Skip to main content

Advertisement

Log in

Cornelia de Lange Syndrome: A Variable Disorder of Cohesin Pathology

  • Reproductive and Developmental Genetics (Z Urban and B Pober, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Cornelia de Lange syndrome (CdLS) is a rare multiple malformation syndrome including small stature, distinctive craniofacial features, limb anomalies, neurodevelopmental and behavioral abnormalities, and other organ system pathology. Recent literature has demonstrated that typical CdLS and related overlapping disorders display a broad range of severity and pleiotropy, suggesting that considering these diagnoses as a spectrum may be more appropriate. A molecular basis has been identified in many individuals, with mutations in five genes primarily responsible. These genes encode structural or regulatory proteins of the cohesin protein complex, important in chromatid division, cell cycle function, DNA repair, and epigenetic control. This review summarizes clinical findings, current management recommendations, and recent advances in understanding the underlying biologic mechanisms of these overlapping disorders of cohesin pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as follows: • Of importance •• Of major importance

  1. Kline AD, Krantz ID, Sommer A, Kliewer M, Jackson LG, FitzPatrick DR, et al. Cornelia de Lange syndrome: clinical review, diagnostic and scoring systems, and anticipatory guidance. Am J Med Genet A. 2007;143(12):1287–96.

    Article  Google Scholar 

  2. Martinez-Frias ML, Bermejo E, Felix V, Jimenez N, Gomez-Ullate J, Lopez JA, et al. Brachmann-de-Lange syndrome in our population: clinical and epidemiological characteristics. An Esp Pediatr. 1998;48(3):293–8.

    CAS  PubMed  Google Scholar 

  3. Beck B, Fenger K. Mortality, pathological findings and causes of death in the de Lange syndrome. Acta Paediatr Scand. 1985;74(5):765–9.

    Article  CAS  PubMed  Google Scholar 

  4. Barisic I, Tokic V, Loane M, Bianchi F, Calzolari E, Garne E, et al. Descriptive epidemiology of Cornelia de Lange syndrome in Europe. Am J Med Genet A. 2008;146A(1):51–9. doi:10.1002/ajmg.a.32016.

    Article  PubMed  Google Scholar 

  5. Rohatgi S, Clark D, Kline AD, Jackson LG, Pie J, Siu V, et al. Facial diagnosis of mild and variant CdLS: insights from a dysmorphologist survey. Am J Med Genet A. 2010;152A(7):1641–53. doi:10.1002/ajmg.a.33441.

    Article  PubMed  Google Scholar 

  6. •• Dorsett D. Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev. 2011. doi:10.1016/j.gde.2011.01.018. This study provides an overview of current thinking relating cohesin and thus CdLS to the transcriptome.

  7. Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet. 2007;80(3):485–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Schule B, Oviedo A, Johnston K, Pai S, Francke U. Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am J Hum Genet. 2005;77(6):1117–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet. 2005;37(5):468–70.

    Article  CAS  PubMed  Google Scholar 

  10. van der Lelij P, Chrzanowska KH, Godthelp BC, Rooimans MA, Oostra AB, Stumm M, et al. Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am J Hum Genet. 2010;86(2):262–6. doi:10.1016/j.ajhg.2010.01.008.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chetaille P, Preuss C, Burkhard S, Cote JM, Houde C, Castilloux J, et al. Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet. 2014;46(11):1245–9. doi:10.1038/ng.3113.

    Article  CAS  PubMed  Google Scholar 

  12. Kaiser FJ, Ansari M, Braunholz D, Concepcion Gil-Rodriguez M, Decroos C, Wilde JJ, et al. Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance. Hum Mol Genet. 2014;23(11):2888–900. doi:10.1093/hmg/ddu002.

    Article  CAS  PubMed  Google Scholar 

  13. •• Decroos C, Bowman CM, Moser JA, Christianson KE, Deardorff MA, Christianson DW. Compromised structure and function of HDAC8 mutants identified in Cornelia de Lange syndrome spectrum disorders. ACS Chem Biol. 2014;9(9):2157–64. doi:10.1021/cb5003762. This study provides further insight into the molecular basis for CdLS and describes the spectrum disorder.

  14. Vrolik W. Tabulae ad illustrandam embryogenesin hominis et mammalium tam naturalem quam abnormem. Londonck Amsterdam. 1849.

  15. de Lange C. Sur un type nouveau de dégénération (typus Amstelodamensis) [On a new type of degeneration (type Amsterdam)]. Arch Méd Enfants. 1933;36(713–719).

  16. Kline AD, Grados M, Sponseller P, Levy HP, Blagowidow N, Schoedel C, et al. Natural history of aging in Cornelia de Lange syndrome. Am J Med Genet C Semin Med Genet. 2007;145(3):248–60.

    Article  Google Scholar 

  17. Clark DM, Sherer I, Deardorff MA, Byrne JL, Loomes KM, Nowaczyk MJ, et al. Identification of a prenatal profile of Cornelia de Lange syndrome (CdLS): a review of 53 CdLS pregnancies. Am J Med Genet A. 2012;158A(8):1848–56. doi:10.1002/ajmg.a.35410.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kline AD, Barr M, Jackson LG. Growth manifestations in the Brachmann-de Lange syndrome. Am J Med Genet. 1993;47(7):1042–9.

    Article  CAS  PubMed  Google Scholar 

  19. Jackson L, Kline AD, Barr MA, Koch S. de Lange syndrome: a clinical review of 310 individuals. Am J Med Genet. 1993;47(7):940–6.

    Article  CAS  PubMed  Google Scholar 

  20. Basile E, Villa L, Selicorni A, Molteni M. The behavioural phenotype of Cornelia de Lange Syndrome: a study of 56 individuals. J Intellect Disabil Res. 2007;51(Pt 9):671–81. doi:10.1111/j.1365-2788.2007.00977.x.

    Article  CAS  PubMed  Google Scholar 

  21. Nakanishi M, Deardorff MA, Clark D, Levy SE, Krantz I, Pipan M. Investigation of autistic features among individuals with mild to moderate Cornelia de Lange syndrome. Am J Med Genet A. 2012;158A(8):1841–7. doi:10.1002/ajmg.a.34014.

    Article  PubMed Central  PubMed  Google Scholar 

  22. • Srivastava S, Landy-Schmitt C, Clark B, Kline AD, Specht M, Grados MA. Autism traits in children and adolescents with Cornelia de Lange syndrome. Am J Med Genet A. 2014;164A(6):1400–10. doi:10.1002/ajmg.a.36573. This study reviews findings of autism in CdLS and also discusses findings related to aging.

  23. Moss J, Howlin P, Hastings RP, Beaumont S, Griffith GM, Petty J, et al. Social behavior and characteristics of autism spectrum disorder in Angelman, Cornelia de Lange, and Cri du Chat syndromes. Am J Intellect Dev Disabil. 2013;118(4):262–83. doi:10.1352/1944-7558-118.4.262.

    Article  PubMed  Google Scholar 

  24. Stavinoha RC, Kline AD, Levy HP, Kimball A, Mettel TL, Ishman SL. Characterization of sleep disturbance in Cornelia de Lange Syndrome. Int J Pediatr Otorhinolaryngol. 2011;75(2):215–8. doi:10.1016/j.ijporl.2010.11.003.

    Article  PubMed  Google Scholar 

  25. Schrier SA, Sherer I, Deardorff MA, Clark D, Audette L, Gillis L, et al. Causes of death and autopsy findings in a large study cohort of individuals with Cornelia de Lange syndrome and review of the literature. Am J Med Genet A. 2011;155A(12):3007–24. doi:10.1002/ajmg.a.34329.

    Article  PubMed  Google Scholar 

  26. Ireland M. Cornelia de Lange syndrome: clinical features, common complications and long-term prognosis. Curr Paediatr. 1996;6(2):69–73.

    Article  Google Scholar 

  27. Chatfield KC, Schrier SA, Li J, Clark D, Kaur M, Kline AD, et al. Congenital heart disease in Cornelia de Lange syndrome: phenotype and genotype analysis. Am J Med Genet A. 2012;158A(10):2499–505. doi:10.1002/ajmg.a.35582.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Deardorff MA, Clark DM, Krantz ID. Cornelia de Lange Syndrome. GeneReviews at GeneTests: Medical Genetics Information Resource (database online). 2010/03/20 ed. Seattle: University of Washington; 2011.

  29. Guadagni MG, Cetrullo N, Piana G. Cornelia de Lange syndrome: description of the orofacial features and case report. Eur J Paediatr Dent. 2008;9(4 Suppl):9–13.

    CAS  PubMed  Google Scholar 

  30. Levin AV, Seidman DJ, Nelson LB, Jackson LG. Ophthalmologic findings in the Cornelia de Lange syndrome. J Pediatr Ophthalmol Strabismus. 1990;27(2):94–102.

    CAS  PubMed  Google Scholar 

  31. Luzzani S, Macchini F, Valade A, Milani D, Selicorni A. Gastroesophageal reflux and Cornelia de Lange syndrome: typical and atypical symptoms. Am J Med Genet A. 2003;119(3):283–7.

    Article  Google Scholar 

  32. Oliver C, Sloneem J, Hall S, Arron K. Self-injurious behaviour in Cornelia de Lange syndrome: 1. Prevalence and phenomenology. J Intellect Disabil Res. 2009;53(7):575–89. doi:10.1111/j.1365-2788.2009.01179.x.

    Article  CAS  PubMed  Google Scholar 

  33. Sataloff RT, Spiegel JR, Hawkshaw M, Epstein JM, Jackson L. Cornelia de Lange syndrome. Otolaryngologic manifestations. Arch Otolaryngol Head Neck Surg. 1990;116(9):1044–6.

    Article  CAS  PubMed  Google Scholar 

  34. Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet. 2004;36(6):631–5.

    Article  CAS  PubMed  Google Scholar 

  35. Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet. 2004;36(6):636–41.

    Article  CAS  PubMed  Google Scholar 

  36. Rollins RA, Morcillo P, Dorsett D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics. 1999;152(2):577–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Nasmyth K. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell. 2000;5(2):243–54.

    Article  CAS  PubMed  Google Scholar 

  38. Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 1999;13(3):320–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gillespie PJ, Hirano T. Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts. Curr Biol. 2004;14(17):1598–603.

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi TS, Yiu P, Chou MF, Gygi S, Walter JC. Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat Cell Biol. 2004;6(10):991–6.

    Article  CAS  PubMed  Google Scholar 

  41. Nasmyth K, Haering CH. Cohesin: its roles and mechanisms. Annu Rev Genet. 2009;43:525–58. doi:10.1146/annurev-genet-102108-134233.

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Zhang Z, Bando M, Itoh T, Deardorff MA, Clark D, et al. Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol. 2009;7(5):e1000119. doi:10.1371/journal.pbio.1000119.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, et al. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma. 2008;117(1):89–102. doi:10.1007/s00412-007-0129-1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Horsfield JA, Anagnostou SH, Hu JK, Cho KH, Geisler R, Lieschke G, et al. Cohesin-dependent regulation of Runx genes. Development. 2007;134(14):2639–49. doi:10.1242/dev.002485.

    Article  CAS  PubMed  Google Scholar 

  45. Vrouwe MG, Elghalbzouri-Maghrani E, Meijers M, Schouten P, Godthelp BC, Bhuiyan ZA, et al. Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: evidence for impaired recombinational repair. Hum Mol Genet. 2007;16(12):1478–87. doi:10.1093/hmg/ddm098.

    Article  CAS  PubMed  Google Scholar 

  46. Watrin E, Peters JM. The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells. EMBO J. 2009;28(17):2625–35. doi:10.1038/emboj.2009.202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Dodson H, Morrison CG. Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells. Nucleic Acids Res. 2009;37(18):6054–63. doi:10.1093/nar/gkp684.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Xu H, Balakrishnan K, Malaterre J, Beasley M, Yan Y, Essers J, et al. Rad21-cohesin haploinsufficiency impedes DNA repair and enhances gastrointestinal radiosensitivity in mice. PLoS ONE. 2010;5(8):e12112. doi:10.1371/journal.pone.0012112.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Musio A, Montagna C, Mariani T, Tilenni M, Focarelli ML, Brait L, et al. SMC1 involvement in fragile site expression. Hum Mol Genet. 2005;14(4):525–33. doi:10.1093/hmg/ddi049.

    Article  CAS  PubMed  Google Scholar 

  50. Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, et al. X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet. 2006;38(5):528–30.

    Article  CAS  PubMed  Google Scholar 

  51. Deardorff MA, Wilde JJ, Albrecht M, Dickinson E, Tennstedt S, Braunholz D, et al. RAD21 mutations cause a human cohesinopathy. Am J Hum Genet. 2012;90(6):1014–27. doi:10.1016/j.ajhg.2012.04.019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Jeppsson K, Kanno T, Shirahige K, Sjogren C. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol. 2014;15(9):601–14. doi:10.1038/nrm3857.

    Article  CAS  PubMed  Google Scholar 

  53. Minor A, Shinawi M, Hogue JS, Vineyard M, Hamlin DR, Tan C, et al. Two novel RAD21 mutations in patients with mild Cornelia de Lange syndrome-like presentation and report of the first familial case. Gene. 2014;537(2):279–84. doi:10.1016/j.gene.2013.12.045.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell. 2008;31(1):143–51. doi:10.1016/j.molcel.2008.06.006.

    Article  CAS  PubMed  Google Scholar 

  55. Rolef Ben-Shahar T, Heeger S, Lehane C, East P, Flynn H, Skehel M, et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science. 2008;321(5888):563–6. doi:10.1126/science.1157774.

    Article  PubMed  Google Scholar 

  56. Unal E, Heidinger-Pauli JM, Kim W, Guacci V, Onn I, Gygi SP, et al. A molecular determinant for the establishment of sister chromatid cohesion. Science. 2008;321(5888):566–9. doi:10.1126/science.1157880.

    Article  PubMed  Google Scholar 

  57. Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature. 2012;489(7415):313–7. doi:10.1038/nature11316.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. •• Kline AD, Calof AL, Schaaf CA, Krantz ID, Jyonouchi S, Yokomori K et al. Cornelia de Lange syndrome: further delineation of phenotype, cohesin biology and educational focus, 5th Biennial Scientific and Educational Symposium abstracts. Am J Med Genet A. 2014;164A(6):1384–93. doi:10.1002/ajmg.a.36417. This compilation of abstracts presented at a recent scientific meeting on CdLS and cohesin summarizes ongoing work in animal models and the clinical fields as well.

  59. Borck G, Redon R, Sanlaville D, Rio M, Prieur M, Lyonnet S, et al. NIPBL mutations and genetic heterogeneity in Cornelia de Lange syndrome. J Med Genet. 2004;41(12):e128.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Gillis LA, McCallum J, Kaur M, DeScipio C, Yaeger D, Mariani A, et al. NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-phenotype correlations. Am J Hum Genet. 2004;75(4):610–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bhuiyan Z, Klein M, Hammond P, Mannens MM, Van Haeringen A, Van Berckelaer-Onnes I, et al. Genotype-Phenotype correlations of 39 patients with Cornelia de Lange syndrome: the Dutch experience. J Med Genet. 2005;43:568–75.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Yan J, Saifi GM, Wierzba TH, Withers M, Bien-Willner GA, Limon J, et al. Mutational and genotype-phenotype correlation analyses in 28 Polish patients with Cornelia de Lange syndrome. Am J Med Genet A. 2006;140(14):1531–41.

    Article  PubMed  Google Scholar 

  63. Braunholz D, Obieglo C, Parenti I, Pozojevic J, Eckhold J, Reiz B, et al. Hidden mutations in CdLS—limitations of sanger sequencing in molecular diagnostics. Hum Mutat. 2014. doi:10.1002/humu.22685.

    PubMed  Google Scholar 

  64. •• Ansari M, Poke G, Ferry Q, Williamson K, Aldridge R, Meynert AM et al. Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism. J Med Genet. 2014;51(10):659–68. doi:10.1136/jmedgenet-2014-102573. This study provides the most current molecular description of a cohort of patients with CdLS describing heterogeneity, mosaicism and underlying genotype.

  65. • Huisman SA, Redeker EJ, Maas SM, Mannens MM, Hennekam RC. High rate of mosaicism in individuals with Cornelia de Lange syndrome. J Med Genet. 2013;50(5):339–44. doi:10.1136/jmedgenet-2012-101477. This was the first study to reveal mosaicism for cohesin mutations in multiple tissues of the body.

  66. Borck G, Zarhrate M, Bonnefont JP, Munnich A, Cormier-Daire V, Colleaux L. Incidence and clinical features of X-linked Cornelia de Lange syndrome due to SMC1L1 mutations. Hum Mutat. 2007;28(2):205–6.

    Article  PubMed  Google Scholar 

  67. Liu J, Feldman R, Zhang Z, Deardorff MA, Haverfield EV, Kaur M, et al. SMC1A expression and mechanism of pathogenicity in probands with X-Linked Cornelia de Lange syndrome. Hum Mutat. 2009. doi:10.1002/humu.21095.

    PubMed Central  Google Scholar 

  68. Rhodes JM, McEwan M, Horsfield JA. Gene regulation by cohesin in cancer: is the ring an unexpected party to proliferation? Mol Cancer Res. 2011;9(12):1587–607. doi:10.1158/1541-7786.MCR-11-0382.

    Article  CAS  PubMed  Google Scholar 

  69. Muto A, Calof AL, Lander AD, Schilling TF. Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange Syndrome. PLoS Biol. 2011;9(10):e1001181. doi:10.1371/journal.pbio.1001181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Kawauchi S, Calof AL, Santos R, Lopez-Burks ME, Young CM, Hoang MP, et al. Multiple organ system defects and transcriptional dysregulation in the Nipbl(±) mouse, a model of Cornelia de Lange Syndrome. PLoS Genet. 2009;5(9):e1000650. doi:10.1371/journal.pgen.1000650.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Monnich M, Kuriger Z, Print CG, Horsfield JA. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PLoS ONE. 2011;6(5):e20051. doi:10.1371/journal.pone.0020051.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Rhodes JM, Bentley FK, Print CG, Dorsett D, Misulovin Z, Dickinson EJ, et al. Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved. Dev Biol. 2010;344(2):637–49. doi:10.1016/j.ydbio.2010.05.493.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Monnich M, Banks S, Eccles M, Dickinson E, Horsfield J. Expression of cohesin and condensin genes during zebrafish development supports a non-proliferative role for cohesin. Gene Expr Patterns. 2009;9(8):586–94. doi:10.1016/j.gep.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  74. Pauli A, van Bemmel JG, Oliveira RA, Itoh T, Shirahige K, van Steensel B, et al. A direct role for cohesin in gene regulation and ecdysone response in Drosophila salivary glands. Curr Biol. 2010;20(20):1787–98. doi:10.1016/j.cub.2010.09.006.

    Article  CAS  PubMed  Google Scholar 

  75. Schuldiner O, Berdnik D, Levy JM, Wu JS, Luginbuhl D, Gontang AC, et al. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell. 2008;14(2):227–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Pauli A, Althoff F, Oliveira RA, Heidmann S, Schuldiner O, Lehner CF, et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell. 2008;14(2):239–51. doi:10.1016/j.devcel.2007.12.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Rollins RA, Korom M, Aulner N, Martens A, Dorsett D. Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol Cell Biol. 2004;24(8):3100–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol. 2010;12(2):185–92. doi:10.1038/ncb2018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Hallson G, Syrzycka M, Beck SA, Kennison JA, Dorsett D, Page SL, et al. The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc Natl Acad Sci USA. 2008;105(34):12405–10. doi:10.1073/pnas.0801698105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Gause M, Webber HA, Misulovin Z, Haller G, Rollins RA, Eissenberg JC, et al. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma. 2008;117(1):51–66. doi:10.1007/s00412-007-0125-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. •• Mannini L, Cucco F, Quarantotti V, Krantz ID, Musio A. Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome. Hum Mutat. 2013;34:1589–96. This study provides a recent review of all of the genes known to be involved in CdLS and their mutations and phenotypic effects.

Download references

Acknowledgments

We acknowledge the Cornelia de Lange Syndrome Foundation’s stellar role in facilitating interactions between families and professionals. This work has been supported by a grant from the Doris Duke Charitable Foundation Grant #:2012059 to MAD.

Disclosures

AD Kline and MA Deardorff both declare no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by AD Kline and MA Deardorff involving animal and/or human subjects were performed after approval by the appropriate Institutional Review Boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonie D. Kline.

Additional information

This article is part of the Topical Collection on Reproductive and Developmental Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kline, A.D., Deardorff, M.A. Cornelia de Lange Syndrome: A Variable Disorder of Cohesin Pathology. Curr Genet Med Rep 3, 74–81 (2015). https://doi.org/10.1007/s40142-015-0065-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-015-0065-y

Keywords

Navigation