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An effective interatomic interaction potential for SiC is proposed. The potential consists of
two-body and three-body covalent interactions. The two-body potential includes steric repulsions
due to atomic sizes, Coulomb interactions resulting from charge transfer between atoms,
charge-induced dipole-interactions due to the electronic polarizability of ions, and induced
dipole-dipole !van der Waals" interactions. The covalent characters of the Si–C–Si and C–Si–C
bonds are described by the three-body potential. The proposed three-body interaction potential is a
modification of the Stillinger-Weber form proposed to describe Si. Using the molecular dynamics
method, the interaction potential is used to study structural, elastic, and dynamical properties of
crystalline !3C", amorphous, and liquid states of SiC for several densities and temperatures. The
structural energy for cubic !3C" structure has the lowest energy, followed by the wurtzite !2H" and
rock-salt !RS" structures. The pressure for the structural transformation from 3C-to-RS from the
common tangent is found to be 90 GPa. For 3C-SiC, our computed elastic constants !C11, C12, and
C44", melting temperature, vibrational density-of-states, and specific heat agree well with the
experiments. Predictions are made for the elastic constant as a function of density for the crystalline
and amorphous phase. Structural correlations, such as pair distribution function and neutron and
x-ray static structure factors are calculated for the amorphous and liquid state. © 2007 American
Institute of Physics. #DOI: 10.1063/1.2724570$

I. INTRODUCTION

Silicon carbide !SiC" has been proposed for a wide range
of technological applications, such as optoelectronic devices
and engineering materials, because it has highly useful prop-
erties, i.e., excellent chemical stability, good electronic prop-
erties, high stiffness, and high hardness. Light weight, high
strength, chemical stability, high thermal conductivity, and
low thermal expansion of SiC allow for its use in technologi-
cal applications such as gas turbines, heat exchangers, and
ceramic fans. Its wide band gap, high electron mobility, and
high barrier for electron breakdown make it ideal for radar,
microwave, solar cell, and high-voltage devices.1–6 Silicon
carbide in the amorphous alloy form, a-SixC1−x, is of addi-
tional technological interest due to the temperature stability
of its tuning semiconducting properties, which allows unique
applications under extreme conditions such as high-
temperature engines, turbines, and reactors.2

At ambient pressure, there exists various polytypes in
SiC originating from differences in the stacking sequence of
the silicon-carbon pair layer.3,7 Besides the cubic !-SiC, SiC
has a unique property that it shows polytypism8 with about

70 hexagonal and 170 rhombohedral structures. In all these
polytypes, the chemical bonds characterized by covalent sp3

bonding are identical and the tetrahedrally coordinated prop-
erties are almost the same.9 Among the polytypes, the zinc-
blende structure is the most common.

It is important to study the phase stability of materials
under high pressures for microscopic understanding as well
as technological applications.10 For this purpose inelastic
neutron scattering and neutron diffraction studies have been
used with success to describe the structure and dynamics of
amorphous and glassy materials.11–19 To the best of our
knowledge there are no such neutron scattering studies of
amorphous silicon carbide !a-SiC", but several other experi-
mental and theoretical studies of a-SiC were performed.

For the last few decades, there have been a number of
experimental20–24 and theoretical23–28 studies on the struc-
tural transformation under high pressure in SiC. Yoshida et
al.20 have found from x-ray diffraction measurements that
SiC transforms from the fourfold coordinated zinc-blende
structure to a sixfold coordinated rock salt structure at a pres-
sure above 100 GPa, with a 20.3% volume reduction. In their
experiments they have observed a large hysteresis associated
with this phase transformation. In the reverse transformation,a"Electronic mail: priyav@usc.edu
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when the pressure is decreased, a transformation from the
rock-salt structure to the zinc-blende structure takes place at
a pressure below 35 GPa. Shock compression experiments21

also suggest that the high-pressure phase of SiC above 100
GPa has rock-salt structure. Theoretical studies23,24,29 based
on ab initio pseudopotential calculations predict the transi-
tion pressure to be around 60 GPa, which is in reasonable
accord with the experiments.

Numerous other experimental techniques such as x-ray
diffraction, extended x-ray absorption fine structure
!EXAFS", x-ray photo emission, Raman and infrared spec-
troscopy, and extended electron-energy-loss !EXELFS" have
been performed in order to study high-pressure transforma-
tion and chemical bond order, in both crystalline and amor-
phous SiC, and in hydrogenated a-SiC:H materials.30–37

However, only a few theoretical interaction potentials have
been published for SiC. A simple rigid ion model was used
by Vetelino and Mitra38 to calculate the phonon-dispersion
curves; Chang and Cohen,23 Park et al.,39 and Karch28 used
ab initio electronic structure method with pseudopotentials to
study structural properties of SiC at low and high pressures,
while Finocchi et al.40 performed ab initio molecular dynam-
ics simulation on equimolar Si–C amorphous alloy, and
Ivashchenko et al.41 studied amorphous SiC through molecu-
lar dynamics in the framework of an sp3s* tight-binding
force model. A bond charge model was used by Zywietz et
al.42 to study the influence of polytypism on thermal proper-
ties of SiC, and the full-potential linear-muffin-tin combined
with local density function theory was used by Lambrecht et
al.43 to study elastic constants and deformation potentials in
cubic SiC. Kelires44 has used the interaction potential pro-
posed by Tersoff45 to perform Monte Carlo simulations, and
Tang et al.,46 Porter et al.,47 Li et al.,48 and Noreyian et al.49

have used molecular dynamics methods to study elastic and
thermal properties of SiC. Brittle fracture of cubic SiC under
hydrostatic pressure was simulated using Tersoff potential by
Tang and Yip.50 Surface reconstruction and thermal stability
in cubic SiC has been described both by ab initio51 and
classical52 !Tersoff potential" molecular dynamics simula-
tions. Simulation of sublimation growth53 and defect genera-
tion in irradiated and amorphization on 3C-SiC54–57 has also
been reported. Huang et al.58 compared the defect energetic
through Tersoff,45 Pearson,59 and modified embedded-atom
!MEAM" potentials. Recently, Erhart and Albe60 have pro-
posed an analytical bond-order form61 to describe elastic,
thermal, and point defect in Si, C, and SiC. Empirical bond-
order potentials by Tersoff45 and others60,62 have been used
successfully to describe elastic and thermal properties of
SiC. What has been less studied with these potentials is the
high-pressure structural transformation of SiC, in particular
its atomistic mechanisms. The interatomic potential proposed
in this paper has been used to predict a new transformation
pathway,63 which was later confirmed by first-principles
quantum-mechanical calculations in the framework of the
density functional theory !DFT".64,65 Another essential me-
chanical property less studied with the bond-order potentials
is the fracture toughness for various crystallographic orien-
tations, for which our interatomic potential provides good
agreement with available experimental values.66 As we

present in this paper, unstable stacking fault energies calcu-
lated with our interatomic potential also agree well with first-
principles DFT values, which are critical for the study of
plasticity in SiC.

In this paper, we report an interatomic interaction poten-
tial for SiC. We study the elastic properties of cubic and
amorphous SiC phases, its vibrational density of states, and
the structure of the molten phase by total and partial pair
distribution functions, structure factors, and coordination
numbers. The paper is divided into eight sections. In Sec. II
we describe the interaction potential and give the parameters
for the two- and three-body parts of the potential; in Sec. III
we discuss the structural energies and melting of SiC; in Sec.
IV we present and discuss the results for elastic properties of
crystalline and amorphous SiC. In Sec. V the structural trans-
formation induced by pressure as well as surface and stack-
ing fault energies are analyzed. Section VI discusses the vi-
brational density of states for 3C-SiC and a-SiC, Sec. VII is
devoted to molten properties, and finally we present the con-
clusions in Sec. VIII.

II. INTERACTION POTENTIAL FOR SIC

Complex chemical bonds in SiC involve both ionic and
covalent characters. There is charge transfer between Si and
C atoms resulting in Coulomb interaction between ions, so
the two-body interaction potential must contain at a mini-
mum a steric repulsion as well as Coulomb interactions.
However, such a simple two-body interaction is not sufficient
to describe the effect of other interactions present in a mate-
rial like SiC. In addition, a three-body potential is needed to
describe the covalent character of bond bending and stretch-
ing.

Our effective interatomic interaction potential consists of
two- and three-body interactions. The total potential energy
of the system is given by

V = %
i"j

Vij
!2"!rij" + %

i,j"k
Vjik

!3"!rij,rik" . !1"

Based on the form of our earlier interaction potential for
AgI,67–69 the two-body interaction potential includes steric
size effects of the ions, charge-transfer effects leading to
Coulomb interactions, charge-dipole interactions due to the
electronic polarizability of ions, and induced dipole-dipole
!van der Waals" interactions. The two-body part of the effec-
tive potential is written as

Vij
!2"!r" =

Hij

r#ij
+

ZiZj

r
e−r/$ −

Dij

2r4e−r/% −
Wij

r6 . !2"

Here, Hij is the strength of the steric repulsion, Zi the effec-
tive charge !in units of the electronic charge &e&", Dij the
strength of the charge-dipole attraction, Wij is the van der
Waals interaction strength, #ij the exponents of the steric
repulsion term, r'rij = &ri−r j& the distance between the ith
atom at position ri and the jth atom at position r j, and $ and
% are the screening lengths for Coulomb and charge-dipole
terms, respectively.

In order to properly account for the short-range order in
a tetrahedrally coordinated covalent material, Stillinger and
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Weber70 introduced an r-dependent function in the three-
body angle-dependent form which has been proposed by
Keating.71 We propose a three-body effective interaction po-
tential which is an important modification of the
Stillinger-Weber70 form. Our new three-body form is neces-
sary to describe the structural transformation under pressure
and melting behavior of the material while maintaining the
bond-bending and bond-stretching characteristics. It is writ-
ten as a product of the spatial and angular dependence as

Vjik
!3"!rij,rik" = R!3"!rij,rik"P!3"!& jik" , !3"

where

R!3"!rij,rik" = Bjik exp( '

rij − r0
+

'

rik − r0
)(!r0 − rij"(!r0

− rik" , !4"

P!3"!& jik" =
!cos & jik − cos & jik"2

1 + Cjik!cos & jik − cos & jik"2 . !5"

In this three-body interaction potential, Bjik is the strength of
the interaction, & jik the angle formed by rij and rik, and Cjik
and & jik are constants. (!r0−rij" is the step function.

Based on previous experience68,72–74 the exponents #ij
were chosen to be 7, 9, and 7, respectively, for Si–Si, Si–C,
and C–C interactions. The screening lengths were fixed to be
$=5.0 Å and %=3.0 Å. For computational efficiency, the
two-body interaction is truncated at r=rc!7.35 Å", and
shifted for r"rc in order to have the potential and its first
derivative continuous at rc.

75,76 The three-body part is short
ranged due to the r-dependence of Eq. !4". The expression
for the shifted two-body part of the potential is

Vij
!2 shifted"!r" = *Vij

!2"!r" − Vij
!2"!rc" − !r − rc"!dVij

!2"!r"/dr"r=rc
r ) rc

0 r * rc
+ . !6"

The parameters in the interaction potential were determined
using a few selected physical properties such as cohesive
energy, bulk modulus, and C11 elastic constant at the experi-
mental density of 3C-SiC. Table I summarizes the parameters
for SiC interaction potential.

In Fig. 1 we show the shifted V!2" interaction potential as
a function of distance, and the angular three-body interaction
potential P!3" is shown in Fig. 2. Note that while in the Keat-
ing and Stillinger-Weber potential the angular dependence
increases indefinitely when the angle deviates from the equi-
librium angle, our proposed modification has the same de-
pendence around the equilibrium angle, but saturates for a
large deviation from the equilibrium angle. This allows for
the reconfiguration of bonds in structural transformation un-
der pressure and in melting. In Table II we summarize quan-
tities calculated using our interaction potential and the corre-
sponding experimental values.

III. STRUCTURAL ENERGIES AND MELTING

The lattice energy, for different crystalline structures, is
calculated as a function of volume. These calculations allow

FIG. 1. !Color" Two-body interaction potential as a function of distance, as
described in Eq. !6".

TABLE I. Parameters for two- and three-body parts of the interaction potential used in the MD simulation of
structural, dynamical, and mechanical properties of SiC.

Si C
Zi!e" 1.201 −1.201

Two-body Si-Si Si-C C-C
#ij 7 9 7
Hij !eV Å#" 23.67291 447.09026 471.74538
Dij !e2 Å3" 2.1636 1.0818 0
Wij !eV Å6" 0 61.4694 0

$=5.0 Å %=3.0 Å rc=7.35 Å e=electronic charge
Bjik !eV" & jik !°" Cjik ' !Å" r0 !Å"

Three-body Si-C-Si 9.003 109.47 5.0 1.0 2.90
C-Si-C 9.003 109.47 5.0 1.0 2.90
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us to predict the most stable structures, their equilibrium en-
ergy, lattice constant, bulk modulus and its derivative, and
the pressure necessary to induce a structural transformation.
All MD calculations reported in this paper consists of a sys-
tem with 4096 atoms !2048 Si+2048 C" initially in a cubic
zinc-blende structure. The cubic cell edge L has 34.8648 Å,
which reproduces the experimental density of 3.2175 g/cc.

A. Structural energies for zinc-blende, wurtzite, and
rock-salt structures

The energetic for zinc-blended !ZB", wurtzite !2H", and
rock-salt !RS" structures is calculated as a function of vol-
ume per atom. The lattice parameters for 2H structure is
taken from Park et al.39 In Fig. 3 all three energies are shown
plotted as a function of volume for zinc blende, wurtzite
!2H", and rock-salt structures. The energies were obtained by
hydrostatic compression/dilation of the unit cells.

For each curve a Murnaghan equation of state77

E!V" =
BV

B!!B! − 1"
,B!(1 −

V0

V
) + (V0

V
)B!

− 1- + E!V0"

!7"

was fitted !shown as dashed lines in Fig. 3", and the results
are summarized in Table III together with the values obtained
from MD at zero pressure. From a common tangent between

the ZB and RS structures, it is possible to infer that the
pressure of structural transformation to be around 90 GPa.
From the Murnaghan equation of state, it was found that
3C-SiC crystal structure has its minimum energy at
−6.342 eV and the unit cell volume is V0=82.744 Å3, which
corresponds to a unit cell lattice constant of a0=4.3574 Å.
Wurtzite, on the other hand, has the minimum energy of
−6.320 eV at the unit cell volume of V0=81.52 Å, which
corresponds to a lattice constant of a=3.061 Å, c=5.023 Å,
whose ratio is c /a=1.6409, in very good agreement with the
experiment,8 which gives c /a=1.641. The difference in en-
ergy per particle between these two structures is only +E
=0.022 eV, ZB being more stable than the 2H structure.

FIG. 2. !Color" Angular dependence of our three-body interaction potential
defined in Eq. !3", continuous curve. For comparison the Stillinger-Weber
three-body interaction potential is also displayed, dashed curve. In this plot
the constant angle &=109.47° and C=5, as given in Table I.

TABLE II. Calculated and experimental values for a selected number of
physical quantities for 3C-SiC.

Experiments MD
Lattice constant !Å" 4.3596a 4.3581
Cohesive energy !eV" 6.34b 6.3410868
Melting/decomposition temperature !K" 3103,40b 3250,50
Bulk modulus !GPa" 225-270b–d 225.2
Elastic constants !GPa"
C11 390d 390.0
C12 142d 142.6
C44 150-256b,d 191.0

aReference 92.
bReference 91.
cReference 93.
dReference 94.

FIG. 3. !Color" Energy per particle as a function of volume per particle. The
difference in energy per particle between zinc-blende and wurtzite structures
is +E=0.022 eV. Dashed lines are a fit of Murnaghan equation of state, Eq.
!7". A common tangent between zinc-blende and rock-salt energy curves
determines the pressure of the structural transformation to be around 90
GPa. Energy at the 3C-SiC minima is −6.342 eV at the unit cell volume
V0=82.744 Å3 !a0=4.3574 Å" and the corresponding minima for wurtzite is
−6.320 eV at the unit cell volume V0=81.52 Å !a0=3.061 Å, c=5.023 Å".

TABLE III. Molecular dynamics results, Murnaghan equation of state fit to
the MD data, and experimental data for minimum energy per particle, vol-
ume of the unit cell, bulk modulus, B, and first derivative of the bulk modu-
lus, B!, for zinc-blende, wurtzite, and rock-salt structures. For rock salt the
cohesive energy and bulk modulus are calculated at the minimum of the
energy vs volume curve shown in Fig. 3.

Molecular
dynamics

Murnaghan
equation of state

Experimental
results

Zinc blende E /N !eV" −6.34109 −6.342 −6.34 a

V /N !Å3" 10.3467 10.36 10.3574e

B !GPa" 225.2 231.3 224−269
B! - 5.5 4.1b

Wurtzite E /N !eV" −6.31953 −6.320
V /N !Å3" 10.3410 10.184 10.3410d

B !GPa" 228.9 221.5 223−225c,d

B! - 6.9
Rock salt E /N !eV" −5.41987 −5.419

V /N !Å3" 9.3273 9.4479
B !GPa" 96.1 71.2
B! - 5.2

aReference 91.
bReference 95.
cReference 93.
dReference 39.
eReference 97.
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B. Melting of 3C-SiC

The molten state was prepared by continuously heating
the 3C-SiC crystalline structure, using the constant-pressure,
constant-temperature MD method. Starting from its ZB
structure at 300 K, the system was heated in steps of 200 K
at constant pressure. At each temperature, the system was
thermalized for 40 000 time steps !one time step +t=2.0 fs"
before further heating. In Fig. 4!a" the energy per particle is
displayed and in Fig. 4!b" the volume ratio as a function of
temperature. The dotted line at T=3250±50 K indicates the
calculated melting temperature of the 3C-SiC crystal, which
agrees quite well with the reported experimental melting
temperature of 3103±40 K measured at 35 bars.78

It should be pointed out here that the molecular dynam-
ics melting temperature should be higher than the experi-
mental one, because in the simulation we are dealing with a
perfect crystal and the effects due to the periodic boundary
conditions are present. The MD melting temperature tends to
decrease as the system size increases. In addition, the pres-
ence of defects also lowers the melting temperature. There-
fore, for a perfect crystal of 4096 atoms with periodic bound-
ary conditions, the agreement between the MD melting
temperature, 3250±50 K, and the experimental value,
3103±40 K, !an infinite system with defects" is indeed ex-
cellent.

IV. ELASTIC PROPERTIES OF CRYSTALLINE AND
AMORPHOUS SIC

Elastic constants of a materials can be measured, in prin-
ciple, through several different techniques such as ultrasonic
wave propagation, Brillouin scattering, neutron scattering,
among others. We have computed the elastic properties of
SiC to compare with the available experimental data. Predic-

tions of elastic constants are also made for crystalline and
amorphous SiC. With the proposed interaction potential, the
linear elastic constants were calculated at zero temperature
directly from the stress-strain relationship, i.e., C.,!,/,0
=#1.,! /#2/,0, where 1 is the external applied stress and 2
the strain.79

A. Elastic properties of 3C-SiC

Figure 5!a" summarizes the results of the elastic con-
stants calculated for 3C-SiC as a function of density. The
most common elastic moduli are the Young modulus, the
Poisson ratio, bulk modulus, and the shear modulus, which
are displayed in Fig. 5!b" !dashed lines are only to guide the
eye". The vertical dashed line marks the observed crystalline
density. Young modulus was determined through Y = !C11
+2C12"!C11−C12" / !C11+C12", Poisson ratio through 0
=C12/ !C11+C12", shear modulus by G=Y / #2!1+0"$, and
bulk modulus by B=Y / #3!1−20"$. Bulk modulus has a
strong dependence with the density of the material, Young
modulus a weak dependence, while the shear modulus is
practically independent of density.

B. Elastic properties of amorphous SiC

For amorphous SiC the elastic constants have similar
dependence on density as that observed in the cubic crystal
structure, Fig. 6!a". However, as displayed in Fig. 6!b", the Y,
B, and G moduli show significantly different behavior. All
three elastic moduli for amorphous SiC show more pro-
nounced nonlinearity with density when compared to the
crystalline case.

FIG. 4. !Color" Energy per particle and volume ratio, V /V0, as a function of
temperature. V0 is the volume of the system at zero temperature. Dotted
lines are a guide for the eye and the vertical dashed dotted line represents
the calculated melting temperature of 3250 K.

FIG. 5. !Color" Calculated elastic properties for 3C-SiC as a function of
density. !a" Elastic constants C11, C12, and C44; !b" Young modulus, Y, shear
modulus, G, and bulk modulus, B. The vertical dashed line corresponds to
the experimental density of 3=3.217 g/cm3.
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Finally, in Table IV the mechanical properties calculated
for 3C-SiC and amorphous SiC are compared with the avail-
able experimental data. It is worth mentioning that the agree-
ment with the experimental data for 3C-SiC is not fortuitous,
since only C11 and B were used as input data in the param-
etrization of the interaction potential. Furthermore, we are
making predictions for the elastic properties for the amor-
phous phase.

V. ZINC-BLENDE TO ROCK-SALT STRUCTURAL
TRANSFORMATION UNDER PRESSURE, SURFACE
ENERGY, AND STACKING FAULT ENERGY FOR
SIC

A. Structural transformation under pressure

The energy versus atomic volume, Fig. 3, correctly pre-
dicts the pressure of transformation between zinc-blende and
rock-salt structures. This structural transformation could be
observed dynamically from our MD simulations. Starting at
zero pressure the system was first heated up to 1800 K. At
this fixed temperature the external pressure was increased in
steps of 5 GPa up to 140 GPa. For each applied pressure the
system is allowed to run for 20 000 time steps. The averages
of the physical quantities were taken over additional 10 000
time steps. Figure 7 shows the Si–C bond distance defined as
the peak position of the partial Si–C pair correlation func-
tion, as a function of the applied pressure. Up to 80 GPa the
system responds with elastic compression. Around 110 GPa
the bond length suddenly increases, and with further increase
of pressure the elastic compression is again observed in the
new structure. Pair distribution function and bond angles for
two pressures, above and below the transformation, depicted
in Figs. 8!a" and 8!b", confirm the transformation. The four-
fold coordinated system, which has a characteristic Si–C–Si
bond angle peaked at 109°, changes to sixfold coordination
number with Si–C–Si bond angle peaked at 90° and 180°

FIG. 6. !Color" Elastic properties for amorphous SiC. !a" Calculated elastic
constants and shear, C44= !C11−C12" /2, as a function of density; !b" Young
modulus, Y, shear modulus, G, and bulk modulus, B. The solid arrow marks
the observed 3C-SiC density !3.217 g/cc" and the vertical dashed line marks
the density !3.076 g/cc" at which the amorphous SiC has zero internal
pressure.

TABLE IV. Elastic constants, bulk modulus, B, Young modulus, Y, shear modulus G, as well as Poisson ratio
v, are calculated using our proposed interaction potential, together with the experimentally reported values.
Predictions are made for the elastic properties of the amorphous phase, a-SiC.

C11

!GPa"
C12

!GPa"
C44

!GPa"
B

!GPa"
Y

!GPa"
G

!GPa"
v

MD results 3C-SiC
!3.217 g/cc"

390.1 142.7 191.0 225.1 313.6 123.7 0.268

a-SiC
!at zero pressure,

3.079 g/cc

375.3 112.5 141.7 200.1 323.4 131.4 0.231

Experiment 3C-SiC 314.2d 0.267d

390a 142a 256a 225a 392– 124d 0.168b

694c 192b 0.267a

aReference 94.
bReference 93.
cReference 96.
dCalculated using the measured values of C11 and C12 and the definitions Y = !C11−C12"!C11+2C12" / !C11
+C12", 0=C12/ !C11+C12", G=Y / #2!1+0"$, B=Y / #3!1−20"$.

FIG. 7. !Color" Si–C bond distance as a function of applied pressure.
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characteristic of the rock-salt structure. This structural phase
transformation induced by pressure is in excellent agreement
with experimental reported data.20

B. Surface energy

The total energy of the system was calculated for bulk,
where periodic boundary condition was applied in all direc-
tions in order to remove surface dependence, and considering
two vacuum regions, above and below, the #110$ surface
along the c axis. For the former case the system energy was
calculated with and without relaxation. The difference be-
tween bulk and vacuum setup allows us to obtain the surface
energy of the system. For unrelaxed and relaxed surfaces, the
surface energy per square angstroms is:

for unrelaxed case:
Esurface = 0.1157 eV/Å2;
for relaxed case:
Esurface = 0.1082 eV/Å2

.

As far as we know, there is no experimental result available
for this quantity.

C. Stacking fault energy

The energy barrier for plastic deformations in SiC is
estimated calculating the generalized stacking fault energy
for rigid sliding in the .111/ plane of the SiC zinc blende by
both MD and ab initio quantum-mechanical calculations
based on the density functional theory !DFT".80,81 The
electronic-structure calculations are based on the generalized
gradient approximation for the exchange-correlation
energy.80,82,83 The ultrasoft pseudopotential is employed for

the interaction between the valence electrons and ions. The
electronic wave functions are expanded by the plane-wave
basis set. The energy functional is minimized using an itera-
tive scheme based on the preconditioned conjugate-gradient
method82,84 with a sufficient k-point sampling in the first
Brillouin zone.

The generalized stacking fault energy calculation proce-
dure follows that of Tadmor and Hai85 adapted to the zinc-
blende crystal. A bulk single-crystal sample with 20 atomic
layers in the #111$ direction was set up. Vacuum layers were
added in the #111$ extremes, creating !111" surfaces that
were relaxed for 10 000 steps. The relaxation was achieved
by quenching the temperature to 0 K by scaling the velocities
by a factor of 0.7 every 10 time steps. A set of 10 layers, half
the system, was then rigidly slid, against the remaining 10
layers, on the !111" glide plane in the #101$ direction using
100 steps forming an intrinsic stacking fault. Each atomic
configuration generated during the sliding was relaxed for
10 000 steps in the #111$ perpendicular direction, in order to
get a minimum energy configuration. The energetics of the
rigid sliding shows good agreement between MD and DFT
results. The value of the unstable stacking fault energy is
154 meV/Å2 !MD" and 169 meV/Å2 !DFT", the intrinsic
stacking fault energy is 5 meV/Å2 !MD" and 1.5 meV/Å2

!DFT" !see Fig. 9". The DFT calculations for the stacking
fault energy are from Shimojo !private communications".

VI. VIBRATIONAL DENSITY OF STATES FOR
CRYSTALLINE AND AMORPHOUS SIC

The vibrational density of states !VDOS" was obtained
from Fourier transformation of the velocity auto-correlation
function defined as

Z.!t" =
0vi.!0" · vi.!t"1

0vi.!0"21
, !8"

where vi.!t" is the velocity of the ith atom of species . !Si or
C" at time t and the brackets denote averages over atoms and
time origins.

After the system was thermalized at 300 K, the velocity
auto-correlation function as a function of time was generated
and the vibrational density of states calculated by Fourier
transformation of the correspondent partial velocity autocor-
relation function,

FIG. 8. !Color" !a" Si–C pair distribution function and coordination number
as a function of pressure, and the corresponding !b" Si–C–Si bond angle
distribution.

FIG. 9. !Color online" Generalized stacking fault energy for 3C-SiC calcu-
lated from MD !continuous line" and DFT !dashed line" !private
communication".
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G.!4" =
6N.

5
2

0

6

Z.!t"cos!4t"dt , !9a"

and the total vibrational density of states, defined as

G!4" = %
.

G.!4" , !9b"

was obtained.

A. Vibrational density of states for 3C-SiC

The calculated VDOS is plotted against experimental
phonon density of states.86 Although the MD optical mode is
shifted to higher energies, the gap and the two complex op-
tical modes are correctly described. From the partial VDOS
#see Fig. 10!b"$ the peak at 64 meV is mainly due to Si
vibrations, while most of the modes at high frequency are
due to carbon vibrations.

B. Specific heat for 3C-SiC

The specific heat at constant volume can be written as:

CV =

3NkB2
0

6 u2eu

!eu − 1"2G!4"d4

2
0

6

G!4"d4

, !10"

where u=74 /kBT and kB is the Boltzmann constant. With the
vibrational density of states discussed above, the specific
heat is evaluated from Eq. !10". In Fig. 11!a", CV / !3NkB" is
shown as a function of temperature along with the experi-
mental values of Cp at constant pressure. As expected, Cp is
larger than calculated CV at constant volume.

At low temperatures the Debye temperature, (D, can be
approximated by CV= 12

5 54NkB!T /(D"3 and the result is re-

vealed in Fig. 11!b". Using the experimental specific heat
data87 and the above expression, the “experimental” Debye
temperature is also plotted up to 1000 K. The agreement
between MD and experimental (D is excellent for all range
of temperature up to 1000 K.

C. Vibrational density of states for amorphous SiC

The vibrational density of states was calculated at 300 K
for the amorphous system at four different densities. In Fig.
12 the VDOS is shown for a-SiC at crystalline density
!3.217 g/cc". Contrary to the density of states in the cubic
phase, there is no gap for amorphous SiC. There are just two
broad bands with a large contribution of C vibrations at high
frequencies and a small contribution at low frequencies. The
situation for Si is opposite—large contribution at low fre-
quencies and small contribution at high frequencies.

FIG. 10. !Color" !a" Vibrational density of states from MD and experimental
density of states obtained from phonon dispersion relations; !b" partial den-
sity of states for Si and C from MD. FIG. 11. !Color online" !a" Calculated specific heat at constant volume, Cv

and experimental Cp as a function of temperature for 3C-SiC. !b" Debye
temperature is calculated using the well-known low-temperature expression
CV= 12

5 54NkB!T /(D"3. Continuous lines are our calculated results and the
open circles experimental results calculated using Cp !Ref. 87".

FIG. 12. !Color" MD vibrational density of states and partial densities of
states for amorphous SiC at density of 3.217 g/cc.
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D. Specific heat for amorphous SiC

From the MD density of states the same procedure was
done, as in the crystalline state, to calculate the specific heat
at constant volume for the amorphous phase. In Fig. 13 the
specific heat as a function of temperature for four densities of
amorphous SiC is shown. For comparison, the calculated
specific heat for the cubic crystalline phase is also displayed.
As we have shown,88 the smaller the density, the more nano-
voids will be present in the material, and, for a fixed tem-
perature, the specific heat will be higher due to increased
number of low-frequency phonons.

The density of 3.076 g/c is the density of a-SiC in which
the internal pressure is zero and 3.571 g/cc was the highest
density of the simulated amorphous system. Observe that at
this density the specific heat resemble that of crystalline 3C-
SiC.

VII. MOLTEN SIC

The structural correlations for the molten state were
studied at 4000 K.

A. Pair distribution function

The two-body pair distribution, g!r", was calculated
from the definition

0n.!!r"1+r = 45r23c!+rg.!!r" , !11"

where 3 is the total number density, n.!!r"+r is the number
of !-particles in a shell between r and r++r around an
.-particle, c! is the concentration of !-particles, and the
brackets denotes ensemble average as well the averages over
all .-particle. The coordination number C.!!r", which deter-
mines the average number of !-particles around an
.-particles, is an integral of the corresponding partial pair
distribution function

C.!!R" = 453c!2
0

R

r2g.!!r"dr . !12"

The total pair distribution function, neutron distribution
function and charge-charge distribution functions are, respec-
tively, defined as74

g!r" = %
.,!

c.c!g.!!r" , !13"

gn!r" =

%
.,!

c.b.c!b!g.!!r"

(%
.

c.b.)2 , !14"

where c. is the concentration of .-type atoms and b. is the
coherent neutron scattering cross section for .-type atom
nuclei.

The structural correlations for the liquid phase are dis-
played in Fig. 14. Like other tetrahedrally coordinated
systems,74 the liquid SiC has a very well-defined Si–C bond

FIG. 13. !Color" Constant volume specific heat Cv calculated from the MD
vibrational density of states for amorphous SiC for several densities. Results
for 3C-SiC at 3.217 g/cc are also shown.

FIG. 14. !Color" Comparison of the pair distribution functions between
liquid SiC at 4000 K and amorphous SiC at 300 K. Si–C bond length as well
as Si–Si and C–C nearest distance remain practically unchanged in the
liquid.
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length with coordination of 4, up to 2.4 Å as in the amor-
phous phases. The short range order still is made of well-
defined tetrahedra. Although the first peak for all correlations
resembles the peaks observed in the amorphous phase with
the corresponding thermal broadening, the other coordination
shells have their peaks shifted to larger values of r, in the
liquid phase, representing larger thermal disorder. There are
practically no significant correlations in the molten phase
after 5 Å, as shown in Fig. 14!d".

B. X-ray and neutron static structure factors for
molten SiC

The Fourier transform of the partial pair distribution
function determines the corresponding partial static structure
factor, i.e.,

S.!!q" = 8.! + 453!c.c!"1/22
0

6

#g.!!r" − 1$
r2 sin!qr"

qr
dr .

!15"

From these partial static structure factors we can compute the
neutron, x-ray, and charge-charge static structure factors, re-
spectively, as

Sn!q" =

%
.,!

b.b!!c.c!"1/2S.!!q"

(%
.

b.c.)2 , !16"

SX!q" =

%
.,!

f.f!!c.c!"1/2S.!!q"

(%
.

f.c.)2 , !17"

and

Szz!q" =

%
.,!

Z.Z!!c.c!"1/2S.!!q"

%
.

Z.
2c.

, !18"

where b. is the coherent neutron-scattering length and fa the
x-ray form factor.

To the best of our knowledge, there are no diffraction
experiments for liquid SiC. Calculated neutron, x-ray, and
charge-charge static structure factor for the molten phases at
4000 K are shown in Fig. 15!a" and the partials structure
factors are shown in Fig. 15!b". Besides the thermal effects
in the height of the peaks and their broadening, the general
features of Sn!q" for the liquid are similar to those observed
for the amorphous state.

VIII. CONCLUSIONS

We have proposed an effective interatomic interaction
potential for molecular dynamics simulations of SiC. We
have used the interaction potential to study structural, elastic,
and dynamical properties of crystalline !3C", amorphous, and
liquid states of SiC for several densities and temperatures.
The potential describes correct energetics of several poly-
morphs !3C, 2H, and rock salt" as well as the 3C-to-rock-salt

transformation pressure. For 3C-SiC, our computed elastic
constants !C11, C12 and C44", melting temperature, vibra-
tional density-of-states, and specific heat agree well with the
experiments. We have predicted the elastic constants as a
function of density for the crystalline and amorphous phases.
We have also presented structural correlations, such as pair
distribution function and neutron and x-ray static structure
factors, for the amorphous and liquid states. We have suc-
cessfully applied the interatomic potential to multimillion-
atom molecular-dynamics simulations of sintering, indenta-
tion, fracture, and impact damage, the results of which will
be presented elsewhere. Such an interatomic potential is ex-
pected to have a wide use in computational nanotechnology89

and materials research.90
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