset Y of an HHS .X;S/ is said to
be hierarchically quasiconvex if there is a function k such that every �U .Y / is k.0/–
quasiconvex and, if x 2X has dU .x; Y /6 r for all U 2S, then dX .x; Y /6 k.r/.

We finish this section with some examples.

All hyperbolic groups are hierarchically hyperbolic, as are the (extended) mapping class
groups of finite-type surfaces [11]; Teichmüller space with either of the standard met-
rics [11]; many graphs defined from curves on surfaces, including the pants graph [76];
quotients of mapping class groups by powers of pseudo-Anosovs [10] and Dehn-twist
subgroups [9]; extensions of Veech groups [35]; the genus-two handlebody group [31];
fundamental groups of closed 3–manifolds without Nil or Sol components [13]; right-
angled Artin groups [11]; and, in fact, all known cubical groups [48]. Aside from the
extensions of Veech groups and some 3–manifold groups, the groups listed here are all
known to be HHGs, not merely HHSs.

There are also various ways to combine HHSs and HHGs to produce new ones. For
example, both classes are closed under relative hyperbolicity [13], any graph product
of HHGs is an HHG [16], and many graphs of groups are HHGs [13; 15; 68].
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3.2 Coarse injectivity

Here we prove our result on hierarchically quasiconvex subsets of an HHS and deduce
that HHSs are coarsely injective when equipped with the metric � from Section 2. We
then deduce that every HHG acts properly cocompactly by isometries on a coarsely
injective space.

We shall make use of the following powerful result for hyperbolic spaces. The version
stated here is a combination of [29, Lemma 5.1] and the proof of [29, Theorem 5.1].
It states in particular that quasiconvex subsets of a hyperbolic graph satisfy a coarse
version of the Helly property. Throughout this section, we say that subsetsZ1 andZ2 of
a metric space .X; d/ are r–close if there exist z1 2Z1 and z2 2Z2 with d.z1; z2/� r .

Theorem 3.4 [29] The following holds for any nonnegative constants E, r and k0:
Let Y be an E–hyperbolic graph and let y be a vertex of Y. Suppose that Q is a
collection of pairwise 2Er–close k0–quasiconvex subsets of Y .0/ with the property
that fd.y;Q/ WQ 2Qg is bounded. By discreteness , we can fix Q 2Q with d.y;Q/
maximal. Let z 2 Q have d.y; z/ D d.y;Q/, and let c be the point on a geodesic
Œy; z� with d.c; z/ D minfEr; d.y; z/g. Then d.c;Q0/ 6 r 0 for all Q0 2 Q, where
r 0 Dmaxf2k0C 5E;Er C k0C 3Eg.

The strength of this theorem is twofold. Firstly, the constant r 0 is independent of
the size of the set Q— a statement with this independence does not seem to appear
elsewhere in the geometric group theory literature. The second strength is that the
construction of the point c is both completely explicit and allows for a lot of flexibility
in the choice of y. Observe that the condition that fd.y;Q/ WQ 2 Qg is bounded is
satisfied automatically if any Q 2Q is bounded.

We will now prove that hierarchically quasiconvex subsets of a hierarchically hyperbolic
space satisfy a coarse version of the Helly property.

Theorem 3.5 (coarse Helly property) Let .X;S/ be an HHS with constant E, and
let Q be a collection of k–hierarchically quasiconvex subsets of X such that either Q is
finite or Q contains an element with bounded diameter. Suppose that there is a constant r
such that any two elements of Q are r–close. There is a constant RDR.E; k; r/ such
that there is a point x 2X with d.x;Q/6R for all Q 2Q.
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Proof Let us say that a domain U begets a domain V if either U t V or U Ĺ V. If U
begets V, then there is a well-defined bounded set �UV .

Let U D fU1; : : : ; Ung be a maximal collection of pairwise orthogonal, nest-minimal
domains. Note that we may choose U arbitrarily. For any domain V 2SX U , there
is some i such that Ui begets V. By [37, Lemma 1.5], for any domain V 2 S, we
have dV .�

Ui

V ; �
Uj

V / 6 2E whenever Ui and Uj both beget V. Moreover, recall that
diam �

Ui

V 6 E. At the cost of increasing the hierarchical hyperbolicity constant to at
most 10E, we can therefore perturb the HHS structure to assume that every �Ui

V is a
singleton, and that �Ui

V D �
Uj

V whenever both Ui and Uj beget V. We write �UV for the
singleton

�UV D
[

fi WUi begets V g

�
Ui

V :

As mentioned, the construction of U ensures that the point �UV exists for all V 2SXU.

We are free to assume that if r > 0 then r > 1. Thus, by definition of hierarchical
quasiconvexity and the fact that projection maps are .E;E/–coarsely Lipschitz, for
any domain V, the sets �V .Q/ for Q 2Q are pairwise 2Er–close and k0–quasiconvex,
where k0 D k.0/. We assumed that Q either is finite or it contains an element with
bounded diameter, so, for any point y2X and any domain V, the set fdV .y;Q/ WQ2Qg
is bounded. Let r 0 be as in the statement of Theorem 3.4. That theorem now allows
us to choose, for each U 2 U , a point bU in CU with dU .bU ;Q/ 6 r 0 for all Q 2Q.
For any other domain V, let bV be the point of CV obtained by applying Theorem 3.4
in the hyperbolic graph CV, with quasiconvex subsets f�V .Q/ WQ 2Qg and starting
vertex �UV .

Claim The tuple .bV /V 2S is .r 0C7ECEr/–consistent.

Proof Suppose that W begets V and dV .�WV ; �
U
V /6 2E. Assume that dV .bV ; �WV / >

r 0 C 7E C Er . By the construction of bV , there exists some Q 2 Q such that
dV .bV ;Q/6Er . As a consequence,

dV .Q; �
W
V /� dV .bV ; �

W
V /� dV .bV ;Q/� diam �WV > r 0C 6E:

If W t V, then �W .Q/ is contained in the E–neighbourhood of �VW by consistency
for elements of Q. In particular, dW .�VW ; bW /6 r 0CE as bW is r 0–close to �W .Q/.
If W Ĺ V, then, since �V .Q/ is k0–quasiconvex and r 0C 6E > k0C 6E, bounded
geodesic image and consistency show that the set �VW .�V .Q// has diameter at most E,
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and its E–neighbourhood contains �W .Q/. Moreover, its E–neighbourhood contains
�VW .bV / by bounded geodesic image, as witnessed by the geodesic used to construct bV .
Thus,

diam.bW[�VW .bV //6dW .bW ;Q/Cdiam�W .Q/CdW .Q; �
V
W .bV //Cdiam �VW .bV /

6r 0C3EC3ECE

Dr 0C7E:

The above paragraph will be referred to as .�/ for the rest of the proof of the claim.
We split the checking of the consistency inequalities for pairs .V;W / of domains into
three cases.

Case 1 (W 2 U begets V ) In this case, �WV D �
U
V , so we are done by .�/.

Case 2 (there is some U 2 U that begets both V and W ) Proposition 1.8 of [13]
states that, if W begets V, then �UV and �UW satisfy the consistency inequalities for V
and W. Consequently, by .�/, the only case we need to check here is when U tW,
W Ĺ V and diam.�UW [�

V
W .�

U
V //6 2E. Assuming that dV .�WV ; bV / > r

0C7ECEr ,
there are two possibilities, depending on the location of �UV .

If there is a geodesic Œ�UV ; bV � that is disjoint from the E–neighbourhood of �WV ,
then diam.�VW .�

U
V /[ �

V
W .bV //6E, so dW .�UW ; �

V
W .bV //6 3E. Moreover, for each

Q 2 Q there is some q 2Q such that any geodesic ŒbV ; �V .q/� is disjoint from the
E–neighbourhood of �WV . In particular, �VW .bV / is 2E–close to each �W .q/, and hence
�UW is 5E–close to each �W .Q/. Since bW lies on a shortest geodesic between �UW
and some �W .Q/, we get that dW .bW ; �UW /6 5E, and so bW is 8E–close to �VW .bV /.

Otherwise, every geodesic Œ�UV ; bV � meets the E–neighbourhood of �WV . By construc-
tion of bV , there exists Q 2Q such that dV .�WV ;Q/ > .r

0C 7ECEr/CEr � 2E D

r 0C5EC2Er . By the same argument as in .�/, we now get that �VW .bV / is 3E–close
to �W .Q/, which has diameter at most 3E. Hence, diam.bW [ �VW .bV //6 r 0C 7E.

Case 3 (no Ui begets both V and W, and neither V nor W is in U) After relabelling,
we can assume that U1 begets V and U2 begetsW. Since U1 does not begetW, we have
U1?W, and, similarly, U2?V. In particular, the only case that needs checking is when
V tW. The partial realisation axiom applied to any points p1 2 CU1 and p2 2 CU2
provides a point z 2X such that dV .z; �

U1

V /6E and dW .z; �
U2

W /6E. By consistency
for z, either dV .�WV ; �

U1

V /6 2E or dW .�VW ; �
U2

W /� 2E. We are done by .�/. G

In light of the claim, Theorem 3.2 provides a point x 2 X such that dV .x; bV / 6
�e.r

0 C 7E C Er/ for all V 2 S. By construction of the points bV , we have that
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dV .x;Q/6 r 0C �e.r
0C 7ECEr/ for all Q 2Q. Hierarchical quasiconvexity of Q

now tells us that x is k.r 0C�e.r 0C7ECEr//–close to Q for all Q 2Q.

It is worth noting that the proof of Theorem 3.5 gives flexibility of a similar kind to
that in Theorem 3.4. Indeed, we are free in our choice of U and, once this is chosen,
we apply the Chepoi–Dragan–Vaxès construction in each of the hyperbolic spaces
associated with U , without restriction on the choice of starting point therein. We shall
not need to make use of this in the present paper.

Corollary 3.6 If X is an HHS , then .X; �/ is coarsely injective , and hence roughly
geodesic.

Proof By Proposition 2.12, the geodesic coarse median space .X; �; d/ has quasi-
cubical intervals, so Theorem 2.13 tells us that the metric � is weakly roughly geodesic
on X, that it is quasi-isometric to d and that �–balls are uniformly coarsely median
convex. Let fB� .xi ; ri / W i 2 I g be a family of balls in .X; �/ with the property that
�.xi ; xj / � ri C rj for all i; j 2 I. Since � is weakly roughly geodesic, there is a
constant ı, independent of the family of balls, such that the balls B� .xi ; riCı/ intersect
pairwise.

Let Bi be the image of the ball B� .xi ; ri C ı/ under the identity quasi-isometry
.X; �/ ! .X; d/. The Bi are uniformly coarsely median convex, and so they are
uniformly hierarchically quasiconvex by [71, Proposition 5.11]. They also intersect
pairwise, and each is bounded, so Theorem 3.5 produces a point at uniformly bounded
d–distance from each Bi . As d and � are quasi-isometric, this point is at uniformly
bounded �–distance from each B� .xi ; ri C ı/. Thus, .X; �/ is coarsely injective.

Since any injective space is geodesic, we deduce that the coarsely injective metric
space .X; �/ is not merely weakly roughly geodesic, but actually roughly geodesic, as
it is coarsely dense in its injective hull.

Usually it really is necessary to change the metric: Example 5.13 of [26] shows that
Z3 with the standard `1 metric is not coarsely injective, though it is an HHG.

We now explain how to deduce the existence of a bicombing from work of Lang. See
Section 1.3 for the definitions of roughly conical and roughly reversible bicombings.

Corollary 3.7 If .X;S/ is an HHS , then .X; �/ admits a roughly conical , roughly
reversible bicombing by rough geodesics that is coarsely equivariant under the automor-
phism group of .X;S/.
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Proof According to Corollary 3.6, the metric space .X; �/ is coarsely injective, so it
is D–coarsely dense in its injective hull for some D. A construction of Lang shows that
every injective metric space E admits a conical, reversible, geodesic, IsomE–invariant
bicombing  0 [60]. TakeEDE..X; �//. For each a; b2X and t 2 Œ0; 1�, define a;b.t/
as any point ofX at distance at mostD from  0

a;b
.t/. Since .t/ is at uniform distanceD

from  0.t/, we deduce that  is a bicombing on .X; �/ with the listed properties.

Note that, if the action of the automorphism group of .X;S/ on X is free, then the
bicombing may be chosen to be actually equivariant.

Let us now discuss the consequences of our construction for HHGs.

Corollary 3.8 If G is an HHG , then G admits a proper , cocompact , isometric action
on the coarsely injective space .G; �/.

Proof .G; �/ is coarsely injective by Corollary 3.6. Since the median is equivariant in
an HHG, Lemma 2.10 tells us that the action is isometric. Properness and cocompactness
follow from Proposition 2.16.

Remark 3.9 In fact, we do not quite need to assume that we have a hierarchically
hyperbolic group in Corollary 3.8: we only need a proper cocompact action by median
isometries on an HHS. In fact, cocompactness can be relaxed to coboundedness for the
sake of the applications in this paper. For example, it would be sufficient to assume
that G is a group acting properly coboundedly by HHS automorphisms on an HHS.
The consequences for HHGs listed here and in the introduction therefore apply in this
generality.

The next lemma is a modified version of [26, Proposition 6.7], in which the assumption
that the hull is proper has been dropped.

Lemma 3.10 If a group G acts properly coboundedly on a coarsely injective space X,
then G acts properly coboundedly on the injective hull E.X/. In particular , every HHG
admits a proper , cobounded action on an injective space.

Proof There is an induced action of G on E.X/ and the isometric embedding e WX!
E.X/ is equivariant with respect to this induced action [60, Proposition 3.7]. To
simplify notation, we identify the points of X with their images under e and thus
identify X with E.X/. The Hausdorff distance between X and E.X/ is bounded
by some constant D, so the action of G on E.X/ is cobounded. For properness, let
Y �E.X/ be bounded and let Y 0Dfx 2X Wd.Y; x/6Dg¤¿. Since e is an isometric
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embedding, Y 0 is bounded. If g 2G has gY \Y ¤¿, then pick y 2 Y with gy 2 Y
and let x 2X have d.y; x/6D. Then d.gy; gx/6D, so gx is D–close to Y. That is,
gY 0\Y 0 ¤¿, so, since Y 0 is bounded and the action of G on X is proper, there are
only finitely many such g. The final sentence follows from Corollary 3.8.

Next we strengthen Corollary 3.7 in the case of HHGs. In particular, this applies to
(extended) mapping class groups of finite-type surfaces.

Corollary 3.11 If G is an HHG , then G is semihyperbolic.

Proof By Lemma 3.10, G acts properly coboundedly on an injective space E. Every
orbit map G!E is a G–equivariant quasi-isometry. By [60, Proposition 3.8], E has
a G–invariant, bounded, geodesic bicombing in the sense of [4]. As the action of G on
itself is free, it is semihyperbolic by [4, Theorem 4.1].

Corollary 3.12 If G is an HHG , then G has finitely many conjugacy classes of finite
subgroups.

Proof By Lemma 3.10, G acts properly coboundedly on an injective space E. Let
x 2E and let r be a constant such that G �x is r–coarsely dense in E. Let F be a finite
subgroup of G. By [60, Proposition 1.2], there is a point z 2E that is fixed by F, and
hence F fixes the ball B.z; r/ in E, which contains a point of G � x. It follows that a
conjugate of F fixes a point in B.x; r/, and we are done by properness of the action.

3.3 Packing subgroups

Here we describe the application to bounded packing mentioned in the introduction.
Following Hruska and Wise [53], we say that a finite collection H of subgroups of a
discrete group G has bounded packing in G if for each N there is a constant r such
that, for any collection of N distinct cosets of elements of H, at least two are separated
by a distance of at least r (with respect to some left-invariant, proper distance). If H
consists of a single subgroup H, then we say that H has bounded packing in G.

Corollary 3.13 If H is a finite collection of hierarchically quasiconvex subgroups of a
group G that is an HHS , then H has bounded packing in G.

Proof By Theorem 3.5, any finite collection of cosets of elements of H that are
pairwise r–close must all come R–close to a single point x 2G. In other words, they
all intersect the R–ball about x. Since distinct cosets of a given subgroup are disjoint
and balls in G are finite, this bounds the size of the collection of cosets.

Geometry & Topology, Volume 27 (2023)



Coarse injectivity, hierarchical hyperbolicity and semihyperbolicity 1623

In the case of quasiconvex subgroups of hyperbolic groups, one can use Theorem 3.4
in place of Theorem 3.5 in this argument to provide a new, simpler proof of bounded
packing. This type of argument is also implicit in [47, Remark 4.4 and Corollary 4.5],
though the coarse Helly property for quasiconvex subgroups of hyperbolic groups is
established in a much less efficient way there.

Previous proofs of this result work by induction on the height of subgroups. However,
this line of reasoning does not generalise outside the setting of strict negative curvature;
indeed, no subgroup of a flat can ever have finite height. Moreover, Theorems 3.4
and 3.5 are purely geometric: there is no group action involved. It therefore seems
that the most natural way to establish bounded packing for quasiconvex subgroups of
hyperbolic groups is via the Chepoi–Dragan–Vaxès theorem as described above.

If a group G has a codimension-1 subgroup H, then Sageev’s construction yields an
action of G on a CAT(0) cube complex, and, if the conjugates of H satisfy the coarse
Helly property, then it follows that the action of G on the CAT(0) cube complex is
cocompact [72]. This raises the following question:

Question Does the mapping class group have property FW1, ie does any action of
the mapping class group on a finite-dimensional CAT (0) cube complex have a fixed
point?

Note that property FW1 is intermediate between having no virtual surjection onto Z and
Kazhdan’s property (T). There are known restrictions on what an action of the mapping
class group on a CAT(0) cube complex could look like. Indeed, the mapping class group
of a surface of genus at least three does not admit a properly discontinuous action by
semisimple isometries on a complete CAT(0) space [58; 24; 22], nor, more specifically,
does it act properly on a CAT(0) cube complex (even an infinite-dimensional one) [44].

More generally, in relationship with property (T) and the Haagerup property, the
existence of nontrivial actions of the mapping class group on various generalisations
of CAT(0) cube complexes remains mysterious, for example median spaces, Hilbert
spaces, CAT(0) spaces, and Lp spaces. The coarse version of the Helly property
established here may prove useful in the study of such actions.

4 Strong shortcut property

In this section we will prove that coarsely injective spaces of uniformly bounded
geometry are strongly shortcut. Recall that a metric space has uniformly bounded
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geometry if, for any r > 0, there exists a uniform N.r/ 2 N such that every ball of
radius r contains at most N.r/ points.

A Riemannian circle S is S1 endowed with a geodesic metric of some length jS j. A
roughly geodesic metric space .X; �/ is strongly shortcut if there existsK >1 such that
for any C >0 there is a bound on the lengths jS j of .K;C /–quasi-isometric embeddings
S ! X of Riemannian circles S in .X; �/ [51]. A group G is strongly shortcut if it
acts properly and coboundedly on a strongly shortcut metric space [52; 51].

We will now give a brief description of the injective hull construction of Isbell [57],
which was later rediscovered by Dress [36] and Chrobak and Larmore [32]. For a nice
discussion on this construction, see Lang [60]. Let .X; �/ be a metric space. A radius
function on X is a function f WX !R�0 for which

�.x; y/� f .x/Cf .y/

for every x; y 2X. A radius function f WA!R�0 on any subspace of A�X is called
a partial radius function on X. If f; g W X ! R�0 are two radius functions, then f
dominates g if f .x/� g.x/ for all x 2X. A radius function f WX !R�0 is minimal
if the only radius function it dominates is itself.

If f W A! R�0 is a partial radius function on X, then there exists a minimal radius
function g W X !R�0 such that gjA is dominated by f. For any x 2 X, the function
�. � ; x/ is a minimal radius function. If f; g W X ! R�0 are two minimal radius
functions, then

jf �gj1 D sup
x2X

jf .x/�g.x/j

is finite. The set of minimal radius functions on X, with metric given by dE.X/.f; g/D
jf � gj1, is the injective hull E.X/ of X. The isometric embedding e W X ,! E.X/

sends x 2X to the minimal radius function e.x/ W y 7! �.x; y/ and, for any x 2X and
f 2E.X/, we have dE.X/.e.x/; f /D f .x/.

Lemma 4.1 Let .X; �/ be a metric space. Let g W X ! R�0 be a minimal radius
function , let Nf WX !R�0 be a radius function and let f WX !R�0 be any minimal
radius function dominated by Nf. Then jg�f j1 � jg� Nf j1.

Proof Let y2X. Then f .y/� Nf .y/�g.y/Cjg� Nf j1 and so f .y/�g.y/�jg� Nf j1.
It remains to prove that g.y/�f .y/� jg� Nf j1. By minimality of g, for any � > 0,
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there exists z 2 X for which g.y/C g.z/ < �.y; z/C �. Then, since f is a radius
function dominated by Nf,

f.y/��.y; z/�f.z/��.y; z/� Nf.z/��.y; z/�g.z/�jg� Nf j1>g.y/���jg� Nf j1

and so g.y/�f .y/ < jg� Nf j1C �, which completes the proof since we chose � > 0
arbitrarily.

Theorem 4.2 Let .X; �/ be a coarsely injective metric space. If .X; �/ has uniformly
bounded geometry, then .X; �/ is strongly shortcut.

Proof In order to prove this theorem, we will show that, for some uniform radius
r , a .K;C /–quasi-isometric embedding of a Riemannian circle S ! X implies the
existence of a “centre” point x such that the cardinality of the ball B.x; r/ is bounded
below by an expression that tends to infinity as K approaches 1 and jS j approaches
infinity. If X is not strongly shortcut, then, for any K > 1, it will admit .K;CK/–quasi-
isometric embeddings of arbitrarily long Riemannian circles, so that we would then
contradict the uniformly bounded geometry assumption.

Let X ! E.X/ be the embedding of .X; �/ into its injective hull and view this
embedding as an inclusion of a subspace. By Proposition 1.1, the subspace X is
ı–coarsely dense in E.X/ for some ı > 0. So there is a retraction r WE.X/!X such
that r is a .1; 2ı/–quasi-isometry.

Let � W S ! X be a .K;C /–quasi-isometric embedding of a Riemannian circle. Let
f 00 W �.S/! R�0 be the constant function taking the value K � 1

4
jS j CC. Then f 00

is a radius function on �.S/�X. Let f 0 W �.S/!R�0 be a minimal radius function
on �.S/ dominated by f 00. Then, for each x 2 �.S/ and each � > 0, there exists a
y 2 �.S/ for which f 0.x/Cf 0.y/ < �.x; y/C�. Since f 0 is a partial radius function
on X, we can let f W X ! R�0 be a minimal radius function on X dominated by f 0.
Then f is a point of E.X/, by definition of E.X/. Moreover, if x 2 �.S/, then
dE.X/.f; x/D f .x/� f

0.x/� f 00.x/DK � 1
4
jS jCC, so, if Ns is the antipode in S of

any element of s 2 ��1.x/, then

dE.X/.x; �.Ns//D dE.X/.�.s/; �.Ns//�
1

K
dS .s; Ns/�C D

jS j

2K
�C

and

dE.X/.x; �.Ns//� dE.X/.x; f /C dE.X/.f; �.Ns//D f .x/Cf .�.Ns//

� f .x/CK � 1
4
jS jCC;
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so that f .x/ � jS j=2K �K � 1
4
jS j � 2C D ..2�K2/=4K/jS j � 2C. Thus, we have

shown that
2�K2

4K
jS j � 2C � f .x/�K � 1

4
jS jCC

for any x 2 �.S/.

For x; y 2X, let `x;y D f .x/Cf .y/� �.x; y/. Since f is dominated by f 0, and f 0

is a minimal radius function on �.S/, for each x 2 �.S/ and each � > 0 there exists
y 2 �.S/ such that `x;y < �. Moreover, for a; b 2 S,

2�K2

2K
jS j � 4C � f .�.a//Cf .�.b//

D �.�.a/; �.b//C `�.a/;�.b/

�KdS .a; b/CC C `�.a/;�.b/
and so

dS .a; b/�
2�K2

2K2
jS j �

`�.a/;�.b/C 5C

K
:

Claim Let x 2 �.S/. There exists a sequence of minimal radius functions .f kx WX !
R�0/k , where k ranges in f0; 1; : : : ;Mxg, such thatMx Dbf .x/=ıc and the following
properties hold for all k, k0 and y:

(1) f 0x D f.

(2) dE.X/.f
k
x ; f

k0

x /D ıjk� k
0j.

(3) f .y/C kı� `x;y � f
k
x .y/� f .y/Cmaxf0; kı� `x;yg.

Proof We construct the .f kx /k by induction on k. By property (1), we must start with
f 0x D f. Assuming we have f k�1x , we will begin by defining a radius function Nf kx .
Set Nf kx .x/D f

k�1
x .x/� ı. By minimality of f k�1x , there exists y 2X for which the

inequality

(2) f k�1x .y/Cf k�1x .x/� ı < �.x; y/

holds. Indeed, if no such y existed then

y 7!

�
f k�1x .y/ if y ¤ x;
f k�1x .y/� 1

2
ı if y D x;

would be a radius function that is dominated by but not equal to f k�1x and this would
contradict minimality of f k�1x . Set Nf kx .x/ D f k�1x .x/ � ı. For all y 2 X n fxg
satisfying (2), set Nf kx .y/ D �.x; y/� f

k�1
x .x/C ı. For all other y 2 X n fxg, set
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Nf kx .y/D f
k�1
x .y/. Then, except for at y D x, we have Nf kx .y/� f

k�1
x .y/. Thus, to

check that Nf kx is a radius function, we need only verify that Nf kx .x/C Nf
k
x .y/� �.x; y/

for any y 2 X. When y D x, the inequality Nf kx .x/C Nf
k
x .y/ � �.x; y/ is equivalent

to f k�1x .x/ � ı, which holds by the inductive application of property (2) and the
triangle inequality. When y satisfies (2), the inequality Nf kx .x/C Nf

k
x .y/� �.x; y/ is

equivalent to f k�1x .x/�ıC�.x; y/�f k�1x .x/Cı��.x; y/, which holds with equality.
Finally, when y does not satisfy (2), Nf kx .x/C Nf

k
x .y/D f

k�1
x .x/� ıC f k�1x .y/ �

f k�1x .x/�ıC�.x; y/�f k�1x .x/CıD�.x; y/. Thus, Nf kx is a radius function. Define
f kx as any minimal radius function that is dominated by Nf kx .

Since Nf kx .y/D �.x; y/�f
k�1
x .x/C ı D �.x; y/� Nf kx .x/ for some y 2X, we must

have f kx .x/D Nf
k
x .x/D f

k�1
x .x/� ı. Thus, jf k�1x �f kx j1 � ı and

dE.X/.f
Mx
x ; x/D f Mx

x .x/D f .x/�Mxı D f .x/�

�
f .x/

ı

�
ı < ı;

so dE.X/.f
Mx
x ; x/ < ı. On the other hand, by Lemma 4.1, jf k�1x � f kx j1 �

jf k�1x � Nf kx j1 � ı and so dE.X/.f k�1x ; f kx /D jf
k�1
x �f kx j1 D ı. Therefore,

dE.X/.f; x/D f .x/

DMxıCf .x/�Mxı

DMxıC dE.X/.f
Mx
x ; x/

D

MxX
kD1

dE.X/.f
k�1
x ; f kx /C dE.X/.f

Mx
x ; x/;

where f 0x D f. Then, by the triangle inequality, property (2) is satisfied.

To verify property (3), let y 2X. We have

f .y/C kı� `x;y D �.x; y/C kı�f .x/D �.x; y/�f
k
x .x/� f

k
x .y/;

so the lower bound holds. The upper bound on f kx .y/ given by property (3) is Rk D
f .y/Cmaxf0; kı � `x;yg. Suppose property (3) doesn’t hold and let k be the least
integer for which f kx .y/ > Rk . Then k > 0 and k must satisfy f kx .y/� f

k�1
x .y/ >

Rk �Rk�1 � 0. By the construction of f kx , the fact that f kx .y/ > f
k�1
x .y/ implies

that f k�1x .y/Cf k�1x .x/� ı < �.x; y/ and that Nf kx .y/D �.x; y/�f
k�1
x .x/C ı D

�.x; y/� Nf kx .x/. Then we must have

f kx .y/D
Nf kx .y/D �.x; y/�

Nf kx .x/D �.x; y/�f
k
x .x/D f .y/C kı� `x;y �Rk;

which contradicts f kx .y/ > Rk . Thus, we have verified property (3). G
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We will now use the sequence .f kx /k of minimal radius functions to prove the theorem.
Assume that a; a0 2 S satisfy dS .a; a0/� .2.K2�1/=K2/jS jC .4ıC10C /=K. Such
a and a0 exist when K is close enough to 1. Take b 2 S for which `�.a/;�.b/ < ı. Then
dS .a; a

0/C dS .a
0; b/C dS .b; a/� jS j, so

dS .a
0; b/� jS j � dS .a; b/� dS .a; a

0/

� jS j �
2�K2

2K2
jS jC

`�.a/;�.b/C 5C

K
� dS .a; a

0/

< jS j �
2�K2

2K2
jS jC

5C C ı

K
� dS .a; a

0/

� jS j �
2�K2

2K2
jS jC

5C C ı

K
�
2.K2� 1/

K2
jS j �

4ıC 10C

K

D
2�K2

2K2
jS j �

3ıC 5C

K
and so

2�K2

2K2
jS j �

`�.a0/;�.b/C 5C

K
� dS .a

0; b/ <
2�K2

2K2
jS j �

3ıC 5C

K
;

which implies `�.a0/;�.b/ > 3ı. So

f 3�.a0/.�.b//� f .�.b//Cmaxf0; 3ı� `�.a0/;�.b/g

D f .�.b//

� f 3�.a/.�.b//� 3ıC `�.a/;�.b/

< f 3�.a/.�.b//� 2ı;

where the inequalities are applications of property (3). Thus,

dE.X/.f
3
�.a0/; f

3
�.a// > 2ı

and so r.f 3
�.a0/

/ and r.f 3
�.a/

/ are distinct elements of the metric ball B.r.f /; 5ı/ of
radius 5ı centred at r.f / inX. So, if faigNiD1�S subdivide S into segments of length at
least .2.K2�1/=K2/jS jC.4ıC10C /=K, then B.r.f /; 5ı/ contains at leastN points.
Subdividing S evenly, we can achieve N Db.2.K2�1/=K2C .4ıC10C /=KjS j/�1c.
So we have shown that, if X admits a .K;C /–quasi-isometric embedding of a Rie-
mannian circle S and K is close enough to 1, then, for some x 2 X, we have
jB.x; 5ı/j � b.2.K2� 1/=K2C .4ıC 10C /=KjS j/�1c.

To complete the proof, suppose X is not strongly shortcut. Then, for each K > 1,
there exists CK > 0 and a sequence .�n W Sn ! X/n of .K;CK/–quasi-isometric
embeddings of Riemannian circles where jSnj � n. The argument above shows
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that, for each small enough K > 1 and each n 2 N, there exists xK;n 2 X satis-
fying jB.xK;n; 5ı/j � b.2.K2 � 1/=K2C .4ıC 10Ck/=KjSnj/�1c. The expression
.2.K2�1/=K2C.4ıC10CK/=KjSnj/

�1 tends toK2=2.K2� 1/ as n tends to infinity,
so, if nK 2 N is large enough, then jB.xK;nK

; 5ı/j � K2=2.K2� 1/� 1. But this
contradicts the uniform bounded geometry assumption onX sinceK2=2.K2� 1/ tends
to infinity as K tends to 1.
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Classifying sufficiently connected PSC manifolds
in 4 and 5 dimensions

OTIS CHODOSH

CHAO LI

YEVGENY LIOKUMOVICH

We show that if N is a closed manifold of dimension n D 4 (resp. n D 5) with
�2.N / D 0 (resp. �2.N / D �3.N / D 0) that admits a metric of positive scalar
curvature, then a finite cover yN of N is homotopy equivalent to Sn or connected
sums of Sn�1 �S1. Our approach combines recent advances in the study of positive
scalar curvature with a novel argument of Alpert, Balitskiy and Guth.

Additionally, we prove a more general mapping version of this result. In particular,
this implies that if N is a closed manifold of dimensions 4 or 5, and N admits a
map of nonzero degree to a closed aspherical manifold, then N does not admit any
Riemannian metric with positive scalar curvature.

53C21

Introduction

We are concerned here with the problem of classification of manifolds admitting positive
scalar curvature (PSC). For closed (compact, no boundary) 2– and 3–manifolds, this
problem is completely resolved; namely, the sphere and projective plane are the only
closed surfaces admitting positive scalar curvature and a 3–manifold admits positive
scalar curvature if and only if it has no aspherical factors in its prime decomposi-
tion. In particular, a 3–manifold admitting positive scalar curvature has a finite cover
diffeomorphic to S3 or to a connected sum of finitely many S2 �S1.

The main result of this paper is the following partial generalization of this statement to
dimensions nD 4; 5:
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Theorem 1 Suppose that N is a closed smooth n–manifold admitting a metric of
positive scalar curvature and

� nD 4 and �2.N /D 0, or

� nD 5 and �2.N /D �3.N /D 0.

Then a finite cover yN of N is homotopy equivalent to Sn or connected sums of
Sn�1 �S1.

Chodosh and Li [7] and Gromov [14] showed that, if a closed N n is aspherical (ie
�k.N /D 0 for all k � 2) and nD 4; 5, then there is no Riemannian metric of positive
scalar curvature on N. Theorem 1 can thus be seen as a refinement of this into a positive
result.

Remark By Theorem 1.3 of Gadgil and Seshadri [12] (see also Freedman [11],
Milnor [26] and Kreck and Lück [22]), we have that if n D 4 and yN is homotopy
equivalent to S4 or S3 �S1, or if nD 5 (with no further restriction on the homotopy
type), then homotopy equivalence in the conclusion to Theorem 1 can be upgraded to
homeomorphism.

We also prove a more general “mapping” version of Theorem 1.

Theorem 2 Suppose that N is a closed smooth n–manifold with a metric of positive
scalar curvature and there exists a nonzero degree map f W N ! X, to a manifold X

satisfying

� nD 4 and �2.X /D 0, or

� nD 5 and �2.X /D �3.X /D 0.

Then a finite cover yX of X is homotopy equivalent to Sn or connected sums of
Sn�1 �S1.

We note that the following result immediately follows from Theorem 2:

Corollary 3 Let n 2 f4; 5g, X and N be closed oriented manifolds of dimension n,
and X be aspherical. Suppose there exists a map f WN !X with degf ¤ 0. Then N

does not admit any Riemannian metric of positive scalar curvature.

Recall that it was previously shown in [7; 14] that closed aspherical (ie �k.N /D 0

for all k � 2) n–manifolds do not admit PSC for nD 4; 5. In [14] a related statement
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was proven for manifolds admitting proper, distance-decreasing maps to uniformly
contractible manifolds. In fact, Corollary 3 seems to have been asserted by Gromov
[15, page 144–145], but the (relatively simple) lifting argument does not appear there.

0.1 Urysohn width bounds

Recall that a metric space .X; d/ has Urysohn q–width �ƒ if there is a q–dimensional
simplicial complex K and a continuous map X ! K such that diamf �1.s/ � ƒ

for all s 2K. As such, having finite Urysohn q–width implies that a manifold looks
� q–dimensional in some macroscopic sense.

A well-known conjecture (see [15, page 63]) of Gromov posits that an n–manifold
with scalar curvature � 1 has finite Urysohn .n�2/–width. Various forms of this
conjecture are proven for nD 3 — see Gromov and Lawson [16], Katz [21], Marques
and Neves [24] and Liokumovich and Maximo [23] — while the conjecture is largely
open for n� 4 (some progress has been achieved by Bolotov and Dranishnikov [2; 3]).

A key component in the proof of Theorem 1 is the following result:

Theorem 4 For .N n;g/ satisfying the hypothesis of Theorem 1, the universal cover
. zN ; Qg/ has finite Urysohn 1–width.

This follows by combining Corollary 7 and Proposition 8 below. A simple example
where Theorem 1 applies is the product metric on S1 �S3, whose universal cover is
R�S3, clearly of finite Urysohn 1–width. On the other hand, we note that the higher
connectivity hypothesis in Theorem 4 is necessary: compare with T 2 �S2.

Remark Consider a metric gR on S3 formed by capping off a cylinder Œ�R;R��S2.1/

with hemispheres and smoothing out the resulting metric, so that the scalar curvature
is � 1. The product metric .S1.1/;gS /� .S

3;gR/ has scalar curvature � 1 but the
universal cover has Urysohn 1–width �R. As such, the estimate in Theorem 4 cannot
be made quantitative (essentially, the issue is that the universal cover converges to
R2 �S2.1/, which has nontrivial �2).

As we were finishing this paper, we discovered that, recently, Gromov has indicated a
proof of the classification of PSC 3–manifolds [15, page 135] by using finiteness of
the 1–Urysohn width of the universal cover. Our proof of Theorem 1 follows a similar
strategy once Theorem 4 is proven.
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0.2 Remarks on positive isotropic curvature

Theorem 1 has an interesting relationship to well-known conjectures of Gromov [13,
Section 3(b)] and Schoen [29] concerning the topology of closed n–manifolds admitting
a metric with positive isotropic curvature (PIC). Namely, they (respectively) conjecture
that if a closed manifold has a PIC metric then the fundamental group is virtually free
and a finite cover is diffeomorphic to either a sphere or connected sums of finitely
many S1 �Sn�1.

There have been distinct approaches to such a question, relying on either minimal
surface theory or Ricci flow. Using minimal surface theory, Micallef and Moore have
shown that, if M n is a closed PIC manifold then �k.M /D 0 for k D 2; : : : ;

�
1
2
n
�

[25].
In particular, if M is simply connected, then it is homeomorphic to a sphere. In related
work, Fraser has proven that an n–manifold (n � 5) with PIC does not contain a
subgroup isomorphic to Z˚Z [10].

On the other hand, using Ricci flow, Hamilton has classified 4–manifolds admitting
PIC that do not contain nontrivial incompressible .n�1/–dimensional space forms [18].
This was extended to prove the Gromov–Schoen conjectures for nD 4 by Chen, Tang
and Zhu [6]. In higher dimensions, Brendle and Schoen [5] and Nguyen [27] proved
the PIC condition is preserved under the Ricci flow; this is an important ingredient in
Brendle and Schoen’s proof of the differentiable sphere theorem. Recently, Brendle
has achieved a breakthrough in the study of the Ricci flow of PIC manifolds and has
extended Hamilton’s result to dimensions n � 12 [4]; as above, this result has been
used to prove the Gromov–Schoen conjectures for n� 12 by Huang [20].

We note that, since PIC implies PSC, combining [25] with Theorem 1 yields an
alternative proof of Gromov’s conjecture (the fundamental group is virtually free) for
nD 4 and proves a weak version of Schoen’s conjecture for nD 4 (ie with homotopy
equivalence replacing diffeomorphism). Furthermore, Theorem 1 implies that a PIC
5–manifold with �3.M /D 0 satisfies Gromov’s conjecture and the same weak version
of Schoen’s conjecture. It is an interesting question if a 5–manifold with PIC has
�3.M /D 0 (note that �2.M /D 0 by [25]).

Organization of the paper

In Section 1 we revisit the filling radius estimates from [7; 14]. In Section 2 we show
that such estimates imply Theorem 4. Then, we complete the proof of Theorem 1 in
Section 3. Finally, in Section 4 we prove Theorem 2.
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1 Filling estimates

In [7; 14], it was shown that a closed aspherical n–manifold does not admit positive
scalar curvature for n D 4; 5 by combining a linking argument with a filling radius
inequality in the presence of positive scalar curvature. In this section we observe that
this filling radius inequality carries over to the setting considered here.

We begin by summarizing the results contained in [7] that will be needed in this paper.

Theorem 5 Consider .N n;g/ a closed Riemannian n–manifold with scalar curvature
R� 1. Fix a Riemannian cover . yN ; Og/.

(1) Suppose that n D 4. There is a universal constant L0 > 0 with the following
property. Consider a closed embedded 2–dimensional submanifold y†2 �

yN with
Œy†2�D 0 2H2. yN IZ/. Then there is a 3–chain y†0

3
�BL0

.y†2/ and a closed embedded
2–dimensional submanifold y†0

2
with

@y†03 D
y†2�

y†02

as chains such that , for every connected component S of y†0
2
, the extrinsic diameter

of S satisfies diam.S/�L0.

(2) Suppose that n D 5. There is a universal constant L0 > 0 with the following
property. Consider a closed embedded 3–dimensional submanifold y†3 �

yN with
Œy†3�D 0 2H3. yN IZ/. Then there is a 4–chain y†0

4
�BL0

.y†3/ and a closed embedded
3–dimensional submanifold y†0

3
with

@†04 D†3�†
0
3

as chains as well as 3–chains yU1; : : : ; yUm with diam. yUj /�L0 and 2–cycles

fy� l
j W j D 1; : : : ;m; l D 1; : : : ; k.j /g

Geometry & Topology, Volume 27 (2023)
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with diam.y� l
j /�L0 such that

y†3 D

mX
jD1

yUj and @ yUj D

k.j/X
lD1

y� l
j for each j D 1; : : : ;m;

where both equalities hold as chains (not just in homology). Finally, there is an integer
q and a function

u W f.j ; l/ W j D 1; : : : ;m; l D 1; : : : ; k.j /g ! f1; : : : ; qg

such that , for r 2 f1; : : : ; qg, we have

diam
� [
.j ;l/2u�1.r/

y� l
j

�
�L0

and , moreover , X
.j ;l/2u�1.r/

y� l
j D 0

as 2–chains for r 2 f1; : : : ; qg.

Proof When n D 4, one can solve Plateau’s problem to find y†3 minimizing area
with @y†3 D

y†2. Applying the “�–bubble technique” (see [7, Section 3]), we can find
y†0

2
� y†3 with dy†3

.y†0
2
; y†2/�L0 and such that y†0

2
� y†3 is a “stable �–bubble” in the

sense of [7, Lemma 14]. By [7, Lemma 16], the intrinsic diameter of each component
is � L0 (taking L0 larger if necessary). This proves the assertion (since extrinsic
distances are bounded by the intrinsic distances).

Similarly, when nD 5, we can solve Plateau’s problem to find y†4 minimizing area with
@y†4 D

y†3. As before, we can find a “stable �–bubble” y†0
3

with dy†4
.y†0

3
; y†3/�L0.

Finally, the construction of the yUj and y�k
j follows from the “slice-and-dice” procedure

from [7, Sections 6.3–6.4].

Note that the last conclusion (ie that
P
.j ;l/2u�1.r/

y� l
j D 0) was stated slightly dif-

ferently in [7]. To be precise, it was proven that the cycles
P
.j ;l/2u�1.r/

y� l
j are

disjoint for distinct r (see [7, Section 6.4]). Now, by using
Pq

rD1

P
.j ;l/2u�1.r/

y� l
j D

@
�Pm

jD1 Uj

�
D 0, we find that each term in the sum must vanish.

Example 1 We illustrate the “slice-and-dice” procedure and its relevance to the
statements of Theorem 5 with Figure 1, where y†0

3
is diffeomorphic to S2 �S1. We

first cut (slice) y†0
3

by an embedded S2 and view the result as a 3–manifold with
boundary, which we further cut (dice) into seven 3–chains yU1; : : : ; yU7 such that each

Geometry & Topology, Volume 27 (2023)
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y†0
3

y�2
2

y�1
3

y�3
4

y�1
6

yU1

yU2

yU3

yU5
yU7

yU4

yU6

Figure 1: Cutting the 3–cycle y†03 into small pieces.

yUj satisfies diam yUj � L0 (of course, the number of chains may vary in different
examples). We label the boundary components of yUj , from left to right in the figure, by
y� l
j for lD 1; : : : ; k.j /. Note that, in this case, there are four such boundary components

that are nonsmooth, namely y�2
2

, y�1
3

, y�3
4

and y�1
6

. The function u groups different y� l
j

that glue together into a 2–cycle. For example, we have

u.2; 2/D u.3; 1/D u.4; 3/D u.6; 1/;

and

u.1; 1/D u.2; 1/; u.3; 2/D u.4; 1/; u.4; 2/D u.5; 1/; u.6; 2/D u.7; 1/:

Moreover, the values of u on different groups of y� l
j are different (eg u.2; 2/¤ u.1; 1/).

Note here that
P
.j ;l/2u�1.r/

y� l
j D 0 for each r .

The following proposition will be used to replace [7, Proposition 10] in the more
general setting considered here:

Proposition 6 Consider � W . yN ; Og/! .N;g/ a regular1 Riemannian covering map of
n–dimensional manifolds , with .N;g/ compact. Assume that Hl. yN ;Z/D 0. Then ,
for r > 0, there is R D R.r/ <1 such that Hl.Br .x/;Z/! Hl.BR.x/;Z/ is the
zero map for any x 2 yN.

1Recall that a cover is regular if the group of deck transformations acts transitively on the fibers. In
particular, the universal cover is a regular cover.

Geometry & Topology, Volume 27 (2023)
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Proof We first fix x D x0. For any r > 0, there is r1 2 Œr; 2r � with Br1
.x0/ a compact

manifold (with boundary). By Corollaries A.8 and A.9 in [19], the homology groups
of Br1

.x0/ are finitely generated. Assume that ˛1; : : : ; ˛J generates Hl.Br1
.x0/;Z/.

By assumption, for each i , ˛i D @ˇi for some .lC1/–chains ˇ1; : : : ; ˇJ . Choose
R1DR1.r/ so that ˇi 2BR1

.x0/ for iD1; : : : ;J. Then we see that Hl.Br1
.x0/;Z/!

Hl.BR1
.x0/;Z/ is the zero map, so, in particular,

Hl.Br .x0/;Z/!Hl.BR1
.x0/;Z/

is the zero map.

Now, for any x 2 yN, we can assume (using a deck transformation) that d.x;x0/ �

diam N. Thus,

Br .x/� BrCdiam N .x0/ and BR1.rCdiam N /.x0/� BR1.rCdiam N /Cdiam N .x/:

Thus, we find that the assertion holds for R.r/DR1.r C diam N /C diam N.

Putting these facts together, we thus obtain the following generalization of the filling
estimate obtained in [7; 14]:

Corollary 7 Suppose that , for n 2 f4; 5g, .N n;g/ is a closed Riemannian n–manifold
with positive scalar curvature and �2.N /D � � � D �n�2.N /D 0. Then there is LD

L.N;g/ > 0 with the following property. Consider †n�2 an closed embedded .n�2/–
submanifold in zN the universal cover. Then †n�2 is nullhomologous in BL.†n�2/.

Proof Observe that the universal cover zN has �1. zN /D � � � D �n�2. zN /D 0. By the
Hurewicz theorem, Hn�3. zN ;Z/DHn�2. zN ;Z/D 0.

When n D 4, the assertion immediately follows from a combination of Theorem 5
with Proposition 6. Indeed, Theorem 5 implies that †2 is homologous to †0

2
in

BL0
.†2/, where diam.†0

2
/ � L0. Proposition 6 implies that †0

2
can be filled in an

R.L0/–neighborhood. Thus, †2 can be filled in an .L0CR.L0//–neighborhood.

When n D 5, the proof is more complicated due to the nature of the “slice-and-
dice” decomposition in Theorem 5. Fix y†0

3
� BL0

.†3/ homologous to †3 and f yUj g

and fy� l
j g with the properties described in Theorem 5. We can now fill y†0

3
in a bounded

neighborhood following [7, Section 6.4], which we explain here. Since diam.y� l
j /�L0,

Proposition 6 implies that y� l
j D @

z� l
j for a 3–chain with diam.z� l

j / � R.L0/. Then,
because diam. yUj /�L0,

yUj �

k.j/X
lD1

z� l
j
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is a 3–cycle of diameter �L0C 2R.L0/. Thus, by Proposition 6, there is a 4–chain
zUj with diam. zUj /�R.L0C 2R.L0// and

@ zUj D
yUj �

k.j/X
lD1

z� l
j :

On the other hand, as was proven in Theorem 5, there is

u W f.j ; l/ W j D 1; : : : ;m; l D 1; : : : ; k.j /g ! f1; : : : ; qg

such that

diam
� [
.j ;l/2u�1.r/

y� l
j

�
�L0

and X
.j ;l/2u�1.r/

y� l
j D 0

as 2–chains.

As such, for r 2 f1; : : : ; qg,
P
.j ;l/2u�1.r/

z� l
j is a 3–cycle of diameter bounded by

2R.L0/CL0 and thus there is a 4–chain y„r with diam.„r /�R.L0C2R.L0// and

@„r D

X
.j ;l/2u�1.r/

z� l
j :

This yields

y†03 D @

� qX
rD1

„qC

mX
jD1

zUj

�
with

qX
rD1

„qC

mX
jD1

zUj � BR.L0C2R.L0//.
y†03/:

Thus, †3 is nullhomologous in an
�
R.L0C2R.L0//CR.L0/

�
–neighborhood.

Example 2 Continuing Example 1, we illustrate in Figure 2 how Corollary 7 works for
y†0

3
in Figure 1. Consider all 2–cycles y� i

j with u.j ; i/D r . Fill in y� l
j with a 3–chain z� l

j .
By construction, the sum of these z� l

j forms a 3–cycle, which can then be filled in by
a 4–chain „r . By Proposition 6 and Corollary 7, the diameter of all these fill-ins are
bounded by R.L0C 2R.L0//.
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y�1
6

y�3
4

y�2
2

y�1
3

Figure 2: To fill in fy� l
j W u.j ; l/D rg, we first fill in each y� l

j with z� l
j (center),

then fill in by „r to obtain a 3–cycle (right).

2 Filling versus Urysohn width

The next result is inspired by work of Hannah Alpert, Alexey Balitskiy and Larry
Guth [1], which we learnt about from a talk by Alpert. The strategy should be compared
with [16, Corollary 10.11].

Proposition 8 Assume that .N n;g/ has the property that any closed embedded .n�2/–
submanifold in the universal cover †n�2 �

zN can be filled in BL.†n�2/. Then the
universal cover . zN ; Qg/ satisfies:

(�) For any point p 2 zN, each connected component of a level set of d.p; � / has
diameter � 20L.

Note that Corollary 7 implies a manifold .N;g/ in Theorem 1 satisfies the assumptions
of Proposition 8. By the argument in [17, Corollary 10.11], this shows that the universal
cover . zN ; Qg/ has Urysohn 1–width � 20L. In particular, the macroscopic dimension
of zN is 1.

Proof Let p 2 zN be a point and consider level sets of the distance function f .x/D
d.p;x/.

For the sake of contradiction, suppose that there is a curve  � f �1.t/ connecting
points x and y with d.x;y/� 20L. Fix a minimizing geodesic �x from p to x (and
similarly for �y) and consider the triangle T D �x �  ���y . Fix 0< l <L such that
@B4LCl.x/ and @BLCl.�x/ are smooth hypersurfaces intersecting transversely. Set
†n�2 WD @B4LCl.x/\@BLCl.�x/. Note that we have not ruled out †n�2D∅; in this
case we will take d.†n�2; � /D1 below.
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By construction,
d.†n�2; �x/ >L:

Set †0
n�1
WD @B4LCl.x/ \BLCl.�x/ and note that @†0

n�1
D †n�2. Observe that,

since �x is a minimizing geodesic between p and x and†0
n�1

is a subset of @B4LCl.x/,
it must hold that �x intersects †0

n�1
exactly once and does so orthogonally (and thus

transversally). We will return to this observation below.

Lemma 9 d.†n�2;  /� d.†0
n�1

;  / >L:

Proof We first prove that d.†0
n�1

;  / > L. Choose s 2 †0
n�1

with d.s;  / D

d.†0
n�1

;  /. There is e 2 �x such that d.s; e/�LC l . We have

d.x; e/� d.x; s/� d.s; e/� 4LC l � .LC l/D 3L:

Since �x is minimizing (and has length t ), we have d.p; e/� t � 3L. Thus,

d.p; s/� d.p; e/C d.e; s/� t � 3LCLC l D t � 2LC l:

Thus,
d.s;  /� d.p;  /� d.p; s/� t � .t � 2LC l/D 2L� l:

This completes the proof of d.†0
n�1

;  / > L. Since †n�2 � †
0
n�1

, it clearly holds
that d.†n�2;  /� d.†0

n�1
;  /.

Lemma 10 †0
n�1
\ �y D∅:

Proof Suppose the contrary. Consider s 2 †0
n�1
\ �y . Note that d.s;x/ D 4LC l

and there is e 2 �x with d.s; e/�LC l . We have

d.x; e/� d.x; s/C d.e; s/� 5LC 2l:

As such,
d.p; e/� t � 5L� 2l;

so
d.p; s/� d.p; e/� d.e; s/� t � 5L� 2l �L� l D t � 6L� 3l:

Thus,
d.s;y/� 6LC 3l:

However, this contradicts

20L� d.x;y/� d.x; s/C d.s;y/� 4LC l C 6LC 3l D 10LC 4l:

Lemma 11 d.†n�2; �y/ >L:

Proof The proof is similar to the previous argument. Suppose we have s 2 †n�2

and ey 2 �y with d.s; ey/ � L. There is ex 2 �x with d.s; ex/ D LC l . Note that
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d.s;x/D 4LC l . Thus,

d.p; ex/D t � d.x; ex/� t � d.x; s/� d.s; ex/� t � 5L� 2l:

Thus,

d.p; ey/� d.p; ex/� d.ex; ey/� d.p; ex/� d.ex; s/� d.s; ey/D t � 7L� 3l:

This implies that
d.y; ey/� 7LC 3l:

However, this contradicts

20L� d.x;y/� d.x; s/C d.s; ey/C d.ey ;y/� 12LC 4l:

We can now complete the proof of Proposition 8. Perturb the triangle T to be a smooth
embedded curve T 0 still intersecting †0

n�1
transversely. As long as the perturbation is

small, T 0\†0
n�1

will consist of a single point (thanks to Lemmas 9 and 10, along with
the observation that �x intersects †0

n�1
transversely in exactly one point). Assume

first that †n�2¤∅. By assumption, there is †n�1 �BL.†n�2/ with @†n�1D†n�2.
Using Lemmas 9 and 11 as well as d.†n�2; �x/DLC l , we find that †n�1\T 0D∅.
As such, T 0 has nontrivial algebraic intersection with the cycle †0

n�1
�†n�1. This is

a contradiction since zN is simply connected.

If †n�2 D∅, then the argument is similar but simpler. In this case, we note that †0
n�1

is a cycle and, combining Lemmas 9 and 10 with the fact that †0
n�1

intersects �x trans-
versely exactly once, we see that †0

n�1
is a cycle with nontrivial algebraic intersection

with T 0, a contradiction as before.

3 Fundamental group and homotopy type

In this section, we prove Theorem 1. We first prove (see Corollary 14 below) that a
manifold .N n;g/ whose universal cover satisfies the conclusion of Proposition 8 has
virtually free fundamental group. (Recall that a group is virtually free if it processes a
free subgroup of finite index.) This fact seems to be well known among certain experts
(in particular, see [15, page 135]). We give a proof here, roughly following the strategy
used in [28]. The argument is based on notion of the number of ends of a group.

Definition 12 Given a group G, its number of ends, e.G/, is defined as the number
of topological ends of zK, where zK ! K is a regular covering of finite simplicial
complexes K and zK, and G is the group of deck transformations.
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It follows from [9] that a finitely generated group can have 0, 1, 2 or infinitely many
ends. Our main result here is as follows:

Proposition 13 Suppose .N;g/ is a closed Riemannian manifold satisfying the con-
clusions of Proposition 8. Then any finitely generated subgroup G of �1.N / cannot
have one end.

We will prove this below, but first we note that it yields the desired statement:

Corollary 14 Suppose .N;g/ is a closed Riemannian manifold satisfying the conclu-
sions of Proposition 8. Then �1.N / is virtually free.

Proof We follow the proof of [28, Theorem 2.5]. Indeed, by combining the main result
of [8] (see [30, Section 7]) with Proposition 13, �1.N / is the fundamental group of a
finite graph of groups with finite edge and vertex groups. The assertion now follows
from Proposition 11 in Chapter II, Section 2.6 of [31] (or eg [30, Theorem 7.3]).

Moreover, we observe that given these results, we can finish the proof of Theorem 1.

Proof of Theorem 1 By Corollary 7, Proposition 8, and Corollary 14, �1.N / is
virtually free. Let G � �1.N / be a finite-index subgroup which is a free group.
Consider the finite covering yN Op

�!N such that the image of Op# is G. Then �1. yN / is
a finitely generated free group. Since �2. yN /D � � � D �n�2. yN /D 0, Sections 2 and 3
of [12] imply that yN is homotopy equivalent to Sn or connected sums of Sn�1�S1.

We now give the proof of Proposition 13:

Proof of Proposition 13 Suppose there is a finitely generated subgroup G of �1.N /

with one end. We will show that this leads to a contradiction.

We divide the proof into several steps. Take a cover N0
p
�!N such that p#.�1.N0//DG.

Because p# W�1.N0/!�1.N / is injective, this ensures that �1.N0/DG. If G is finite
then e.G/D 0, so we can assume G is infinite.

Since G is finitely generated, we can find K�N0 a compact submanifold with boundary
containing representatives of all of the generators of G. Write i W K ! N0 for the
inclusion map and note that i# W �1.K/! �1.N0/D G is surjective. Let H D ker i#,
so G D �1.K/=H. Choose j W zK!K the cover (with zK path connected) of K so that
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j#.�1. zK//DH. Since H is a normal subgroup of �1.K/, the covering j W zK!K is
regular, and the group of deck transformations of j is isomorphic to �1.K/=H DG.
Thus, zK is noncompact. Note that j# ı i# W �1. zK/! �1.N0/ is the zero map, so we
can lift i to Q{ W zK! zN, where zN is the universal cover of N. (We emphasize that zK is
not necessarily the universal cover of K.)

As such, we have the diagram of spaces

zK
Q{
//

j

��

zN

Qp

��

K
i
// N0

p

��

N

The maps i and Q{ are inclusions of codimension zero submanifolds with boundary;
indeed:

Lemma 15 Q{ is a proper embedding.

Proof We first show that Q{ is injective. Suppose that Q{. Qa/D Q{. Qb/. Connect a and b by a
curve Q� in zK. By assumption, Q{. Q�/ is a loop in zN, so �D j . Q�/ has Œ��D e 2�1.N0/DG.
Thus, Œ�� 2H � �1.K/. This implies that Q� is a loop, ie aD b. It is straightforward to
check that Q{ is a closed map, using the fact that K is compact and Qp is a covering map.
Therefore, Q{ is proper.

Note that N is equipped with a Riemannian metric g, so that, for any p 2 zN, each
connected component of a level set of fp.x/ D d Qg.x;p/ has diameter � C, where
C D 20L as given in Proposition 8. The embeddings i; Q{ induce metric structures on
K and zK, respectively.

Lemma 16 For each r > 0, there exists R.r/ > 0 such that , for any a; b 2 zK with
d zN .a; b/� r , we have d zK .a; b/�R.r/.

Proof Fix x2 zK. By applying a deck transformation, we can assume that d zN .a;x/�c0

(here c0 only depends on K), so d zN .b;x/ � r C c0. Since zK is connected (and Q{ is
proper), there exists R D R.r C c0/ so that d zK .a;x/; d zK .b;x/ � R. The assertion
follows from the triangle inequality.
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In the following lemma, we will call a curve Q WR! zK a line if it minimizes length on
compact subintervals relative to competitors in zK. Note that such a curve is a geodesic in
the sense of metric geometry, but not necessarily in the sense of Riemannian geometry,
since it could stick to @ zK in places. Similarly, we will call � 0 W Œ0;1/! zK a minimizing
ray if it minimizes length in the same sense.

Lemma 17 There exists a line Q in zK.

Proof Fix p 2 zK, and choose pj 2
zK diverging. Let �j denote a curve that minimizes

length in zK between p and pj . We assume that �j is parametrized by unit speed. In
particular, �j is a 1–Lipschitz map from an interval to zK. Consider an exhaustion
of zK by nested compact sets containing p. Applying Arzelà–Ascoli in each compact
set and taking a diagonal sequence, we obtain that, after passing to a subsequence,
�i converges to a minimizing ray � 0 W Œ0;1/ ! zK. Since G is the group of deck
transformations of zK!K acting transitively on zK and K is compact, we can choose
ti!1 and deck transformations ˆi so that d Qg

�
p; ˆi.�

0.ti//
�

is uniformly bounded.
Then � 0i.t/ D ˆi.�

0.t C ti// subsequentially converges to a geodesic line � (using
Arzelà–Ascoli again).

Parametrize the curve Q so that d zK . Q .a/; Q .b//D ja� bj (note that d zN . Q .a/; Q .b//

might be smaller than ja�bj). Let  D Q{ ı Q . Note that Q is automatically proper in zK,
and thus Lemma 15 implies that  is proper in zN.

For each R> 0, consider the open geodesic ball BR. .0//� zN. Define parameters

t�.R/Dmaxft W  .�1; t/\BR. .0//D∅g;

tC.R/Dminft W  .t;1/\BR.0/D∅g:

Note that t˙.R/!˙1 as R!1.

Since e. zK/D 1,  .t˙.R// can be connected in zK nBR. .0//. Because zN is simply
connected, this implies that  .t˙.R// lie in the same component of @BR. .0//� zN

and thus
d zN

�
 .t�.R//;  .tC.R//

�
� C:

On the other hand, we have

d zK

�
 .t�.R//;  .tC.R//

�
D jt�.R/� tC.R/j !1:

This contradicts Lemma 16. This completes the proof of Proposition 13.
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4 Generalization to the mapping problem

In this section we prove Theorem 2. The proof here is partly motivated by [14, Section 5],
where nonexistence of PSC metrics on certain noncompact manifold admitting a proper,
distance-decreasing map to a uniformly contractible manifold is established. We first
observe that we may assume, without loss of generality, that �1.X / is infinite. Indeed, if
�1.X / is finite, then the universal cover zX is compact and satisfies that �1. zX /D � � � D

�n�2. zX /D 0. By the Hurewicz theorem, we have that H1. zX /D � � � DHn�2. zX /D 0.
Poincaré duality further implies that H1. zX /D � � � DHn�1. zX /D 0, and hence zX is
homeomorphic to Sn.

We begin with the following general lemma. Note that it is tempting to try to lift a map
of nonzero degree to the universal covers, but this map may not be proper (and hence
the degree will not be well defined). We note that the construction of the appropriate
cover is somewhat analogous to the construction of zK in Section 3.

Lemma 18 Suppose that X and N are closed oriented manifolds and f WN !X has
nonzero degree. Letting zX denote the universal cover of X, there exists a connected
cover yN !N and a lift Of W yN ! zX such that Of is proper and deg Of D degf.

Proof Choose a regular value x 2 X and set f �1.x/ D fz1; : : : ; zkg. Consider
H WD kerf# W �1.N; z1/! �1.X;x/. Choose a covering space p W yN ! N so that
image p# W �1. yN ; Oz1/! �1.N; z1/ is H. Below we will show that the map f lifts to
Of W yN ! zX and that Of satisfies the assertions made above.

Noncompactness of yN We claim that yN is noncompact. We first show that the
image of f# is a subgroup of �1.X;x/ with finite index. Let G D f#.�1.N; z1// and
N� W .X ; Nx/! .X;x/ be a covering map such that image.. N�/# W �1.X ; Nx/! �1.X;x//

is G. The map f lifts to a map Nf W .N; z1/! .X ; Nx/ such that f D N� ı Nf. Since N

is compact and f is surjective, we see that X is compact. Hence, we have degf D
deg N� �deg Nf. It follows that deg N� is an integer factor of degf, and thus G is a subgroup
of �1.X;x/ of finite index.

The number of sheets of the covering map p is the index of H D p#.�1. yN ; Oz1// in
�1.N; z1/. Since H is a normal subgroup, this is equal to the number of elements
of the group �1.N; z1/=H, which is isomorphic to G and thus of infinite order. This
implies that yN is noncompact, as claimed.
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Lifting the map f Consider f ıp W yN !X. Note that .f ıp/# W �1. yN /! �1.X /

is the zero map. Thus, we can lift f ıp to the universal cover of X :

. yN ; Oz1/
Of
//

p

��

. zX ; Qx/

�

��

.N; z1/
f

// .X;x/

Clearly, a loop in N lifts to a loop in yN if and only if it is in H (recall that H is
normal).

Counting lifts of preimages We now claim that #. Of �1. Qx/\p�1.zj //D 1. To this
end, suppose that a; b 2 Of �1. Qx/\p�1.zj /. Choose a path O in yN connecting the two
points. Then  D p ı O is a loop in N based at zj . On the other hand, Q WD Of ı O is
a loop in zX based at Qx. Since e D �#Œ Q �D f#Œ �, we thus see that Œ � 2H. This is a
contradiction since this would imply that  lifts to a loop (as remarked above).

Properness We now show that Of is proper. Assume that Ori!1 in yN but Of . Ori/! q

in zX. Since N is compact, we can pass to a subsequence such that p. Ori/! r 2 N.
Then �.q/D f .r/.

Choose a contractible neighborhood U � N with r 2 U. By shrinking U, we can
assume that f .U / is contained in a contractible open set W � X. Then ��1.W /

consists of disjoint copies of W. We can assume that Of . Ori/ are all contained in the
copy containing q.

Assume that p. Ori/ 2 U for all i . Fix paths �i from p. Ori/ to r in U and paths Oi from
Or1 to Ori in yN. Then

˛i WD .�i/� .p ı Oi/� .��1/

is a loop from r to r . Lift ˛i to Ǫ i a path in yN that agrees with Oi on that portion of Ǫ i .
Note that Ǫ i cannot be a loop for i large, since the Ori are diverging.

We now consider Q̨ i WD Of ı Ǫ i a path in zX. By construction, Q̨ i is a loop in zX. This is a
contradiction as before.

Degree Finally, we check that deg Of D degf. The lift Qx is a regular point for Of
and we have seen that each element of f �1.x/ lifts to a unique element of Of �1. Qx/.
But the local degree of Of at each preimage Ozi is the same as the degree of f at the
corresponding point p.Ozi/ (since p is a covering map).
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Remark With some trivial modifications in the proof, a similar result holds for possibly
nonorientable X and N with a map f WN !X of nonzero mod 2 degree.

Using the lifted map Of we can now follow [14, Section 5] to show that the conclusion
of Corollary 7 holds in the setting of Theorem 2.

Lemma 19 Let X and N be oriented Riemannian manifolds and f W .N;g/! .X;gX /

with f distance-decreasing and degf ¤ 0. Assume that N admits a metric of positive
scalar curvature and that either nD4 and �2.X /D0, or nD5 and �2.X /D�3.X /D0.

Then there exists L> 0 with the following property: if †n�2 is an .n�2/–dimensional
nullhomologous cycle in the universal cover zX of X, then the cycle deg.f /†n�2 can
be filled inside BL.†n�2/.

Proof We consider nD 5 since the nD 4 case is similar (but simpler). By scaling, we
can assume that .N;g/ has scalar curvature R � 1. As in Corollary 7, H2. zX ;Z/D

H3. zX ;Z/D 0.

By assumption, †3 D @†4 in zX for some chain †4. Up to a small perturbation, we
can assume that Of is transversal to †3 and †4. Set y†4 WD

Of �1.†4/ and similarly
y†3D @y†4. Note that y†3 is nullhomologous in yN (by construction). Using Theorem 5,
we can find y†0

3
� BL0

.y†3/ homologous to y†3 as well as 3–chains yU1; : : : ; yUm with
diam.Uj /�L0 and 2–cycles fy� l

j W j D1; : : : ;m; lD1; : : : ; k.j /gwith diam.y� l
j /�L0

and such that

y†03 D

mX
jD1

yUj and @ yUj D

k.j/X
lD1

y� l
j for each j D 1; : : : ;m;

where both equalities hold as chains (not just in homology). Finally, there is an integer q

and a function

u W f.j ; l/ W j D 1; : : : ;m; l D 1; : : : ; k.j /g ! f1; : : : ; qg

such that, for r 2 f1; : : : ; qg, we have

diam
� [
.j ;l/2u�1.r/

y� l
j

�
�L0

and X
.j ;l/2u�1.r/

y� l
j D 0

as 2–cycles for r 2 f1; : : : ; qg.
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Denote by †0
3

the 3–cycle in zX obtained by pushing y†0
3

forward by the map Of and
similarly for Uj and � l

j .

Since Of is transversal to M3, it is easy to check that deg Of jM3
D deg Of. Hence,

Of#.Œy†
0
3
�/D .deg Of /Œ†3�. Moreover, since f (and thus Of ) was assumed to be distance-

decreasing, we see that d
. zX ;g zX /

.†3; †
0
3
/�L0. As such, it suffices to bound †0

3
in a

controlled neighborhood.

To do so, we follow the argument used in Corollary 7. Because diam.y� l
j / � L0, we

can use Proposition 6 to find a 3–chain z�j

l
with diam.z� l

j / � R.L0/ and @z�j

l
D �

j

l

and then a 4–chain zUj with

@ zUj D Uj �

k.j/X
lD1

z� l
j

and diam. zUj /�R.L0C 2R.L0//. Thus,

†03 D

mX
jD1

@ zUj C

qX
rD1

X
.j ;l/2u�1.r/

z� l
j :

and

diam
� X
.j ;l/2u�1.r/

z� l
j

�
� 2R.L0/CL0:

We can thus complete the proof as in Corollary 7.

Granted Lemma 19, Theorem 2 follows. Indeed, in order to prove the Urysohn width
estimate of Proposition 8, it is enough to assume that the filling radius estimate holds
for a multiple deg.f /†n�2 of every cycle †n�2. The rest of the proof of Theorem 2
proceeds exactly as the proof of Theorem 1.
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