Skip to main content

The Application of Computational Thermodynamics to the Cathode-Electrolyte in Solid Oxide Fuel Cells

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

The fundamentals of solid oxide fuel cell (SOFC) and computational thermodynamics, using the CALPHAD (CALculation of PHAse Diagrams) approach, are reviewed in this chapter. The thermodynamic database development for perovskites and fluorites is especially discussed. In addition, the application of computational thermodynamics to the cathode and electrolyte of SOFC is also discussed in detail including the defect chemistry and quantitative Brouwer diagrams, electronic and ionic conductivity, cathode-electrolyte triple phase boundary (TPB) stability, thermomechanical properties of perovskite cathode, the effect of gas impurities like CO2 to the phase stability of cathode, and phase diagram development for nano (n-)yttria-stabilized zirconia (YSZ) particles.

Author Contribution

Author YZ is in charge of the cathode-electrolyte inter-reaction and the overall SOFC thermodynamic investigations. Author MY was in charge of the LaCoO3 perovskite thermodynamic database development. Author SD was in charge of the CO2’s effect to the cathode (LSM and LSCF), the electronic conductivity prediction for LSM, and the thermomechanical property prediction for LSM. Author MA was in charge of the ionic conductivity prediction for YSZ and the phase diagram development for the nano n-YSZ particles. The authors further acknowledge that there is no financial relationship with the editors or publisher and have contributed original work in this chapter, other than what acknowledged or appropriately cited with copyright permission. The authors compiled this chapter based on their previous publications, “La0.6Sr0.4Co0.2Fe0.8O3 ± δ–CO2–O2 system for application in solid oxide fuel cells,” Journal of Power Sources; “Phase diagram for a nano-yttria-stabilized zirconia system,” RSC Advances; “Weight loss mechanism of (La0.8Sr0.2)0.98MnO3 ± δ during thermal cycles,” Ceramic Engineering; and “Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3 ± δ perovskite,” Journal of the Electrochemical Society. Information was also adapted from “Defect analysis and thermodynamic modeling of LaCoO3 − δ,” Solid State Ionics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FCT – Fuel Cell Technologies – SOFC. 2017 [cited 2017]. Available from: http://fuelcelltoday.com/technologies/sofc

  2. T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells, Fuel Cells and Hydrogen Energy (Springer, Boston, 2009)

    Google Scholar 

  3. F.-P. Negal, Electricity from Wood through the Combination of Gasification and Solid Oxide Fuel Cells (ETH/PSI, Zurich, 2008)

    Google Scholar 

  4. N. Sammes, Y. Du, Intermediate-temperature SOFC electrolytes, in Fuel Cell Technologies: State and Perspectives, (Springer, Dordrecht, 2005), pp. 19–34

    Google Scholar 

  5. B.C. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001)

    CAS  Google Scholar 

  6. T. Wolfram, S. Ellialtioglu, Electronic and Optical Properties of d-Band Perovskites (Cambridge University Press, Cambridge, UK, 2006)

    Google Scholar 

  7. D.M. Smyth, The Defect Chemistry of Metal Oxides (Oxford University Press, New York, 2000)

    Google Scholar 

  8. S. Darvish et al., Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ perovskite. J. Electrochem. Soc. 162(9), E134–E140 (2015)

    CAS  Google Scholar 

  9. S. Darvish, S.K. Saxena, Y. Zhong, Quantitative analysis of (La0. 8Sr0. 2) 0.98 MnO3±δ electronic conductivity using CALPHAD approach, in Developments in Strategic Ceramic Materials: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites, (Wiley Online Library, Hoboken, 2015)

    Google Scholar 

  10. Y. Yu et al., Effect of atmospheric CO2 on surface segregation and phase formation in La0.6Sr0.4Co0.2Fe0.8O3 thin films. Appl. Surf. Sci. 323, 71–77 (2014)

    CAS  Google Scholar 

  11. Y. Tanaka et al., Improvement of electrical efficiency of solid oxide fuel cells by anode gas recycle. ECS Trans. 30(1), 145–150 (2011)

    Google Scholar 

  12. S. Darvish et al., Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int. J. Hydrog. Energy 41(24), 10239–10248 (2016)

    CAS  Google Scholar 

  13. S. Darvish, S. Gopalan, Y. Zhong, Thermodynamic stability maps for the La0.6Sr0.4Co0.2Fe0.8O3±δ–CO2–O2 system for application in solid oxide fuel cells. J. Power Sources 336, 351 (2016)

    CAS  Google Scholar 

  14. C. Wang et al., Effect of SO2 poisoning on the electrochemical activity of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. J. Electrochem. Soc. 164(6), F514–F524 (2016)

    CAS  Google Scholar 

  15. A. Arabacı, M.F. Öksüzömer, Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications. Ceram. Int. 38(8), 6509–6515 (2012)

    Google Scholar 

  16. F.W. Poulsen, Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1−xSrx)yMnO3−δ. Solid State Ionics 129(1–4), 145–162 (2000)

    CAS  Google Scholar 

  17. X.D. Zhou, H. Anderson, A Global defect chemistry model or p-type mixed ionic and electronic conductors. ECS Trans. 25(2), 2807–2814 (2009)

    CAS  Google Scholar 

  18. J. Nowotny, M. Rekas, Defect chemistry of (La,Sr)MnO3. J. Am. Ceram. Soc. 80(191914), 67 (1998)

    Google Scholar 

  19. H. Kamata et al., High temperature electrical properties of the perovskite-type oxide La1−XSrXMnO3−d. J. Phys. Chem. Solids 87, 943–950 (1995)

    Google Scholar 

  20. J. Mizusaki et al., Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3. Solid State Ionics 132, 167–180 (2000)

    CAS  Google Scholar 

  21. G. Brouwer, A general asymptotic solution of reaction equations common in solid-state chemistry. Philips Res. Rep. 9(5), 366–376 (1954)

    CAS  Google Scholar 

  22. J.A.M. van Roosmalen, E.H.P. Cordfunke, A new defect model to describe the oxygen deficiency in perovskite-type oxides. J. Solid State Chem. 93(1), 212–219 (1991)

    Google Scholar 

  23. I. Yasuda, M. Hishinuma, Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J. Solid State Chem. 123(2), 382–390 (1996)

    CAS  Google Scholar 

  24. J. Mizusaki et al., Nonstoichiometry of the perovskite-type oxide La1−xSrxCrO3−δ. Solid State Ionics 12, 119–124 (1984)

    CAS  Google Scholar 

  25. I. Yasuda, T. Hikita, Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. J. Electrochem. Soc. 141(5), 1268–1273 (1994)

    CAS  Google Scholar 

  26. B.F. Flandermeyer et al., High-temperature stability of magnesium-doped lanthanum chromite. High Temp. Sci. 20(259), 259–269 (1985)

    CAS  Google Scholar 

  27. J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure. J. Solid State Chem. 83(1), 52–60 (1989)

    CAS  Google Scholar 

  28. J. Mizusaki et al., Nonstoichiometry and defect structure of the perovskite-type oxides La1−XSrxFeO3−δ. J. Solid State Chem. 58(2), 257–266 (1985)

    CAS  Google Scholar 

  29. J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J. Solid State Chem. 87(1), 55–63 (1990)

    CAS  Google Scholar 

  30. Y.-L. Lee, D. Morgan, Ab initio and empirical defect modeling of LaMnO3±δ for solid oxide fuel cell cathodes. Phys. Chem. Chem. Phys. 14(1), 290–302 (2012)

    CAS  Google Scholar 

  31. B. Hu et al., Effect of CO2 on the stability of strontium doped lanthanum manganite cathode. J. Power Sources 268, 404–413 (2014)

    CAS  Google Scholar 

  32. B. Hu, M.K. Mahapatra, P. Singh, Performance regeneration in lanthanum strontium manganite cathode during exposure to H2O and CO2 containing ambient air atmospheres. J. Ceram. Soc. Jpn. 123(1436), 199–204 (2015)

    CAS  Google Scholar 

  33. D. Oh, D. Gostovica, E.D. Wachsman, Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. J. Mater. Res. 27(15), 1992–1999 (2012)

    CAS  Google Scholar 

  34. L. Zhao et al., Insight into surface segregation and chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes of solid oxide fuel cells. J. Mater. Chem. A 2(29), 11114–11123 (2014)

    CAS  Google Scholar 

  35. S.P. Simner et al., Degradation mechanisms of la-Sr-co-Fe-O3 SOFC cathodes. Electrochem. Solid-State Lett. 9(10), A478–A481 (2006)

    CAS  Google Scholar 

  36. M. Liu et al., Enhanced performance of LSCF cathode through surface modification. Int. J. Hydrog. Energy 37(10), 8613–8620 (2012)

    CAS  Google Scholar 

  37. F.S. Baumann et al., Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC cathodes by electrochemical activation. J. Electrochem. Soc. 152(10), A2074–A2079 (2005)

    CAS  Google Scholar 

  38. Y. Yu, A.Y. Nikiforov, T.C. Kaspar, J.C. Woicik, K.F. Ludwig, S. Gopalan, U.B. Pal, S.N. Basu, Chemical characterization of surface precipitates in La0.7Sr0.3Co0.2Fe0.8O3−δ as cathode material for solid oxide fuel cells. J. Power Sources. 333, 247–253 (2016)

    Google Scholar 

  39. S. Lau, S. Singhal, Potential electrode/electrolyte interactions in solid oxide fuel cells, in Corrosion’85, (Boston, United States: National Association of Corrosion Engineers 1985)

    Google Scholar 

  40. O. Yamamoto et al., Stability of perovskite oxide electrode with stabilized zirconia, in Electrochemical Society 1989 Fall Meeting (Abstracts), (United States: The Electrochemical Society 1990)

    Google Scholar 

  41. G. Stochniol, E. Syskakis, A. Naoumidis, Chemical compatibility between strontium-doped lanthanum manganite and Yttria-stabilized zirconia. J. Am. Ceram. Soc. 78(4), 929–932 (1995)

    CAS  Google Scholar 

  42. A. Mitterdorfer, L. Gauckler, La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)/YSZ system. Solid State Ionics 111(3), 185–218 (1998)

    CAS  Google Scholar 

  43. K. Wiik et al., Reactions between strontium-substituted lanthanum manganite and Yttria-stabilized zirconia: I, powder samples. J. Am. Ceram. Soc. 82(3), 721–728 (1999)

    CAS  Google Scholar 

  44. A. Grosjean et al., Reactivity and diffusion between La0.8 Sr0.2 MnO3 and ZrO2 at interfaces in SOFC cores by TEM analyses on FIB samples. Solid State Ionics 177(19), 1977–1980 (2006)

    CAS  Google Scholar 

  45. J. Labrincha, J. Frade, F. Marques, La2Zr2O7 formed at ceramic electrode/YSZ contacts. J. Mater. Sci. 28(14), 3809–3815 (1993)

    CAS  Google Scholar 

  46. C. Brugnoni, U. Ducati, M. Scagliotti, SOFC cathode/electrolyte interface. Part I: reactivity between La0.85Sr0.15MnO3 and ZrO2-Y2O3. Solid State Ionics 76(3–4), 177–182 (1995)

    CAS  Google Scholar 

  47. H.Y. Lee, S.M. Oh, Origin of cathodic degradation and new phase formation at the La0.9Sr0.1MnO3/YSZ interface. Solid State Ionics 90(1–4), 133–140 (1996)

    CAS  Google Scholar 

  48. N.Q. Minh, Solid oxide fuel cell technology – features and applications. Solid State Ionics 174, 271–277 (2004)

    CAS  Google Scholar 

  49. S. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43(21), 6799–6833 (2008)

    CAS  Google Scholar 

  50. M. Mori et al., Thermal-expansion behaviors and mechanisms for Ca- or Sr-doped lanthanum manganite perovskites under oxidizing atmospheres. J. Electrochem. Soc. 147(4), 1295–1302 (2000)

    CAS  Google Scholar 

  51. A. Hammouche, E. Siebert, A. Hammou, Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater. Res. Bull. 24(3), 367–380 (1989)

    CAS  Google Scholar 

  52. M. Mori, Effect of B-site doing on thermal cycle shrinkage for La0.8Sr0.2Mn1−xMxO3+δ perovskites (M=Mg, Al, Ti, Mn, Fe, Co, Ni; 0≤x≤0.1). Solid State Ionics 174(1–4), 1–8 (2004)

    CAS  Google Scholar 

  53. M. Mori, Mechanisms of thermal expansion and shrinkage of La0.8Sr0.2MnO3+δ perovskites with different densities during thermal cycling in air. J. Electrochem. Soc. 152(4), A732–A739 (2005)

    Google Scholar 

  54. B.P. McCarthy et al., Enhanced shrinkage of lanthanum strontium manganite (La0.90Sr0.10MnO3+δ) resulting from thermal and oxygen partial pressure cycling. J. Am. Ceram. Soc. 90(10), 3255–3262 (2007)

    CAS  Google Scholar 

  55. B.P. McCarthy et al., Low-temperature densification of lanthanum strontium manganite (La1−xSrxMnO3+δ), x=0.0–0.20. J. Am. Ceram. Soc. 92(8), 1672–1678 (2009)

    CAS  Google Scholar 

  56. T. Soma, et al., Porous lanthanum manganite sintered bodies and solid oxide fuel cells. U.S. Patent No. 5,432,024 (1995)

    Google Scholar 

  57. J. Chevalier et al., The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 92, 1901–1920 (2009)

    CAS  Google Scholar 

  58. J.R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: an overview. Dent. Mater. 24, 289–298 (2008)

    CAS  Google Scholar 

  59. C.H. Wang et al., Phase transformation and nanocrystallite growth behavior of 2 mol% yttria-partially stabilized zirconia (2Y-PSZ) powders. Ceram. Int. 39, 5165–5174 (2013)

    CAS  Google Scholar 

  60. Y. Li et al., Electrical conductivity of zirconia stabilized with yttria and calcia. J. Mater. Sci. Lett. 18, 443–444 (1999)

    CAS  Google Scholar 

  61. A. Nakamura, J.B. Wagner, Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J. Electrochem. Soc. 133, 1542–1548 (1986)

    CAS  Google Scholar 

  62. W. Strickler, W.G. Carlson, Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2. J. Am. Ceram. Soc. 47, 122–127 (1963)

    Google Scholar 

  63. J. Goff et al., Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B 59(22), 14202 (1999)

    CAS  Google Scholar 

  64. R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel? Nature 258, 703–704 (1975)

    CAS  Google Scholar 

  65. O. Ruff, F. Ebert, Refractory ceramics: 1, the forms of zirconia dioxide. Z. Anorg. Allg. Chem. 180, 19–41 (1929)

    CAS  Google Scholar 

  66. C. Wagner, Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31(23–24), 265–268 (1943)

    CAS  Google Scholar 

  67. J.A. Krogstad et al., Effect of yttria content on the zirconia unit cell parameters. J. Am. Ceram. Soc. 94, 4548–4555 (2011)

    CAS  Google Scholar 

  68. A. Suresh, M.J. Mayo, W.D. Porter, Thermodynamics for Nanosystems: grain and particle-size dependent phase diagrams. Rev. Adv. Mater. Sci. 5, 100–109 (2003)

    Google Scholar 

  69. J.W. Drazin, R.H.R. Castro, Water adsorption microcalorimetry model: deciphering surface energies and water chemical potentials of nanocrystalline oxides. J. Phys. Chem. C 118, 10131–10142 (2014)

    CAS  Google Scholar 

  70. J.W. Drazin, R.H.R. Castro, Phase stability in nanocrystals: a predictive diagram for yttria-zirconia. J. Am. Ceram. Soc. 1384, 1377–1384 (2015)

    Google Scholar 

  71. M. Asadikiya et al., Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv. 6(21), 17438–17445 (2016)

    CAS  Google Scholar 

  72. L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic, New York, 1970)

    Google Scholar 

  73. N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, vol xvi (Pergamon, Oxford, 1998), p. 479

    Google Scholar 

  74. M. Hillert, The compound energy formalism. J. Alloys Compd. 320(2), 161–176 (2001)

    CAS  Google Scholar 

  75. K. Hack (ed.), The SGTE Casebook : Thermodynamics at Work, Materials Modelling Series (Institute of Materials, London, 1996)

    Google Scholar 

  76. A.T. Dinsdale, SGTE data for pure elements. Calphad 15(4), 317–425 (1991)

    CAS  Google Scholar 

  77. B. Sundman, J. Agren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids 42, 297–301 (1981)

    CAS  Google Scholar 

  78. J.O. Andersson et al., A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall. 34, 437–445 (1986)

    CAS  Google Scholar 

  79. A.N. Grundy et al., Calculation of defect chemistry using the CALPHAD approach. Calphad 30(1), 33–41 (2006)

    Google Scholar 

  80. M. Yang, Y. Zhong, Z.K. Liu, Defect Analysis and Thermodynamic Modeling of LaCoO3−δ. Solid State Ionics 178, 1072–1032 (2007)

    Google Scholar 

  81. S.H. Lee et al., Defect chemistry and phase equilibria of (La1−xCax)FeO3−δ thermodynamic modeling. J. Electrochem. Soc. 160(10), F1103–F1108 (2013)

    CAS  Google Scholar 

  82. M. Yang, Thermodynamic Modeling of La 1−x Sr x CoO 3−d . Diss. Master Thesis (The Pennsylvania State University, 2006)

    Google Scholar 

  83. J.E. Saal, Thermodynamic modeling of phase transformations and defects: From cobalt to doped cobaltate perovskites. Diss. The Pennsylvania State University, (The Pennsylvania State University, 2010), p. 268

    Google Scholar 

  84. W. Zhang, B. Rasmus, Investigation of degradation mechanisms of LSCF based SOFC cathodes – by CALPHAD modeling and experiments. Diss. Department of Energy Conversion and Storage, (Technical University of Denmark, 2012)

    Google Scholar 

  85. E.P. Karadeniz, Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells (Diss. ETH Zurich, 2008)

    Google Scholar 

  86. F.A. Kroeger, H.J. Vink, Solid State Ionics 3, 307 (1956)

    Google Scholar 

  87. M. Seppanen, M. Kyto, P. Taskinen, Defect structure and nonstoichiometry of LaCoO3. Scand. J. Metall. 9, 3–11 (1980)

    CAS  Google Scholar 

  88. M. Hillert, B. Jansson, B. Sundman, Application of the compound-energy model to oxide systems. Z. Met. 79(2), 81–87 (1988)

    CAS  Google Scholar 

  89. Scientific Group Thermodata Europe (SGTE), Thermodynamic properties of inorganic materials, in Landolt-Boernstein New Series, Group IV, (Springer, Berlin/Heidelberg, 1999)

    Google Scholar 

  90. A.N. Grundy et al., Assessment of the La-Mn-O system. J. Phase Equilib. Diffus. 26(2), 131–151 (2005)

    CAS  Google Scholar 

  91. O. Redlich, A.T. Kister, Algebraic representations of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40(2), 345–348 (1948)

    Google Scholar 

  92. M. Asadikiya et al., Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J. Alloys Compd. 699, 1022–1029 (2017)

    CAS  Google Scholar 

  93. M. Asadikiya et al., The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. Additive manufacturing and strategic technologies in advanced ceramics. Ceram. Trans. 258, 185–191 (2016)

    CAS  Google Scholar 

  94. S. Gupta et al., Phase evolution and electrochemical performance of iron doped lanthanum strontium chromite in oxidizing and reducing atmosphere. Int. J. Hydrog. Energy 42, 6262 (2016)

    Google Scholar 

  95. H. Sabarou, Y. Zhong, Investigation on the phase stability of perovskite in La-Sr-Cr-Fe-O system. Advances in solid oxide fuel cells and electronic ceramics II. Ceram. Eng. Sci. Proc. 37(3), 127–135 (2017)

    CAS  Google Scholar 

  96. M. Asadikiya et al., The effect of sintering parameters on spark plasma sintering of B4C. Ceram. Int. 43(14), 11182–11188 (2017)

    CAS  Google Scholar 

  97. M. Chen, B. Hallstedt, L.J. Gauckler, Thermodynamic modeling of the ZrO2-YO1.5 system. Solid State Ionics 170, 255–274 (2004)

    CAS  Google Scholar 

  98. L. Kaufman, M. Cohen, Thermodynamics and kinetics of martensitic transformations. Prog. Met. Phys. 7, 165–246 (1958)

    CAS  Google Scholar 

  99. M. Chen et al., Thermodynamic modeling of the La-Mn-Y-Zr-O system. Calphad 30(4), 489–500 (2006)

    CAS  Google Scholar 

  100. S. Darvish, Y. Zhong, Quantitative defect chemistry analysis of (La1−xCax) yFeO3±δ perovskite. ECS Trans. 78(1), 565–572 (2017)

    CAS  Google Scholar 

  101. M. Barsoum, Fundamentals of Ceramics (Institute of Physics Publ, Bristol, 2003)

    Google Scholar 

  102. R. Casselton, Low field DC conduction in yttria-stabilized zirconia. Phys. Status Solidi A 2(3), 571–585 (1970)

    CAS  Google Scholar 

  103. C. Zhang et al., Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater. Sci. Eng. B 137(1), 24–30 (2007)

    CAS  Google Scholar 

  104. R. Pornprasertsuk et al., Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98(10), 103513 (2005)

    Google Scholar 

  105. A. Ioffe, D. Rutman, S. Karpachov, On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim. Acta 23(2), 141–142 (1978)

    CAS  Google Scholar 

  106. Z. Lu et al., SrZrO3 formation at the interlayer/electrolyte Interface during (La1−xSrx)1−δCo1−yFeyO3 cathode sintering. J. Electrochem. Soc. 164(10), F3097–F3103 (2017)

    CAS  Google Scholar 

  107. C. Levy et al., Thermodynamic stabilities of La2Zr2O7 and SrZrO3 in SOFC and their relationship with LSM synthesis processes. J. Electrochem. Soc. 157(11), B1597–B1601 (2010)

    CAS  Google Scholar 

  108. S. Darvish et al., Weight loss mechanism of (La0.8Sr0.2)0.98MnO3±δ during thermal cycles. Mechanical Properties and Performance of Engineering Ceramics and Composites X: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites. (John Wiley & Sons, Inc., 2015)

    Google Scholar 

  109. A.N. Grundy et al., Calculation of defect chemistry using the CALPHAD approach. Calphad Comput. Coupling Phase Diagrams Thermochem. 30(1), 33–41 (2006)

    Google Scholar 

  110. H. Yokokawa et al., Thermodynamic representation of nonstoichiometric lanthanum manganite. Solid State Ionics 86, 1161–1165 (1996)

    Google Scholar 

  111. J.O. Andersson et al., THERMO-CALC & DICTRA, computational tools for materials science. Calphad Comput. Coupling Phase Diagrams Thermochem. 26(2), 273–312 (2002)

    CAS  Google Scholar 

  112. S. Gupta, M.K. Mahapatra, P. Singh, Lanthanum chromite based perovskites for oxygen transport membrane. Mater. Sci. Eng. R. Rep. 90, 1–36 (2015)

    Google Scholar 

  113. T. Frolov, Y. Mishin, Temperature dependence of the surface free energy and surface stress: an atomistic calculation for Cu(110). Phys. Rev. B 79, 1–10 (2009)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the start-up funding from Florida International University for Dr. Yu Zhong and also the grant from the American Chemical Society Petroleum Research Fund (PRF#54190-DNI10). The Doctoral Evidence Acquisition (DEA) Fellowship from the graduate school of Florida International University is also appreciated for the financial support for Ms. Shadi Darvish and Mr. Mohammad Asadikiya. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darvish, S., Asadikiya, M., Yang, M., Zhong, Y. (2018). The Application of Computational Thermodynamics to the Cathode-Electrolyte in Solid Oxide Fuel Cells. In: Li, F., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56364-9_10

Download citation

Publish with us

Policies and ethics