
Xu HF, Gu Y, Qi JZ et al. Diversifying top-k routes with spatial constraints. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 34(4): 818–838 July 2019. DOI 10.1007/s11390-019-1944-6

Diversifying Top-k Routes with Spatial Constraints

Hong-Fei Xu1, Student Member, CCF, Yu Gu1, Senior Member, CCF
Jian-Zhong Qi2, Member, ACM, Jia-Yuan He2, and Ge Yu1,∗, Fellow, CCF, Member, ACM, IEEE

1College of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
2Department of Computing and Information Systems, The University of Melbourne, Melbourne, VIC 3010, Australia

E-mail: xuhongfei neu@163.com; guyu@mail.neu.edu.cn; jianzhong.qi@unimelb.edu.au
E-mail: hjhe@student.unimelb.edu.au; yuge@mail.neu.edu.cn

Received May 15, 2018; revised May 15, 2019.

Abstract Trip recommendation has become increasingly popular with the rapid growth of check-in data in location-

based social networks. Most existing studies focused only on the popularity of trips. In this paper, we consider further the

usability of trip recommendation results through spatial diversification. We thereby formulate a new type of queries named

spatial diversified top-k routes (SDkR) query. This type of queries finds k trip routes with the highest popularity, each

of which starts at a given starting point, consumes travel time within a given time budget, and passes through points of

interest (POIs) of given categories. Any two trip routes returned are diversified to a certain degree defined by the spatial

distance between the two routes. We show that the SDkR problem is NP-hard. We propose two precise algorithms to solve

the problem. The first algorithm starts with identifying all candidate routes that satisfy the query constraints, and then

searches for the k-route combination with the highest popularity. The second algorithm identifies the candidate routes and

builds up the optimal k-route combination progressively at the same time. Further, we propose an approximate algorithm to

obtain even higher query efficiency with precision bounds. We demonstrate the effectiveness and efficiency of the proposed

algorithms on real datasets. Our experimental results show that our algorithms find popular routes with diversified POI

locations. Our approximate algorithm saves up to 90% of query time compared with the baseline algorithms.

Keywords trip recommendation, spatial diversity, route search, check-in data

1 Introduction

Location-based social networks (LBSN) such as

Flickr and Foursquare allow users to check in and share

their activities at various points of interest (POIs). This

creates a large volume of check-in data, which provides

rich information on POI popularity and people’s travel

patterns at different POIs. Intuitively, a POI with more

check-ins is more popular. This offers a great opportu-

nity to build trip recommendation systems based on

check-in data. A trip recommendation system usually

returns the k most popular routes given a set of query

constraints, such as user location, preferred types of

POIs, and/or time budget for the trip[1−6].

In this paper, we aim to provide a novel trip recom-

mendation service that returns the top-k trip routes

which are not only popular but also diversified. A re-

cent user survey[7] shows that query users have strong

preference on spatial diversity in query results of spa-

tial recommendation systems. It means users expect

the spatial recommendation system presents the results

that are far away from each other and are distributed in

different areas. In the context of trip recommendation,

we find that trip routes that are spatially close usu-

ally provide users with similar travel experiences since

co-located POIs have similar geographical environment

and features. Therefore, we focus on spatial diversity in

trip recommendation, i.e., we aim to return trip routes

where POIs in different routes are far away from each

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2018YFB1003404, the
National Natural Science Foundation of China under Grant Nos. 61872070, U1435216, U1811261, and 61602103, and the Fundamental
Research Funds for the Central Universities of China under Grant No. N171605001.

∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 819

other. Our study is motivated by the following appli-

cations.

Suppose that Alice is planning a 3-day trip in New

York. On different days of the trip, she would like to

explore different regions. And she expects each day’s

trip including cafes, parks and markets. Hence, she

may pose a query: “find the three most popular trip

routes each of which starts from my hotel, covers at

least a cafe, a park and a market, and the travel time

is less than 10 hours.” At the same time, in order to

avoid the result routes close to each other, Alice may

further require “the POIs (except for the starting point)

in different routes need to be at least 3 km away from

each other.” Consider another example that a travel

agency wants to launch five family-day trip routes. To

satisfy with the different interests of family members,

each route should contain multiple categories of attrac-

tions. Thus, the travel agency may pose a query: “find

the five most popular trip routes each of which starts

from the central train station, covers a historic site,

a landscape garden and an amusement park, and the

travel time is less than eight hours.” As attractions in

the same category may have different surroundings in

different regions, the travel agency wants the routes to

be spatially distant, which allows users to choose routes

according to their different regional preferences. Thus,

a further requirement is that “the POIs (except for the

starting point) in different routes returned need to be at

least 5 km away from each other”. In addition, many

practical applications (e.g., hazardous material trans-

portation, emergency evacuation and cash-in-transit)

also need to find several routes spatially distant.

We formulate the queries in the above examples as

the spatial diversified top-k routes (SDkR) query. An

SDkR query q is a 5-tuple: q = (vq, tq, Scat, k, σ). The

query returns k trip routes with the highest popula-

rity, each of which starts at a POI vq, has an estimated

travel time within the given time budget tq, and cov-

ers the query POI categories given by Scat. Meanwhile,

the spatial distance between the POIs in any two routes

returned must be at least σ (i.e., spatial diversity con-

straint), which is a user given distance threshold. We

use Euclidean distance to measure the minimum dis-

tance between POIs. We do not use the road network

distance because two POIs with a large network dis-

tance due to congested traffic or no direct road connec-

tion may still be spatially close, e.g., on two sides of a

river, which is against our goal of high spatial diversity.

Fig.1 illustrates an SD3R query for Alice. Sup-

pose that there are four trip routes satisfying her query

constraints, denoted by r1, r2, r3 and r4. Four 3-

route combinations are formed: {r1, r2, r3}, {r1, r2, r4},

{r1, r3, r4} and {r2, r3, r4}. The POIs in r1 and r2 are

relatively close and the two routes may not satisfy the

POI distance constraint σ (i.e., 3 km). The POIs in

{r1, r3, r4} and {r2, r3, r4} on the other hand are far

away from each other in different areas. Suppose both

{r1, r3, r4} and {r2, r3, r4} satisfy the POI distance con-

straint, and the POIs in r1 are more popular. Then,

{r1, r3, r4} is returned as the query answer.

Alice s Hotel

Garden

Market

Lake

Cafe

Bar

Park

Market

Cafe

Park

Cafe

Market

Theatre

Park

Gas Station

Garden

Museum

Market

Cafe

Gas Station

College

r

r

r

r

r

r
r

r

Fig.1. An SD3R query.

The SDkR query has not been studied before. A

straightforward query algorithm is to 1) find every trip

route that satisfies the starting point, travel time bud-

get, and POI category constraints, 2) enumerate all pos-

sible k-route combinations, 3) filter out those k-route

combinations that do not satisfy the POI distance con-

straint, and 4) return the remaining k-route combina-

tion with the highest popularity. This algorithm suffers

in efficiency when the number of k-route combinations

is large. To reduce the number of k-route combinations

to be considered, we propose a graph data structure

named feasible route graph (FRG), where the nodes

represent routes that satisfy the query constraints im-

posed on the routes, and an edge between two nodes

represents that the two corresponding routes satisfy

the POI distance constraint. Then, finding the optimal

top-k routes is equivalent to finding a maximum weight

clique of size k. We propose a precise algorithm named

the Two-Stage Precise Search (TSS-P) algorithm to tra-

verse FRG, during which non-promising k-route combi-

nations are pruned. When the traversal is done, the k-

route combination with the highest popularity is found

and returned.

820 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

Generating all trip routes that satisfy the query con-

straints may be expensive as well, especially when the

number of POIs or the travel time budget is large. This

motivates us to propose another algorithm named the

Single-Stage Incremental Search (3S-I) algorithm that

generates routes and k-route combinations at the same

time. This algorithmmaintains a set of partial solutions

and the current optimal k-route combination. A par-

tial solution is a set of less than k routes where any two

routes satisfy the POI distance constraint. The algo-

rithm incrementally inserts more routes into the partial

solutions as they are generated, during which pruning

heuristics are applied to early prune non-promising par-

tial solutions. After the pruning process, if the set of

partial solutions is empty, we stop generating a new

route and return the current optimal k-route combi-

nation as the query answer. To further improve the

query efficiency, we adapt 3S-I to obtain an approxi-

mate algorithm named the Single-Stage α-Approximate

Search (3S-α) algorithm, which uses a popularity upper

bound and an approximation ratio α to help early ter-

minate the search once an α-approximate query answer

is found.

In summary, this paper makes the following contri-

butions.

• We propose a new type of queries, the spatial di-

versified top-k routes (SDkR) query, which introduces

spatial diversity to top-k routes search.

• We propose three algorithms to process the SDkR

query: TSS-P, 3S-I and 3S-α. The TSS-P algorithm

processes the query by first generating all the routes

that satisfy the query constraints, and then returns

the optimal k-route combination that satisfies the spa-

tial diversity constraint. To avoid generating non-

promising routes and k-route combinations, 3S-I and

3S-α both form k-route combinations while generat-

ing the routes satisfying the query constraints. In

particular, 3S-I guarantees to find the k-route combina-

tion satisfying the distance constraint with the highest

popularity, while 3S-α is an approximate algorithm that

early terminates once an α-approximate query answer

is obtained. Here, α is a user-defined ratio.

• We conduct extensive experiments using real

datasets to evaluate the performance of the proposed

algorithms. The results show that the proposed algo-

rithms can process SDkR queries effectively and effi-

ciently.

The rest of the paper is organized as follows. Sec-

tion 2 reviews related studies. Section 3 formulates the

SDkR query. Section 4 details the TSS-P algorithm.

Section 5 details the algorithms 3S-I and 3S-α. Sec-

tion 6 presents experimental results. Section 7 con-

cludes the paper and describes the future research di-

rections.

2 Related Work

We review three categories of studies related to

SDkR queries: route search based on trajectories, route

search based on POIs, and query result diversification.

2.1 Route Search Based on Trajectories

Trajectory-based route search assumes a set of can-

didate trajectories and aims to find the trajectories that

best match certain search criteria (e.g., query locations

and query keywords)[8−13]. For example, Chen et al.[8]

found k trajectories that best match a set of given

points. Here, how well a trajectory matches a given

point is defined by the distance between the point and

its nearest POI in the trajectory. Shang et al.[9] pro-

posed the trajectory search by regions (TSR) query,

which aims to retrieve the trajectory that has the high-

est spatial density correlation with a region specified

by a query user. Here, the spatial density correla-

tion between a trajectory and a region is computed as

the aggregation of two types of correlations: correla-

tion in spatial object density and correlation in spatial

distance. Shang et al.[13] proposed the trajectory-to-

location join (TL-Join) query, which finds all (trajec-

tory, location) pairs with spatio-temporal correlation

above a query threshold. They proposed a parallel col-

laborative algorithm with effective pruning techniques

and a heuristic scheduling strategy to process the TL-

Join queries. Wei et al.[14] found the most popular

k routes that pass a sequence of user-specified loca-

tions, based on a collection of trajectories generated

by LBSN users. Unlike GPS trajectories that have a

high sampling frequency, the trajectories generated by

LBSN users are usually low-sampled due to the appli-

cations’ characteristics. To overcome the uncertainty in

LBSN trajectories, they built a route inference frame-

work which constructs a route graph from LBSN trajec-

tories. Zheng et al.[11] assumed that every trajectory is

associated with a set of keywords and proposed the top-

k spatial keyword (TkSK) query for trajectories, which

aims to retrieve the trajectories that are spatially close

to the query point and cover the query keywords. In

these studies, candidate trajectories are either given in

a trajectory dataset or derived from existing trajecto-

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 821

ries. This differs from our work where candidate tra-

jectories are created at query time by connecting POIs.

2.2 Route Search Based on POIs

Route search based on trajectories only considers

observed trajectories in the dataset, while neglects the

potential routes that can be derived from the underly-

ing road network graph. Thus, some studies tried to use

the existing POIs or extract POIs from existed trajec-

tories to find the top-k optimal routes for users[15−21].

Cao et al.[15] assumed POIs associated with keywords.

They found k routes with the highest objective func-

tion scores, each of which covers a set of query key-

words and costs time less than a query time budget.

Shang et al.[17] proposed the collective travel planning

(CTP) query. Given a set of source points and a desti-

nation point, a k-CTP query finds the lowest-cost route

connecting the source points and the destination point

using at most k meeting points. Wen et al.[18] proposed

a route recommendation framework which allows users

to specify a geographical range and a set of preference

keywords. To make a recommendation, they first found

feasible routes that satisfy the hard constraints, i.e.,

enclosed by the query range and related (or partially

related) to the query keywords. Then they ranked the

feasible routes w.r.t. three factors, i.e., attractiveness,

visiting time, and the influence of the route genera-

tor, and returned the top ranked route(s) to the query

user. Shang et al.[20] proposed to find unobstructed

paths (i.e., the lowest probability of traffic congestion)

for query users, where the traffic condition of a spatial

network is derived using historical travel trajectories of

commuters. Zheng et al.[22] investigated the problem

of clue-based route search (CRS) in a road network.

The CRS query allows a user to provide imprecise con-

straints (e.g., similar keywords of the POIs and the

rough distance between two POIs in the route) along

the route such that the best matching route w.r.t. the

imprecise constraints is returned. Xu et al.[23] proposed

an algorithm that continuously returns the fastest route

for users in dynamic road network. These studies do

not consider the spatial distances between the retrieved

routes. Thus, their solutions are not applicable for our

problem.

2.3 Query Result Diversification

Result diversification has been widely studied to en-

hance result usability in many areas including infor-

mation retrieval[24−26], recommender systems[27], and

social network searching[28−29]. It aims to generate

a result set that minimizes the pairwise similarity be-

tween any two elements in the set while preserving the

relevance of the result elements to the query. Gene-

ral frameworks for query result diversification are intro-

duced in [30, 31]. An early model named the maximal

marginal relevance (MMR) model[30] was proposed for

result diversification in text retrieval and summariza-

tion. It re-ranks elements in the result set by choosing

elements sequentially according to their ranking scores.

Vieira et al.[31] proposed a framework for optimizing

result diversification methods and the evaluation of

various diversification techniques. This framework al-

lows users to adjust the trade-off between result rele-

vance and diversity. Chen and Cong[27] proposed the

diversity-aware top-k subscription (DAS) query, which

aims to provide users a few up-to-date representative

documents with a wide coverage of different aspects of

their query topics over a stream of documents. Qin

et al.[32] considered the diversified top-k search prob-

lem as a traditional top-k search problem augmented

with a constraint where the similarity between any two

result elements must not exceed a user-given thresh-

old. They proposed a solution framework (i.e., an in-

cremental search strategy) based on a diversity graph

where every node represents a result element. Every

node has a weight representing their relevance to the

query. An edge is created to connect two nodes if their

similarity exceeds a given threshold. Once the diver-

sity graph is constructed, solving the diversified top-k

search problem is reduced to finding the size-k maxi-

mum weight independent set (MWIS)[33] in the graph.

One of our algorithms adopts the incremental search

strategy used by Qin et al.[32], but we do not rely on

the diversity graph. Particularly, Qin et al.’s algorithm

performs a graph traversal each time when a new result

element is found. Our algorithm avoids such repetitive

graph traversals through caching intermediate results,

and hence enhances the query efficiency. We will com-

pare the performance of the algorithms via experiments.

Spatial diversity has been considered in more recent

studies. Jain et al.[34] proposed the k-nearest diverse

neighbor (kNDN) search. They assumed data points

associated with a set of certain attributes. The diver-

sity of a set of data points is computed based on the

classical Gower coefficient, wherein the difference be-

tween two points is defined as a weighted average diffe-

rence of their attribute values. Lee et al.[35] introduced

spatial diversity to the nearest neighbor queries impli-

citly by finding the nearest surrounding objects. They

822 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

assumed polygon data objects and found the set of data

objects that fully surround a query point. The angular

positions w.r.t. the query point and the data objects

are used to solve the problem. This imposes an im-

plicit constraint to diversify the result objects spatially.

Kucuktunc and Ferhatosmanoglu[36] studied the kNDN

search where the diversity of two objects is defined as

the inverse of their angular similarity. They proposed

an index-based diverse browsing method based on the

R-tree and the best-first kNN search algorithm. Fer-

ence et al.[37] also studied kNDN search based on angu-

lar diversity. They defined the angular diversity of a re-

sult set as the variance of the angles of the set elements

to the query point, and they proposed two heuristic

algorithms named DistBrow and DivBrow. Zhang et

al.[38] studied the diversified spatial keyword query in

road networks. They found k objects that 1) cover a

set of query keywords, 2) have the maximum proximity

to the query point, and 3) have the maximum diversity

(i.e., network distances among the k objects). They

proposed a signature-based inverted index, based on

which both keyword-based and diversity-based pruning

techniques are used to prune the search space. The

above studies all focus on the diversity among indi-

vidual objects. We study the diversity among routes

formed by multiple POIs, which cannot be handled by

the existing methods.

3 Preliminaries

We start with a few definitions and the query formu-

lation. We list the frequently used symbols in Table 1.

Check-In Dataset. Let CR be a set of user check-in

records, where each record cr ∈ CR is represented as a

6-tuple:

cr = (uid, pid, tc, lon, lat, lcat).

Here, uid represents a unique ID of the check-in user,

pid represents a unique ID of the check-in POI, tc rep-

resents the check-in time, lon and lat represent the lon-

gitude and the latitude of the POI, respectively, and

lcat represents a set of categories that the POI belongs

to. To illustrate our algorithms, we use eight popular

categories in the POI classification used by Foursquare,

including “Arts & Entertainment”, “Shops”, “Food”,

“Nightlife”, “Travel & Transport”, “Parks & Out-

doors”, “College & University”, and “Building”. For

simplicity, we denote them by C1, C2, ..., C8, respec-

tively. Each POI may belong to multiple categories,

e.g., a street market may belong to “Shops” and

“Food”. Other similar POI categorization systems can

be used as well.

Table 1. Notation

Symbol Description

G Weighted directed graph of POIs

vi A node (POI) in G

vi.pj Popularity of vi w.r.t. a category cj

ei,j Directed edge from vi to vj in G

ei,j .w Weight of ei,j

ri A route

ri.lcat Categories covered by ri

ri.t Time cost of ri

Scat A set of categories

pop(ri) Popularity of ri w.r.t. Scat

q An SDkR query

Q A queue to store the partial routes

A check-in record in the Foursquare dataset is:

(7, 91, 3/10/2015 17:06:22,−122.41, 37.79, C6). Here, 7

is the uid, 91 is the pid, “3/10/2015 17:06:22” is the

check in time, −122.41 and 37.79 are the longitude and

the latitude, respectively, and C6 (i.e., Parks & Out-

doors) is the category.

POI Graph. We extract the POIs from CR and

model them as a POI graph G = (V,E) as a directed

and complete graph using the method proposed by

Zhang et al.[3], where V = {v1, v2, ..., vn} is a set of

n nodes and E is a set of edges. Each node vi in G

represents a POI and each edge ei,j represents a route

from vi to vj . The weight of ei,j , denoted by ei,j .w, is

the travel time from vi to vj . In this paper, we allow

different travel time for different traveling directions be-

tween a pair of nodes, i.e., ei,j .w and ej,i.w may have

different values. In the experiments, we assume driv-

ing as the means of transportation between POIs and

estimate the edge weights using Google Map API.

Fig.2 illustrates a fraction of a POI graph, where

each node is labelled with their coordinates and each

edge is labelled with the edge weight. Every node vi is

represented by a 5-tuple:

vi = (pid, lon, lat, t, lp).

Here, pid is the ID of vi, lon and lat are the co-

ordinates of vi, t is the average visiting time that

users spend at vi, and lp is the list of popularity val-

ues of vi w.r.t. its different categories in the form of

(vi.cj : vi.pj), where cj represents the j-th category

that vi belongs to and pj represents the corresponding

popularity value.

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 823

v↼֒ ↽

v↼֒ ↽

vq

v↼֒ ↽ v↼֒ ↽

v↼֒ ↽

v↼֒ ↽

v↼֒ ֓↽

v↼֒ ֓↽

v↼֒ ֓↽

v↼֓֒ ֓↽

v↼֓֒ ֓↽

v↼֓֒ ↽

v↼֓֒ ↽

v↼֒ ↽



























Fig.2. Example of POI graph.

We compute the popularity of vi w.r.t. a category

cj , vi.pj , as the ratio of the number of visits at vi over

the total number of visits at POIs that belong to the

category cj . Other methods of deriving POI populari-

ties can also be used here.

In Table 2, the popularity list of v0 is v0.lp = {(C1 :

0.09), (C2 : 0.08)}. This indicates that the popularity

of v0 is 0.09 for “Arts & Entertainment” and 0.08 for

“Shops”. A larger popularity value means a higher

popularity, which means the POI has a strong appeal

for users.

Table 2. Popularity Values of the POIs in Fig.2

POI Popularity POI Popularity

v0 {(C1 : 0.09), (C2 : 0.08)} v7 {(C2 : 0.05), (C3 : 0.03)}

v1 {(C2 : 0.07)} v8 {(C1 : 0.08)}

v2 {(C1 : 0.08), (C2 : 0.03)} v9 {(C2 : 0.08), (C3 : 0.07)}

v3 {(C1 : 0.04)} v10 {(C1 : 0.06), (C3 : 0.06)}

v4 {(C2 : 0.06)} v11 {(C1 : 0.05), (C3 : 0.10)}

v5 {(C2 : 0.09), (C3 : 0.08)} v12 {(C1 : 0.02), (C3 : 0.07)}

v6 {(C1 : 0.08)} v13 {(C3 : 0.07)}

Trip Route. A trip route r has the form r =

(v1, v2, ..., vm), where v1–vm represent an ordered list

of nodes passed by the route. We use r.vj to denote

the j-th node in r. The categories of r, denoted by

r.lcat, are the union of the categories of the nodes in r.

The time cost of r, denoted by r.t, is the sum of the

edge weights between the adjacent nodes in r plus the

visiting time at each node in r. Since each POI may

belong to multiple categories, for a trip route there may

exist multiple POIs containing a certain category. We

assume the popularity of r w.r.t. a category cj , denoted

by r.pj , is capped by the most popular POI w.r.t. cj
in r, i.e., r.pj = max{v.pj |v ∈ r}. The corresponding

node is named as the delegate node of r for category

cj , denoted by r.v(cj). Given a category set Scat that

satisfies Scat ⊂ r.lcat, the overall popularity of a route

r w.r.t. Scat, denoted by pop(r, Scat), is defined as the

sum of the popularities of r w.r.t. each category in Scat:

pop(r, Scat) =
∑

cj∈Scat

max{v.pj |v ∈ r}.

Take the trip route r = (v1, v6, v11) which starts

from node v1 in Fig.2 as an example. The categories

of r are the union of categories of v1, v6 and v11, i.e.,

r.lcat = {C1, C2, C3}. We use a default visiting time

of one hour for each POI. Thus, the total time cost

of r is the sum of the edge weights of e1,6 and e6,11
plus the visiting time at each node of v1, v6 and v11,

i.e., r.t = e1,6.w + e6,11.w + 1 × 3 = 1 + 1 + 3 = 5.

The popularity of r w.r.t. C1, r.p1, is 0.08, and the

delegate node for C1 is v6 since its popularity w.r.t.

C1 is the largest. The delegate nodes for C2 and C3

are v1 and v11, respectively. Given a set of categories

Scat = {C1, C2}, the popularity of r w.r.t. Scat is

pop(r, Scat) = 0.08 + 0.07 = 0.15.

Spatial Distance Between Routes. Given two routes

ri and rj , we compute the spatial distance between

them using the minimum distance between their nodes:

dist(ri, rj) = min{diste(vm, vn)|vm ∈ ri, vn ∈ rj}.

Here, diste(·) is a function that returns the Euclidean

distance between two POIs.

Query Formulation. A spatial diversified top-k

routes (SDkR) query q is represented by a 5-tuple:

q = (vq, tq, Scat, k, σ).

Here, vq is the desired starting point, tq is the travel

time budget, which can be set to exclude the visiting

time cost of POIs, i.e., the visiting time of each POI is

0, Scat is a set of desired POI categories, k is the desired

number of routes, and σ is a desired distance threshold

between the routes.

Given an SDkR query q, a feasible route for q is

a trip route that starts from vq, consumes travel time

less than tq, and covers the categories in Scat. In addi-

tion, we require that each node (except vq) contained

by a feasible route must be a delegate node of at least

one category in Scat. As a result, the length of a fea-

sible route is at most |Scat| + 1 considering the start-

ing point. We enforce this requirement to prune those

824 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

routes that contain nodes that do not contribute to the

overall popularity of the route.

Definition 1 (Feasible Route). Given an SDkR

query q, a feasible route r = (v1, v2, . . . , vm) satisfying

that 1) r.v1 = vq, 2) r.lcat ⊇ Scat, 3) r.t 6 tq, and

4) v2, . . . , vm are delegate nodes, i.e., ∀vi ∈ r (i 6=

1), ∃cj ∈ vi.lcat such that vi.pj > v′.pj , ∀v
′ ∈ r \ {vi}.

Note that since the starting POI vq is shared by

every feasible route of the same SDkR query, we omit

it in the computation of the route popularity and the

distance between the routes.

To give an example, suppose that we need to per-

form an SD3R query q over the POI graph in Fig.2,

where

q = (vq, 6 hours, {C1, C2, C3}, 3, 2 km).

Two exemplar feasible routes are rI = (vq, v1, v6, v11)

and rII = (vq, v2, v7, v12). From Table 2, we can see

that the delegate node of rII for C1 is v2 since the

popularity w.r.t. C1 of v2 is the largest, i.e., rII.p1 =

v2.p1 = 0.08. The delegate nodes for C2 and C3 are

v7 and v12, respectively, and rII.p2 = v7.p2 = 0.05,

rII.p3 = v12.p3 = 0.07. Thus, the popularity of rII w.r.t.

{C1, C2, C3} is the sum of v2.p1, v7.p2 and v12.p3, i.e.,

pop(rII, {C1, C2, C3}) = v2.p1 + v7.p2 + v12.p3 = 0.20.

The spatial distance between the two routes is com-

puted as dist(rI, rII) = diste(v1, v2) = 2.

Definition 2 (Spatial Diversified Top-k Routes

Query). An SDkR query q = (vq, tq, Scat, k, σ) aims

to find a size-k set R of feasible routes, such that the

spatial distance between any two feasible routes of R is

not less than σ, and for any other size-k set R′ of feasi-

ble routes satisfying the spatial diversity constraint, the

total popularity of R w.r.t. Scat is not less than that of

R′:

∑

ri∈R

pop(ri, Scat) >
∑

r′
i
∈R′

pop(r′i, Scat),

∀R′(|R′| = k), ∀r′i, r
′
j ∈ R′ : dist(r′i, r

′
j) > σ,

∀ri, rj ∈ R : dist(ri, rj) > σ.

Note that the SDkR query does not specify the des-

tination POI of the routes returned. However, our al-

gorithms (detailed in Section 4 and Section 5) can be

easily adapted to the case where the destination loca-

tion is specified by modifying the generation process of

the feasible routes.

Theorem 1. The SDkR query is NP-hard.

Proof. In what follows, we will show that the SDkR

problem can be reduced to the maximum independent

set (MIS) problem, which aims to find a maximum ver-

tex set in a graph, such that each pair of vertices in this

set cannot be connected by an edge. Since the MIS is

proven to be NP-hard[39], the SDkR query is also NP-

hard.

Given an SDkR query, we use F to denote a set that

consists of all the feasible routes on the POI graph G.

In order to reduce the SDkR problem to the MIS prob-

lem, we construct a graph Gm. Every feasible route is

a node of Gm. An edge between two nodes is added

to Gm if their distance (i.e., the distance of two corre-

sponding feasible routes) is smaller than the distance

threshold σ. We consider a special case of the SDkR

problem, where all the feasible routes in F have the

same popularity (e.g., pop(ri, Scat) = 1, ∀ri ∈ F) and

k = |F|. In such a case, the SDkR query on G is equiv-

alent to finding the maximum independent set on Gm,

which is proven to be NP-hard. �

4 Two-Stage Algorithm

As mentioned above, the SDkR query is NP-hard.

Thus, when the number of trip routes is large, it is

costly to process an SDkR query due to the large search

space of possible k-route combinations. In this section,

we propose the TSS-P algorithm for SDkR query pro-

cessing. TSS-P consists of two stages. In the first stage,

it computes all feasible routes. In the second stage, it

computes the optimal k-route combination, i.e., the set

of k feasible routes that satisfies the spatial diversity

constraint and has the highest overall popularity. We

start with computing feasible routes in Subsection 4.1.

We discuss the optimal k-route combination finding by

TSS-P in Subsection 4.2.

4.1 Computing the Feasible Routes

Given a POI graph G and an SDkR query q =

(vq, tq, Scat, k, σ). We compute the feasible routes us-

ing a simple breadth-first traversal on G starting from

vq. In the case where vq is not a POI in graph G, we

first add vq to G and connect it to each POI using an

edge. The weights of these edges are computed on the

fly using the method described in Section 3. The newly

added edges will be deleted when the query processing

is completed. Algorithm 1 summarizes the procedure

of computing the feasible routes.

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 825

Algorithm 1. Computing Feasible Routes
Input: G: POI graph, vq: query starting node, tq: the

travel time budget, Scat: set of query categories

Output: F : feasible route set

1 F ← ∅, Q← ∅, ri ← vq

2 Q.enqueue(ri)

3 while not Q.empty() do

4 ri ← Q.dequeue()

5 foreach vj ∈ V \ {ri} do

6 rn ← ri ∪ vj

7 if rn.t 6 tq and Ref(rn) then

8 if rn.lcat ⊃ Scat then

9 F .push(rn)

10 F .update(rn)

11 if |rn| < |Scat|+ 1 then

12 Q.enqueue(rn)

13 Q.update(rn)

14 else

15 Discard rn

16 Return F

At the beginning of the algorithm, a route of only

one node vq is inserted into a queue Q, which we use

to store the routes to be expanded. Then the traversal

starts. Each time, a route ri is dequeued from Q. For

each node vj except the nodes in ri, a new route rn is

generated by adding vj to the tail of ri. The algorithm

checks if rn satisfies the query time budget. It also calls

a function Ref(·) to check if all nodes contained by rn
are delegate nodes. If any of the two conditions is not

satisfied, the algorithm discards rn. Otherwise, the al-

gorithm checks if rn covers query category set. If so,

it adds rn to the feasible routes set F (lines 8–10). A

function F .update(rn) is then called to check if there

exists any route in F that has the same set of nodes as

rn but with a different visiting order. If so, the algo-

rithm only keeps the one with the minimum travel cost

(line 10). If rn is a feasible route, then the algorithm

checks if rn can be further expanded (lines 11–13). If

the length of rn is less than |Scat|+ 1, which means at

least one of its nodes is the delegate nodes of more than

two categories, rn is again enqueued into Q for further

expansion. At the same time, if rn does not cover the

categories in Scat, the algorithm also adds it to Q for

further route expansion. A function Q.update(rn) is

called to update Q. The function checks if there exits

any route in Q that passes the same set of nodes as rn
and has the same ending node as rn. If so, the algo-

rithm only keeps the partial route with the minimum

time cost in Q (line 13). This process repeats until Q

becomes empty.

4.2 Finding the Optimal K-Route Combina-

tion by TSS-P

We call a set of k feasible routes a candidate so-

lution if it satisfies the spatial diversity constraint, i.e.,

the distance between any two routes in the set is greater

than or equal to σ. In the second stage, our goal is to

find the candidate solution with the highest popularity

w.r.t. the query categories, i.e., the optimal solution.

To simplify the discussion, in what follows, we omit

“w.r.t. the query categories” and use pop(r) to repre-

sent pop(r, Scat) as long as the context is clear.

A straightforward algorithm to find the optimal so-

lution is to enumerate all size-k subsets of the feasible

routes set F , prune those that do not satisfy the spa-

tial diversity constraint, and return the remaining k-

route combination with the highest overall popularity.

The time complexity of the algorithm is O(|F|k), which

means the query cost is expensive when |F| is larger.

To improve the query efficiency, we design the TSS-

P algorithm to compute the optimal solution without

enumerating all size-k subsets.

Feasible Route Graph. We use an auxiliary data

structure named the feasible route graph (FRG) to

manage the pairs of feasible routes satisfying the spatial

diversity constraint. FRG is an undirected graph where

each node stores a feasible route ri and its popularity

pop(ri). An edge between two nodes denotes that the

two corresponding routes satisfy the spatial diversity

constraint. Building FRG takes a two-layer nested loop

over all the feasible routes to identify those satisfying

the spatial diversity constraint.

Consider the SD3R query example in Section 3, i.e.,

q = (vq, 6 hours, {C1, C2, C3}, 3, 2 km). There are six

feasible routes:

r0 = {vq, v0, v5}, r1 = {vq, v1, v6, v11},

r2 = {vq, v1, v8, v13}, r3 = {vq, v2, v7, v12},

r4 = {vq, v3, v9}, r5 = {vq, v4, v10}.

Based on the spatial distances between them, we con-

struct an FRG as shown in Fig.3. Each of the six nodes

in the FRG is labeled by their corresponding feasible

routes and their popularities. For example, the node

labeled by r0 corresponds to the feasible route r0. The

popularity of r0 is 0.26. Since σ = 2 and the two fea-

sible routes r4 and r5 have a distance greater than or

equal to σ to r0, there are two edges to connect r4 and

r5 with r0 in the FRG.

826 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

r
r

r

⊲

⊲⊲

⊲

⊲ ⊲rr

r

Fig.3. FRG of the SD3R query example in Section 3.

TSS-P Algorithm. Once the FRG is built, finding

the optimal solution is equivalent to finding a k-clique

in the FRG with the largest popularity. Here, a k-clique

is a size-k set of nodes where each pair of nodes is con-

nected with an edge[40]. TSS-P performs a best-first

traversal on the FRG to find such a clique. Algorithm 2

summarizes the TSS-P algorithm, where Qi denotes the

last non-empty queue. For simplicity, we still use the

function pop(·) to return the sum of the popularities of

a set of nodes. The traversal is supported by a stack S

and k queues Q0, ..., Qk−1. Stack S stores the nodes in

the FRG that form the clique currently under conside-

ration. The queue Qi (i ∈ [0, k − 1]) stores the nodes

in the FRG that can be chosen to construct a (i + 1)-

route combination with S. The queues are prioritized

by the popularities of the nodes. At start, Q0 is ini-

tialized to contain all the nodes in the FRG, while the

other queues are empty (line 4). Then the algorithm

dequeues a node rj from the last non-empty queue Qi

and adds it to S. Then we consider two cases.

1) If there are k nodes in S, the routes correspond-

ing to these k nodes form a candidate solution. Further,

if this candidate solution has a higher popularity than

the current optimal solution, denoted by R, we update

R to this candidate solution (lines 14–18).

2) If there are less than k nodes in S, we further

add the set of nodes, which is the intersection of Qi

and the adjacent nodes of node rj , into the next queue

Qi+1 (lines 20 and 21).

We repeat this process until all queues become

empty. Then we return R. To further enhance the

efficiency, when starting a new iteration we use the fol-

lowing two heuristics to early prune some nodes from

consideration. Let |S| be the number of nodes in S in-

cluding the node rj currently under consideration. Let

adj be the number of nodes in Q|S|.

Algorithm 2. TSS-P
Input: G: POI graph, vq: query starting node, tq: the

travel time budget, Scat: set of query categories

Output: R: optimal solution

1 F , R, S,Q0, Q1, ..., Qk−1 ← ∅

2 F ← Compute Feasible Routes (Algorithm 1)

3 A two-layer nested loop over F to create the FRG

4 i← 0, Q0 ← nodes in FRG

5 while |Qi| > 0 do

6 if |Qi| < k − |S| or pop(S ∪ top-(k − |S|) nodes in

Qi) < pop(R) then

7 Qi.clear(), S.pop()

8 i← i− 1

9 Continue

10 rj ← Qi.dequeue()

11 if the number of adjacent nodes of rj < k − 1 then

12 Continue

13 S.push(rj)

14 if |S| = k then

15 if pop(R) < pop(S) then

16 R← S

17 S.pop(),Qi.clear

18 i← i− 1

19 else

20 Qi+1 ← intersection of Qi and adjacent nodes of

rj

21 i← i+ 1

22 Return R

Pruning Heuristic 1. If adj < k− |S|, we can safely

prune the nodes in Q|S|. This is because we need k−|S|

more nodes to form a candidate solution. Since fewer

than k−|S| nodes remain connected to all the nodes in

S, it is impossible to obtain a candidate solution based

on the current S (line 6).

Pruning Heuristic 2. If adj > k − |S|, let subset

U be the k − |S| nodes in Q|S| with the largest popu-

larities. If the sum of the popularities of the nodes in

S ∪ U is smaller than that of the nodes in R, we can

safely prune all the nodes in Q|S|. This is because, if

the most popular adjacent nodes cannot form a better

candidate solution with S, no adjacent node needs to

be considered any further (line 6).

Fig.4 illustrates the processing of the above SD3R

query example using TSS-P. We first initialize Q0 to

contain all the nodes in Fig.3, prioritized by the popula-

rity. Then r0 is dequeued and added to S. Now there

are fewer than three nodes in S. We add the adjacent

nodes of r0, namely r4 and r5, to Q1. Then r4 is de-

queued and added to S, and Q2 is updated to contain

the adjacent nodes of r4 that are also adjacent to r0.

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 827

There is only one such node r5 in Q2. Adding r5 to S

forms the first candidate solution {r0, r4, r5}. We up-

date R to this set. We then pop out r5 and r4 from

S. Now the sizes of set S and Q1 are both 1. Accord-

ing to pruning heuristic 1, no further processing on r0
is needed since only one node in Q1 (i.e., r5) is con-

nected to r0, which is fewer than k − |S| = 2 nodes.

The next node r1 in Q0 is then dequeued and added

to S. Repeating the above procedure, we find another

candidate solution {r1, r3, r4}. Since the popularity of

the new candidate solution (i.e., 0.64) is higher than

that of the previous R (i.e., 0.63), we update R to this

new candidate solution. After processing r1, the next

three nodes in Q0 are r2, r3, and r4. The sum of the

popularities of these three nodes (i.e., 0.61) is less than

that of R. According to pruning heuristic 2, we can

terminate the algorithm.

R/ır֒r֒r℘

R/ır֒r֒r℘

Q

Q

S

Q

Q

Q

S

Q

Q

Q

S

Q

Q

Q

S

Q

Q

Q

S

Q

Q

Q

S

Q

r֒r֒r֒r֒r

r֒r

r

Null

r֒r֒r֒r֒r

r

r֒r

r

r֒r֒r֒r֒r

r

r֒r֒r

Null

r֒r֒r֒r

r֒r

r֒r֒r

r

r֒r֒r֒r֒r

r

r

Null

r֒r֒r֒r

Null

Null

Pruning
Heuristic 2

Pruning
Heuristic 1

Null

Fig.4. Processing of the SD3R query example using TSS-P.

Cost Analysis. The time complexity of TSS-P con-

sists of two parts: 1) the time for computing the fea-

sible routes set F and 2) the time for finding the op-

timal solution. Given the time budget tq, the num-

ber of edges in a feasible route is at most ne =

min{⌊tq/wmin⌋ , |Scat|}, where wmin is the minimum

weight of all edges in G. Thus, the time complexity

of the first stage is O((|V |ne − 1)/(|V | − 1)). The time

cost of the second stage is the sum of the time cost

for creating the FRG and the traversal time over the

FRG. To build the FRG, a two-layer nested loop is

performed, which takes O(|F|2) time. Assuming that

the maximum out-degree of the nodes in FRG is dmax,

the traversal over FRG takes O(|F| × dk−1
max) time. In

the worst case where each pair of nodes in FRG is

connected, the time complexity of TSS-P will become

O(|F|k). However, as shown in the experiments, the

FRG can usually help prune combinations of nearby

feasible routes, and the two pruning heuristics further

reduce the number of k-route combinations considered,

which leads TSS-P to perform well.

In terms of the space complexity, TSS-P needs to

store the POI graph which costs O(|V | + |E|) space.

The space cost of FRG and the memory needed for

query processing are query-dependent. Assuming that

the maximum out-degree of the nodes in FRG is dmax,

and the number of desired routes is k. The overall space

complexity of TSS-P is O(|V |+ |E|+ |F|+ |F|×dmax+

k×dmax), where |F|+ |F|×dmax is the space cost of the

FRG and k× dmax is the space cost of the queues used

for the traversal over FRG. Note that the cardinality of

F is bounded by O(
(

|V |
ne

)

).

5 Single-Stage Algorithms

TSS-P has to generate all feasible routes before find-

ing the optimal solution. It is costly to generate all

routes that satisfy the query constraints when the num-

ber of POIs or the travel time budget is large. This

section presents two algorithms that generate feasible

routes and find the optimal solution at the same time

(i.e., in a single stage), so as to avoid generating the

unnecessary feasible routes. The two single-stage algo-

rithms are based on a concept named the partial so-

lution set (PSS). We introduce this concept in Sub-

section 5.1. We then describe the two algorithms in

Subsection 5.2 and Subsection 5.3, respectively. These

two algorithms share the same overall procedure, where

one produces precise answers and the other produces α-

approximate answers.

5.1 Partial Solution Set

A partial solution is a set of less than k feasible

routes where any two of the routes satisfy the spatial

diversity constraint. A PSS is a set where each element

is a partial solution. A PSS has k − 1 queues denoted

by P1,P2, ...,Pk−1, where Pi stores partial solutions of

size-i prioritized by their popularity values. We use Pi,j

to denote the j-th partial solution in Pi.

The single-stage algorithms also use Algorithm 1 to

generate feasible routes. When a new feasible route

r is generated, if r and a size-i partial solution Pi,j

(i < k − 1) satisfy the spatial diversity constraint, we

insert Pi,j∪{r} into Pi+1. Meanwhile, r is inserted into

P1 as a size-1 partial solution. If r and a size-(k − 1)

partial solution Pk−1,j satisfy the spatial diversity con-

straint, then they form a candidate solution. The can-

828 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

didate solution R with the highest popularity will be

returned if no more feasible routes can be found.

Consider again the above SD3R query example in

Fig.2. Table 3 shows how the queues of PSS update as

new feasible routes are generated for the query.

Table 3. Updating PSS for the SD3R Query Example

Action Status of PSS

Inserting r0 P1: {r0}

P2: Null

Inserting r1 P1: {r0} {r1}

P2: Null

Inserting r3 P1: {r0} {r1} {r3}

P2: {r1, r3}

Inserting r4 P1: {r0} {r1} {r3} {r4}

P2: {r1, r3} {r0, r4} {r1, r4} {r3, r4}

Suppose that we have sequentially generated the

routes r0, r1, r3, and r4. When the first route r0 is

generated, we simply insert it into P1. When r1 is

generated, we first insert it into P1. Since r0 and r1
do not satisfy the spatial diversity constraint, the set

{r0, r1} is discarded. When r3 is generated, we also

insert it into P1. Since the distance between r1 and

r3 is greater than σ, we insert {r1, r3} into P2. Next,

we process route r4, which produces the first candidate

solution {r1, r3, r4}.

5.2 Single-Stage Incremental Search

Algorithm

Our first single-stage algorithm 3S-I follows a pro-

cedure similar to Algorithm 1. The algorithm performs

a best-first traversal on the POI graph starting from

query node vq to form feasible routes satisfying the

query constraints. Recall that a queue Q is used to

store the partial routes found so far. The partial routes

in Q are prioritized by their popularity upper bounds.

We will detail the computation of this bound in the

following paragraph. The partial routes grow longer as

more nodes in the POI graph are visited. When a par-

tial route becomes a feasible route, instead of adding

it into the feasible routes set F , 3S-I calls a function

named UpdatePSS to add this feasible route to the

PSS and compute new candidate solutions from it. We

will detail this function later in this subsection. When

Q or PSS becomes empty, 3S-I returns the optimal solu-

tion and terminates. The pseudo code of 3S-I is similar

to that of Algorithm 1, except that lines 9 and 10 are

replaced by a call of UpdatePSS, and that the opti-

mal solution R is returned instead of F . We omit the

pseudo code to keep the discussion concise.

Popularity Upper Bound of a Partial Route. We

compute an upper bound of the popularity that a par-

tial route may reach when it becomes a feasible route.

This bound guides the traversal on the POI graph to ex-

pand the more promising partial routes first, and helps

to prune unpromising partial solutions.

Definition 3 (Popularity Upper Bound of a Partial

Route). Given a partial route rp and its last node vm,

let rp.t be the time cost of rp, Scat the query categories,

and tq the travel time budget. Let V (vm, tq − rp.t) be

the set of nodes that can be reached from vm within

tq − rp.t time. The popularity upper bound of rp w.r.t.

Scat, denoted by popτ (rp), is the sum of the maximum

popularities of the nodes in rp ∪ V (vm, tq − rp.t) w.r.t.

each category in Scat:

popτ (rp) =
∑

ci∈Scat

max{v.pi|v ∈ rp ∪ V (vm, tq − rp.t)}.

By Definition 3, the popularity of any feasible

route grown from the partial route rp does not exceed

popτ (rp). However, to compute popτ (rp) at query time

needs to compare every node in V (vm, tq−rp.t) with the

nodes in rp on the popularity value w.r.t. each category

in Scat. In order to compute popτ (rp) efficiently, we pre-

define ρ different time budget values t0, t1, ..., tρ−1. We

then precompute for every node v in the POI graph

a matrix of nc × ρ popularity upper bound values off-

line where nc is the number of POI categories. Fig.5

illustrates the structure of a pre-computed node. Every

node v is represented as:

v = (pid, lon, lat, t, lp, lt0 , . . . , ltρ−1
).

Here, pid is the ID of v, lon and lat are the coordi-

nates of v, t is the average visiting time that users

spend at v, lp is the list of popularity values of v

w.r.t. its different categories, and lti (i ∈ [0, ρ − 1])

is the list of maximum popularities of the nodes in

V (v, ti) w.r.t. each category, where V (v, ti) is the set

of nodes that v can reach within ti time. Each ele-

ment in the list, denoted by v.pti−cj , is the maximum

popularity of the nodes in V (v, ti) w.r.t. category cj ,

i.e., v.pti−cj = max{vl.pj|vl ∈ V (v, ti)}. For exam-

ple, v.pt0−c1 is the maximum popularity of the nodes

in V (v, t0) w.r.t. C1. At query time, when a node v

is visited, its matrix of popularity upper bound values

is used to compute the popularity upper bound of the

partial route. Particularly, the smallest predefined time

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 829

budget that is larger than or equal to tq − rp.t and the

matrix elements corresponding to the query POI cate-

gories are used in the computation.

⊲⊲
⊲

pid

ı↼ci֒ pi↽֒ ↼cj֒ pj↽֒ ⊲⊲⊲℘

lon lat t lp lt ltρ֓

pt֓c

pt֓c

pt֓cnc

ptρ−1֓c

ptρ−1֓c

ptρ−1֓cnc

⊲⊲⊲

⊲⊲
⊲

Fig.5. Node structure after pre-computation.

We use the above SD3R query example in Fig.2, to

illustrate how the popularity upper bound of a partial

route is computed. Recall that in the query, tq = 6,

Scat = {C1, C2, C3}. Let rp = {vq, v1, v6} be a partial

route under consideration. We first compute the cur-

rent popularities of the partial route w.r.t. each query

category. We have rp.p1 = 0.08, rp.p2 = 0.07, and

rp.p3 = 0. Let the time cost rp.t be 4, then tq−rp.t = 2.

Suppose that there are three predefined time budget

values 2, 5 and 9. We fetch the popularity matrix ele-

ments corresponding to t = 2 to compute popularity

upper bound. We assume that the set of nodes V (v6, 2)

that v6 can reach within two hours is {v1, v5, v6, v11}.

From Table 2, v6 has the maximum popularity w.r.t.

C1 among the four reachable nodes. Thus, the maxi-

mum popularity w.r.t. C1 that v6 may achieve within

two hours is 0.08, i.e., v6.p2−c1 = 0.08. Similarly, v5
has the maximum popularity w.r.t. C2 among the four

reachable nodes. Thus, the maximum popularity w.r.t.

C2 that v6 may achieve within two hours is 0.09, i.e.,

v6.p2−c2 = 0.09. Node v11 has the maximum popularity

w.r.t. C3 among the four reachable nodes. Thus, the

maximum popularity w.r.t. C3 that v6 may achieve

within 2 hours is 0.10, i.e., v6.p2−c3 = 0.10. Com-

bining with the current popularities of rp w.r.t. each

query category, the popularity upper bound values of

rp w.r.t. C1, C2, and C3 are 0.08, 0.09, and 0.10, re-

spectively. Thus, the popularity upper bound of rp is

0.08 + 0.09 + 0.10 = 0.27.

Updating the PSS. Based on the popularity upper

bounds of the partial routes, we present the following

pruning heuristic to prune unpromising partial solu-

tions which cannot form any candidate solution with

a higher popularity than the current optimal solution

R.

Pruning Heuristic 3. Given a partial solution Pi,j ,

the current optimal solution R, and the first k − i par-

tial routes in queue Q denoted by r0p, r
1
p, ..., r

k−i−1
p , if

the popularity of Pi,j , denoted by pop(Pi,j), satisfies

pop(Pi,j) +
∑l=k−i−1

l=0 popτ (rlp) 6 pop(R), it is guaran-

teed that Pi,j cannot form any candidate solution with

a higher popularity than R. Thus, Pi,j can be pruned.

After the pruning process, if the PSS is empty, we can

stop generating new feasible routes and return R as the

query answer.

The correctness of the heuristic is straightforward.

Partial solution Pi,j contains i feasible routes and needs

k−i more routes to form a candidate solution. The first

k − i routes in Q are those with the highest popularity

upper bounds. If the sum of the popularities of Pi,j and

these k− i routes do not exceed pop(R), it is impossible

for Pi,j to extend to be a candidate solution better than

R.

Similarly, when a new feasible route r is gene-

rated, before combining it with an existing partial

solution Pi,j , we test whether pop(Pi,j) + pop(r) +
∑l=k−i−2

l=0 popτ (rlp) 6 pop(R) holds. If so, we do not

combine them as Pi,j ∪ {r} is unpromising.

The function UpdatePSS uses this pruning heuris-

tic to update the PSS as new feasible routes are gene-

rated. As summarized in Algorithm 3, when a new fea-

sible route r is generated, we first check if there exists

a route r′ in P1 that has the same set of nodes as r and

r′.t > r.t (lines 1 and 2). If so, we replace r′ with r in

every partial solution that contains r′. Otherwise, we

discard the route r. If we do not find any route with the

same set of nodes as r, we then test if r satisfies the spa-

tial diversity constraint with a partial solution Pk−1,j

in Pk−1 and they form a new candidate solution with a

higher popularity than R found so far. If so, we update

R with Pk−1,j ∪ {r} (lines 7–11). Then, we update the

rest of the partial solution queues P1,P2, ...,Pk−2 by

trying to combine r with the existing partial solutions

where they satisfy the spatial diversity constraint. Dur-

ing this process, pruning heuristic 3 is applied to avoid

generating new unpromising partial solutions, and also

to remove existing unpromising partial solutions since

R may have been updated (lines 12–17).

We continue with the example in Subsection 5.1 to

explain UpdatePSS (i.e., continue to extend Table 3).

We assume that after inserting r4, the two highest

popularity upper bounds of the current partial routes

under consideration are 0.23 and 0.19. According to

830 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

pruning heuristic 3, we do not need to insert {r3, r4}

into PSS since its popularity (i.e., 0.39) plus the popula-

rity upper bound (i.e., 0.23) is less than the popularity

of the current result set R = {r1, r3, r4} (i.e., 0.64). As

shown in the first row of Table 4, {r3, r4} is pruned.

Similarly, {r3} and {r4} are also pruned. When a new

route r2 is generated, the popularity upper bound is up-

dated to 0.19. According to pruning heuristic 3, all the

current partial solutions in PSS can be pruned. Now

that PSS is empty, we can safely terminate the algo-

rithm.

Algorithm 3. UpdatePSS

Input: r: a new feasible route, r0p, . . . , r
k−2
p : the first

(k − 1) partial routes, P1,P2, ...,Pk−1: queues of

the partial solution set, R: the current optimal

solution, σ: distance threshold

Output: updated P1,P2, ...,Pk−1, R

1 if a route r′ in P1 has the same set of nodes as r then

2 if r.t < r′.t then

3 Change r′ to r in PSS

4 else

5 Discard r

6 else

7 for j = 1 to |Pk−1| do

8 if dist(r,Pk−1,j) > σ then

9 if pop(Pk−1,j) + pop(r) > pop(R) then

10 R← Pk−1,j ∪ {r}

11 Break

12 for i = k − 2 to 1 do

13 for j = 1 to |Pi| do

14 if pop(Pi,j) + pop(r) +
∑l=k−i−2

l=0
popτ (rlp) >

pop(R) and dist(r,Pi,j) > σ then

15 Pi+1.enqueue(Pi,j ∪ {r})

16 if pop(Pi,j) +
∑l=k−i−1

l=0
popτ (rlp) 6 pop(R)

then

17 Pi.dequeue(Pi,j)

Table 4. Extending Table 3

Action Status of PSS

Inserting r4 P1: {r0} {r1} {r3} {r4}

P2: {r1, r3} {r0, r4} {r1, r4} {r3, r4}

Inserting r2 P1: {r0} {r1} {r2} {r3} {r4}

P2: {r1, r3} {r0, r4} {r1, r4} {r2, r3}

{r2, r4}

Cost Analysis. Suppose that we have generated nf

feasible routes so far. When a new feasible route is

generated, we first check if it can form a candidate

solution with any partial solution in Pk−1. The time

complexity of this process is O(log
(

nf

k−1

)

). Next, we

check whether the new feasible route can form new

partial solutions with existing partial solutions in P1,

P2, . . ., Pk−2. The time complexity of this process is

bounded by O((k − 2)×
(

nf

k−2

)

). Thus, the overall time

complexity of 3S-I is bounded by O((k − 2) ×
(

nf

k−2

)

).

Usually, nf ≪ |F| since we use pruning heuristic 3 to

prune those unpromising feasible routes and partial so-

lutions. As a result, 3S-I is more efficient than TSS-P.

In terms of space complexity, storing the POI graph

takes O(|V |+ |E|) space. Besides, 3S-I needs to main-

tain a PSS, which needs O(
(

|F|
k−1

)

) space to store the

partial solutions in the worst case. Thus, the space

complexity of 3S-I is O(|V |+ |E|+ |F|k−1).

5.3 Single-Stage α-Approximate Search

Algorithm

To further improve the query efficiency, based on

3S-I, we propose an approximate algorithm 3S-α, which

uses a popularity upper bound and an approximation

ratio α to help early terminate the search for the op-

timal query answer. 3S-α uses the PSS and the par-

tial routes to compute the popularity upper bound for

the optimal solution. For the current first k partial

routes r0p, ..., r
k−1
p , the sum of their popularity upper

bounds is
∑l=k−1

l=0 popτ (rlp). According to the definition

of PSS, partial solution Pi,1 (i ∈ [1, k−1]) has the maxi-

mum popularity in Pi which stores the partial solutions

of size-i. Then, pop(Pi,1) +
∑l=k−i−1

l=0 popτ (rlp) is the

popularity upper bound of the candidate solutions ext-

ended from the partial solutions in Pi. Therefore, the

maximum among the k values is the popularity upper

bound of the optimal solution, i.e.,

popτopt = max{pop(Pi,1) +

l=k−i−1
∑

l=0

popτ (rlp)|

i ∈ [1, k − 1],

l=k−1
∑

l=0

popτ (rlp)}.

Let Rc be the current optimal solution and R the

optimal solution. Since popτopt is the popularity upper

bound of R, we have popτopt > pop(R). Thus, when

the popularity of Rc is not less than α × popτopt (0 <

α 6 1), i.e., pop(Rc) > α × popτopt, we have pop(Rc) >

α× pop(R), which means Rc is an α-approximation so-

lution.

Now we use 3S-α to process the above SD3R query

example. Suppose that we have found routes r0, r1, r3

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 831

and r4, and the current PSS is shown in the first row

in Table 4. The current popularity upper bounds of

the first three partial routes under consideration are

0.23, 0.19 and 0.18, respectively. Thus, the popula-

rity upper bound of P1 is computed as popτ (P1) =

pop(P1,1) + 0.23 + 0.19 = 0.68. Similarly, the popula-

rity upper bound of P2 is computed as popτ (P2) =

pop(P2,1)+ 0.23 = 0.68. The sum of the popularity up-

per bounds of the first three partial routes is 0.60. Then

the overall popularity upper bound popτopt = 0.68. Let

α be 0.9. The current optimal solution R = {r1, r3, r4}

is returned as the final result since its popularity (i.e.,

0.64) is larger than α × popτopt (i.e., 0.612). Compared

with 3S-I, 3S-α does not generate route r2 and thus is

more efficient.

6 Experiments

We evaluate the effectiveness and efficiency of our

algorithms (i.e., TSS-P, 3S-I and 3S-α) empirically in

this section. The experiments are conducted on a desk-

top computer with a 3.40 GHz Intel Core i7-2600 CPU,

8 GB memory, and 64-bit Windows operating system.

All algorithms are implemented in C++.

6.1 Settings

We use the check-in datasets in San Francisco and

New York[41], denoted as SF and NY, respectively. We

preprocess the check-in records and filter out the POIs

that have no check-ins. The result numbers of POIs ex-

tracted from these two datasets are shown in Table 5,

where we show the total number of POIs and the num-

ber of POIs for each of the eight predefined categories.

We also visualize the geographical distributions of the

POIs in different categories in Fig.6 and Fig.7.

We build the POI graph from the POIs extracted

by the procedure described in Section 3. We set the

visiting time at each POI as one and a half hours for

simplicity since this is not the focus of our work. The

travel time between each pair of POIs is estimated us-

ing Google map API assuming driving as the means of

transportation.

In each set of experiments, we randomly choose 20

locations as the source location vq and report the ave-

rage algorithm performance over 20 queries.

In the initialization of the algorithms, we perform

online filtering of the irrelevant POIs and only keep the

POIs that are of at least one query category. To test

the impact of different parameters, we vary the spatial

Table 5. Number of POIs in the Datasets

Dataset Total Art Shop Food Nightlife Travel Park College Building

SF 3 358 179 524 1 739 501 224 189 42 392

NY 8 415 458 1 744 3 227 800 549 584 188 1 447

-122.55 -122.50 -122.45 -122.40 -122.35

37.65

37.60

37.70

37.75

37.80

37.85

37.90

Longitude

L
a
ti
tu

d
e

Art

Food

Nightlife

Park

-122.55 -122.50 -122.45 -122.40 -122.35
37.60

37.65

37.70

37.75

37.80

37.85

37.90

Longitude

L
a
ti
tu

d
e

Shop

Building

Travel

College

(b)(a)

Fig.6. Distribution of POIs in San Francisco. (a) Categories of “art”, “food”, “nightlife” and “park”. (b) Categories of “shop”,

“building”, “travel” and “college”.

832 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

-74.20 -74.10 -74.00 -73.90 -73.80 -73.70
40.50

40.60

40.70

40.80

40.90

41.00

Longitude

Art

Food

Nightlife

Park

-74.20 -74.10 -74.00 -73.90 -73.80 -73.70
40.50

40.60

40.70

40.80

40.90

41.00

Longitude

L
a
ti
tu

d
e

L
a
ti
tu

d
e

Shop

Building

Travel

College

(b)(a)

Fig.7. Distribution of POIs in New York. (a) Categories of “art”, “food”, “nightlife” and “park”. (b) Categories of “shop”, “building”,

“travel” and “college”.

diversity constraint σ from 1 km to 16 km, the time

budget tq from 5 hours to 9 hours, the cardinality of

query categories |Scat| from 1 to 5, the desired number

of routes k from 2 to 9, and the approximation ratio

α from 0.6 to 1. We precompute popularity values of

each POI under the time budget values 2, 5, and 9 in

single-stage algorithms, respectively. Table 6 summa-

rizes the parameter values. We report the algorithm

running time and the precision of the results produced

by the approximate algorithm.

Table 6. Experimental Parameters

Parameter Default Value

σ 4.0 1, 2, 4, 8, 16

tq 7.0 5, 6, 7, 8, 9

k 3.0 2, 3, 5, 7, 9

|Scat| 3.0 1, 2, 3, 4, 5

α 0.8 0.6, 0.7, 0.8, 0.9, 1.0

6.2 Results

Effect of σ. Fig.8 shows the effect of spatial diver-

sity constraint where the value of σ is varied from 1 to

16. As Fig.8(a) shows, the running time of the three

algorithms decreases when σ increases, because fewer

pairs of feasible routes satisfy the spatial diversity con-

straint. From Fig.8(b) we can see that as σ increases,

the single-stage algorithms need to generate more fea-

sible routes. The reason is that when σ is larger, it

is more difficult to find k routes that satisfy the spa-

tial diversity constraint, and hence more routes need to

be generated. A similar result is observed in the NY

dataset (Fig.A1). As the results are similar to those for

the SF dataset, we move the experimental results for

the NY dataset to Appendix.

Effect of α. Fig.9(a) shows the effect of α on 3S-α.

As the value of α increases, the running time of 3S-α

increases. This is expected as α increases, and it needs

to examine more feasible routes to find a candidate so-

lution with a popularity value closer to the optimal

solution. As 3S-I is a precise algorithm, the running

time remains the same when α increases. Meanwhile,

from Fig.9(b) we can see the precision of the results

exceeds the required approximation ratio consistently.

This confirms the effectiveness of 3S-α.

Effect of tq. Next, we vary the query time budget tq
from 5 hours to 9 hours. The results in Fig.10(a) show

that, as tq increases, the running time of the three algo-

rithms increases. This is expected that a larger tq leads

to more feasible routes. The single-stage algorithms

outperform the two-stage algorithm as they do not need

to find all the possible k-route combinations. We also

evaluate the effect of tq on single-stage algorithms when

different sets of time budget values are used in the pre-

computation of popularity upper bounds. In addition

to the default set of three budget values 2, 5, and 9 (de-

noted by ρ = 3), we use another set of budget values 3

and 9 (denoted by ρ = 2). From Fig.10(b), we see that

both 3S-I and 3S-α perform well when ρ = 3. This is

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 833

10-1

100

101

102

1 2 4 8 16

R
u
n
n
in

g
 T

im
e
 (

s)

TSS-P

3S-I

3S-α

101

102

103

104

1 2 4 8 16

N
u
m

b
e
r

o
f
F
e
a
si

b
le

 R
o
u
te

s

TSS-P

3S-I

3S-α

αα

(b)(a)

Fig.8. Effect of σ in SF. (a) Running time. (b) Number of feasible routes.

0.0

0.5

1.0

1.5

2.0

0.6 0.7 0.8 0.9 1.0

R
u
n
n
in

g
 T

im
e

(s
)

3S-I

3S-α
3S-I

3S-α

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.6 0.7 0.8 0.9 1.0

P
re

c
is

io
n

α α

(b)(a)

Fig.9. Effect of α in SF. (a) Running time. (b) Precision.

5 6 7 8 9
10-2

10-1

100

101

102

103

5 6 7 8 9

R
u
n
n
in

g
 T

im
e
 (

s)

10-2

10-1

100

101

102

103

R
u
n
n
in

g
 T

im
e
 (

s)

TSS-P

3S-I

3S-α

3S-I (ρ=2)

3S-α (ρ=2)

3S-I (ρ=3)

3S-α (ρ=3)

tq tq

(b)(a)

Fig.10. Effect of tq in SF. (a) Running time. (b) ρ.

834 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

because when we use more time budget values in the

precomputation, we have a higher probability to obtain

a popularity upper bound that is closer to the actual

popularity, which increases the pruning efficiency.

Effect of |Scat|. Next we vary the number of POI

categories queried, |Scat|, from 1 to 5. Fig.11 shows the

result. We find that the running time of the three algo-

rithms increases when |Scat| increases and then drops

after |Scat| reaches 4. This is because when |Scat| is

large enough (i.e., |Scat| > 4), the number of feasible

routes is much less and thus the algorithms need much

less time to find the results.

1 2 3 4 5

Number of Query Categories

TSS-P

3S-I

3S-α

10-2

10-3

10-1

100

101

102

R
u
n
n
in

g
 T

im
e
 (

s)

Fig.11. Effect of |Scat| in SF.

Effect of k. Next we vary the value of k from 2 to 9.

Fig.12 shows the running time of the three algorithms.

We find that the time cost of TSS-P increases dramati-

cally when k gets larger. When k exceeds 9, the running

time of TSS-P is beyond 100 seconds. The two single-

stage algorithms generate feasible routes and find can-

didate solutions at the same time, so as to avoid gene-

rating the unnecessary feasible routes. Although the

two single-stage algorithms need more time to main-

tain the partial solution set as k increases, they always

outperform TSS-P.

Memory Cost of the POI Graphs. We compare the

space overhead in terms of the memory costs of the POI

graphs, i.e., Gρ=0, Gρ=2 and Gρ=3, used in the single-

stage algorithms. Here, Gρ=0 represents a POI graph

where every node does not have a matrix of popularity

upper bound, which is used by TSS-P. Gρ=3 represents

a POI graph where every node has a matrix of 8 × 3

popularity upper bound. This matrix is constructed by

the popularity upper bound values of the nodes w.r.t.

C1, C2, ..., C8 under the three predefined time budgets

(i.e., 2, 5, and 9). Similarly, Gρ=2 represents a POI

graph where every node has a matrix of 8 × 2 popula-

rity upper bound (the two predefined time budgets are

3 and 9). From Fig.13, we find that as ρ increases,

the corresponding POI graph consumes more memory.

However, the differences of the memory consumption

among the three graphs are small, which means the

matrix of popularity upper bound dose not lead to a

large space overhead.

2 3 5 7 9

k

10-1

100

101

102

R
u
n
n
in

g
 T

im
e
 (

s)
TSS-P

3S-I

3S-α

Fig.12. Effect of k in SF.

0

20

40

60

80

SF NY

M
e
m

o
ry

 (
M

b
)

Dataset

Gρ/

Gρ/

Gρ/

Fig.13. Memory cost of the POI graphs.

Comparison with the DIV-DP Algorithm[32]. We

compare our single-stage algorithms with an adapted

version of the DIV-DP algorithm proposed by Qin

et al.[32] We adapt the DIV-DP algorithm to process

SDkR queries as follows. We first construct a feasible

route graph based on the current feasible routes. Then

the DIV-DP algorithm is called to find a local optimal

result. If this result is also global optimal as estimated

by the algorithm, we return the query answer and ter-

minate the algorithm. Otherwise, we add more feasible

routes to the computation and repeat the above pro-

cess. We conduct this set of experiments using the NY

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 835

dataset. Fig.14 shows the running time of the adapted

DIV-DP algorithm and the two single-stage algorithms.

We see that both 3S-I and 3S-α consistently outperform

the DIV-DP algorithm when we vary k and tq. This is

because for 3S-I and 3S-α, we maintain a PSS for inter-

mediate results, while the adapted DIV-DP algorithm

recomputes and traverses the feasible route graph re-

peatedly.

2 3 5 7 9

k

5 6 7 8 9

10-1

100

101

102

R
u
n
n
in

g
 T

im
e
 (

s)

10-1

100

101

102

R
u
n
n
in

g
 T

im
e
 (

s)

DIV-DP
3S-I

3S-α

DIV-DP
3S-I

3S-α

tq

(b)

(a)

Fig.14. Comparison with DIV-DP. (a) Effect of k. (b) Effect of

tq.

Effectiveness of the SDkR Query. To show the im-

pact of the spatial diversity constraint σ, we perform

three SD3R queries on the SF dataset with spatial di-

versity constraints σ = 0, 2, and 4, respectively. The

three queries share the same constraints in the desired

starting POI (i.e., vq = “Hostelling International”),

time budget (i.e., tq = 7 hours), and the set of query

categories (i.e., Scat = {C1, C6, C8}). We denote the

three queries as q1, q2, and q3, respectively. Note that

q1 (i.e., σ = 0) is equivalent to the traditional top-3

routes query, which returns the routes with the highest

popularity. We show the result routes of q1, q2, and q3
in Figs.15(a)–15(c), respectively. As shown in the fig-

ures, the distances between the result routes increase

when σ increases. According to Table 7, the result

routes of q1 (i.e., {r1, r2, r3}) have overlapping POIs,

while the result routes of q2 (i.e., {r1, r2, r4}) and q3
(i.e., {r1, r5, r6}) become spatially distant.

(b)

(a)

(c)

Fig.15. Effectiveness of the SDkR query. (a) σ = 0. (b) σ = 2.

(c) σ = 4.

Table 7. Result Routes of the Three SD3R Queries

Route POI

r1 Alta Plaza Park (C6)→Fine Arts Theatre (C1)→Golden

Gate Bridge (C8)

r2 Union Square (C6)→Museum of Modern Art (C1)→Coit

Tower (C8)

r3 Union Square (C6)→Coit Tower (C8)→Lombard Street

(C1)

r4 City Hall (C8)→De Young Museum (C1)→Golden Gate

Park (C6)

r5 Museum of Modern Art (C1)→Rincon Park (C6)→Coit

Tower (C8)

r6 Haight Street (C8)→De Young Museum (C1)→Golden

Gate Park (C6)

836 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

7 Conclusions

We formulated the spatial diversified top-k routes

query and proposed three algorithms to process the

query. We analyzed the algorithm costs and performed

an empirical study on the algorithm performance. The

first algorithm TSS-P processes the query in two stages.

In the first stage, all the feasible routes that satisfy the

query constraints are identified. In the second stage,

the k-route combination with the highest popularity is

found and returned. The other two algorithms, 3S-I

and 3S-α, avoid generating all the feasible routes. They

build up the optimal k-route combination progressively

in the process of identifying feasible routes. The experi-

mental results showed that the proposed algorithms are

both effective and efficient. The 3S-α algorithm has the

best performance, which saves up to 60% and 90% of

the query processing time when α = 0.8 compared with

3S-I and TSS-P, respectively.

In the future, we plan to investigate the possibility

of further improving the efficiency of SDkR query via

designing a spatial index structure that fits the SDkR

query. In addition, we plan to investigate the effect of

different spatial metrics (e.g., angle of routes) on the

query result. Finally, we plan to consider processing

the SDkR query on road networks.

References

[1] Su H, Zheng K, Huang J M, Liu T Y, Wang H Z, Zhou X

F. A crowd-based route recommendation system — Crowd-

Planner. In Proc. the 30th International Conference on

Data Engineering, March 2014, pp.1178-1181.

[2] Lu H C, Chen C Y, Tseng V S. Personalized trip recommen-

dation with multiple constraints by mining user check-in

behaviors. In Proc. the 20th International Conference on

Advances in Geographic Information Systems, November

2012, pp.209-218.

[3] Zhang C Y, Liang H W, Wang K, Sun K L. Personalized

trip recommendation with PoI availability and uncertain

traveling time. In Proc. the 24th ACM International Confe-

rence on Information and Knowledge Management, Octo-

ber 2015, pp.911-920.

[4] Hsieh H P, Li C T. Mining and planning time-aware

routes from check-in data. In Proc. the 23rd International

Conference on Information and Knowledge Management,

November 2014, pp.481-490.

[5] Shang S, Ding R G, Yuan B, Xie K X, Zheng K, Kalnis

P. User oriented trajectory search for trip recommendation.

In Proc. the 15th International Conference on Extending

Database Technology, March 2012, pp.156-167.

[6] Dai J, Liu C F, Xu J J, Ding Z M. On personalized and

sequenced route planning. World Wide Web: Internet and

Web Information Systems, 2016, 19(4): 679-705.

[7] Tang J Y, Sanderson M. Spatial diversity, do users appre-

ciate it? In Proc. the 6th Workshop on Geographic Infor-

mation Retrieval, February 2010, Article No. 22.

[8] Chen Z B, Shen H T, Zhou X F, Zheng Y, Xie X. Searching

trajectories by locations: An efficiency study. In Proc. the

29th ACM SIGMOD International Conference on Mana-

gement of Data, June 2010, pp.255-266.

[9] Shang S, Chen L S, Jensen C S, Wen J R, Kalnis P. Search-

ing trajectories by regions of interest. IEEE Transactions

on Knowledge and Data Engineering, 2017, 29(7): 1549-

1562.

[10] Shang S, Ding R, Zheng K, Jensen C S, Kalnis P, Zhou

X F. Personalized trajectory matching in spatial networks.

The International Journal on Very Large Data Bases, 2014,

23(3): 449-468.

[11] Zheng K, Zheng B L, Xu J J, Liu G F, An L, Li Z X.

Popularity-aware spatial keyword search on activity trajec-

tories. World Wide Web: Internet and Web Information

Systems, 2017, 20(4): 749-773.

[12] Zheng K, Yang Y, Shang S, Yuan N J. Towards efficient

search for activity trajectories. In Proc. the 29th Interna-

tional Conference on Data Engineering, April 2013, pp.230-

241.

[13] Shang S, Chen L S, Zheng K, Jensen C S, Wei

Z, Kalnis P. Parallel trajectory-to-location join. IEEE

Transactions on Knowledge and Data Engineering. doi:

10.1109/TKDE.2018.2854705.

[14] Wei L Y, Zheng Y, Peng W C. Constructing popular

routes from uncertain trajectories. In Proc. the 18th ACM

SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, August 2012, pp.195-203.

[15] Cao X, Chen L S, Cong G, Xiao X K. Keyword-aware op-

timal route search. Proceedings of the VLDB Endowment,

2012, 5(11): 1136-1147.

[16] Li Y J, Yang W D, Dan W, Xie Z P. Keyword-aware domi-

nant route search for various user preferences. In Proc. the

20th International Conference on Database Systems for Ad-

vanced Applications, April 2015, pp.207-222.

[17] Shang S, Chen L S, Wei Z W, Jensen C S, Wen J R, Kal-

nis P. Collective travel planning in spatial networks. IEEE

Transactions on Knowledge and Data Engineering, 2016,

28(5): 1132-1146.

[18] Wen Y T, Yeo J, Peng W C, Hwang S W. Efficient keyword-

aware representative travel route recommendation. IEEE

Transactions on Knowledge and Data Engineering, 2018,

29(8): 1639-1652.

[19] Liu H, Jin C Q, Yang B, Zhou A Y. Finding top-k optimal

sequenced routes. In Proc. the 34th International Confe-

rence on Data Engineering, April 2018, pp.569-580.

[20] Shang S, Liu J, Zheng K, Lu H, Pedersen T B, Wen J R.

Planning unobstructed paths in traffic-aware spatial net-

works. Geo Informatica, 2015, 19(4): 723-746.

[21] Soma S C, Hashem T, Cheema M A, Samrose S. Trip

planning queries with location privacy in spatial databases.

World Wide Web: Internet and Web Information Systems,

2017, 20(2): 205-236.

[22] Zheng B L, Su H, Hua W, Zheng K, Zhou X F, Li G H.

Efficient clue-based route search on road networks. IEEE

Transactions on Knowledge and Data Engineering, 2017,

29(9): 1846-1859.

[23] Xu J J, Gao Y J, Liu C F, Zhao L, Ding Z M. Efficient route

search on hierarchical dynamic road networks. Distributed

and Parallel Databases, 2015, 33(2): 227-252.

Hong-Fei Xu et al.: Diversifying Top-k Routes with Spatial Constraints 837

[24] Liang S S, Yilmaz E, Shen H, Rijke M D, Croft W B. Search

result diversification in short text streams. ACM Transac-

tions on Information Systems, 2017, 36(1): Article No. 8.

[25] Angel A, Koudas N. Efficient diversity-aware search. In

Proc. the 30th ACM SIGMOD International Conference

on Management of Data, June 2011, pp.781-792.

[26] Khan H A, Sharaf M A. Model-based diversification for se-

quential exploratory queries. Data Science and Engineer-

ing, 2017, 2(2): 151-168.

[27] Chen L S, Cong G. Diversity-aware top-k publish/subscribe

for text stream. In Proc. the 34th ACM SIGMOD Inter-

national Conference on Management of Data, May 2015,

pp.347-362.

[28] Fan W F, Wang X, Wu Y H. Diversified top-k graph pat-

tern matching. Proceedings of the VLDB Endowment, 2013,

6(13): 1510-1521.

[29] Yuan L, Qin l, Lin X M, Chang L J, Zhang W J. Diversi-

fied top-k clique search. The International Journal on Very

Large Data Bases, 2016, 25(2): 171-196.

[30] Carbonell J G, Goldstein-Stewart J. The use of MMR,

diversity-based reranking for reordering documents and pro-

ducing summaries. In Proc. the 21st Annual International

ACM SIGIR Conference on Research and Development in

Information Retrieval, August 1998, pp.335-336.

[31] Vieira M R, Razente H L, Barioni M C, Hadjieleftheriou

M, Srivastava D, Traina C, Tsotras V J. On query result

diversification. In Proc. the 27th International Conference

on Data Engineering, April 2011, pp.1163-1174.

[32] Qin L, Yu Y J, Chang L J. Diversifying top-k results. Pro-

ceedings of the VLDB Endowment, 2012, 5(11): 1124-1135.

[33] Garey M R, Johnson D S. Computers and intractability: A

guide to the theory of NP-completeness. Society for Indus-

trial and Applied Mathematics, 1982, 24(1): 90-91.

[34] Jain A, Sarda P, Haritsa J R. Providing diversity in k-

nearest neighbor query results. In Proc. the 8th Pacific-

Asia Conference on Knowledge Discovery and Data Min-

ing, May 2004, pp.404-413.

[35] Lee K C K, Lee W C, Leong H V. Nearest surrounder

queries. IEEE Transactions on Knowledge and Data En-

gineering, 2010, 22(10): 1444-1458.

[36] Kucuktunc O, Ferhatosmanoglu H. λ-diverse nearest neigh-

bors browsing for multidimensional data. IEEE Transac-

tions on Knowledge and Data Engineering, 2013, 25(3):

481-493.

[37] Ference G, Lee W C, Jung H J, Yang D N. Spatial search for

K diverse-near neighbors. In Proc. the 22nd ACM Interna-

tional Conference on Information and Knowledge Mana-

gement, October 2013, pp.19-28.

[38] Zhang C Y, Zhang Y, Zhang W J, Lin X M, Cheema M

A, Wang X Y. Diversified spatial keyword search on road

networks. In Proc. the 17th International Conference on

Extending Database Technology, March 2014, pp.367-378.

[39] Godsil C, Royle G F. Algebraic Graph Theory. Springer,

2001.

[40] Chiba N, Nishizeki T. Arboricity and subgraph listing algo-

rithms. SIAM Journal on Computing, 1985, 14(1): 210-223.

[41] Bao J, Zheng Y, Mokbel M F. Location-based and

preference-aware recommendation using sparse geo-social

networking data. In Proc. the 20th International Confe-

rence on Advances in Geographic Information Systems,

November 2012, pp.199-208.

Hong-Fei Xu received his M.E. de-

gree in computer science from Shenyang

Jianzhu University, Shenyang, in 2014.

He is currently a Ph.D. candidate

in computer software and theory at

Northeastern University, Shenyang. His

research interests include spatial data

management and data mining.

Yu Gu received his Ph.D. degree

in computer software and theory from

Northeastern University, Shenyang,

in 2010. Currently, he is a professor

in Northeastern University, Shenyang.

His current research interests include

spatial data management and graph

data management. He is a senior

member of CCF.

Jian-Zhong Qi is a lecturer in

the Department of Computing and

Information Systems at the University

of Melbourne, Melbourne. He received

his Ph.D. degree in computer science

from the University of Melbourne,

Melbourne, in 2014. He was an intern

at Toshiba China R&D Center and

Microsoft Redmond in 2009 and 2013, respectively. His

research interests include spatio-temporal databases,

location-based social networks, information extraction,

and text mining.

Jia-Yuan He received her M.E. de-

gree in computer science from Huazhong

University of Science and Technology,

Wuhan, in 2011. She is currently a

Ph.D. candidate in computer science

at the University of Melbourne, Mel-

bourne. Her research interests include

spatial data management and data

mining.

Ge Yu received his Ph.D. degree in

computer science from Kyushu Univer-

sity, Fukuoka, in 1996. He is currently

a professor at Northeastern University,

Shenyang. His research interests in-

clude distributed and parallel database,

OLAP and data warehousing, data in-

tegration, graph data management, etc.

He has published more than 200 papers in refereed journals

and conferences. He is a fellow of CCF, and a member of

ACM, IEEE, and the IEEE Computer Society.

838 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

Appendix

1 2 4 8 16

1 2 4 8 16

N
u
m

b
e
r

o
f
F
e
a
si

b
le

 R
o
u
te

s

10-1

100

101

102

101

102

103

104

R
u
n
n
in

g
 T

im
e
 (

s)

TSS-P
3S-I
3S-α

TSS-P
3S-I
3S-α

σ

σ

(b)

(a)

Fig.A1. Effect of σ in NY. (a) Running time. (b) Number of

feasible routes.

0

1

2

3

4

5

0.6 0.7 0.8 0.9 1.0

R
u
n
n
in

g
 T

im
e
 (

s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.6 0.7 0.8 0.9 1.0

P
re

c
is

io
n

3S-I
3S-α

3S-I
3S-α

α

α

(b)

(a)

Fig.A2. Effect of α in NY. (a) Running time. (b) Precision.

5 6 7 8 9

R
u
n
n
in

g
 T

im
e
 (

s)

10-2

10-1

100

101

102

103

3S-I (ρ=2)

3S-α (ρ=2)

3S-I (ρ=3)

3S-α (ρ=3)

tq

Fig.A3. Effect of tq in NY.

1 2 3 4 5

R
u
n
n
in

g
 T

im
e
 (

s)

Number of Query Categories

10-2

10-1

100

101

102

TSS-P

3S-I

3S-α

Fig.A4. Effect of |Scat| in NY.

