Problem 1

For each of the following sequences:
(i) Determine the z-transform, $X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$, if it exists.
(ii) Include with your answer the region of convergence of the z-transform in the z-plane.
(iii) Specify whether or not the DTFT of the sequence, $X_{d}(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$, exists.

1. $x[n]=3^{n} u[n]$
2. $x[n]=\cos \left(\frac{n}{2}\right) u[n]$
3. $x[n]=\sin \left(\frac{n \pi}{4}\right) u[n]$
4. $x[n]=\left(\frac{1}{4}\right)^{n} u[n]+\left(\frac{1}{8}\right)^{n} u[n]$
5. $x[n]=\left(\frac{1}{2}\right)^{n-1} u[n-1]+\left(\frac{4}{5}\right)^{n-1} u[n-2]$
6. $x[n]=2^{n}(u[n]-u[n-10])$
7. $x[n]=(1 / 8)^{n} u[n]+(1 / 2)^{n-1} u[n-1]+(1 / 8)^{n-2} u[n-2]$
8. $x[n]=n \cos (n / 2) u[n]$

PI

1. $x[n]=3^{n} u[n]$

$$
\begin{aligned}
x(z) & =\sum_{n=0}^{\infty}\left(\frac{3}{z}\right)^{n} \\
& =\frac{z}{z-3}, \quad|z|>3
\end{aligned}
$$

ROC: $|z|>3$. DTFT does not exist
2.

$$
\begin{aligned}
x[n]= & \cos \left(\frac{n}{2}\right) u[n] \\
x(z)= & \frac{1}{2} \sum_{n=0}^{\infty} e^{j \frac{n}{2}} z^{-n}+\frac{1}{2} \sum_{n=0}^{\infty} e^{-j n / 2} z^{-n} \\
= & \frac{1}{2}\left[\frac{z}{z-e^{+j / 2}}+\frac{z}{z-e^{-j / 2}}\right],|z|>1 \\
& \text { ROC: }|z|>1 . \text { DTFT dosinot exist }
\end{aligned}
$$

3. $x[n]=\sin \left(\frac{n \pi}{4}\right) u[n]$

$$
\begin{aligned}
x[n] & =\sin \left(\frac{n \pi}{4}\right) u[n] \\
x(z) & =\frac{1}{2 \gamma} \sum_{n=0}^{\infty} e^{j^{\pi / 4}} z^{-n}-\frac{1}{2 \gamma} \sum_{n=0}^{\infty} e^{-j n \pi / 4} z^{-n} \\
& =\frac{1}{2 \gamma} \frac{z}{z-e^{j^{\pi / 4}}}-\frac{1}{2 \gamma} \frac{z}{z-e^{-j \pi / 4}},|z|>1
\end{aligned}
$$

ROC: $|z|>1$. DTFT does not exist.

$$
\begin{aligned}
& 4 . \\
& x[n]=\left(\frac{1}{4}\right)^{n} u[n]+\left(\frac{1}{8}\right)^{n} u[n] \\
& x(z)=\sum_{n=0}^{\infty}\left(\frac{1}{4 z}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{1}{8 z}\right)^{n} \\
& =\frac{z}{z-1 / 4}+\frac{z}{z-1 / 8}, \quad|z|>1 / 4 \\
& \text { ROC: }|z|>1 / 4 \text {. DTFT exists } \\
& \text { 5. } x[n]=\left(\frac{1}{2}\right)^{n-1} u[n-1]+\left(\frac{4}{5}\right)^{n-1} u[n-2] \\
& x(z)=\frac{z}{z-1 / 2} z^{-1}+\frac{4}{5} \frac{z}{z-4 / 5} z^{-2},|z|>4 / 5 \\
& \text { ROC: }|z|>4 / 5 \text {. DTFT exists } \\
& \text { 6. } x[n]=2^{n}(u[n]-u[n-10]) \\
& x(z)=\sum_{n=0}^{960} 2^{n} z^{-n}=\sum_{n=0}^{9}\left(\frac{2}{z}\right)^{n} \\
& =\frac{1-\left(\frac{2}{z}\right)^{10}}{1-2 / z}=\frac{z^{10}-2^{10}}{z^{9}(z-2)} \\
& =\mathrm{f}(\mathrm{z})\left(\mathrm{z}^{\wedge} 9\right) \text {, since } \mathrm{z}=2 \text { is a } \\
& \text { ROC: }|z|>0 \text {, DTFT exists } \\
& \text { factor of } z^{\wedge} 10-2^{\wedge} 10
\end{aligned}
$$

$$
\text { 7. } \begin{aligned}
& x[n]=\left(\frac{1}{8}\right)^{n} u[n]+\left(\frac{1}{2}\right)^{n-1} u[n-1]+\left(\frac{1}{8}\right)^{n-2} u[n-2] \\
& x(z)= \sum_{n=0}^{\infty}\left(\frac{1}{8}\right)^{n} u[n]+z^{-1} \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}+z^{-2} \sum_{n=0}^{\infty}\left(\frac{1}{8}\right)^{n} u[n \\
&= \frac{z}{z-1 / 8}+z^{-1} \frac{z}{z-1 / 2}+z^{-2} \frac{z}{z-1 / 8} \\
& \text { for }|z|>1 / 8 \cap|z|>1 / 2 \\
& \therefore R O C \quad|z|>1 / 2
\end{aligned}
$$

DTFT exists since $|z|=1$ is inside ROC.
8.

$$
x[n]=n \cos \left(\frac{n}{2}\right) u[n]
$$

Let $z[n]=\cos \left(\frac{n}{2}\right) u[n]$

$$
\begin{aligned}
z(z) & =\frac{z}{2\left(z-e^{j / 2}\right)}+\frac{z}{2\left(z-e^{-j / 2}\right)} \\
z(z) & =\sum_{n=0}^{\infty} \cos \frac{n}{2} z^{-n} \\
\frac{d z(z)}{d z} & =\sum_{n=1}^{\infty}-n \cos \left(\frac{n}{2}\right) z^{-n-1} \\
& =-z^{-1} \sum_{n=1}^{\infty}+n \cos \left(\frac{n}{2}\right) z^{-n} \\
& =-z^{-1} \sum_{n=0}^{\infty} n \cos \left(\frac{n}{2}\right) z^{-n} \\
\frac{d z(z)}{d z} & =-z^{-1} x(z) \\
x(z) & =-z \frac{d z(z)}{d z} \\
& =-\frac{z}{2}\left[\frac{z-e^{j / 2}-z}{\left(z-e^{j / 2}\right)^{2}}+\frac{z-e^{-j / 2}-z}{\left(z-e^{-j / 2}\right)^{2}}\right]
\end{aligned}
$$

$$
\begin{gathered}
x(z)=\frac{ \pm}{\frac{z}{2}} \frac{z e^{j / 2}}{2\left(z-e^{j / 2}\right)^{2}}+\frac{z e^{-j / 2}}{2\left(z-e^{-j / 2}\right)^{2}} \\
\operatorname{ROC} \quad|z|>1
\end{gathered}
$$

DTFT does not exist.

Problem 2

For each of the following z -transforms:

- Sketch the pole-zero plot.
- Assume the sequences are causal (i.e. zero for $n<0$) and sketch the region of convergence (ROC).
- Compute the inverse z-transform, corresponding to the ROC you determined.

1.

$$
X_{1}(z)=\frac{z^{-1}}{1+2 j z^{-1}}
$$

2.

$$
X_{2}(z)=\frac{1-\frac{1}{3} z^{-1}}{1+\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}
$$

3.

$$
X_{3}(z)=\frac{1+z^{-2}}{1-\frac{5}{2} z^{-1}+z^{-2}}
$$

4.

$$
\begin{aligned}
& X_{4}(z)=\frac{1-3 z^{-1}}{1+0.5 z^{-1}+0.25 z^{-2}} \\
& \text { \#1. } X_{1}(z)=\frac{t^{-1}}{1+2 j z^{-1}}=\frac{1}{z+2 j} \Rightarrow \begin{array}{c}
\text { pole at } z=-z j \\
\text { no zeus }
\end{array} \\
& \text { Sketched as tollous: (zeros as " } 0 \text { ". poles as "*") } \\
& \text { Sequence is Canal } \\
& \Rightarrow \text { ROC is outside of } \\
& \text { The outermost pole } \\
& \begin{array}{l}
\text { ide, }|z|>|2|=|2| \\
\Rightarrow 2 O D:|z|>2
\end{array} \\
& \text { The ROC is the hatched area (outside of the disk of } \\
& \text { radial } \frac{1}{2} \text {. }
\end{aligned}
$$

(b)

$$
x_{1}(t)=\frac{1}{z+2 j}=z^{-1}\left(\frac{z}{z-\left(-z^{j}\right)}\right)
$$

let Z and z^{-1} dance
(1) $\frac{t}{z+2 j} \stackrel{\text { inverse } z \text { troorstom }}{\longleftrightarrow}(-\mathbf{2 j})^{n} U(n)$ z-transform and inverse z-tiansform respectively
(2) And according to the shifting property $x[n+k] \stackrel{z}{\longleftrightarrow} X(z) z^{-k}$

$$
\stackrel{\text { Quod (2) }}{\Rightarrow} z^{-1}\left(\frac{z}{z+j}\right) \stackrel{\substack{\text { inverse } \\ z-\text { trass }}}{\longrightarrow}\left(-z_{j}\right)^{n-1} u(n-1]
$$

\#2.

$$
\begin{aligned}
X_{2}(z) & =\frac{1-\frac{1}{3} z^{-1}}{1+\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}} \quad \text { Poler: } z=-\frac{1}{4},-\frac{1}{2} . \\
& =\frac{z\left(z-\frac{1}{3}\right)}{(z+1 / 4)(z+1 / 2)} \quad \text { zeros: } z=0, \frac{1}{3}
\end{aligned}
$$

Sketch:

$\left[\begin{array}{l}\text { zeros: } 0 \\ \text { poles: } x\end{array}\right.$
Sequence is cantal
\longrightarrow Roc is outside of the outermost pole
$R(t)$

$$
\begin{aligned}
& \Rightarrow R_{\text {OC: }}|z|>\left|-\frac{1}{2}\right| \\
& G_{R O C}|z|>\left|\frac{1}{2}\right|
\end{aligned}
$$

$$
\begin{aligned}
& X_{2}(z)=\frac{z\left(z-\frac{1}{3}\right)}{\left(z+\frac{1}{4}\right)\left(z+\frac{1}{2}\right)} \Rightarrow \frac{X_{2}(t)}{z}=\frac{z-\frac{1}{3}}{\left(z+\frac{1}{4}\right)\left(z+\frac{1}{2}\right)}=\frac{A}{2+\frac{1}{4}}+\frac{B}{z+\frac{1}{2}} \\
& \text { [ruction Expansion [see page G.14 in The course notes]: } \\
& A=\left.\frac{z-\frac{1}{3}}{t+\frac{1}{2}}\right|_{z=-\frac{1}{4}}=-\frac{7}{3} \quad B=\left.\frac{z-\frac{1}{3}}{z+\frac{1}{4}}\right|_{z=-\frac{1}{2}}=\frac{10}{3} \\
& \text { Thus } \\
& X_{2}(z)=7 z
\end{aligned}
$$

Partid Fraction
$A=$
Thus

$a^{n} u[n] \stackrel{z}{\longrightarrow} \frac{z}{z-a} \quad R O C:|z|>|a| \quad$ [See problem 3 solutur for derivations]
For $x_{2}(z)$, we have $a=-\frac{1}{4}$ for the first term and $a=-\frac{1}{2}$ in the second term

Problem 4
\#3.

$$
X_{3}(t)=\frac{1+t^{-2}}{1-\frac{5}{2} z^{-1}+z^{-2}}=\frac{z^{2}+1}{\left(z-\frac{1}{2}\right)(z-2)} \Rightarrow\left\{\begin{array}{l}
\text { poles: } z=\frac{1}{2}, 2 \\
\text { zeros: } z= \pm_{j}^{\prime}
\end{array}\right.
$$

Since the numerator can re e writhen as:
$z^{2}+1=(z-j)(z+j)$
The sequence is causal
$\Rightarrow R O C$ is outside of the outermost $\frac{\text { Pole }}{\text { Roc: }|z|>2}$

$$
\begin{aligned}
& X_{3}(z)=\frac{z^{2}+1}{\left(z-\frac{1}{2}\right)(z-2)} \Rightarrow \frac{X_{3}(t)}{z}=\frac{z^{2}+1}{z\left(z-\frac{1}{2}\right)(t-2)}=\frac{A}{z}+\frac{B}{z-\frac{1}{2}}+\frac{C}{z-2} \\
& A=\left.\frac{z^{2}+1}{\left(z-\frac{1}{2}\right)(z-2)}\right|_{z=0}=1 ; \quad B=\left.\frac{z^{2}+1}{z(z-2)}\right|_{z=\frac{1}{2}}=-\frac{5}{3} \\
& C=\left.\frac{z^{2}+1}{z\left(z-\frac{1}{2}\right)}\right|_{z=2}=\frac{5}{3} \\
& \text { Thus } X_{3}(z)=1+\left(-\frac{5}{3}\right) \frac{z}{z-\frac{1}{2}}+\frac{5}{3} \frac{z}{z-2} \quad(\text { ROC: }|z|>2) \\
& \xrightarrow[\nabla]{\substack{\text { ind.tanstorm }}} x_{3}[n]=\delta[n]-\frac{5}{3}\left(\frac{1}{2}\right)^{n} u[n]+\frac{5}{3} 2^{n} u[n]
\end{aligned}
$$

Used line linearity property and following z-transform pairs to obtain The inverse z-tars,
(1) $\delta[n] \stackrel{z}{\longleftrightarrow} 1 \quad$ social z
(2) $a^{n} u[n] \stackrel{z}{\longrightarrow} \frac{z}{z-a} \quad$ ROC: $\left.|z|\right\rangle|a| \rightarrow$ See Solution to Problem 3 for derivations.

$$
\text { 4. } X_{4}(t)=\frac{1-3 z^{-1}}{1+0.5 z^{-1}+0.25 z^{-2}}=\frac{z^{2}-3 z}{z^{2}+0.5 z+0.25}
$$

poles: $\quad z^{2}+0.5 z+0.25=0 \quad \Rightarrow \quad z_{1,2}=-\frac{1}{4} \pm j \frac{\sqrt{3}}{4}=\frac{1}{2} e^{ \pm j \frac{2 \pi}{3}}$

$$
\begin{aligned}
\therefore \frac{x_{4}(z)}{z} & =\frac{z-3}{\left(z-\frac{1}{2} e^{j \frac{2 \pi}{3}}\right)\left(z+\frac{1}{2} e^{-j \frac{2 \pi}{3}}\right)} \\
& =\frac{A}{z-\frac{1}{2} e^{j \frac{2 \pi}{3}}+\frac{\beta}{z-\frac{1}{2} e^{-j \frac{2 \pi}{3}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore A=\frac{\frac{1}{2} e^{j \frac{2 \pi}{3}}-3}{\frac{1}{2} e^{j \frac{\pi}{3}}-\frac{1}{2} e^{-j \frac{2 \pi}{3}}}=\frac{-13+\sqrt{3} j}{j^{2} \sqrt{3}}=\frac{1}{2}+\frac{13 j}{2 \sqrt{3}} \\
& B=\frac{\frac{1}{2} e^{-j \frac{2 \pi}{3}}-3}{\frac{1}{2} e^{-j \frac{2 \pi}{3}}-\frac{1}{2} e^{j \frac{23}{3}}}=\frac{1}{2}-\frac{13 j}{2 \sqrt{3}} \quad \text { ichonuate } \\
& \text { (} B=A^{*} \text {) } \\
& \therefore H(t)=\left(\frac{1}{2}+\frac{13 j}{2 \sqrt{3}}\right) \frac{z}{z-\frac{1}{2} e^{\frac{\pi}{3}}}+\left(\frac{1}{2}-\frac{13 j}{2 \sqrt{3}}\right) \frac{t}{z-\frac{1}{2 t^{2}}{ }^{2 \frac{2}{3}}} \\
& \Rightarrow h[n]=\left(\frac{1}{2}+\frac{1 \beta j}{2 \sqrt{3}}\right)\left(\frac{1}{2} e^{j \frac{2 \pi}{3}}\right)^{n} u[n]+\left(\frac{1}{2}-\frac{B j}{2 \sqrt{3}}\right)\left(\frac{1}{2} e^{-j \frac{2 \pi}{3}}\right)^{n} \pi
\end{aligned}
$$

\Rightarrow Can further simplify:

$$
\begin{aligned}
h[n] & \left.=\left(\frac{1}{2}\right)^{n} u^{[n}\right]\left[\left(\frac{1}{2}+\frac{13 j}{2 \sqrt{3}}\right) e^{j \frac{2 \pi n}{3}}+\left(\frac{1}{2}-\frac{B j}{2 \sqrt{3}}\right) e^{-j \frac{2 \pi n}{3}}\right] \\
& =\left(\frac{1}{2}\right)^{n} u[n]\left(\frac{1}{2} 2 \cos \left(\frac{2 \pi n}{3}\right)-\frac{13}{2 \sqrt{3}} 2 \sin \left(\frac{2 \pi n}{3}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
h[n] & =\left(\frac{1}{2} r u[n]\left(\cos \left(\frac{2 \pi n}{3}\right)-\frac{13}{\sqrt{3}} \sin \left(\frac{2 \pi n}{3}\right)\right]\right. \\
& =\left(\frac{1}{2}\right)^{n} \cos \left(\frac{2 \pi n}{3}\right) u[n]-\frac{13}{\sqrt{3}}\left(\frac{1}{2}\right)^{n} \sin \left(\frac{2 \pi n}{3}\right) u[n) \\
\text { Roc: } & |z|\rangle\left|z_{1}\right|=\left|\frac{1}{2} t^{2 \frac{2 \pi}{3}}\right|=\frac{1}{2}
\end{aligned}
$$

plot.

