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Introduction 

Di�usion tensor imaging (DTI) [1] and di�usion kurtosis imaging 
(DKI) [2] metrics are in�uenced by cellular tissue properties and tend 
to alter signi�cantly during the life span [3,4] or as a result of various 
pathologies, including schizophrenia [5] and neurodegenerative 
diseases, such as mild cognitive impairment [6], Alzheimer’s, 
Parkinson’s and multiple sclerosis [7-13]. �erefore they are o�en used 
in between-group comparisons of patients versus control groups and for 
studying the correlations with age or cognitive performance. However, 
the methodology of between-group comparisons and of statistical 
correlation analysis has not been yet su�ciently well established. 
Popular methods include the region-of-interest (ROI) analysis [14,15], 
whole brain voxel-based morphometry (VBM) [16-18] and the track-
based spatial statistics (TBSS) [19,20]. Each of the methodologies su�ers 
from speci�c problems reducing its statistical power or sensitivity. In 
particular, VBM methods require alignment of images to a template 
followed by independent hypothesis tests per voxel which are smoothed 
and corrected for multiple comparisons. �e bene�t of VBM analysis 
is that it is fully automated and applies to the whole brain without the 
necessity of a priori ROI pre-speci�cation. However, problems might 
arise due to alignment inaccuracies, arbitrary smoothing and clustering 
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procedures, as well as due to requirements for multiple-comparison 
corrections providing challenges for valid statistical inferences [21]. 

A modi�ed voxel-based approach, TBSS, attempts to overcome the 
problems of mis-registration by skeletonizing white matter (WM) tracts 
and considering only the voxels of the mean skeleton derived from FA 
maps. It is fully automated and does not require ROI pre-speci�cation. 
However, since the skeleton is formed only by a small fraction of voxels, 
constituting about 2% of the total number of voxels, potentially useful 
information occurs to be signi�cantly reduced. 

In the ROI-based analyses, di�usion metrics of interest are averaged 
over the voxels of ROIs. �e averaged characteristics are relatively 
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simple and sensitive to small changes in parameters of interest [22]. 
�e problems, however, are associated with the necessity of manual 
and thus user-biased and time-consuming delineation of the ROIs. �e 
ROI-based methods do not enable whole-brain investigations and are 
very susceptible to inter-user variability. Besides, the ROI placements 
appear poorly reproducible in cross-sectional and longitudinal studies 
[22]. 

�e atlas-based segmentation tries to overcome these di�culties by 
automatically de�ning the ROIs using co-registration of the subject’s 
parameter maps with population-averaged stereotaxic WM atlases, 
such as the so-called ICBM-DTI-81 white-matter label atlas and 
Johns-Hopkins-University white-matter tractography atlases [23-26], 
available for open use in the FSL toolkit (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/Atlases). However, the atlas-based segmentation appears 
especially sensitive to errors in inter-subject co-registration using 
a�ne transformations. An additional source of serious problems is the 
in�uence of partial volume e�ects (PVE), i.e., the contribution of mixed 
signals from di�erent tissues within the same voxel owing to �nite 
imaging resolution [27-29] and/or misregistration. Encountering for 
“wrong” tissue signals due to incorrect segmentation or PVE may give 
rise to signi�cant errors in the analysis of regional di�usion properties 
reducing the accuracy of tissue characterisation, on the one hand and 
leading to variable inferences across studies, on the other. 

Partial volume artefacts at tissue boundaries, especially between 
WM and cerebrospinal �uid (CSF) or grey matter (GM), represent a 
problematic confound in between-group comparisons, in particular 
and in di�usion MRI, in general. Given, in addition, the high degree of 
inter-individual variety, the optimization of the MR-derived measures 
in order to correctly elucidate subtle changes in development, ageing, or 
pathology is of pivotal importance.

�e purpose of this work was to demonstrate that the application 
of a simple, robust di�usion-kurtosis-informed template (D-KIT) is 
able to essentially reduce contamination of WM ROIs by PVE from 
neighbouring non-WM (GM and CSF) regions at tissue interfaces and 
improves atlas-based between-group comparisons. �e application is 
demonstrated in a DKI study of a group of children versus a group of 
adults. �e results are compared before (published recently in [30]) and 
a�er the use of D-KIT for PVE correction. 

Materials and Method

Subjects

Two groups of healthy volunteers, 20 children (range, 9-12 years, 
mean age, 10.3) and 21 adults (range, 38-64 years, mean age, 54.3) 
underwent DKI a�er providing written informed consent by themselves 
or by their parents in the case of the children.

Experiments

 In vivo DKI measurements were performed with a whole-body 3T 
Siemens MAGNETOM Tim-Trio scanner (Siemens Medical Systems, 
Erlangen, Germany). �e body coil was used for RF transmit and the 
manufacturer’s 12-element phased array coil for signal receive. �e 
gradient system provided a maximal gradient strength of 40 mT/m 
and slew rate of 200 T/m/s. Di�usion-weighted images (DWIs) were 
acquired along 30 directions of the di�usion encoding gradients for 
b=0, 1 and 2.8 ms µm-2 using the manufacturer’s double spin-echo EPI 
pulse sequence with TR=10900 ms, TE=112 ms, band width=1628 Hz/
px, number of repetitions=3, total acquisition time=33 min. �e voxel 
size was 1.9 × 1.9 × 1.9 mm3.

Post-processing and statistical analysis

Di�usion tensor (DT) scalar invariants (mean, (MD), axial (AD) 
and radial (RD) di�usivities and fractional anisotropy (FA)) and speci�c 
kurtosis tensor (KT) measures (mean (MK), axial (AK) and radial (RK) 
kurtoses and kurtosis anisotropy (KA)) were determined on a voxel-by-
voxel basis in the whole brain in frame of the DKI analysis [31,32]. �e 
post-processing steps were described in detail elsewhere [30]. In brief, 
DWIs were corrected for eddy-current distortions and head motion 
using the FDT toolkit available in FSL [33]; bias due to background 
noise was reduced using the power-images method [34-36]; DT/KT 
metrics were evaluated as described elsewhere with the help of the 
ExploreDTI toolkit [37]. �e non-linear a�ne transformation available 
in FSL was used to align the FA maps to the FA template in the JHU 
space and the transformation matrix was applied for coregistration of 
the non-FA images. For atlas-based between-group comparisons, all 
DT/KT metrics were averaged over 20 WM anatomic regions provided 
by JHU WM tractography atlas available in FSL (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/Atlases). 

�e investigated WM structures in this work comprised the le� 
and right regions of 7 major association �bres, such as cingulum 
(gyrus) (Cg) and cingulum (hippocampus) (Ch), superior longitudinal 
fasciculus (SLF), SLF (temp), inferior longitudinal fasciculus (ILF), 
inferior fronto-occipital fasciculus (IFOF), uncinate fasciculus (UF), the 
le� and right regions of 2 projection �bres, anterior thalamic radiation 
(ATR) and corticospinal tract (CST) and 2 commissural �bres, forceps 
major (F_major) (splenium of corpus callosum) and forceps minor (F_
minor) (genu of corpus callosum). Le� and right regions of the same 
�bre will be denoted by subscripts “L” or “R” in the abbreviation of the 
�bre. 

A sum of two Gaussian distribution functions was �tted to the 
double peaked- histograms of MK according to 
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Before and a�er the D-KIT correction, we evaluated: 

a) Relative changes (ΔA) in percentage between the group mean 
parameter values (Ā) according to ΔA=100*(Ā

adult
 – Ā

child
)/Ā

child
, 

where A indicates one of the DT/KT parameters.

b) P-values of the between-group two-sided Student’s t-test 
analysis; in the following, p-values will be indicated by means 
of the p-index according to p>0.05 (p0); 0.01<p ≤ 0.05 (p1); 
0.001<p ≤ 0.01 (p2); 0.0001<p ≤ 0.001 (p3); 0.00001<p ≤ 0.0001 
(p4); p ≤ 0.00001 (p5). We shall refer to statistical between-
group di�erences as signi�cant if p ≤ 0.0025 (a�er Bonferroni 
correction for multiple comparisons, N=20) and suggestively 
signi�cant if (0.0025<p<0.05). For quick visualisation on 
the plots, signi�cant p-values (≤ 0.0025) will be additionally 
indicated by asterisks. Please note that p2 with asterisk 
corresponds to p ≤ 0.0025 (signi�cant) whereas p2 without 
asterisk indicates p>0.0025 (suggestively signi�cant).

c) Between-group age-related e�ect sizes using Cohen’s d [38] 
for each anatomically de�ned structure and for each DT/KT 
parameter before and a�er D-KIT correction. 
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�e data before the D-KIT correction is the same as represented 
recently in the previous work [39].

Results 

Construction of the D-KIT for improved WM parameter 

mapping 

�e goal of the D-KIT construction is to provide an improved 
template for DT/KT parameter mapping in WM using di�usion kurtosis 
information (ideally, the template voxels should represent single WM 
tissue). �e construction of the D-KIT is based on the combination of 
two complimentary thresholds, FA

thresh
 for FA and MK

thresh
 for MK, i.e., 

a) FA>FA
thresh

 (set to 0.2 in our work) and b) MK>MK
thresh

. 

A) Two-dimensional (2d) D-KIT. �e determination of MK
thresh

 
constitutes the following steps depicted schematically in Figures 1A-1D 
for one selected slice in one representative adult (subject 1). Consider 
a typical slice histogram of the MK map, Figure 1A, showing a clear 
double-peak structure. �e sum of 2 Gaussian distribution functions, 
Eq. (1), was �t to the data points. Such a double-peak histogram is 
characteristic for brain regions containing voxels in both WM and non-
WM regions [40]: the component with lower MK values is attributed 
(predominantly) to non-WM, the component with higher values 
(predominantly) to WM. However, the middle part of the histogram 
represents an overlap area where MK values are likely to represent 
either WM, non-WM, or their mixture. 

�e red curve in Figure 1B shows separately the high-MK 
histogram component along with the data points from voxels for which 
FA>0.2. A good correspondence between the both is observed. �e 
Gaussian shape of the MK distribution (red curve, Figures 1A and 1B) 
is bene�cial for a formalised determination of MK

thresh
: we determine 

the low and high half-maximum (HM) values of the high-MK Gaussian 
component and set MK

thresh
 to the value of MK at the low HM. �is 

value will be denoted as MK
LHM

 (where index L stands for low). �us, 
the D-KIT is determined by selecting the voxels for which (a) FA>0.2 
and (b) MK>MK

LHM
. 

�e condition (b) allows us to essentially reduce the number of 
voxels corresponding to the overlap area, see the “corrected” histogram 
component in Figure 1A, i.e., the part of the histogram right to the 
dashed red line. �e result is demonstrated in the scatter plots of MK 
vs. FA (Figure 1C) and MD vs. FA (Figure 1D). �e blue vertical lines 
in Figures 1C and 1D indicate the e�ect of FA

thresh
: data points to the 

le� from the blue lines are eliminated by FA
thresh

 prior to application of 
the condition (b). �ese data points refer to the voxels with relatively 
low MK and/or high MD characteristic of GM and/or CSF (with CSF 
exhibiting the lowest MK and the highest MD). However, a considerable 
amount of voxels with such characteristic exists also for FA>0.2. �e 
application of the additional condition (b) allows one to exclude a 
signi�cant amount of such voxels from the analysis: see data points in 
quadrant IV in Figure 1C and data points in blue in Figure 1D. �e 
voxels that �nally form the D-KIT correspond to the data points shown 
in the quadrant II of Figure 1C. In MD vs. FA plots, the corresponding 
data points are shown in red, Figure 1D. Clearly, the distribution of 
MD values corresponding to D-KIT is narrowed and the majority of 
points with high MD values (>1.5 μm2/ms) are excluded. Beyond that, 
the D-KIT eliminates also a certain amount of voxels with relatively low 
MD (<1.5 μm2/ms) in case they are accompanied by low MK (<MK

LHM
), 

see the MD histogram evaluated for excluded voxels in the incept of 
Figure 1D. �ese voxels are likely to be in GM.

�e results for the 2d D-KIT are shown in Figure 2, see axial 
slice projections. Figure 2A exempli�es the D-KIT in yellow overlaid 
on the MD map. �e di�erence mask (red) between the D-KIT and 
the conventional FA template (FA>0.2) is shown in Figure 2B. �e 
di�erence mask thus visualises additional voxels excluded by the 
threshold MK

LHM
 (condition (b)). To demonstrate localisation of these 

voxels, the bottom panel of Figure 2 shows the di�erence mask overlaid 
on MD (Figure 2C) and FA (Figure 2D) maps. Clearly, the majority of 
excluded voxels turns out to be located at the interfaces of WM and 
non-WM regions, i.e., at the borders with low FA and/or high MD. It 
is worth noting that the contours of excluded voxels tend to replicate 
not only the boundaries of the CSF spaces (appearing white in MD and 
black in FA maps) but also the boundaries between WM and GM, see 

Figure 1: 

the light blue and red curves show the low  and high MK components of the double Gaussian function. (b) High MK component; full width at half maximum is indicated; 

(c) scatter plot MK vs. FA; (d) scatter plot MD vs. FA. The inset shows the histogram of the excluded voxels. 
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zoomed areas in Figure 2A. �e number of voxels eliminated by the 
condition (b) in the D-KIT equals 15.4% out of all voxels comprising 
the mask (FA>0.2) in the considered slice. 

B) �ree-dimensional (3D) whole brain D-KIT. �e threshold 
values, MK

LHM
, were determined separately for each slice and the 

individual 2D-slice templates were then combined in a 3D whole-brain 
D-KIT. To illustrate the result we provided two additional, sagittal and 
coronal, projections of the D-KIT and the di�erence mask in Figure 2. 
In agreement with the above 2D results, we see that eliminated voxels 
clearly outline the borders of the CSF ventricles (see for example, 
the contour curves along the corpus callosum) and some interfaces 
between WM and GM. �e number of additional voxels eliminated 
in the whole-brain mask (FA>0.2) by the condition (b) in the D-KIT 
equals 14.5%. �e 3D D-KIT can further be applied with all evaluated 
DT/KT whole-brain parameter maps. 

�e value of MK
LHM

 for di�erent slices (excluding 6 outermost slices 
at the image top and 6 outermost slices at the image bottom) varied in the 
range between 0.7 and 0.86 with the average value of 0.76 ± 0.05. Certain 
variability of MK

LHM
 across the brain can be explained by heterogeneity 

of WM microstructural properties. However, the magnitude of variability 
appears rather low: the coe�cient of variation (CV), i.e., the standard 
deviation divided by the mean, was equal to 0.064. 

Application of the D-KIT in atlas-based comparison of 

children and adults 

�e procedure described above was applied to construct the 3D 
D-KIT for anatomic WM ROIs identi�ed by the JHU-WM atlas. �e 
only di�erence in the procedure was that the determination of MK

LHM
 

was based on the histograms evaluated for individual anatomic ROIs 
rather than for individual slices. Scatter plots of MK vs. FA in (Figure 

3A) show examples of the data points excluded from the analysis 
(quadrants IV) by application of the D-KIT for 3 di�erent �bres in 
subject 1. �e results for other �bres were similar. We see also a clear 
similarity between the scatter plots shown for one individual slice in 
(Figure 1C), i.e., a considerable amount of data points exhibiting high 
FA and low MK subjected to exclusion by the D-KIT. 

Heterogeneity of the MK
LHM

 values across the subjects is represented 
by bar charts in Figure 3B showing the means (<MK

LHM
>) and standard 

deviations (STD) of MK
LHM

 averaged for each of the investigated �bres in 
the group of adults and the group of children. �e mean values, (<MK

LHM
>), 

were considerably lower in children than in adults in all �bres complying 
with generally lower MK values in WM of children compared to adults 
[30]. Within the same group, the CVs across the subjects were low for most 
of the �bres varying in approximately the same range (from 0.042 to 0.088) 
with the means equal to 0.061 in adults and 0.062 in children. �e values of 
<MK

LHM
> averaged over all �bres were equal to 0.78 ± 0.032 (CV=0.042) 

for adults and 0.61 ± 0.026 (CV=0.042) for children. Also here the CVs 
were low. �at is, we see that, within the same group, the properties of MK 
histograms in the low-MK part are rather uniform both across the subjects 
and across the �bres. 

Figure 4 demonstrates how the mean parameter values in 20 
investigated �bres, averaged over each subject group, have changed a�er 
correction with the D-KIT. In adults: a) FA has signi�cantly (p<0.0025) 
increased in all �bres with relative changes between 3 to 9%, b) MD has 
signi�cantly decreased in 6 �bres (range, 4-9%) or showed non-signi�cant 
changes in all other �bres, b) MK has signi�cantly increased in 15 �bres 
with relative changes between 4 to 7% or showed suggestively signi�cant 
(0.0025<p<0.05) increases in 4 �bres and non-signi�cant changes in one 
�bre. A very similar pattern was observed in children. 

Figure 5 shows the results of the t-test between-group comparisons 

Figure 2: (a) D KIT overlaid on the MD map; (b) D KIT+excluded voxels (red) overlaid on the MD map; (c) excluded voxels (red) overlaid on the MD map; (d) excluded 

voxels (red) overlaid on the FA map. 
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Figure 3:

charts show the means (<MK
LHM

>) and STDs of MK
LHM

Figure 4:

t test comparisons using the p index (see Section Materials and Method). Letter p

comparisons (p<0.0025, corrected) are visualised by asterisks. 
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Figure 5:

corr corr corr

correction. In MD and FA, we observed larger magnitude of differences and low p

t test comparisons using the p index (see Section Materials and Methods). Letter p

comparisons (p<0.0025, corrected) are visualised by asterisks. 
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before and a�er correction with the D-KIT in terms of the relative 
di�erences between the means (in percentage) and p-values. 
Additionally, Table 1 quanti�es the e�ect size before and a�er correction 
in terms of absolute Cohen’s d values. �e D-KIT correction has altered 
the observed between-group di�erences in the following way. 

DT metrics exhibited larger magnitudes of between-group 
di�erences accompanied with decreased p-values in several �bres a�er 
the D-KIT correction. For example, before correction, MD did not 
show signi�cant between-group di�erences in any of the �bres (except 
for one suggestively signi�cant di�erence in SLF_R). A�er correction, 
however, �ve �bres (ATR_L/ATR_R, CST_L/CST_R, Ch_R) exhibited 
signi�cant decreases of MD from childhood to adult age and three �bres 
(Ch_L, F_major, F_minor) showed suggestively signi�cant decreases. 
P-values decreased as well as demonstrated by higher p-indexes. Similar 
patterns were observed for AD and RD. FA showed signi�cant increases 
from childhood to adult range in 4 �bres (ATR_L/ATR_R, Cg_L/
Cg_R) and suggestively signi�cant increases in 6 �bres (Ch_R/Ch_L, 

ILF_L/ILF_R, SLF_L/SLF_R) a�er correction; p-values decreased. In 
contrast, no signi�cant between-group di�erences were observed in 
FA before correction, although suggestively signi�cant di�erences were 
still observed in 7 �bres (ATR_L/ATR_R, Cg_L/Cg_R, Ch_R/Ch_L, 
SLF_R). Cohen’s d value, Table 1, showed a clear tendency to increase 
a�er correction in most of the �bres and in most of the parameters 
excluding those in which the e�ect size was rather low both before and 
a�er correction. In particular, especially large improvements increasing 
the e�ect size from “low” (d<0.2) to “large” (d>0.8) were observed for 
all di�usivity parameters of ATR and CST �bres. 

KT metrics. In MK and similarly in other KT metrics, the relative 
di�erences exhibited large magnitudes (10-25%) and were highly 
signi�cant (p ≤ 0.00001), whereas Cohen’s d values were very large 
(with the majority of values as large as exceeding 2.0) already before 
correction; these features remained robust also a�er correction with 
striking similarity of patterns across various �bres.

d
FA

 d
MD

 d
AD

 d
RD

 d
MK

 d
AK

d
RK

 d
KA

 

ATR_L 0.84 0.09 0.06 0.10 3.5 2.96 3.42 1.84

1.05 1.26 1.29 1.12 3.69 3.25 3.52 2.27

ATR_R 0.88 0.21 0.14 0.24 3.95 2.63 4.27 2.12

1.44 1.51 1.42 1.44 4.42 2.91 4.64 2.74

CST_L 0.04 0.53 1.19 0.03 3.16 2.40 2.89 2.03

0.24 2.17 2.76 1.25 2.92 2.60 2.54 2.10

CST_R 0.08 0.47 1.17 0.07 3.20 2.32 3.04 2.0

0.30 1.88 2.45 1.10 3.20 2.51 2.76 2.18

Cg_L 0.79 0.06 0.15 0.02 3.82 3.13 3.16 1.97

1.11 0.01 0.30 0.25 3.82 2.97 3.26 2.20

Cg_R 0.89 0.22 0.34 0.11 4.78 2.84 4.09 2.0

1.47 0.25 0.54 0.01 5.27 2.84 4.37 2.27

Ch_L 0.91 0.08 0.22 0.03 4.74 3.97 4.07 2.82

0.75 0.89 1.05 0.69 4.71 3.93 3.96 3.05

Ch_R 0.98 0.05 0.14 0.02 3.63 3.13 3.51 2.31

0.79 1.17 1.28 0.96 3.83 3.30 3.59 2.58

F_major 0.49 0.16 0.04 0.24 2.39 1.76 2.22 2.35

0.32 0.74 0.82 0.57 2.57 2.0 2.18 2.65

F_minor 0.30 0.08 0.40 0.14 2.68 2.46 2.57 0.28

0.30 0.80 1.17 0.49 2.84 2.79 2.59 0.55

IFOF_L 0.16 0.10 0.24 0.30 3.91 3.71 3.03 0.63

0.26 0.29 0.51 0.12 4.19 3.86 3.23 0.88

IFOF_R 0.14 0.19 0.10 0.37 3.80 2.81 3.65 0.81

0.13 0.41 0.78 0.12 3.92 2.95 3.71 0.99

ILF_L 0.49 0.15 0.27 0.07 4.14 3.59 3.38 1.32

0.79 0.53 0.52 0.50 4.42 3.70 3.60 1.51

ILF_R 0.54 0.20 0.33 0.10 3.74 2.94 3.66 0.98

1.03 0.47 0.44 0.46 4.04 2.97 3.98 1.25

SLF_L 0.48 0.51 0.45 0.53 4.31 3.33 3.72 1.02

0.87 0.23 0.25 0.21 4.57 3.45 3.97 1.25

SLF_R 0.76 0.83 0.86 0.77 3.75 2.86 3.30 0.88

0.90 0.54 0.59 0.48 3.88 2.92 3.44 1.03

UF_L 0.33 0.18 0.12 0.22 4.15 3.81 3.34 0.68

0.63 0.06 0.11 0.02 4.0 3.86 3.18 0.86

UF_R 0.16 0.04 0.2 0.06 3.48 2.85 3.26 0.91

0.55 0.13 0.13 0.12 3.53 3.02 3.20 1.06

SLF_temp_L 0.04 0.43 0.10 0.62 4.08 3.96 3.21 0.91

0.10 0.20 0.07 0.35 3.60 3.68 2.89 1.02

SLF_temp_R 0.24 0.25 0.52 0.05 3.37 3.05 2.83 0.68

0.43 0.71 1.28 0.16 2.85 2.96 2.19 0.58

Table 1: Absolute Cohen’s d 

The subscript of Cohen’s d indicates the parameter for which it was evaluated, i.e., d
MK

 is Cohen’s d for MK, d
FA

 is Cohen’s d for FA, and so on.
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Discussion and Conclusion

We developed a simple, robust D-KIT enabling us to signi�cantly 
reduce PVE and demonstrated its performance in between-group 
comparisons of age-related di�erences of DT/DK metrics in atlas-
derived WM ROIs. Our results suggest that D-KIT corrected di�usion 
measures in WM regions reveal enhanced tissue speci�city and enhance 
statistical signi�cance (lower p-values) in between-group comparisons. 

�e construction of the D-KIT is based on exploiting di�usion 
kurtosis properties of the brain tissue, in particular, the double-
peak bell-shaped distribution of kurtosis values. Technically, it uses 
a dual threshold combination of the typical FA constraint with an 
additional constraint on MK. FA constraints are routinely used for 
rough segmentation of WM and non-WM [27,41,42] making use 
of low anisotropy of GM and �uid. In particular, FA thresholds are 
used to constrain streamlines to WM regions in deterministic �bre 
tractography [43-45]. However, more accurate tissue segmentation 
as well as elimination of PVE in di�usion MRI images require an 
application of dedicated methods. 

�e PVE reduction based on the D-KIT should be considered in 
the context of other approaches suggested in the literature. Most of 
e�orts so far have been invested in the development of methods for CSF 
suppression related to DTI. Contamination by CSF represents a large 
source of errors in the analysis of di�usion metrics [46,47] giving rise to 
an overestimation of di�usivities and a reduction of FA values. �e most 
eminent methods are represented by the DTI signal acquisition method 
combined with �uid attenuated inversion recovery (FLAIR) [48,49] 
and the free water elimination (FWE) method [50,51] accounting 
for mixed di�usion signal within a voxel. It was demonstrated that, 
in general, suppression of CSF contamination enhances the accuracy 
and reproducibility of DTI metrics and improves tractography results 
[48,49,52-54], especially in periventricular regions. �e FWE correction 
was also applied to improve accuracy of DTI-derived metrics of limbic 
tracts in the study of their developmental trajectories [55]. 

Correcting for CSF contamination was shown to be of paramount 
importance for disentangling atrophy-based artefacts in ageing [54,56] 
and neurodegenerative pathologies, such as mild cognitive impairment 
[57], Huntington’s disease [52], or Alzheimer’s disease [58]. Accurate 
estimation of di�usion metrics can be especially important in elucidation 
of very early stages of Alzheimer’s disease. �is is because, although 
traditional understanding of Alzheimer’s disease has been primarily 
associated with GM, the advent of DTI studies provided evidence for 
WM being also heavily a�ected (see [59] for a review). Moreover, the 
associated WM degeneration is now assumed to be an early pathological 
feature of Alzheimer’s pathogenesis occurring years or even decades 
before the onset of clinical symptoms [58]. Microstructural changes 
were found in many WM regions and individual tracts, such as UF, 
SLF, corpus callosum and fornix, predicting memory decline and 
progression from mild cognitive impairment to the Alzheimer’s disease 
[9,60-62]. Due to such studies, DTI is now emerging as potential 
tool to detect early microstructural WM changes in the Alzheimer’s 
disease. However, the underlying mechanisms (that can be secondary 
to GM pathology through Wallerian degeneration or due to processes 
originating directly in WM) are not yet fully clari�ed. Also, studies 
exploring correlations between DTI parameters and cognitive scores 
have reported some controversial results [63-66]. �is might be both 
due to confounding factors in estimation of parameter values and since 
these parameters are in�uenced by many other non-speci�c biological 
variables. More recently, application of advanced di�usion models, 
such as DKI, have added new promising biomarkers sensitive to 

neurodegenerative WM alterations in the Alzheimer’s disease [67,68]. 
In this context, our simple method allowing one to reduce the in�uence 
of PVE on estimation of both DT and KT parameters can have value 
for developing techniques with enhanced sensitivity to detect early 
preclinical WM abnormalities associated with the Alzheimer’s disease. 

While usefulness of the CSF correction for more faithful 
characterisation of anatomic and microstructural tissue properties 
in development and pathology is undoubted, the practicability of the 
suggested methods o�en remains impeded by the lack of robustness, 
introduction of additional limitations and di�culties in adaptation to 
clinical applications. For example, FLAIR preparation in DTI prolongs 
the scanning time, reduces SNR and requires cardiac gating to avoid 
severe motion artefacts [69]. �e FWE uses the voxel-by-voxel CSF 
correction with the help of the two-compartment (tissue+CSF) model 
�tting that can be applied both with single- and multi-shell di�usion 
weightings [50]. �e advantage of the single-shell approach is that it 
can be applied as a post-processing step with data acquired by standard 
DTI protocols, i.e., without demanding additional acquisition time. 
However, this method requires introduction of local spatial constraints 
within a regularisation procedure in order to stabilise the (otherwise ill-
posed) �tting of the bi-tensor model. Multi-shell approaches allow one 
to avoid such constraints but require additional acquisition time [51]. 

In this context, it should be, �rst of all, noted that the D-KIT is 
developed for applications with non-Gaussian di�usion protocols, such 
as DKI, rather than with conventional DTI. It is applicable with any 
di�usion protocols that allow for evaluation of di�usion kurtosis at high 
b-values (>1.5 µm-2 ms). �at is, it requires the same acquisition time 
as DKI (minimum of three b-value data points versus two in DTI) but 
does not introduce any additional di�culties, such as those by FLAIR. 
On the other hand, DKI is currently in the process of establishing itself 
as a routine method in clinical di�usion MRI, so that the corresponding 
protocols become ever more adapted to the clinical environment. 
�erefore, the use of the D-KIT can be expected to grow in parallel 
with the use of DKI and other non-Gaussian methods. Secondly, the 
D-KIT can be applied for post-hoc correction of already acquired DKI 
data. In this aspect it is analogous to FWE method that can be applied 
with already acquired, typically, single-shell DTI datasets. However, 
the D-KIT does not allow for estimations of additional voxel-based 
biomarkers since it works with MK distributions across the tissue. �e 
FWE method, in contrast, allows one to map the relative free water 
fraction within a voxel as an additional contrast. A useful application of 
free water fraction mapping was demonstrated, for example, in studies 
of Parkinson’s disease [70-72]. Nevertheless, as a pure correction 
method, the D-KIT revealed itself as simple and robust in e�ciently 
reducing PVE along the tissue borders without paying the penalty of 
potential errors introduced by (non-trivial) �tting and regularisation 
procedures. Such errors can be especially pronounced in the voxels 
with low SNR. With respect to FWE the D-KIT can be considered as 
a complimentary method that can be applied prior to FWE in order 
exclude strongly contaminated voxels from further analysis. 

An advantageous feature of the D-KIT for WM examination is 
that it acts not only upon the CSF but also upon GM contamination. 
Moreover, it will also automatically exclude the voxels in which high 
anisotropy accompanied by low MK is erroneously encountered due to 
noise (low SNR). �e results of the �tting in the voxels retained by the 
D-KIT are not altered in comparison to uncorrected ones. However, 
improved estimations are achieved by excluding contaminated (“bad”) 
voxels from the statistical analysis, such as in the between-group 
comparisons demonstrated in this work. It is worth mentioning that, via 
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increasing the e�ect size of between-group di�erences, application of 
the D-KIT can also be useful for reducing the sample size requirements 
for a statistically powerful between-group comparisons [73]. �is can 
be especially important in studies of rare diseases as well for the study of 
age-related physiological development. A huge cross sectional study in 
885 individuals ranging from 3-20 years identi�ed the changes in white 
matter tracts likely related to increasing myelination from the ages of 
11-15 years as the strongest predictor for age [74]. 

�e di�usion protocol applied in this work sets up relatively small 
isotropic voxel volume (1.93 mm3). In larger voxels of (2-3)3 mm3 more 
frequently used in DTI/DKI protocols, the D-KIT correction would be 
even more e�cient since the PVEs are more pronounced in larger voxels 
[47]. �e PVEs can generally depend also on the shape and topological 
properties of the WM bundles [27], such as bundle volume, orientation 
and curvature. Partial volume artefacts become especially critical for 
the estimation of di�usion metrics in neurodegenerative and ageing 
processes associated with tissue volume loss [56,75]. Tissue volume 
loss can modulate the PVE-related artefacts in di�usion analyses in 
a complex non-linear manner introducing confounding variables in 
between-group comparisons, tractography results and longitudinal 
studies. 

Our histogram-based analysis of the low MK thresholds revealed 
low variability across the subjects and across the �bre bundles. �is 
empirical �nding allows one to suggest a practicable simpli�cation of the 
formalised approach of MK

LHM
 determination developed in this work. 

Indeed, in the same way as experiential values between 0.15 to 0.25 are 
used for the FA threshold, values between 0.7 and 0.8 for MK

LHM
 can be 

recommended for a simpli�ed application of the D-KIT in the whole 
brain of the middle-aged adults. In children [76] and eventually, in very 
elderly adults [4], MK values may depend on the age more strongly, 
therefore, more di�erentiated approach would be required. Alternative 
approaches to determine optimal low MK threshold can involve using 
percentile analysis of MK histograms. Previously, percentile analyses 
of MD histograms, for example, have been successfully employed in 
assessment of brain tumours [77,78]. It remains to be investigated in 
future work whether a similar approach based on MK histograms can 
also provide more sensitive biomarkers.

In conclusion, using di�erences of di�usion-kurtosis histograms in 
di�erent tissues we developed a simple robust template-based method 
to reduce contamination of WM structures of interest by PVE from 
neighbouring GM and CSF regions. Our work shows that excluding 
a�ected voxels from statistical analyses allows one to reduce confounding 
e�ects due to PVE and improves statistical results. �e performance of 
the developed method was demonstrated in the semi-automatic atlas-
based comparison of two di�erently aged groups of healthy subjects. 
We showed that, a�er the D-KIT correction, the e�ect sizes of the 
between-group di�erences in many regional DTI/DKI metrics become 
larger whereas p-values of the t-tests decrease. �e D-KIT is expected 
to be especially useful for detection of subtle between-group di�erences 
and longitudinal changes in studies of neurodegenerative pathologies 
and ageing associated with WM atrophy.
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