Skip to main content
Log in

Accurate initialization of islanded microgrid including induction motor load using unified power-flow approach

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

An increased integration of distributed generators into microgrids presents a technical challenge to maintain voltage and frequency stability, especially in islanded or autonomous operation. For stability assessment of the microgrid, a proper initialization is particularly needed to get the right steady-state operating point when the widely used induction motor (IM) loads are mainly considered. Since a conventional power-flow approach is not straightforward and suitable for initializing the IM loads in the isolated microgrid network due to an unavoidable discrepancy between initial-bus scheduled and actual values of IM’s reactive powers. To eliminate this mismatch, this paper presents a precise power-flow initialization using a unified Newton–Raphson approach. The correct steady-state initializations are demonstrated using 6bus and 13bus microgrid systems. IEEE standard 33, 38, and 69bus distribution networks are employed to explore computational performances of the proposed algorithm for the case where a large number of IM loads are incorporated via distribution feeder loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig.4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Piagi P, Lasseter R H, (2006) Autonomous control of microgrids. In: Proc. IEEE power eng. Soc. General meeting, pp 1–8

  2. Zandi F, Fani B, Golsorkhi A (2020) A visually driven nonlinear droop control for inverter-dominated islanded microgrids. Electr Eng. https://doi.org/10.1007/s00202-020-00942-7

    Article  Google Scholar 

  3. Han H, Hou XC, Yang J, Wu J, Su M, Guerrero JM (2016) Review of power sharing control strategies for islanding operation of AC microgrids. IEEE Trans Smart Grid; 7:200–215

  4. Radwan A, Mohamed YA-RI (2014) Stabilization of medium frequency modes in isolated microgrids supplying direct online induction motor loads. IEEE Trans Smart Grid 5:358–370

    Article  Google Scholar 

  5. Falahi M, Butler-Purry K, Ehsani M (2013) Induction motor starting in islanded microgrids. IEEE Trans Smart Grid 4:1323–1331

    Article  Google Scholar 

  6. Kajanova M, Bracinik P, Roch M (2020) Utilization of finite state machine approach for microgrid modeling. Electr Eng 102:53–63

    Article  Google Scholar 

  7. Fan L (2017) Control and dynamics in power systems and microgrids. Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  8. Huang Q (2016) Electromagnetic transient and electromechanical transient stability hybrid simulation: design, development and its applications. PhD thesis, Arizona State University, pp 42.

  9. EMTP microgrid (online). https://www.emtp-software.com/applications/microgrid Accessed 13 June 2020

  10. Li C, Chaudhary SK, Savaghebi M, Vasquez JC, Guerrero JM (2017) Power flow analysis for low-voltage AC and DC microgrids considering droop control and virtual impedance. IEEE Trans on Smart Grid 8:2574–2764

    Google Scholar 

  11. Jayawardena A V (2015) Contributions to the development of microgrids: Aggregated modelling and operational aspects. PhD thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, https://ro.uow.edu.au/theses/4447

  12. Colavitto A, Vicenzutti A, Sulligoi G, Lipardi G (2018) Voltage and frequency regulation in high power AC islanded microgrid with static converter interfaced generators. In: 18th Int. conf. harmonics and quality of power (ICHQP), June 2018, Ljubljana, Slovenia.

  13. Fetzer D, Lammert G, Ishchenko A, Tabit L, Braun M (2018) A Flexible Matlab/Simulink RMS-framework for electrical power system designed for research and education. Innovative Smart Grid Technologies Conference Europe, Bosnia-Herzegovina.

  14. Weber J (2016) Coordinated initialization of the load distribution equivalent, load characteristic, and load distributed generation models. PowerWorld corporation, pp 8–15. https://www.powerworld.com/files/Load_Model_for_Transient_Stability.pdf

  15. PSS/E 32.0, (2009) Program application guide volume II. Power Technologies Inc, Schenectady, New York, 20–20–20–27.

  16. Tools DSA (2011) TSAT model manual. Powertech Labs Inc, British Columbia, pp 105–107

    Google Scholar 

  17. Induction motor initialization with loadflow (Online). https://www.mathworks.com/help/physmod/sps/ug/induction-motor-initialization-with-loadflow.html Accessed 13 June 2020

  18. Vittal V (2016) Hybrid time domain simulation: application to fault induced delayed voltage recovery, Final Project Report, Power Systems Engineering Research Center, Arizona State University, p 40

  19. Kinyua JM, Mureithi CM, Murage DK (2011) Induction motor load flow simulation with digsilent powerfactory. Sustain Res Innov Proc 3:1–7

    Google Scholar 

  20. Powell J, Radman G (2007) Initialization for dynamic simulation of stressed power systems considering induction motor components of loads. In: Power Symposium, NAPS’07, 39th North American, pp 102–107

  21. Aree P (2017) Accurate power-flow initialization of double-cage induction motors using unified Newton–Raphson method. Int Electr Energy 27:1–12

    Google Scholar 

  22. Friedel V (2009) Modeling and simulation of a hybrid wind-diesel microgrid. MSC thesis, School of Electrical Engineering, Royal Institute of Technology, pp 42

  23. Chu Z (2010) PSCAD/EMTDC-Based modeling and analysis of a microgrid with renewable energy sources. MSC thesis, Texas A&M University, pp 47

  24. Kryonidis GC, Kontis EO, Chrysochos AI, Oureilidis KO, Demoulias CS, Papagiannis GK (2018) Power flow of islanded ac microgrids: revisited. IEEE Trans Smart Grid 9:3903–3905

    Article  Google Scholar 

  25. Mumtaz F, Syed M H, Hosani M A, Zeineldin H H (2016) A novel approach to solve power flow for islanded microgrids using modified Newton Raphson with droop control of DG. IEEE Trans Sust Energy; l7: 493–503.

  26. Abdelaziz M, Farag H, El-Saadany E, Mohamed YR (2013) A novel and generalized three-phase power flow algorithm for islanded microgrids using a newton trust region method, IEEE Trans. Power Syst 28:190–201

    Article  Google Scholar 

  27. IEEE Task Force on Load Representation for Dynamic Performance (1995) Standard load models for power flow and dynamic performance simulation IEEE Trans. Power Syst 10:1302–1313

    Article  Google Scholar 

  28. Bergen AR, Vittal V (2000) Power system analysis. Prentice Hall, Upper Saddle River, p 340

    Google Scholar 

  29. Papathanassiou S, Hatziargyriou N, Strunz K (2005) A benchmark low voltage microgrid network. In: Presented at the CIGRE Symposium "Power systems with dispersed generation: technologies, impacts on development, operation and performances", April 2005, Athens, Greece

  30. Singh D, Misra R, Singh D (2007) Effect of load models in distributed generation planning. IEEE Trans Power Syst 22:2204–2212

    Article  Google Scholar 

  31. Mithulananthan N, Hung DQ, Lee KY (2017) Intelligent network integration of distributed renewable generation. Springer , Berlin

    Book  Google Scholar 

  32. Oskuee MRJ, Babazadeh E, Najafi-Ravadanegh S, Pourmahmoud J (2016) Multi-stage planning of distribution networks with application of multi-objective algorithm accompanied by DEA considering economical, environmental and technical improvements. J Circ Syst Comput 25:1–26

    Google Scholar 

  33. Abedini M (2016) A novel algorithm for load flow analysis in island microgrids using an improved evolutionary algorithm Int. Electr Energy 26:2727–2743

    Google Scholar 

  34. Hemmatpour MH, Mohammadian M, Gharaveisi AA (2016) Optimum islanded microgrid reconfiguration based on maximization of system loadability and minimization of power losses. Int J Elec Power 78:343–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Aree.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A

This subsection provides some detail of Jacobian derivation. For the initializing method I, the Jacobian \(\textbf{J}({\textbf{x}})\) in (22) can be obtained by making partial derivatives of \(\textbf{f}({\textbf{x}})\) as,

$$\textbf{J}({\textbf{x}})={\textbf{J}_1}+{\textbf{J}_2}$$
(25)

where

$$ {\textbf{J}_1} { = }\left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{P}}_{{g}}^{{{cal}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{P}}_{{L}}^{{{cal}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{P}}_{{m}}^{{{cal}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{Q}}_{{g}}^{{{cal}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{Q}}_{{L}}^{{{cal}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{Q}}_{{m}}^{{{cal}}} }}{{\partial {{\textbf{x}}}}}} & 0 & 0 \\ \end{array} } \right]^{{{T}}} $$
$$ {\textbf{J}_2} { = } - \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{P}}_{{g}}^{{{sch}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{P}}_{{L}}^{{{sch}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{P}}_{{{ag}}}^{ * } }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{Q}}_{{g}}^{{{\rm sche}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{Q}}_{{L}}^{{{\rm sche}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{Q}}_{{r}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{P}}_{{{ag}}}^{{{dif}}} }}{{\partial {{\textbf{x}}}}}} & {\frac{{\partial {\mathbf{P}}_{{T}} }}{{\partial {{\textbf{x}}}}}} \\ \end{array} } \right]^{{{T}}} $$
$$ {\mathbf{P}}_{ag}^{dif} ({{\textbf{x}}}) = {\mathbf{P}}_{ag}^{ \otimes } ({{\textbf{x}}}) - {\mathbf{P}}_{ag}^{ \bullet } ({{\textbf{x}}}) $$

\({\textbf{J}_1}\) is conventional Jacobian matrix, \({\textbf{J}_2}\) is DG-load related Jacobian matrix. Some elements of \({\textbf{J}_2}\) related to IM can be found in [21]. The derivative term \({{\partial P_{\rm loss} } \mathord{\left/ {\vphantom {{\partial P_{\rm loss} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}\) in \({\textbf{J}_2}\) can be simply illustrated. Let \({\mathbf{V}}_{{f}}\), \({\mathbf{V}}_{t}\) and \({\varvec{\uptheta }}_{f}\), \({\varvec{\uptheta }}_{t}\) are denoted column vector of voltage and angle, from and to ends, respectively. \({\mathbf{R}}\),\({\mathbf{X}}\), \({\mathbf{B}}_{c}\), \({\mathbf{T}}_{ap}\) are denoted column vector of branch resistance, reactance, susceptance, tap ratio, respectively. The power loss in (19) can be written in column vector by,

$$ {\mathbf{P}}_{\rm loss} = {\mathbf{R}}\left( {({{\mathbf{V}}}_{f} /{{\mathbf{T}}}_{ap} )^{2} + ({{\mathbf{V}}}_{t} )^{2} - 2({{\mathbf{V}}}_{f} /{{\mathbf{T}}}_{ap} ){{\mathbf{V}}}_{t} \cos ({\varvec{\uptheta }}_{f} - {\varvec{\uptheta }}_{t} )} \right)/\Delta $$
(26)

where \(\Delta = {{\mathbf{R}}}^{2} + ({{\mathbf{X}}}(1 + {\rm d}f))^{2}\). The derivative of power loss with respect to the frequency variation is given by,

$$ {{\partial {{\mathbf{P}}}_{\rm loss} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{P}}}_{\rm loss} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = - 2{{\mathbf{P}}}_{\rm loss} {{\mathbf{X}}}^{2} (1 + {\rm d}f)/\Delta $$
(27)

The derivative of active power of DG and load with respect to the frequency deviation is given by,

$$ {{\partial {{\mathbf{P}}}_{g} } \mathord{\left/ {\vphantom {{\partial {{P}}_{g} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = - 1/{{\mathbf{m}}}_{p} $$
(28)
$$ {{\partial {{\mathbf{P}}}_{L} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{P}}}_{L} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = - {{\mathbf{P}}}_{0} {{\mathbf{V}}}^{\mathbf{\upalpha }} {{\mathbf{K}}}_{pf} $$
(29)

The derivative of air-gap power with respect to the frequency deviation is given by,

$$ \frac{{\partial {{\mathbf{P}}}_{{{ag}}}^{ * } }}{\partial {\rm d}f} = - 2{{\mathbf{R}}}_{s} \left( {{{{\textbf{E}}^{\prime\prime}}}_{m} } \right)^{2} \left( {{{\mathbf{R}}}_{R}^{ - 3} {{\partial {{\mathbf{R}}}_{R} } \mathord{\left/ {\vphantom {{\partial {{R}}_{R} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} + ({{\mathbf{X}}}_{M}^{ - 1} + {{\mathbf{X}}}_{R}^{ - 1} )\left( {{{\partial ({1 \mathord{\left/ {\vphantom {1 {{{\mathbf{X}}}_{M} }}} \right. \kern-\nulldelimiterspace} {{{\mathbf{X}}}_{M} }})} \mathord{\left/ {\vphantom {{\partial ({1 \mathord{\left/ {\vphantom {1 {{{\mathbf{X}}}_{M} }}} \right. \kern-\nulldelimiterspace} {{{\mathbf{X}}}_{M} }})} {\partial {\rm d}f + {{\mathbf{X}}}_{R}^{ - 2} {{\partial {{\mathbf{X}}}_{R} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{X}}}_{R} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f + {{\mathbf{X}}}_{R}^{ - 2} {{\partial {{\mathbf{X}}}_{R} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{X}}}_{R} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}}}} \right)} \right) $$
(30)

where the column entries of \({{\partial {{\mathbf{R}}}_{R} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{X}}}_{R} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}\),\({{\partial {{\mathbf{X}}}_{R} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{X}}}_{R} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}\) and \({{\partial ({1 \mathord{\left/ {\vphantom {1 {{{\mathbf{X}}}_{M} }}} \right. \kern-\nulldelimiterspace} {{{\mathbf{X}}}_{M} }})} \mathord{\left/ {\vphantom {{\partial ({1 \mathord{\left/ {\vphantom {1 {{{\mathbf{X}}}_{M} }}} \right. \kern-\nulldelimiterspace} {{{\mathbf{X}}}_{M} }})} {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}\) are given by,

$$ {{\partial R_{R} } \mathord{\left/ {\vphantom {{\partial R_{R} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = k\left( {{{\partial r_{r}^{2} } \mathord{\left/ {\vphantom {{\partial r_{r}^{2} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} + {{\partial x_{r}^{2} } \mathord{\left/ {\vphantom {{\partial x_{r}^{2} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}} \right) - {{(R_{R} /r_{r} )\partial r_{r} } \mathord{\left/ {\vphantom {{(R_{R} /r_{r} )\partial r_{r} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} $$
$$ {{\partial X_{R} } \mathord{\left/ {\vphantom {{\partial X_{R} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = k\left( {{{\partial r_{r}^{2} } \mathord{\left/ {\vphantom {{\partial r_{r}^{2} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} + {{\partial x_{r}^{2} } \mathord{\left/ {\vphantom {{\partial x_{r}^{2} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}} \right) - {{(X_{R} /x_{r} )\partial x_{r} } \mathord{\left/ {\vphantom {{(X_{R} /x_{r} )\partial x_{r} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} $$
$$ {{\partial r_{r}^{2} } \mathord{\left/ {\vphantom {{\partial r_{r}^{2} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = 2r_{r} {{\partial r_{r} } \mathord{\left/ {\vphantom {{\partial r_{r} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} $$
$$ {{\partial x_{r}^{2} } \mathord{\left/ {\vphantom {{\partial x_{r}^{2} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = 2x_{r} {{\partial x_{r} } \mathord{\left/ {\vphantom {{\partial x_{r} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} $$
$$ {{\partial r_{r} } \mathord{\left/ {\vphantom {{\partial r_{r} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = \frac{{ - r_{r} \omega_{r} }}{{(1 + {\rm d}f)(1 + {\rm d}f - \omega_{r} )}} + \frac{{2B(1 + {\rm d}f) - 2r_{r} F(1 + {\rm d}f - \omega_{r} )}}{{E + F(1 + {\rm d}f - \omega_{r} )^{2} }} $$
$$ {{\partial x_{r} } \mathord{\left/ {\vphantom {{\partial x_{r} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = \frac{{C + D(1 + {\rm d}f - \omega_{r} )^{2} }}{{E + F(1 + {\rm d}f - \omega_{r} )^{2} }} - X + \frac{{2(1 + {\rm d}f - \omega_{r} )\left( {D(1 + {\rm d}f) - F(x_{r} + X(1 + {\rm d}f))} \right)}}{{E + F(1 + {\rm d}f - \omega_{r} )^{2} }} $$
$$ {{\partial (1/X_{m} )} \mathord{\left/ {\vphantom {{\partial (1/X_{m} )} {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = - X_{rr} /((1 + {\rm d}f)^{2} X_{m}^{2} ) $$

Finally, the derivative of power loss with respect to the frequency deviation is given by,

$$ {{\partial {\mathbf{\textit{{P}}}}_{\rm loss} } \mathord{\left/ {\vphantom {{\partial {\mathbf{P}}_{\rm loss} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} = \sum {{{\partial {{\mathbf{P}}}_{g} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{P}}}_{g} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}} + \sum {{{\partial {{\mathbf{P}}}_{L} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{P}}}_{L} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}} + \sum {{{\partial {{\mathbf{P}}}_{ag} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{P}}}_{ag} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}} - } \sum {{{\partial {{\mathbf{P}}}_{\rm loss} } \mathord{\left/ {\vphantom {{\partial {{\mathbf{P}}}_{\rm loss} } {\partial {\rm d}f}}} \right. \kern-\nulldelimiterspace} {\partial {\rm d}f}}} $$

1.2 Appendix B

Appendix B provides a detail of the tested motors in physical unit as shown in Fig. 3 and 4.

 

Rs

Lls

Rr1

Llr1

Rr2

Llr2

Lm

Nr

V

Single-cage induction motor

3HP

0.435

0.002

0.816

0.002

-

-

0.0693

1710

220

3HP

3.5

0.0063

3.16

0.0068

-

-

0.2667

1420

400

3 kW

2.89

0.1342

2.39

0.011

-

-

0.0241

1390

400

Type-1 double-cage induction motor

8 kW

0.382

0.00413

0.7644

0.00843

3.54

0.00413

0.0767

960

400

Type-2 double-cage induction motor

8 kW

0.382

0.00413

2.5

0.00343

0.7644

0.0043

0.0767

963

400

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aree, P. Accurate initialization of islanded microgrid including induction motor load using unified power-flow approach. Electr Eng 103, 3085–3096 (2021). https://doi.org/10.1007/s00202-021-01280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01280-y

Keywords

Navigation