Skip to main content
Log in

Identification and characterization of the EXPA7, EXPA18 and EXT10 genes in Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb; and their expression analysis in the root under abiotic stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Expansin and extensin are proteins involved in resistance to various abiotic stresses by processes of cell wall modification and in the formation and elongation of the hairy root. They are located in several organs of the plant included root epidermis. Turbinicarpus lophophoroides is a cactus model to studies these genes in adventitious and transformed roots. In this study, we identified and characterized the expansin7, expansin18 and extensin10 genes in T. lophophoroides. Bioinformatic analysis indicated that the expansin sequences contained the motifs: HTFYG, HFD, YRR, VPC and YW; and certain conserved cysteine (C) residues. Regarding extensin10, the sequence contains the conserved SPPPP (SP4), YYS and YV motifs. The expression analysis in adventitious and transformed roots under osmotic stress (300 mM mannitol), heat (37 °C) and cold (4 °C); shows a higher expression of TlExpA18 in both roots, a decrease in TlExpA7 in transformed roots and a null expression in TlExt10 in both roots. In addition, a morphological comparison of the maturation/differentiation zone, meristem and cap between adventitious and transformed roots by SEM was performed, finding differences in the quantity and length of the hairy roots and the shape of the root cap. Overall, the study concluded that TlExpA18 and TlExpA7 belong to expansin family and TlExt10 belong to extensin family. The expression characteristics of TlExpA18, TlExpA7 and TlExt10 will facilitate the investigation of its function in stress response and other physiological processes in T. lophophoroides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amador-Alférez KA, Díaz-González J, Loza-Cornejo S, Bivián-Castro EY (2013) Efecto de diferentes reguladores de crecimiento vegetal sobre la germinación de semillas y desarrollo de plántulas de dos especies de Ferocactus (Cactaceae). Polibotánica 35:109–131 ISSN 1405-2768

    Google Scholar 

  2. Anderson EF (2001) The cactus family. Timber Press, Portland

    Google Scholar 

  3. Baumberger N, Ringli C, Keller B (2001) The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes Dev 15(9):1128–1139 https://10.1101/gad.200201

    Article  CAS  Google Scholar 

  4. Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K (2015) Over-expression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth. Ann Bot 115(1):67–80. https://doi.org/10.1093/aob/mcu221

    Article  CAS  PubMed  Google Scholar 

  5. Carlín AP, Tafoya F, Alpuche-Solís AG, Pérez-Molphe-Balch E (2015) Effects of different culture media and conditions on biomass production of hairy root cultures in six Mexican cactus species. In Vitro Cell Dev-Pl 51(3):332–339. https://doi.org/10.1007/s11627-015-9681-1

    Article  CAS  Google Scholar 

  6. Chavarria G, dos Santos HP (2012) Plant water relations: absorption, transport and control mechanism. In: Montanaro G, Dichio B (eds) Advances in selected plant physiology aspects. In Tech, Rijeka, pp 105–132

    Google Scholar 

  7. Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14(12):3237–3253. https://doi.org/10.1105/tpc.006437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dávila-Figueroa C, la Rosa-Carrillo D, Perez-Molphe E (2005) In vitro propagation of eight species or subspecies of turbinicarpus (cactaceae). In Vitro Cell Dev Biol Plant 41:540–545. https://doi.org/10.1093/jxb/err210

    Article  CAS  Google Scholar 

  9. Figueroa CR, Rosli HG, Civello PM, Martínez GA, Herrera R, Moya-León MA (2010) Changes in cell wall polysaccharides and cell wall degrading enzymes during ripening of Fragaria chiloensis and Fragaria ×ananassa fruits. Sci Hort 124(4):454–462. https://doi.org/10.1016/j.scienta.2010.02.003

    Article  CAS  Google Scholar 

  10. García-García J, Salas Alvarado E, Azofeifa Bolaños J (2015) Efecto del AIA y el AIB sobre el enraizamiento in vitro de brotes de Sechium edule (Jacq.) Sw. Biot. Veg. 15(1): Recuperado de https://revista.ibp.co.cu/index.php/BV/article/view/4/484, eISSN 2074-8647

  11. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. https://doi.org/10.1093/nar/gkg563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaudin V, Jouanin L (1995) Expression of Agrobacterium rhizogenes auxin biosynthesis genes in transgenic tobacco plants. Plant Mol Biol 28(1):123–136. https://doi.org/10.1007/bf00042044

    Article  CAS  PubMed  Google Scholar 

  13. Guo W, Zhao J, Li X, Qin L, Yan X, Liao H (2011) A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552. https://doi.org/10.1111/j.1365-313X.2011.04511.x

    Article  CAS  PubMed  Google Scholar 

  14. Imin N, Kerim T, Rolfe BG, Weinman JJ (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4:1873–1882. https://doi.org/10.1002/pmic.200300738

    Article  CAS  PubMed  Google Scholar 

  15. Jones L, McQueen-Mason S (2004) A role for expansins in dehydration and rehydration of the resurrection plant. FEBS Lett 559(1–3):61–65

    Article  CAS  Google Scholar 

  16. Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45(1):83–100

    Article  CAS  Google Scholar 

  17. Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filee P, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci 105(44):16876–16881. https://doi.org/10.1073/pnas.0809382105

    Article  PubMed  Google Scholar 

  18. Kieliszewski MJ, Lamport DT (1994) Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5(2):157–172. https://doi.org/10.1046/j.1365-313X.1994.05020157.x

    Article  CAS  PubMed  Google Scholar 

  19. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, Harter K (2007) The At GenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50(2):347–363. https://doi.org/10.1111/j.1365-313x.2007.03052.x

    Article  CAS  PubMed  Google Scholar 

  20. Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Cho HT (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18(11):2958–2970. https://doi.org/10.1105/tpc.106.045229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748. https://doi.org/10.1093/jxb/err210

    Article  CAS  PubMed  Google Scholar 

  22. Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4(6):527–532. https://doi.org/10.1016/s1369-5266(00)00211-9

    Article  CAS  PubMed  Google Scholar 

  23. Lee DK, Ahn JH, Song SK, Choi YD, Lee JS (2003) Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol 131(3):985–997. https://doi.org/10.1104/pp.009902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee J, Waffenschmidt S, Small L, Goodenough U (2007) Between-species analysis of short-repeat modules in cell wall and sex-related Hydroxyproline-rich glycoproteins of Chlamydomonas. Plant Physiol 144(4):1813–1826. https://doi.org/10.1104/pp.107.100891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leidi EO, Pardo JM (2008) Bases moleculares de la resistencia a estreses abiótico. Instituto de Recursos Naturales y Agrobiología de Sevilla. Consejo Superior de Investigaciones Científicas

  26. Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128(3):854–864. https://doi.org/10.1104/pp.010658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li AX, Han YY, Wang X, Chen YH, Zhao MR, Zhou S-M, Wang W (2015) Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environ Exp Bot 110:73–84

  28. Lin C, Choi H, Cho H (2011) Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cells 31:393–397. https://doi.org/10.1007/s10059-011-0046-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  30. Lu P, Kang M, Jiang X, Dai F, Gao J, Zhang C (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Plant 237(6):1547–1559. https://doi.org/10.1007/s00425-013-1867-3

    Article  CAS  Google Scholar 

  31. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz268

  32. Marzol E, Borassi C, Bringas M, Sede A, Rodríguez-García D, Capece L, Estevez J (2018) Filling the gaps to solve the Extensin puzzle. Mol Plant 11:645–658. https://doi.org/10.1016/j.molp.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  33. Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01132

  34. Noh SA, Park SH, Huh GH, Paek KH, Shin JS, Bae JM (2009) Growth retardation and differential regulation of expansin genes in chilling-stressed sweet potato. Plant Biotechnol Rep 3:75–85. https://doi.org/10.1007/s11816-008-0077-0

    Article  Google Scholar 

  35. Peng X, Wu Q, Teng L, Tang F, Phi Z, Shen S (2015) Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors. BMC Plant Biol 15:108. https://doi.org/10.1186/s12870-015-0489-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reinhardt D (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12(4):507–518. https://doi.org/10.1105/tpc.12.4.507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roberts K, Shirsat A (2006) Increased extensin levels in Arabidopsis affect inflorescence stem thickening and height. J Exp Bot 57(3):537–545. https://doi.org/10.1093/jxb/erj036

    Article  CAS  PubMed  Google Scholar 

  38. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6(12):242. https://doi.org/10.1186/gb-2005-6-12-242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, Connor R, Fiorini N, Funk K, Hefferon T, Holmes JB, Kim S, Kimchi A, Kitts PA, Lathrop S, Lu Z, Madden TL, Marchler-Bauer A, Phan L, Schneider VA, Schoch CL, Pruitt KD, Ostell J (2019) Database resources of the National Center for biotechnology information. Nucleic Acids Res 8:47. https://doi.org/10.1093/nar/gky1069

    Article  CAS  Google Scholar 

  40. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292. https://doi.org/10.1093/jxb/erj036

    Article  CAS  PubMed  Google Scholar 

  41. Shirsat A, Bell A, Spence J, Harris J (1996) The Brassica napus extA extensin gene is expressed in regions of the plant subject to tensile stresses. Plant J 199(4):618–624. https://doi.org/10.1007/BF00195195

    Article  CAS  Google Scholar 

  42. Solis-Castañeda GJ, Zamilpa A, Cabañas-García E et al (2020) Identification and quantitative determination of feruloyl-glucoside from hairy root cultures of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. (Cactaceae). In Vitro Cell Dev-Pl 56:8–17. https://doi.org/10.1007/s11627-019-10029-z

    Article  CAS  Google Scholar 

  43. Sudhir K, Glen S, Koichiro T (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  44. Tel-zur N, Abbo S, Myslabodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from Epiphytic Cacti of the Genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Rep 17(3):249–254. https://doi.org/10.1023/a:1007656315275

    Article  CAS  Google Scholar 

  45. Vázquez-Sánchez M, Sánchez D, Terrazas T, De La Rosa-Tilapa A, Arias S (2019) Polyphyly of the iconic cactus genus Turbinicarpus (Cactaceae) and its generic circumscription. Bot J Linn Soc 190(4):405–420. https://doi.org/10.1093/botlinnean/boz027

    Article  Google Scholar 

  46. Velásquez S, Ricardi M, Dorosz J, Fernandez P, Nadra A, Pol-Fachin L, Egelund J, Gille S, Harholt J, Ciancia M (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332(6036):1401–1403. https://doi.org/10.1126/science.1206657

    Article  CAS  PubMed  Google Scholar 

  47. Xu J, Belanger F, Huang B (2008) Differential gene expression in shoots and roots under heat stress for a geothermal and non-thermal Agrostis grass species contrasting in heat tolerance. Environ Exp Bot 63:240–247. https://doi.org/10.1016/j.envexpbot.2007.11.011

    Article  CAS  Google Scholar 

  48. Xu Q, Xu X, Shi Y, Xu J, Huang B (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS One 9(7):e100792. https://doi.org/10.1371/journal.pone.0100792

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378. https://doi.org/10.1105/tpc.018143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang KA, Lim CJ, Hong JK, Park CY, Cheong YH, Chung WS, Lee KO, Lee SY, Cho MJ, Lim CO (2006) Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci 171:175–182. https://doi.org/10.1016/j.plantsci.2006.03.013

    Article  CAS  Google Scholar 

  51. Yu E, Fan C, Yang Q, Li X, Wan B, Dong Y, Wang X, Zhou Y (2014) Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PLoS One 9(7):e101914. https://doi.org/10.1371/journal.pone.0101914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Universidad Autónoma de Aguascalientes for financing, through the PIBT19-1 project and the Consejo Nacional de Ciencia y Tecnología (CONACyT) for grant No. 486792.

Funding

M.C. Juan Pablo Martínez-Vázquez was funded by Consejo Nacional de Ciencia y Tecnología (MX) (486792) and Dr José Francisco Morales-Domínguez was funded by Universidad Autonoma de Aguascalientes (MX) (PIBT19-1).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Juan Pablo Martínez Vázquez, Abraham Loera Muro, Yenny Adriana Gómez Aguirre and José Francisco Morales Domínguez. The first draft of the manuscript was written by Juan Pablo Martínez Vázquez and José Francisco Morales Domínguez and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. F. Morales-Domínguez.

Ethics declarations

Conflicts of interest

We declare that we do not have conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Vázquez, J.P., Loera-Muro, A., Gómez-Aguirre, Y.A. et al. Identification and characterization of the EXPA7, EXPA18 and EXT10 genes in Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb; and their expression analysis in the root under abiotic stress. Mol Biol Rep 48, 1633–1644 (2021). https://doi.org/10.1007/s11033-021-06157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06157-8

Keywords

Navigation