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Abstract. We give a purely local proof of the explicit Local Langlands Correspondence for GSp4

and Sp4. Moreover, we give a unique characterization in terms of stability of L-packets and other
properties. Finally, in the appendix, we give an application of our explicit local Langlands corre-
spondence to modularity lifting.
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1. Introduction

Let F be a non-archimedean local field and G a connected reductive algebraic group over F . Let
G∨ be the group of C-points of the reductive group whose root datum is the coroot datum of G.
The Local Langlands Conjecture predicts a surjective map1{

irred. smooth
repres. π of G(F )

}
/iso. −→

 L-parameters
i.e. cont. homomorphisms

φπ : WF × SL2(C) → G∨ ⋊WF

 /G∨-conj.,

whereWF is the Weil group of F . The fibers of this map, called L-packets, are expected to be finite.
In order to obtain a bijection between the group side and the Galois side, the above Conjecture
was later enhanced (á la Deligne, Vogan, Lusztig etc.). On the Galois side, one considers enhanced
L-parameters.
Many cases of the Local Langlands Conjecture have been established, most notably:

• for GLn(F ): [HT01, Hen00, Sch13];
• for SLn(F ): [HS12] for char(F ) = 0 and [ABPS16b] for char(F ) > 0 (see also [GK81, GK82]);

1To avoid overunning the margins, we use abbreviations “irred.” for “irreducible”, “repres.” for “representations”,
“iso.” for “isomorphism”, “cont.” for “continuous” and “conj.” for “conjugacy”.

For simplicity, we only state the conjecture for quasisplit p-adic groups in the introduction, which is sufficient for
our current paper.
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• quasi-split classical groups for F of characteristic zero: [Art13, Moe11] etc.
• exceptional group G2: [AX22a]

For classical groups, the main methods in literature are either (1) to classify representations of
these groups in terms of representations of the general linear groups via twisted endoscopy, and
to compare the stabilized twisted trace formula on the general linear group side and the stabilized
(twisted) trace formula on the classical group side, or (2) to use the theta correspondence.

In [AX22b], the second author took a completely different approach to the construction of explicit
Local Langlands Correspondences for p-adic reductive groups via reduction to LLC for supercus-
pidal representations of proper Levi subgroups. This strategy was then applied in [AX22a] to
construct the explicit Local Langlands Correspondence for p-adic G2, which is the first known case
in literature of Local Langlands Correspondence for exceptional groups. In [SX23], the authors
uniquely characterize the Local Langlands Correspondence constructed in [AX22a] using an exten-
sion of the atomic stability property of L-packets as formulated by DeBacker, Kaletha etc. (see for
example [Kal22, Conjecture 2.2]), which is a generalization of the stability property in [DR09]. To
do this, we compute the coefficients of certain local character expansions building on methods in
[HC99, DS00, BM97].

In this article, we apply this general strategy pioneered in [AX22a, SX23] and construct the
explicit Local Langlands Correspondence for the symplectic groups GSp4 and Sp4 over an arbitrary
non-archimedean local field of residual characteristic ̸= 2, with explicit L-packets and explicit
matching between the group and Galois sides.

More precisely, we use a combination of the Langlands-Shahidi method, (extended affine) Hecke
algebra techniques, Kazhdan-Lusztig theory and generalized Springer correspondence–in particu-
lar, the AMS Conjecture on cuspidal support [AMS18, Conjecture 7.8]. For intermediate series,
i.e. Bernstein series with supercuspidal support “in between” a torus and G itself, we use our
previous result on Hecke algebra isomorphisms and local Langlands correspondence for Bernstein
series obtained in [AX22b]. For principal series (i.e. Bernstein series with supercuspidal support
in a torus), we improve on previous works we use [Roc98, Ree02, ABPS16a, Ram03] to match the
group and Galois sides.

For supercuspidal representations, we make explicit the theory of [Kal19, Kal21] for the non-
singular supercuspidal representations and their L-packets. For singular2 supercuspidal represen-
tations, which are not covered in loc.cit. , we use [AMS18, Conjecture 7.8] (see Property 8.1.19) to
exhibit them in mixed L-packets with non-supercuspidal representations. These mixed L-packets
are drastically different from the supercuspidal L-packets of [Kal19, Kal21].

Furthermore, our LLC satisfies several expected properties, including the expectation that Irr(Sφ)
parametrizes the internal structure of the L-packet Πφ(G), where Sφ is the component group
of the centralizer of the (image of the) L-parameter φ. Moreover, we explicitly compute the
coefficients of local character expansions of Harish-Chandra characters for certain non-supercuspidal
representations (see §6), which allows us to give a unique characterization of our LLC using stability
for L-packets.

Finally, explicit Local Langlands Correspondences (e.g. explicit Kazhdan–Lusztig triples) have
important applications to number theory, such as to the Taylor–Wiles methods and modularity
lifting theorems. In Appendix A, we record such an application, following [BCGP21, Tho22, Whi22].

1.1. Main results. We now state our main results. Let Irrs(G) be the Bernstein series attached
to the inertial class s = [L, σ] (for more details, see [AX22a, (3.3.2)] ). Let Φe(G) denote the set of

G∨-conjugacy classes of enhanced L-parameters for G. Let Φs∨
e (G) ⊂ Φe(G) be the Bernstein series

on the Galois side, whose cuspidal support lies in s∨ = [L∨, (φσ, ρσ)], i.e. the image under LLC for
L of s (for more details, see [AX22a, §2.4] ). For any s = [L, σ]G ∈ B(G), the LLC for L given by

2which we define to be simply the ones that are not non-singular in the sense of [Kal21]
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σ 7→ (φσ, ρσ) is expected to induce a bijection (see [AMS18, Conjecture 2] and Conjecture 8.1.23):

(1.1.1) Irrs(G)
∼−→ Φs∨

e (G).

For the group GSp4 and Sp4, by [AX22b, Main Theorem], we have such a bijection (1.1.1) for
each Bernstein series Irrs(G) of intermediate series. On the other hand, the analogous bijection to
(1.1.1) holds for principal series Bernstein blocks thanks to [Roc98, Ree02, ABPS16a, AMS18].

Let G = GSp4(F ) or Sp4(F ), and p ̸= 2. Combined with the detailed analysis in all of §3 through
§6, we explicitly construct the Local Langlands Correspondence

LLC: Irr(G)
1-1−−→ Φe(G)

π 7→ (φπ, ρπ),
(1.1.2)

and obtain the following result (see Theorem 8.2.8).

Theorem 1.1.3. The explicit Local Langlands Correspondence (1.1.2) verifies Πφπ(G)
∼−→ Irr(Sφπ)

for any π ∈ Irr(G), and satisfies (1.1.1) for any s ∈ B(G), where s∨ = [L∨, (φσ, ρσ)]G∨, as well as
a list of properties (see §8.1) that uniquely characterize our correspondence.

In other words,

(1) to each explicitly described π ∈ Irr(G), we attach an explicit L-parameter φπ and determine
its enhancement ρπ explicitly;

(2) to each φ ∈ Φ(G), we describe (the shape of) its L-packet Πφ(G), and give an internal
parametrization in terms of ρ ∈ Irr(Sφ);

(3) Moreover, for non-supercuspidal representations, we specify the precise parabolic induction
that it occurs in.

Acknowledgements. Y.X. was supported by NSF grant DMS 2202677. K.S. was partially supported
by MIT-UROP. The authors would like to thank Jack Thorne for bringing their attention to the
applications of explicit LLC to modularity lifting and for help with references. The authors would
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Maarten Solleveld, Loren Spice, Jack Thorne and Dmitri Whitmore for helpful conversations related
to this project. The authors would like to thank George Lusztig and Wei Zhang for their continued
interest and encouragement.

The authors would like to thank Maarten Solleveld for helpful feedback on a previous version
of this paper. The authors would like to thank MIT for providing an intellectually stimulating
working environment.

2. Preliminaries

Let F be a nonarchimedean local field. Let J2 :=

(
1

1

)
and β :=

(
J2

−J2

)
. Consider the

following groups

Sp4 := {g ∈ GL4(F ) :
T gβg = β}

GSp4 := {g ∈ GL4(F ) :
T gβg = µ(g)β, for some µ(g) ∈ F×}.

In particular, there is an exact sequence 1 → Sp4(F ) → GSp4(F )
µ−→ F× → 1. The Langlands

dual groups are GSp∨4 = GSpin5(C) and Sp∨4 = PGSpin5(C) ∼= SO5(C). Here GSpin5 := (GL1 ×
Spin5)/µ2 where µ2 is diagonally embedded as in [Asg02, Definition 2.3].

2.1. Root datum. The following are the data for the root datum for Sp4,GSp4 [Tad94, Asg02,
AS06], of type C2. We also realize everything in terms of the torus T = {(a1, a2, b2, b1) : a1b1 =
a2b2 = µ}.
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• For Sp, the lattice is X∗(T ) := Z{ϵ1, ϵ2}, the roots are ∆ := {±ϵ1 ± ϵ2,±2ϵ1,±2ϵ2}, and
the simple roots are {ϵ1 − ϵ2, 2ϵ2}.

• For GSp, the lattice is X∗(T ) := Z{ϵ0, ϵ1, ϵ2}, the roots are ∆ := {±ϵ1 ± ϵ2} ∪ {±(ϵ0 −
2ϵ1),±(ϵ0 − 2ϵ2),±(ϵ0 − ϵ1 − ϵ2)}, and the simple roots are {ϵ1 − ϵ2, 2ϵ2 − ϵ0}.

Here, ϵi(a1, a2, b1, b2) = ai for i = 1, 2 and ϵ0(a1, a2, b2, b1) = µ.
The root groups are given by:

Uϵi−ϵj =

(
1 + x1ij

1− x1n+1−j,n+1−i

)
Uϵi+ϵj =

(
1 x(1i,n+1−j + 1j,n+1−i)

1

)
U2ϵi =

(
1 x1i,n+1−i

1

)
U−ϵi−ϵj =

(
1

x(1n+1−i,j + 1n+1−j,i) 1

)
U−2ϵi =

(
1

x1n+1−i,i 1

)
,

where 1ij is the matrix with a single one in the (i, j)-component.
Letting α := ϵ1 − ϵ2 and β := 2ϵ2 (or 2ϵ2 − ϵ0, for GSp), and δ := −2ϵ1 (or ϵ0 − 2ϵ1 for GSp) we

obtain:

Coroots are given by α∨ := 2(α,−)
(α,α) . For Sp4 and GSp4, they are of type B2:

• X∗(T ) := Z{ϵ∨1 , ϵ∨2 }, and the simple coroots are {α∨ := ϵ∨1 − ϵ∨2 , β
∨ := ϵ∨2 }.

• X∗(T ) := Z{ϵ∨0 , ϵ∨1 , ϵ∨2 }, and the simple coroots are {α∨ := ϵ∨1 − ϵ∨2 , β
∨ := ϵ∨2 }.

Here, ϵ∨0 (t0)ϵ
∨
1 (t1)ϵ

∨
2 (t2) = (t1, t2, t0t

−1
2 , t0t

−1
1 ).

The Dynkin diagram is:

Remark 2.1.1. GSp4 happens to be self-dual, under the following isomorphism:

X∗(T ) = Z{ϵ0, ϵ1, ϵ2} → X∗(T ) = Z{ϵ∨0 , ϵ∨1 , ϵ∨2 }
ϵ0 7→ −2ϵ∨0 − ϵ∨1 − ϵ∨2(2.1.2)

ϵ1 7→ −ϵ∨0
ϵ2 7→ −ϵ∨0 − ϵ∨2 ,

where α1 7→ α∨
2 and α2 7→ α∨

1 , and its inverse is given by ϵ∨0 7→ −ϵ1, ϵ∨1 7→ ϵ1 + ϵ2 − ϵ0, ϵ
∨
2 7→ ϵ1 − ϵ2.

Remark 2.1.3. By the exceptional isomorphism B2 = C2, we have the following description of
nilpotent orbits in GSp4 and Sp4 (see [CM93, Thm 5.1.2,5.1.3]):

Orbits of B2 Orbits of C2 Roots of C2 Levi subgroup of GSp4
regular [5] [4] eα + eβ GSp4

subregular [3, 12] [22] eβ GL2 ×GSp0
minimal [22, 1] [2, 12] eα GL1 ×GSp2
zero [15] [14] 0 T

For later use (e.g. §6), we record the following table 1 for Weyl group conjugacy classes for GSp4
and Sp4. We will also need the following picture of a C2-apartment in the building B(GSp4).
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3π/4
α = ϵ1 − ϵ2

β = 2ϵ2

−α

α+ β 2α+ β

−2α− β −α− β −β

C2

3π/4

β∨ = ϵ∨2

α∨ = ϵ∨1 − ϵ∨2

−β∨

α∨ + β∨ α∨ + 2β∨

−α∨ − 2β∨ −α∨ − β∨ −α∨

B2

Figure 1. Root diagram for B2 = C2

names cycle types
e (1)(1)
A1 (1)(1)

Ã1 (2)
A1 ×A1 (1)(1)
C2 (2)

Table 1. Weyl group conjugacy classes

A1

A1
Ã1

C2

A1 ×A1 C2

e

Figure 2. The apartment in B(GSp4)

2.2. Levi subgroups. The Levi subgroups of GSp4 (resp., Sp4) are:

• GSp4 (resp., Sp4)
• GL2 ×GSp0 (resp., GL2 × Sp0). Explicitly, it is GSp4 ∩ (GL1 ×GL2 ×GL1).
• GL1 ×GSp2 (resp., GL1 × Sp2). Explicitly, it is GSp4 ∩ (GL2 ×GL2).
• GL1 ×GL1 ×GSp0 (resp., GL1 ×GL1 × Sp0), the maximal torus.

Given representations π of GL2 and characters χ1, χ2, χ3, we let π ⋊ χ1, χ1 ⋊ π, and χ1 × χ2 ⋊ χ3

be the (normalized) parabolic induction from GL2 ×GSp0, GL2 ×GSp2, and GL1 ×GL1 ×GSp0,
respectively, using notation from [ST93, §1].

Remark 2.2.1. The exceptional isomorphism GSp∨4
∼= GSp4 of Remark 2.1.1 gives the identifica-

tions between the dual Levi subgroups:

GSp∨4
∼= GSp4

(GL2 ×GSp0)
∨ ∼= GL1 ×GSp2

(GL1 ×GSp2)
∨ ∼= GL2 ×GSp0

(GL1 ×GL1 ×GSp0)
∨ ∼= GL1 ×GL1 ×GSp0.
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Remark 2.2.2 (LLC for Levis of GSp4(F )). By Remark 2.1.1, the LLC for the maximal torus T
is given as:

hom(WF , T (C)) ∼= Irr(T )

(χ1(w), χ2(w), χ0χ
−1
2 (w), χ0χ

−1
1 (w)) 7→ χ̂−1

0 χ̂1χ̂2 ⊗ χ̂1χ̂
−1
2 ⊗ χ̂−1

1 .

Similarly, the LLC for the Levi GL2(F )×GSp0(F ) ⊂ GSp4(F ) is given by:

hom(WF × SL2(C),GL1(C)×GSp2(C)) ∼= Irr(GL2(F )×GSp0(F ))

(ρ⊗ φ) 7→ (ρ̂⊗ π∨φ)⊠ ρ̂−1,

where πφ is the image of φ under the LLC for GL2(F ). Finally, the LLC for the Levi GL1(F ) ×
GSp2(F ) ⊂ GSp4(F ) is given by:

hom(WF × SL2(C),GL2(C)×GSp0(C)) ∼= Irr(GL1(F )×GSp2(F ))

(φ⊗ ρ) 7→ (ρ̂−1ωπφ)⊠ π∨φ ,

where ωπφ = d̂et(φ) is the central character of πφ.

2.3. Parahoric subgroups. Types of the reductive quotient of maximal parahoric subgroups are
given by deleting a node from the extended Dynkin diagram. We fix a standard choice of parahoric
subgroups, with roots as indicated by Figure 3. For GSp4(F ), the vertices β and δ are in the same
orbit in the building:

• Removing δ (or β) gives the Dynkin diagram C2, giving the parahoric subgroup GSp4(oF )
with reductive quotient GSp4(k).

• Removing α gives the Dynkin diagram A1 ⊔A1, giving the groups

Gα := GSp4(F ) ∩


o o o p−1

p o o o
p o o o
p p p o

 ⊃ Gα+ = GSp4(F ) ∩


1 + p o o o
p 1 + p p o
p p 1 + p o
p2 p p 1 + p

 ,

with reductive quotient GSp2,2(k) := {(g, h) ∈ GSp2 ×GSp2 : µ(g) = µ(h)}.
Similarly, for Sp4(F ), we have:

• Removing δ gives the Dynkin diagram C2, giving the parahoric subgroup Sp4(oF ) with
reductive quotient Sp4(k).

• Removing β gives the Dynkin diagram C2, giving the parahoric subgroup

Sp4(F ) ∩
(
M2(o) M2(p

−1)
M2(p) M2(o)

)
=

(
ϖ−1I2

I2

)
Sp4(oF )

(
ϖI2

I2

)
with reductive quotient Sp4(k). Here the matrix diag(ϖI2, I2) is in GSp4(F ), but not
Sp4(F ).

• Removing α gives the Dynkin diagram A1 ⊔A1, giving the group

Gα := Sp4(F ) ∩


o o o p−1

p o o o
p o o o
p p p o

 ⊃ Gα+ = Sp4(F ) ∩


1 + p o o o
p 1 + p p o
p p 1 + p o
p2 p p 1 + p

 ,

with reductive quotient Sp2(k)× Sp2(k).

However, note that the isomorphism of Gα/Gα+ with GSp2,2(k) (resp., Sp2(k) × Sp2(k)) above
are non-canonical (i.e., depend on a choice of a uniformizer ϖ.) To make these isomorphisms
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o

o

p

o p−1

p p o

Gα

o

p−1

o

p−1 p−1

p p p

Gβ

Figure 3. Parahoric subgroups Gα and Gβ

more canonical, consider the endoscopic subgroup H := ZG(s) with s = diag(1,−1,−1, 1) which is
isomorphic to GSp2,2(F ) (resp., Sp2,2(F )):

GSp2,2(F )
∼−→ H

(

(
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

)
) 7→


a2 b2

a1 b1
c1 d1

c2 d2


Now there is a canonical isomorphism of Gα/Gα+ with the reductive quotient of the parahoric
subgroup

Hα := {(g, h) ∈M2(o)×
(
o p−1

p o

)
: det(g) = det(h) ∈ o×}.

3. The group side

3.1. Supercuspidal representations.

3.1.1. Depth-zero supercuspidal representations of Sp4,GSp4.

3.1.1. First we recall a few general facts on depth-zero supercuspidals. Let π be an irreducible
depth-zero supercuspidal representation of G. Then there exists a vertex x ∈ Bred(G,F ) and an
irreducible cuspidal representation τ of Gx(Fq), such that the restriction of π to Gx,0 contains the
inflation of τ (see [Mor96, §1-2] or [MP96, Proposition 6.6]). The normalizer NG(Gx,0) of Gx,0 in
G is a totally disconnected group that is compact mod center, which by [BT84, proof of (5.2.8)]
coincides with the fixator G[x] of [x] under the action of G on the reduced building of G. Then π
is compactly induced from a representation of NG(Gx,0), i.e.

(3.1.2) π = c-IndGG[x]
(τ ).

Many properties of the representation π is already visible from the representation τ of G[x]:

Lemma 3.1.3. [AX22a, Prop 3.2.4] The formal degree of the depth-zero representation π =
c-IndGGx,0

τ is

fdeg(π) =
qrk(G)/2 dim(τunip)

|(ZG∨
x,0

(s))(Fq)|p′
,

where | · |p′ denotes the coprime-to-p order.
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The following construction gives a special class of supercuspidals, i.e. depth-zero regular super-
cuspidal representations of G is as in [Kal19, Lem 3.4.12]:

Definition 3.1.4. For S ⊂ G a maximally unramified elliptic maximal torus and θ : S(F ) → C×

a regular character of depth zero, let π(S,θ) := c-Ind
G(F )
S(F )Gx,0

(θ ⊗±Rθ
S′).

One can generalize the above construction and consider a larger class of supercuspidals called
“non-singular” supercuspidals, which are the largest class of supercuspidals living in purely super-
cuspidal L-packets (see for example [AX22a] for more exposition).

3.1.5. More concretely, depth-zero irreducible supercuspidal representations of G are parametrized
by irreducible cuspidal representations of reductive quotients Gx of maximal parahorics, which can
be inflated to Gx,0, and (non-uniquely) extended to G[x]. Recall from the classical Deligne-Lusztig
theory [DL76, §10] and [Lus84a, (8.4.4)], we have bijections

(3.1.6) Irr(Gx)
∼−→
⊔
(s)

E(Gx(Fq), s)
∼−→
⊔
(s)

E(ZG∨
x
(s), 1),

where (s) runs through the conjugacy classes of semisimple elements of G∨
x . Moreover, the bijections

preserve cuspidality. We hope to see when H∨ = ZG∨
x
(s) has a unipotent cuspidal representation.

We will repeatedly use the following result:

Lemma 3.1.7 ([Lus78, Thm 3.22],[Lus77, 8.11]).

• SO2n+1(Fq) has a unique unipotent cuspidal representation exactly when n = s2 + s for
some integer s ≥ 1, of dimension

|SO2n+1(Fq)|p′q(
2n
2 )+(

2n−2
2 )+···

2n(q + 1)2n(q2 + 1)2n−1 · · · (q2n + 1)
.

• SO2n(Fq) has a unique unipotent cuspidal representation exactly when n = 4s2 for some
s ≥ 1. The non-split form SO−

2n(Fq) has a unique unipotent cuspidal representation exactly
when n = (2s+ 1)2 for some s ≥ 1.

• GLn has no unipotent cuspidal representations for any n ≥ 1.

3.1.8. For us, by §2.3 the reductive quotients Gx are Sp4(k) or Sp2(k) × Sp2(k) for G = Sp4(F )
and either GSp4(k) or GSp2,2(k) := {(g, h) ∈ GSp2(k)×GSp2(k) : µ(g) = µ(h)} for G = GSp4(F ).
Using (3.1.6) we classify the cuspidal representations of these groups:

Lemma 3.1.9. Every cuspidal representations of GSp2,2(Fq) (defined in §2.3) is given by, for

s = (g, h) ∈ GL2(Fq) × GL2(Fq)/F×
q where g has eigenvalues λ1, λ

q
1 and h has eigenvalues λ2, λ

q
2

where λ1, λ2 ∈ Fq2\Fq:

• if λq−1
1 ̸= −1 or λq−1

2 ̸= −1, then

E(GSp2,2(Fq), s) ∼= E(RFq2/Fq
Gm ×RFq2/Fq

Gm/F×
q , 1) = {1}.

Denote such a cuspidal representation as ρ(α,β).

• if αq−1 = βq−1 = −1, then

E(GSp2,2(Fq), s) ∼= E(RFq2/Fq
Gm ×RFq2/Fq

Gm/F×
q ⋊ µ2, 1) = {1, sgn}.

Denote such cuspidal representations as ρ+(α,β) and ρ
−
(α,β).

Remark 3.1.10. The cuspidal representations ρ+(α,β) are characterized as the common irreducible

constituent of Ind
GL2,2

SL2×SL2
(Rα

T ⊠ Rβ
T ) and the Gelfand-Graev representation Γ

GL2,2

O where O is the

orbit of (

(
1 1

1

)
,

(
1 1

1

)
). The restriction of ρ+(α,β) to SL2(Fq) × SL2(Fq) is R′

+(θ0) ⊠ R′
+(θ0) +

R′
−(θ0)⊠R′

−(θ0), in [Bon11, pg 55]’s notation.
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Lemma 3.1.11. The following are the cuspidal representations of GSp4(Fq):

• The q − 1 twists of the unique unipotent cuspidal, i.e., in E(GSp4, s) where s ∈ Z(GSpin5).
• Rθ

T where T is an anisotropic maximal torus and θ is a regular character.

Lemma 3.1.12. The following are the cuspidal representations of Sp4(Fq):

• The unique unipotent cuspidal.
• For any α ∈ µq+1\{±1} then for any s ∈ SO5(Fq) with eigenvalues 1,−1,−1, α±1,

E(Sp4, s) ∼= E(O2(Fq)×U1(Fq), 1) = {1, sgn}.

There are (q − 1)/2 such conjugacy classes, giving rise to q − 1 representations.
• For α ̸= β±1 ∈ µq+1\{±1} and s with eigenvalues 1, α±1, β±1,

E(Sp4, s) ∼= E(T, 1) = {1}.

where T = RFq2/Fq
Gm ×RFq2/Fq

Gm is an isotropic maximal torus.

• For α ∈ µq2+1\{±1} and s with eigenvalues 1, α, αq, αq2 , αq3,

E(Sp4, s) ∼= E(T, 1) = {1},

where T = {t ∈ Fq4 : NmFq4/Fq2
t = 1} is an anisotropic maximal torus.

As a consequence of Lemma 3.1.9, Lemma 3.1.11, and Lemma 3.1.12, we obtain the following
classifications of depth-zero supercuspidals of GSp4 and Sp4.

3.1.13. Firstly, we have the following classification of depth-zero supercuspidals of GSp4(F ).

Proposition 3.1.14. The depth-zero supercuspidal representations π of G = GSp4(F ) are:

(1) π = π(S,θ) for some maximally unramified elliptic maximal torus S and a regular character
θ of depth zero. These are regular supercuspidals.

(2) πβ(θ10 ⊗ χ) := c-IndGGδZ
(θ10 ⊗ χ) where θ10 is inflated from the unique unipotent cuspidal

θ̃10 of GSp4(Fq) and χ is a character of Z such that χ(ZGSp4(oF )) = 1. This is F -singular.

(3) πα(η2;χ) := c-Ind
GSp4
GαZ

(ωη2
cusp ⊗ χ) which is a kF -singular hence F -singular supercuspidal,

where:
• η2 is a ramified quadratic character and ϖ ∈ F is a uniformizer such that η2(ϖ) = 1

• ωη2
cusp := (ρ+(λ,λ))

(I2,diag(ϖ,1)) where λq−1 = −1, and ρ+(λ,λ) is the representation of

GSp2,2(Fq) defined in Lemma 3.1.9, which is viewed as a representation of Gα/Gα+ by
conjugating by (I2,diag(ϖ, 1)).

• χ is an unramified character of Z.
(4) Induced representations π(S,θ⊠θ⊗χ) where S = {(x, y) ∈ E× × E× : NmE/F x = NmE/F y}

and θ is a character of E× giving rise to a character θ ⊠ θ of S, and χ is a character
of F× viewed as a character of S via NmE/F . This is a F -singular but kF -nonsingular
representation.

Remark 3.1.15. By Remark 3.1.10, the representation ρ̃(η2) is characterized as the common
irreducible constituent of the cuspidal Rθ

T with θ2 = 1 and the Gelfand-Graev representation

corresponding to the nilpotent orbit (

(
1 1

1

)
,

(
1 ϖ

1

)
) of Hα.

By Lemma 3.1.3, the formal degree of the singular depth-zero supercuspidal πβ(θ10 ⊗ χ) is

(3.1.16) fdeg(πβ(θ10 ⊗ χ)) =
q11/2q(q − 1)2

2(q − 1)(q2 − 1)(q4 − 1)
= q1/2

q6

2(q + 1)(q4 − 1)
,
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since dim(θ̃10) =
q(q−1)2

2 , dim(GSp4(Fq)) = 11 and |GSp4(Fq)| = (q−1)q4(q2−1)(q4−1) by [Car93,
p.75]. Note that the normalization of volumes given by [DR09] guarantees that there is a factor of

q1/2 in the formal degree formula for GSp4.
To compute the formal degree of πα(η2;χ): since dimRϵ

T = (q − 1)2, we have dim(ωη2
cusp) =

1
2(q− 1)2. Note that |GSp2,2(Fq)| = (q− 1)q2(q2 − 1)2 and dimGSp2,2(Fq) = 7. Therefore, we have

(3.1.17) fdeg (πα(η2;χ)) =
1
2(q − 1)2

(q − 1)q2(q2 − 1)2q−7/2
= q1/2

q

2(q + 1)(q2 − 1)
.

The formal degree of π(S,θ⊠θ⊗χ) is similar:

(3.1.18) fdeg
(
π(S,θ⊠θ⊗χ)

)
=

(q − 1)2

(q − 1)q2(q2 − 1)2q−7/2
= q1/2

q

(q + 1)(q2 − 1)
.

The remaining cases of formal degrees can be easily computed as they are non-singular super-
cuspidals.

3.1.19. The case of Sp4(F ) is given as follows.

Proposition 3.1.20. The depth-zero supercuspidal representations of G = Sp4(F ) are given by:

(1) π = π(S,θ) for some maximally unramified elliptic maximal torus S and a regular character
θ of depth zero. These are regular supercuspidals.

(2) Induced representations c-IndGGβ
ρ and c-IndGGγ

ρ, where ρ is one of the following represen-

tations of Sp4(Fq), inflated via Gβ, Gγ → Sp4(Fq):
(a) The unique cuspidal unipotent θ10 of Sp4(Fq), which gives rise to F -singular represen-

tations πβ(θ10) := c-IndGGβ
inf θ10 and πγ(θ10) := c-IndGGγ

inf θ10 coming from Gβ and

Gγ. These are kF -singular hence F -singular supercuspidals.
(b) Corresponding to the characters 1, sgn of Gs = O2(Fq) × U2(Fq) under (3.1.6); this

gives rise to kF -nonsingular, and hence F -nonsingular. This gives a total of q − 1
nonsingular representations;

(3) Induced representations π±α (η2) := c-Ind
Sp4
Gα

(R′
±(θ0) × R′

±(θ0)
diag(ϖ,1)) where R′

±(θ0) are
representations of SL2(Fq) defined in [Bon11, §5.2]. This is kF -singular and hence F -
singular.

(4) Induced representations πα(θ) := c-Ind
Sp4
Gα

(Rθ
T ⊠(Rθ

T )
diag(ϖ,1)) where θ is a regular character

of an anisotropic torus T of SL2(Fq). This is F -singular but kF -nonsingular.

By Lemma 3.1.3, the formal degree of the singular supercuspidals πβ(θ10) and πγ(θ10) is

(3.1.21) fdeg(πβ(θ10)) = fdeg(πγ(θ10)) =
1
2q(q − 1)2

q4(q2 − 1)(q4 − 1)q−10/2
=

q2

2(q + 1)2(q2 + 1)

since dim(θ10) =
1
2q(q − 1)2 by [Lus77, Theorem 8.2], dim |Sp4(Fq)| = 10 and |Sp4(Fq)| = q4(q2 −

1)(q4−1). Note that πβ(θ10) and πγ(θ10) live in the same L-packet Πφ(η), mixed with two principal
series representations as in §6 L-packet (5.2.2).

To compute the formal degree of π±α (η2): since dim(R′
±(θ0) × R′

±(θ0)
diag(ϖ,1)) = 1

4(q − 1)2,

dim(SL2 × SL2) = 6 and |SL2(Fq)× SL2(Fq)| = q2(q2 − 1)2, we have

(3.1.22) fdeg(π±α (η2)) =
1
4(q − 1)2

q2(q2 − 1)2q−6/2
=

q

4(q + 1)2
.

These representations live in stable mixed L-packets as in Corollary 6.5.6.
Similarly, the formal degree of πα(θ) is

(3.1.23) fdeg(πα(θ)) =
(q − 1)2

q2(q2 − 1)2q−6/2
=

q

(q + 1)2
.
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This representation lives in the mixed L-packet in (5.2.6).

3.1.2. Positive-depth supercuspidal representations of Sp4,GSp4.

3.1.24. Type datum. Recall Yu’s classification of arbitrary-depth supercuspidals in terms of
type datum [Yu01] (which was later generalized in [KY17] to include non-supercuspidal types).

Definition 3.1.25. A cuspidal G-datum is a tuple D := (G⃗, y, r⃗, π0, ϕ⃗) consisting of

(1) a tamely ramified Levi sequence G⃗ = (G0 ⊂ G1 ⊂ · · · ⊂ Gd = G) of twisted E-Levi
subgroups of G, such that ZG0/ZG is anisotropic;

(2) a point y in B(G0, F )∩A(T,E), whose projection to the reduced building of G0 is a vertex,
where T is a maximal torus of G0 (hence of Gi) that splits over E;

(3) a sequence r⃗ = (r0, r1, . . . , rd) of real numbers such that 0 < r0 < r1 < · · · < rd−1 ≤ rd if
d > 0, and 0 ≤ r0 if d = 0;

(4) an irreducible depth-zero supercuspidal representation ρ0 of K0 = G0
[y] whose restriction to

G0
y,0+ is trivial and such that the compact induction c-IndG

0

K0 ρ0 is irreducible supercuspidal;

(5) a sequence ϕ⃗ = (ϕ0, ϕ1, . . . , ϕd) of characters, where ϕi is a character of Gi which is trivial
on Gi

y,ri+ and nontrivial on Gi
y,ri for 0 ≤ i ≤ d− 1, such that

• ϕd is trivial on Gd
y,rd+

and nontrivial on Gd
y,rd

if rd−1 < rd, and ϕd = 1 if rd−1 = rd
(with r−1 defined to be 0).

• Moreover, ϕi is Gi+1-generic of depth ri relative to y in the sense of [Yu01, §9] for
0 ≤ i ≤ d− 1.

Formal degrees of arbitrary-depth tame supercuspidal representations in the sense of [Yu01] can
be computed as in [Sch21, Theorem A]. Let G be a semisimple F -group, and let D be a cuspidal
G-datum with associated supercuspidal representation π. Let Ri denote the absolute root system
of Gi, for the twisted Levi sequence (Gi)0≤i≤d. Let expq(t) := qt.

Proposition 3.1.26. The formal degree of π is given by

(3.1.27) fdeg(π) =
dim ρ

[G0
[y] : G

0
y,0+]

expq

(
1

2
dimG+

1

2
dimG0

y,0 +
1

2

d−1∑
i=0

ri(|Ri+1| − |Ri|)

)
.

Remark 3.1.28. The Formal Degree Conjecture of [HII08], which describes the formal degree
fdeg(π) of any irreducible smooth representation π of G in terms of adjoint gamma factor, has been
proved for regular supercuspidal representations in [Sch21, Theorem B], for non-singular supercus-
pidal representations in [Oha21, Theorem 9.2], and for unipotent supercuspidal representations in
[FOS20, Theorem 3].

3.1.29. Twisted Levi Sequences. We first classify twisted Levi subgroups in Sp4 and GSp4.

Proposition 3.1.30 ([Wal01, page 23]). Conjugacy classes of maximal tori in Sp2n(F ) are given
by the data of:

• finite extensions F#
1 , . . . , F

#
r /F ;

• 2-dimensional étale F#
i -algebras Fi; and

such that n =
∑r

i=1[Fi : F ]. Then, W :=
⊕r

i=1 Fi is a 2n-dimensional vector space over F with a
symplectic form

(3.1.31) q(
r∑

i=1

wi,
r∑

i=1

w′
i) :=

r∑
i=1

1

[Fi : F ]
trFi/F (ciwiw

′
i),
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where elements ci ∈ F×
i are such that ci = −ci, where · denotes the unique nontrivial automorphism

of Fi/F
#
i . Then there is a torus (whose conjugacy class depends only on the ci’s modulo N

Fi/F
#
i
Gm)

(3.1.32) T
(1)

F1/F
#
1 ,...,Fr/F

#
r

:=
r∏

i=1

R
F#
i /F

R
(1)

Fi/F
#
i

Gm

acting component-wise on W . Similarly, conjugacy classes of GSp2n(F ) are given by the same data,
giving rise to the torus

(3.1.33) T
F1/F

#
1 ,...,Fr/F

#
r

:= {(xi) ∈
r∏

i=1

RF1/FGm : Nm
F1/F

#
1
(x1) = · · · = Nm

Fr/F
#
r
(xr) ∈ F×}.

For Sp4(F ), the anistropic maximal tori are thus of the following form:

• T
(1)
F1/F,F2/F

(c1, c2) = R
(1)
F1/F

Gm ×R
(1)
F2/F

Gm, with F1, F2/F quadratic extensions, where ci ∈
F×/NFi/F (F

×
1 );

• T
(1)

F#
1 ⊕F#

1 /F#
1

= {(x, y) ∈ R
F#
1 /F

Gm×R
F#
1 /F

Gm : xy = 1} with F#
1 /F a quadratic extension;

and
• T

(1)

F1/F
#
1

(c) = R
F#
1 /F

R
(1)

F1/F
#
1

Gm, with F1/F
#
1 /F a tower of quadratic extensions, where

c ∈ (F#
1 )×/N

F1/F
#
1
(F×

1 ).

Twisted Levi subgroups are obtained as centralizers of coroots into these tori.
For the torus

T
(1)
F1/F,F2/F

(c1, c2) = R
(1)
F1/F

Gm ×R
(1)
F2/F

Gm ⊂ SL2(F )× SL2(F ) ⊂ Sp4(F ),

its subtorus R
(1)
F1/F

Gm×1 (resp., 1×R(1)
F2/F

Gm) has centralizer R
(1)
F1/F

Gm×SL2(F ) (resp., SL2(F )×

R
(1)
F2/F

Gm).

When F1 = F2 the torus T
(1)
F1/F,F2/F

(c1, c2) also has the diagonal sub-torus ∆(R
(1)
F1/F

Gm), which

has centralizer UF1/F (c1, c2), the unitary group of the hermitian space E ⊕E with hermitian form

h(w1 ⊕ w2, w
′
1 ⊕ w′

2) =
1
2(c1w1w

′
1 + c2w2w

′
2).

The torus T
(1)

F#
1 ⊕F#

1 /F#
1

has the sub-torus {(x, y) ∈ F× × F× : xy = 1}, which has centralizer

GL2(F )× Sp0(F ).

The torus T
(1)

F1/F
#
1

has no nontrivial F -rational sub-tori.

Similarly, for GSp4(F ), the maximal tori which are anisotropic modulo center are thus of the
following form:

• TF1/F,F2/F (c1, c2) = {(x, y) ∈ RF1/FGm ×RF2/FGm : NmF1/F x = NmF2/F y} for quadratic
field extensions F1, F2/F ;

• T
F#
1 ⊕F#

1 /F#
1

= {(x, y) ∈ R
F#
1 /F

Gm × R
F#
1 /F

Gm : xy ∈ F×} for a quadratic extension

F#
1 /F ; and

• T
F1/F

#
1
(c) := {x ∈ RF1/FGm : Nm

F1/F
#
1
x ∈ F×}, where F1/F

#
1 is a quadratic field exten-

sion.

For the torus TF1/F,F2/F ⊂ {(x, y) ∈ GL2(F ) × GL2(F ) : det(x) = det(y)} ⊂ GSp4(F ), its

subtorus {(x, y) ∈ RF1/FGm × F× : NmF1/F x = y2} has centralizer

{(x, y) ∈ RF1/FGm ×GL2(F ) : NmF1/F x = det(y)}.

The base change to F1 gives the Levi subgroup F×
1 ×GL2(F1).
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When F1 = F2 it also has the diagonal sub-torus ∆(RF1/FGm), which has centralizer GUF1/F (2),
whose base change to F1 gives the Levi subgroup F1 ×GL2(F1).

Finally, the tori T
F#
1 ⊕F#

1 /F#
1

and T
F1/F

#
1

have no interesting sub-tori.

3.1.34. Explicit type data for GSp4(F ) and Sp4(F ).
For G = Sp4 the type datum are:

(pos-depth1) G⃗ = (T
(1)

F1/F
#
1

) for a tower of quadratic extensions F1/F
#
1 /F . Here G

0 is abelian, so dim ρ0 =

1. The corresponding representation is nonsingular.

(pos-depth2) G⃗ = (T
(1)

F#
1 ⊕F#

1 /F#
1

) for a quadratic extension F#
1 /F . Here G

0 is abelian, so dim ρ0 = 1. The

corresponding representation is nonsingular.

(pos-depth3) G⃗ = (T
(1)
F1/F,F2/F

), with F1, F2/F quadratic extensions. G0 is abelian, so dim ρ0 = 1. The

corresponding representation is nonsingular.

(pos-depth4) G⃗ = (R
(1)
F1/F

Gm × SL2(F ) ⊂ G) for a quadratic extension F1/F . The positive-depth repre-

sentation is nonsingular, since R
(1)
F1/F

Gm×SL2(F ) does not have any singular supercuspidal

representations.

(pos-depth5) G⃗ = (UF1/F (c1, c2) ⊂ G) for a quadratic extension F1/F . Here, the character ϕ0 is trivial,

since G0 does not have any interesting characters.
The unitary groupG1 = UF1/F (c1, c2) is quasi-split if and only if the discriminant −c1c2 ∈

NmF1/F (F
×
1 ). Thus, G1 has singular supercuspidals if and only if G0 is quasi-split, which

happens if −c1c2 ∈ NmF1/F (F
×
1 ).

(pos-depth6) G⃗ = (T
(1)
F1/F,F2/F

⊂ R
(1)
F1/F

Gm × SL2(F ) ⊂ G) for quadratic extensions F1, F2/F . Here, G0

is abelian so dim ρ0 = 1. The corresponding representation is nonsingular.

(pos-depth7) G⃗ = (T
(1)
F1/F,F1/F

⊂ UF1/F (c1, c2) ⊂ G) for a quadratic extension F1/F . Here, G
0 is abelian

so dim ρ0 = 1. Moreover, G1 has no interesting characters, so ϕ1 = 1. The corresponding
representation is nonsingular.

(pos-depth8) G⃗ = (T
(1)

F#
1 ⊕F#

1 /F#
1

⊂ GL2(F )× Sp0(F ) ⊂ G), for a quadratic extension F#
1 /F1. Here, G

0 is

abelian so dim ρ0 = 1 and the representation is nonsingular.

The possibilities for G = GSp4 are:

(pos-depth1) G⃗ = (G0 = T
F1/F

#
1

⊂ G) for a tower of quadratic extensions F1/F
#
1 /F . Since G

0 is abelian,

dim ρ0 = 1. The corresponding representation is nonsingular.

(pos-depth2) G⃗ = (G0 = T
F#
1 ⊕F#

1 /F#
1

⊂ G) for a quadratic extension F#
1 /F . Since G0 is abelian,

dim ρ0 = 1. The corresponding representation is nonsingular.

(pos-depth3) G⃗ = (G0 = TF1/F,F2/F ⊂ G), with F1, F2/F quadratic extensions. Since G0 is abelian,

dim ρ0 = 1. The corresponding representation is nonsingular.

(pos-depth4) G⃗ = (G0 = {(x, y) ∈ RF1/FGm ×GL2(F ) : NmF1/F x = det(y)} ⊂ G1 = G) for a quadratic
extension F1/F . The positive-depth representation is nonsingular, since RF1/FGm×GL2(F )
does not have any singular supercuspidal representations.

(pos-depth5) G⃗ = (G0 = GUF1/F (c1, c2) ⊂ G1 = G) for a quadratic extension F1/F . The unitary group

G0 = GUF1/F (c1, c2) is quasi-split if and only if the discriminant −c1c2 ∈ NmF1/F (F
×
1 ).

Thus, G0 has singular supercuspidals if and only if G0 is quasi-split, which happens if
−c1c2 ∈ NmF1/F (F

×
1 ).

(pos-depth6) G⃗ = (G0 = TF1/F,F2/F ⊂ G1 = {(x, y) ∈ RF1/FGm ×GL2(F ) : NmE/F x = det(y)} ⊂ G2 =
G) for quadratic extensions F1, F2/F . The corresponding representation is nonsingular.
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(pos-depth7) G⃗ = (G0 = TF1/F,F1/F ⊂ GUF1/F (2) ⊂ G1 = G) for a quadratic extension F1/F . The
corresponding representation is nonsingular.

(pos-depth8) G⃗ = (T
(1)

F#
1 ⊕F#

1 /F#
1

⊂ GL2(F )×GSp0(F ) ⊂ G), for a quadratic extension F#
1 /F1. Here, G

0

is abelian so dim ρ0 = 1 and the representation is nonsingular.

Note that the trivial representation of the compact unitary group SU(2) is a singular supercuspidal,
which is only visible on the level of Vogan packets; it mixes with the Steinberg of SL2(F ).

3.2. Reducibility of induced representations.

Proposition 3.2.1 ([Sha91, Prop 6.1]). (a) Let G = GSp4(F ) for F a non-archimedean field.
Let α and β be the short and long simple roots of G, respectively. Let P = MN be the maximal
parabolic subgroup such that M is generated by α and M ∼= GL2 ×GL1. Fix an irreducible unitary
supercuspidal representation σ = σ1 ⊗ χ of M = M(F ), where σ1 is a supercuspidal unitary
representation of GL2(F ) with central character ω and χ is a unitary character of F ∗. Then I(σ)
is always irreducible. The representation I(σ1ν

s ⊗ χ) is reducible if and only if ω = 1 and s = ±1
2 ,

where ν denotes ν = |det()| for GL2(F ). The representation I(σ1ν
1/2 ⊗ χ) has a unique generic

special subrepresentation and a unique irreducible preunitary non-tempered non-generic quotient.
For 0 < s < 1/2, all the representations I(σ1ν

s ⊗ χ) are in the complementary series and s = 1/2
is their end point.

(b) Let G = Sp4(F ), the representation I(σ) is reducible if and only if σ ∼= σ̃ (thus ω2 = 1) and
ω ̸= 1. Suppose ω = 1 so that I(σ) is irreducible. Then I(σνs) is reducible if and only if s = ±1/2.
The representation I(σνs) has a unique generic special subrepresentation and a unique irreducible
preunitary non-tempered non-generic quotient. For 0 < s < 1/2, all the representations I(σνs) are
in the complementary series and s = 1/2 is their end point.

(c) The Plancherel measure µ(sα̃, σ) is given by the formula

(3.2.2) µ(sα̃) =

{
γ(G/P )2qn(σ1) (1−ω(ϖ)q−2s)(1−ω(ϖ)−1q2s)

(1−ω(ϖ)q−1−2s)(1−ω(ϖ)−1q−1+2s)
if ω is unramified

γ(G/P )2qn(σ1)+n(ω) otherwise

Here n(σ1) and n(ω) are the conductors of σ1 and ω, respectively.

For a character χ of F×, let e(χ) := logq |χ(ϖ)| be the unique real number such that χ = νe(χ)χ0

where χ0 is a unitary character.

Lemma 3.2.3 ([ST93, Lem 3.2]). Let χ1, χ2, and θ be characters of F×. Then χ1 × χ2 ⋊ θ is
reducible if and only if χ1 = ν±1, χ2 = ν±1, or χ1 = ν±1χ±1

2 .

We thus have the following theorem:

Theorem 3.2.4. A representation of GSp4(F ) parabolically induced from a Levi L ⊂ G is not
irreducible exactly in the following cases:

(1) When L = T , the representation χ1 × χ2 ⋊ θ is reducible when either:
(a) if χ1 × χ2 ⋊ θ is regular, i.e., χ1 ̸= 1, χ2 ̸= 1, χ1 ̸= χ±1

2 :
(i) χ1 = νχ2 where χ2

2 ̸= ν−2, ν−1, 1 and χ2 ̸= ν−2, ν. Then νχ2 ×χ2 ⋊ θ has length
2 and in the Grothendieck ring

νχ2 × χ2 ⋊ θ = ν1/2χ21GL2 ⋊ θ + ν1/2χ2StGL2 ⋊ θ.
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The Langlands classification is

ν1/2χ2StGL2 ⋊ θ =


J(ν1/2χ2StGL2 ; θ) e(χ2) > −1

2

J(ν1/2χ2StGL2 ⋊ θ) e(χ2) = −1
2

J(ν−1/2χ−1
2 StGL2 ; νχ

2
2θ) e(χ2) < −1

2

ν1/2χ21GL2 ⋊ θ =



J(νχ2, χ2; θ) e(χ2) > 0

J(νχ2, χ2 ⋊ θ) e(χ2) = 0

J(νχ2, χ
−1
2 ;χ2θ) 0 > e(χ2) ≥ −1

2

J(χ−1
2 , νχ2; νχ2θ) −1

2 > e(χ2) > −1

J(χ−1
2 ; ν−1χ−1

2 ⋊ νχ2
2θ) e(χ2) = −1

J(χ−1
2 , ν−1χ−1

2 ; νχ2
2θ) e(χ2) < −1

(ii) χ2 = ν and χ1 ̸= 1, ν±1, ν±2. Then χ1×ν⋊θ has length 2 and in the Grothendieck
ring

χ1 × ν ⋊ θ = χ1 ⋊ ν1/2θStGSp2 + χ1 ⋊ ν1/2θ1GSp2 .

Then,

χ1 ⋊ ν1/2θStGSp2 =


J(χ1; ν

1/2θStGSp2) e(χ1) > 0

J(χ1 ⋊ ν1/2θStGSp2) e(χ1) = 0

J(χ−1
1 ; ν1/2χ1θStGSp2) e(χ1) < 0

χ1 ⋊ ν1/2θ1GSp2 =


J(χ1, ν; θ) e(χ1) > 0

J(ν;χ1 ⋊ θ) e(χ1) = 0

J(χ−1
1 , ν;χ1θ) e(χ1) < 0

(iii) χ1 = ν2 and χ2 = ν. Then ν2 × ν ⋊ θ has length 4, consisting of:

ν3/2θStGSp4 , ν
3/2θ1GSp4 , J(ν

2; ν1/2θStGSp2), J(ν
3/2StGL2 ; θ)

(iv) χ1 = νχ2 and χ2 of order 2. Then νχ2 × χ2 ⋊ θ has length 4, with a unique
essentially square-integrable subquotient denoted by δ([χ2, νχ2], θ), as well as

J(ν1/2χ2StGL2 ; θ), J(ν
1/2χ2StGL2 ;χ2θ), J(νχ2;χ2 ⋊ θ).

(b) if χ1 × χ2 ⋊ θ is not regular:
(i) χ1 = ν, χ2 = 1 then ν × 1 ⋊ θ has length 4 consisting of essentially tempered

representations τ(S, θ) and τ(T, θ) such that 1 ⋊ ν1/2θSt = τ(S, θ) + τ(T, θ), as

well as J(ν; 1F× ⋊ θ) and J(ν1/2StGL2 ; θ), where 1 ⋊ θ1GSp2 = J(ν; 1 ⋊ θ) +

J(ν1/2St; θ)
(ii) χ1 = χ2 = ν then ν × ν ⋊ θ has length 2 consisting of

ν ⋊ ν1/2θ1GSp2 = J(ν; ν1/2θStGSp2)

ν ⋊ ν1/2θStGSp2 = J(ν, ν; θ).

(iii) χ1 = νχ2 and χ2
1 = ν, then νχ2 × χ2 ⋊ θ has length 2 consisting of

ν1/2χ21GL2 ⋊ θ, ν1/2χ2StGL2 ⋊ θ.

Here, ν1/2χ2StGL2 ⋊ θ is tempered and ν1/2χ21GL2 ⋊ θ = J(νχ2, νχ2;χ2θ).
(2) When L = GL2×GSp0, the representation ν

βρ⋊χ, where β ∈ R, ρ is a unitary supercuspidal
of GL2, and χ : F

× → C× is reducible if and only if β = ±1/2 and ρ = ρ∨ and ωρ = 1.

Moreover, ν1/2ρ ⋊ χ has a unique generic special sub-representation and a unique irre-
ducible preunitary nontempered non-generic quotient.
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(3) When L = GL1 ×GSp2, the representation χ⋊ ρ, where χ : F× → C× and ρ is a supercus-
pidal representation of GSp2, is reducible in the following cases:
(a) χ = 1F×, in which case 1F× ⋊ ρ splits into a sum of two tempered irreducible sub-

representations which are not equivalent.
(b) χ = ν±1ξo where ξo : F

× → C× is a character of order two such that ξoρ ∼= ρ. Then
νξo ⋊ ρ has a unique irreducible sub-representation which is square-integrable.

Proof. Case (1) is from [ST93, §3] and Cases (2) and (3) are from [ST93, §4].
More precisely, Case 1(a)i is [ST93, Lemma 3.3], Case 1(a)ii is [ST93, Lemma 3.4], Case 1(a)iii is

[ST93, Lemma 3.5], Case 1(a)iv is [ST93, Lemma 3.6], Case 1(b)i is [ST93, Lemma 3.8], Case 1(b)ii
is [ST93, Lemma 3.9], Case 1(b)iii is [ST93, Lemma 3.7]. □

Let ξ have order 2 and write ξ ⋊ 1 = T 1
ξ + T 2

ξ as a sum of irreducible representations of Sp2.

Moreover, for any supercuspidal representation σ of SL2(F ), let

F×
σ := {a ∈ F× : σdiag(a,1) ∼= σ},

which is really a subgroup of the finite group F×/(F×)2.
The analogue of Theorem 3.2.4 for Sp4 is:

Theorem 3.2.5. (1) When L = T , the representation χ1 × χ2 ⋊ 1 is reducible when:
(a) The representations coming from irreducibles of GSp4, i.e., χ1 ̸= ν±1, χ2 ̸= ν±1, and

χ1 ̸= ν±1χ2. Then χ1 × χ2 ⋊ 1 is reducible exactly when χ1 or χ2 has order 2. We
may suppose without loss that χ2 has order 2.

(i) If χ1 = χ2 or χ1 is not of order 2 then χ1 ⋊ T 1
χ2

and χ1 ⋊ T 2
χ2

are irreducible

(ii) If χ1 = χ2 then both χ1 ⋊ T 1
χ1

and χ1 ⋊ T 2
χ1

have length two.

(b) if χ1 × χ2 ⋊ 1 is regular, i.e., χ1 ̸= 1, χ2 ̸= 1, χ1 ̸= χ±1
2 :

(i) χ1 = νχ2 where χ2
2 ̸= ν−2, ν−1, 1 and χ2 ̸= ν−2, ν. Then

νχ2 × χ2 ⋊ 1 = ν1/2χ21GL2 ⋊ 1 + ν1/2χ2StGL2 ⋊ 1

has length two.
(ii) χ2 = ν and χ1 ̸= 1, ν±1, ν±2. Then

χ1 × ν ⋊ 1 = χ1 ⋊ ν1/2StSp2 + χ1 ⋊ ν1/21Sp2

has length two.
(iii) χ1 = ν2 and χ2 = ν. Then ν2 × ν ⋊ 1 has length 4, consisting of:

ν3/2StSp4 , ν
3/21Sp4 , J(ν

2; ν1/2StSp2), J(ν
3/2StGL2 ; 1)

(iv) χ1 = νχ2 and χ2 of order 2. Then

νχ2 × χ2 ⋊ 1 = ν1/2χ21GL2 ⋊ 1 + ν1/2χ2StGL2 ⋊ 1

where ν1/2χ21GL2 ⋊ 1 and ν1/2χ2StGL2 ⋊ 1 each have length three.
Otherwise, there are no extra reducibilities.

(c) if χ1 × χ2 ⋊ 1 is not regular:
(i) χ1 = ν, χ2 = 1 then ν × 1 ⋊ 1 has length 4 consisting of essentially tempered

representations τ and τ ′, as well as

J(ν; 1F× ⋊ 1Sp2), J(ν
1/2StGL2 ; 1)

(ii) χ1 = χ2 = ν then

ν × ν ⋊ 1 = ν ⋊ ν1/21Sp2 + ν ⋊ ν1/2StSp2 .

in the Grothendieck ring, where both ν⋊ν1/21Sp2 and ν⋊ν1/2StSp2 are irreducible.
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(iii) χ1 = νχ2 and χ2
1 = ν, then νχ2 × χ2 ⋊ 1 has length 2 consisting of

ν1/2χ21GL2 ⋊ 1, ν1/2χ2StGL2 ⋊ 1.

Otherwise, there are no extra reducibilities.
(2) When L = GL2 × Sp0 = GL2, the representation νβρ ⋊ 1, where β ∈ R and ρ is a unitary

supercuspidal of GL2 is reducible if and only if ρ is self-dual and:
(a) β = ±1/2 and ωρ = 1F×; or
(b) β = 0 and ωρ ̸= 1F×,.

(3) When L = GL1×Sp2, the representation νβχ⋊ρ, where χ is a unitary character and β ∈ R
and ρ is a supercuspidal representation of Sp2, is reducible in the following cases:
(a) χ = 1F× and β = 0,
(b) χ has order two and nontrivial on F×

σ and β = 0.
(c) χ has order two and trivial on F×

σ and β = ±1.

Proof. See [ST93, Section 5]. □

4. The Galois side

We are concerned with L-parameters of G = Sp4,GSp4, i.e, homomorphisms φ : WF ×SL2(C) →
G∨ such that φ(w) is semisimple for any w ∈ WF , and the restriction φ|SL2(C) is a morphism of
complex algebraic groups.

Lemma 4.0.1. If G◦
φ is abelian, then members of the L-packet for φ are representations with

support ZG∨(Z◦
Gφ
)∨.

Proof. Let ρ ∈ Irr(Sφ). Since G◦
φ is abelian, the cuspidal support Lφ of (uφ, ρ), which is a quasi-

Levi of Gφ in the sense of [AMS18, pg 5], must be ZGφ(G◦
φ). Thus the cuspidal support of (φ, ρ)

must be ZG∨(Z◦
Lφ) = ZG∨(G◦

φ). By Property 8.1.19 the members of the L-packet of φ has support
ZG∨(Z◦

Gφ
)∨. □

Let G = Sp4(F ) and φ : WF × SL2 → G∨ = SO5(C) be an L-parameter. Consider φ|WF
as a

5-dimensional representation of WF with an invariant symmetric inner product.
We use the following notation from §8.1:

Gφ = ZSO5(C)(φ(WF )) and Sφ = π0(ZSO5(C)(φ(W
′
F ))).

The cuspidal support map Sc: Φe(G) →
⊔

L∈L(G)Φe,cusp(L)/WG(L) is defined via the Springer

correspondence3 for Gφ, so we conduct case-work on the shape of the L-parameter φ.
There are the following cases, depending on how the WF -representation U decomposes (param-

eterized by partitions of 5).

(1) U it is irreducible, so Gφ = 1 and Sφ = 1. This is a supercuspidal singleton packet.
(2) U = V ⊕χ where dimV = 4 with a symmetric form V ⊗V → C and χ2 = 1. Here Gφ = µ2

and Sφ = µ2. Here, Lφ = µ2 so ZG∨(Z◦
Lφ

) = G∨. Thus this is a purely supercuspidal packet

of size 2.
(3) U = V1 ⊕ V2 where dimV1 = 3 and dimV2 = 2, both self-dual with invariant symmetric

forms. Here Gφ = µ2 and Sφ = µ2. Again, this is a purely supercuspidal packet of size 2.
(4) U = V ⊕ χ1 ⊕ χ2 where dimV = 3 and V is self-dual with an invariant symmetric form.

Either:

3There exist in literature different ways to normalize the Springer correspondences, see for example [CM84]; for
constructing LLC, the normalization used sends the regular nilpotent orbit to the sign representation of W .
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(a) χ1 = χ2 so χ2
1 = χ2

2 = 1 since χ1 ⊕ χ2 must be self-dual. Now Gφ = S(µ2 ×O2(C)) ∼=
O2(C), since an automorphism of U must act by scalars on V and by an orthogonal
transformation on χ1⊕χ2. Since Gφ has no unipotents, φ|SL2(C) is trivial and Sφ = µ2.
Here Lφ = 1 × SO2(C) so the cuspidal support is ZG∨(Z◦

Lφ
) = ZG∨(1 × SO2(C)) =

GL1(C) × SO3(C). Since supercuspidal L-parameters of SO3(C) ∼= PGL2(C) have
trivial unipotent, by Property 8.1.5 (and the observation that φ|SL), we have

φ = λφ = ιGL1×SO3 ◦ λφv = ιGL1×SO3 ◦ φv.

Thus the packet consists of sub-quotients of the parabolic induction χ̂1⋊πV where πV is
the representation of Sp2(F ) corresponding to V under the LLC for Sp2(F )

∼= SL2(F )
(this is well-defined, since V corresponds to a singleton packet).

(b) χ1 ̸= χ2 and χ2
1 = χ2

2 = 1 then Gφ = µ22, so φ|SL2(C) is trivial and Sφ = µ22. By
Lemma 4.0.1, this is a purely supercuspidal packet of size 4.

(c) χ1 ̸= χ2 and χ1 = χ−1
2 then χ1 ⊕ χ2 carries the symmetric form ⟨(a1, b1), (a2, b2)⟩ :=

a1b2 + a2b1 so Gφ = C× and φ|SL2(C) = 1 and Sφ = 1. Again by Lemma 4.0.1 the

support of the unique member of the L-packet is ZSO5(G◦
φ)

∨ = F× × Sp2(F ). By the
same argument as in case 4a, the member of the L-packet is χ1 ⋊ πV .

(5) U = V1 ⊕ V2 ⊕ χ where dimV1 = dimV2 = 2, and χ2 = 1. Either:
(a) V1 ∼= V2 and V1 has an invariant symmetric form so Gφ = C× and Sφ = 1. By

Lemma 4.0.1, this is a purely supercuspidal singleton packet.
(b) V1 ∼= V2 and V1 has an invariant symplectic form ω then V1⊕V1 carries the symmetric

form ⟨v1 ⊕ v2, w1 ⊕ w2⟩ := ω(v1, w2) − ω(v2, w1). Then χ = 1 and Gφ = Sp2(C).
The Springer correspondence for Sp2

∼= SL2 is shown on Table 5b. Thus the Levi
subgroup Lφ ⊂ Gφ is either T or Sp2(C) and ZG∨(Z◦

Lφ
) is either GL2(C)× SO1(C) or

G∨, correspondingly. Thus:

Unipotent pairs Representations of W = µ2
([12], 1) 1
([2], 1) sgn
([2],−1) cusp

Table 2. The Springer correspondence for SL2 [Lus84b, §10.3]

• When φ|SL2 = 1 then Sφ = 1 so the L-packet is {πV ⋊ 1}. Here, since V is an
L-parameter into SL2, we have ωρ = 1, so by Theorem 3.2.5 the representation
πV ⋊ 1 is irreducible.

• When φ|SL2 is nontrivial, then Sφ = µ2 so the L-packet has size 2. This packet
is determined in Section 5.
Concretely, the second L-parameter can be considered theWF×SL2(C)-representation
U = M2(C) ⊕ C where WF acts on M2(C) by left multiplication via the repre-
sentation V1, and SL2(C) acts on M2(C) by right multiplication.

(c) V1 ≇ V2 and both have an invariant symmetric form, then χ ∼= det(V1)⊗det(V2). Here
Gφ = µ22 and Sφ = µ22. By Lemma 4.0.1 this is a purely supercuspidal packet of size
four.

(d) V1 ≇ V2 and V1 ∼= V ∨
2 then Gφ = C× and Sφ = 1. By Lemma 4.0.1 the member of

the singleton L-packet is πV ⋊ 1, supported in GL2(F ) × Sp0(F ). The representation
πV ⋊ 1 is irreducible by Theorem 3.2.5(2), since πV is not self-dual.

(6) U = V ⊕χ1 ⊕χ2 ⊕χ3 where dimV = 2 with V self-dual with an invariant symmetric form
V ⊗ V → C. Either:
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Unipotent pairs Representations of W = µ2
([12], 1) 1
([2], 1) sgn

Table 3. Springer Correspondence for SO3(C)

(a) χ1 = χ2 = χ3 with χ2
1 = 1 then Gφ = SO3(C) × µ2, and χ1 = det(V ). The Springer

correspondence for SO3(C) ∼= PGL2(C) is given in Table 6a, where all local systems
are supported in the torus.

Thus Lφ = µ2 × C× ⊂ Gφ. Now ZG∨(Z◦
Lφ

) = C× × SO3(C) and the members of

the L-packet are supported in GL1(F )× Sp2(F ). Explicitly, the restriction φ|SL2(C) is
either:

(i) trivial, so Sφ = µ2. The WF -representation V ⊕ χ1 can be viewed as an L-
parameter WF → SO3(C), which then corresponds to representations π1, π2 of
Sp2(F ) under LLC for Sp2(F ) (the packet has size 2). The L-packet is {χ̂1 ⋊
π1, χ̂1 ⋊ π2}, which are irreducible by Theorem 3.2.5(3).

(ii) nontrivial. Then Sφ = µ2, and by Property 8.1.5 the L-packet is {νχ̂1⋊π1, νχ̂1⋊
π2}, which are irreducible by Theorem 3.2.5(3).

(b) χ1 = χ2 ̸= χ3 then χ2
1 = χ2

3 = 1 and χ3 = det(V ) and Gφ = µ2 × S(O2(C) × µ2)
with Sφ = µ2 × µ2. By Lemma 4.0.1 the members of the size four L-packet are
supported in GL1(F )×Sp2(F ). By the LLC for Sp2(F ) the WF -representation V ⊕χ3

viewed as an L-parameter WF → SO3(C) gives an L-packet {π1, π2}. Now, each of
the representations χ1 ⋊ π1 and χ1 ⋊ π2 have length two by Theorem 3.2.5(3), so they
decompose into, say τ11 + τ12 and τ21 + τ22, respectively. Then the L-packet for φ is
{τ11, τ12, τ21, τ22}.

(c) χ1 ̸= χ2 ̸= χ3 and χ2
1 = χ2

2 = χ2
3 = 1 then Gφ = µ2 × S(µ2 × µ2 × µ2) and Sφ ∼= µ32.

This is a purely supercuspidal packet by Lemma 4.0.1.
(d) χ1 ̸= χ2 ̸= χ3 and χ2

1 = 1 and χ2 = χ−1
3 but χ2

2 ̸= 1. Here Gφ = µ2 ×C× and Sφ ∼= µ2.
The members of the L-packet are supported in GL1(F )× Sp2(F ). Letting {π1, π2} be
the L-packet under the LLC for Sp2(F ) corresponding to theWF -representation V ⊕χ1

viewed as a L-parameterWF → SO3(C), the L-packet for φ is {χ2⋊π1, χ2⋊π2}, which
is irreducible by Theorem 3.2.5(3).

(7) U = 1⊕ χ1 ⊕ χ−1
1 ⊕ χ2 ⊕ χ−1

2 .
(a) χ1 = χ2 = 1 then Gφ = SO5(C). The Springer correspondence of Gφ is [Lus84b, §10.6]:

Unipotent pairs Representations of W = µ22 ⋊ S2
([5], 1) (∅, [12])

([3, 12], 1) ([1], [1])
([3, 12],−1) (∅, [2])
([22, 1], 1) ([12], ∅)
([15], 1) ([2], ∅)

where we identify representations of the semidirect product (Z/2)2⋊S2 via Lemma 4.0.2
(see also, [CM84, Theorem 10.1.2]). All of the representations are principal series.
By Property 8.1.5, the cuspidal support of the L-parameter is

φv(w) = λφv(w) = λφ(w) = φ(diag(∥w∥1/2, ∥w∥−1/2)).

By Remark 2.1.3 all nilpotent orbits in G∨ are induced from some regular nilpotent
orbit in a Levi subgroup L∨ ⊂ G∨. Thus φ(∥w∥1/2, ∥w∥−1/2) is dual to the modulus
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character δBL\L. Thus, by Remark 2.2.2, we have φv = χ̂−1
1 δBL\L. Thus the L-packet

contains an irreducible subquotient of iGP (StL).
(i) If φ|SL2 is [4], then the L-packet member is a subquotient of iGB(δB\G), which

is square-integrable modulo center, by Property 8.1.20. Thus the L-packet is
{StGSp4}.

(ii) If φ|SL2 is [22] then Sφ = µ2, then the L-packet members are irreducible con-

stituents of 1⋊StGL2 . This is case 1(c)i and the L-packet is {τ(S, ν−1/2χ̂−1
1 ), τ(T, ν−1/2χ̂−1

1 )}.
(iii) If φ|SL2 is [2, 12]. The L-packet members is StGL2 ⋊ 1, which is case 1(c)iii.
(iv) If φ|SL2 is trivial, then the L-packet is {1× 1⋊ 1}, where 1× 1⋊ 1 is irreducible

by Theorem 3.2.5(1a).
(b) χ1 = χ2 ̸= 1 then χ1 has order 2 and Gφ = S(O4(C)× µ2) ∼= O4(C).

The Springer correspondence for O4 is (see [CM93, §10.1, p. 166]):
Unipotent pairs Representations of W = µ22 ⋊ µ2

(00, 1) (1⊗ 1, 1) = 1W
(00,−1) (1⊗ 1, sgn)

(0e, 1) = (e0, 1) (1⊗ sgn, 1)
(ee, (1, 1)) (sgn⊗ sgn, 1) = sgnW
(ee, (1,−1)) (sgn⊗ sgn, sgn)
(ee, (−1, 1)) cusp
(ee, (−1,−1)) cusp

Here on the right 0 and e denote the unipotent classes of SL2, which induce unipotent
classes on SO4 = (SL2×SL2)/µ2, and on the left are representations of the Weyl group
W = µ22 ⋊ µ2 parameterized via Lemma 4.0.2.
Thus Lφ ⊂ G◦

φ = SO4(C) is either the maximal torus or SO4(C). When Lφ = SO4(C),
we have ZG∨(Z◦

Lφ
) = G∨, which corresponds to a supercuspidal member in the L-

packet for φ. When Lφ is a maximal torus, we have ZG∨(Z◦
Lφ

) is also a torus, which

gives rise to a principal series representation in the L-packet for φ. Moreover, since the
L-parameter is bounded, by Property 8.1.20 the representations are tempered. Either
φ|SL2 is:

(i) trivial. Here, Sφ ∼= µ2. The L-packet consists of irreducible constituents of
χ1 × χ1 ⋊ 1. This is case 1(a)i and the L-packet is {χ̂1 ⋊ T 1

χ̂1
, χ̂1 ⋊ T 2

χ̂1
}.

(ii) the embedding into the first copy of SL2(C). Here, Sφ = 1 and the L-packet

consists of an irreducible constituent of ν1/2χ1 × ν−1/2χ1 ⋊ 1, which is Theo-
rem 3.2.5(1b). Since the member is tempered, the packet is {χ1StGL2 ⋊ 1}.

(iii) the diagonal embedding of SL2(C). Here, Sφ ∼= µ22. Concretely, the L-parameter
φ may be viewed as the WF × SL2(C)-representation U =M2(C)⊕C where WF

acts on M2(C) by χ1 and SL2(C) acts on M2(C) by conjugation. The symmetric
form is the trace pairing on M2(C).

Thus in case 7(b)iii the members of the size four L-packet consists of two supercuspidals
and two principal series. The L-packet is determined in Section 5.

(c) χ2 = 1 and χ1 is of order 2. We have Gφ = S(O3 × O2) ∼= SO3 × O2. Since both the
Springer correspondence for SO3 and O2 do not have any nontrivial cuspidal supports
(by Table 6a), the members of L-packets are principal series. Moreover, again the
L-packet is bounded, so by Property 8.1.20 the representations are tempered.

(i) if φ|SL2 = 1, then Sφ = µ2 and the packet consists of irreducible constituents of
χ1 × 1⋊ 1. This is case 1(a)i, so the L-packet is {1⋊ T 1

χ1
, 1⋊ T 2

χ1
}.

(ii) if φ|SL2 is non-trivial, then Sφ = µ2 and the packet consists of irreducible con-

stituents of χ1×ν1/2⋊1. This is case 1(a)i and the L-packet is {ν1/2⋊T 1
χ1
, ν1/2⋊

T 2
χ1
}.
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(d) χ2 = 1 and χ2
1 ̸= 1. Here Gφ = SO3(C) × SO2(C). By Table 6a the unipotent pairs

are all supported in the torus, so the L-packets are singletons consisting of a principal
series. The restriction φ|SL2(C) is either:

(i) trivial, then the packet is {χ1 × 1⋊ 1}, where χ1 × 1⋊ 1 is irreducible by Theo-
rem 3.2.5(1a).

(ii) nontrivial, then the packet is {χ1 × ν1/2 ⋊ 1}, where χ1 × ν1/2 ⋊ 1 is irreducible
by Theorem 3.2.5(1a).

(e) χ1 ̸= χ2 are distinct order 2 characters. Here Gφ = S(O2(C)×O2(C)× µ2) ∼= O2(C)2.
Here Sφ = µ22 and by Lemma 4.0.1 the L-packet members are principal series. The
L-packet consists of the irreducible constituents of χ1 × χ2 ⋊ 1, which has length 4 by
Theorem 3.2.5(1(a)ii).

(f) χ1 = χ−1
2 ̸= 1 and χ2

1 ̸= 1. Here Gφ = GL2(C) and Sφ = 1. Here Lφ ⊂ GL2(C) is the
maximal torus, so the L-packet consists of principal series representations.

(i) if φ|SL2 is trivial, then the L-packet is {χ1 × χ1 ⋊ 1}, where irreducibility is by
Theorem 3.2.5(1a).

(ii) if φ|SL2 is nontrivial, then the member is a irreducible constituent of ν1/2χ1 ×
ν−1/2χ1 ⋊ 1. If χ1 ̸= ν±3/2 and χ2

1 ̸= ν±1 then the L-packet is {χ1StGL2 ⋊ 1}.
Otherwise, if χ1 = ν±3/2 then ν±3/2StGL2 ⋊ 1 has length two, since we are in

case 1(b)iii. By Property 8.1.3 the L-packet is {J(ν±3/2StGL2 ; 1)}.
If χ1 = ν±1/2 then ν±1/2StGL2 ⋊ 1 has length two, since we are in case 1(c)i.

If χ1 = ν±1/2ξ1 for some order 2 character ξ1 then ν±1/2ξ1StGL2 ⋊ 1 has length

three, and the L-packet is {J(ν1/2ξ1StGL2 , 1)}.
(g) If χ±1

1 and χ±1
2 are all distinct, then Gφ = C× × C× and φ|SL2(C) = 1 and Sφ = 1.

By Lemma 4.0.1 the L-packet is a singleton {χ1 × χ2 ⋊ 1}, which is reducible by
Theorem 3.2.5(1a).

In particular, the only mixed packets occur in cases 5b and 7(b)iii.
We also use the following well-known fact:

Lemma 4.0.2 (Mackey’s little groups method, [Ser77, §8.2]). Let G = A ⋊ H be a finite group,
where A is abelian. Then, there is a bijection

Irr(G) ∼= {χ ∈ H\A∗, ρ ∈ Irr(Hχ)},

where H\A∗ denotes the set of H-orbits in A∗ = hom(A,C×) and Hχ is the stabilizer of χ. A
pair (χ, ρ) corresponds to the irreducible G-representation IndGA⋊Hχ(χ̃ ⊗ ρ), where χ̃(ah) := χ(a)
for a ∈ A and h ∈ Hχ.

Now let G = GSp4(F ) and φ : WF × SL2(C) → G∨ ∼= GSp4(C) an L-parameter. Now φ|WF
can

be considered a 4-dimensionalWF -representation U with a invariant symplectic form ω : U⊗U → ξ,
where ξ is the similitude character. Now U decomposes into irreducible representations according
to partitions [4], [22], [2, 12], or [14] (the partition [3, 1] is impossible since the attached bilinear form
is necessarily symmetric). Then, Gφ is the group of WF -representation endomorphisms g : U → U
such that the following diagram commutes for some constant c ∈ C× (the similitude):

U ⊗ U ξ

U ⊗ U ξ.

ω

g⊗g c

ω

Thus there are the following cases:

(1) U is irreducible with U ∼= ξU∨ and the unique pairing U ⊗ U → ξ is anti-symmetric. Here
Gφ = C× and Sφ = 1 so the packet is a singleton supercuspidal.
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(2) U = V1 ⊕ V2 where V1 and V2 are irreducible of dimension 2. Either:
(a) V1 ∼= V2, with an invariant anti-symmetric form ω : V1 ⊗ V1 → ξ. Here ξ = det(V1).

Then U carries the symplectic form ω′(v1 ⊕ w1, v2 ⊕ w2) = ω(v1, w2) + ω(w1, v2).

Thus, Gφ = GO2(C) ∼= (C×)2 ⋊ µ2, embedded as

(
aI2 bI2
cI2 dI2

)
∈ GSp4(C) and Sφ =

µ2. By Remark 4.0.1, the L-parameter is supported in GL2(C) × GSp0(C), so the
representations are supported in GL1(F ) × GSp2(F ). The cuspidal support of φ is
V1 and ξ viewed as an L-parameter WF → GL2(C) × GSp0(C). By Remark 2.2.2 to

the representation ξ̂−1 det(πV1) ⊠ π∨V1
= 1 ⊠ π∨V1

of GL1(F ) × GSp2(F ), which is the
cuspidal support of φ. Here, πV1 is the representation of GSp2(F ) corresponding to V1
under LLC for GSp2(F ). Thus the members of the L-packet are the two irreducible
constituents of 1⋊ π∨V1

(this is case 3a).
(b) V1 ∼= V2, with an invariant symmetric form ⟨−,−⟩ : V1 ⊗ V1 → ξ. Here, ξ = det(V1).

Then ω(v1 ⊕ w1, v2 ⊕ w2) = ⟨v1, w2⟩ − ⟨v2, w1⟩.
Thus, Gφ = GL2(C) embedded as diag(g, JT g−1J−1) ∈ GSp4(C) and Sφ = 1. Letting
T ⊂ Gφ be a maximal torus the (trivially) enhanced L-parameters are supported in
ZG∨(T ) = GL1C×GSp2C, so the members of packets are supported in GL2F×GSp0F .

(i) If φ(SL2) = 1 then the cuspidal support of φ is ξ and V viewed as a L-parameter
WF → GL1C × GSp2C. By Remark 2.2.2, the member of the L-packet is an

irreducible constituent of (ξ̂ ⊗ π∨V1
)⋊ ξ̂−1.

We are in case 2. Since V1 ∼= ξV ∨
1 we have πV1

∼= ξ̂ ⊗ π∨V1
. Thus if ξ = νβξ′ for a

unitary character ξ′ and β ∈ R then πV1 ⋊ ξ̂−1 is irreducible as long as β ̸= ±1.

In this case the L-packet is {πV1 ⋊ ξ̂−1}.
Otherwise since the L-parameter φ is not (essentially) bounded the singleton

L-packet consists of the unique essentially tempered subquotient of πV1 ⋊ ξ̂−1.

(ii) If φ|SL2 is nontrivial then the cuspidal support of φ is νξ and ν1/2V viewed as a L-
parameterWF → GL1×GSp2(C). By Remark 2.2.2, the member of the L-packet

is an irreducible constituent of (ν1/2ξ̂⊗π∨V1
)⋊ν−1ξ̂−1 ∼= ν1/2πV1⋊ν−1ξ̂−1. Letting

ξ = νβξ′ as above, if β /∈ {0,−2} then the singleton L-packet consists of the

unique essentially tempered subquotient of ν1/2πV1⋊ν−1ξ̂−1, by Property 8.1.20.
(c) V1 ≇ V2 then V1 ∼= ξ ⊗ V ∨

2 and so Gφ = C× × C× and Sφ = 1. Here, ξ = det(V1).
By Lemma 4.0.1 the L-parameter is supported in GL2(C)×GSp0(C), given by (V1, ξ)
viewed as an L-parameter WF → GL2(C) × GSp0(C). Thus by Remark 2.2.2 the L-
packet member is an irreducible constituent of 1⋊ π∨V1

, where πV1 is the supercuspidal
representation of GL2(F ) corresponding to V1 under the LLC for GL2(F ).

(3) U = V ⊕ χ1 ⊕ χ2 where V is irreducible of dimension 2 and χ1, χ2 are characters of WF .
There is an anti-symmetric pairing ω : V ⊗ V → ξ, where ξ = det(V ). Moreover, χ1χ2 = ξ
and there is an anti-symmetric pairing ω′ on χ1⊕χ2 given by ω′(a1⊕b1, a2⊕b2) = a1b2−a2b1.
Either:
(a) χ1 = χ2, then Gφ = {(z, g) ∈ C××GL2(C) : z2 = det(g)} ∼= C××SL2(C). By Table 5b

there are two cases:
(i) φ|SL2 = 1, in which case the unipotent pair is supported in C××T . Then Sφ = 1

and the L-parameter is supported in GL1(C)×GSp2(C). The support is V and χ1

viewed as an L-parameterWF → GL1(C)×GSp2(C). Thus by Remark 2.2.2, the
packet is {(χ̂1⊗π∨V )⋊χ̂

−1
1 }. Here, (χ̂1⊗π∨V )⋊χ̂

−1
1 is irreducible by Theorem 3.2.4,

since det(χ1 ⊗ V ∨) = 1 implies the representation χ̂−1
1 is unitary.

(ii) φ|SL2 is regular unipotent, in which case the unipotent pair is supported in either
C× × T or C× × SL2(C). Thus the L-packet is of size 2, with an intermediate
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series supported in GL2(F )×GSp0(F ) and a supercuspidal representation. This
packet is determined in Section 5.

(b) χ1 ̸= χ2 and χ1χ2 = ξ then Gφ = {(z, g) ∈ C× × T : z2 = det(g)} ∼= C× × C×,

embedded as


a

z
z

b

 ∈ GSp4(C) where ab = z2. Here Sφ = 1 and the enhanced

L-parameter is supported in GL1(C) × GSp2(C), given by χ1 and V viewed as an L-
parameter WF → GL1(C) × GSp2(C). Thus the L-packet member is an irreducible
constituent of (χ̂1 ⊗ π∨V )⋊ χ̂−1

1 .

We are in case 2 of Theorem 3.2.4. Let β = e(χ1χ
−1
2 ) := logq(χ1χ

−1
2 (ϖ)). Then

(χ̂1 ⊗ π∨V ) ⋊ χ̂−1
1 is irreducible unless β ∈ {±1}. If β ∈ {±1} then the L-packet

member is the unique essentially non-tempered subquotient of (χ̂1 ⊗ π∨V )⋊ χ̂−1
1 , since

the L-parameter φ is not bounded.
(4) U = χ1 ⊕ χ2 ⊕ χ3 ⊕ χ4 where χi are characters of WF . Either:

(a) χ1 = χ2 = χ3 = χ4 and χ2
1 = ξ, then Gφ = G∨. The Springer correspondence of

G∨ = GSp4(C) is (by the classification in Remark 2.1.3):
Unipotent pairs Representations of W = µ22 ⋊ S2

([4], 1) (∅, [12])
([22], 1) ([1], [1])
([22],−1) (∅, [2])
([2, 12], 1) ([12], ∅)
([14], 1) ([2], ∅)

Here, again the representations of W are parametrized by Lemma 4.0.2 (see also,
[CM84, Theorem 10.1.2]4). Since all the unipotent pairs are supported in the torus,
all representations here are principal series. By Property 8.1.5, the cuspidal support
of the L-parameter is

φv(w) = λφv(w) = λφ(w) = χ1(w)φ(diag(∥w∥1/2, ∥w∥−1/2)).

By Remark 2.1.3 all nilpotent orbits in G∨ are induced from some regular nilpotent
orbit in a Levi subgroup L∨ ⊂ G∨. Thus φ(∥w∥1/2, ∥w∥−1/2) is dual to the modulus
character δBL\L. Thus, by Remark 2.2.2, we have φv = χ̂−1

1 δBL\L. Thus the L-packet

contains an irreducible subquotient of χ̂−1
1 iGP (StL).

(i) If φ|SL2 is [4], then the L-packet member is a subquotient of χ̂−1
1 iGB(δB\G), which

is square-integrable modulo center, by Property 8.1.20. Thus the L-packet is
{χ̂−1

1 StGSp4}.
(ii) If φ|SL2 is [22] then Sφ = µ2, then the L-packet members are irreducible con-

stiuents of 1⋊χ̂−1
1 StGL2 . This is case 1(b)i and the L-packet is {τ(S, ν−1/2χ̂−1

1 ), τ(T, ν−1/2χ̂−1
1 )}.

(iii) If φ|SL2 is [2, 12]. The L-packet members is StGL2 ⋊ χ̂−1
1 , which is case 1(a)i.

(iv) If φ|SL2 is trivial, then the L-packet is {1 × 1 ⋊ χ̂−1
1 }, where 1 × 1 ⋊ χ̂−1

1 is
irreducible by Lemma 3.2.3.

(b) χ1 = χ2 ̸= χ3 = χ4 and χ2
1 = χ2

3 = ξ, then Gφ = {(g, h) ∈ GSp2×GSp2 : µ(g) = µ(h)}.
Thus WF → T∨ ⊂ GSp4(C) is given by (χ1, χ3, χ3, χ1). The Springer correspondence
for Gφ is:

4Note that our normalization of the Springer correspondence differs with [CM84] by a sgn-twist.
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Unipotent pairs Representations of W = µ22
(00, 1) 1⊗ 1
(0e, 1) 1⊗ sgn
(e0, 1) sgn⊗1
(ee, 1) sgn⊗ sgn
(ee,−1) cuspidal

In all cases the image φ(WF ) is compact modulo center, so by Property 8.1.20 the
representations in the L-packets are essentially tempered. Either:

(i) If φ(SL2(C)) = 1, then Sφ = 1. The L-parameter is supported in χ1⊗χ3⊗ξ, so by
Remark 2.2.2, the member is an irreducible constituent of χ̂−1

1 χ̂3× χ̂−1
1 χ̂3⋊ χ̂−1

1 .
By [ST93, Lem 3.2] this is irreducible.

(ii) If φ|SL2(C) is the embedding to the first factor of Gφ, then Sφ = 1 and the L-

parameter is supported in χ3⊗ ν1/2χ1⊗ ξ. Thus by Remark 2.2.2 the member is
an irreducible constituent of ν1/2χ̂1χ̂

−1
3 × ν−1/2χ̂1χ̂

−1
3 ⋊ χ̂−1

1 . This is case 1(b)iii,

so the L-packet is {χ̂1StGL2 ⋊ χ̂−1
1 }.

(iii) If φ|SL2(C) is the embedding to the second factor of Gφ, swap the role of χ1 and
χ3 and we are in the case above.

(iv) If φ|SL2(C) is regular we have Sφ = µ2, and the corresponding unipotent pairs
have support in either T∨ or Gφ. Thus the packet is of size 2 consisting of a
principal series and a supercuspidal. The L-packet is determined in Section 5.

(c) χ1 = χ2 ̸= χ3 = χ4 and χ1χ3 = ξ, then Gφ is the Levi GL2(C)×GSp0(C). Here Sφ = 1
and the L-packet members are principal series, since the unipotent pairs are supported
in T∨. Moreover, since the L-parameter factors through the Levi GL2(C)×GSp0(C),
the L-packet is not discrete, and hence by Property 8.1.20 the members are not square-
integrable modulo center.

(i) if φ(SL2) = 1, then the L-parameter has support χ1 ⊗ χ1 ⊗ ξ. Thus L-packet is
{χ̂−1

3 χ̂1 × 1⋊ χ̂−1
1 }, where irreducibility is by Lemma 3.2.3.

(ii) if φ|SL2 is nontrivial, then the L-parameter has support ν1/2χ1 ⊗ ν−1/2χ1 ⊗ ξ,

so the L-packet member is an irreducible constituent of χ̂−1
3 χ̂1 × ν ⋊ ν−1/2χ̂−1

1 .

If χ̂−1
3 χ̂1 /∈ {1, ν±1, ν±2} then this is case 1(a)ii and the L-packet is {χ̂−1

3 χ̂1 ⋊
χ̂−1
1 StGSp2} by Property 8.1.3.

If χ̂−1
3 χ̂1 = ν±1 then we are in case 1(b)ii and the L-packet must be {ν3/2StGL2 ; ν

−1/2χ̂−1
1 }.

Otherwise, χ̂−1
3 χ̂1 = ν±2 and we are in case 1(a)iii. By Property 8.1.3 the L-

packet is {J(ν2; χ̂−1
1 StGSp2)}.

(d) χ1 = χ2 ̸= χ3 ̸= χ4 and χ2
1 = χ3χ4 = ξ then the L-parameter φ|WF

: WF → T∨ ↪→ G∨

is given by (χ3, χ1I2, χ4). Here Gφ is the Levi GL1(C)×GSp2(C), so by Property 8.1.20
the L-packet members are not square-integrable modulo center. Here Sφ = 1 and the
L-packet members are principal series.

(i) if φ(SL2) = 1 then the L-parameter has support χ1 ⊗ χ3 ⊗ ξ. The L-packet
consists of a subquotient of χ̂−1

1 χ̂3 × χ̂1χ̂
−1
3 ⋊ χ̂−1

1 . There are several cases:

• If (χ̂−1
1 χ̂3)

2 = ν±1, then we are in case 1(a)i and the L-packet is {ν∓1/2χ̂−1
1 χ̂31GL2⋊

χ̂−1
1 }.

• If χ̂−1
1 χ̂3 = ν±1 then we are in case 1(b)ii and the L-packet is {ν⋊ν−1/2χ̂−1

1 1GSp2}.
• Otherwise by Lemma 3.2.3 the packet is {χ̂−1

1 χ̂3 × χ̂1χ̂
−1
3 ⋊ χ̂−1

1 }.
(e) χ1 ̸= χ2 ̸= χ3 ̸= χ4 with χ1χ4 = χ2χ3 then Gφ is the maximal torus. Thus Sφ = 1 and

the L-parameter is supported in χ1 ⊗ χ2 ⊗ ξ. The L-packet member is an irreducible
subquotient of χ̂1χ̂

−1
3 × χ̂1χ̂

−1
2 ⋊ χ̂−1

1 .
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If χ̂iχ̂
−1
j is not of the form ν±1 for any i ̸= j then this is irreducible by [ST93, Lem 3.2].

Otherwise:
• if χ̂1χ̂

−1
2 = ν and χ̂1χ̂

−1
3 /∈ {1, ν±1, ν±2} then we are in case 1(a)ii and the

L-packet is {χ̂1χ̂
−1
3 ⋊ ν1/2χ̂−1

1 1GSp2}.
• if χ̂1χ̂

−1
2 = χ̂2χ̂

−1
3 = ν then we are in case 1(a)iii and the L-packet is {ν3/2χ̂−1

1 1GSp4}.
The mixed packets are cases 3(a)ii and 4b.

5. Mixed packets

Denote the three order 2 characters of F× as η, η2, η
′
2, where η(x) := (−1)vF (x) is unramified and

η2 and η′2 are ramified quadratics.

5.1. The GSp4 case. The mixed packet for GSp4 occurs in:

(1) case 3(a)ii

Proof. In case 3(a)ii, let φv = (χ1, χ1φu) : W
′
F → GL1(C) × GSp2(C) be the cuspidal

support of the intermediate series, where φv|SL2 = 1 by Remark 5.2.8 and det(φu) = 1. By
Property 8.1.5 we have φv(w, x) = λφv(w) = λφ(w). Here,

λφ(w) = diag(∥w∥1/2χ1(w), χ1(w)φu(w), ∥w∥−1/2χ1(w))

so φv(w) = ∥w∥1/2χ1(w)⊗χ1(w)φu(w). By Remark 2.2.2 this corresponds to the represen-

tation ν1/2πu⊠ν−1/2χ̂−1
1 where πu is the self-dual supercuspidal representation of PGL2(F )

corresponding to φu under the LLC for PGL2(F ). Thus the intermediate series member of

the L-packet is an irreducible subquotient of ν1/2πu⋊ν−1/2χ̂−1
1 . By Theorem 3.2.4 (2) it has

a unique irreducible sub-representation δ(ν1/2πu ⋊ ν−1/2χ̂−1
1 ), which is square-integrable.

Thus δ(ν1/2πu ⋊ ν−1/2χ̂−1
1 ) ∈ Πφ.

• when the PGL2(F )-representation πu has depth zero, it is classified by a regular depth-
zero character θ : E×/F× → C×, where E/F is the unramified quadratic extension.

(5.1.1) Πφ(θ) :=
{
δ
(
ν1/2π(E×,θ) ⋊ ν−1/2χ̂−1

1

)
, π(S,θ⊠θ⊗χ̂−1

1 )

}
,

where the supercuspidal π(S,θ⊠θ⊗χ̂−1
1 ) is defined in Lemma 3.1.14.

• when the GL2-representation πu has positive depth, the L-packet is of the form

(5.1.2) Πφ := {δ(ν1/2πu ⋊ ν−1/2χ̂−1
1 ), π(πu)⊗ χ̂−1

1 },
where:

– πu is a supercuspidal representation of GL2(F ), which corresponds to a nontrivial
representation JL(πu) of D

×/F× under the Jacquet-Langlands correspondence,
for D/F the quaternion algebra. The Kim-Yu type is given by a twisted Levi
sequence (G0 ⊂ · · · ⊂ Gd = D×/F×).

– π(πu) has Kim-Yu type given by the twisted Levi sequence (G0 ⊂ · · · ⊂ Gd =
D×/F× ⊂ GSp4(F )).

□

(2) case 4(b)iv

Proof. In case 4b, let φv : W
′
F → T∨ be the cuspidal support of the principal series, where

since T∨ has no unipotents, we have φv|SL2 = 1. By Property 8.1.5 we have φv(w, x) =
λφv(w) = λφ(w). Here,

λφ(w) = diag(∥w∥1/2χ1(w), ∥w∥1/2χ3(w), ∥w∥−1/2χ3(w), ∥w∥−1/2χ1(w)).

Under the isomorphism of Remark 2.1.1. the L-parameter φ corresponds to an irreducible
subquotient of νθ×θ⋊ν−1/2χ̂−1

3 where θ := χ̂1χ̂
−1
3 is an order 2 character of F×. By [ST93,

Lemma 3.6] the representation νθ× θ⋊ ν−1/2χ̂−1
1 has a unique essentially square integrable
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subquotient δ([θ, νθ], ν−1/2χ̂−1
1 ). Thus by Property 8.1.20, we have δ([θ, νθ], ν−1/2χ̂−1

1 ) ∈
Πφ. Here θ ∈ {η, η2, η′2}.

The only singular supercuspidal from Theorem 3.1.14 that’s unipotent (up to twisting)
is πβ(θ10 ⊗ 1). Therefore it must be in the L-packet Πφ(1) .

There are three L-packets, with notation from Proposition 3.1.14.

Πφ(1) : = {δ([η, νη], ν−1/2χ̂−1
1 ), πδ(θ10 ⊗ χ̂−1

1 )}

Πφ(2) : = {δ([η2, νη2], ν−1/2χ̂−1
1 ), πα(η2; χ̂

−1
1 )}

Πφ(3) : = {δ([η′2, νη′2], ν−1/2χ̂−1
1 ), πα(η

′
2; χ̂

−1
1 )}.

Here the L-packets Πφ(2) and Πφ(3) are assembled in Proposition 6.5.5 via stability of charac-

ters. Note that the twist χ̂−1
3 can be recovered as the central character of the representations.

We now compute the formal degree of δ([η2, νη2], ν
−1/2χ̂−1

1 ): By [Roc98], we have

(5.1.3) Irr(H(G, τ s))
∼−→ Irr(H(Js, 1)),

under which δ([η2, νη2], ν
−1/2χ̂−1

1 ) corresponds to StGL2×GL2/Gm
. By [Roc98, Theorem 10.7],

up to normalization factors of volumes, we have

(5.1.4) fdeg(π(η2)) = d(StHGL2×GL2/Gm
).

Now by [CKK12, Theorem 4.1], we have

(5.1.5) d(StHGL2×GL2/Gm
) =

1

2
· 1

q2 − 1
· q − 1

q2 − 1
· q3/2 = q3/2

2(q + 1)2
.

Thus we have

(5.1.6) fdeg(δ([η2, νη2], ν
−1/2χ̂−1

1 )) =
q3/2

2(q + 1)(q2 − 1)
,

which agrees with the formal degree for the singular supercuspidal computed in (3.1.17). □

5.2. The Sp4 case. The mixed packets for Sp4 occur in:

(1) case 7(b)iii, when the packet is of size 4, consisting of two supercuspidals and two principal

series the irreducible constituents of ν1/2χ1StGL2 ⋊ 1. The L-packets consist of principal
series from case 1(b)iv, and depth-zero supercuspidals from Theorem 3.1.20.

Proof. To each χ̂1 = η, η2, η
′
2, we denote by φ(χ1) the corresponding L-parameter, as

in case 7(b)iii. Concretely, φ(χ1) : W
′
F → SO5(C) corresponds to the WF × SL2(C)-

representation U =M2(C)⊕C where WF acts on M2(C) by χ1 and SL2(C) acts on M2(C)
by conjugation. In particular, the L-packet Πφ(η) is a unipotent L-packet.

The principal series members π1(χ̂1), π2(χ̂1) ∈ Πφ(χ1) have unipotent pairs (ee, (−1,±1))
on O4, by the discussion in case 7(b)iii. Let φv(χ1) : W

′
F → T∨ be the cuspidal support,

where φv(χ1)(SL2) = 1 since T∨ does not have unipotents. Then by Property 8.1.5 we have

φv(χ1)(w, x) = λφv(χ1)(w) = λφ(χ1)(w) = φ(χ1)(w,

(
∥w∥1/2

∥w∥−1/2

)
).

This acts on M2(C) as:

λφ(χ1)(w)(e11) = χ1(w)e11

λφ(χ1)(w)(e12) = ∥w∥χ1(w)e12

λφ(χ1)(w)(e21) = ∥w∥−1χ1(w)e21

λφ(χ1)(w)(e22) = χ1(w)e22,
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so φv(χ1) = ∥det ∥χ1 ⊗ χ1 ⊗ 1. Now π1(χ1) and π2(χ1) are subquotients of νχ̂1 × χ̂1 ⋊ 1 =

ν1/2χ̂11GL2⋊1+ν1/2χ̂1StGL2⋊1. Moreover, since π1(χ1) and π2(χ1) are square-integrable by

Property 8.1.20, they must be subquotients of ν1/2χ̂1StGL2 ⋊1. By [ST93, Lemma 3.6] over
GSp4 the representation νχ̂1 × χ̂1 ⋊ 1F× contains a unique square integrable subquotient
δ([χ̂1, νχ̂1], 1F×). This splits into two irreducible representations when restricted to Sp4
by [ST93, Prop 5.4], and these are exactly the square-integrable subquotients of the Sp4-
representation νχ̂1 × χ̂1 ⋊ 1. Thus, in the Grothendieck group

(5.2.1) δ([χ̂1, νχ̂1], 1F×)|Sp4(F ) = π1(χ1) + π2(χ1).

For the supercuspidals in Πφ(η), there are only two unipotent supercuspidals πβ(θ10) and
πγ(θ10) coming from Theorem 3.1.20(2a). Therefore these two must be in the L-packet
Πφ(η). Note that this agrees with the unipotent L-packet in [LS20]. Moreover, [LS20,
Example 9.4] says that Πφ(η2) and Πφ(η′2)

contains the depth-zero representations inflated

from SL2(Fq) × SL2(Fq), i.e. the ones in Theorem 3.1.20(3). In summary, we have three
L-packets

Πφ(η) : = {π1(η), π2(η), πβ(θ10), πγ(θ10)}(5.2.2)

Πφ(η2) : = {π1(η2), π2(η2), π+α (η2), π−α (η2)}(5.2.3)

Πφ(η′2)
: = {π1(η′2), π2(η′2), π+α (η′2), π−α (η′2)}.(5.2.4)

The choices between Πφ(η2) and Πφ(η′2)
are pinned down in Corollary 6.5.6 via stability of

characters. Similar computations as in (5.1.6) shows that the formal degrees of πi(η2) and
π±α (η2) agree. □

Remark 5.2.5. The L-packets Πφ(η2) and Πφ(η′2)
are those in [LS20, Ex 9.4].

(2) case (5b), where the packet is of size 2 consisting of a supercuspidal and an intermediate
series.

Proof. Let π ∈ Πφ be the intermediate series member. By Property 8.1.5 we have λφ =
ιGL2 ◦λφv up to SO5-conjugacy. For the intermediate series representation, since φv : W

′
F →

GL2(C) is cuspidal, by Remark 5.2.8 we have φv(w, x) = φ(w,

(
∥w∥1/2

∥w∥−1/2

)
), which

acts on U = V 2 ⊕ 1 as ∥w∥1/2φ(w)
1

∥w∥−1/2φ(w)

 .

Thus, the L-parameter of the cuspidal support is ∥det ∥1/2φ. Let φ correspond to the

unitary representation σ of GL2(F ) under the LLC for GL2, so ν1/2σ is the image of

∥det ∥1/2φ under the LLC for GL2. Thus, π := π(σ) is an irreducible sub-representation of

the induced representation ν1/2σ⋊ 1, which is the unique square-integrable subquotient by
[ST93, Prop 5.6(iv)]. It must be the member by Property 8.1.20. In summary,

• when φ has depth zero, the L-packet is of the form

(5.2.6) Πφ := {π(σ), πα(η)},
where πα(η) (for η ̸= τ1, τ2) is the (singular) depth-zero supercuspidal from Theorem

3.1.20(3). There are q−1
2 such depth-zero L-packets, which agrees with the number of

depth-zero supercuspidals of PGL2(F ).
• when φ has positive depth, let π(σ) be the intermediate series representation with σ a
positive-depth supercupsidal of PGL2 corresponding to the character ψ(σ) : E×/F× →
C×. The LLC for GL2 (hence PGL2) gives us a canonical identification E×/F× ∼−→
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R
(1)
E/FGm which identifies ψ(σ) : E×/F× → C× with a character χ(σ) : R

(1)
E/FGm →

C×. Let πχ be the corresponding positive-depth singular supercuspidal. The L-packet
in this case is of the form

(5.2.7) Πφ := {π(σ), πχ(σ)}.
□

Remark 5.2.8. Let φ : W ′
F → GLn(C) be a cuspidal L-parameter for GLn. Then φ(SL2) = 1.

6. Stability of L-packets

6.1. Parahoric invariants for the GSp4(F ) case. Via twisting by the character ν1/2χ̂3 ◦ µ of
GSp4, we may focus our attention on δ([η2, νη2], 1). It is characterized as the intersection of the

sub-representations ν1/2η2StGL(2) ⋊ 1 and ν1/2η2StGL(2) ⋊ η2 of νη2 × η2 ⋊ 1.
We calculate the invariants of δ([η2, νη2], 1) with respect to Gx+, where x is a vertex of the

Bruhat-Tits building (i.e., α or δ).

6.1.1. Calculating δ([η2, νη2], 1)
Gα+.

Definition 6.1.1. Let Hα be the parahoric subgroup of GSp2,2(F ) defined in §2.3, which contains
the subgroup

(6.1.2) H0
α := {(g, h) ∈M2(o)×

(
o p−1

p o

)
: det(g) = det(h) = 1}.

For a ramified quadratic character η2 of F×, let ϖ ∈ F be a uniformizer such that η2(ϖ) = 1
(unique up to (o×F )

2). We define the following irreducible representations of Gβ/Gβ+
∼= Hβ/Hβ+:

ωη2
princ := Ind

Gβ

G0
βZ
(R+(α0)⊠R+(α0)

diag(ϖ,1))(6.1.3)

ωη2
cusp := Ind

Gβ

G0
βZ
(R′

+(θ0)⊠R′
+(θ0)

diag(ϖ,1))(6.1.4)

This is independent of the choice of the uniformizer ϖ.

By [SX23, Lemma 2.0.1], we have:

Lemma 6.1.5. There are canonical support-preserving Hecke algebra isomorphisms

H(GSp4//I, ϵ⊗ ϵ⊗ 1) ∼= H(GSpin∨4 //J, ϵ ◦ d̃et1)(6.1.6)

H(GSp4//I, ϵ⊗ ϵ⊗ ϵ) ∼= H(GSpin∨4 //J, ϵ ◦ d̃et2)(6.1.7)

where GSpin∨4
∼= (GL2 × GL2)/Gm, and d̃eti(g1, g2) := det(gi) are well-defined homomorphisms

GSpin∨4 (F ) → F×/(F×)2. Under these isomorphisms δ([η2, νη2], 1) corresponds to η2 ◦ d̃eti ⊗
StGSpin∨4

.

By the Mackey formula, we have an isomorphism of representations of Gα/Gα+
∼= GSp2,2(Fq)

(6.1.8) (νη2 × η2 ⋊ 1)Gα+ ∼=
⊕

w∈B\G2/Gα

Ind
Gα/Gα+

Gβ∩wBw−1/(Gα+∩wBw−1)
(ϵ⊗ ϵ⊗ 1)w,

where

(6.1.9) B\G2/Gα
∼=W (G2)/W (GSp2,2) =W/⟨sβ, s2α+β⟩ = {1, sα}.

Therefore, the Gα+-invariants of (νη2 × η2 ⋊ 1)Gα+ gives

(6.1.10) (νη2 ⊗ η2 ⋊ 1)Gα+ ≃ Ind
GSp2,2
B (ϵ⊗ 1⊗ ϵ⊗ 1)2



EXPLICIT LOCAL LANGLANDS CORRESPONDENCE FOR GSp4 AND Sp4 29

Likewise, computing the Gα+-invariants gives us the following

(ν1/2η2St⋊ 1)Gα+ ≃ (ν1/2η2St⋊ η2)
Gα+ ≃ Ind

GSp2,2
B (ϵ⊗ 1⊗ ϵ⊗ 1).(6.1.11)

We pin down the Gβ+-invariants of π(η2) in Corollary 6.1.13.

Proposition 6.1.12. The I+-invariants of δ([η2, νη2], 1) is

δ([η2, νη2], 1)
I+ ∼= ϵ⊗ ϵ⊗ 1 + ϵ⊗ ϵ⊗ ϵ.

Proof. A priori we know

δ([η2, νη2], 1)
I+ ↪→ (νη2 × η2 ⋊ 1)I+ =

⊕
w∈W

(ϵ⊗ ϵ⊗ 1)w = (ϵ⊗ ϵ⊗ 1)4 + (ϵ⊗ ϵ⊗ ϵ)4.

By Lemma 6.1.5, the multiplicity of ϵ⊗ ϵ⊗ 1 in δ([η2, νη2], 1), which is the same as the multiplicity

of ϵ ◦ d̃et1 in the representation η2StSO4 , is one. Thus the same holds for all Weyl group orbits of
the character. □

Corollary 6.1.13. There is an isomorphism of Gα/Gα+-representations

δ([η2, νη2], 1)
Gα+ ∼= ωη2

princ

Proof. The argument is the same as in the proof of Corollary 3.0.8 in [SX23] . By Proposition 6.1.12

we conclude δ([η2, νη2], 1)
Gβ+ must be an irreducible component of Ind

GSp2,2
B (ϵ ⊗ 1 ⊗ ϵ ⊗ 1), i.e.,

ωη2
princ or ω

η′2
princ. Together with Lemma 6.1.5 we conclude δ([η2, νη2], 1)

Gα+ ∼= ωη2
princ. □

6.1.2. Calculating δ([η2, νη2], 1)
Gδ+. Again by a Mackey theory calculation, we have:

(νη2 × η2 ⋊ 1)Gδ+ ∼= Ind
GSp4(Fq)
B(Fq)

(ϵ⊗ ϵ⊗ 1)(6.1.14)

(ν1/2η2StGL2 ⋊ 1)Gδ+ ∼= Ind
GSp4(Fq)
Pα

(ϵStGL2 ⊗ 1)(6.1.15)

(ν1/2η2StGL2 ⋊ η2)
Gδ+ ∼= Ind

G2(Fq)
Pα

(ϵStGL2 ⊗ ϵ),(6.1.16)

where Pα is a parabolic subgroup of GSp4(Fq). Thus, δ([η2, νη2], 1)
Gδ+ is the intersection of

Ind
GSp4(Fq)
Pα(Fq)

(ϵStGL2 ⊗ 1) and Ind
GSp4(Fq)
Pα(Fq)

(ϵStGL2 ⊗ ϵ), denoted ωϵ
princ. In terms of Lusztig’s equiv-

alence [Lus84a, Theorem 4.23], if s ∈ GSpin5(Fq) is of order 2 such that its image in SO5(Fq) is
diag(−1,−1, 1,−1,−1) then ZGSpin5(Fq)(s) = GSpin4(Fq) ∼= GSp2,2(Fq):

(6.1.17) E(GSp4(Fq), s) ∼= E(GSp2,2(Fq), 1) = {StGSp2,2 , 1⊠GSp2,GSp2 ⊠ 1, 1GSp2,2},

and ωϵ
princ corresponds to StGSp2,2(Fq). Thus, in conclusion:

Proposition 6.1.18. The following are the

δ([η2, νη2], 1)
Gδ+ ∼= ωϵ

princ(6.1.19)

δ([η2, νη2], 1)
Gα+ ∼= ωη2

princ.(6.1.20)

6.2. Parahoric invariants for the supercuspidal representations. Recall from Proposition
3.1.14(3), we defined the supercuspidal representation

(6.2.1) πα(η2; 1) := c-Ind
GSp4
GαZ

(ωη2
cusp),

where ωη2
cusp := (ρ+(λ,λ))

(I2,diag(ϖ,1)) is a cuspidal representation of Gα/Gα+. We may readily calcu-

late the Gx+-invariants of the supercuspidal representation πα(η2; 1), for various vertices x in the
Bruhat-Tits building:
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Lemma 6.2.2. Let πα(η2; 1) be as defined in (6.2.1). We have

πα(η2; 1)
Gα+ ∼= ωη2

cusp(6.2.3)

πα(η2; 1)
Gδ+ = 0(6.2.4)

Proof. For each vertex x, by Mackey theory we have

πα(η2; 1)
Gx+ ∼=

⊕
g∈Gα\G2/Gx

IndGx

Gx∩g−1Gαg
((ωη2

cusp)
g)Gx+∩g−1Gαg(6.2.5)

=
⊕

g∈Gα\G2/Gx

IndGx
Gx∩Gg−1α

((ωη2
cusp)

g)Gx+∩Gg−1α .(6.2.6)

Here,

((ωη2
cusp)

g)Gx+∩Gg−1α ∼= (ωη2
cusp)

Gα∩Ggx+ ,

which is 0 unless α = gx since otherwise Gβ ∩ Ggx+ will contain the unipotent radical of some

parabolic subgroup of Gα, so (ωη2
cusp)Gα∩Ggx+ = 0 since ωη2

cusp is cuspidal. □

6.3. Stable distributions on GSp4 and Sp4. For this section alone, we switch notation for k to
denote the non-archimedean local field, as we reserve the notation F for the facets. First we recall
from [DeB02, DeB06, DK06] the general theory of invariant distributions associated to unramified
tori. We now recall a few more precise results for later use. Let J(g) be the space of invariant
distributions on g. Let J(N ) be the span of the nilpotent orbital integrals.

For each Weyl group conjugacy class [w] of G, consider pairs (F,QF
w) consisting of a facet

F ∈ B(G) and the toric Green function QF
w (see for example [Car93, §7.6]) associated to the torus

Sw in GF corresponding to [w]. Let S be a maximal K-split k-torus in G lifting the pair (F, Sw).
Let XSw ∈ Lie(S)(k) ⊂ gF be a regular semisimple element for which the centralizer in GF of the
image of XSw in Lie(GF ) is Sw. Since G

der is simply-connected, the number of rational conjugacy

classes in G(K)XSw ∩ g is in bijection with the group of torsion points of X∗(T )/(1− w)X∗(T ) for
the maximal torus T of G. The following Table 4 is the analogue of [DK06, Table 5] for GSp4
(note that the analogous table for Sp4 is calculated in [Wal01], although we do not need it), which
records the number of relevant rational conjugacy classes.

class of w tor[X∗(T )/(1− w)X∗(T )]
1 0
A1 0

Ã1 0
A1 ×A1 Z/2
C2 0

Table 4.

For each character κ of tor[X∗(T )/(1− w)X∗(T )], one can associate a distribution

(6.3.1) Tw(κ) :=
∑

λ∈tor[X∗(T )/(1−w)X∗(T )]

κ(λ) · µXλ
Sw
,

where Xλ
Sw

belongs to the G-conjugacy class in G(K)XSw ∩ g indexed by λ. Note that Tw(1) is

stable for any reductive group G. On the other hand, the rational classes in G(K)X that intersect
Lie(S)(k) are parameterized by the quotient

(6.3.2) N(F, Sw) := [NG(K)(S(K))/S(K)]Gal(K/k)/[NG(S(k))/S(k)]

We record the cardinality of the above quotient in the following table:
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class of w vertex |N(F, Sw)|
A1 ×A1 C2 1
A1 ×A1 A1 ×A1 1

In general, consider the set Ic := {(F,G)} (see for example [DK06, §4.3]) of pairs consisting of facet
F and a cuspidal generalized Green function on Lie(GF )(κk), which is endowed with an equivalence
relation ∼ as in Definition 4.1.2 loc.cit.

Let g0 be the set of compact elements in g, and J(g0) ⊂ J(g) the subspace of distrubitions with
support in g0. Let D0 be the invariant version of the Lie algebra analogue of the Iwahori-Hecke
algebra, and let D0

0 be the subalgebra spanned over facets contained in (the closure of) a fixed
alcove F∅. We recall the following homogeneity result due to DeBacker and Waldspurger.

Theorem 6.3.3 (Waldspurger, DeBacker). We have

(1) resD0J(g0) = resD0J(N ).
(2) Suppose D ∈ J(g0). We have

resD0D = 0 if and only if resD0
0
D = 0

As a corollary, one has the following.

Corollary 6.3.4. Let D ∈ J(g0). We have

resD0D = 0 if and only if D(ĜF ) = 0 for all (F,G) ∈ Ic/ ∼
We have the following list of stable distributions:

Dst
C2

:= D
(FC2

,Q
FC2
SC2

)

Dst
A1

:= D
(FA1

,Q
FA1
SA1

)

Dst
Ã1

:= D(F
Ã1
,Q

F
Ã1

S
Ã1

)

Dst
e := D

(Fe,QFe
Se

)

Dst
A1×A1

:= D
FC2

,Q
FC2
SA1×A1

+D
(FA1×A1

,Q
FA1×A1
SA1×A1

)

Dunst
A1×A1

:= D
FC2

,Q
FC2
SA1×A1

−D
(FA1×A1

,Q
FA1×A1
SA1×A1

)

Dst
FA1×A1

,Gsgn
:= D(FA1×A1

,Gsgn)

(6.3.5)

Finally, we record the following result from [DK06, Lemma 6.4.1] (see also [Wal01, Théoréme
IV.13]) for later use. Let Bst be the set of stable distributions in the above list (6.3.5).

Lemma 6.3.6 (Waldspurer, DeBacker-Kazhdan). The elements of the set {resD0D|D ∈ Bst} form
a basis for resD0J(g0) ∩ resD0J

st(g).

6.4. Characters on a neighborhood of 1. In this section, we express δ[η2, νη2]
Gx+ in terms of

generalized Green functions, for x = α, δ.

(1) When F = FC2 corresponds to the vertex δ, we have that δ([η2, νη2], 1)
Gδ+ ∼= ωϵ

princ cor-

responds to StGSp2,2(Fq) under Lusztig’s equivalence (6.1.17). By [DL76], the character of

Steinberg is

(6.4.1) ChStGSp2,2
=

1

4

(
RA1×A1

A1×A1
−RA1×A1

A1×1 −RA1×A1
1×A1

+RA1×A1
1×1

)
.

Since Lusztig’s equivalence (6.1.17) preserves multiplicities, we have

(6.4.2) Chπϵ
princ

=
1

4

(
RC2

A1×A1
− 2RC2

A1
+RC2

1

)
.
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Restricting to the unipotent locus, we have

(6.4.3) Chπϵ
princ

(u) =
1

4

(
QFC2

A1×A1
− 2QFC2

A1
+QFC2

1

)
.

(2) When F = FA1×A1 corresponds to the vertex α, we have that δ([η2, νη2], 1)
Gα+ ∼= ωη2

princ.

The character formula can be computed in the same way as [SX23, (3.4.5)] and we have

(6.4.4) Chπη2
princ

=
1

2
(Q

F
A1×Ã1

1 ± q∗Gsgn).

(3) When F = FA1 , since δ([η2, νη2], 1)
GF+ is the Jacquet restriction rA1×A1

A1
(δ([η2, νη2], 1)),

thus by (6.1.3) on the unipotent locus we have Ch(δ([η2, νη2], 1)
GF+) = QFA1

1 ;

(4) When F = F
Ã1

, we have Ch(δ([η2, νη2], 1)
GF+) = Q

F
Ã1

1 ;

(5) When F = Fe, we have Ch(δ([η2, νη2], 1)
GF+) = 2.

Similarly, we have for F = FA1×A1 ,

(6.4.5) Ch(πα(η2; 1)
GF+) =

1

2
(QFA1×A1

A1×A1
± q∗Gsgn).

Therefore, we have the following

Proposition 6.4.6. For any (possibly equal) ramified quadratic characters η2, η
′
2, the sum δ([η2, νη2], ϱ)+

πα(η
′
2; ρ) has a stable character on the topologically unipotent elements.

Proof. As remarked at the beginning of §6.1, it suffices to work with the case ϱ = 1 in the notation
δ([η2, νη2], ϱ). From the discussions above, we see that for some explicitly computable constants ci,

Chδ([η2,νη2],1) = c1 ·
1

2
(Dst

A1×A1
−Dunst

A1×A1
)± c2 ·Dst

(FA1×A1
,Gsgn)

+ cDst
e

Chπα(η2;1) = c1 ·
1

2
(Dst

A1×A1
+Dunst

A1×A1
)± c2 ·Dst

(FA1×A1
,Gsgn)

Thus by Lemma 6.3.6, the sum is always stable. □

6.5. Characters on a neighborhood of s. Let

s =


1

−1
−1

−1

 ∈ GSp4(F )

be order 2 such that ZGSp4(s) = GSp2,2. By the construction in [AK07, §7], the distributions
Chδ([η2,νη2],ϱ) and Chπα(η2;ϱ) on GSp4 induce distributions Θδ([η2,νη2],ϱ) and Θπα(η2;ϱ) on (GSp2,2)0+,
the topologically unipotent elements in GSp2,2, such that the attached locally constant functions
are compatible (see [AK07, Lemma 7.5]). We shall see when the sum Θδ([η2,νη2],ϱ) + Θπα(η′2;ϱ)

is a

stable distribution on (GSp2,2)0+.
We now look at the characters on an element of the form su for u topologically unipotent. They

follow from computations in the previous section §6.4.
(1) When F = FC2 , by [DL76, Theorem 4.2], we have

Chωϵ
princ

(su) =
1

4

(
Rϵ

SA1×A1
(su)− 2Rϵ

SA1
(su) +Rϵ

S1
(su)

)
= (−1)

q−1
2

1

2

(
QA1×A1

SA1×A1
(u)−QA1×A1

SA1×1
(u)−QA1×A1

S1×A1
(u) +QA1×A1

S1
(u)
)
.

(6.5.1)
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(2) When F = FA1×A1 , we have

Chδ([η2,νη2],1)F+ (su) = (−1)
q−1
2 · 1

2

(
QFA1×A1

1 (u)± q∗Gsgn(u)
)

(6.5.2)

Chπα(η2;1)
F+ (su) = (−1)

q+1
2 · 1

2

(
QFA1×A1

A1×A1
(u)± q∗Gsgn(u)

)
(6.5.3)

The following lemma is an analogue of [SX23, Lemma 3.5.1].

Lemma 6.5.4. The distribution D(FA1×A1
,Gsgn) on GSp2,2 is not stable.

Proof. A distribution on GSp2,2(F ) is stable if and only if it is stable under conjugation by GL2(F )×
GL2(F ). Thus all stable distributions on GSp2,2 must be restricted from invariant distributions
on GL2(F ) × GL2(F ). But the only invariant distributions on GL2(F ) × GL2(F ) are spanned by
semisimple orbital integrals, and D(FA1×A1

,Gsgn) is linearly independent from them (as can be seen

by evaluating against Gsgn). □

Proposition 6.5.5. Let G = GSp4(F ). For ramified quadratic characters η2 and η′2, the character
Chδ([η2,νη2],ϱ)+Chπα(η′2;ϱ)

is stable in a neighborhood of s if and only if η2 = η′2.

Thus, {δ([η2, νη2], ϱ), πα(η2; ϱ)} is an L-packet, as dictated by Property 8.1.27, for each ramified
quadratic character η2.

Proof. This follows from the above computations (6.5.1), (6.5.2) and (6.5.3), as well as Lemma
6.5.4 that D(FA1×A1

,Gsgn) is a non-stable distribution on GSp2,2. □

Now, by Property 8.1.26, functoriality for Sp4 → GSp4, we obtain the following corollary of
Proposition 6.5.5. Let πi(η2) be as defined in (5.2.1). Let π±α (η2) be as defined in Proposi-
tion 3.1.20(3).

Corollary 6.5.6. Let G = Sp4(F ). The character Chπ1(η2)+Chπ2(η2)+Chπ+
α (η2)

+Chπ−
α (η2)

is sta-

ble in a neighborhood of s, for each ramified quadratic character η2. Thus we have the following
explicit L-packets, as dictated by Property 8.1.27:

Πφ(η2) := {π1(η2), π2(η2), π+α (η2), π−α (η2)},

for each ramified quadratic character η2.

Proof. Indeed, by definition we have

δ([χ̂1, νχ̂1], 1)|Sp4(F ) = π1(χ1) + π2(χ1)

and

πα(η2; 1)|Sp4(F ) = c-Ind
Sp4
Gα

(ωη2
cusp)(6.5.7)

= c-Ind
Sp4
Gα

(R′
+(θ0)⊠ (R′

+(θ0))
diag(ϖ,1) +R′

−(θ0)⊠ (R′
−(θ0))

diag(ϖ,1))(6.5.8)

= π+α (η2) + π−α (η2).(6.5.9)

The claim now follows from Proposition 6.5.5. □

7. Explicit L-parameters

We construct L-parameters for each reducible induced representation in Theorem 3.2.4. For
representations that are not essentially tempered, we give explicit Langlands classifications, so by
Property 8.1.3 we have explicit L-parameters (since LLC is known for Levis of GSp4). We only
give the L-parameters for GSp4, but those for Sp4 follows by functoriality, Property 8.1.26.



34 KENTA SUZUKI AND YUJIE XU

7.1. Principal series for GSp4. We proceed by considering Bernstein blocks: let s = [T, χ1 ⊗
χ2⊗θ]. Then by Remark 2.2.2 the dual of χ1⊗χ2⊗θ is the homomorphism F× → T∨(C) given by

θ̂−1 diag(1, χ̂−1
2 , χ̂−1

1 , χ̂−1
1 χ̂−1

2 ), whose restriction cs to o×F is well-defined. Let J s = ZG∨(Im(cs)) and
let Js be the Langlands dual group. Then [Roc98] gives a (non-canonical) isomorphism between
H(G//Jχ, χ1 ⊗ χ2 ⊗ θ) and H(Js//Is, 1Is), where I

s is an Iwahori subgroup of Js. There are the
following cases (up to Weyl group conjugates):

(J1) If χ1 = χ2 = 1 then J s = G∨. Representations of the Iwahori-Hecke algebra are classified
in [Ram03, Table 5.1].

(J2) If χ1 ̸= 1 and χ2 = 1 then J s = GL2 ×GSp0 so Js = GL1 ×GSp2.
(J3) If χ1 = χ−1

2 ̸= 1 and χ2
1 = 1 then J s = {(g, h) ∈ GL2(C) : det(g) = det(h)}. Here

Js = GL2(F )×GL2(F )/F
×. Representations of the Iwahori-Hecke algebra are classified in

[Ram03, Table 2.1].
(J4) If χ1 = χ−1

2 and χ2
1 ̸= 1 on o×F then J s = GL1×GSp2 so J

s = GL2×GSp0. Representations
of the Iwahori-Hecke algebra are classified in [Ram03, Table 2.1].

We have the following cases:

• In case 1(a)i the only essentially tempered representation is ν1/2χ2StGL2 ⋊ θ where e(χ2) =
−1

2 .
– if χ2 is unramified, we are in case (J1). This is case te in Table 5.1 of [Ram03] so the

enhanced L-parameter is: (φσ,[14], 1), (φσ,[22], 1).

– In case (J3), when χ2
2 is unramified but χ2 is not, we have Js of type A1 × A1. This

is case ta × to in the notation of Table 2.1 of [Ram03] since the induced representa-
tion is of length 2 with a tempered subquotient. Thus the enhanced L-parameter is
(φσ,[14], 1), (φσ,[22], 1).

– In case (J4), when χ2
2 is ramified, we have Js = GL2 ×GSp0, of type A1, which is case

ta in [Ram03, Table 2.1] so the L-parameter is (φσ,[14], 1), (φσ,[22], 1)

• In case 1(a)ii the only essentially tempered representation is χ1⋊ν1/2θStGSp2 for e(χ1) = 0.
Here s = [χ1, 1, θ].

– In case (J1), when χ1 is unramified, we have J∫ = G∨. This is case te in Table 5.1 of
[Ram03] so the enhanced L-parameters are: (φσ,[14], 1), (φσ,[22], 1).

– In case (J2), when χ1 is ramified, we have J∫ = GL1×GSp2. This is case ta in [Ram03,
Table 2.1] so the L-parameters are (φσ,[14], 1), (φσ,[22], 1)

• In case 1(a)iii the Steinberg representation corresponds to (φσ,[4], 1), with the regular unipo-
tent.

• In case 1(a)iv the representation δ([χ2, νχ2], θ) is essentially square-integrable, living in the
.

– In case (J1), when χ2 is the unramified quadratic character, we have Js = G∨.
This is case ta or tc in [Ram03, Table 5.1]. To see which case we’re in, note that
δ([η2, νη2], θ)

Gδ+ corresponds to StGSpin4 under Lusztig’s equivalence E(GSp4, ϵ ⊗ ϵ ⊗
θ) ∼= E(ZGSpin5(s), 1) = E(GSpin4, 1). Thus,

dim δ([η2, νη2], θ)
I = ⟨δ([η2, νη2], θ)Gδ+ , R1

T ⟩
= ⟨StGSpin4 , R

1
T ⟩ = 1,

and we are in case ta of [Ram03, Table 5.1]. Thus the L-parameter of δ([χ2, νχ2], θ) is
(φσ,1, 1), with trivial unipotent.

– In case (J4), when χ2 is ramified, we have Js of type A1 × A1. This is case ta × ta in
the notation of [Ram03, Table 2.1]. Thus the L-parameters are:

(φσ,[14], 1), (φσ,[2,12], 1), (φσ,[2,12], 1), (φσ,[22], 1).
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Here there is a slight abuse of notation; the two unipotents [2, 12] are embedded into
Gφ in different ways.

• In case 1(b)i, where s = [T, 1 ⊗ 1 ⊗ θ], we have Js = G∨. Here, there are two essentially
tempered subquotients so we are in case tb of [Ram03, Table 5.1]:

Indexing triple nilpotent orbit representation
(tb, 0, 1) [14] J(ν; 1F× ⋊ θ)

(tb, eβ, 1) [22] J(ν1/2StGL2 ; θ)
(tb, eα1+β,−1) [2, 12] τ
(tb, eα1+β, 1) [2, 12] τ ′

We again used that StGL2 corresponds to the regular unipotent under LLC for GL2.

• In case 1(b)iii the representation ν1/2χ2StGL2 ⋊ θ is essentially tempered.
where s = [T, χ1 ⊗ χ1 ⊗ θ], with χ2

1 = 1, either:
– In case (J1), when χ1 = 1, we have Js = G∨. Then we are in case te of [Ram03,

Table 5.1] so the L-parameters are (φ[14], 1) and (φ[22], 1).
– In case (J4), when χ1 ̸= 1, we have Js of type A1 × A1. This is of type ta × to in the

notation of [Ram03, Table 2.1] so the L-parameters are (φ[14], 1) and (φ[22], 1).

7.2. Intermediate series for GSp4.

Lemma 7.2.1. Let φ be a 2-dimensional irreducible semisimple representation of WF . Then φ|IF
remains irreducible.

Proof. Suppose otherwise, that φ|IF = ζ̂1 ⊕ ζ̂2 for some characters ζ̂i of IF . Since WF acts trivially

on IabF
∼= o×F , the group WF intertwines ζ̂1 ⊕ ζ̂2. Thus if ζ̂1 ̸= ζ̂2 then φ also splits into two

distinct characters, a contradiction, and if ζ̂1 = ζ̂2 then φ(w) for w ∈WF such that |w| = 1 can be
diagonalized, which provides a splitting of φ. □

7.2.1. When L = GL2 × GSp0, i.e., case 2. Let s = [L, π ⊗ χ], where we assume ωπ = 1. By
Remark 2.2.2, local Langlands for the Levi gives an L-parameter χ̂−1⊗χ̂−1φ∨

π = χ̂−1(1⊗φ∨
π ) : WF →

GL1(C) × GSp2(C), whose restriction cs to IF is well-defined. The centralizer J s := ZG∨(Im(cs))
is independent of χ. When Js is connected we have the bijection Irrs(G) ∼= Irr(H(Js//Is)), where
the group of F -rational points on the Langlands dual of J s and Is is an Iwahori subgroup.

By Lemma 7.2.1, the restriction φ|IF remainds irreducible, so J s = {(z, g) ∈ C× × GSp2(C) :
det(g) = z2} ∼= C×× SL2(C) so Js = F××PGL2(F ). Since the induced representation is of length
2, we are in case ta of [Ram03, Table 2.1], and the L-parameter for the tempered sub-representation
is (φσ,[2,12], 1).

7.2.2. When L = GL1 ×GSp2, i.e., case 3. Let s = [L, χ⊗ π]. By Remark 2.2.2, local Langlands
for the Levi gives an L-parameter

φ∨
π ⊗ det(φ∨

π )χ̂
−1 : WF → GL2(C)×GSp0(C),

whose restriction cs to IF is well-defined. The centralizer J s := ZG∨(Im(cs)) is independent of χ.
That is,

φ∨
π ⊗ det(φ∨

π )χ̂
−1(w) =

(
φ∨
π (w)

χ̂−1(w)φ∨
π (w)

)
.

The induced representation χ ⋊ π is irreducible only when a) χ = 1F× or b) χ = ν±1ξo where
ξo is of order two and ξoπ ∼= π. In either case χ̂φπ = φπ, so the IF -representation cs is simply
diag(φ∨

π (w), φ
∨
π (w)).

Here, in the notation of [AX22b, §2.1],

Xnr(M,π) := {ξ ∈ Xnr(M) : ξ ⊗ π ∼= π}
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has order 1 or 2, since ξ⊗π ∼= π implies ξ2ωπ = ωπ. Moreover, W (M,O) is order 2, since the Weyl
group acts by χ⊗ π 7→ χ−1 ⊗ χπ. Thus, W (M,π,Xnr(M)) is of order 2 or 4, and by [Sol22], there
is a bijection

Irrs(G) ≃ Irr(C[Xnr(M)]⋊C[W (M,π,Xnr(M))]).

The Kazhdan-Lusztig triples can be computed by following the commutative diagram in Prop-
erty 8.1.19.

8. Main Theorem

8.1. Properties of LLC. We assume for the rest of this paper that p does not divide the order
of the Weyl group.

We now state a compatibility property of the LLC with supercuspidal supports.

Definition 8.1.1. [Vog93] The infinitesimal parameter of an L-parameter φ for G is λφ : WF → G∨

defined by, for w ∈WF ,

(8.1.2) λφ(w) := φ
(
w,
(

||w||1/2 0

0 ||w||−1/2

))
for any w ∈WF .

Property 8.1.3. Let (P, π, ν) be a standard triple for G. We have

φJ(P,π,ν) = ιL∨ ◦ φπ⊗χν .

Property 8.1.4. ([Art06, §2], and [Kal16, Conjecture B]) The elements of Πφ(G) are in bijection
with Irr(Sφ).

The following property is [Vog93, Conjecture 7.18], or equivalently [Hai14, Conjecture 5.2.2].

Property 8.1.5. Let P ⊂ G be a parabolic subgroup with Levi subgroup L, and σ a supercuspidal
representation of L. For any irreducible constituent π of IndGP σ, the infinitesimal L-parameters
λφπ and ιL∨ ◦ λσ are G∨-conjugate.

8.1.6. The following Property 8.1.19 generalizes Property 8.1.5. Let L(G) be a set of representatives
for the conjugacy classes of Levi subgroups of G. By [ABPS17a, Proposition 3.1], for any L ∈ L(G)
there is a canonical isomorphism

(8.1.7) WG(L)
∼−→WG∨(L∨).

We set the following notations

(8.1.8) ZG∨(φ) := ZG∨(φ(W ′
F )) and Gφ := ZG∨(φ(WF )).

We also consider the following component groups

(8.1.9) Aφ := ZG∨(φ)/ZG∨(φ)◦ and Sφ := ZG∨(φ)/ZG∨ · ZG∨(φ)◦.

Recall that AGφ(uφ) denotes the component group of ZGφ(uφ). By [Mou17, § 3.1],

(8.1.10) Aφ ≃ AGφ(uφ),where uφ := φ (1, ( 1 1
0 1 )).

Let (φ, ρ) be an enhanced L-parameter for G. Recall that uφ := φ (1, ( 1 1
0 1 )). Then uφ is a

unipotent element of the (possibly disconnected) complex reductive group Gφ defined in (8.1.8),
and ρ ∈ Irr(AGφ(uφ)) by (8.1.10). Let tφ := (Lφ, (vφ, ϵφ)) denote the cuspidal support of (uφ, ρ),
i.e.

(8.1.11) (Lφ, (vφ, ϵφ)) := ScGφ(uφ, ρ).

In particular, (vφ, ϵφ) is a cuspidal unipotent pair in Lφ.
Upon conjugating φ with a suitable element of ZG◦

φ
(uφ), we may assume that the identity compo-

nent of Lφ contains φ
((
1,
(
z 0
0 z−1

)))
for all z ∈ C×. Recall that by the Jacobson–Morozov theorem
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(see for example [Car93, § 5.3]), any unipotent element v of Lφ can be extended to a homomorphism
of algebraic groups

(8.1.12) jv : SL2(C) → Lφ satisfying jv ( 1 1
0 1 ) = v.

Moreover, by [Kos59, Theorem 3.6], this extension is unique up to conjugation in ZLφ(v)◦. We
shall call a homomorphism jv satisfying these conditions to be adapted to φ.

By [AMS18, Lemma 7.6], up toG∨-conjugacy, there exists a unique homomorphism jv : SL2(C) →
Lφ which is adapted to φ, and moreover, the cocharacter

(8.1.13) χφ,v : z 7→ φ
(
1,
(
z 0
0 z−1

))
· jv
(
z−1 0
0 z

)
has image in Z◦

Lφ . We define an L-parameter φv : WF × SL2(C) → ZG∨(Z◦
Lφ) by

(8.1.14) φv(w, x) := φ(w, 1) · χφ,v(||w||1/2) · jv(x) for any w ∈WF and any x ∈ SL2(C).

Remark 8.1.15. Let w ∈WF and xw :=
(

||w||1/2 0

0 ||w||−1/2

)
. By (8.1.2), we have

(8.1.16)
λφv(w) = φv(w, xw) = φ(w, 1) · χφ,v(||w||1/2) · jv(xw)

= φ(w, 1) · φ(1, xw) · jv(x−1
w ) · jv(xw) = φ(w, xw) = λφ(w).

Definition 8.1.17. [AMS18, Definition 7.7] The cuspidal support of (φ, ρ) is

(8.1.18) Sc(φ, ρ) := (ZG∨(Z◦
Lφ), (φvφ , ϵ

φ)).

Property 8.1.19. [AMS18, Conjecture 7.8] The following diagram is commutative:

Irr(G) Φe(G)

⊔
L∈L(G) Irrscusp(L)/WG(L)

⊔
L∈L(G)Φe,cusp(L)/WG(L)

LLCG

Sc Sc⊔
LLCL

Property 8.1.20. [Bor79, §10.3] Let φ be an L-parameter for G.

(1) φ is bounded if and only if one element (equivalently any element) of Πφ(G) is tempered;
(2) φ is discrete if and only if one element (equivalently any element) of Πφ(G) is square-

integrable modulo center;
(3) φ is supercuspidal if and only if all the elements of Πφ(G) are supercuspidal.

Property 8.1.21. [Sha90] The quantity fdeg(π)
dim(ρ) is constant in an L-packet.

Property 8.1.22. [Sha90, Conjecture 9.4] If φ is bounded, then the L-packet Πφ(G) is w-generic
for some Whittaker datum w. Moreover, the conjectural bijection ιw : Πφ(G) → Irr(Sφ) maps the
w-generic representation to the trivial representation of Sφ.

Conjecture 8.1.23. [AMS18, Conjecture 2] For any s = [L, σ]G ∈ B(G), the LLC for L given by
σ 7→ (φσ, ρσ) induces a bijection

(8.1.24) Irrs(G)
∼−→ Φs∨

e (G),

where s∨ = [L∨, (φσ, ρσ)]G∨ .

Conjecture 8.1.23 is proved for split classical groups [Mou17, §5.3], for GLn(F ) and SLn(F )
[ABPS16b, Theorems 5.3 and 5.6], for principal series representations of split groups [ABPS17b,

§16]. For the group G2, a bijection between Irrs(G) and Φs∨
e (G) has been constructed in [AX22b,

Theorem 3.1.19]. For GSp4(F ) and Sp4(F ), one can easily verify the axioms in the Main Theorem
of [AX22b], and thus we have an isomorphism

(8.1.25) Irrs(G)
∼−→ Φs∨

e (G)
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for each Bernstein series Irrs(G) of intermediate series. On the other hand, the bijection (8.1.25)
holds for principal series blocks thanks to [Roc98, Ree02, ABPS16a, AMS18].

Property 8.1.26 (Functoriality). There is a commutative diagram

Π(GSp2n) Φ(GSp2n)

Π(Sp2n) Φ(Sp2n)

LLC

std

LLC

Here, the left vertical arrow is a correspondence defined by the subset of Π(GSp2n) × Π(Sp2n)
consisting of pairs (π,ϖ) such that ϖ is a constituent of the restriction of π to Sp2n.

Property 8.1.27 (Stability). Let φ be a discrete L-parameter. There exists a non-zero C-linear
combination

(8.1.28) SΘφ :=
∑
π∈Πφ

zπΘπ, for zπ ∈ C,

which is stable. In fact, one can take zπ = dim(ρπ) where ρπ is the enhancement of the L-parameter.
Moreover, no proper subset of Πφ has this property.

8.2. Main Result. Construction of the Local Langlands Correspondence

LLC: Irr(G)
1-1−−→ Φe(G)

π 7→ (φπ, ρπ).
(8.2.1)

Recall from [AX22a, (3.3.2)] and [AX22a, (2.4.3)] that we have

(8.2.2) Irrs(G) =
⊔

s∈B(G)

Irrs(G) and Φe(G) =
⊔

s∨∈B∨(G)

Φs∨
e (G).

When π ∈ Irr(G) is not supercuspidal, we have s = [L, σ]G where L is a proper Levi subgroup of
G. Recall from §2.2, L is conjugate to GL1 ×GL1 ×GSp0 (resp. GL1 ×GL1 × Sp0), GL2 ×GSp0
(resp. GL2 × Sp0) and GL1 × GSp2 (resp. GL1 × Sp2). Let φσ : W

′
F → L∨ be the L-parameter

attached to σ by the Local Langlands Correspondence for L (see [BH06, LL79]). The L∨-conjugacy
class of φσ is uniquely determined by σ, and one can easily check that φ(χ◦det)⊗σ = φσ⊗φχ (see for
example [Kal21, Proposition 3.4.6]), i.e. [AX22b, Property 3.12(1)] holds. This allows us to define

(8.2.3) s∨ := [L∨, (φσ, 1)]G∨ .

Let π 7→ (φπ, ρπ) be the bijection

(8.2.4) Irrs(G)
∼−→ Φs∨

e (G),

established in [AX22b, Main Theorem] (for intermediate series) and in [ABPS16a] (for principal
series). We have given explicit Kazhdan-Lusztig triples and L-packets in §7.

We consider now the case where π is supercuspidal. Hence we have s = [G, π]G for π an irreducible
supercuspidal representation of G.

(a) When π is non-singular supercuspidal, we define (φπ, ρπ) to be the enhanced L-parameter
constructed in [Kal19, Kal21].

(b) When π is a unipotent supercuspidal representation of G, we define (φπ, ρπ) to be the
enhanced L-parameter constructed in [Lus95], [Mor96, § 5.6] and [Sol18] (see also [Sol23]).

• x = δ: From §3.1.1 Proposition 3.1.14(2), the reductive quotient Gδ
∼= GSp4(Fq) has a

unique unipotent cuspidal representation θ10, giving unipotent supercuspidals πδ(θ10 ⊗ χ)
for each character χ. Define the following L-parameter φ(η;χ) with unipotent [22]:

φ(η;χ) := diag(η̂χ̂, χ̂, χ̂, η̂χ̂).
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By case 4(b)iv we have Gφ ≃ GSp2,2(C) and Sφ ≃ µ2. By the discussion in §5, we have
φ(η2;χ) = φδ([η2,νη2],ν−1/2χ).

(c) Let π be a non-unipotent depth-zero singular supercuspidal representation of G. As recalled
in (3.1.2), we have π = c-IndGG[x]

τ , where x is a vertex of the Bruhat-Tits building of G

and τ is inflated from a representation in the Lusztig series E(Gx, s) with s ̸= 1. By
Proposition 3.1.14, We have two cases, where x = α:

• From §3.1.1 Proposition 3.1.14(3), the reductive quotient Gδ
∼= GSp2,2(Fq) := {(g, h) ∈

GL2(Fq) × GL2(Fq) : det(g) = det(h)} has a rational Lusztig series E(Gx1 , s), where
s = (λ, λ) for some λ ∈ Fq2 such that λq−1 = −1, with singular cuspidal representations

ωη2
cusp. Let π(η2;χ) denote the compact induction c-Ind

GSp4
GαZ

(ωη2
cusp ⊗χ), for each unramified

character χ of F×. There are two (depth-zero) ramified cubic characters η2 and η′2 of F×.
Define the following L-parameter with unipotent [22]:

(8.2.5) φ(η2;χ)|WF
:= diag(η̂2χ̂, χ̂, χ̂, η̂2χ̂).

By case 4(b)iv we have Gφ ≃ GSp2,2(C), the unipotent element u is regular in Gφ, and Sφ ≃
µ2. By the discussion in § 5, we have φ(η2;χ) = φδ([η2,νη2],ν−1/2χ), where δ([η2, νη2], ν

−1/2χ)

is the unique discrete series subquotient of νη2 × η2 ⋊ ν−1/2χ.
By Proposition 6.5.5, we obtain two L-packets of size 2, for each i = 1, 2, 3,

(8.2.6) Πφ(η2;χ)(G) := {π(η′2;χ), δ([η2, νη2], ν−1/2χ)}.

• From §3.1.1 Proposition 3.1.14(4), the reductive quotient Gα
∼= GSp2,2(Fq) := {(g, h) ∈

GL2(Fq) × GL2(Fq) : det(g) = det(h)} has a cuspidal representation Rθ
T ⊠ Rθ

T , where
T ⊂ GL2(Fq) is an anisotropic maximal torus and θ is a character of T such that θ2 is
regular. This gives rise to the singular supercuspidal π(S,θ⊠θ), where θ is a regular character

of E×, for an unramified quadratic extension E/F (see Definition 3.1.4). Let φθ be the

L-parameter which is χ2⊕ IndWF
WE

(θ) as a WF -representation, with unipotent SL2(C) acting
on χ2.

Then by the discussion in §5, the L-packet is

Πφ(θ) = {δ(ν1/2π(E×,θ) ⋊ ν−1/2χ−1
1 ), π(S,θ⊠θ⊗χ̂−1

1 )}.

(d) Let π be a positive-depth singular supercuspidal representation of G. As in §5, such a
singular supercuspidal representation necessarily arises from a self-dual supercuspidal rep-
resentation πu of PGL2(F ), via the following recipe:

• πu is a supercuspidal representation of GL2(F ), which corresponds to a nontrivial
representation JL(πu) of D×/F× under the Jacquet-Langlands correspondence, for
D/F the quaternion algebra. The Kim-Yu type is given by a twisted Levi sequence
(G0 ⊂ · · · ⊂ Gd = D×/F×).

• π has Kim-Yu type given by the twisted Levi sequence (G0 ⊂ · · · ⊂ Gd = D×/F× ⊂
GSp4(F )).

It lives in a mixed L-packet together with δ(ν1/2πu ⋊ ν−1/2χ̂−1), the essentially tempered

sub-representation of ν1/2πu ⋊ ν−1/2χ̂−1. Letting φ be the L-parameter χ2 ⊕ V where V is
the WF -representation corresponding to φu under the LLC for PGL2(F ), with unipotent
[2, 12]. Then

(8.2.7) Πφ(G) = {π, δ(ν1/2πu ⋊ ν−1/2χ̂−1)}

Let G be the group of F -rational points of the groups Sp4 and GSp4. We suppose that the residual
characteristic of F is different from 2.
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Theorem 8.2.8. The explicit Local Langlands Correspondence defined in (8.2.1) satisfies (1.1.1)
for any s ∈ B(G), where s∨ = [L∨, (φσ, ρσ)]G∨, and also satisfies Properties 8.1.3, 8.1.4, 8.1.19,
8.1.20, 8.1.22. Moreover, we have Property 8.1.21 for depth-zero L-packets.5

Moreover, Properties 8.1.3, 8.1.4, 8.1.5, 8.1.19, and 8.1.20 (and Property 8.1.26 for Sp4) uniquely
characterize our correspondence.

Proof. By Property 8.1.3, the L-parameter φπ of each irreducible non-tempered representation π of
G is uniquely determined. For GSp4, since the L-packets of the representations of the proper Levi
subgroups of G are all singletons, the L-packet Πφπ(G) is a singleton. Hence, by Property 8.1.4,
we have ρπ = 1. Thus the map (8.2.1) is uniquely characterized for non-tempered representations.
This finishes the case of non-discrete series tempered representations.

Property 8.1.20 holds for supercuspidal L-packets by [AX22a, Lemma 10.1.7]. For the mixed
L-packets, this can be seen directly from §8.2 and the lists loc.cit., where we specify which member
in a given L-packet is generic.

Since we have already treated the discrete series in 8.2, we are done. For Sp4(F ), this follows
from Property 8.1.26. Finally, Property 8.1.21 follows from the calculations in Sections 3 and 5, as
in [AX22a]. Note that we fix a Whittaker datum for Sp4(F ) as in [AMS22] (see also [Sol23]). □

Appendix A. Applications to the Taylor-Wiles method

In this appendix, we adopt notations consistent with standard literature on this topic, though
these notations may differ slightly from our main text.

We apply the theory developed in [Whi22], which gives a generalized Taylor-Wiles method (see
for example [Tho22]) using input from (explicit) Local Langlands Correspondences (e.g. [RS07]),
except that we are now equipped with our explicit Local Langlands Correspondence (1.1.2)

LLCSX : π 7→ (Vπ, Nπ).(A.0.1)

Here we switch to the notation (Vπ, Nπ) loc.cit. instead of our original notations in (1.1.2). We

work with Qp-coefficients by fixing an isomorphism ι : C ∼−→ Qp compatible with the choice of q
1/2
v

as loc.cit. As in [BCGP21], we view LLC as sending an equivalence class of a smooth irreducible
Qp-valued representation of GSp4(Fv) to a Weil-Deligne representation of WFv valued in GSp(Qp).

Let g ∈ T̂ (k) for a split maximal torus T̂ contained in a Borel subgroup B̂ of Ĝ. LetMg := ZĜk
(g)

be the scheme-theoretic centralizer of g.
Suppose that qv ≡ 1 mod p. Our explicit LLC gives the following “local lemmas” [Whi22,

Propositions 5.18, 5.19], which are analogues for GSp4 of [Tho22, Proposition 3.13].

Proposition A.0.2 (Whitmore). Let π be an admissible irreducible Qp[G(Fv)]-module such that

(πp1)n1 ̸= 0. Then (1) π is a subquotient of a parabolically induced representation iGBχ for some

tamely ramified smooth character χ : T (Fv) → Z×
p . (2) The characters through which O[T/T∩p1]WL

acts on πp1 are WG-conjugates of χ and there exists w ∈WG such that wχ lifts χ. (3) The localized
invariants (πp1)n1 are 1-dimensional and the action of O[T/(T ∩p1)]

WF is through wχ. (4) Finally,
if LLCp(π) = (Vπ, Nπ) is the Weil-Deligne representation associated to π under the Local Langlands
Correspondence (1.1.2), then Nπ = 0.

Proof. Statements (1)–(3) follow from [Whi22, Lemma 5.16]. To verify (4), one works case by case
according to Mg up to conjuacy.

• Suppose that g is regular semisimple. In this case, L is a maximal torus and π is an
irreducible principal series χ1 × χ2 ⋊ σ. Then by §4 Case (4e), we have Nπ = 0.

5we certainly expect this property to hold for positive-depth L-packets as well.
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• Suppose that Mg is conjugate to a Levi subgroup of the Klingen parabolic subgroup
GL2(C) × GSp0(C). In this case, we claim that π cannot be conjugate to a representa-
tion of the form χStGL2 ⋊ χ′ for some smooth characters χ and χ′, otherwise (πp1)n1 = 0.
This can be seen by first applying the geometric lemma in [BZ77] along with [Whi22, Lemma
5.15]. Then by our classification §4 Case (4c), we have Nπ = 0.

• Suppose thatMg is conjugate to a Levi subgroup of the Siegel parabolic GL1(C)×GSp2(C).
In this case, L is conjugate to a Levi subgroup of the Klingen parabolic GL1(F )×GSp0(F ).
We claim that π cannot be conjugate to a representation χ⋊χ′StGSp2 ; otherwise, similar to
the previous bullet point, we get (πp1)n1 = 0 which is a contradiction. Then by §4 Case (4d),
we have Nπ = 0.

• The remaining case is when L = G. By §4 Case (4a), we have Nπ = 0.

□

The following proposition is an analogue of Proposition A.0.2 for representations with nonzero
localized p-invariants (instead of π1-invariants).

Proposition A.0.3 (Whitmore). Let π be an admissible irreducible Qp[G(Fv)]-module such that

(πp)n0 ̸= 0. Then (1) π is a subquotient of a parabolically induced representation iGBχ for some

tamely ramified smooth character χ : T (Fv) → Z×
p . (2) The characters through which O[T/T (OFv)]

WL

acts on πp are WG-conjugates of χ and there exists w ∈WG such that wχ lifts χ. (3) The localized
invariants (πp)n0 are 1-dimensional and the action of O[T/(T (OFv))]

WL is through wχ. (4) Finally,
if LLCp(π) = (Vπ, Nπ) is the Weil-Deligne representation associated to π under the Local Langlands
Correspondence (1.1.2), then Nπ = 0 and (5) there is an isomorphism of O[T/T (OFv)]

WG-modules

(πp)n0
∼−→ πg.

Proof. Representations with Iwahori-fixed vectors are classified in §7.1, and we attach explicit L-
parameters. □

Proposition A.0.2 is then applied in [Whi22, Theorem 7.7] to a certain πv for some cuspidal
automorphic representation π of GSp4(Af ) and v ∈ Q a Taylor-Wiles place, where Q is part of

a Taylor-Wiles datum (Q, {(T̂v, B̂v)}v∈Q) as in [Whi22, Definition 3.9], thus giving the existence
of Galois representations associated to a classical weight cuspidal automorphic representation π.
Combined with the patching criterion of [BCGP21, Proposition 7.10.1], one can then construct
the patched modules as in [BCGP21] and [Whi22, 7.11] to deduce modularity lifting theorems for
abelian surfaces.
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École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172
[Car93] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester,

1993, Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience
Publication. MR 1266626

[CKK12] Dan Ciubotaru, Midori Kato, and Syu Kato, On characters and formal degrees of discrete series of affine
Hecke algebras of classical types, Invent. Math. 187 (2012), no. 3, 589–635. MR 2891878

[CM84] David H. Collingwood and William M. McGovern, Nilpotent Orbits In Semisimple Lie Algebra: An
Introduction, Nilpotent Orbits In Semisimple Lie Algebra: An Introduction, Travaux en Cours, Hermann,
Paris, 1984, Edited by P. Deligne, pp. 1–32. MR 771671

[CM93] , Nilpotent orbits in semisimple Lie algebras, New York, NY: Van Nostrand Reinhold Company,
1993 (English).

[DeB02] Stephen DeBacker, Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of Math. (2) 156 (2002),
no. 1, 295–332. MR 1935848

[DeB06] , Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory, Michigan
Math. J. 54 (2006), no. 1, 157–178. MR 2214792

[DK06] Stephen DeBacker and David Kazhdan, Stable distributions supported on the nilpotent cone for the group
G2, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 205–
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Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 3, 361–413. MR 1621409
[RS07] Brooks Roberts and Ralf Schmidt, Local newforms for GSp(4), Lecture Notes in Mathematics, vol. 1918,

Springer, Berlin, 2007. MR 2344630
[Sch13] Peter Scholze, The local Langlands correspondence for GLn over p-adic fields, Invent. Math. 192 (2013),

no. 3, 663–715. MR 3049932



44 KENTA SUZUKI AND YUJIE XU

[Sch21] David Schwein, Formal degree of regular supercuspidals, 2021.
[Ser77] Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42,

Springer-Verlag, New York-Heidelberg, 1977, Translated from the second French edition by Leonard
L. Scott. MR 0450380

[Sha90] Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for
p-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599

[Sha91] , Langlands’ conjecture on Plancherel measures for p-adic groups, Harmonic analysis on reductive
groups. Proceedings of a conference, held at Bowdoin College in Brunswick, ME, USA, from July 31 to
August 11, 1989, Boston, MA etc.: Birkhäuser, 1991, pp. 277–295 (English).
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