Skip to main content

Advertisement

Log in

Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Sunlight is the most abundant and inexhaustible energy source on earth. However, its low energy density, dispersibility and intermittent nature make its direct utilization with industrial relevance challenging, suggesting that converting sunlight into chemical energy and storing it is a valuable measure to achieve global sustainable development. Carbon–neutral, clean and secondary pollution-free solar-driven water splitting to produce hydrogen is one of the most attractive avenues among all the current options and is expected to realize the transformation from dependence on fossil fuels to zero-pollution hydrogen. Artificial photosynthetic systems (APSs) based on photoelectrochemical (PEC) devices appear to be an ideal avenue to efficiently achieve solar-to-hydrogen conversion. In this review, we comprehensively highlight the recent developments in photocathodes, including architectures, semiconductor photoabsorbers and performance optimization strategies. In particular, frontier research cases of organic semiconductors, dye sensitization and surface grafted molecular catalysts applied to APSs based on frontier (molecular) orbital theory and semiconductor energy band theory are discussed. Moreover, research advances in typical photoelectrodes with the metal–insulator–semiconductor (MIS) architecture based on quantum tunnelling are also introduced. Finally, we discuss the benchmarks and protocols for designing integrated tandem photoelectrodes and PEC systems that conform to the solar spectrum to achieve high-efficiency and cost-effective solar-to-hydrogen conversion at an industrial scale in the near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Miller, E.L., Thompson, S.T., Randolph, K., et al.: US Department of Energy hydrogen and fuel cell technologies perspectives. MRS Bull. 45, 57–64 (2020). https://doi.org/10.1557/mrs.2019.312

    Article  CAS  ADS  Google Scholar 

  2. Kim, J.H., Hansora, D., Sharma, P., et al.: Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019). https://doi.org/10.1039/c8cs00699g

    Article  CAS  PubMed  Google Scholar 

  3. Nikolaidis, P., Poullikkas, A.: A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017). https://doi.org/10.1016/j.rser.2016.09.044

    Article  CAS  Google Scholar 

  4. Dincer, I.: Green methods for hydrogen production. Int. J. Hydrog. Energy 37, 1954–1971 (2012). https://doi.org/10.1016/j.ijhydene.2011.03.173

    Article  CAS  Google Scholar 

  5. Lewis, N.S., Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Gray, H.B.: Powering the planet with solar fuel. Nat. Chem. 1, 7–7 (2009). https://doi.org/10.1038/nchem.141

    Article  CAS  PubMed  Google Scholar 

  7. Nocera, D.G.: Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017). https://doi.org/10.1021/acs.accounts.6b00615

    Article  CAS  PubMed  Google Scholar 

  8. Stone, D.: Global warming: understanding the forecast. Bull. Am. Meteorol. Soc. 89, 1381 (2008)

    ADS  Google Scholar 

  9. Looney, B.: Full report–BP statistical review of world energy 2021. (2021) https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. Accessed 28 Feb 2022

  10. Li, X.B., Tung, C.H., Wu, L.Z.: Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2, 160–173 (2018). https://doi.org/10.1038/s41570-018-0024-8

    Article  CAS  Google Scholar 

  11. Blankenship, R.E., Tiede, D.M., Barber, J., et al.: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011). https://doi.org/10.1126/science.1200165

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Armaroli, N., Balzani, V.: Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. Eur. J. 22, 32–57 (2016). https://doi.org/10.1002/chem.201503580

    Article  CAS  PubMed  Google Scholar 

  13. Roger, I., Shipman, M.A., Symes, M.D.: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003

    Article  CAS  Google Scholar 

  14. Trasatti, S.: Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972). https://doi.org/10.1016/S0022-0728(72)80485-6

  15. Nørskov, J.K., Bligaard, T., Logadottir, A., et al.: Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005). https://doi.org/10.1149/1.1856988

    Article  CAS  Google Scholar 

  16. Zhou, Y.G., Zhang, Z.Z., Fang, Z.W., et al.: Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proc. Natl. Acad. Sci. U. S. A. 116, 10232–10237 (2019). https://doi.org/10.1073/pnas.1901631116

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Ma, R., Sun, J., Li, D.H., et al.: Review of synergistic photo-thermo-catalysis: mechanisms, materials and applications. Int. J. Hydrog. Energy 45, 30288–30324 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.127

    Article  CAS  Google Scholar 

  18. Wang, Z., Roberts, R.R., Naterer, G.F., et al.: Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. Int. J. Hydrog. Energy 37, 16287–16301 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.057

    Article  CAS  Google Scholar 

  19. Keller, N., Ivanez, J., Highfield, J., et al.: Photo-/ thermal synergies in heterogeneous catalysis: towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Appl. Catal. B Environ. 296, 120320 (2021). https://doi.org/10.1016/j.apcatb.2021.120320

    Article  CAS  Google Scholar 

  20. Zeng, G., Pham, T.A., Vanka, S., et al.: Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H2 production. Nat. Mater. 20, 1130–1135 (2021). https://doi.org/10.1038/s41563-021-00965-w

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Siavash Moakhar, R., Hosseini-Hosseinabad, S.M., Masudy-Panah, S., et al.: Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: a review. Adv. Mater. 33, 2007285 (2021). https://doi.org/10.1002/adma.202007285

    Article  CAS  Google Scholar 

  22. Pan, S.J., Li, R.J., Zhang, Q.X., et al.: An over 20% solar-to-hydrogen efficiency system comprising a self-reconstructed NiCoFe-based hydroxide nanosheet electrocatalyst and monolithic perovskite/silicon tandem solar cell. J. Mater. Chem. A 9, 14085–14092 (2021). https://doi.org/10.1039/d1ta03126k

    Article  CAS  Google Scholar 

  23. Guo, S., Li, X., Li, J., et al.: Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 12, 1343 (2021). https://doi.org/10.1038/s41467-021-21526-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Rao, C.N.R., Dey, S.: Solar thermochemical splitting of water to generate hydrogen. Proc. Natl. Acad. Sci. U. S. A. 114, 13385–13393 (2017). https://doi.org/10.1073/pnas.1700104114

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. White, J.L., Baruch, M.F., Pander Iii, J.E., et al.: Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015). https://doi.org/10.1021/acs.chemrev.5b00370

    Article  CAS  PubMed  Google Scholar 

  26. He, Y., He, Q., Wang, L., et al.: Self-gating in semiconductor electrocatalysis. Nat. Mater. 18, 1098–1104 (2019). https://doi.org/10.1038/s41563-019-0426-0

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Jang, Y.J., Lee, J.S.: Photoelectrochemical water splitting with p-type metal oxide semiconductor photocathodes. Chemsuschem 12, 1835–1845 (2019). https://doi.org/10.1002/cssc.201802596

    Article  CAS  PubMed  Google Scholar 

  28. Gelderman, K., Lee, L., Donne, S.W.: Flat-band potential of a semiconductor: using the Mott-Schottky equation. J. Chem. Educ. 84, 685 (2007). https://doi.org/10.1021/ed084p685

    Article  CAS  Google Scholar 

  29. Arbring Sjöström, T., Berggren, M., Gabrielsson, E.O., et al.: Iontronics: a decade of iontronic delivery devices. Adv. Mater. Technol. 3, 1870018 (2018). https://doi.org/10.1002/admt.201870018

    Article  Google Scholar 

  30. Varadhan, P., Fu, H.C., Kao, Y.C., et al.: An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 10, 5282 (2019). https://doi.org/10.1038/s41467-019-12977-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Kibsgaard, J., Chorkendorff, I.: Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019). https://doi.org/10.1038/s41560-019-0407-1

    Article  ADS  Google Scholar 

  32. Andrei, V., Reuillard, B., Reisner, E.: Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandem. Nat. Mater. 19, 189–194 (2020). https://doi.org/10.1038/s41563-019-0501-6

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Landman, A., Dotan, H., Shter, G.E., et al.: Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16, 646–651 (2017). https://doi.org/10.1038/nmat4876

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Kuhlmann, A.M.: The second most abundant element in the Earth’s crust. JOM 15, 502–505 (1963). https://doi.org/10.1007/BF03378936

    Article  ADS  Google Scholar 

  35. Liu, C., Dasgupta, N.P., Yang, P.D.: Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 26, 415–422 (2014). https://doi.org/10.1021/cm4023198

    Article  CAS  Google Scholar 

  36. Sim, U., Moon, J., Lee, J., et al.: Double-layer graphene outperforming monolayer as catalyst on silicon photocathode for hydrogen production. ACS Appl. Mater. Interfaces 9, 3570–3580 (2017). https://doi.org/10.1021/acsami.6b11750

    Article  CAS  PubMed  Google Scholar 

  37. Lee, K., Hwang, I., Kim, N., et al.: 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures. Nanoscale 8, 14473–14479 (2016). https://doi.org/10.1039/c6nr04611h

  38. Vijselaar, W., Kunturu, P.P., Moehl, T., et al.: Tandem cuprous oxide/silicon microwire hydrogen-evolving photocathode with photovoltage exceeding 1.3 V. ACS Energy Lett. 4, 2287–2294 (2019). https://doi.org/10.1021/acsenergylett.9b01402

  39. Sagar, R., Rao, A.S.: Nanoscale TiO2 and Ta2O5 as efficient antireflection coatings on commercial monocrystalline silicon solar cell. J. Alloys Compd. 862, 158464 (2021). https://doi.org/10.1016/j.jallcom.2020.158464

    Article  CAS  Google Scholar 

  40. Thalluri, S.M., Borme, J., Xiong, D.H., et al.: Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: an investigation on the effect of wire diameter, length and inter-wire spacing. Sustain. Energy Fuels 2, 978–982 (2018). https://doi.org/10.1039/c7se00591a

    Article  CAS  Google Scholar 

  41. Chen, C.J., Yeh, C.Y., Chen, C.H., et al.: Molybdenum tungsten disulfide with a large number of sulfur vacancies and electronic unoccupied states on silicon micropillars for solar hydrogen evolution. ACS Appl. Mater. Interfaces 12, 54671–54682 (2020). https://doi.org/10.1021/acsami.0c15905

    Article  CAS  PubMed  Google Scholar 

  42. Kunturu, P.P., Zachariadis, C., Witczak, L., et al.: Tandem Si micropillar array photocathodes with conformal copper oxide and a protection layer by pulsed laser deposition. ACS Appl. Mater. Interfaces 11, 41402–41414 (2019). https://doi.org/10.1021/acsami.9b14408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, F., Thalluri, S.M.: Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon photocathodes for improved solar hydrogen evolution. ECS Meet. Abstr. MA2019-01, 1640 (2019). https://doi.org/10.1149/ma2019-01/31/1640

  44. Shaner, M.R., McKone, J.R., Gray, H.B., et al.: Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution. Energy Environ. Sci. 8, 2977–2984 (2015). https://doi.org/10.1039/C5EE01076D

    Article  CAS  Google Scholar 

  45. Su, Y., Liu, C., Brittman, S., et al.: Single-nanowire photoelectrochemistry. Nat. Nanotechnol. 11, 609–612 (2016). https://doi.org/10.1038/nnano.2016.30

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Sim, U., Moon, J., An, J., et al.: N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy Environ. Sci. 8, 1329–1338 (2015). https://doi.org/10.1039/C4EE03607G

    Article  CAS  Google Scholar 

  47. Jia, Q., Yu, C., Liu, W., et al.: High performance n+p-Si/Ti/NiSxOy photocathode for photoelectrochemical hydrogen evolution in alkaline solution. J. Energy Chem. 30, 101–107 (2019). https://doi.org/10.1016/j.jechem.2018.04.004

    Article  Google Scholar 

  48. Morales-Guio, C.G., Thorwarth, K., Niesen, B., et al.: Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputter deposited Mo2C catalyst. J. Am. Chem. Soc. 137, 7035–7038 (2015). https://doi.org/10.1021/jacs.5b03417

    Article  CAS  PubMed  Google Scholar 

  49. Fan, R., Dong, W., Fang, L., et al.: More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer. J. Mater. Chem. A 5, 18744–18751 (2017). https://doi.org/10.1039/C7TA04986B

    Article  CAS  Google Scholar 

  50. Fan, R., Tang, C., Xin, Y., et al.: Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting. Appl. Phys. Lett. 109, 233901 (2016). https://doi.org/10.1063/1.4971359

    Article  CAS  ADS  Google Scholar 

  51. Chen, F.J., Zhu, Q.S., Wang, Y.Y., et al.: Efficient photoelectrochemical hydrogen evolution on silicon photocathodes interfaced with nanostructured NiP2 cocatalyst films. ACS Appl. Mater. Interfaces 8, 31025–31031 (2016). https://doi.org/10.1021/acsami.6b11197

    Article  CAS  PubMed  Google Scholar 

  52. Edwards, M., Bowden, S., Das, U., et al.: Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells. Sol. Energy Mater. Sol. Cells 92, 1373–1377 (2008). https://doi.org/10.1016/j.solmat.2008.05.011

    Article  CAS  Google Scholar 

  53. Hu, D., Xiang, J., Zhou, Q., et al.: One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production. Nanoscale 10, 3518–3525 (2018). https://doi.org/10.1039/C7NR09235K

    Article  CAS  PubMed  Google Scholar 

  54. Hellstern, T.R., Nielander, A.C., Chakthranont, P., et al.: Nanostructuring strategies to increase the photoelectrochemical water splitting activity of silicon photocathodes. ACS Appl. Nano Mater. 2, 6–11 (2019). https://doi.org/10.1021/acsanm.8b01966

    Article  CAS  Google Scholar 

  55. Yu, Y., Zhang, Z., Yin, X., et al.: Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2, 17045 (2017). https://doi.org/10.1038/nenergy.2017.45

    Article  CAS  ADS  Google Scholar 

  56. Kang, D., Young, J.L., Lim, H., et al.: Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2, 17043 (2017). https://doi.org/10.1038/nenergy.2017.43

    Article  CAS  ADS  Google Scholar 

  57. Wang, Y., Schwartz, J., Gim, J., et al.: Stable unassisted solar water splitting on semiconductor photocathodes protected by multifunctional GaN nanostructures. ACS Energy Lett. 4, 1541–1548 (2019). https://doi.org/10.1021/acsenergylett.9b00549

    Article  CAS  Google Scholar 

  58. Choi, M.J., Jung, J.Y., Park, M.J., et al.: Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution. J. Mater. Chem. A 2, 2928–2933 (2014). https://doi.org/10.1039/C3TA14443G

    Article  CAS  Google Scholar 

  59. Liu, B., Feng, S., Yang, L., et al.: Bifacial passivation of n-silicon metal–insulator–semiconductor photoelectrodes for efficient oxygen and hydrogen evolution reactions. Energy Environ. Sci. 13, 221–228 (2020). https://doi.org/10.1039/C9EE02766A

    Article  CAS  Google Scholar 

  60. Liu, R., Zheng, Z., Spurgeon, J., et al.: Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504–2517 (2014). https://doi.org/10.1039/C4EE00450G

    Article  CAS  Google Scholar 

  61. Thalluri, S.M., Wei, B., Welter, K., et al.: Inverted pyramid textured p-silicon covered with Co2P as an efficient and stable solar hydrogen evolution photocathode. ACS Energy Lett. 4, 1755–1762 (2019). https://doi.org/10.1021/acsenergylett.9b00964

    Article  CAS  Google Scholar 

  62. Vijselaar, W., Tiggelaar, R.M., Gardeniers, H., et al.: Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions. ACS Energy Lett. 3, 1086–1092 (2018). https://doi.org/10.1021/acsenergylett.8b00267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ku, C.K., Wu, P.H., Chung, C.C., et al.: Creation of 3D textured graphene/Si Schottky junction photocathode for enhanced photo-electrochemical efficiency and stability. Adv. Energy Mater. 9, 1901022 (2019). https://doi.org/10.1002/aenm.201901022

    Article  CAS  Google Scholar 

  64. Jun, S.E., Choi, S., Choi, S., et al.: Direct synthesis of molybdenum phosphide nanorods on silicon using graphene at the heterointerface for efficient photoelectrochemical water reduction. Nano-Micro Lett. 13, 81 (2021). https://doi.org/10.1007/s40820-021-00605-7

    Article  CAS  ADS  Google Scholar 

  65. Wu, Y., Gong, M., Lin, M.C., et al.: 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 28, 9218–9222 (2016). https://doi.org/10.1002/adma.201602958

    Article  CAS  PubMed  Google Scholar 

  66. Zheng, J., Lyu, Y., Wang, R., et al.: Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 9, 3572 (2018). https://doi.org/10.1038/s41467-018-05580-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Wang, Q., Hisatomi, T., Jia, Q., et al.: Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016). https://doi.org/10.1038/nmat4589

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Dominey, R.N., Lewis, N.S., Bruce, J.A., et al.: Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J. Am. Chem. Soc. 104, 467–482 (1982). https://doi.org/10.1021/ja00366a016

    Article  CAS  Google Scholar 

  69. Wang, T., Liu, S., Li, H., et al.: Transparent Ta2O5 protective layer for stable silicon photocathode under full solar spectrum. Ind. Eng. Chem. Res. 58, 5510–5515 (2019). https://doi.org/10.1021/acs.iecr.9b00147

    Article  CAS  Google Scholar 

  70. Lin, Y., Battaglia, C., Boccard, M., et al.: Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 13, 5615–5618 (2013). https://doi.org/10.1021/nl403265k

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Chen, Y.W., Prange, J.D., Dühnen, S., et al.: Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011). https://doi.org/10.1038/nmat3047

    Article  CAS  PubMed  ADS  Google Scholar 

  72. Fan, R., Mao, J., Yin, Z., et al.: Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production. ACS Appl. Mater. Interfaces 9, 6123–6129 (2017). https://doi.org/10.1021/acsami.6b15854

    Article  CAS  PubMed  Google Scholar 

  73. Fan, R., Dong, W., Fang, L., et al.: Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer. Appl. Phys. Lett. 106, 013902 (2015). https://doi.org/10.1063/1.4905511

    Article  CAS  ADS  Google Scholar 

  74. Oh, S., Kim, J.B., Song, J.T., et al.: Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction. J. Mater. Chem. A 5, 3304–3310 (2017). https://doi.org/10.1039/C6TA10707A

    Article  CAS  Google Scholar 

  75. Yang, C., Barrelet, C.J., Capasso, F., et al.: Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 6, 2929–2934 (2006). https://doi.org/10.1021/nl062314b

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Lehmann, V., Ronnebeck, S.: The physics of macropore formation in low-doped p-type silicon. J. Electrochem. Soc. 146, 2968–2975 (1999). https://doi.org/10.1149/1.1392037

    Article  CAS  ADS  Google Scholar 

  77. Hijazi, H., Monier, G., Gil, E., et al.: Si doping of vapor–liquid–solid GaAs nanowires: n-type or p-type? Nano Lett. 19, 4498–4504 (2019). https://doi.org/10.1021/acs.nanolett.9b01308

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Jiang, C., Moniz, S.J.A., Wang, A., et al.: Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017). https://doi.org/10.1039/C6CS00306K

    Article  CAS  PubMed  Google Scholar 

  79. Chu, S., Li, W., Yan, Y., et al.: Roadmap on solar water splitting: current status and future prospects. Nano Futures 1, 022001 (2017). https://doi.org/10.1088/2399-1984/aa88a1

    Article  CAS  ADS  Google Scholar 

  80. Hu, S., Shaner, M.R., Beardslee, J.A., et al.: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005 (2014). https://doi.org/10.1126/science.1251428

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Benck, J.D., Lee, S.C., Fong, K.D., et al.: Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater. 4, 1400739 (2014). https://doi.org/10.1002/aenm.201400739

    Article  CAS  Google Scholar 

  82. Boettcher, S.W., Warren, E.L., Putnam, M.C., et al.: Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011). https://doi.org/10.1021/ja108801m

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, D., Du, M., Wang, P., et al.: Hole-storage enhanced a-Si photocathodes for efficient hydrogen production. Angew. Chem. Int. Ed. 60, 11966–11972 (2021). https://doi.org/10.1002/anie.202100078

    Article  CAS  Google Scholar 

  84. Oyama, K., Ri, S.G., Kato, H., et al.: High performance of diamond p+-i-n+ junction diode fabricated using heavily doped p+ and n+ layers. Appl. Phys. Lett. 94, 152109 (2009). https://doi.org/10.1063/1.3120560

    Article  CAS  ADS  Google Scholar 

  85. Huang, W.C., Lei, T.F., Lee, C.L.: PtGe ohmic contact to n-type InP. J. Appl. Phys. 78, 6108–6112 (1995). https://doi.org/10.1063/1.360552

    Article  CAS  ADS  Google Scholar 

  86. Zeng, A., Yin, Y., Bilek, M., et al.: Ohmic contact to nitrogen doped amorphous carbon films. Surf. Coat. Technol. 198, 202–205 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.038

    Article  CAS  Google Scholar 

  87. Wang, X., Jie, W., Li, H., et al.: Effects of low-temperature annealing on ohmic contact of Au/p-CdZnTe. Nucl. Instrum. Methods. Phys. Res. B 560, 409–412 (2006). https://doi.org/10.1016/j.nima.2005.12.251

    Article  CAS  Google Scholar 

  88. Alarawi, A., Ramalingam, V., Fu, H.C., et al.: Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction. Opt. Express 27, A352–A363 (2019). https://doi.org/10.1364/OE.27.00A352

    Article  CAS  PubMed  Google Scholar 

  89. Cui, W., Niu, W., Wick-Joliat, R., et al.: Operando deconvolution of photovoltaic and electrocatalytic performance in ALD TiO2 protected water splitting photocathodes. Chem. Sci. 9, 6062–6067 (2018). https://doi.org/10.1039/C8SC01453A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Laskowski, F.A.L., Nellist, M.R., Qiu, J., et al.: Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. J. Am. Chem. Soc. 141, 1394–1405 (2019). https://doi.org/10.1021/jacs.8b09449

    Article  CAS  PubMed  Google Scholar 

  91. Wick-Joliat, R., Musso, T., Prabhakar, R.R., et al.: Stable and tunable phosphonic acid dipole layer for band edge engineering of photoelectrochemical and photovoltaic heterojunction devices. Energy Environ. Sci. 12, 1901–1909 (2019). https://doi.org/10.1039/C9EE00748B

    Article  CAS  Google Scholar 

  92. Ma, Q., Li, M., Pang, L., et al.: Solar-to-hydrogen efficiency of 9.5% by using a thin-layer platinum catalyst and commercial amorphous silicon solar cells. ChemCatChem 8, 1713–1717 (2016). https://doi.org/10.1002/cctc.201600170

  93. Reece, S.Y., Hamel, J.A., Sung, K., et al.: Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011). https://doi.org/10.1126/science.1209816

    Article  CAS  PubMed  ADS  Google Scholar 

  94. Liang, J.H., Tan, H.R., Liu, M., et al.: A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution. J. Mater. Chem. A 4, 16841–16848 (2016). https://doi.org/10.1039/c6ta07701c

    Article  CAS  Google Scholar 

  95. Fu, H.C., Varadhan, P., Lin, C.H., et al.: Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction. Nat. Commun. 11, 3930 (2020). https://doi.org/10.1038/s41467-020-17660-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Vanka, S., Arca, E., Cheng, S., et al.: High efficiency Si photocathode protected by multifunctional GaN nanostructures. Nano Lett. 18, 6530–6537 (2018). https://doi.org/10.1021/acs.nanolett.8b03087

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Wu, L.L., Tsui, L.K., Swami, N., et al.: Photoelectrochemical stability of electrodeposited Cu2O films. J. Phys. Chem. C 114, 11551–11556 (2010). https://doi.org/10.1021/jp103437y

    Article  CAS  Google Scholar 

  98. Paracchino, A., Laporte, V., Sivula, K., et al.: Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011). https://doi.org/10.1038/nmat3017

    Article  CAS  PubMed  ADS  Google Scholar 

  99. Nakaoka, K., Ueyama, J., Ogura, K.: Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates. J. Electrochem. Soc. 151, C661 (2004). https://doi.org/10.1149/1.1789155

    Article  CAS  Google Scholar 

  100. Nozik, A.J., Memming, R.: Physical chemistry of semiconductor–liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996). https://doi.org/10.1021/jp953720e

    Article  CAS  Google Scholar 

  101. Nozik, A.J.: Photochemical diodes. Appl. Phys. Lett. 30, 567–569 (1977). https://doi.org/10.1063/1.89262

    Article  CAS  ADS  Google Scholar 

  102. Tsubomura, H., Nakato, Y., Hiramoto, M., et al.: Metal oxide coated p–n junction silicon electrodes for photoelectrochemical solar energy conversion. Can. J. Chem. 63, 1759–1762 (1985). https://doi.org/10.1139/v85-295

    Article  CAS  Google Scholar 

  103. Mei, B., Seger, B., Pedersen, T., et al.: Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrOx thin films. J. Phys. Chem. Lett. 5, 1948–1952 (2014). https://doi.org/10.1021/jz500865g

    Article  CAS  PubMed  Google Scholar 

  104. Nakato, Y., Hiramoto, M., Iwakabe, Y., et al.: ESCA and photoelectrochemical studies of p–n junction silicon electrodes protected by platinum deposition for use in solar energy conversion. J. Electrochem. Soc. 132, 330–334 (1985). https://doi.org/10.1149/1.2113832

    Article  CAS  ADS  Google Scholar 

  105. Nakato, Y., Tsubomura, H.: Structures and functions of thin metal layers on semiconductor electrodes. J. Photochem. 29, 257–266 (1985). https://doi.org/10.1016/0047-2670(85)87076-3

    Article  CAS  Google Scholar 

  106. Mubeen, S., Lee, J., Singh, N., et al.: Stabilizing inorganic photoelectrodes for efficient solar-to-chemical energy conversion. Energy Environ. Sci. 6, 1633–1639 (2013). https://doi.org/10.1039/c3ee40258d

    Article  CAS  Google Scholar 

  107. Bansal, A., Lewis, N.S.: Stabilization of Si photoanodes in aqueous electrolytes through surface alkylation. J. Phys. Chem. B 102, 4058–4060 (1998). https://doi.org/10.1021/jp980679h

    Article  CAS  Google Scholar 

  108. Noufi, R., Frank, A.J., Nozik, A.J.: Stabilization of n-type silicon photoelectrodes to surface oxidation in aqueous electrolyte solution and mediation of oxidation reaction by surface-attached organic conducting polymer. J. Am. Chem. Soc. 103, 1849–1850 (1981). https://doi.org/10.1021/ja00397a050

    Article  CAS  Google Scholar 

  109. Ghijsen, J., Tjeng, L.H., van Elp, J., et al.: Electronic structure of Cu2O and CuO. Phys. Rev. B Condens. Matter 38, 11322–11330 (1988). https://doi.org/10.1103/physrevb.38.11322

    Article  CAS  PubMed  ADS  Google Scholar 

  110. Meyer, B.K., Polity, A., Reppin, D., et al.: Binary copper oxide semiconductors: from materials towards devices. Phys. Status Solidi B 249, 1487–1509 (2012). https://doi.org/10.1002/pssb.201248128

    Article  CAS  ADS  Google Scholar 

  111. Wang, Y., Lany, S., Ghanbaja, J., et al.: Electronic structures of Cu2O, Cu4O3 and CuO: a joint experimental and theoretical study. Phys. Rev. B 94, 245418 (2016). https://doi.org/10.1103/PhysRevB.94.245418

    Article  ADS  Google Scholar 

  112. Li, Y., Luo, K.: Flexible cupric oxide photocathode with enhanced stability for renewable hydrogen energy production from solar water splitting. RSC Adv. 9, 8350–8354 (2019). https://doi.org/10.1039/C9RA00865A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Jang, Y.J., Jang, J.W., Choi, S.H., et al.: Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction. Nanoscale 7, 7624–7631 (2015). https://doi.org/10.1039/C5NR00208G

    Article  CAS  PubMed  ADS  Google Scholar 

  114. Lee, J.G., Kim, D.Y., Lee, J.H., et al.: Scalable binder-free supersonic cold spraying of nanotextured cupric oxide (CuO) films as efficient photocathodes. ACS Appl. Mater. Interfaces 8, 15406–15414 (2016). https://doi.org/10.1021/acsami.6b03968

    Article  CAS  PubMed  Google Scholar 

  115. Masudy-Panah, S., Siavash Moakhar, R., Chua, C.S., et al.: Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting. ACS Appl. Mater. Interfaces 8, 1206–1213 (2016). https://doi.org/10.1021/acsami.5b09613

    Article  CAS  PubMed  Google Scholar 

  116. Han, J.F., Zong, X., Zhou, X., et al.: Cu2O/CuO photocathode with improved stability for photoelectrochemical water reduction. RSC Adv. 5, 10790–10794 (2015). https://doi.org/10.1039/c4ra13896a

    Article  CAS  ADS  Google Scholar 

  117. Yang, Y., Xu, D., Wu, Q., et al.: Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 6, 35158 (2016). https://doi.org/10.1038/srep35158

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  118. Dubale, A.A., Pan, C.J., Tamirat, A.G., et al.: Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 3, 12482–12499 (2015). https://doi.org/10.1039/c5ta01961c

    Article  CAS  Google Scholar 

  119. Guo, X., Diao, P., Xu, D., et al.: CuO/Pd composite photocathodes for photoelectrochemical hydrogen evolution reaction. Int. J. Hydrog. Energy 39, 7686–7696 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.084

    Article  CAS  Google Scholar 

  120. Zhang, Z.H., Wang, P.: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22, 2456–2464 (2012). https://doi.org/10.1039/c1jm14478b

    Article  CAS  Google Scholar 

  121. Huang, Q., Kang, F., Liu, H., et al.: Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis. J. Mater. Chem. A 1, 2418–2425 (2013). https://doi.org/10.1039/c2ta00918h

    Article  CAS  Google Scholar 

  122. Wang, P., Ng, Y.H., Amal, R.: Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale 5, 2952–2958 (2013). https://doi.org/10.1039/c3nr34012k

    Article  CAS  PubMed  ADS  Google Scholar 

  123. Lumley, M., Radmilovic, A., Jang, Y.J., et al.: Perspectives on the development of oxide-based photocathodes for solar fuel production. J. Am. Chem. Soc. 141, 18358–18369 (2019). https://doi.org/10.1021/jacs.9b07976

    Article  CAS  PubMed  Google Scholar 

  124. Emin, S., Abdi, F.F., Fanetti, M., et al.: A novel approach for the preparation of textured CuO thin films from electrodeposited CuCl and CuBr. J. Electroanal. Chem. 717(718), 243–249 (2014). https://doi.org/10.1016/j.jelechem.2014.01.038

    Article  CAS  Google Scholar 

  125. Septina, W., Prabhakar, R.R., Wick, R., et al.: Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes. Chem. Mater. 29, 1735–1743 (2017). https://doi.org/10.1021/acs.chemmater.6b05248

    Article  CAS  Google Scholar 

  126. Tilley, S.D., Schreier, M., Azevedo, J., et al.: Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv. Funct. Mater. 24, 303–311 (2014). https://doi.org/10.1002/adfm.201301106

    Article  CAS  Google Scholar 

  127. Luo, J.S., Steier, L., Son, M.K., et al.: Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16, 1848–1857 (2016). https://doi.org/10.1021/acs.nanolett.5b04929

    Article  CAS  PubMed  ADS  Google Scholar 

  128. Minami, T., Nishi, Y., Miyata, T.: Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells. Thin Solid Films 549, 65–69 (2013). https://doi.org/10.1016/j.tsf.2013.06.038

    Article  CAS  ADS  Google Scholar 

  129. Minami, T., Nishi, Y., Miyata, T.: High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3Thin film as N-type layer. Appl. Phys. Express 6, 044101 (2013). https://doi.org/10.7567/apex.6.044101

    Article  ADS  Google Scholar 

  130. Lee, Y.S., Chua, D., Brandt, R.E., et al.: Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv. Mater. 26, 4704–4710 (2014). https://doi.org/10.1002/adma.201401054

  131. Pan, L., Kim, J.H., Mayer, M.T., et al.: Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412–420 (2018). https://doi.org/10.1038/s41929-018-0077-6

    Article  CAS  Google Scholar 

  132. Son, M.K., Steier, L., Schreier, M., et al.: A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy Environ. Sci. 10, 912–918 (2017). https://doi.org/10.1039/c6ee03613a

    Article  CAS  Google Scholar 

  133. Azevedo, J., Steier, L., Dias, P., et al.: On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ. Sci. 7, 4044–4052 (2014). https://doi.org/10.1039/c4ee02160f

    Article  CAS  Google Scholar 

  134. Azevedo, J., Tilley, S.D., Schreier, M., et al.: Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy 24, 10–16 (2016). https://doi.org/10.1016/j.nanoen.2016.03.022

    Article  CAS  Google Scholar 

  135. Paracchino, A., Mathews, N., Hisatomi, T., et al.: Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy Environ. Sci. 5, 8673–8681 (2012). https://doi.org/10.1039/C2EE22063F

    Article  CAS  Google Scholar 

  136. Stern, L.A., Liardet, L., Mayer, M.T., et al.: Photoelectrochemical deposition of CoP on cuprous oxide photocathodes for solar hydrogen production. Electrochim. Acta 235, 311–316 (2017). https://doi.org/10.1016/j.electacta.2017.03.074

    Article  CAS  Google Scholar 

  137. Morales-Guio, C.G., Tilley, S.D., Vrubel, H., et al.: Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 3059 (2014). https://doi.org/10.1038/ncomms4059

    Article  CAS  PubMed  ADS  Google Scholar 

  138. Pan, L., Liu, Y., Yao, L., et al.: Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat. Commun. 11, 318 (2020). https://doi.org/10.1038/s41467-019-13987-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  139. Niu, W., Moehl, T., Cui, W., et al.: Extended light harvesting with dual Cu2O-based photocathodes for high efficiency water splitting. Adv. Energy Mater. 8, 1702323 (2018). https://doi.org/10.1002/aenm.201702323

    Article  CAS  Google Scholar 

  140. Wang, Y.C., Qin, C., Lou, Z.-R., et al.: Cu2O photocathodes for unassisted solar water-splitting devices enabled by noble-metal cocatalysts simultaneously as hydrogen evolution catalysts and protection layers. Nanotechnology 30, 495407 (2019). https://doi.org/10.1088/1361-6528/ab40e8

    Article  CAS  PubMed  ADS  Google Scholar 

  141. Li, C., Hisatomi, T., Watanabe, O., et al.: Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ. Sci. 8, 1493–1500 (2015). https://doi.org/10.1039/C5EE00250H

    Article  CAS  Google Scholar 

  142. Li, C., Hisatomi, T., Watanabe, O., et al.: Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers. Appl. Phys. Lett. 109, 033902 (2016). https://doi.org/10.1063/1.4959098

    Article  CAS  ADS  Google Scholar 

  143. Li, Y., Zhong, X.L., Luo, K., et al.: A hydrophobic polymer stabilized p-Cu2O nanocrystal photocathode for highly efficient solar water splitting. J. Mater. Chem. A 7, 15593–15598 (2019). https://doi.org/10.1039/c9ta04822g

    Article  CAS  Google Scholar 

  144. Kobayashi, H., Sato, N., Orita, M., et al.: Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 11, 3003–3009 (2018). https://doi.org/10.1039/c8ee01783b

  145. Yang, W., Oh, Y., Kim, J., et al.: Molecular chemistry-controlled hybrid ink-derived efficient Cu2ZnSnS4 photocathodes for photoelectrochemical water splitting. ACS Energy Lett. 1, 1127–1136 (2016). https://doi.org/10.1021/acsenergylett.6b00453

    Article  CAS  Google Scholar 

  146. Chen, M.X., Liu, Y., Li, C.C., et al.: Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting. Energy Environ. Sci. 11, 2025–2034 (2018). https://doi.org/10.1039/c7ee03650g

    Article  CAS  Google Scholar 

  147. Mali, M.G., Yoon, H., Joshi, B.N., et al.: Enhanced photoelectrochemical solar water splitting using a platinum-decorated CIGS/CdS/ZnO photocathode. ACS Appl. Mater. Interfaces 7, 21619–21625 (2015). https://doi.org/10.1021/acsami.5b07267

    Article  CAS  PubMed  Google Scholar 

  148. Kim, B., Park, G.S., Hwang, Y.J., et al.: Cu(In, Ga)(S, Se)2 photocathodes with a grown-in CuxS catalyst for solar water splitting. ACS Energy Lett. 4, 2937–2944 (2019). https://doi.org/10.1021/acsenergylett.9b01816

    Article  CAS  Google Scholar 

  149. Tay, Y.F., Kaneko, H., Chiam, S.Y., et al.: Solution-processed Cd-substituted CZTS photocathode for efficient solar hydrogen evolution from neutral water. Joule 2, 537–548 (2018). https://doi.org/10.1016/j.joule.2018.01.012

    Article  CAS  Google Scholar 

  150. Yokoyama, D., Minegishi, T., Jimbo, K., et al.: H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl. Phys. Express 3, 101202 (2010). https://doi.org/10.1143/apex.3.101202

    Article  ADS  Google Scholar 

  151. Rovelli, L., Tilley, S.D., Sivula, K.: Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. ACS Appl. Mater. Interfaces 5, 8018–8024 (2013). https://doi.org/10.1021/am402096r

    Article  CAS  PubMed  Google Scholar 

  152. Moriya, M., Minegishi, T., Kumagai, H., et al.: Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. J. Am. Chem. Soc. 135, 3733–3735 (2013). https://doi.org/10.1021/ja312653y

    Article  CAS  PubMed  Google Scholar 

  153. Jiang, F., Gunawan, Harada, T., et al.: Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation. J. Am. Chem. Soc. 137, 13691–13697 (2015). https://doi.org/10.1021/jacs.5b09015

  154. Zhou, Y.H., Shin, D., Ngaboyamahina, E., et al.: Efficient and stable Pt/TiO2/CdS/Cu2BaSn(S, Se)4 photocathode for water electrolysis applications. ACS Energy Lett. 3, 177–183 (2018). https://doi.org/10.1021/acsenergylett.7b01062

    Article  CAS  Google Scholar 

  155. Huang, D.W., Wang, K., Yu, L., et al.: Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film. ACS Energy Lett. 3, 1875–1881 (2018). https://doi.org/10.1021/acsenergylett.8b01005

    Article  CAS  Google Scholar 

  156. Huang, D.W., Wang, K., Li, L.T., et al.: 3.17% Efficient Cu2ZnSnS4–BiVO4 integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. 14, 1480–1489 (2021). https://doi.org/10.1039/d0ee03892j

  157. Feng, K., Huang, D.W., Li, L.T., et al.: MoSx-CdS/Cu2ZnSnS4-based thin film photocathode for solar hydrogen evolution from water. Appl. Catal. B Environ. 268, 118438 (2020). https://doi.org/10.1016/j.apcatb.2019.118438

    Article  CAS  Google Scholar 

  158. Guijarro, N., Prévot, M.S., Sivula, K.: Enhancing the charge separation in nanocrystalline Cu2ZnSnS4 photocathodes for photoelectrochemical application: the role of surface modifications. J Phys Chem Lett 5, 3902–3908 (2014). https://doi.org/10.1021/jz501996s

    Article  CAS  PubMed  Google Scholar 

  159. Feng, K., Cai, Z.W., Huang, D.W., et al.: Near-infrared-driven water splitting for hydrogen evolution using a Cu2ZnSnS4-based photocathode by the application of upconversion nanoparticles. Sustain. Energy Fuels 4, 2669–2674 (2020). https://doi.org/10.1039/d0se00152j

    Article  CAS  Google Scholar 

  160. Jackson, P., Hariskos, D., Wuerz, R., et al.: Properties of Cu(In, Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Stat. Sol. (RRL) 9, 28–31 (2015). https://doi.org/10.1002/pssr.201409520

  161. Contreras, M.A., Mansfield, L.M., Egaas, B., et al.: Improved energy conversion efficiency in wide bandgap Cu(In, Ga)Se2 solar cells. 2011 37th IEEE Photovoltaic Specialists Conference. Seattle, WA, USA. IEEE, 026–031 (2011). https://doi.org/10.1109/PVSC.2011.6185837

  162. Chae, S.Y., Park, S.J., Han, S.G., et al.: Enhanced photocurrents with ZnS passivated Cu(In, Ga)(Se, S)2 photocathodes synthesized using a nonvacuum process for solar water splitting. J. Am. Chem. Soc. 138, 15673–15681 (2016). https://doi.org/10.1021/jacs.6b09595

    Article  CAS  PubMed  Google Scholar 

  163. Baek, M., Zafar, M., Kim, S., et al.: Enhancing durability and photoelectrochemical performance of the earth abundant Ni-Mo/TiO2/CdS/ClGS photocathode under various pH conditions. Chemsuschem 11, 3679–3688 (2018). https://doi.org/10.1002/cssc.201801211

    Article  CAS  PubMed  Google Scholar 

  164. Kumagai, H., Minegishi, T., Sato, N., et al.: Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In, Ga)Se2 photocathodes. J. Mater. Chem. A 3, 8300–8307 (2015). https://doi.org/10.1039/c5ta01058f

    Article  CAS  Google Scholar 

  165. Gaillard, N., Prasher, D., Kaneshiro, J., et al.: Development of chalcogenide thin film materials for photoelectrochemical hydrogen production. MRS Proc. 1558, 207 (2013). https://doi.org/10.1557/opl.2013.1084

    Article  CAS  Google Scholar 

  166. Gaillard, N., Prasher, D., Chong, M., et al.: Wide-bandgap Cu(In, Ga)S2 photocathodes integrated on transparent conductive F: SnO2 substrates for chalcopyrite-based water splitting tandem devices. ACS Appl. Energy Mater. 2, 5515–5524 (2019). https://doi.org/10.1021/acsaem.9b00690

    Article  CAS  Google Scholar 

  167. Gaillard, N., Deangelis, A.: Photoelectrochemical water splitting using photovoltaic materials. In: Sugiyama M., Fujii K., Nakamura S. (eds.) Solar to Chemical Energy Conversion: Theory and Application. Springer International Publishing, New York (2016)

  168. Jacobsson, T.J., Fjällström, V., Sahlberg, M., et al.: A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6, 3676–3683 (2013). https://doi.org/10.1039/c3ee42519c

    Article  CAS  Google Scholar 

  169. Luo, J.S., Li, Z., Nishiwaki, S., et al.: Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1−xSe2 photocathodes. Adv. Energy Mater. 5, 1501520 (2015). https://doi.org/10.1002/aenm.201501520

    Article  CAS  Google Scholar 

  170. Koo, B., Nam, S.W., Haight, R., et al.: Tailoring photoelectrochemical performance and stability of Cu(In, Ga)Se2 photocathode via TiO2-coupled buffer layers. ACS Appl. Mater. Interfaces 9, 5279–5287 (2017). https://doi.org/10.1021/acsami.6b15168

    Article  CAS  PubMed  Google Scholar 

  171. Koo, B., Byun, S., Nam, S.W., et al.: Reduced graphene oxide as a catalyst binder: greatly enhanced photoelectrochemical stability of Cu(In, Ga)Se2 photocathode for solar water splitting. Adv. Funct. Mater. 28, 1705136 (2018). https://doi.org/10.1002/adfm.201705136

    Article  CAS  Google Scholar 

  172. Wang, M.Q., Chang, Y.S., Tsao, C.W., et al.: Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed ClGS photocathodes with an earth-abundant cobalt sulfide catalyst. Chem. Commun. 55, 2465–2468 (2019). https://doi.org/10.1039/c8cc09426h

    Article  CAS  Google Scholar 

  173. Kaneko, H., Minegishi, T., Nakabayashi, M., et al.: A novel photocathode material for sunlight-driven overall water splitting: solid solution of ZnSe and Cu(In, Ga)Se2. Adv. Funct. Mater. 26, 4570–4577 (2016). https://doi.org/10.1002/adfm.201600615

    Article  CAS  Google Scholar 

  174. Kageshima, Y., Fujita, T., Takagi, F., et al.: Electrochemical evaluation for multiple functions of Pt-loaded TiO2 nanoparticles deposited on a photocathode. ChemElectroChem 6, 4859–4866 (2019). https://doi.org/10.1002/celc.201901453

    Article  CAS  Google Scholar 

  175. Takagi, F., Kageshima, Y., Teshima, K., et al.: Enhanced photoelectrochemical performance from particulate ZnSe: Cu(In, Ga)Se2 photocathodes during solar hydrogen production via particle size control. Sustain. Energy Fuels 5, 412–423 (2021). https://doi.org/10.1039/d0se00998a

    Article  CAS  Google Scholar 

  176. Septina, W., Gunawan, Ikeda, S., et al.: Photosplitting of water from wide-gap Cu(In, Ga)S2 thin films modified with a CdS layer and Pt nanoparticles for a high-onset-potential photocathode. J. Phys. Chem. C 119, 8576–8583 (2015). https://doi.org/10.1021/acs.jpcc.5b02068

  177. Lin, J., Zhang, Z., Chai, J., et al.: Highly efficient InGaN nanorods photoelectrode by constructing Z-scheme charge transfer system for unbiased water splitting. Small 17, e2006666 (2021). https://doi.org/10.1002/smll.202006666

    Article  CAS  PubMed  Google Scholar 

  178. Chu, S., Vanka, S., Wang, Y.C., et al.: Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV. ACS Energy Lett. 3, 307–314 (2018). https://doi.org/10.1021/acsenergylett.7b01138

  179. Zheng, Y., Wang, W., Li, Y., et al.: Self-integrated hybrid ultraviolet photodetectors based on the vertically aligned InGaN nanorod array assembly on graphene. ACS Appl. Mater. Interfaces 11, 13589–13597 (2019). https://doi.org/10.1021/acsami.9b00940

    Article  CAS  PubMed  Google Scholar 

  180. Lin, J., Yu, Y.F., Zhang, Z.J., et al.: A novel approach for achieving high-efficiency photoelectrochemical water oxidation in InGaN nanorods grown on Si system: MXene nanosheets as multifunctional interfacial modifier. Adv. Funct. Mater. 30, 1910479 (2020). https://doi.org/10.1002/adfm.201910479

    Article  CAS  Google Scholar 

  181. Vanka, S., Zhou, B.W., Awni, R.A., et al.: InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Lett. 5, 3741–3751 (2020). https://doi.org/10.1021/acsenergylett.0c01583

    Article  CAS  Google Scholar 

  182. Yang, F., Kuznietsov, V., Lublow, M., et al.: Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes. J. Mater. Chem. A 1, 6407–6415 (2013). https://doi.org/10.1039/c3ta10360a

    Article  CAS  Google Scholar 

  183. Kumagai, H., Minegishi, T., Moriya, Y., et al.: Photoelectrochemical hydrogen evolution from water using copper gallium selenide electrodes prepared by a particle transfer method. J. Phys. Chem. C 118, 16386–16392 (2014). https://doi.org/10.1021/jp409921f

    Article  CAS  Google Scholar 

  184. Hellstern, T.R., Palm, D.W., Carter, J., et al.: Molybdenum disulfide catalytic coatings via atomic layer deposition for solar hydrogen production from copper gallium diselenide photocathodes. ACS Appl. Energy Mater. 2, 1060–1066 (2019). https://doi.org/10.1021/acsaem.8b01562

    Article  CAS  Google Scholar 

  185. Muzzillo, C.P., Klein, W.E., Li, Z., et al.: Low-cost, efficient, and durable H2 production by photoelectrochemical water splitting with CuGa3Se5 photocathodes. ACS Appl. Mater. Interfaces 10, 19573–19579 (2018). https://doi.org/10.1021/acsami.8b01447

    Article  CAS  PubMed  Google Scholar 

  186. Chae, S.Y., Kim, S., Joo, O.S.: Design of an amorphous TaOx multifunctional interfacial layer on photocathodes for photoelectrochemical H2 evolution. J. Mater. Chem. A 7, 2041–2047 (2019). https://doi.org/10.1039/c8ta10738f

    Article  CAS  Google Scholar 

  187. Frick, J.J., Cava, R.J., Bocarsly, A.B.: Chalcopyrite CuIn(S1–xSex)2 for photoelectrocatalytic H2 evolution: unraveling the energetics and complex kinetics of photogenerated charge transfer in the semiconductor bulk. Chem. Mater. 30, 4422–4431 (2018). https://doi.org/10.1021/acs.chemmater.8b01827

    Article  CAS  Google Scholar 

  188. Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959). https://doi.org/10.1103/physrev.116.84

    Article  ADS  Google Scholar 

  189. Mora-Seró, I., Dittrich, T., Garcia-Belmonte, G., et al.: Determination of spatial charge separation of diffusing electrons by transient photovoltage measurements. J. Appl. Phys. 100, 103705 (2006). https://doi.org/10.1063/1.2361158

    Article  CAS  ADS  Google Scholar 

  190. Liu, Z., Zhou, M.: Co-modification with cost-effective nickel oxides and nickel sulfides on CuInS2 nanosheets photocathode for enhanced photoelectrochemical performance. ACS Sustain. Chem. Eng. 8, 512–519 (2020). https://doi.org/10.1021/acssuschemeng.9b05936

    Article  CAS  Google Scholar 

  191. Guijarro, N., Prévot, M.S., Yu, X.Y., et al.: A bottom-up approach toward all-solution-processed high-efficiency Cu(In, Ga)S2 photocathodes for solar water splitting. Adv. Energy Mater. 6, 1501949 (2016). https://doi.org/10.1002/aenm.201501949

    Article  CAS  Google Scholar 

  192. Gunawan, Septina, W., Harada, T., et al.: Investigation of the electric structures of heterointerfaces in Pt- and In2S3-modified CuInS2 photocathodes used for sunlight-induced hydrogen evolution. ACS Appl. Mater. Interfaces 7, 16086–16092 (2015). https://doi.org/10.1021/acsami.5b04634

  193. Li, M., Chen, L., Su, Y.J., et al.: Hexagonally ordered microbowl arrays decorated with ultrathin CuInS2 nanosheets for enhanced photoelectrochemical performance. J. Energy Chem. 51, 134–142 (2020). https://doi.org/10.1016/j.jechem.2020.03.070

    Article  Google Scholar 

  194. Zhang, L., Minegishi, T., Nakabayashi, M., et al.: Durable hydrogen evolution from water driven by sunlight using (Ag, Cu)GaSe2 photocathodes modified with CdS and CuGa3Se5. Chem. Sci. 6, 894–901 (2015). https://doi.org/10.1039/c4sc02346c

    Article  CAS  PubMed  Google Scholar 

  195. Na, Y., Hu, B., Yang, Q.L., et al.: CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting. Chin. Chem. Lett. 26, 141–144 (2015). https://doi.org/10.1016/j.cclet.2014.09.011

    Article  CAS  Google Scholar 

  196. Liu, S.S., Luo, Z.B., Li, L.L., et al.: Multifunctional TiO2 overlayer for p-Si/n-CdS heterojunction photocathode with improved efficiency and stability. Nano Energy 53, 125–129 (2018). https://doi.org/10.1016/j.nanoen.2018.08.024

    Article  CAS  Google Scholar 

  197. Yan, J., Li, X., Yang, S.Y., et al.: Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light driven H2 evolution. Int. J. Hydrog. Energy 42, 928–937 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.188

    Article  CAS  Google Scholar 

  198. Wei, L., Zhang, J., Ruan, M.N.: Combined CdS/In2S3 heterostructures with cocatalyst for boosting carriers separation and photoelectrochemical water splitting. Appl. Surf. Sci. 541, 148431 (2021). https://doi.org/10.1016/j.apsusc.2020.148431

    Article  CAS  Google Scholar 

  199. Meng, L.X., He, J.L., Tian, W., et al.: Ni/Fe codoped In2S3 nanosheet arrays boost photo-electrochemical performance of planar Si photocathodes. Adv. Energy Mater. 9, 1902135 (2019). https://doi.org/10.1002/aenm.201902135

    Article  CAS  Google Scholar 

  200. Bai, Z.M., Zhang, Y.H.: A Cu2O/Cu2S-ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J. Alloys Compd. 698, 133–140 (2017). https://doi.org/10.1016/j.jallcom.2016.12.261

    Article  CAS  Google Scholar 

  201. Ye, Z., Hu, Z.F., Yang, L.X., et al.: Stable p-type Cu: CdS1–xSex/Pt thin-film photocathodes with fully tunable bandgap for scavenger-free photoelectrochemical water splitting. Sol. RRL 4, 1900567 (2020). https://doi.org/10.1002/solr.201900567

    Article  CAS  Google Scholar 

  202. Sheng, W.H., Song, Y., Dou, M.L., et al.: Constructing 1D hierarchical heterostructures of MoS2/In2S3 nanosheets on CdS nanorod arrays for enhanced photoelectrocatalytic H2 evolution. Appl. Surf. Sci. 436, 613–623 (2018). https://doi.org/10.1016/j.apsusc.2017.11.281

    Article  CAS  ADS  Google Scholar 

  203. Cheng, W., Singh, N., Elliott, W., et al.: Earth-abundant tin sulfide-based photocathodes for solar hydrogen production. Adv. Sci. 5, 1700362 (2018). https://doi.org/10.1002/advs.201700362

    Article  CAS  Google Scholar 

  204. Patel, M., Kumar, M., Kim, J., et al.: Photocurrent enhancement by a rapid thermal treatment of nanodisk-shaped SnS photocathodes. J. Phys. Chem. Lett. 8, 6099–6105 (2017). https://doi.org/10.1021/acs.jpclett.7b02998

    Article  CAS  PubMed  Google Scholar 

  205. Li, X.T., Liu, B., Chen, Y., et al.: Decoration of Cu2O photocathode with protective TiO2 and active WS2 layers for enhanced photoelectrochemical hydrogen evolution. Nanotechnology 29, 505603 (2018). https://doi.org/10.1088/1361-6528/aae569

    Article  CAS  PubMed  ADS  Google Scholar 

  206. Zhao, H., Dai, Z.Y., Xu, X.Y., et al.: Integrating semiconducting catalyst of ReS2 nanosheets into p-silicon photocathode for enhanced solar water reduction. ACS Appl. Mater. Interfaces 10, 23074–23080 (2018). https://doi.org/10.1021/acsami.8b04740

    Article  CAS  PubMed  Google Scholar 

  207. Ran, J.R., Zhang, H.P., Qu, J.T., et al.: Atomic-level insights into the edge active ReS2 ultrathin nanosheets for high-efficiency light-to-hydrogen conversion. ACS Mater. Lett. 2, 1484–1494 (2020). https://doi.org/10.1021/acsmaterialslett.0c00205

    Article  CAS  Google Scholar 

  208. Basu, M., Zhang, Z.W., Chen, C.J., et al.: Heterostructure of Si and CoSe2: a promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution. Angew. Chem. Int. Ed. 54, 6211–6216 (2015). https://doi.org/10.1002/anie.201502573

    Article  CAS  Google Scholar 

  209. Wang, K., Huang, D.W., Li, L.T., et al.: Three-dimensional GeSe microstructured air brick photocathode for advanced solar water splitting. Sol. RRL 4, 1900559 (2020). https://doi.org/10.1002/solr.201900559

    Article  CAS  Google Scholar 

  210. Wang, K., Huang, D.W., Yu, L., et al.: Promising GeSe nanosheet-based thin-film photocathode for efficient and stable overall solar water splitting. ACS Catal. 9, 3090–3097 (2019). https://doi.org/10.1021/acscatal.9b00035

    Article  CAS  Google Scholar 

  211. Wu, F.L., Tian, W., Cao, F.R., et al.: Loading amorphous NiMoO4–xSx nanosheet cocatalyst to improve performance of p-silicon wafer photocathode. ACS Appl. Energy Mater. 1, 1286–1293 (2018). https://doi.org/10.1021/acsaem.8b00017

    Article  CAS  Google Scholar 

  212. Yang, W., Lee, S., Kwon, H.C., et al.: Time-resolved observations of photo-generated charge-carrier dynamics in Sb2Se3 photocathodes for photoelectrochemical water splitting. ACS Nano 12, 11088–11097 (2018). https://doi.org/10.1021/acsnano.8b05446

    Article  CAS  PubMed  Google Scholar 

  213. Chen, C., Zhao, Y., Lu, S.C., et al.: Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Adv. Energy Mater. 7, 1700866 (2017). https://doi.org/10.1002/aenm.201700866

    Article  CAS  Google Scholar 

  214. Zhou, Y., Wang, L., Chen, S., et al.: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9, 409–415 (2015). https://doi.org/10.1038/nphoton.2015.78

    Article  CAS  ADS  Google Scholar 

  215. Wang, L., Li, D.B., Li, K.H., et al.: Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2, 17046 (2017). https://doi.org/10.1038/nenergy.2017.46

    Article  CAS  ADS  Google Scholar 

  216. Zhang, L., Li, Y.B., Li, C.L., et al.: Scalable low-band-gap Sb2Se3 thin-film photocathodes for efficient visible–near-infrared solar hydrogen evolution. ACS Nano 11, 12753–12763 (2017). https://doi.org/10.1021/acsnano.7b07512

    Article  CAS  PubMed  Google Scholar 

  217. Prabhakar, R.R., Septina, W., Siol, S., et al.: Photocorrosion-resistant Sb2Se3 photocathodes with earth abundant MoSx hydrogen evolution catalyst. J. Mater. Chem. A 5, 23139–23145 (2017). https://doi.org/10.1039/C7TA08993G

    Article  CAS  Google Scholar 

  218. Park, J., Yang, W., Oh, Y., et al.: Efficient solar-to-hydrogen conversion from neutral electrolytes using morphology-controlled Sb2Se3 light absorbers. ACS Energy Lett. 4, 517–526 (2019). https://doi.org/10.1021/acsenergylett.8b02323

    Article  CAS  Google Scholar 

  219. Yang, W., Kim, J.H., Hutter, O.S., et al.: Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nat. Commun. 11, 861 (2020). https://doi.org/10.1038/s41467-020-14704-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  220. Tan, J., Yang, W., Lee, H., et al.: Surface restoration of polycrystalline Sb2Se3 thin films by conjugated molecules enabling high-performance photocathodes for photoelectrochemical water splitting. Appl. Catal. B Environ. 286, 119890 (2021). https://doi.org/10.1016/j.apcatb.2021.119890

    Article  CAS  Google Scholar 

  221. Liu, C., Liu, T., Li, Y.Z., et al.: A dendritic Sb2Se3/In2S3 heterojunction nanorod array photocathode decorated with a MoSx catalyst for efficient solar hydrogen evolution. J. Mater. Chem. A 8, 23385–23394 (2020). https://doi.org/10.1039/d0ta08874a

    Article  CAS  Google Scholar 

  222. Gu, J., Aguiar, J.A., Ferrere, S., et al.: A graded catalytic–protective layer for an efficient and stable water-splitting photocathode. Nat. Energy 2, 16192 (2017). https://doi.org/10.1038/nenergy.2016.192

    Article  CAS  ADS  Google Scholar 

  223. Pinaud, B.A., Benck, J.D., Seitz, L.C., et al.: Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013). https://doi.org/10.1039/c3ee40831k

    Article  CAS  Google Scholar 

  224. Döscher, H., Geisz, J.F., Deutsch, T.G., et al.: Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7, 2951–2956 (2014). https://doi.org/10.1039/c4ee01753f

    Article  Google Scholar 

  225. Khaselev, O., Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998). https://doi.org/10.1126/science.280.5362.425

    Article  CAS  PubMed  ADS  Google Scholar 

  226. Lim, H., Young, J.L., Geisz, J.F., et al.: High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry. Nat. Commun. 10, 3388 (2019). https://doi.org/10.1038/s41467-019-11351-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  227. Britto, R.J., Benck, J.D., Young, J.L., et al.: Molybdenum disulfide as a protection layer and catalyst for gallium indium phosphide solar water splitting photocathodes. J. Phys. Chem. Lett. 7, 2044–2049 (2016). https://doi.org/10.1021/acs.jpclett.6b00563

    Article  CAS  PubMed  Google Scholar 

  228. Tomkiewicz, M., Woodall, J.M.: Photoassisted electrolysis of water by visible irradiation of a p-type gallium phosphide electrode. Science 196, 990–991 (1977). https://doi.org/10.1126/science.196.4293.990

    Article  CAS  PubMed  ADS  Google Scholar 

  229. Assali, S., Zardo, I., Plissard, S., et al.: Direct band gap wurtzite gallium phosphide nanowires. Nano Lett. 13, 1559–1563 (2013). https://doi.org/10.1021/nl304723c

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  230. Malizia, M., Seger, B., Chorkendorff, I., et al.: Formation of a p–n heterojunction on GaP photocathodes for H2 production providing an open-circuit voltage of 710 mV. J. Mater. Chem. A 2, 6847–6853 (2014). https://doi.org/10.1039/c4ta00752b

    Article  CAS  Google Scholar 

  231. Liu, C., Sun, J.W., Tang, J.Y., et al.: Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis. Nano Lett. 12, 5407–5411 (2012). https://doi.org/10.1021/nl3028729

    Article  CAS  PubMed  ADS  Google Scholar 

  232. Standing, A., Assali, S., Gao, L., et al.: Efficient water reduction with gallium phosphide nanowires. Nat. Commun. 6, 7824 (2015). https://doi.org/10.1038/ncomms8824

    Article  CAS  PubMed  ADS  Google Scholar 

  233. Lee, M.H., Takei, K., Zhang, J.J., et al.: p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed. 51, 10760–10764 (2012). https://doi.org/10.1002/anie.201203174

    Article  CAS  Google Scholar 

  234. Hellstern, T.R., Benck, J.D., Kibsgaard, J., et al.: Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 6, 1501758 (2016). https://doi.org/10.1002/aenm.201501758

    Article  CAS  Google Scholar 

  235. Zhou, B., Kong, X., Vanka, S., et al.: Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting. Nat. Commun. 9, 3856 (2018). https://doi.org/10.1038/s41467-018-06140-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  236. Cabán-Acevedo, M., Stone, M.L., Schmidt, J.R., et al.: Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245–1251 (2015). https://doi.org/10.1038/nmat4410

    Article  CAS  PubMed  ADS  Google Scholar 

  237. Tijare, S.N., Joshi, M.V., Padole, P.S., et al.: Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int. J. Hydrog. Energy 37, 10451–10456 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.120

    Article  CAS  Google Scholar 

  238. Scafetta, M.D., Cordi, A.M., Rondinelli, J.M., et al.: Band structure and optical transitions in LaFeO3: theory and experiment. J. Phys. Condens. Matter 26, 505502 (2014). https://doi.org/10.1088/0953-8984/26/50/505502

    Article  CAS  PubMed  Google Scholar 

  239. Prévot, M.S., Guijarro, N., Sivula, K.: Enhancing the performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. Chemsuschem 8, 1359–1367 (2015). https://doi.org/10.1002/cssc.201403146

    Article  CAS  PubMed  Google Scholar 

  240. Read, C.G., Park, Y., Choi, K.S.: Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J. Phys. Chem. Lett. 3, 1872–1876 (2012). https://doi.org/10.1021/jz300709t

    Article  CAS  PubMed  Google Scholar 

  241. Li, Y., Wang, T., Gao, B., et al.: Efficient photocathode performance of lithium ion doped LaFeO3 nanorod arrays in hydrogen evolution. New J. Chem. 45, 3463–3468 (2021). https://doi.org/10.1039/d0nj05788f

    Article  CAS  Google Scholar 

  242. Wheeler, G.P., Choi, K.S.: Photoelectrochemical properties and stability of nanoporous p-type LaFeO3 photoelectrodes prepared by electrodeposition. ACS Energy Lett. 2, 2378–2382 (2017). https://doi.org/10.1021/acsenergylett.7b00642

    Article  CAS  Google Scholar 

  243. Parida, K.M., Reddy, K.H., Martha, S., et al.: Fabrication of nanocrystalline LaFeO3: an efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hydrog. Energy 35, 12161–12168 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.029

    Article  CAS  Google Scholar 

  244. Gupta, M.V.N.S., Baig, H., Reddy, K.S., et al.: Photoelectrochemical water splitting using a concentrated solar flux-assisted LaFeO3 photocathode. ACS Appl. Energy Mater. 3, 9002–9009 (2020). https://doi.org/10.1021/acsaem.0c01428

    Article  CAS  Google Scholar 

  245. Pawar, G.S., Elikkottil, A., Seetha, S., et al.: Enhanced photoactivity and hydrogen generation of LaFeO3 photocathode by plasmonic silver nanoparticle incorporation. ACS Appl. Energy Mater. 1, 3449–3456 (2018). https://doi.org/10.1021/acsaem.8b00628

    Article  CAS  Google Scholar 

  246. Son, M.K., Seo, H., Watanabe, M., et al.: Characteristics of crystalline sputtered LaFeO3 thin films as photoelectrochemical water splitting photocathodes. Nanoscale 12, 9653–9660 (2020). https://doi.org/10.1039/d0nr01762k

    Article  CAS  PubMed  Google Scholar 

  247. Wang, P.P., He, Y.F., Mi, Y., et al.: Enhanced photoelectrochemical performance of LaFeO3 photocathode with Au buffer layer. RSC Adv. 9, 26780–26786 (2019). https://doi.org/10.1039/c9ra05521e

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  248. Yan, X.Y., Pu, R.H., Xie, R.J., et al.: Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improved photoelectrochemical performance. Appl. Surf. Sci. 552, 149442 (2021). https://doi.org/10.1016/j.apsusc.2021.149442

    Article  CAS  Google Scholar 

  249. Shen, H.Y., Zhou, X.X., Dong, W., et al.: Dual role of TiO2 buffer layer in Pt catalyzed BiFeO3 photocathodes: efficiency enhancement and surface protection. Appl. Phys. Lett. 111, 123901 (2017). https://doi.org/10.1063/1.4999969

    Article  CAS  ADS  Google Scholar 

  250. Cheng, X.R., Shen, H.Y., Dong, W., et al.: Nano-Au and ferroelectric polarization mediated Si/ITO/BiFeO3 tandem photocathode for efficient H2 production. Adv. Mater. Interfaces 3, 1600485 (2016). https://doi.org/10.1002/admi.201600485

    Article  CAS  Google Scholar 

  251. Cheng, X., Gu, S., Centeno, A., et al.: Plasmonic enhanced Cu2O-Au-BFO photocathodes for solar hydrogen production. Sci. Rep. 9, 5140 (2019). https://doi.org/10.1038/s41598-019-41613-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  252. Zhao, W., Jin, Y., Gao, C.H., et al.: A simple method for fabricating p–n junction photocatalyst CuFe2O4/Bi4Ti3O12 and its photocatalytic activity. Mater. Chem. Phys. 143, 952–962 (2014). https://doi.org/10.1016/j.matchemphys.2013.10.026

    Article  CAS  Google Scholar 

  253. Helaïli, N., Bessekhouad, Y., Bachari, K., et al.: Synthesis and physical properties of the CuFe2−xMnxO4 (0 \(\leqslant\) x \(\leqslant\) 2) solid solution. Mater. Chem. Phys. 148, 734–743 (2014). https://doi.org/10.1016/j.matchemphys.2014.08.042

    Article  CAS  Google Scholar 

  254. Dillert, R., Taffa, D.H., Wark, M., et al.: Research update: photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Mater. 3, 104001 (2015). https://doi.org/10.1063/1.4931763

    Article  CAS  ADS  Google Scholar 

  255. Park, S., Baek, J.H., Zhang, L., et al.: Rapid flame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production. ACS Sustainable Chem. Eng. 7, 5867–5874 (2019). https://doi.org/10.1021/acssuschemeng.8b05824

    Article  CAS  Google Scholar 

  256. Jang, Y.J., Park, Y.B., Kim, H.E., et al.: Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem. Mater. 28, 6054–6061 (2016). https://doi.org/10.1021/acs.chemmater.6b00460

    Article  CAS  Google Scholar 

  257. Oh, Y., Yang, W., Tan, J., et al.: Boosting visible light harvesting in p-type ternary oxides for solar-to-hydrogen conversion using inverse opal structure. Adv. Funct. Mater. 29, 1900194 (2019). https://doi.org/10.1002/adfm.201900194

    Article  CAS  Google Scholar 

  258. Cots, A., Bonete, P., Gómez, R.: Improving the stability and efficiency of CuO photocathodes for solar hydrogen production through modification with iron. ACS Appl. Mater. Interfaces 10, 26348–26356 (2018). https://doi.org/10.1021/acsami.8b09892

    Article  CAS  PubMed  Google Scholar 

  259. Tapia, C., Bellet-Amalric, E., Aldakov, D., et al.: Achieving visible light-driven hydrogen evolution at positive bias with a hybrid copper–iron oxide|TiO2-cobaloxime photocathode. Green Chem. 22, 3141–3149 (2020). https://doi.org/10.1039/d0gc00979b

    Article  CAS  Google Scholar 

  260. Atacan, K., Güy, N., Boutra, B., et al.: Enhancement of photoelectrochemical hydrogen production by using a novel ternary Ag2CrO4/GO/MnFe2O4 photocatalyst. Int. J. Hydrog. Energy 45, 17453–17467 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.268

    Article  CAS  Google Scholar 

  261. Chen, Y.J., Jiang, H.Y., Li, L.G., et al.: Hierarchical NiS decorated CuO@ZnFe2O4 nanoarrays as advanced photocathodes for hydrogen evolution reaction. Int. J. Hydrog. Energy 45, 6174–6183 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.170

    Article  CAS  Google Scholar 

  262. Ida, S., Yamada, K., Matsunaga, T., et al.: Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J. Am. Chem. Soc. 132, 17343–17345 (2010). https://doi.org/10.1021/ja106930f

    Article  CAS  PubMed  Google Scholar 

  263. Ida, S., Kearney, K., Futagami, T., et al.: Photoelectrochemical H2 evolution using TiO2-coated CaFe2O4 without an external applied bias under visible light irradiation at 470 nm based on device modeling. Sustain. Energy Fuels 1, 280–287 (2017). https://doi.org/10.1039/c7se00084g

    Article  CAS  Google Scholar 

  264. Sun, H.J., Öner, I.H., Wang, T., et al.: Molecular engineering of conjugated acetylenic polymers for efficient cocatalyst-free photoelectrochemical water reduction. Angew. Chem. Int. Ed. 58, 10368–10374 (2019). https://doi.org/10.1002/anie.201904978

    Article  CAS  Google Scholar 

  265. Liu, Y., Li, C., Ren, Z., et al.: All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018). https://doi.org/10.1038/natrevmats.2018.20

    Article  CAS  ADS  Google Scholar 

  266. Gather, M.C., Köhnen, A., Meerholz, K.: White organic light-emitting diodes. Adv. Mater. 23, 233–248 (2011). https://doi.org/10.1002/adma.201002636

    Article  CAS  PubMed  Google Scholar 

  267. Torsi, L., Magliulo, M., Manoli, K., et al.: Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42, 8612–8628 (2013). https://doi.org/10.1039/c3cs60127g

    Article  CAS  PubMed  Google Scholar 

  268. Günes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007). https://doi.org/10.1021/cr050149z

    Article  CAS  PubMed  Google Scholar 

  269. Cheng, Y.J., Yang, S.H., Hsu, C.S.: Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009). https://doi.org/10.1021/cr900182s

    Article  CAS  PubMed  Google Scholar 

  270. Ming, J.T., Liu, A., Zhao, J.W., et al.: Hot π-electron tunneling of metal–insulator–COF nanostructures for efficient hydrogen production. Angew. Chem. Int. Ed. 58, 18290–18294 (2019). https://doi.org/10.1002/anie.201912344

    Article  CAS  Google Scholar 

  271. Huang, T., Lin, X., Liu, Y., et al.: Molecular engineering of fully conjugated sp2 carbon-linked polymers for high-efficiency photocatalytic hydrogen evolution. Chemsuschem 13, 672–676 (2020). https://doi.org/10.1002/cssc.201903334

    Article  CAS  PubMed  Google Scholar 

  272. Han, S.T., Huang, T., Pan, Y., et al.: Tunable linear donor–π–acceptor conjugated polymers with a vinylene linkage for visible-light driven hydrogen evolution. Catal. Sci. Technol. 11, 4021–4025 (2021). https://doi.org/10.1039/d1cy00535a

    Article  CAS  Google Scholar 

  273. Lin, H., Ma, Z.Y., Zhao, J.W., et al.: Electric-field-mediated electron tunneling of supramolecular naphthalimide nanostructures for biomimetic H2 production. Angew. Chem. Int. Ed. 60, 1235–1243 (2021). https://doi.org/10.1002/anie.202009267

    Article  CAS  Google Scholar 

  274. Sun, H.J., Neumann, C., Zhang, T., et al.: Poly(1, 4-diethynylbenzene) gradient homojunction with enhanced charge carrier separation for photoelectrochemical water reduction. Adv. Mater. 31, 1900961 (2019). https://doi.org/10.1002/adma.201900961

    Article  CAS  Google Scholar 

  275. Sick, T., Hufnagel, A.G., Kampmann, J., et al.: Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. J. Am. Chem. Soc. 140, 2085–2092 (2018). https://doi.org/10.1021/jacs.7b06081

    Article  CAS  PubMed  Google Scholar 

  276. Murakami, T., Ikezoi, K., Nagai, K., et al.: A water-splitting system with a cobalt (II, III) oxide co-catalyst-loaded bismuth vanadate photoanode along with an organo-photocathode. ChemElectroChem 7, 5029–5035 (2020). https://doi.org/10.1002/celc.202001271

    Article  CAS  Google Scholar 

  277. Li, H., Wen, P., Hoxie, A., et al.: Interface engineering of colloidal CdSe quantum dot thin films as acid-stable photocathodes for solar-driven hydrogen evolution. ACS Appl. Mater. Interfaces 10, 17129–17139 (2018). https://doi.org/10.1021/acsami.7b19229

    Article  CAS  PubMed  Google Scholar 

  278. Morozan, A., Bourgeteau, T., Tondelier, D., et al.: Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors. Nanotechnology 27, 355401 (2016). https://doi.org/10.1088/0957-4484/27/35/355401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Shi, W., Yu, W., Li, D., et al.: PTB7:PC61BM bulk heterojunction-based photocathodes for efficient hydrogen production in aqueous solution. Chem. Mater. 31, 1928–1935 (2019). https://doi.org/10.1021/acs.chemmater.8b04629

    Article  CAS  ADS  Google Scholar 

  280. Xu, S.Q., Sun, H.J., Addicoat, M., et al.: Thiophene-bridged donor–acceptor sp2-carbon-linked 2D conjugated polymers as photocathodes for water reduction. Adv. Mater. 33, 2006274 (2021). https://doi.org/10.1002/adma.202006274

    Article  CAS  Google Scholar 

  281. Oka, K., Nishide, H., Winther-Jensen, B.: Completely solar-driven photoelectrochemical water splitting using a neat polythiophene film. Cell Rep. Phys. Sci. 2, 100306 (2021). https://doi.org/10.1016/j.xcrp.2020.100306

    Article  CAS  Google Scholar 

  282. Xu, N., Li, F., Gao, L.L., et al.: Polythiophene coated CuBi2O4 networks: a porous inorganic-organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution. Int. J. Hydrog. Energy 43, 2064–2072 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.036

    Article  CAS  Google Scholar 

  283. Zhang, Y., Lv, H.F., Zhang, Z., et al.: Stable unbiased photo-electrochemical overall water splitting exceeding 3% efficiency via covalent triazine framework/metal oxide hybrid photoelectrodes. Adv. Mater. 33, 2008264 (2021). https://doi.org/10.1002/adma.202008264

    Article  CAS  Google Scholar 

  284. Najafi, L., Romano, V., Oropesa-Nuñez, R., et al.: Hybrid organic/inorganic photocathodes based on WS2 flakes as hole transporting layer material. Small Struct. 2, 2000098 (2021). https://doi.org/10.1002/sstr.202000098

    Article  CAS  Google Scholar 

  285. Steier, L., Bellani, S., Rojas, H.C., et al.: Stabilizing organic photocathodes by low-temperature atomic layer deposition of TiO2. Sustain. Energy Fuels 1, 1915–1920 (2017). https://doi.org/10.1039/c7se00421d

    Article  CAS  Google Scholar 

  286. Fumagalli, F., Bellani, S., Schreier, M., et al.: Hybrid organic–inorganic H2-evolving photocathodes: understanding the route towards high performance organic photoelectrochemical water splitting. J. Mater. Chem. A 4, 2178–2187 (2016). https://doi.org/10.1039/c5ta09330a

    Article  CAS  Google Scholar 

  287. Bellani, S., Najafi, L., Capasso, A., et al.: Few-layer MoS2 flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. J. Mater. Chem. A 5, 4384–4396 (2017). https://doi.org/10.1039/c6ta10572f

    Article  CAS  Google Scholar 

  288. Mezzetti, A., Fumagalli, F., Alfano, A., et al.: Stable hybrid organic/inorganic photocathodes for hydrogen evolution with amorphous WO3 hole selective contacts. Faraday Discuss. 198, 433–448 (2017). https://doi.org/10.1039/c6fd00216a

    Article  CAS  PubMed  ADS  Google Scholar 

  289. Bellani, S., Najafi, L., Martín-García, B., et al.: Graphene-based hole-selective layers for high-efficiency, solution-processed, large-area, flexible, hydrogen-evolving organic photocathodes. J. Phys. Chem. C 121, 21887–21903 (2017). https://doi.org/10.1021/acs.jpcc.7b05904

    Article  CAS  Google Scholar 

  290. Hosseini H, S.M., Siavash Moakhar, R., Soleimani, F., et al.: One-pot microwave synthesis of hierarchical C-doped CuO dandelions/g-C3N4 nanocomposite with enhanced photostability for photoelectrochemical water splitting. Appl. Surf. Sci. 530, 147271 (2020). https://doi.org/10.1016/j.apsusc.2020.147271

  291. Basu, M., Zhang, Z.W., Chen, C.J., et al.: CoSe2 embedded in C3N4: an efficient photocathode for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8, 26690–26696 (2016). https://doi.org/10.1021/acsami.6b06520

    Article  CAS  PubMed  Google Scholar 

  292. Gopalakrishnan, S., Bhalerao, G.M., Jeganathan, K.: G-C3N4 nanosheets functionalized silicon nanowires hybrid photocathode for efficient visible light induced photoelectrochemical water reduction. J. Power Sources 413, 293–301 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.034

    Article  CAS  ADS  Google Scholar 

  293. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0

    Article  CAS  ADS  Google Scholar 

  294. Song, W.J., Chen, Z.F., Glasson, C.R.K., et al.: Interfacial dynamics and solar fuel formation in dye-sensitized photoelectrosynthesis cells. ChemPhysChem 13, 2882–2890 (2012). https://doi.org/10.1002/cphc.201200100

    Article  CAS  PubMed  Google Scholar 

  295. Li, L., Duan, L., Xu, Y., et al.: A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem. Commun. 46, 7307–7309 (2010). https://doi.org/10.1039/c0cc01828g

    Article  CAS  Google Scholar 

  296. Gao, Y., Ding, X., Liu, J.H., et al.: Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J. Am. Chem. Soc. 135, 4219–4222 (2013). https://doi.org/10.1021/ja400402d

    Article  CAS  PubMed  Google Scholar 

  297. Gao, Y., Zhang, L.L., Ding, X., et al.: Artificial photosynthesis–functional devices for light driven water splitting with photoactive anodes based on molecular catalysts. Phys. Chem. Chem. Phys. 16, 12008–12013 (2014). https://doi.org/10.1039/c3cp55204g

    Article  CAS  PubMed  Google Scholar 

  298. Li, F.S., Fan, K., Xu, B., et al.: Organic dye-sensitized tandem photoelectrochemical cell for light driven total water splitting. J. Am. Chem. Soc. 137, 9153–9159 (2015). https://doi.org/10.1021/jacs.5b04856

    Article  CAS  PubMed  Google Scholar 

  299. Windle, C.D., Kumagai, H., Higashi, M., et al.: Earth-abundant molecular Z-scheme photoelectrochemical cell for overall water-splitting. J. Am. Chem. Soc. 141, 9593–9602 (2019). https://doi.org/10.1021/jacs.9b02521

    Article  CAS  PubMed  Google Scholar 

  300. Kaeffer, N., Windle, C.D., Brisse, R., et al.: Insights into the mechanism and aging of a noble-metal free H2-evolving dye-sensitized photocathode. Chem. Sci. 9, 6721–6738 (2018). https://doi.org/10.1039/c8sc00899j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Ji, Z., He, M., Huang, Z., et al.: Photostable p-type dye-sensitized photoelectrochemical cells for water reduction. J. Am. Chem. Soc. 135, 11696–11699 (2013). https://doi.org/10.1021/ja404525e

    Article  CAS  PubMed  Google Scholar 

  302. Lattach, Y., Fortage, J., Deronzier, A., et al.: Polypyrrole-Ru(2, 2'-bipyridine)32+/MoSxStructured composite film as a photocathode for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 7, 4476–4480 (2015). https://doi.org/10.1021/acsami.5b00401

    Article  CAS  PubMed  Google Scholar 

  303. Charisiadis, A., Giannoudis, E., Pournara, Z., et al.: Synthesis and characterization of a covalent porphyrin-cobalt diimine-dioxime dyad for photoelectrochemical H2 evolution. Eur. J. Inorg. Chem. 2021, 1122–1129 (2021). https://doi.org/10.1002/ejic.202001111

    Article  CAS  Google Scholar 

  304. Lyu, S.L., Massin, J., Pavone, M., et al.: H2-evolving dye-sensitized photocathode based on a ruthenium–diacetylide/cobaloxime supramolecular assembly. ACS Appl. Energy Mater. 2, 4971–4980 (2019). https://doi.org/10.1021/acsaem.9b00652

    Article  CAS  Google Scholar 

  305. Ladomenou, K., Nikolaou, V., Charalambidis, G., et al.: “Click”-reaction: an alternative tool for new architectures of porphyrin based derivatives. Coord. Chem. Rev. 306, 1–42 (2016). https://doi.org/10.1016/j.ccr.2015.06.002

    Article  CAS  Google Scholar 

  306. Smith, W.A., Sharp, I.D., Strandwitz, N.C., et al.: Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 2851–2862 (2015). https://doi.org/10.1039/c5ee01822f

    Article  CAS  Google Scholar 

  307. Wadsworth, B.L., Beiler, A.M., Khusnutdinova, D., et al.: Interplay between light flux, quantum efficiency, and turnover frequency in molecular-modified photoelectrosynthetic assemblies. J. Am. Chem. Soc. 141, 15932–15941 (2019). https://doi.org/10.1021/jacs.9b07295

    Article  CAS  PubMed  Google Scholar 

  308. Gurrentz, J.M., Rose, M.J.: Non-catalytic benefits of Ni(II) binding to an Si(111)-PNP construct for photoelectrochemical hydrogen evolution reaction: metal ion induced flat band potential modulation. J. Am. Chem. Soc. 142, 5657–5667 (2020). https://doi.org/10.1021/jacs.9b12824

    Article  CAS  PubMed  Google Scholar 

  309. Baikie, T., Fang, Y.N., Kadro, J.M., et al.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013). https://doi.org/10.1039/c3ta10518k

    Article  CAS  Google Scholar 

  310. Noh, J.H., Im, S.H., Heo, J.H., et al.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). https://doi.org/10.1021/nl400349b

    Article  CAS  PubMed  ADS  Google Scholar 

  311. Eperon, G.E., Stranks, S.D., Menelaou, C., et al.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014). https://doi.org/10.1039/c3ee43822h

    Article  CAS  Google Scholar 

  312. Saliba, M., Matsui, T., Seo, J.Y., et al.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). https://doi.org/10.1039/c5ee03874j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Smith, I.C., Hoke, E.T., Solis-Ibarra, D., et al.: A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014). https://doi.org/10.1002/anie.201406466

    Article  CAS  Google Scholar 

  314. Kim, I.S., Cao, D.H., Buchholz, D.B., et al.: Liquid water- and heat-resistant hybrid perovskite photovoltaics via an inverted ALD oxide electron extraction layer design. Nano Lett. 16, 7786–7790 (2016). https://doi.org/10.1021/acs.nanolett.6b03989

    Article  CAS  PubMed  ADS  Google Scholar 

  315. Habisreutinger, S.N., Leijtens, T., Eperon, G.E., et al.: Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014). https://doi.org/10.1021/nl501982b

    Article  CAS  PubMed  ADS  Google Scholar 

  316. Kim, I.S., Pellin, M.J., Martinson, A.B.F.: Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution. ACS Energy Lett. 4, 293–298 (2019). https://doi.org/10.1021/acsenergylett.8b01661

    Article  CAS  Google Scholar 

  317. Zhang, H.F., Yang, Z., Yu, W., et al.: A sandwich-like organolead halide perovskite photocathode for efficient and durable photoelectrochemical hydrogen evolution in water. Adv. Energy Mater. 8, 1800795 (2018). https://doi.org/10.1002/aenm.201800795

    Article  CAS  Google Scholar 

  318. Kim, J.H., Seo, S., Lee, J.H., et al.: Perovskite-based photocathodes: efficient and stable perovskite-based photocathode for photoelectrochemical hydrogen production. Adv. Funct. Mater. 31, 2170119 (2021). https://doi.org/10.1002/adfm.202170119

    Article  CAS  Google Scholar 

  319. Koo, B., Kim, D., Boonmongkolras, P., et al.: Unassisted water splitting exceeding 9% solar-to-hydrogen conversion efficiency by Cu(In, Ga)(S, Se)2 photocathode with modified surface band structure and halide perovskite solar cell. ACS Appl. Energy Mater. 3, 2296–2303 (2020). https://doi.org/10.1021/acsaem.9b02387

    Article  CAS  Google Scholar 

  320. Dias, P., Schreier, M., Tilley, S.D., et al.: Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting. Adv. Energy Mater. 5, 1501537 (2015). https://doi.org/10.1002/aenm.201501537

    Article  CAS  Google Scholar 

  321. Park, N.M., Choi, C.J., Seong, T.Y., et al.: Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys. Rev. Lett. 86, 1355–1357 (2001). https://doi.org/10.1103/physrevlett.86.1355

    Article  CAS  PubMed  ADS  Google Scholar 

  322. Gopalakrishnan, S., Shankar, R., Kolandaivel, P.: Effect of doping on the opto-electronic properties of hollow spheroid ZnO quantum dots: a theoretical study. Mater. Sci. Eng. B 270, 115220 (2021). https://doi.org/10.1016/j.mseb.2021.115220

    Article  CAS  Google Scholar 

  323. Huang, X., Guo, Q., Yang, D., et al.: Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14, 82–88 (2020). https://doi.org/10.1038/s41566-019-0538-8

    Article  CAS  ADS  Google Scholar 

  324. Wu, K., Li, H., Klimov, V.I.: Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 12, 105–110 (2018). https://doi.org/10.1038/s41566-017-0070-7

    Article  CAS  ADS  Google Scholar 

  325. Shu, Y.F., Lin, X., Qin, H.Y., et al.: Quantum dots for display applications. Angew. Chem. Int. Ed. 59, 22312–22323 (2020). https://doi.org/10.1002/anie.202004857

    Article  CAS  Google Scholar 

  326. Litvin, A.P., Martynenko, I.V., Purcell-Milton, F., et al.: Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 5, 13252–13275 (2017). https://doi.org/10.1039/c7ta02076g

    Article  CAS  Google Scholar 

  327. Chistyakov, A.A., Zvaigzne, M.A., Nikitenko, V.R., et al.: Optoelectronic properties of semiconductor quantum dot solids for photovoltaic applications. J. Phys. Chem. Lett. 8, 4129–4139 (2017). https://doi.org/10.1021/acs.jpclett.7b00671

    Article  CAS  PubMed  Google Scholar 

  328. Ryu, H., Hong, S., Kim, H.S., et al.: Role of quantum confinement in 10 nm scale perovskite optoelectronics. J. Phys. Chem. Lett. 10, 2745–2752 (2019). https://doi.org/10.1021/acs.jpclett.9b00645

    Article  CAS  PubMed  Google Scholar 

  329. Su, W.A., Shen, W.Z.: A statistical exploration of multiple exciton generation in silicon quantum dots and optoelectronic application. Appl. Phys. Lett. 100, 071111 (2012). https://doi.org/10.1063/1.3687184

    Article  CAS  ADS  Google Scholar 

  330. Ruberu, T.P.A., Dong, Y.M., Das, A., et al.: Photoelectrochemical generation of hydrogen from water using a CdSe quantum dot-sensitized photocathode. ACS Catal. 5, 2255–2259 (2015). https://doi.org/10.1021/cs5021035

    Article  CAS  Google Scholar 

  331. Li, X.B., Liu, B., Wen, M., et al.: Solar energy conversion: hole-accepting-ligand-modified CdSe QDs for dramatic enhancement of photocatalytic and photoelectrochemical hydrogen evolution by solar energy. Adv. Sci. 3, 1500282 (2016). https://doi.org/10.1002/advs.201670020

  332. Kang, S.H., Zhu, K., Neale, N.R., et al.: Hole transport in sensitized CdS–NiO nanoparticle photocathodes. Chem. Commun. 47, 10419–10421 (2011). https://doi.org/10.1039/c1cc13932k

    Article  CAS  Google Scholar 

  333. Lv, H., Wang, C., Li, G., et al.: Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl. Acad. Sci. U. S. A. 114, 11297–11302 (2017). https://doi.org/10.1073/pnas.1712325114

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  334. Roy, K., Ghosh, D., Sarkar, K., et al.: Chlorophyll(a)/carbon quantum dot bio-nanocomposite activated nano-structured silicon as an efficient photocathode for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 12, 37218–37226 (2020). https://doi.org/10.1021/acsami.0c10279

    Article  CAS  PubMed  Google Scholar 

  335. Ghosh, D., Roy, K., Sarkar, K., et al.: Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 12, 28792–28800 (2020). https://doi.org/10.1021/acsami.0c05591

    Article  CAS  PubMed  Google Scholar 

  336. Ma, C.Y., Ma, D.K., Yu, W.Y., et al.: Ag and N-doped graphene quantum dots co-modified CuBi2O4 submicron rod photocathodes with enhanced photoelectrochemical activity. Appl. Surf. Sci. 481, 661–668 (2019). https://doi.org/10.1016/j.apsusc.2019.03.172

    Article  CAS  ADS  Google Scholar 

  337. Meng, P., Wang, M., Yang, Y., et al.: CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H2 evolution from neutral water. J. Mater. Chem. A 3, 18852–18859 (2015). https://doi.org/10.1039/c5ta06255a

    Article  CAS  Google Scholar 

  338. Li, J., Gao, X., Liu, B., et al.: Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 138, 3954–3957 (2016). https://doi.org/10.1021/jacs.5b12758

    Article  CAS  PubMed  Google Scholar 

  339. Su, X., Chen, Y., Ren, L., et al.: Cobalt catalyst grafted CdSeTe quantum dots on porous NiO as photocathode for H2 evolution under visible light. ACS Sustainable Chem. Eng. 7, 11166–11174 (2019). https://doi.org/10.1021/acssuschemeng.9b00305

    Article  CAS  Google Scholar 

  340. Lai, L.H., Gomulya, W., Berghuis, M., et al.: Organic–inorganic hybrid solution-processed H2-evolving photocathodes. ACS Appl. Mater. Interfaces 7, 19083–19090 (2015). https://doi.org/10.1021/acsami.5b04550

    Article  CAS  PubMed  Google Scholar 

  341. Zhou, R., Stalder, R., Xie, D., et al.: Enhancing the efficiency of solution-processed polymer: colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment. ACS Nano 7, 4846–4854 (2013). https://doi.org/10.1021/nn305823w

    Article  CAS  PubMed  Google Scholar 

  342. Liu, Y., Gibbs, M., Puthussery, J., et al.: Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 10, 1960–1969 (2010). https://doi.org/10.1021/nl101284k

    Article  CAS  PubMed  ADS  Google Scholar 

  343. Su, D.W., Ran, J., Zhuang, Z.W., et al.: Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Sci. Adv. 6, eaaz8447 (2020). https://doi.org/10.1126/sciadv.aaz8447

  344. Barkhouse, D.A., Pattantyus-Abraham, A.G., Levina, L., et al.: Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2, 2356–2362 (2008). https://doi.org/10.1021/nn800471c

    Article  CAS  PubMed  Google Scholar 

  345. Luther, J.M., Law, M., Song, Q., et al.: Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-ethanedithiol. ACS Nano 2, 271–280 (2008). https://doi.org/10.1021/nn7003348

    Article  CAS  PubMed  Google Scholar 

  346. Benazzi, E., Cristino, V., Boaretto, R., et al.: Photoelectrochemical hydrogen evolution using CdTexS1–x quantum dots as sensitizers on NiO photocathodes. Dalton Trans. 50, 696–704 (2021). https://doi.org/10.1039/d0dt03567j

    Article  CAS  PubMed  Google Scholar 

  347. Liu, B., Li, X.B., Gao, Y.J., et al.: A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy Environ. Sci. 8, 1443–1449 (2015). https://doi.org/10.1039/c5ee00331h

    Article  CAS  Google Scholar 

  348. Dong, Y.M., Wu, R.X., Jiang, P.P., et al.: Efficient photoelectrochemical hydrogen generation from water using a robust photocathode formed by CdTe QDs and nickel ion. ACS Sustainable Chem. Eng. 3, 2429–2434 (2015). https://doi.org/10.1021/acssuschemeng.5b00450

    Article  CAS  Google Scholar 

  349. Wen, M., Wu, H.L., Jian, J.X., et al.: Integrating CdSe quantum dots with a [FeFe]-hydrogenase mimic into a photocathode for hydrogen evolution at a low bias voltage. ChemPhotoChem 1, 260–264 (2017). https://doi.org/10.1002/cptc.201700041

    Article  CAS  Google Scholar 

  350. Wu, H.L., Li, X.B., Wang, Y., et al.: Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution. J. Mater. Chem. A 7, 26098–26104 (2019). https://doi.org/10.1039/c9ta10056c

    Article  CAS  Google Scholar 

  351. Yang, J.F., Goguen, J., Kleiman, R.: Silicon solar cell with integrated tunnel junction for multijunction photovoltaic applications. IEEE Electron Device Lett. 33, 1732–1734 (2012). https://doi.org/10.1109/LED.2012.2217391

    Article  CAS  ADS  Google Scholar 

  352. Jin, Hu., W., Wang, Z., Yu, W., et al.: Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat. Commun. 7, 10808 (2016). https://doi.org/10.1038/ncomms10808

    Article  CAS  ADS  Google Scholar 

  353. Wang, X., Koleilat, G.I., Tang, J., et al.: Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat. Photonics 5, 480–484 (2011). https://doi.org/10.1038/nphoton.2011.123

    Article  CAS  ADS  Google Scholar 

  354. Hou, P.F., Yang, K.X., Ni, K.K., et al.: An ultrathin flexible electronic device based on the tunneling effect: a flexible ferroelectric tunnel junction. J. Mater. Chem. C 6, 5193–5198 (2018). https://doi.org/10.1039/c8tc00500a

    Article  CAS  Google Scholar 

  355. Wang, M., Cai, W., Zhu, D., et al.: Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582–588 (2018). https://doi.org/10.1038/s41928-018-0160-7

    Article  Google Scholar 

  356. Grifoni, M., Hänggi, P.: Driven quantum tunneling. Phys. Rep. 304, 229–354 (1998). https://doi.org/10.1016/S0370-1573(98)00022-2

    Article  MathSciNet  CAS  ADS  Google Scholar 

  357. Gatteschi, D., Sessoli, R.: Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003). https://doi.org/10.1002/anie.200390099

    Article  CAS  Google Scholar 

  358. Liu, J., Zhang, Y.Q., Chen, J., et al.: Separation and quantum tunneling of photo-generated carriers using a tribo-induced field. Matter 1, 650–660 (2019). https://doi.org/10.1016/j.matt.2019.05.017

    Article  CAS  Google Scholar 

  359. Lewerenz, H.J., Skorupska, K., Muñoz, A.G., et al.: Micro- and nanotopographies for photoelectrochemical energy conversion. II: Photoelectrocatalysis - Classical and advanced systems. Electrochim. Acta 56, 10726–10736 (2011). https://doi.org/10.1016/j.electacta.2011.05.028

  360. Muñoz, A.G., Lewerenz, H.J.: Advances in photoelectrocatalysis with nanotopographical photoelectrodes. ChemPhysChem 11, 1603–1615 (2010). https://doi.org/10.1002/cphc.200900856

    Article  CAS  PubMed  Google Scholar 

  361. Fan, F.R.F., Keil, R.G., Bard, A.J.: Semiconductor electrodes. 48. Photooxidation of halides and water on n-silicon protected with silicide layers. J. Am. Chem. Soc. 105, 220–224 (1983). https://doi.org/10.1021/ja00340a013

  362. Kobayashi, M., Kinoshita, A., Saraswat, K., et al.: Fermi-level depinning in metal/Ge Schottky junction and its application to metal source/drain Ge NMOSFET. 2008 Symposium on VLSI Technology. Honolulu, HI, USA. IEEE, 54–55 (2008). https://doi.org/10.1109/VLSIT.2008.4588561

  363. Esposito, D.V., Levin, I., Moffat, T.P., et al.: H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 12, 562–568 (2013). https://doi.org/10.1038/nmat3626

    Article  CAS  PubMed  ADS  Google Scholar 

  364. Ji, L., McDaniel, M.D."., Wang, S., et al.: A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 10, 84–90 (2015). https://doi.org/10.1038/nnano.2014.277

  365. Zhang, H., Zhang, P., Zhao, J., et al.: The hole-tunneling heterojunction of hematite-based photoanodes accelerates photosynthetic reaction. Angew. Chem. Int. Ed. 60, 16009–16018 (2021). https://doi.org/10.1002/anie.202102983

    Article  CAS  Google Scholar 

  366. Ji, L., Hsu, H.Y., Li, X.H., et al.: Localized dielectric breakdown and antireflection coating in metal–oxide–semiconductor photoelectrodes. Nat. Mater. 16, 127–131 (2017). https://doi.org/10.1038/nmat4801

    Article  CAS  PubMed  ADS  Google Scholar 

  367. Young, J.L., Steiner, M.A., Döscher, H., et al.: Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 2, 17028 (2017). https://doi.org/10.1038/nenergy.2017.28

  368. Yang, W., Park, J., Kwon, H.C., et al.: Solar water splitting exceeding 10% efficiency via low-cost Sb2Se3 photocathodes coupled with semitransparent perovskite photovoltaics. Energy Environ. Sci. 13, 4362–4370 (2020). https://doi.org/10.1039/d0ee02959a

    Article  CAS  Google Scholar 

  369. Edwardes Moore, E., Andrei, V., Zacarias, S., et al.: Integration of a hydrogenase in a lead halide perovskite photoelectrode for tandem solar water splitting. ACS Energy Lett. 5, 232–237 (2020). https://doi.org/10.1021/acsenergylett.9b02437

    Article  CAS  PubMed  Google Scholar 

  370. Luo, J.S., Li, Z., Nishiwaki, S., et al.: Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1−xSe2 photocathodes. Adv. Energy Mater. 5, 1501520 (2015). https://doi.org/10.1002/aenm.201501520

    Article  CAS  Google Scholar 

  371. Lee, H., Yang, J.W., Tan, J., et al.: Crystal facet-controlled efficient SnS photocathodes for high performance bias-free solar water splitting. Adv. Sci. 8, 2170142 (2021). https://doi.org/10.1002/advs.202170142

    Article  Google Scholar 

  372. Jun, S.E., Hong, S.P., Choi, S., et al.: Boosting unassisted alkaline solar water splitting using silicon photocathode with TiO2 nanorods decorated by edge-rich MoS2 nanoplates. Small 17, 2103457 (2021). https://doi.org/10.1002/smll.202103457

    Article  CAS  Google Scholar 

  373. Yang, J.W., Park, I.J., Lee, S.A., et al.: Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Appl. Catal. B Environ. 293, 120217 (2021). https://doi.org/10.1016/j.apcatb.2021.120217

    Article  CAS  Google Scholar 

  374. Lee, S.A., Park, I.J., Yang, J.W., et al.: Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting. Cell Rep. Phys. Sci. 1, 100219 (2020). https://doi.org/10.1016/j.xcrp.2020.100219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFE0208500) and the National Natural Science Foundation of China (Grant Nos. 22072022, 21773031 and 22011530144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlin Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Niu, Z., Zhao, J. et al. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. Electrochem. Energy Rev. 6, 14 (2023). https://doi.org/10.1007/s41918-022-00153-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00153-7

Keywords

Navigation