Skip to main content

Advertisement

Log in

Biomimetic multifunctional materials: a review

  • Review Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Inspired from nature, material scientists design and fabricate fascinating multifunctional composites for various applications. The profound insight on hierarchical micro/nanostructures or biological functions behind biomimetic properties and functions and their proper integration in a material for specific applications are crucial in developing biomimetic multifunctional composites. The current review discusses in detail the integration of potentially relevant biomimetic properties and/or functions such as self-cleaning with anti-reflection, self-cleaning with anti-corrosion, self-healing with self-cleaning, shape memory and wettability, super strong and tough, and self-healing with super tough. This review also outlines potential applications of such multifunctional composites in biomedical, oil-gas industry, aviation, marine, wearable electronics, fabrics, sensors, energy harvesting devices, and many more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Eder, S. Amini, P. Fratzl, Biological composites—complex structures for functional diversity. Science 362, 543–547 (2018)

    CAS  Google Scholar 

  2. Z. Han, Z. Mu, W. Yin, W. Li, S. Niu, J. Zhang, L. Ren, Biomimetic multifunctional surfaces inspired from animals. Adv. Colloid Interf. Sci. 234, 27–50 (2016)

    CAS  Google Scholar 

  3. Y. Yang, X. Song, X. Li, Z. Chen, C. Zhou, Q. Zhou, Y. Chen, Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv. Mater 30, 1706539 (2018)

    Google Scholar 

  4. S. Xia, Z. Wang, H. Chen, W. Fu, J. Wang, Z. Li, L. Jiang, Nanoasperity: structure origin of nacre-inspired nanocomposites. ACS Nano 9, 2167–2172 (2015)

    CAS  Google Scholar 

  5. A. Sina, R. Nima, J. R. Soc. Interface 12, 20140855 (2015)

    Google Scholar 

  6. A. Walther, I. Bjurhager, J.-M. Malho, J. Pere, J. Ruokolainen, L.A. Berglund, O. Ikkala, Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett. 10, 2742–2748 (2010)

    CAS  Google Scholar 

  7. P.A. Charpentier, K. Burgess, L. Wang, R.R. Chowdhury, A.F. Lotus, G. Moula, Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology 23, 425606 (2012)

    CAS  Google Scholar 

  8. L. Jiang, Y. Zhao, J. Zhai, A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. Int. Ed 43, 4338–4341 (2004)

    CAS  Google Scholar 

  9. S. Sethi, L. Ge, L. Ci, P.M. Ajayan, A. Dhinojwala, Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett. 8, 822–825 (2008)

    CAS  Google Scholar 

  10. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites. Nature 409, 794–797 (2001)

    CAS  Google Scholar 

  11. M.R. Kessler, N.R. Sottos, S.R. White, Self-healing structural composite materials. Compos. Part Appl. Sci. Manuf. 34, 743–753 (2003)

    Google Scholar 

  12. P. Ragesh, V.A. Ganesh, S.V. Nair, A.S. Nair, A review on ‘self-cleaning and multifunctional materials’. J. Mater. Chem. A 2, 14773–14797 (2014)

    CAS  Google Scholar 

  13. K. Liu, L. Jiang, Bio-inspired self-cleaning surfaces. Annu. Rev. Mater. Res 42, 231–263 (2012)

    CAS  Google Scholar 

  14. S.H. Chermahini, K. Ostad-Ali-Askari, S. Eslamian, V.P. Singh, Recent progress in self-cleaning materials with different suitable applications. Am. J. Eng. Appl. Sci. 11, 560–573 (2018)

    Google Scholar 

  15. (n.d.)

  16. K. Liu, X. Yao, L. Jiang, Recent developments in bio-inspired special wettability. Chem. Soc. Rev 39, 3240–3255 (2010)

    CAS  Google Scholar 

  17. B. Su, Y. Tian, L. Jiang, Bioinspired interfaces with superwettability: from materials to chemistry. J. Am. Chem. Soc 138, 1727–1748 (2016)

    CAS  Google Scholar 

  18. Q. Xu, Z. Wenwen, D. Chenbo, S.T. Sreenivasan, X. Zhenhai, J. R. Soc. Interface 13, 20160300 (2016)

    Google Scholar 

  19. G. Dev, B. Bharat, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 377, 20180273 (2019)

    Google Scholar 

  20. S. Nishimoto, B. Bhushan, RSC Adv. 3, 671–690 (2012)

    Google Scholar 

  21. T. Jiang, Z. Guo, W. Liu, Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J. Mater. Chem. A 3, 1811–1827 (2015)

    CAS  Google Scholar 

  22. B. Xu, J. Ding, L. Feng, Y. Ding, F. Ge, Z. Cai, Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf. Coat. Technol 262, 70–76 (2015)

    CAS  Google Scholar 

  23. M. Lee, in: M. Lee (Ed.), Remarkable Nat. Mater. Surf. Their Eng. Potential, Springer International Publishing, Cham, 2014, pp. 15–27

  24. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    CAS  Google Scholar 

  25. G. Zhang, X. Zhang, Y. Huang, Z.S.A.C.S. Appl, A surface exhibiting superoleophobicity both in air and in seawater. Mater. Interfaces 5, 6400–6403 (2013)

    CAS  Google Scholar 

  26. H. Zhao, K.-Y. Law, directional self-cleaning superoleophobic surface. Langmuir 28, 11812–11818 (2012)

    CAS  Google Scholar 

  27. L. Zhang, Y. Zhong, D. Cha, A self-cleaning underwater superoleophobic mesh for oil-water separation. P. Wang. Sci. Rep. 3, 2326 (2013)

  28. H. Wang, Z. Guo, Design of underwater superoleophobic TiO2coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales. Appl. Phys. Lett. 104, 183703 (2014)

    Google Scholar 

  29. S. Song, H. Yang, C. Zhou, J. Cheng, Z. Jiang, Z. Lu, J. Miao, Underwater superoleophobic mesh based on BiVO 4 nanoparticles with sunlight-driven self-cleaning property for oil/water separation. Chem. Eng. J. 320, 342–351 (2017)

    CAS  Google Scholar 

  30. S. Yuan, C. Chen, A. Raza, R. Song, T.-J. Zhang, S.O. Pehkonen, B. Liang, Nanostructured TiO2/CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation. Chem. Eng. J. 328, 497–510 (2017)

    CAS  Google Scholar 

  31. B.Y.L. Tan, Z. Liu, P. Gao, M.H. Tai, D.D. Sun, Oil-water separation using a self-cleaning underwater superoleophobic micro/nanowire hierarchical nanostructured membrane. ChemistrySelect 1, 1329–1338 (2016)

    CAS  Google Scholar 

  32. T. Kamegawa, Y. Shimizu, H. Yamashita, Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Adv. Mater. 24, 3697–3700 (2012)

    CAS  Google Scholar 

  33. C.R. Crick, J.C. Bear, A. Kafizas, I.P. Parkin, Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition. Adv. Mater. 24, 3505–3508 (2012)

    CAS  Google Scholar 

  34. S. Wooh, N. Encinas, D. Vollmer, H.-J. Butt, Stable hydrophobic metal-oxide photocatalysts via grafting polydimethylsiloxane brush. Adv. Mater. 29, 1604637 (2017)

    Google Scholar 

  35. Z. He, M. Ma, X. Lan, F. Chen, K. Wang, H. Deng, Q. Zhang, Q. Fu, Soft Matter 7, 6435–6443 (2011)

    CAS  Google Scholar 

  36. P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett. 13, 1793–1799 (2013)

    CAS  Google Scholar 

  37. T.-S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Nature 477, 443–447 (2011)

    CAS  Google Scholar 

  38. N. Vogel, R.A. Belisle, B. Hatton, T.-S. Wong, J. Aizenberg, Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat. Commun. 4, 2176 (2013)

    Google Scholar 

  39. A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Designing superoleophobic surfaces. Science 318, 1618–1622 (2007)

    CAS  Google Scholar 

  40. L. Cao, T.P. Price, M. Weiss, D. Gao, Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 24, 1640–1643 (2008)

    CAS  Google Scholar 

  41. P.S. Brown, B. Bhushan, Durable, superoleophobic polymer–nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation. Sci. Rep. 6, 21048 (2016)

    Google Scholar 

  42. X. Deng, L. Mammen, H.-J. Butt, D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012)

    CAS  Google Scholar 

  43. Z. Geng, J. He, L. Xu, L. Yao, Rational design and elaborate construction of surface nano-structures toward highly antireflective superamphiphobic coatings. J. Mater. Chem. A 1, 8721–8724 (2013)

    CAS  Google Scholar 

  44. Z. Geng, J. He, An effective method to significantly enhance the robustness and adhesion-to-substrate of high transmittance superamphiphobic silica thin films. J. Mater. Chem. A 2, 16601–16607 (2014)

    CAS  Google Scholar 

  45. J. Sun, X. Wang, J. Wu, C. Jiang, J. Shen, M.A. Cooper, X. Zheng, Y. Liu, Z. Yang, P. Jiang, Biomimetic moth-eye nanofabrication: enhanced antireflection with superior self-cleaning characteristic. Sci. Rep. 8, 5438 (2018)

    Google Scholar 

  46. I. Zada, W. Zhang, Y. Li, P. Sun, N. Cai, J. Gu, Q. Liu, H. Su, D. Zhang, Angle dependent antireflection property of TiO2inspired by cicada wings. Appl. Phys. Lett. 109, 153701 (2016)

    Google Scholar 

  47. Z.W. Han, Z. Wang, X.M. Feng, B. Li, Z.Z. Mu, J.Q. Zhang, S.C. Niu, L.Q. Ren, Antireflective surface inspired from biology: a review. Biosurface Biotribology 2, 137–150 (2016)

    Google Scholar 

  48. N.C. Linn, C.-H. Sun, P. Jiang, B. Jiang, Self-assembled biomimetic antireflection coatings. Appl. Phys. Lett. 91, 101108 (2007)

    Google Scholar 

  49. K. Askar, B.M. Phillips, B. Jiang, P. Jiang, in: Handb. Biomim. Bioinspiration, WORLD SCIENTIFIC, 2012, pp. 65–95

  50. L. Yao, J. He, Recent progress in antireflection and self-cleaning technology – from surface engineering to functional surfaces. Prog. Mater. Sci. 61, 94–143 (2014)

    Google Scholar 

  51. X. Deng, L. Mammen, Y. Zhao, P. Lellig, K. Müllen, C. Li, H.-J. Butt, D. Vollmer, Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv. Mater. 23, 2962–2965 (2011)

    CAS  Google Scholar 

  52. J.T. Park, J.H. Kim, D. Lee, Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings. Nanoscale 6, 7362–7368 (2014)

    CAS  Google Scholar 

  53. J. Yang, Z. Zhang, X. Xu, X. Zhu, X. Men, X. Zhou, Superhydrophilic–superoleophobic coatings. J. Mater. Chem. 22, 2834–2837 (2012)

    CAS  Google Scholar 

  54. P. Ball, Engineering shark skin and other solutions. Nature 400, 507–509 (1999)

    CAS  Google Scholar 

  55. J. Bravo, L. Zhai, Z. Wu, R.E. Cohen, M.F. Rubner, Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23, 7293–7298 (2007)

    CAS  Google Scholar 

  56. W.-L. Min, B. Jiang, P. Jiang, Bioinspired self-cleaning antireflection coatings. Adv. Mater. 20, 3914–3918 (2008)

    CAS  Google Scholar 

  57. J.-Q. Xi, M.F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.-Y. Lin, W. Liu, J.A. Smart, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 1, 176–179 (2007)

    CAS  Google Scholar 

  58. L. Xu, L. Gao, J. He, Fabrication of visible/near-IR antireflective and superhydrophobic coatings from hydrophobically modified hollow silica nanoparticles and poly(methyl methacrylate). RSC Adv. 2, 12764–12769 (2012)

    CAS  Google Scholar 

  59. P.A. Levkin, F. Svec, J.M.J. Fréchet, Porous polymer coatings: a versatile approach to superhydrophobic surfaces. Adv. Funct. Mater. 19, 1993–1998 (2009)

    CAS  Google Scholar 

  60. Z. Huang, C. Cai, L. Kuai, T. Li, M. Huttula, W. Cao, Leaf-structure patterning for antireflective and self-cleaning surfaces on Si-based solar cells. Sol. Energy 159, 733–741 (2018)

    CAS  Google Scholar 

  61. A. Roslizar, S. Dottermusch, F. Vüllers, M.N. Kavalenka, M. Guttmann, M. Schneider, U.W. Paetzold, H. Hölscher, B.S. Richards, E. Klampaftis, Self-cleaning performance of superhydrophobic hot-embossed fluoropolymer films for photovoltaic modules. Sol. Energy Mater. Sol. Cells 189, 188–196 (2019)

    CAS  Google Scholar 

  62. Z. Zhao, Z. Sun, in: Self-Clean.Coat, 2016, pp. 166–192

  63. K.-C. Chang, H.-I. Lu, C.-W. Peng, M.-C. Lai, S.-C. Hsu, M.-H. Hsu, Y.-K. Tsai, C.-H. Chang, W.-I. Hung, Y. Wei, J.-M. Yeh, Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings. ACS Appl. Mater. Interfaces 5, 1460–1467 (2013)

    CAS  Google Scholar 

  64. K.-C. Chang, M.-H. Hsu, H.-I. Lu, M.-C. Lai, P.-J. Liu, C.-H. Hsu, W.-F. Ji, T.-L. Chuang, Y. Wei, J.-M. Yeh, W.-R. Liu, Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon 66, 144–153 (2014)

    CAS  Google Scholar 

  65. M.J. Nine, M.A. Cole, L. Johnson, D.N.H. Tran, D. Losic, Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl. Mater. Interfaces 7, 28482–28493 (2015)

    CAS  Google Scholar 

  66. C. Lv, H. Wang, Z. Liu, W. Zhang, C. Wang, R. Tao, M. Li, Y. Zhu, A sturdy self-cleaning and anti-corrosion superhydrophobic coating assembled by amino silicon oil modifying potassium titanate whisker-silica particles. Appl. Surf. Sci. 435, 903–913 (2018)

    CAS  Google Scholar 

  67. Y.F. Fu, C.Q. Yuan, X.Q. Bai, Marine drag reduction of shark skin inspired riblet surfaces. Biosurface Biotribology 3, 11–24 (2017)

    Google Scholar 

  68. G.D. Bixler, B. Bhushan, Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale 5, 7685–7710 (2013)

    CAS  Google Scholar 

  69. G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8, 11271–11284 (2012)

    CAS  Google Scholar 

  70. B.N. Sahoo, S. Nanda, J.A. Kozinski, S.K. Mitra, PDMS/camphor soot composite coating: towards a self-healing and a self-cleaning superhydrophobic surface. RSC Adv. 7, 15027–15040 (2017)

    CAS  Google Scholar 

  71. Y. Li, S. Chen, M. Wu, J. Sun, All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Adv. Mater. 26, 3344–3348 (2014)

    CAS  Google Scholar 

  72. A.C.C. Esteves, Y. Luo, M.W.P. van de Put, C.C.M. Carcouët, G. de With, Self-replenishing dual structured superhydrophobic coatings prepared by drop-casting of an all-in-one dispersion. Adv. Funct. Mater. 24, 986–992 (2014)

    CAS  Google Scholar 

  73. K. Chen, K. Gu, S. Qiang, C. Wang, RSC Adv. 7, 543–550 (2016)

    Google Scholar 

  74. K. Van Tittelboom, N. De Belie, Self-healing in cementitious materials—a review. Materials 6, 2182–2217 (2013)

    Google Scholar 

  75. S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, J. Mater. Chem. A 5, 31–55 (2016)

    Google Scholar 

  76. B. Bharat, J.Y. Chae, K. Kerstin, Philos. Trans. R. Soc. Math. Phys. Eng. Sci 367, 1631–1672 (2009)

    Google Scholar 

  77. G. Bauer, A. Nellesen, T. Speck, in: Pisa, Italy, 2010, pp. 453–459

  78. L. Ionov, A. Synytska, Self-healing superhydrophobic materials. Phys. Chem. Chem. Phys 14, 10497–10502 (2012)

    CAS  Google Scholar 

  79. C.-H. Xue, J.-Z. Ma, Long-lived superhydrophobic surfaces. J. Mater. Chem. A 1, 4146–4161 (2013)

    CAS  Google Scholar 

  80. X. Yin, Z. Liu, D. Wang, X. Pei, B. Yu, F. Zhou, Bioinspired self-healing organic materials: chemical mechanisms and fabrications. J. Bionic Eng. 12, 1–16 (2015)

    Google Scholar 

  81. Y. Li, L. Li, J. Sun, Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 49, 6129–6133 (2010)

    CAS  Google Scholar 

  82. H. Liu, S.-W. Gao, J.-S. Cai, C.-L. He, J.-J. Mao, T.-X. Zhu, Z. Chen, J.-Y. Huang, K. Meng, K.-Q. Zhang, S.S. Al-Deyab, Y.-K. Lai, Recent progress in fabrication and applications of superhydrophobic coating on cellulose-based substrates. Materials 9, 124 (2016)

    Google Scholar 

  83. U. Manna, D.M. Lynn, Restoration of superhydrophobicity in crushed polymer films by treatment with water: self-healing and recovery of damaged topographic features aided by an unlikely source. Adv. Mater. 25, 5104–5108 (2013)

    CAS  Google Scholar 

  84. Z. Huang, R.S. Gurney, T. Wang, D. Liu, Environmentally durable superhydrophobic surfaces with robust photocatalytic self-cleaning and self-healing properties prepared via versatile film deposition methods. J. Colloid Interface Sci. 527, 107–116 (2018)

    CAS  Google Scholar 

  85. C. Shillingford, N. MacCallum, T.-S. Wong, P. Kim, J. Aizenberg. Nanotechnology 25, 014019 (2013)

    Google Scholar 

  86. S. Chen, X. Li, Y. Li, J. Sun, Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9, 4070–4076 (2015)

    CAS  Google Scholar 

  87. C.-H. Xue, Z.-D. Zhang, J. Zhang, S.-T. Jia, Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2nanoparticles and polydimethylsiloxane. J. Mater. Chem. A 2, 15001–15007 (2014)

    CAS  Google Scholar 

  88. Y. Si, H. Zhu, L. Chen, T. Jiang, Z. Guo, A multifunctional transparent superhydrophobic gel nanocoating with self-healing properties. Chem. Commun. 51, 16794–16797 (2015)

    CAS  Google Scholar 

  89. J. Wu, J. Li, B. Deng, H. Jiang, Z. Wang, M. Yu, L. Li, C. Xing, Y. Li, Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics. Sci. Rep. 3, 2951 (2013)

    Google Scholar 

  90. H. Zhou, H. Wang, H. Niu, A. Gestos, T. Lin, Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Funct. Mater. 23, 1664–1670 (2013)

    CAS  Google Scholar 

  91. Z. Xu, Y. Zhao, H. Wang, X. Wang, T. Lin, A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation. Angew. Chem. Int. Ed. 54, 4527–4530 (2015)

    CAS  Google Scholar 

  92. M. Wu, B. Ma, T. Pan, S. Chen, J. Sun, Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties. Adv. Funct. Mater. 26, 569–576 (2016)

    CAS  Google Scholar 

  93. Y. Liu, Z. Liu, Y. Liu, H. Hu, Y. Li, P. Yan, B. Yu, F. Zhou, One-step modification of fabrics with bioinspired polydopamine@octadecylamine nanocapsules for robust and healable self-cleaning performance. Small 11, 426–431 (2015)

    CAS  Google Scholar 

  94. Y. Liu, H. Gao, S. Li, Z. Han, L. Ren, Bioinspired platform with reversibly switchable wettability for transfer and storage of droplets. Chem. Eng. J. 337, 697–708 (2018)

    CAS  Google Scholar 

  95. D. Zhang, Z. Cheng, Y. Liu, Chem. – Eur. J. 25, 3979–3992 (2019)

    Google Scholar 

  96. P. Tian, Z. Guo, Biomimetic Janus paper with controllable swelling for shape memory and energy conversion. J. Bionic Eng. 16, 1–12 (2019)

    CAS  Google Scholar 

  97. J. Wang, L. Sun, M. Zou, W. Gao, C. Liu, L. Shang, Z. Gu, Y. Zhao, Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 3, e1700004 (2017)

    Google Scholar 

  98. D. Zhang, Z. Cheng, H. Kang, J. Yu, Y. Liu, L. Jiang, A smart superwetting surface with responsivity in both surface chemistry and microstructure. Angew. Chem. Int. Ed. 57, 3701–3705 (2018)

    CAS  Google Scholar 

  99. N. García-Huete, J.M. Cuevas, J.M. Laza, J.L. Vilas, L.M. León, Polymeric shape-memory micro-patterned surface for switching wettability with temperature. Polymers 7, 1674–1688 (2015)

    Google Scholar 

  100. S. Jeon, J.Y. Jang, J.R. Youn, J. Jeong, H. Brenner, Y.S. Song, Fullerene embedded shape memory nanolens array. Sci. Rep. 3, 3269 (2013)

    Google Scholar 

  101. C.-M. Chen, C.-L. Chiang, S. Yang, Programming tilting angles in shape memory polymer Janus pillar arrays with unidirectional wetting against the tilting direction. Langmuir 31, 9523–9526 (2015)

    CAS  Google Scholar 

  102. T. Lv, Z. Cheng, D. Zhang, E. Zhang, Q. Zhao, Y. Liu, L. Jiang, Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage. ACS Nano 10, 9379–9386 (2016)

    CAS  Google Scholar 

  103. J. Song, M. Gao, C. Zhao, Y. Lu, L. Huang, X. Liu, C.J. Carmalt, X. Deng, I.P. Parkin, Large-area fabrication of droplet pancake bouncing surface and control of bouncing state. ACS Nano 11, 9259–9267 (2017)

    CAS  Google Scholar 

  104. Z. Cheng, D. Zhang, T. Lv, H. Lai, E. Zhang, H. Kang, Y. Wang, P. Liu, Y. Liu, Y. Du, S. Dou, L. Jiang, Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Adv. Funct. Mater. 28, 1705002 (2018)

    Google Scholar 

  105. C.-M. Chen, S. Yang, Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays. Adv. Mater. 26, 1283–1288 (2014)

    CAS  Google Scholar 

  106. W. Wang, J. Salazar, H. Vahabi, A. Joshi-Imre, W.E. Voit, A.K. Kota, Metamorphic superomniphobic surfaces. Adv. Mater. 29, 1700295 (2017)

    Google Scholar 

  107. J. Sun, B. Bhushan, Hierarchical structure and mechanical properties of nacre: a review. RSC Adv. 2, 7617–7632 (2012)

    CAS  Google Scholar 

  108. A. Walther, I. Bjurhager, J.-M. Malho, J. Ruokolainen, L. Berglund, O. Ikkala, Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. Angew. Chem. Int. Ed. 49, 6448–6453 (2010)

    CAS  Google Scholar 

  109. K. Tushtev, M. Murck, G. Grathwohl, On the nature of the stiffness of nacre. Mater. Sci. Eng. C 28, 1164–1172 (2008)

    CAS  Google Scholar 

  110. Y.-Q. Li, T. Yu, T.-Y. Yang, L.-X. Zheng, K. Liao, Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 24, 3426–3431 (2012)

    CAS  Google Scholar 

  111. K. Shahzadi, I. Mohsin, L. Wu, X. Ge, Y. Jiang, H. Li, X. Mu, ACS Nano 11, 325–334 (2017)

    CAS  Google Scholar 

  112. H.-B. Yao, Z.-H. Tan, H.-Y. Fang, S.-H. Yu, Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew. Chem. Int. Ed. 49, 10127–10131 (2010)

    CAS  Google Scholar 

  113. Q. Cheng, M. Li, L. Jiang, Z. Tang, Bioinspired layered composites based on flattened double-walled carbon nanotubes. Adv. Mater 24, 1838–1843 (2012)

    CAS  Google Scholar 

  114. H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, R.O. Ritchie, Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50–56 (2016)

    CAS  Google Scholar 

  115. Q. Cheng, C. Huang, A.P. Tomsia, Freeze casting for assembling bioinspired structural materials. Adv. Mater. 29, 1703155 (2017)

    Google Scholar 

  116. P. Tran, T.D. Ngo, A. Ghazlan, D. Hui, Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. Compos. Part B Eng. 108, 210–223 (2017)

    CAS  Google Scholar 

  117. Y. Yang, X. Li, M. Chu, H. Sun, J. Jin, K. Yu, Q. Wang, Q. Zhou, Y. Chen, Sci. Adv. 5, eaau9490 (2019)

    CAS  Google Scholar 

  118. Y. Chen, H. Wang, B. Dang, Y. Xiong, Q. Yao, C. Wang, Q. Sun, C. Jin, Bio-inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties. Sci. Rep. 7, 1823 (2017)

    Google Scholar 

  119. Y. Zhang, M. Zhang, H. Jiang, J. Shi, F. Li, Y. Xia, G. Zhang, H. Li, Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect. Carbohydr. Polym 177, 116–125 (2017)

    CAS  Google Scholar 

  120. C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du, S. Dou, A.P. Tomsia, H.D. Wagner, L. Jiang, Q. Cheng, Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 7, 2787–2794 (2019)

    CAS  Google Scholar 

  121. S. Liu, F. Yao, O. Oderinde, K. Li, H. Wang, Z. Zhang, G. Fu, Zinc ions enhanced nacre-like chitosan/graphene oxide composite film with superior mechanical and shape memory properties. Chem. Eng. J. 321, 502–509 (2017)

    CAS  Google Scholar 

  122. Y. Shu, P. Yin, B. Liang, H. Wang, L. Guo, Artificial nacre-like gold nanoparticles–layered double hydroxide–poly(vinyl alcohol) hybrid film with multifunctional properties. Ind. Eng. Chem. Res 54, 8940–8946 (2015)

    CAS  Google Scholar 

  123. H.-B. Yao, L.-B. Mao, Y.-X. Yan, H.-P. Cong, X. Lei, S.-H. Yu, ACS Nano 6, 8250–8260 (2012)

    CAS  Google Scholar 

  124. G. Du, A. Mao, J. Yu, J. Hou, N. Zhao, J. Han, Q. Zhao, W. Gao, T. Xie, H. Bai, Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat. Commun. 10, 800 (2019)

    Google Scholar 

  125. H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, X. Huang, X. Lin, A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities. Chem. Eng. J. 369, 8–17 (2019)

    CAS  Google Scholar 

  126. Q. Wu, D. Guo, Y. Zhang, H. Zhao, D. Chen, J. Nai, J. Liang, X. Li, N. Sun, L. Guo, Facile and universal superhydrophobic modification to fabricate waterborne, multifunctional nacre-mimetic films with excellent stability. ACS Appl. Mater. Interfaces 6, 20597–20602 (2014)

    CAS  Google Scholar 

  127. F. Libonati, L. Vergani, Cortical bone as a biomimetic model for the design of new composites. Procedia Struct. Integr 2, 1319–1326 (2016)

    Google Scholar 

  128. F. Libonati, C. Colombo, L. Vergani, Design and characterization of a biomimetic composite inspired to human bone. Fatigue Fract. Eng. Mater. Struct. 37, 772–781 (2014)

    Google Scholar 

  129. F. Libonati, A.E. Vellwock, F. Ielmini, D. Abliz, G. Ziegmann, L. Vergani, Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites. Sci. Rep 9, 3142 (2019)

    Google Scholar 

  130. F. Libonati, G.X. Gu, Z. Qin, L. Vergani, M.J. Buehler, Bone-inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18, 1354–1363 (2016)

    CAS  Google Scholar 

  131. J.D. Rule, N.R. Sottos, S.R. White, Effect of microcapsule size on the performance of self-healing polymers. Polymer 48, 3520–3529 (2007)

    CAS  Google Scholar 

  132. P. Poornima Vijayan, M.A.S.A. Al-Maadeed, Sci. Rep. 6, 38812 (2016)

    Google Scholar 

  133. P. Vijayan, P.A. Tanvir, Y.H. El-Gawady, M. Al-Maadeed, Prog. Org. Coat 112, 127–132 (2017)

    Google Scholar 

  134. S.J. Garcia, H.R. Fischer, in Smart Polym. Their Appl., ed. by M. R. Aguilar, J. San Román. (Woodhead Publishing, 2014), pp. 271–298

  135. S.-M. Kim, H. Jeon, S.-H. Shin, S.-A. Park, J. Jegal, S.Y. Hwang, D.X. Oh, J. Park, Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 30, 1705145 (2018)

    Google Scholar 

  136. Y. Peng, L. Zhao, C. Yang, Y. Yang, C. Song, Q. Wu, G. Huang, J.W.J. Mater, Chem. A 6, 19066–19074 (2018)

    CAS  Google Scholar 

  137. E.M. Fayyad, M.A. Almaadeed, A. Jones, (2015)

  138. Poornima Vijayan P, Y.M.H. El-Gawady, M.A.S.A. Al-Maadeed, (2016)

  139. B.J. Blaiszik, N.R. Sottos, S.R. White, Nanocapsules for self-healing materials. Compos. Sci. Technol. 68, 978–986 (2008)

    CAS  Google Scholar 

  140. S. Rana, D. Döhler, A.S. Nia, M. Nasir, M. Beiner, W.H. Binder, “Click”-triggered self-healing graphene nanocomposites. Macromol. Rapid Commun. 37, 1715–1722 (2016)

    CAS  Google Scholar 

  141. L. Huang, N. Yi, Y. Wu, Y. Zhang, Q. Zhang, Y. Huang, Y. Ma, Y. Chen, Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater. 25, 2224–2228 (2013)

    CAS  Google Scholar 

  142. S. Das, S. Kumar, S.K. Samal, S. Mohanty, S.K. Nayak, A review on superhydrophobic polymer nanocoatings: recent development and applications. Ind. Eng. Chem. Res. 57, 2727–2745 (2018)

    CAS  Google Scholar 

  143. X. Jing, Z. Guo, Biomimetic super durable and stable surfaces with superhydrophobicity. J. Mater. Chem. A 6, 16731–16768 (2018)

    CAS  Google Scholar 

  144. Y. Gu, W. Zhang, J. Mou, S. Zheng, L. Jiang, Z. Sun, E. Wang, Adv. Mech. Eng. 9, 1687814017746859 (2017)

    Google Scholar 

  145. In: Surf. Interfaces Biomim. Superhydrophobic Mater., John Wiley & Sons, Ltd, 2018, pp. 1–24

  146. G. Ciasca, M. Papi, L. Businaro, G. Campi, M. Ortolani, V. Palmieri, A. Cedola, A.D. Ninno, A. Gerardino, G. Maulucci, M.D. Spirito. Bioinspir. Biomim. 11 (2016) 011001, Recent advances in superhydrophobic surfaces and their relevance to biology and medicine

    CAS  Google Scholar 

  147. M.B. Oliveira, J.F. Mano, Handb. Biomim. Bioinspiration, WORLD SCIENTIFIC (2012), pp. 153–180

    Google Scholar 

  148. G. Wen, Z. Guo, W. Liu, Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale 9, 3338–3366 (2017)

    CAS  Google Scholar 

  149. K. Golovin, M. Boban, J.M. Mabry, A. Tuteja, Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interfaces 9, 11212–11223 (2017)

    CAS  Google Scholar 

  150. M. Khodaei. Superhydrophobic Surf. - Fabr. Pract. Appl. (2019)

  151. Y. Lu, S. Sathasivam, J. Song, C.R. Crick, C.J. Carmalt, I.P. Parkin, Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347, 1132–1135 (2015)

    CAS  Google Scholar 

  152. W. Zeng, J. Chen, H. Yang, L. Deng, G. Liao, Z. Xu, Robust coating with superhydrophobic and self-cleaning properties in either air or oil based on natural zeolite. Surf. Coat. Technol. 309, 1045–1051 (2017)

    CAS  Google Scholar 

  153. Y. Zhang, Q. Zhang, R. Zhang, S. Liu, Y. Zhou, A superhydrophobic and elastic melamine sponge for oil/water separation. New J. Chem. 43, 6343–6349 (2019)

    CAS  Google Scholar 

  154. X. Luo, L. Lu, M. Yin, X. Fang, X. Chen, D. Li, L. Yang, G. Li, J. Ma, Antireflective and self-cleaning glass with robust moth-eye surface nanostructures for photovoltaic utilization. Mater. Res. Bull 109, 183–189 (2019)

    CAS  Google Scholar 

  155. B. Xu, Y. Ding, S. Qu, Z. Cai, Superamphiphobic cotton fabrics with enhanced stability. Appl. Surf. Sci 356, 951–957 (2015)

    CAS  Google Scholar 

  156. J.-N. Wang, Y.-Q. Liu, Y.-L. Zhang, J. Feng, H.-B. Sun, Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity. NPG Asia Mater. 10, e470 (2018)

    CAS  Google Scholar 

  157. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682–687 (2011)

    Google Scholar 

  158. H. Liu, A. Raza, A. Aili, J. Lu, A. AlGhaferi, T. Zhang, Sunlight-sensitive anti-fouling nanostructured TiO2 coated Cu meshes for ultrafast oily water treatment. Sci. Rep 6, 25414 (2016)

    CAS  Google Scholar 

  159. L. Wang, M. Wen, M. Zhang, L. Jiang, Y. Zheng, Ice-phobic gummed tape with nano-cones on microspheres. J. Mater. Chem. A 2, 3312–3316 (2014)

    CAS  Google Scholar 

  160. Y. Lin, H. Chen, G. Wang, A. Liu, Recent progress in preparation and anti-icing applications of superhydrophobic coatings. Coatings 8, 208 (2018)

    Google Scholar 

  161. L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin, J. Aizenberg, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010)

    CAS  Google Scholar 

  162. M. Nosonovsky, V. Hejazi, Why superhydrophobic surfaces are not always icephobic. ACS Nano 6, 8488–8491 (2012)

    CAS  Google Scholar 

  163. J. Genzer, A. Marmur, Biological and synthetic self-cleaning surfaces. MRS Bull. 33, 742–746 (2008)

    CAS  Google Scholar 

  164. I.P. Parkin, R.G. Palgrave, Self-cleaning coatings. J. Mater. Chem. 15, 1689–1695 (2005)

    CAS  Google Scholar 

  165. H. Qian, D. Xu, C. Du, D. Zhang, X. Li, L. Huang, L. Deng, Y. Tu, J.M.C. Mol, H.A. Terryn, Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. J. Mater. Chem. A 5, 2355–2364 (2017)

    CAS  Google Scholar 

  166. S.R. Saad, N. Mahmed, M.M.A.B. Abdullah, A.V. Sandu, Self-cleaning technology in fabric: a review. IOP Conf. Ser. Mater. Sci. Eng. 133, 012028 (2016)

    Google Scholar 

  167. U. Mehmood, F.A. Al-Sulaiman, B.S. Yilbas, B. Salhi, S.H.A. Ahmed, M.K. Hossain, Superhydrophobic surfaces with antireflection properties for solar applications: a critical review. Sol. Energy Mater. Sol. Cells 157, 604–623 (2016)

    CAS  Google Scholar 

  168. T. Lv, Z. Cheng, E. Zhang, H. Kang, Y. Liu, L. Jiang, Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry. Small 13, 1503402 (2017)

    Google Scholar 

  169. L.R. Freschauf, J. McLane, H. Sharma, M. Khine, Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics. PLOS ONE 7, e40987 (2012)

    CAS  Google Scholar 

  170. E.J. Falde, S.T. Yohe, Y.L. Colson, M.W. Grinstaff, Superhydrophobic materials for biomedical applications. Biomaterials 104, 87–103 (2016)

    CAS  Google Scholar 

  171. G.X. Gu, M. Takaffoli, M.J. Buehler, Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 29, 1700060 (2017)

    Google Scholar 

  172. H. Bougherara, M. Bureau, M. Campbell, A. Vadean, L. Yahia, Design of a biomimetic polymer-composite hip prosthesis. J. Biomed. Mater. Res. A 82A, 27–40 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poornima P Vijayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, P.P., Puglia, D. Biomimetic multifunctional materials: a review. emergent mater. 2, 391–415 (2019). https://doi.org/10.1007/s42247-019-00051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00051-7

Keywords

Navigation