
Robust Multi-group Multicast Beamforming

Design and Antenna Selection for massive MIMO

Systems

by

Niloofar Mohamadi

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

April, 2023

c© Niloofar Mohamadi, 2023



THESIS EXAMINATION INFORMATION

Submitted by: Niloofar Mohamadi

Doctor of Philosophy in Electrical and Computer Engineering

Thesis Title: Robust Multi-Group Multicast Beamforming and Antenna Selection for
Massive MIMOSystems

An oral defense of this thesis took place on March 2nd, 2023 in front of the following
examining committee:

Examining Committee:

Chair of Examining Committee: Prof. Khalid Elgazzar

Research Supervisor: Prof. Min Dong

Research Co-supervisor: Prof. Shahram ShahbazPanahi

Examining Committee Member: Prof. Ali Grami

Examining Committee Member: Prof. Ying Wang

University Examiner: Prof. Jing Ren

External Examiner: Prof. Saeed Gazor, Queen’s University

The above committee determined that the thesis is acceptable in form and content and
that a satisfactory knowledge of the field covered by the thesis was demonstrated by the
candidate during an oral examination. A signed copy of the Certificate of Approval is
available from the School of Graduate and Postdoctoral Studies.

ii



ABSTRACT

In this dissertation, we use an Alternating Direction Method of Multipliers (ADMM)

algorithm to design robust multi-group multicast beamforming scheme for massive multiple-

input multiple-output (MIMO) systems for two scenarios; 1) all antennas are available at

the base station (BS), 2) only subset of antennas are available due limitation on the number

of RF chains (joint antenna selection and beamforming design). In both scenarios we as-

sume only estimates of the channel covariance matrices are available at the base station with

a bounded error. In the first scenario, we formulate the robust multicast beamforming opti-

mization problem to minimize the transmit power while the minimum required quality-of-

service (QoS) is met. We directly solve the formulated optimization problem. We develop a

two-layered ADMM-based fast algorithm to directly tackle the non-convex problem, where

we obtain closed-form or semi-closed-form solutions to each subproblem. Simulation re-

sults show that our proposed algorithm provides a favorable performance compared with

existing alternative methods with considerable computational complexity reduction.

In the second scenario, we investigate the problem of joint antenna selection and ro-

bust multi-group multicast beamforming scheme for massive MIMO systems. We aim to

obtain binary antenna selection and multicast beamforming vectors in order to minimize

power consumption at the BS subject to per antenna transmit power limit, and the mini-

mum worst case SINR requirements while limited number of antennas can be exploited for

beamforming. To overcome the acquired mixed-Boolean problem, we replace the binary

constraints with a continuous equivalent form. We use exact penalty function to transfer

the obtained continuous problem into a more tractable problem. We develop a two phases

solution, with phase one focusing on antenna selection, and second phase to obtain multi-

cast beamforming vectors using the selected antennas in the first phase. In phase one, we

propose two different approaches, SINR-based and SLR-based, to acquire antenna selec-

tion vector. We exploit a fast ADMM algorithm to directly tackle the problems in phase

one and two without applying convex approximation technique that may result in perfor-

mance degradation. Simulation results illustrate the advantage of our proposed algorithm
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in terms of computational complexity over existing alternative methods while maintaining

favorable performance.

Keywords: Robust multicast beamforming; Antenna Selection; large-scale systems;

alternating direction method of multipliers (ADMM); low complexity;
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Chapter 1

Introduction

1.1 Motivation

1.1.1 5G Technology

The rapid growth of wireless connected devices and the emergence of new applications

raise the challenge of bandwidth limit and higher data rate requirements. A solution to ad-

dress the challenges of higher data rate demands is 5G technology. The Internet of Things

(IoT) and mobile internet are the critical factors driving 5G technology. The 5G applica-

tions are categorized into three groups: Enhanced Mobile Broadband (eMBB), Massive

Machine Type Communications (mMTC), and Ultra-Reliable and Low Latency Commu-

nications (URLLC) [1,2]. In 5G-related applications, expected improvement areas include

system throughput, energy efficiency, latency, and wireless network capacity [3]. To ad-

dress the required improvement areas in 5G, many new technologies, such as heteroge-

neous cellular networks [4–6], cell-free architecture [7,8], energy harvesting communica-

tions [9–12] are introduced. Two significant factors in selecting the candidate technologies

to address the emerging challenges of the 5G applications are bandwidth (spectral effi-

ciency) and energy efficiency. Energy efficiency is an important factor in wireless networks

especially with increasing number of users in 5G networks [13].

Three of focus areas to address 5G technology requirements are 1) Multiple input

multiple outputs (MIMO) for spectral efficiency improvement, 2) mm-wave signals usage

to increase the bandwidth, 3) deployment of multi-layer and ultra-dense networks for geo-
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graphical spectral usage [3]. This dissertation focus is efficient MIMO transmission design.

Hence, we discuss these systems in more detail in the following sections.

1.1.2 Massive MIMO Systems in 5G

As noted above, wireless networks experience a drastic increase in data transmission with

emerging 5G network applications, such as, machine-to-machine and video streaming ap-

plications [14,15]. In the decades ahead, the traffic load on wireless networks have signif-

icant upward trend due to emergence of 5G applications. Hence, the high volume of data

exchange imposes challenges in designing wireless network systems. These challenges in-

clude a rise in the required spectrum resources and the requirement for energy efficiency in

transmitting signals [14]. As a result, the technologies chosen for massive MIMO systems

in 5G must increase the transmission capacity without increasing the required bandwidth

resources.

By exploiting antenna arrays with large number of antenna elements both at the trans-

mitter and receiver, Massive MIMO systems are the significant potential technology to

address the challenges in increasing number of applications in 5G systems [16,17]. One of

the benefits of using a massive number of antennas is near-deterministic wireless channels,

i.e, the channels from BS to the users become near-orthogonal. Formation of the near-

orthogonal channels helps to remove small-scale fading, intra-cell interference, and uncor-

related noise in the presence of many antennas [18]. Additionally, massive MIMO systems

improve the data rate and energy efficiency compared with single antenna systems.

1.1.3 Multicasting

Wireless multicasting is the process of simultaneously sending common information to a

group of users. Figure1.1illustrates the multicasting concept of a group of users receiving

common data. Multicast techniques are necessary for large-scale group communication

applications [19]. Multicasting improves communication efficiency by reducing the in-

formation processing load at the servers and network devices. Furthermore, multicasting

optimizes performance by a reduction in redundant traffic. In multicasting, the BS exploits
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Figure 1.1: Multicasting technique

minimum network resources due to point-to-multipoint applications. Hence, wireless mul-

ticasting has become an essential technology for data delivery and content distribution in

wireless services and applications in the future networks [20].

1.1.4 Beamforming

Beamforming is a technique that redirects the signal power to a specific direction rather

than broadcasting the power to all directions. Figure1.2 shows beamforming that directs

power beams in a specific direction to cover the user with the intended message. The redi-

rection of the signal power is based on the channel state information received at the BS [21].

Beamforming techniques improve spectral efficiency by increasing the signal-to-noise ra-

tio. Furthermore, a combination of beamforming with techniques such as multiple-input

multiple-output (MIMO) and intelligent antennas increase the capacity and cell range. Ac-

quiring channel state information is challenging due to the noise of the environment. There

are different techniques for estimating channel state information; however, in practice, the

error associated with the estimation is unavoidable. Hence, to make the design robust to er-

ror, channel estimation error must be embedded in the design of the beamforming weights.

3



Figure 1.2: Beamforming

1.1.5 Multicast Beamforming

Physical-layer multicast beamforming is an efficient transmission technique to deliver com-

mon data to multiple users simultaneously [22–27]. It exploits the wireless broadcasting

feature and directional signaling ability to boost achievable rate and improve the power and

bandwidth efficiency [28].

Depending no the application, the design of multicast beamforming vectors at the BS,

depending on the application, is commonly based on two approaches, first approach (known

as the QoS problem), the objective is to minimize the transmit power subject to a minimum

threshold required per user SINR [29–31]. It is common in the QoS problem to add per an-

tenna power constraint to avoid excessive transmit power at each antenna [32]. The second

approach (known as the max-min fair (MMF) problem) the goal is to maximize minimum

SINR subject to transmit power limitation at the BS [25,30,33,34]. The formulated prob-

lems for the two above approaches in the problem of beamforming design in multicast

systems are non-convex and NP-hard. Consequently, they are challenging to solve. As

previously stated in Section1.1.2, with the advent of massive MIMO in 5G wireless com-

munication technology, the size of problems to obtain the beamforming vector increases
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considerably. This imposes the challenge of the development of multicast beamforming

techniques that focus on practical and computationally efficient solutions suitable for such

systems.

1.1.6 Robust Multicast Beamforming

One important factor in the design of multicast beamforming for both QoS and MMF

problems is the availability of accurate channel state information (CSI) at the base sta-

tion. However, in practice, the BS only has access to an estimation of the CSI in both

frequency-division duplex (FDD) and time-division duplex (TDD) systems [35]. Further-

more, in massive MIMO systems with large number of antennas due to high interference,

acquiring an accurate estimation of CSI is more challenging [36,37]. The common methods

to estimate CSI include maximum-likelihood (ML) estimation [38], least-square (LS) es-

timation [39], and minimum-mean-square-error (MMSE) estimation [40]. In all the above

methods, a known pilot signal is sent from a transmitter to receivers to estimate CSI. The

pilot signal is affected by path loss, scattering, diffraction, fading, and shadowing, reflected

in the quality of the channel, consequently, CSI. In the TDD system, both the transmit-

ter and receiver use the same bandwidth, so downlink and uplink channels are reciprocal.

However, due to different bandwidths in the downlink and uplink in FDD systems, acquir-

ing the CSI is more challenging [41]. Thus, it is essential to incorporate the error in the

CSI to have a robust design. The CSI estimation process involves high computational com-

plexity, whereas, in massive MIMO systems with a large number of antennas, this com-

plexity increases considerably [42, 43]. Furthermore, high variation in the instantaneous

CSI causes short coherence time, leading to frequent channel acquisition [44]. The second-

order statistics of the channel vectors, channel covariance matrix, evolves much slower than

instantaneous CSI with higher coherence time. Hence, using a channel covariance matrix

instead of instantaneous CSI remarkably reduces the computational complexity by saving

the number of times required to obtain CSI [44].

In the design of multicast beamforming in the literature, it is common to consider

two approaches for modeling error to guarantee a robust design. Most studies consider a
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worst-case design assuming spherical bounded CSI error, where the worst-case SINR is

considered for the QoS constraint for robust beamforming optimization [45]. The second

approach is probabilistic design based on SINR outage [46].

1.1.7 Joint Antenna Selection and Robust Multicast Beamforming

The usage of all available antennas at the BS is restricted by the number of available RF

chains devoted to each antenna. RF chain hardware has high cost and complexity as it in-

cludes a mixer, a power amplifier, and analog-to-digital (A/D) and digital-to-analog (D/A)

converters. Hence, the number of available RF chains is less than the number of antennas

as antenna production have low cost and complexity. Figure 1.3 illustrates such scenario

with L available RF chains andM antennas at the base station serving multiple multicast

groups.

Two techniques to exploit full capacity of available antennas and RF chains at the BS

are soft and hard antenna selection approaches. In soft antenna selection technique (known

as hybrid beamforming), a network of phase shifters connect antennas and RF chains. Soft

selection approaches are categorized into two architectures, fully-connected and partly-

connected [47]. In the fully-connected architecture each RF chain connects to all available

antennas [47, 48]. The drawback of this structure is high power consumption as a large

number of phase shifters are used. Nevertheless, due to the connection to all antennas, the

fully-connected structure utilizes full array gain. In the partly-connected structure, each

RF chains only connected to a subset of antennas, that leads to a lower circuit complexity

and lower power consumption while have lower spectral efficiency compare with fully-

connected structure [47]. In hard antenna selection techniques, the RF chains are connected

to antennas through switches. In this technique a subset of antennas is switched to available

RF chains. The hard antenna selection technique reduces the cost and complexity of the

BS by exploiting switches.
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Figure 1.3: Antenna Selection scenario withL available RF chains at the base station, and
M number of antennas, servingG multicast group.

1.2 Objectives and Contributions

The objectives and contributions of this dissertation are summarized below.

1.2.1 Objectives

The main objectives of this dissertation are summarized into two major completed works

as follows:

• First, we provide a low-complexity robust multi-group multicast beamforming design

suitable for massive MIMO systems. We assume that only the estimated channel

covariance matrices are available at the BS and that the estimation error lies in a

bounded hyper-sphere. Based on this, we consider the robust multicast quality of

service (QoS) problem, aiming to minimize the transmit power subject to the worst-

case (minimum) SINR guarantee.

• We then provide a low complexity solution for joint robust multi-group multicast

beamforming design and antenna selection problem suitable for massive MIMO sys-
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tems. We assume that only the estimated channel covariance matrices are available

at the BS and the estimation error lies in a bounded hyper-sphere. Based on this

assumption, we consider the robust multicast QoS problem, aiming to minimize the

transmit power subject to the worst-case (minimum) SINR guaranteed and a limita-

tion on the power radiated from each antennas.

1.2.2 Contributions

We divide the contribution of this dissertation into two parts for the two completed works

on robust multi-group multicast beamforming design and joint robust multi-group multicast

beamforming and antenna selection design. Our main contributions for the problem of

robust multi-group multicast beamforming are summarized below:

• We develop our approach to directly solve the exact robust QoS problem. This is

different from the existing common approach of using a lower bound on the worst-

case SINR [49,50]. Specifically, we reformulate the worst-case SINR constraint and

obtain the exact worst-case expression for the bounded CSI error. Using this expres-

sion, we transform the original robust optimization into an equivalent non-convex

optimization problem. This conversion is a crucial step for the subsequent develop-

ment of our fast algorithm. Unlike the multicast QoS problem under perfect CSI,

the converted optimization problem is not a QCQP problem, where the constraint

function has a more complicated structure.

• We develop an ADMM-based fast algorithm to solve the converted non-convex prob-

lem directly with a convergence guarantee. Our proposed algorithm contains two

layers of different ADMM procedures. We design the outer-layer ADMM to decom-

pose the non-convex problem into two convex subproblems to be solved alternat-

ingly. Efficiently solving these subproblems is still challenging. In particular, for

one subproblem, we further develop an inner-layer consensus-ADMM-based algo-

rithm to obtain the solution. A salient feature in our ADMM constructions at both

layers is that by exploiting the structure of each subproblem and developing special
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optimization techniques, we obtain either closed-form or semi-closed-form solutions

to each subproblem. Therefore, all the ADMM updates can be performed using these

derived solutions, significantly reducing the required computation and leading to a

fast iterative algorithm. Based on the recently established result on the convergence

of ADMM that covers a wide range of non-convex problems [51], we show that our

proposed algorithm is guaranteed to converge to a stationary point of the original

robust QoS problem.

• We conduct detailed simulation studies using two commonly considered models of

the channel covariance matrix. Numerical studies show that our proposed ADMM-

based algorithm provides fast convergence. It offers near-identical performance to

that using the generic interior-point methods (IPM) offered by standard nonlinear

solvers but with significantly lower complexity. Furthermore, our proposed algo-

rithm provides a noticeable improvement over other existing robust design methods

that rely on a lower bound on the worst-case SINR, with an improved likelihood of

finding a feasible solution (i.e.,feasibility rate) and reduced transmit power consump-

tion. Finally, as the number of antennas and users increases, our proposed algorithm

maintains low computational complexity, with several orders of magnitude of time

reduction as compared with other methods.

Our main contributions in the second work are summarized below:

• The problem of joint robust multi-group multicast beamforming design and antenna

selection based on channel covariance matrix information has been studied for the

first time based on best of authors knowledge. We use a Boolean selection vector for

the antenna selection, followed by continuous relaxation to tackle mixed -Boolean

problem. To avoid more relaxation leading to performance degradation we solve

non-convex optimization problem directly using ADMM algorithm. This is different

from existing studies using convex approximation to further simplify the optimiza-

tion problem [52,53]. Convex approximation causing either relaxation or tightening

9



of feasible set. In the former case, the solution of the optimization problem using

relaxed feasible set can be infeasible to the original optimization problem, and the

latter case causes extra power consumption in the BS due to limiting the feasible set.

• We use the result in [54] for exact worst case SINR to preserve extra power consump-

tion due to conservative bound on the worst case SINR. Afterward, we develop a two

phases algorithm to solve the problem of joint robust multicast beamforming and an-

tenna selection. In the first phase due to continuous relaxation the obtained selection

vector is not guaranteed to have binary entries. Therefore, the fucus of the first phase

is to decide on the selected antennas by rounding the continuous selection vendor to

binary values. In the initial phase to further reduce the computational complexity, we

remove the associated term related to channel covariance matrix error, and consider

a perfect case. This causes to improve the computational complexity considerably.

The simulation results shows a near identical performance of the original problem

with and without channel covariance matrix error consideration in the initial phase.

• As the scale of the optimization problem in first phase and second phase has di-

rect relation with number of antennas and RF chains, respectively, the computational

complexity of the first phase has the dominant portion of the computational complex-

ity. Therefore, to decrease computational complexity in the first phase we propose

to use SLR constraint with lower computational complexity compare with SINR. the

simulation results shows near identical of the performance when SLR is used while

dramatically lower the computational complexity.

• To tackle the non-convex equality resulting from RF chains, we use exact penalty

method. The exact value of penalty constant is challenging to find, and depends on

the problem structure. Exhaustive search for penalty term in this method imposes

additional computational complexity. Our proposed ADMM-based algorithm elimi-

nate the dependency of problem to penaltty constant, causes a considerable reduction

in the computational complexity while keeping performance.
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1.3 Outline of Dissertation

TThe rest of this thesis is organized as follows. In Chapter2, we first review the literature

study on multicast beamforming, the robust multicast beamforming cases. Moreover, we

review the existing studies on joint antenna selection and multicast beamforming.

In Chapter3 , we describe the problem of robust multicast beamforming. We describe

our proposed approach to reformulate the robust multicast beamforming problem. We dis-

cuss our ADMM-based low-complexity algorithm to solve the reformulated non-convex

optimization problem.

In Chapter4 we present the problem of joint antenna selection and robust multicast

beamforming. We propose our two-phase approach to solve the mixed-binary problem of

joint antenna selection and robust multicast beamforming. We present the SINR-based and

SLR-based approaches to solving phase one of the proposed two-phase approach to select

the best antennas. We discuss our fast ADMM-based algorithm with low computational

complexity to solve the acquired problem.

In Chapter5, we discuss the conclusion of the two works, robust multicast beamform-

ing and joint antenna selection and robust multicast beamforming, described in this thesis.

1.4 List of Publications

The research in this dissertation has resulted in the following list of publications [54,55] .

1. N. Mohamadi, M. Dong and S. ShahbazPanahi, “Admm-Based Fast Algorithm for

Robust Multi-Group Multicast Beamforming,” inProc. IEEE Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), 2021, pp. 4440-4444.

2. N. Mohamadi, M. Dong and S. ShahbazPanahi, “Low-Complexity ADMM-Based

Algorithm for Robust Multi-Group Multicast Beamforming in Large-Scale Systems,”

IEEE Trans. Signal Process, vol. 70, pp. 2046-2061, 2022.

3. N. Mohamadi , M. Dong and S. ShahbazPanahi. “Joint Antenna Selection and Ro-

bust Multi-group Multicast Beamforming in Massive MIMO Systems”, submitted to
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IEEE Trans. Signal Process, March, 2023.

1.5 Notations

Hermitian, transpose, and conjugate are denoted by(∙)H , (∙)T , and(∙)∗, respectively. The

Frobenius norm of a matrix is denoted by‖ ∙ ‖F , and the Euclidean norm of a vector is

denoted by‖ ∙ ‖. The Hadamard matrix product is denoted by� .The inequalityA < 0

means that matrixA is positive semi-definite, and tr(A) denotes the trace ofA. The real

part of a complex variablea is denoted byRe{a}. A complex Gaussian random vectora

with zero mean and covariance matrixC is denoted bya ∼ CN (0,C).
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Chapter 2

Literature Review

2.1 Massive MIMO

MIMO technology through improvement in the data throughput and range, has attracted

a lot of attention. This improvement is without a considerable effect on bandwidth and

transmits power. MIMO technology was first proposed in 1993 and 1994 [56]. The patent

in [56] aimed to increase the throughput by co-locating several antennas at the transmit-

ter. Next, in 1999, to illustrate the feasibility of MIMO in wireless networks, a practical

laboratory experiment was done in [57].

To increase the gain of traditional MIMO, the concept of massive MIMO where sev-

eral hundred antennas are exploited is introduced by Marzetta in [58]. The effect of the

antenna array’s shape, including spherical, cylindrical, and rectangular, on the signal prop-

agation, studied in [59–61]. The achievable rate in uplink (UL) and downlink (DL) of non-

cooperative multi-cellular time-division duplexing (TDD) systems is investigated in [62].

In [62], channel estimation, pilot contamination, path loss, and antenna correlation for each

link are considered to study the effect of multiple antennas in MIMO systems. A research

on The effects of multiple antennas on energy efficiency are conducted in [63]. In [63],

the effect of narrowing the signal beam to a region where the user locates is studied. The

challenges and overview of the massive MIMO systems in 5G are discussed extensively

in [64].
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2.2 Multicast Beamforming

Multicast beamforming design has been studied by many in the literature for a single-

user group [22, 65], multiple groups [25, 27, 30, 66–69], multi-cell networks [29, 70–72],

relay networks [73], and mixed unicast-multicast transmissions [26,74] assuming perfect

channel state information (CSI). Two design formulations are commonly considered: the

quality-of-service (QoS) problem,i.e.,minimizing the transmit power with minimum QoS

guaranteed, and the max-min fair (MMF) problem,i.e., maximizing the minimum signal-

to-interference-plus-noise ratio (SINR) subject to the transmit power constraint.

Since the family of multicast beamforming problems is NP-hard, numerical methods

or signal processing techniques were developed to find good suboptimal solutions. Semi-

definite relaxation (SDR) has been a common method for traditional multi-antenna systems

[22,29,30,75]. Lately, successive convex approximation (SCA) has become more popular

for its advantage in both performance and computational efficiency for a larger problem

size [76,77]. However, due to their high computational costs, these methods still need to

be more practical for large-scale massive MIMO systems.

For massive MIMO systems, low-complexity suboptimal schemes were considered

[70, 71, 77], and an ADMM-based fast algorithm was proposed [69]. The optimal multi-

group multicast beamforming structure has been obtained recently in [68], which shows an

inherent low-dimensional structure. Based on this structure, fast first-order algorithms were

developed for different multicast beamforming design problems, or scenarios in massive

MIMO systems proposed [23,26,27,74].

For most of the multicast beamforming problems the implementation is to rely on the

assumption of perfect CSI. However, in practical scenarios, the base station has access to

an estimation of the CSI due to imperfect channel estimation [78,79]. In the presence of

the CSI error, the required SINR target for the QoS problems can not be guaranteed.
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2.3 Robust Multicast Beamforming

Downlink multicast beamforming design naturally requires that the CSI is supplied at the

transmitter. However, acquiring perfect CSI is a difficult task in wireless systems. The

CSI typically is collected through feedback channels from the receiver side using a training

sequence or using the uplink phase directly where it is applicable in time division duplex

(TDD) systems [80]. The errors associated with the estimation process are unavoidable

in both cases in practice [78]. Furthermore, the limited capacity of the feedback channel

causes the quantization effect that it requires to be embedded in the estimated CSI [79]. In

the case of using the uplink values, the fast-changing wireless environment also causes out-

dated CSI estimation. The effects above and the importance of the CSI in the beamforming

design make the robustness of the downlink precoding techniques an important research

matter.

Two types of error models are typically considered for robust beamforming designs:

one approach is considering a probabilistic error model. This method assures a chance of

outage condition fulfillment. The techniques that deal with the outage-based approach are

based on replacing the probabilistic outage constraints with a deterministic conservative

convex approximation [81–83]. This strategy seeks to provide good approximation with

high precision to satisfy the outage constraints. The second approach, the subject of this

work, is the worst-case scenario, which tackles the imperfect CSI by considering the chan-

nel error located inside a bounded region [84]. This approach aims to design a precoder that

satisfies the worst case of the QoS constraints under the prescribed channel error model.

The worst-case scenario is mainly based on an approximation of the worst-case SINRs.

The main challenge in the robust design of multicast beamforming is the conservative ap-

proximation on the worst-case that leads to unnecessary power consumption. Recently,

small cell deployments with high density and massive MIMO [85] are the promising tech-

nologies for the future generations of wireless systems as data services providers for large

devices.

Existing works on robust multicast beamforming are limited to traditional multi-antenna
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systems. Most studies consider a worst-case design assuming spherical bounded CSI error,

where the worst-case SINR is considered for the QoS constraint for robust beamform-

ing optimization [86–88]. The probabilistic design based on SINR outage was considered

in [88,89]. A typical approach in these existing works is to apply S-lemma [90] to convert

the robust QoS constraint into an equivalent set of finite linear matrix inequality constraints

and then apply SDR to obtain a feasible solution. As SDR has high computational com-

plexity, some studies proposed to use a lower bound on the worst-case SINR and solve the

related problem by SCA to reduce the complexity [50, 91]. However, such lower bounds

are rather conservative and lead to substantial performance degradation as the channel esti-

mation error increases. Robust multicast beamforming design has also been considered for

cognitive radio networks [87], and cloud radio access networks [92,93], where SDR-based

methods were proposed.

Since channel covariance matrices typically evolve much slower than instantaneous

CSI, using channel covariance for downlink beamforming design has been a common ap-

proach in the literature [94, 95]. In TDD massive MIMO systems, acquiring channel co-

variance can reduce uplink pilot overhead substantially and has been considered in [96–98].

Robust multicast beamforming using channel covariance matrices has been considered for

traditional multi-antenna systems in [99,100], where SDR-based methods were proposed.

The existing techniques to tackle the multicast problem, including SDR, SCA, and

convex-concave procedure, impose high computational convexity. These techniques for

large-scale problems become impractical. Therefore, low complexity with high-performance

algorithms is vital for the growing scale of these wireless systems.

The importance of the CSI error and the growth in the scale of the wireless systems

intrigue us to investigate the robust problem of multicast beamforming in large-scale sys-

tems.
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2.4 Joint Antenna Selection and Robust Multicast Beam-
forming

Antenna selection in MIMO systems initially studied in [101, 102]. The two techniques,

soft and hard antenna selection to exploit full capacity of available antennas and RF chains

at the BS proposed initially in [103, 104]. Antenna selection in MIMO systems initially

studied in [101,102]. In multicast scenario, one of the leading works for joint beamform-

ing design and antenna selection proposed in [105] where MMF problem for single mul-

ticast group has been solved. One method to solve joint beamforming design and antenna

selection problems is an exhaustive search over all possible subsets of antennas, followed

by a beamforming design problem with the subset of selected antennas. This approach for

large-scale problems in massive MIMO is impractical due to its high computational com-

plexity. Branch and bound (BAB) is a novel search principal for optimal antenna subset

selection [106,107]. In BAB, a search tree is used where traversing down the tree at each

level, an antenna is removed based on the objective function gradient. However, the BAB

algorithm improves the performance by eliminating some subset of options from exhaus-

tive searches, in massive MIMO it is not an effective method due to the high computational

complexity at each level of the search tree. Branch and bound (BAB) as one of the method

to solve the problem of joint antenna selection and multicast beamforming is a novel search

principal for optimal antenna subset selection that studied in [106,107]. BAB is not a prac-

tical solution for large-scale problem due to high complexity.

Two standard techniques with lower computational complexity to incorporate antenna

selection constraints in problem formulation for hard antenna selection are; 1) Cardinality

constraint, where zero norms of the beamforming vector need to be equal to the number of

selected antennas, 2) Binary antenna selection vector where the one zero entries of this bi-

nary vector are equivalent with selection and not the selection of antenna, respectively. One

common method to solve the joint multicast beamforming and antenna selection, includ-

ing cardinality constraint, is to augment the cardinality constraints to objective function as a

penalty term to increase sparsity [108]. After that, a convex approximation of zero norms is
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considered to overcome the highly non-convex zero norm as a penalty term at the objective.

One challenge in this approach is to yield an accurate penalty constant for the cardinality

penalty term. The focus of this work is on hard antenna selection technique. Therefore, se-

lecting the best subset of the antenna affects the wireless network’s performance. In [108],

a joint multicast beamforming design and antenna selection with cardinality constraint for

a single multicast scenario group has been considered. The authors in [108] has used mixed

`1,2 norm as a convex approximation of the cardinality penalty. Furthermore, the acquired

non-convex problem due to non-convex SINR has transferred into a convex subproblem us-

ing SCA technique, followed by a fast ADMM algorithm to solve problem at each iteration

of the SCA algorithm. The problem of joint multicast beamforming and antenna selection

for multi group scenario including cardinality constraint is considered in [109]. In [109],

`1,∞ norm is proposed as a convex approximation of cardinality penalty. Furthermore, SDR

has been exploited to solve obtained problem that imposes high computational complexity.

On the other hand, the approach with introduction of a binary selection vector for antenna

selection convert the joint multicast beamforming and antenna selection problem into a

mixed-integer non-convex problem. One approach to tackle this mixed-integer problem is

a tight continuous relaxation. In this approach due to relaxation of the binary constraint, the

selection vector is not a binary vector. Hence, the problem of joint multicast beamforming

and antenna selection using binary selection with continuous relaxation commonly studies

in two phases. The first phase is to determine the selected antennas, and second phase

for beamforming design. The problem of joint multicast beamforming and antenna selec-

tion for multi-cell multi-group scenario has studied in [52]. The authors in [52] consider

the problem of maximizing energy efficiency subject to QoS and power constraints. Both

the binary antenna selection and cardinality constraint has studied in [52] where SCA has

used to solve these problems. In [53] a joint antenna selection and hybrid beamforming

for multi-group multicast scenario has been considered. The users in [53] equipped with

power splitting (PS) device to split energy harvester (EH) and the information decoder (ID)

for simultaneous wireless information and power transfer. The authors in [53] consider
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a QoS problem with adding binary antenna selection vector constraint added. To tackle

mixed-integer problem in [53] a feasible point pursuit-successive convex approximation

(FPP-SCA) algorithm is proposed.

In all of the above studies on joint multicast beamforming and antenna selection, the

assumption is the BS has perfect knowledge of CSI. However, in reality, the BS has only

access to an estimation of the CSI. The problem of joint robust multicast beamforming and

antenna selection for single group is studied in [107]. A leaning based BAB algorithm

has exploited to solve QoS problem. However, the BAB algorithm is impractical for mas-

sive MIMO due to large number of antennas. Channel covariance matrix due to its slow

evolution is a better candidate for beamforming design compare to instantaneous CSI. To

the best of authors knowledge, the problem of joint robust multicast beamforming and and

antenna selection for multi-group scenario considering channel covariance matrix has not

been studied.

2.5 Alternating Direction Method of Multipliers (ADMM)

Due to the increasing scale of problems in massive MIMO systems with many antennas,

it is essential to develop low-complexity solutions. ADMM is a great candidate to solve

large-scale convex and non-convex problems. The ADMM method was developed first in

the 1970s [110]. ADMM is closely related to other algorithms, such as dual decomposition,

the method of the multiplier, and others. ADMM approach exploits the decomposability of

dual ascent and excellent convergence properties of the method of multipliers.

The ADMM method decomposition-coordination procedure is exploited to decompose

the large-scale problem into small-scale subproblems to be solved. Due to the high theo-

retical complexity of proving the convergence of the ADMM algorithm for a wide range of

optimization problems, a theoretical convergence is challenging to develop. However, in

practice, ADMM performs well in terms of convergence for a wide variety of optimization

problems [111,112]. The convergence results for the convex problem have been well estab-

lished. For the class of convex optimization problems, there are many convergence results
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in the literature [113–116]. A common type of ADMM is a two-block ADMM algorithm

where the optimization variables divide into two blocks to be solved iteratively. However,

multi-block of variables in the ADMM algorithm is studied in some literature [117,118].

The multi-block ADMM method for convex problems is investigated in [119–121]. Al-

though, the studies on the convergence of the ADMM for the non-convex are limited due

to the complexity of the non-convex problems [122–124]. Recently, the convergence of

the three-blocks ADMM for non-convex problems has been studied in [125]. In [125] the

authors prove the convergence of three-block ADMM for the class of non-convex problem

with linear equality constraints having Kurdyka-Lojasiewicz property. Note that most of

the mentioned literature in the proof of the convergence for ADMM is subject to predefined

conditions and specific problem structures.

Recently, ADMM-based methods have been a known low-complexity method to apply

to multicast beamforming design problems in massive MIMO systems due to large-scale

antennas. ADMM-based algorithms have been studied in the literature for multi-group mul-

ticast beamforming design in massive MIMO systems in [27,32], and for joint unicast and

multicast beamforming design in large-scale massive MIMO systems in [26]. All the above

studies are based on perfect CSI at the base station. However, ADMM-based approaches

have not been applied in the robust design of multicast beamforming, , where channel un-

certainty needs to be taken into account. Furthermore, the ADMM-based approach in the

above studies has only been applied to convex problems. In this work, we develop a robust

multicast beamforming design for the massive MIMO systems, and develop techniques to

apply ADMM directly to the non-convex optimization with convergence guarantee.
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Chapter 3

Low-Complexity ADMM-Based
Algorithm for Robust Multi-group
Multicast Beamforming in Large-Scale
Systems

3.1 Problem Formulation

3.1.1 System Model

We consider a downlink multi-group multicasting scenario where a BS, equipped withM

antennas, transmits messages toG multicast groups. LetG , {1, ..., G} denote the index

set of the multicast groups andKi , {1, . . . , Ki} the index set of the single-antenna users

in group i, for i ∈ G. Each group receives a common message that is independent of

the messages sent to other groups. Users in different multicast groups are disjoint. Let

wi ∈ CM×1 denote the multicast beamforming vector for groupi. The signal received at

userk in groupi is given by

yik = wH
i hiksi +

∑

l∈G−i

wH
l hiksl + nik, k ∈ Ki, i ∈ G. (3.1)

wherehik ∈ CM×1 is the channel vector from the BS to userk in groupi, si is the message

intended for groupi, nik is the receiver additive white Gaussian noise at userk in groupi

with zero mean and varianceσ2, andG−i , G\{i}. The total transmit power at the BS is
∑G

i=1 ‖wi‖2.
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For both TDD and frequency-division duplex (FDD) systems, the instantaneous down-

link channel state information (CSI) may not be available at the BS. Acquiring CSI can

be challenging in massive MIMO systems. One approach is to obtain the channel co-

variance matrix from training symbols over time [96–98]. In this work, we consider that

the BS uses the channel covariance matrix information for the beamforming design. Let

R̄ik , E{hikh
H
ik} denote thetruechannel covariance matrix for userk in groupi. The QoS

problem for the multicast beamforming design is formulated as transmit power minimiza-

tion subject to the minimum SINR requirements:

Pperf : min
{wi}

G
i=1

G∑

i=1

‖wi‖
2

s.t.
wH

i R̄ikwi∑
l∈G−i

wH
l R̄ikwl + σ2

≥ γik, k ∈ Ki, i ∈ G (3.2)

whereγik is the minimum SINR target for userk in groupi.

3.1.2 Robust Formulation Based on Channel Covariance

In practice, only the estimated channel covariance matrices are available at the BS. We

consider a robust beamforming design that incorporates the uncertainty of channel covari-

ance matrices to ensure a robust performance in the presence of the estimation error. Let

Rik denote theestimatedchannel covariance matrix for userk in groupi. The estimation

error in the channel covariance matrix is modeled asR̄ik = Rik + Eik, whereEik is the

corresponding error matrix. We assume thatEik is bounded within a hyper-spherical region

as

‖Eik‖F ≤ εik, k ∈ Ki, i ∈ G (3.3)

whereεik is the error bound. This spherical error model is a common model considered in

the robust designs [86–88,94,95].

LetB(εik) denote the set of all error matrices satisfying (3.3):

B(εik) , {Eik : ‖Eik‖F ≤ εik}. (3.4)
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Based onPperf and the channel estimation error in (3.4), we formulate the robust multicast

beamforming optimization for the QoS problem as

Prob : min
{wi}

G
i=1

G∑

i=1

‖wi‖
2

s.t.
wH

i (Rik + Eik)wi∑
l∈G−i

wH
l (Rik + Eik)wl + σ2

≥ γik, ∀ Eik ∈ B(εik),

k ∈ Ki, i ∈ G. (3.5)

Note that there is an implicit condition forEik in the constraint (3.3) that for given estimated

channel covarianceRik, Eik should be such that the true covariance matrixR̄ik < 0. If

the error boundεik is small enough (relative to‖R̄ik‖F ), then this condition is satisfied

for any point inB(εik) in (3.4), andProb is a highly accurate approximation to the exact

robust beamforming problem. On the other hand, ifεik is large, then the set of possible

error matricesEik’s (i.e., those satisfy the condition̄Rik < 0), denoted byEik, is only a

subset ofB(εik). This means that the feasible solution set forProb satisfying the constraint

in (3.5) may be smaller than that for the problem under the error setEik. It follows that

the minimum transmit power obtained fromProb is an upper bound to that of the exact

robust beamforming optimization problem forEik ∈ Eik, and the solution toProb may be

suboptimal.

Note that problemPperf is known to be a non-convex QCQP problem and is NP-hard.

As a result, the robust optimization problemProb is even more challenging to solve. More-

over, as the future systems are expected to be massive MIMO withM � 1, it is critical to

provide computationally efficient solution for practical implementation, In what follows,

we first reformulateProb and then propose a fast algorithm to find a stationary solution to

it.

3.2 Robust Multicast Beamforming Reformulation

It is straightforward to see that the SINR constraint in (3.5) is equivalent to letting the

worst-case SINR forEik ∈ B(εik) satisfy the minimum SINR target. Thus,Prob is equiva-

lent to the following problem
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P0 : min
{wi}

G∑

i=1

‖wi‖
2

s.t. min
Eik∈B(εik)

wH
i (Rik + Eik)wi∑

l∈G−i
wH

l (Rik + Eik)wl + σ2
≥ γik, k ∈ Ki, i ∈ G. (3.6)

In the existing works on robust beamforming design, a common approach to handle

the worst-case SINR constraints, such as those in (3.6), is to derive aconservativelower

bound on the worst-case SINR and use this bound in the constraint instead [49,50]. How-

ever, there are two main caveats for this approach: 1) The lower bound can be overly

conservative, as it is loose when error boundεik is moderately large, leading to significant

performance degradation. 2) Using this conservative lower bound may render the prob-

lem infeasible to solve, even though the original problem is feasible and a solution exists.

Below, we first present a conservative lower bound on the worst-case SINR for problem

P0, and formulate the problem using this lower bound. Next, to overcome the issues in

the conservative bounding method mentioned above, we reformulateP0 by obtaining the

equivalent constraint for worst-case SINR in (3.6).

3.2.1 The Approach via Conservative SINR Lower Bound

A common approach to lower bound the worst-case SINR at the left hand side (LHS) of

(3.6) is to use the following inequality:

min
Eik∈B(εik)

wH
i (Rik + Eik)wi∑

l∈G−i
wH

l (Rik + Eik)wl + σ2
≥

min
Eik∈B(εik)

wH
i (Rik + Eik)wi

∑
l∈G−i

maxEik∈B(εik)wH
l (Rik + Eik)wl + σ2

. (3.7)

The minimization and the maximization problems with respect to (w.r.t.)Eik at the re-

spective numerator and denominator in (3.7) both have a linear objective function with a

quadratic constraint, and their solutions are known in literature [95]. The corresponding

optimal objective values for these two problems are given by

min
Eik∈B(εik)

wH
i (Rik + Eik)wi = wH

i (Rik − εikI)wi, (3.8)
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max
Eik∈B(εik)

wH
l (Rik + Eik)wl = wH

l (Rik + εikI)wl (3.9)

where the optimal solutions to (3.8) and (3.9) areEik = −εik
wiw

H
i

‖wi‖2 andEik = εik
wiw

H
i

‖wi‖2 ,

respectively. Therefore, replacing the worst-case SINR at the LHS of (3.6) by the lower

bound in (3.7), we have the following optimization problem

Pconsv : min
{wi}

G
i=1

G∑

i=1

‖wi‖
2

s.t.
wH

i (Rik − εikI)wi∑
l∈G−i

wH
l (Rik + εikI)wl + σ2

≥ γik, k ∈ Gi, i ∈ G.

ProblemPconsvis still a non-convex QCQP problem. Note from (3.7) that a feasible so-

lution toPconsv is also feasible toP0. Thus, the minimum objective value ofPconsvprovides

an upper bound on the minimum objective value ofP0. We will usePconsvas an alternative

robust design method for performance comparison in the simulation studies. In Section3.4,

for comparison purpose, we briefly describe a commonly used approach to solvePconsv.

3.2.2 Reformulation of Worst-Case SINR Constraint

As discussed earlier, the SINR lower bound in (3.7) can be loose, and the solution provided

by Pconsv can be highly suboptimal forP0. Instead of using the lower bound, in what

follows, we directly examine the worst-case SINR constraint in (3.6). Fork ∈ Ki, i ∈ G,

constraint (3.6) is equivalent to

wH
i (Rik + Eik)wi∑

l∈G−i
wH

l (Rik + Eik)wl + σ2
≥ γik, ∀ Eik ∈ B(εik),

which is further equivalent to

J(Eik; {wi}) ≥ σ2γik, ∀ Eik ∈ B(εik) (3.10)

where

J(Eik; {wi}), wH
i (Rik + Eik)wi − γik

∑

l∈G−i

wH
l (Rik + Eik)wl.

The constraint in (3.10) can be further expressed as

min
Eik∈B(εik)

J(Eik; {wi}) ≥ σ2γik. (3.11)
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Thus, we transformP0 into the following equivalent problem:

P ′
0 : min

{wi}

G∑

i=1

‖wi‖
2

s.t. min
Eik∈B(εik)

J(Eik; {wi}) ≥ σ2γik, k ∈ Ki, i ∈ G. (3.12)

Focusing on the LHS of (3.12), we can express it as the following minimization prob-

lem w.r.t.Eik:

min
Eik

J(Eik; {wi}) s.t. ‖Eik‖
2
F ≤ ε2

ik. (3.13)

Problem (3.13) is a convex optimization problem, which is similar to the problem in (3.8).

Thus, similar to [95], we solve it via the KKT conditions [90] and obtain the optimal

solution to problem (3.13) as (see AppendixA.1 for the derivation details)

E?
ik = −εik

wiw
H
i − γik

∑
l∈G−i

wlw
H
l∥

∥wiwH
i − γik

∑
l∈G−i

wlwH
l

∥
∥

F

(3.14)

where‖E?
ik‖F = εik. DefineW , [w1, . . . , wG] ∈ CM×G, and also defineDik as a

G × G diagonal matrix with theith diagonal entry being1 and the rest being−γik. Then,

we can expresswiw
H
i − γik

∑
l∈G−i

wlw
H
l = WDikW

H , Aik(W). Following this, the

minimum objective value of problem (3.13) underE?
ik (i.e., the worst case error matrix)

can now be obtained as

J(E?
ik; {wi})

= wH
i (Rik + E?

ik)wi − γik

∑

l∈G−i

wH
l (Rik + E?

ik)wl

= wH
i Rikwi − γik

∑

l∈G−i

wH
l Rikwl − (wH

i

εikAik(W)

‖Aik(W)‖F
wi − γik

∑

l∈G−i

wH
l

εikAik(W)

‖Aik(W)‖F
wl)

= tr(RikWDikW
H)− tr

( εikAik(W)

‖Aik(W)‖F
WDikW

H)

= tr(RikAik(W))− εik‖Aik(W)‖F . (3.15)

Substituting the expression in (3.15) into the LHS of (3.12), we transformP ′
0 into the

following equivalent problem
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P1 : min
W

tr(WHW)

s.t. tr(RikWDikW
H)− εik‖WDikW

H‖F ≥ σ2γik, k ∈ Ki, i ∈ G. (3.16)

Thus, the original robust multicast beamforming problemP0 is now equivalently trans-

formed intoP1, which we will focus on solving. Note thatP1 is a non-convex optimization

problem due to the non-convex constraint in (3.16). A popular approach to solve a wide

range of non-convex problem is to apply the SCA method, which forms a convex approxi-

mation to the problem to be solved iteratively. However, due to the Frobenius norm in the

constraint in (3.16), it is difficult to find a suitable and tight convex approximation to apply

the SCA method to this problem.1 In the next section, we design an ADMM-based fast

algorithm to directly solveP1.

3.3 ADMM-Based Fast Algorithm

ADMM is a robust and fast numerical method for solving large-scale problems. While

the convergence of ADMM for convex problems has been proven and well-understood

(see [112, 126]), the convergence results for the non-convex problems are rather limited.

A recent work in [51] has established the convergence of ADMM applicable to a wide

range of non-convex problems. Utilizing this result, we develop a non-convex ADMM-

based algorithm to solveP1 directly, for which its convergence to a stationary point is

guaranteed.

Introducing auxiliary matricesVik ∈ CM×G, k ∈ Ki, i ∈ G, we transferP1 to the

following equivalent problem:

P2 : min
{Vik},W

tr
(
WHW

)

s.t. Re
{

tr(RikVikW
H)
}
− εik‖VikW

H‖F ≥ σ2γik, k ∈ Ki, i ∈ G (3.17)

Vik = WDik, k ∈ Ki, i ∈ G. (3.18)

1It is possible to find convex approximations for (3.16), but they usually are not tight, leading to inferior
solutions and performance.
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Let C denote the feasible set of({Vik},W
)

satisfying the constraint in (3.17). We define

the indicator function forC as

IC
(
{Vik},W

)
=

{
0, if (W, {Vik}) ∈ C,

∞, otherwise.
(3.19)

Using (3.19), we transfer the constraint in (3.17) into the objective function inP2 and arrive

at the following equivalent problem:

P ′
2 : min

W,{Vik}
tr
(
WHW

)
+ IC

(
{Vik},W

)

s.t.Vik = WDik, k ∈ Ki, i ∈ G. (3.20)

SinceP ′
2 involves complex-valued optimization variables, its corresponding augmented

Lagrangian is given by [127]

Lρ

(
{Vik},W, {Zik}

)
= tr(WHW) + IC

(
{Vik},W

)

+ ρ
G∑

i=1

Ki∑

k=1

‖Vik−WDik + Zik‖
2
F (3.21)

whereZik ∈ CM×G is the dual variable associated with the constraint in (3.20), andρ is

the penalty parameter.

Note that by introducingVik and its associated equality constraint in (3.18), we can

now carry out the minimization ofLρ({Vik},W, {Zik}) w.r.t. {Vik} andW separately.

Our proposed ADMM-based algorithm forP1 is summarized in Algorithm1. It consists of

three updating steps. In Steps 1 and 2,Lρ({Vik},W, {Zik}) is minimized w.r.t.{Vik} and

W, respectively, to obtain the updates. For each of these subproblems, we are able to derive

a semi-closed-form solution. We present the details of the solution to each subproblem in

Sections3.3.1and3.3.2.

3.3.1 Updating{Vik}

FromLρ

(
{Vik},W, {Zik}

)
in (3.21), given(Wj , {Zj

ik}) in iterationj, updating{Vik} in

(3.22) is equivalent to

{Vj+1
ik } = arg min

{Vik}
IC(Vik,W

j)
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Algorithm 1 The ADMM-Based Algorithm forP1

Initialization : Setρ; Set initialW0, Z0
ik = 0; Setj = 0.

repeat
1) Update the auxiliary matrices{Vj+1

ik }:

{Vj+1
ik } = arg min

{Vik}
Lρ

(
{Vik},W

j , {Zj
ik}
)
. (3.22)

2) Update beamforming matrixWj+1:

Wj+1 = arg min
W
Lρ

(
{Vj+1

ik },W, {Zj
ik}
)
. (3.23)

3) Update dual variables{Zj+1
ik }:

Zj+1
ik = Zj

ik + Vj+1
ik −Wj+1Dik, k ∈ Ki, i ∈ G. (3.24)

4) Setj ← j + 1.
until convergence

+ ρ
G∑

i=1

Ki∑

k=1

‖Vik −WjDik + Zj
ik‖

2, (3.25)

which is further equivalent to the following problem:

min
{Vik}

G∑

i=1

Ki∑

k=1

‖Vik −WjDik + Zj
ik‖

2
F

s.t. Re
{

tr(RikVikW
H)
}
− εik‖VikW

H‖F ≥ σ2γik, k ∈ Ki, i ∈ G. (3.26)

The above problem can be decomposed into
∑G

i=1 Ki separate subproblems, one for each

userk ∈ Ki in groupi ∈ G as

PV : min
Vik

‖Vik −WjDik + Zj
ik‖

2
F

s.t.Re{tr(RikVikW
jH

)} − εik‖VikW
jH
‖F ≥ σ2γik. (3.27)

Note that‖ ∙ ‖F is a convex function and the expression in‖ ∙ ‖F is affine w.r.t.Vik.

Thus,PV is a convex optimization problem and can be solved using IPM [90] implemented

in standard convex solvers. However, the IPM is a second-order algorithm, whose computa-

tional complexity is high for large-scale problems. To reduce the computational complexity

in solvingPV, we propose our method below to derive a semi-closed-form solution.
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Semi-closed-form solution toPV

We first vectorize each matrix term inPV and transform the problem into the following

equivalent optimization problem in the vector form:

Pv : min
vik

(vik − bik)
H(vik − bik)

s.t. ‖W
j 1

2
c,ikvik‖ ≤ Re{r

H
ikvik} − 1

wherevik , vec(Vik), bik , vec(WjDik − Zj
ik), rik , 1

σ2γik
vec(RH

ikW
j), andWj

c,ik ,
ε2ik

(σ2γik)2
WjT

Wj∗ ⊗ IM . To derive the vectorized version of the second term at the LHS of

the constraint in (3.27), we have used the following fact: vec(ABC) = (CT ⊗A)vec(B).

SincePv is for eachk ∈ Ki and i ∈ G, for notation simplicity, in the rest of this

subsection, we remove subscriptik and superscriptj for all variables inPv to derive the

solution. The solution toPv may be one of the two cases discussed below.

Case 1): The constraint is inactive at the optimality ofPv: We have the optimalvo = b.

Case 2): The constraint is satisfied with equality at the optimality ofPv: In this case, if we

imposeRe{rHv} − 1 ≥ 0, then solvingPv is equivalent to solve the following problem:2

P ′
v : min

v
(v − b)H(v − b)

s.t.vHWcv = (Re{rHv}−1)2.

The Lagrangian ofP ′
v is given by

L(v, λ) =(v − b)H(v − b)+λ(vHWcv−(Re{rHv}−1)2)

whereλ is the Lagrange multiplier associated with the constraint inP ′
v. Setting the gradient

of L(v, λ) w.r.t. v∗ to zero, we obtain

∇v∗L(v, λ) = v−b + λ(Wcv−(Re{rHv}−1)r) = 0, (3.28)

and the optimal solutionvo toP ′
v is obtained as

vo = (I + λWc)
−1 (b + λ(Re{z} − 1)r) (3.29)

2The constraintRe{rHv} − 1 ≥ 0 is not explicitly included inP ′
v. We will first solveP ′

v and then use
this constraint to determine the solution.
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wherez , rHvo. The optimalvo in (3.29) depends onRe{z}. To extractRe{z} from

(3.29), we multiplyrH and then takeRe{∙} on both sides of (3.29) to arrive at

Re{z} = Re{rH(I + λWc)
−1(b + λ(Re{z} − 1)r)}. (3.30)

Thus, we obtainRe{z} as

Re{z} =
Re{rHC(λ)b} − λrHC(λ)r

1− λrHC(λ)r
(3.31)

whereC(λ) , (I + λWc)
−1.

To determinevo in (3.29), we now only need to findλ. Substituting the expression of

vo in (3.29) into the equality constraint inP ′
v, we have the following equation

(
Re{z} − 1)2(1− λ2rHP(λ)r

)

− 2λ
(
Re{z} − 1)Re{rHP(λ)b}

)
− bHP(λ)b = 0 (3.32)

whereP(λ) , C(λ)WcC(λ). Thus, we can obtainλ as the root of the equation in (3.32).

SubstitutingRe{z} in (3.31) into (3.32) and after some manipulation of the denominator

terms, we can show that solving (3.32) is equivalent to solving the following equation (See

AppendixA.2 for more details):

(
Re{rHC(λ)b} − 1

)2 (
1− λ2rHP(λ)r

)

− 2λ
(
Re{rHC(λ)b} − 1

) (
1− λrHC(λ)r

)
Re{rHP(λ)b}

−
(
1− λrHC(λ)r

)2
bHP(λ)b = 0. (3.33)

We now further simplify (3.33) by examining the structure ofC(λ). Recall the ex-

pression ofWc = ε2

(σ2γ)2
WTW∗ ⊗ IM . We consider eigenvalue decompositionWTW∗ =

UΣUH , whereΣ , diag(σ̄2
1, ∙ ∙ ∙ , σ̄

2
G) with σ̄2

j being thejth eigenvalue ofWTW∗ andU

is the unitary matrix of the corresponding eigenvectors. Then, we haveWc = ε2

(σ2γ)2
UΣUH⊗

IM . Using this structure ofWc, we simplify the matrix inversion inC(λ) through eigen-

value decomposition and apply it toP(λ). This leads to simplify the terms in (3.33) as

Re{rHC(λ)b} =
G∑

j=1

Re{r̄H
j b̄j}

1 + λσ̄2
j

, rHC(λ)r =
G∑

j=1

‖r̄j‖2

1 + λσ̄2
j
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rHP(λ)r =
G∑

j=1

σ̄2
j‖r̄j‖2

(1 + λσ̄2
j )

2
, bHP(λ)b =

G∑

j=1

σ̄2
j‖b̄j‖2

(1 + λσ̄2
j )

2
,

Re{rHP(λ)b} =
G∑

j=1

σ̄2
jRe{r̄

H
j b̄j}

(1 + λσ̄2
j )

2

whereb̄ = [b̄H
1 , . . . , b̄H

G ]H , (U ⊗ IM )Hb with b̄j ∈ CM×1, j = 1, . . . , G, and r̄ =

[r̄H
1 , . . . , r̄H

G ]H , (U ⊗ IM )Hr with r̄j ∈ CM×1, j = 1, . . . , G.3 Therefore, (3.33) can be

simplified as in (3.34).

( G∑

j=1

Re{r̄H
j b̄j}

1 + λσ̄2
j

− 1
)2(

1− λ2

G∑

j=1

σ̄2
j‖r̄j‖2

(1 + λσ̄2
j )

2

)
−
(
1− λ

G∑

j=1

‖r̄j‖2

1 + λσ̄2
j

)2
G∑

j=1

σ̄2
j‖b̄j‖2

(1 + λσ̄2
j )

2
−

2λ
( G∑

j=1

Re{r̄H
j b̄j}

1 + λσ̄2
j

− 1
)
∙
(
1− λ

G∑

j=1

‖r̄j‖2

1 + λσ̄2
j

) G∑

j=1

σ̄2
jRe{r̄

H
j b̄j}

(1 + λσ̄2
j )

2
= 0. (3.34)

The resulting function at the LHS of (3.34) is a smooth polynomial function ofλ,

whose roots can be easily found. Recall that we impose the constraintRe{z} − 1 ≥ 0 to

P ′
v. Thus, we select the root of (3.34) that results in the minimum objective value ofP ′

v

while satisfying the conditionRe{z} − 1 ≥ 0 asλ.

To summarize, for eachk ∈ Ki, i ∈ G, we obtain the optimalVo
ik to PV as follows:

If bik in Case 1 is feasible, it is the optimal solution; otherwise, the semi-closed-form

solution in (3.29) of Case 2 is the optimal solution. The updateVj+1
ik in (3.25) is given by

this optimal solution.

3.3.2 UpdatingW

After we obtain{Vj+1
ik }, the update ofW in (3.23) is equivalent to solving the following

problem:

PW : min
W

tr
(
WHW

)
+

G∑

i=1

Ki∑

k=1

ρ‖Vj+1
ik −WDik + Zj

ik‖
2
F

s.t. Re
{

tr(RikV
j+1
ik WH)

}
− εik‖V

j+1
ik WH‖F ≥ σ2γik, k ∈ Ki, i ∈ G. (3.35)

3Based on the definitions ofb, andr, we have(U⊗ IM )Hb = vec((WD−Z)U∗), and(U⊗ IM )Hr =
1

σ2γ vec(RHWU∗). These relations should be used for efficient computation.
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Since‖ ∙ ‖F is convex, both objective and constraint functions are convex. Thus,PW is

a convex optimization problem. However, the computational complexity of solvingPW

using standard convex solvers is very high due to the Frobenius norm in the constraint, and

this would defeat the purpose of applying ADMM to the overall problem for fast computa-

tion. To overcome this issue, we propose using the consensus ADMM technique [112] to

solvePW efficiently.

Introducing auxiliary matricesWik ∈ CM×G, k ∈ K, i ∈ G, we equivalently reformu-

latePW as

P ′
W : min

W,{Wik}
ID
(
{Wik}

)
+ tr

(
WHW

)
+

G∑

i=1

Ki∑

k=1

ρ‖Vj+1
ik −WikDik + Zj

ik‖
2
F

s.t. Wik = W, k ∈ Ki, i ∈ G (3.36)

where

ID({Wik}) =

{
0 if Wik ∈ D, ∀k ∈ Ki, i ∈ G

∞ otherwise

is the indicator function withD being the feasible set satisfying all constraints in (3.35).

The augmented Lagrangian ofP ′
W is given by

Lμ

(
{Wik},W, {Yik}

)
= tr

(
WHW

)
+ ID

(
{Wik}

)

+ ρ
G∑

i=1

Ki∑

k=1

‖Vj+1
ik −WikDik + Zj

ik‖
2
F

+ μ

G∑

i=1

Ki∑

k=1

‖W −Wik + Yik‖
2
F (3.37)

whereYik ∈ CM×G is the dual variable associated with the constraint in (3.36), andμ is the

penalty parameter. Using the consensus ADMM technique, we minimizeLμ({Wik},W, {Yik})

by separating it into two subproblems w.r.t.{Wik} andW, respectively, and solving them

alternatingly. This consensus-ADMM-based method is summarized in Algorithm2.4 In

the following subsections, we describe the first two updating steps in details.

4We use superscript(l) (e.g.,W(l)) as the iteration index in Algorithm2 (inner-layer iteration) forPW

to obtain the updateWj+1, while superscriptj (e.g.,Wj) is used as the iteration index in Algorithm1
(outer-layer iteration).
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Algorithm 2 Consensus-ADMM-Based Algorithm forPW

Initialization : Setμ; SetW(0) =Wj, Y(0)
ik = 0; Setl = 0.

repeat
1. Update{W(l+1)

ik }

{W(l+1)
ik } = arg min

{Wik}
Lμ

(
{Wik},W

(l), {Y(l)
ik }
)
. (3.38)

2. UpdateW(l+1)

W(l+1) = arg min
W
Lμ

(
{W(l+1)

ik },W, {Y(l)
ik }
)
. (3.39)

3. Update dual variables{Y(l+1)
ik }

Y
(l+1)
ik = Y

(l)
ik + W(l+1) −W

(l+1)
ik . (3.40)

4. l ← l + 1.
until convergence.

Updating {Wik}

Similar to problem (3.26), givenW(l) and{Y(l)
ik } at iterationl, the update of{Wik} in

(3.38) can be decomposed into
∑G

i=1 Ki independent subproblems, one for each userk ∈

Ki in groupi ∈ G as

min
Wik

ρ‖WikDik − Z
j

ik‖
2
F + μ‖Wik −Y

(l)

ik ‖
2
F (3.41)

s.t.Re{tr(R
j

ikW
H
ik)} − εik‖V

j
ikW

H
ik‖F ≥ σ2γik

whereZ
j

ik , Vj+1
ik + Zj

ik, Y
(l)

ik ,W(l) + Y
(l)
ik , andR

j

ik , RikV
j
ik. The updateW(l+1)

ik is

the solution to problem (3.41).

Note that problem (3.41) is convex, and its structure is similar toPV. Thus, we can ap-

ply a technique similar to the one used to solvePV and derive a semi-closed-form solution

to problem (3.41). Specifically, we transform problem (3.41) into its vector form by re-

placing each matrix term with its respective vector representation. The equivalent problem

after vectorization is given by

Pw : min
wik

ρ‖Dikwik − z̄j
ik‖

2 + μ‖wik − ȳ
(l)
ik ‖

2

s.t.Re{r̄jH
ik wik} − ‖V

j 1
2

c,ikwik‖ ≥ 1. (3.42)
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wherewik , vec(Wik), z̄j
ik , vec(Z

j

ik), ȳ
(l)
ik , vec(Y

(l)

ik ), Dik , Dik ⊗ IM , r̄j
ik ,

1
σ2γik

vec(R
j

ik), andVj
c,ik ,

ε2ik
(σ2γik)2

VjT
ik Vj∗

ik ⊗ IM . In the sequel, for notation simplicity

in deriving the solution toPw, we remove subscriptik and superscriptsj and(l) for all

variables inPw. Using an approach similar to the one used to solvePv in Section3.3.1,

we derive the solution toPw in two cases, as described below.

Case 1): The constraint in (3.42) is inactive at the optimality: In this case,Pw is equivalent

to the unconstrained problem with only the objective function. Setting the gradient of the

objective function inPw w.r.t. w∗ to zero, we have

ρD
H

(Dw − z̄) + μ(w − ȳ) = 0,

which yields

wo = (ρD
H
D + μI)−1(ρD

H
z̄ + ρȳ). (3.43)

Case 2): The constraint in (3.42) is satisfied with equality at the optimality,i.e.,Re{r̄Hw}−

1 = ‖V
1
2
c w‖: In this case, by imposingRe{r̄Hw} − 1 ≥ 0, we have the following equiva-

lent problem toPw

P ′
w : min

w
ρ(Dw − z̄)H(Dw − z̄) + μ(w − ȳ)H(w − ȳ)

s.t.(Re{r̄Hw} − 1)2 −wHVcw = 0. (3.44)

Note thatP ′
w is convex. The Lagrangian ofP ′

w is given by

L(w, λ̃) =ρ(Dw − z̄)H(Dw − z̄) + μ(w − ȳ)H(w − ȳ)

+ λ̃(wHVcw − (Re{r̄Hw} − 1)2). (3.45)

Equating the gradient ofL(w, λ̃) w.r.t. w∗ to zero, we have

∇w∗L(w, λ̃) =(μI + ρD
2
)w − (ρD

H
z̄ + μȳ)

+ λ̃(Vcw − (Re{r̄Hw} − 1)r̄) = 0. (3.46)

Define Ī , μI + ρD
2
, andb̄ , ρD

H
z̄ + μȳ. Using Ī and b̄, we see that (3.46) has a

structure similar to (3.28). Following (3.29), we obtain the optimalwo toP ′
w as

wo = (Ī + λ̃Vc)
−1(b̄ + λ̃(Re{z̄} − 1)r̄) (3.47)
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wherez̄ , r̄Hwo. Note thatwo in (3.47) has exactly the same form asvo in (3.29). Using

the same technique in Section3.3.1, we can obtain the expressionRe{z̄} as a function

of λ̃, and numerically obtaiñλ by finding the roots of a smooth polynomial function. To

determine which root is to be selected forλ̃, we recall that the constraintRe{z̄} − 1 ≥ 0

is imposed toP ′
w in order to be equivalent toPw. We select the root̃λ that results in the

minimum objective value ofP ′
w while satisfyingRe{z̄} − 1 ≥ 0. Since the derivations

are similar to those in Section3.3.1, we leave the details of obtainingRe{z̄} and λ̃ in

AppendixA.3.

Finally, the optimalwo to Pw is chosen between (3.43) or (3.47), whichever leads to

the minimum objective value. After solvingPw, we obtain the updateW(l+1)
ik to problem

(3.41) for eachk ∈ Ki andi ∈ G.

Updating W

Given{W(l+1)
ik }, the update ofW in (3.39) is obtained by solving the following problem:

min
W

tr(WHW) + μ

G∑

i=1

Ki∑

k=1

‖W−
(
W

(l+1)
ik −Y

(l)
ik

)
‖2F , (3.48)

which is an unconstrained quadratic program. Its closed-from solution can be easily ob-

tained by setting gradient of the objective function to zero. As a result, the updateW(l+1)

is given by

W(l+1) =
μ
∑G

i=1

∑Ki

k=1

(
W

(l+1)
ik −Y

(l)
ik

)

1 + μ
∑G

i=1 Ki

. (3.49)

3.3.3 Discussions

Summary of the algorithm

For the robust multicast beamforming problemP1, rather than resorting to the conventional

convex approximation approach, which is difficult to apply, we explore the structure of this

non-convex problem formulation and directly solve it by leveraging the ADMM technique.

Our overall proposed ADMM-based fast algorithm to solveP1 contains two layers of

ADMM procedures. The outer-layer ADMM given by Algorithm1 solves the non-convex
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problemP1 by decomposing the problem into three main subproblems (3.22)-(3.24), which

are solved iteratively. The salient feature in our design is that for these subproblems formed

by our ADMM construction inP2, we are able to develop special techniques to derive the

semi-closed-form solutions to these subproblems. For the second subproblem, we develop

the inner-layer consensus-ADMM-based algorithm (Algorithm2) to solve it, where the

semi-closed-form solutions are obtained for the updates in each ADMM iteration. These

semi-closed-form solutions are essential in our ADMM-based algorithm for fast computing

the solution toP1, especially for large-scale systems such as massive MIMO.

Remark 1. Although ADMM has been considered for multicast beamforming design for

a single group [128] and multiple groups [69], there are a few key differences between

our problem and those in [69, 128]. The problems considered in [69, 128] are under per-

fect CSI, which leads to a QCQP formulation. In [128], in the absence of interference, a

consensus ADMM-based algorithm is developed for the QCQP problem directly, although

its convergence cannot be guaranteed. In [69], the SCA method is used to convexify the

QCQP problem, and then an ADMM algorithm is developed to solve the convex problem

at each SCA iteration. As commented in [69], consensus ADMM may also be applied, but

it results in a problem of larger size with higher computational complexity. In contrast, our

problemP1 under robust formulation is not a QCQP problem. As discussed belowP1, the

constraint function is in a special non-convex form that existing ADMM algorithms are not

applicable. Different from these existing algorithms, we directly design the ADMM proce-

dure to solveP1, resulting in two layers of ADMM constructions. As explained above, the

key novelty in our ADMM constructions (inP2 andP ′
W) is that at each ADMM iteration,

we can break the main problem into smaller subproblems, for which we obtain the solution

in semi-closed form.

Convergence

For solvingPW to updateW in (3.23), since the problem is convex, the inner-layer

consensus-ADMM in Algorithm2 is guaranteed to converge to the optimal solution [112].

For the outer-layer ADMM, the objective function inP1 is Lipschitz differentiable w.r.t.
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W. The reformulated problemP ′
2 is a non-convex optimization problem with equality

constraints. Based on [51], we have the following conclusion.

Proposition 1. The outer-layer ADMM in Algorithm1 is guaranteed to converge to a

stationary point ofP1.

Proof. To prove this proposition, we mainly apply the convergence result of Theorem 1

in [51] to problemP ′
2. We need to verify assumptions A1-A5 in Theorem 1 of [51] hold

for P ′
2. Consider the structure and notations of the optimization problem (7) in [51], where

the objective function isφ(x,y) with x = [xT
0 , . . . ,xT

p ]T andy being the optimization

variables, and the linear equality constraint isAx + By = b. We rewrite our problem

P ′
2 in the format of problem (7) in [51]: the objective function ofP ′

2 can be written as

φ({Vik},W) = f0({Vik},W)+h(W), whereh(W) = tr(WHW) andf0({Vik},W) =

IC({Vik},W) is an indicator function that is lower semi-continuous. Note that, in our

problem, we treat{Vik} asx0 andW asy (in our case,x = x0). Also, the equality

constraint in (3.20) of P ′
2 is Vik −WDik = 0, for all i, k.

Based on the above, we check assumptions A1-A5. A1 (coercivity) holds: asW →

∞, h(W) = tr
(
WHW

)
→ ∞, and thus,φ({Vik},W) → ∞. A2 (feasibility) can be

easily verified, since for the equality constraint (3.20), we haveA = I andB = −Dik.

A3 (Lipschitz sub-minimization paths): This assumption holds as both−Dik and I are

full column rank. A4 (objective-f regularity) holds, because we do not have the function

g in our objective functionφ, andf0 = IC is lower semi-continuous. A5 (objective-h

regularity): this can be easily verified ash(W) = tr(WHW) is Lipschitz differentiable.

We point out that the structure of our objective functionφ is slightly different from that

in the problem (7) of [51]. Specifically, our objective function is in the form ofφ(x,y) =

f0(x0,y) + h(y), wheref0(x0,y) = IC(x0,y) is an indicator function of bothx0 andy,

while in the problem (7) of [51], f0(x0) is a lower semi-continuous function ofx0 only.

Nonetheless, Theorem 1 of [51] still holds under this modification. That is, we can verify

that all the proofs, including the lemmas for Theorem 1, still hold. We explain the reason

briefly: this is becausef0 in our problem is a specific indicator function; at each ADMM
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iteration, the updates forx0 andy are the solutions of the minimization of the augmented

Lagrangian function w.r.t.x0 andy, respectively. As a result of the minimization, these

updates forx0 andy should satisfy(x0,y) ∈ C andf0(x0,y) = 0. Using this fact, we

verify that all the steps in the proof of Theorem 1 still hold. Thus, as stated in Theorem 1

of [51], the ADMM algorithm converges to a stationarypoint.

For ADMM convergence, two types of convergence criteria are considered in the liter-

ature [112]: 1) Residual convergence: this refers to the equality constraint of the auxiliary

matrices introduced in (3.18). That is,‖Vj+1
ik −Wj+1Dik‖F → 0, ∀k ∈ Ki, i ∈ G, as

j →∞; 2) Objective convergence: this refers to the convergence of the objective function

over iterations. Note that the residual and objective quantities converge simultaneously.

Therefore, we can use either of the two quantities as the convergence criterion.

Initialization

One advantage of ADMM for our problem is that it does not require a feasible initial

point for convergence [51, 112]. Thus, our proposed ADMM-based algorithm can use a

random initial point with robust convergence, although a good initial point facilitates faster

convergence. This is in contrast to existing popular convex approximation approaches,

such as SCA, where a feasible initial point is required, which imposes a challenge for the

algorithm design and implementation.

3.3.4 Computational Complexity

As discussed earlier, our proposed algorithm includes two layers of iterations. The compu-

tations in each iteration are based on the (semi-)closed-form expressions. Algorithm1 for

the outer layer iteratively updates{Vik}, W, {Zik}, whereW is computed by Algorithm2.

At each iteration,Vik is updated using (3.29) (through the vectorized versionvik). This

requires the eigenvalue decomposition ofWc, which is needed for the matrix inversion and

for simplifying (3.33) into (3.34) to computeλ. As discussed below (3.33), Wc is a block

diagonal matrix. Thus, the eigenvalue decomposition is only needed forWTW∗ (aG×G
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matrix), which has the complexity ofO(G3). Once we have the eigenvalue decomposition

of Wc, it can be directly used to compute the matrix inversion in (3.29). The complexity

for the remaining matrix-vector multiplications isO(MG2) for eachVik. Note that the

eigenvalue decomposition only needs to be computed once for allVik’s. Thus, the overall

complexity to compute allVik’s is O(G3 +(
∑G

i=1 Ki)MG2). From (3.24), updating{Zik}

requiresO((
∑G

i=1 Ki)MG). Thus, the computational complexity for updating{Vik} and

{Zik} at each iteration isO(G3 + (
∑G

i=1 Ki)MG2).

Algorithm 2 for the inner layer iteratively updatesW, {Wik}, {Yik}. Among these

quantities, updatingWik in (3.47) contains the most computational intensive operations.

Note thatWik in (3.47) has a structure similar toVik (3.29). Following the similar analysis

above, the computation involves eigenvalue decomposition and matrix-vector operations in

(3.47) and has the complexity ofO(G3 + MG2) for eachWik. Different from that in

the outer layer, eigenvalue decomposition is required for eachWik, asVj
c,ik is different

for eachwik in Pw (or equivalently,Vj
ik is different for eachWik in (3.41)). Thus, the

total computational complexity for updating allWik’s is O((
∑G

i=1 Ki)(G
3 + MG2)). The

complexity for updatingW in (3.49) and{Yik} in (3.40) is O((
∑G

i=1 Ki)MG). Thus, the

computational complexity per iteration in Algorithm2 is O((
∑G

i=1 Ki)(G
3 + MG2)).

From the above analysis for Algorithms1 and2, the overall computational complexity

of our proposed algorithm in each outer layer iteration isO((
∑G

i=1 Ki)(G
3 + MG2)).

3.4 Lower Bound and Alternative Approach

For comparison purpose, in this section, we consider a lower bound forP1 and briefly

describe another possible approach for the robust multicast beamforming problemProb.

These methods will be used for performance comparison with our proposed algorithm in

Section3.5for the simulation study.
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3.4.1 Performance Benchmark forP1

As the performance benchmark, we consider a lower bound on the objective function of

P1 by solving the relaxed version ofP1. Let Xi , wiw
H
i , i ∈ G. By dropping the rank-1

constraint onXi, we relaxP1 into the following problem

P lb
1 : min

{Xi}

G∑

i=1

tr(Xi)

s.t. tr(RikXi)− γik

∑

l∈G−i

tr(RikXl)− εik‖Xi − γik

∑

l∈G−i

Xl‖F ≥ σ2γik, k ∈ Ki, i ∈ G

Xi < 0, i ∈ G. (3.50)

Note thatP lb
1 is convex w.r.t. {Xi}.5 Thus, it can be solved using the standard convex

solvers. The optimal objective value ofP lb
1 provides a lower bound toP1.

3.4.2 The SCA Approach to SolvePconsv

Recall the alternative optimization problemPconsvdiscussed in Section3.2.1, which is for-

mulated using the conservative SINR lower bound. It can be solved via the SCA approach.

The SCA approach is a popular method to solve a non-convex problem via successive con-

vex approximation of the problem. We briefly describe the SCA approach below.

Consider auxiliary variablesui, i ∈ G. Using the fact that(ui − wi)
HA(ui − wi) ≥

0 holds for anyA < 0, we havewH
i Awi ≥ 2<{uH

i Awi} − uH
i Aui. Applying this

inequality to the numerator of the constraint inPconsv, we convexify the constraint and have

the following problem for given{ui}:

min
{wi}

G∑

i=1

‖wi‖
2

s.t.γik

∑

l∈G−i

wH
l (Rik + εikI)wl + εikw

H
i wi + σ2γik

−2Re{uH
i Rikwi}+ uH

i Rikui ≤ 0, k ∈ Ki, i ∈ G. (3.51)

5Note thatP lb
1 is not a semi-definite programming (SDP) problem due to the third term in the constraint.

Thus, this relaxation approach is different from the typical semi-definite relaxation commonly considered.
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Note that any set of{wi} that satisfies the constraints in (3.51) also satisfies the constraints

in Pconsv and thus are feasible toPconsv. Since problem (3.51) is convex, the solution{wi}

can be easily obtained using the standard convex solvers. Then, lettingui = wi, i ∈ G, we

iteratively solve problem (3.51) until convergence.

3.5 Simulation Results

We consider the downlink multi-group multicast beamforming problem with a symmetric

setup, whereKi = K, ∀ i ∈ G, and the SINR target per userγik = γ, ∀ k ∈ Ki, i ∈ G. We

consider the default setup asG = 3 groups,K = 4 users per group,M = 100 antennas,

andγ = 5 dB, unless otherwise stated. Noise variance is set toσ2 = 1. We consider the

error boundεik = η‖R̄ik‖F in (3.3), whereη is the normalized error bound that we use

to study the robust beamforming performance. We consider two models for the channel

covariance matrix that are commonly considered in the literature:

Model 1

Consider the channel vectorhik between BS and each userk ∈ Ki, i ∈ G. Let ĥik be the

estimated channel vector, whereĥik = hik +eik, with eik being the error vector. We model

the channel covariance matrix asR̄ik = hikh
H
ik. The estimated covariance matrix is given

asRik = ĥikĥ
H
ik. Then, the error matrix is obtained asEik = R̄ik − Rik. We generate

independent channel vectors ashik ∼ CN (0, I). Consider the bounded estimation error

model as in (3.3). To model the error more realistically, we first generate the independent

errors aseik
i.i.d.
∼ CN (0, σ2

eI), whereσ2
e is the error variance. Then, we setεik = η‖R̄ik‖F ,

whereη is a cut-off bound, which is set such that‖Eik‖F 6 η‖R̄ik‖F holds for 90%

of realizations ofeik. Those realizations withEik satisfying (3.3) are considered in the

simulation.

Model 2

We consider a narrow-band mmWave channel model. The number of multi-path clusters

between the transmitter and each receiver is assumedNc = 2, and the number of rays
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per cluster is assumedNr = 3. Between the transmitter and userk in groupi, the steering

vector of rayp in clusterc is given bya(θcp
ik ) , 1√

M
[1, ej2π Δ

λc
cos(θcp

ik ), . . . , ej2π Δ
λc

(M−1) cos(θcp
ik )],

whereθcp
ik is the angle of departure (AoD) of this ray,Δ is the antennas separation, and

λc is the carrier wavelength. The rays in each cluster are generated within an angular

spread around the cluster center. For userk in group i, the AoD of rayp in clusterc is

modeled asθcp
ik = θ̄c

ik + Δθcp
ik , whereθ̄c

ik ∈ [0o, 360o) is the AoD of the cluster center

randomly generated, andΔθcp
ik ∼ Uniform[−2o, 2o] is the angle of rayp from the cluster

centerθ̄c
ik generated independently from other rays. The channel covariance matrix for

userk in group i is given byR̄ik =
∑Nc

c=1

∑Nr
p=1 ξcp

ika(θcp
ik )aH(θcp

ik ), whereξcp
ik ∈ [0, 1] is

the relative weight of rayp in clusterc for the user, with
∑Nc

c=1

∑Nr
p=1 ξcp

ik = 1. For the

estimated channel covariance matrixRik, we consider AoD estimation. The AoD estimate

of ray p in clusterc is θ̂cp
ik = θ̄c

ik + Δθcp
ik + Δφcp, where the estimation errorΔφcp

ik ∼

Uniform[−φmax

2
, φmax

2
], with φmax being maximum error spread. Thus,Rik is given by

Rik =
∑Nc

c=1

∑Nr
p=1 ξcp

ika(θ̂cp
ik )aH(θ̂cp

ik ). Similar to Model 1, the error bound for the error

matrix Eik is set asεik = η‖R̄ik‖F . Specifically, for a given value ofφmax, η is set such

that‖Eik‖F 6 η‖R̄ik‖F holds for in90% of the error realizations. Those realizations with

Eik satisfying (4.4) are considered in the simulation.

3.5.1 Algorithm Convergence Behavior

We first study the convergence behaviour of the proposed algorithm. Algorithm1 contains

the outer-layer ADMM-based iterations to solveP1, and Algorithm2 contains inner-layer

consensus-ADMM-based iterations to solvePW. As discussed in Section3.3.3, we con-

sider both objective convergence and residual convergence. LetP j denote the value of the

power objective function inP1 in iterationj. We define the relative objective difference in

iterationj asΔP j , |P j−P j−1|
P j−1 . The relative residual for the equality constraint in (3.18)

is defined asΔV j , maxi,k

{‖Vj
ik−DikWj‖F

‖Vj
ik‖F

}
. Model 1 forRik’s is used to show the

convergence performance. A random initial pointW(0) for Algorithm 1 is used. We set

ρ = μ = 7√
M

, which are found to provide fast convergence under various values ofM , K,

andG in our experimental study. Figs.3.1and3.2show the trajectory ofΔP j andΔV j vs.
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Figure 3.1: The convergence behavior of relative objective differenceΔP j of P1 by Algo-
rithm 1 (Model 1).

iterationj, respectively, forK = 2, 4, 6. We see that both the values ofΔP j andΔV j drop

below 10−3 after only 50 iterations, demonstrating fast convergence. When using Algo-

rithm 2 to solvePW in the inner layer, we define the relative difference of the residual for

the equality constraint in (3.36) in iterationl asΔW (l) , maxi,k

{‖W(l)
ik −W(l)‖F

‖W(l)
ik ‖F

}
. Fig.3.3

shows the trajectory ofΔW (l) vs. iterationl at the outer-layer iterationj = 3, 10, 20, 50.

We see that within 10 to 25 iterations, the value ofΔW (l) drops below10−3, showing fast

convergence. The inner-layer convergence rate becomes faster as the outer-layer iteration

j increases. This is because the initial valueW(0) in Algorithm 2 is set as the outputWj

from Algorithm2 from the previous outer-layer iterationj. Thus, the initial value becomes

closer to the stationary point of the problem, as Algorithm1 converges.

3.5.2 Effect of Normalized Error Bound η on Performance

We now study the effect of channel covariance estimation error on the performance. For

comparison, besides the solution toP1 obtained by our proposed algorithm, we consider the

solution toPconsvfound by the SCA approach in Section3.4.2. Note that common to all QoS

problems,P0 may not always be feasible. It depends on the SINR target considered and the
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Figure 3.2: The convergence behavior of relative residualΔV j by Algorithm1 (Model 1).
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Figure 3.3: The convergence behavior of relative residualΔW (l) by Algorithm 2 to solve
PW (Model 1).
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Figure 3.4: The feasibility rate vs. normalized error boundη (Model 1;G = 3, K = 4,
M = 100).
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Figure 3.5: The feasibility rate vs. normalized error boundη (Model 2;G = 3, K = 4,
M = 100).

46



5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

P
ro

b
(S

IN
R
≤

x
)

x (dB)

P1

Pconsv

Figure 3.6: The CDF of the actual SINR at users under the robust design solution (Model 1;
η = 0.04).
level of the estimation error. Thus, an important performance measure for robust design is

to evaluate the percentage of channel realizations that the considered algorithm can find a

feasible solution, which we refer to as the feasibility rate. We first evaluate the feasibility

rate for a given error boundη. Fig. 3.4 shows the feasibility rate vs. the normalized error

boundη for Model 1 over 200 channel realizations. Common in robust design, we see that

the feasibility rate is highly dependent on the errorη of the channel covariance estimation;

it drops to 0 whenη exceeds a certain value. We observe the improved feasibility offered by

our proposed algorithm over the approach via solvingPconsv. This is becausePconsv uses a

conservative SINR lower bound to replace the original SINR constraint, while our solution

uses the original SINR constraint. A similar comparison of the feasibility rate is observed

for Model 2, as shown in Fig.3.5.

With {wi} obtained by our robust design (Algorithms1 and2) for P1 and by SCA for

Pconsv, we compare the actual SINR received by all users. Fig.3.6 plots the CDF of the

actual SINR at the LHS of (3.2) of all users under Model 1 forη = 0.04. It is evident that

sincePconsv uses a conservative SINR lower bound, the actual SINRs among users exceed

the SINR target by a larger margin as compared to our proposed algorithm via the exact
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Figure 3.7: Feasibility rate vs.η

worst-case SINR constraint. A similar performance is observed for Model 2 and thus is not

shown.

Next, in Fig.3.7, we show the performance for different number of users per group

K = 2, 4, 6 for Model 1. Fig.3.7shows the feasibility rate vs.η over 200 channel realiza-

tions. We see that for the same SINR targetγ, the feasibility curve shifts to the left asK

increases, indicating that the tolerable margin of channel uncertainty reduces in the robust

design. Note that this trend is consistent with the behavior of multicast beamforming under

perfect CSI, where the minimum SINR within a group reduces asK increases. Fig.3.8

shows the corresponding transmit power objective value inP1 achieved by our algorithm

normalized against noiseP/σ2 vs. η. As η increases, the transmitted power increases sig-

nificantly. When the feasibility rate drops to 0, we can equivalently consider the transmit

power beingP = +∞. The same performance trend as in Figs.3.7 and3.8 is observed

for Model 2 as well.
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Figure 3.8: Normalized transmit power vs.η

3.5.3 Performance Comparison

We now evaluate the performance of our proposed algorithm (Algorithms1 and 2) for

P1 for different system parameters. For comparison, we also consider the following ap-

proaches: 1)P1 via IPM: solvingP1 using IPM via the generic nonlinear program solver

fmincon in MATLAB. 6; 2) Lower Bound (P lb
1 ): the lower bound on the objective function

of P1, which is obtained by solvingP lb
1 in Section3.4.1; 3) Pconsv via SCA: solvingPconsv

by SCA; 4) Perfect Case (Pperf): perfect channel covariance matrix, which is equivalent to

solvePperf.

Performance vs. number of antennasM

Figs.3.9 and3.10show the average normalized transmit powerP/σ2 vs. M for Model 1

(η = 0.04) and Model 2 (η = 0.02), respectively. The performance of our ADMM-based

algorithm is near identical to that of the IPM solution. Also, our algorithm substantially

outperforms the solution toPconsv, providing significant power saving under both channel

6Note that there is no other existing algorithm to solve the robust design problemProb (equivalent toP1)
directly. Thus, we resort to the generic IPM to solveP1 for comparison.
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Figure 3.9: Normalized transmit power vs.M , Model 1,η = 0.04.

models. It is observed that larger values ofη result in bigger performance gap between

our solution toP1 and the solution toPconsv. Note that the lower bound is only provided

for M ≤ 100. This is because solvingP lb
1 using standard convex solvers incurs very

high computational complexity for a large problem size, and thus becomes impractical for

M ≥ 100.

The computational advantage of our proposed algorithm is shown in Table3.1, where

we provide the average computation time for the plots in Fig.3.9. Our proposed algorithm

is fast in computing the solution, and the increment of computation time overM is mild.

This is in particular attractive for massive MIMO systems. In contrast, both using IPM for

P1 and using SCA forPconsvhave high computational complexity, which increases withM

significantly and thus are impractical for moderately large value ofM .

Performance vs. number of usersK

Figs.3.11and3.12show the normalized transmitted power vs.K for Model 1 and Model 2,

respectively. Again, we see that our proposed ADMM-based algorithm achieves the same

performance as IPM forP1. ForK from 2 to 10, our algorithm always obtains a solution,
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Figure 3.10: Normalized transmit power vs.M , Model 2,η = 0.02.

Table 3.1: Average Computation Time OverM (sec.)

M 50 100 150 200 250 300

Algorithms1 & 2 0.23 0.48 0.55 0.72 6.44 32.45

IPM (P1) 69.85 413.3 1617 2788 9954 17490

Pconsvvia SCA 195.51 970.7 3017 7643 2.3e4 8.7e4

while Pconsv via SCA increasingly fails to find a feasible solution, and thus, the transmit

power increases sharply and goes to infinity forK > 8 (i.e., no feasible solution can be

found). In contrast, the transmit power required by our solution is significantly lower. Note

that asK becomes larger, the lower bound becomes more loose, as the solution toP lb
1 is

less likely to be rank-1. Thus, a larger gap is observed between our algorithm and the lower

bound.

Table3.2provides the corresponding computation time of the plots in Fig.3.11. Again,

our proposed ADMM-based algorithm has a substantially lower computational complexity

as compared with the other two methods. The computation time of our algorithm only

increases withK slightly. This indicates that our proposed algorithm is suitable for massive

MIMO systems.
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Figure 3.11: Normalized transmit power vs.K, Model 1,η = 0.04.

Table 3.2: Average Computation Time OverK (sec.)

K 2 4 6 8 10

Algorithms1 & 2 0.29 0.48 1.60 2.16 11.49

P1 via IPM 90.9 413.2 561 1076 3023

Pconsvvia SCA 267 1032 4061 7043 N/A

Performance vs. number of groupsG

Figs.3.13and3.14show the average normalized transmit power vs.G for Model 1 and

Model 2, respectively. Similar relative performance as in Figs.3.11and3.12can be ob-

served. Our proposed ADMM-based algorithm yields a solution with a much lower trans-

mit power than that ofPconsvvia SCA. The latter fails to find a feasible solution forG > 4.

The computation time of different algorithms that generate the plots in Fig.3.13is shown

in Table3.3. We see that the computation time of our proposed algorithm only increases

very mildly overG and is significantly lower than that of other algorithms in comparison.
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Figure 3.12: Normalized transmit power vs.K, Model 2,η = 0.02.

Table 3.3: Average Computation Time OverG (sec.)

G 2 3 4 5

Algorithms 1 &2 0.17 0.48 0.57 0.92

P1 via IPM 134.0 413.2 1189 2884

Pconsvvia SCA 627 1032 3.8e3 N/A

2 3 4 5
-10

-5

0

5

10
Perfect Case (Pperf)
Pconsvvia SCA
P1 via IPM
Algorithms 1 & 2
Lower Bound (P lb

1 )

Number of groups (G)

P
/σ

2
(d

B
)

Figure 3.13: Normalized transmit power vs.G, Model 1,η = 0.04.
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Figure 3.14: Normalized transmit power vs.G, Model 2,η = 0.02.
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Chapter 4

Joint Antenna Selection and Robust
Multi-group Multicast Beamforming in
Massive MIMO Systems

4.1 System Model and Problem Formulation

4.1.1 System Model

We consider a downlink multi-group multicasting scenario in a massive MIMO system,

where a multi-antenna BS servesG multicast groups. Users in each group receive a com-

mon message, which is independent of messages sent to other groups. LetG , {1, ..., G}

denote the index set of the multicast groups andKi , {1, . . . , Ki} the index set of the

single-antenna users in groupi, for i ∈ G. Each user is associated with only one multicast

group.

The BS is equipped withM antennas (M � 1) andL transmit RF chains, where

L ≤ M . With a limited number of RF chains, the BS selectsL antennas, one for each RF

chain, for downlink transmission. Lethik ∈ CM×1 denote the channel vector from the BS

to userk in groupi. Letwi = [wi1, ∙ ∙ ∙ , wiM ]T ∈ CM×1 denote the multicast beamforming

vector for groupi. Let a , [a1, . . . , aM ]T denote the antenna selection vector, where

am ∈ {0, 1} is the selection indicator for antennam ∈M , {1, . . . , M}, with 1 being the

antenna is selected and0 otherwise. Given antenna selectiona, the signal received at user
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k in groupi is given by

yik = wH
i Ahiksi +

∑

l∈G−i

wH
l Ahiksl + nik, k ∈ Ki, i ∈ G.

whereA = diag(a), si is the symbol intended for groupi, nik is the receiver additive white

Gaussian noise at userk in groupi with zero mean and varianceσ2, andG−i , G\{i}.

In a massive MIMO system, acquiring the instantaneous downlink channel state infor-

mation (CSI) can be challenging at the BS. Since the channel covariance matrix evolves

much slower than instantaneous CSI, one approach in the literature is to estimate the chan-

nel covariance matrix from training symbols over time [96–98]. Following this, in this

work, we consider that the BS performs antenna selection and beamforming design based

on the channel covariance matrix information. LetR̄ik , E{hikh
H
ik} denote thetrue full

channel covariance matrix between the BS and userk in groupi. The BS computes SINR

of userk in group i based on channel covariance matrix. With antenna selectiona, it is

given as follows:

SINRik =
wH

i AR̄ikAwi∑

l∈G−i

wH
l AR̄ikAwl + σ2

, k ∈ Ki, i ∈ G. (4.1)

With antenna selection, the transmit power constraint can be imposed by incorporating

antenna selectiona. Specifically, we assume that the maximum transmit power at each

selected antenna isPmax and 0 at unselected antennas. Thus, we have the per antenna

power constraint as follows:

G∑

i=1

|wim|
2 ≤ amPmax, m ∈M. (4.2)

From (4.2), it immediately follows that foram = 0, wim = 0, ∀i ∈ G. Under con-

straint (4.2), we can remove selection matrixA from the SINR expression in (4.1) without

affecting the expression.

Our goal is to jointly determine antenna selection and multicast beamforming vec-

tors for multi-group multicasting to minimize the transmit power, subject to per antenna
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transmit power limit and the minimum SINR requirements. This problem is formulated as

follows:

Pperf : min
a,{wi}

G∑

i=1

‖wi‖
2

s.t.
wH

i R̄ikwi∑
l∈G−i

wH
l R̄ikwl + σ2

≥ γik, k ∈ Ki, i ∈ G, (4.3a)

G∑

i=1

|wim|
2 ≤ amPmax, m ∈M, (4.3b)

M∑

m=1

am = L, (4.3c)

am ∈ {0, 1}, m ∈M (4.3d)

whereγik is the minimum SINR target for userk in groupi.

4.1.2 Robust Formulation Based on Channel Covariance

In practical systems, the BS only has the estimated channel covariance matrices for the

transmission design. Thus, we consider a robust design in antenna selection and multicast

beamforming, which accounts the uncertainty of channel covariance matrices in the pres-

ence of the estimation error to ensure a robust performance. LetRik denote theM ×M

estimatedchannel covariance matrix for userk in groupi. We model the estimation error

in the channel covariance matrix asR̄ik = Rik +Eik, whereEik is the corresponding error

matrix. We follow a spherical error model for channel uncertainty commonly considered

in the robust designs [86–88, 94, 95]. In particular, we assumeEik is bounded within a

hyper-spherical region as follows:

‖Eik‖F ≤ εik, k ∈ Ki, i ∈ G (4.4)

whereεik is the error bound. LetB(εik) denote the set of all error matrices satisfying (4.4),

given by

B(εik) , {Eik : ‖Eik‖F ≤ εik}. (4.5)
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Following the above error model, instead ofPperf, we formulate the joint optimization

of antennas selection and robust multi-group multicast beamforming problem where the

SINR constraint in (4.3a) is replaced by the worst-case SINR for anyEik ∈ B(εik), given

as follows:1

Prob : min
a,{wi}

G∑

i=1

‖wi‖
2

s.t. min
Eik∈B(εik)

wH
i (Rik + Eik)wi∑

l∈G−i
wH

l (Rik+Eik)wl + σ2
≥ γik, k ∈ Ki, i ∈ G, (4.6)

G∑

i=1

|wim|
2 ≤ amPmax, m ∈M, (4.7)

M∑

m=1

am = L, (4.8)

am ∈ {0, 1}, m ∈M (4.9)

Note that bothPperf andProb are mixed-integer programming problems due to antenna

selection. InPperf, for givena, the problem becomes a non-convex QCQP problem, which

is NP-hard. Compared withPperf, the robust formation in SINR constraint (4.6) makes the

problem even more challenging to solve thanPperf under the perfect knowledge of channel

covariance matrices. Furthermore, the problem is in large-scale for massive MIMO systems

with M � 1. Therefore, it is critical to design an effective and scalable solution with low

computational complexity. With this goal, in the following section, we reformulate problem

Prob, and drive a low complexity solution.

1We note that for the true channel covariance matrixR̄ik < 0, there is an implicit condition onEik

for a given estimated channel covarianceRik, such thatRik + Eik < 0. When the error boundεik is
sufficiently small, this condition is satisfied for anyEik ∈ B(εik), andProb accurately reflects the exact
robust beamforming problem. Whenεik is large, the set of possibleEik ’s is a subset ofB(εik). In this case,
Prob provides an upper bound of the exact robust beamforming problem.
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4.2 Joint Antenna Selection and Robust Beamforming

4.2.1 Problem Reformulation

In problemProb, we first reformulate the worst-case SINR constraint (4.6) for a given an-

tenna selection vectora by following the approach proposed in section3.2.1 for a pure

robust multicast beamforming problem. In particular, constraint (4.6) for k ∈ Ki, i ∈ G

can be equivalently written as

wH
i (Rik + Eik)wi∑

l∈G−i
wH

l (Rik + Eik)wl+σ2
≥ γik, ∀Eik ∈ B(εik),

which is equivalent to

wH
i (Rik + Eik)wi − γik

∑

l∈G−i

wH
l (Rik + Eik)wl ≥ σ2γik, ∀Eik ∈ B(εik). (4.10)

The above constraint can be further expressed as the following equivalent constraint:

min
Eik∈B(εik)

wH
i (Rik+Eik)wi−γik

∑

l∈G−i

wH
l (Rik+Eik)wl ≥ σ2γik. (4.11)

The LHS of constraint (4.11) is a convex optimization problem overEik, which yields

a closed-form solution given byE?
ik = −εik

wiw
H
i − γik

∑
l∈G−i

wlw
H
l∥

∥wiwH
i − γik

∑
l∈G−i

wlwH
l

∥
∥

F

as in section

3.2.2. DefineW , [w1, . . . ,wG] ∈ CM×G. DefineDik ∈ CG×G as a diagonal matrix

with the ith diagonal entry being 1 and the rest being−γik. Then, we havewiw
H
i −

γik

∑
l∈G−i

wlw
H
l = WDikW

H . Substituting the expression ofE?
ik into the LHS of (4.11),

we then have the following equivalent constraint to constraint (4.6) for k ∈ Ki, i ∈ G:

tr(RikWDikW
H)− εik‖WDikW

H‖F ≥ σ2γik. (4.12)

For the per antenna power constraint in (4.7), let em denote anM × 1 selection vector

with themth entry being1 and the rest0’s. Then,eT
mW selects themth row ofW, and we

have
∑G

i=1 |wim|2 = ‖eT
mW‖2. Based on the above, we transformProb into the following

equivalent problem:

P1 : min
a,W

tr(WWH)
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s.t. tr(RikWDikW
H)− εik‖WDikW

H‖F ≥ σ2γik, k ∈ Ki, i ∈ G, (4.13a)

‖eT
mW‖2 ≤ amPmax, m ∈M, (4.13b)

M∑

m=1

am = L. (4.13c)

am ∈ {0, 1}, m ∈M. (4.13d)

Compared withProb, P1 has a more tractable form where the constraint in (4.13a) is

now an explicit function ofW. In the rest of the paper, we will focus on solvingP1.

4.2.2 Proposed Approach for Antenna Selection and Robust Multicast
Beamforming

Even though constraint (4.13a) is in a more tractable form,P1 is still a challenging mixed-

integer programming problem in large-scale. To address this, we propose our low-complexity

approach for antenna selection and robust multicast beamforming. To further simplyP1, we

consider replacing the binary variables{am} by continuous variables in[0, 1]. In particular,

it is shown in [53, Lemma 1] that the following three constraints together are equivalent to

the binary constraints (4.13c) and (4.13d) for am,t’s:

M∑

m=1

a2
m = L,

M∑

m=1

am = L, 0 ≤ am ≤ 1, m ∈M. (4.14a)

Based on the above, we can equivalently replace constraints (4.13c) and (4.13d) by the set

of three constraints in (4.14a) and convert the mixed-integer programming problem into the

following equivalent non-convex optimization problem with continuous variables:

P2 : min
a,W

tr(WWH)

s.t. tr(RikWDikW
H)− εik‖WDikW

H‖F ≥ σ2γik, k ∈ Ki, i ∈ G, (4.14b)

‖eT
mW‖2 ≤ amPmax, m ∈M, (4.14c)

M∑

m=1

am = L, (4.14d)

M∑

m=1

a2
m = L, (4.14e)
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0 ≤ am ≤ 1, m ∈M. (4.14f)

Note that even thoughP2 are now with all continuous variables, it is still a non-convex

and NP-hard problem. To further make the problem more tractable, we relaxP2 by transfer-

ring the equality constraint (4.14e) to the objective function as a penalty term with penalty

parameterζ > 0, as shown below:

P3 : min
a,W

tr(WWH) + ζ|aTa− L|

s.t. tr(RikWDikW
H)− εik‖WDikW

H‖F ≥ σ2γik, k ∈ Ki, i ∈ G, (4.15a)

‖eT
mW‖2 ≤ amPmax, m ∈M, (4.15b)

1Ta = L, (4.15c)

0 4 a 4 1 (4.15d)

where the constraints ona are now shown in the vector forms.

Note thatP3 is relaxed as compare withP2, where the selection vectora is no longer

guaranteed to be binary. Considering this relation, we propose a two-phase approach:2

• Phase 1 – Antenna selection: We first determine antenna selection by solvingP3

for (a,W) jointly. Note that sinceP3 is a relaxed problem, the solutiona may not be

binary, and as a result, the beamforming solutionW may not be feasible to original

problemP2. Our purpose in this phase is to determine the binary antenna selection

vectora efficiently. Towards this, we propose two approaches:

– We first propose an SINR-based approach and develop a fast algorithm to obtain

a.

– To further reduce the computational complexity, we then propose an SLR-based

approach with a fast algorithm to determinea.

2Note that one may consider using the alternating optimization approach to solveW anda iteratively.
However,P3 is non-convex w.r.t.W, and the alternating procedure dose not guarantee to converge. Also,
we need to make a choice to map solutiona to binary variables of0 and1, without violating any constraints,
which is challenging to do.

61



• Phase 2 – Robust multicast beamforming solution: After obtaininga in Phase 1,

we solve the robust multicast beamforming problem inP1 for W with the selected

antennas.

4.3 Antenna Selection: SINR-Based Approach

In Phase 1, we determine antenna selectiona based onP3. Since the problem is large-scale

with M � 1, we need to develop an algorithm to computea efficiently. The main difficulty

in solvingP3 is in the non-convex constraint (4.15a), which is the worst-case SINR in the

robust formulation. In particular, the Frobenius norm‖ ∙ ‖F w.r.t. W reflects the impact

of maximum covariance matrix errorεik from (4.4) on SINR. This term complicates the

algorithm design to solveP3 efficiently.

Since our main goal in this phase is to determine antenna selectiona, while computing

W in this phase is to facilitate the determination ofa, we propose to simplifyP3 for a more

tractable problem. Specifically, we ignore the second term in (4.15a), which accounts for

robustness consideration, and only use first term. In other words, we ignore the estimation

error and express SINR under the estimated channel covariance matrices{Rik} to find

antenna selection vectora. This leads to the following modified problem fromP3:

PSINR
3 : min

a,W
tr(WWH) + ζ|aTa− L|

s.t. tr(RikWDikW
H) ≥ σ2γik, k ∈ Ki, i ∈ G,

‖eT
mW‖2 ≤ amPmax, m ∈M,

1Ta = L,

0 4 a 4 1

AlthoughPSINR
3 is still non-convex, it is more amenable to solve. ADMM is a robust

and fast numerical method to solve large-scale problems. We design an ADMM-based fast

algorithm to directly solvePSINR
3 . The convergence of ADMM for a wide range of non-

convex problems is recently established in [51]. Following this, we develop an ADMM-

based algorithm to solvePSINR
3 with low computational complexity.
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The ADMM-Based Algorithm forPSINR
3 : To construct ADMM blocks, we introduce

auxiliary variableY ∈ CM×G and transferPSINR
3 to the following equivalent problem:

PSINR
ADMM : min

a,W,Y
tr(WWH) + ζ|aTa− L|

s.t. tr(RikWDikW
H) ≥ σ2γik, k ∈ Ki, i ∈ G, (4.16a)

‖eT
mY‖2 ≤ amPmax, m ∈M, (4.16b)

1Ta = L, (4.16c)

0 4 a 4 1, (4.16d)

Y = W. (4.16e)

We denoteC the feasible set of(a,W,Y) that satisfies constraints (4.16a)–(4.16d) in PADMM

and define the indicator function forC as

IC(a,W,Y) =

{
0, if (a,W,Y) ∈ C

∞, otherwise.
(4.17)

Then, by transferring the constraints (4.16a)–(4.16d) into the objective function inPADMM ,

we arrive at the following equivalent problem

min
a,W,Y

tr(WWH) + ζ|aTa− L|+ IC(a,W,Y) (4.18)

s.t.Y = W.

The augmented Lagrangian for problem (4.18) is given by

Lρ(a,W,Y,Z) =tr(WWH) + ζ|aTa− L|+ IC(a,W,Y) + ρ‖W −Y + Z‖2F . (4.19)

whereZ ∈ CM×G is the dual variable associated with constraint (4.16e), andρ is penalty

parameter.

With the auxiliary variableY and constraint (4.16e), we now can minimizeLρ(a,W,Y,Z)

w.r.t. a, W, andY separately in an iterative fashion. Finally, we round the elements in

a to the nearest0 or 1 for antenna selection. Our proposed ADMM-based algorithm is

summarized in Algorithm3. The algorithm consists of two main updating blocks. In the

first two blocks, we minimizeLρ(a,W,Y,Z) w.r.t. (a,W) andY, respectively, to obtain
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Algorithm 3 The ADMM-Based Algorithm forPSINR
3

Initialization : Setρ; Set initialW0, a0, Z0 = 0; Setl = 0.
repeat

1) Update beamforming matrixWl+1, al+1 :

(Wl+1, al+1) = arg min
a,W

Lρ

(
a,W,Yl,Zl

)
. (4.20)

2) Update the auxiliary matricesYl+1:

Yl+1 = arg min
Y

Lρ

(
al+1,Wl+1,Y,Zl

)
. (4.21)

3) Update dual variablesZl+1:

Zl+1 = Zl + Yl+1−Wl+1. (4.22)

4) Setl ← l + 1.
until convergence
Obtaina: am = round(al

m), m ∈M.

the updates. We will show that the solutions to these two optimization subproblems can be

computed efficiently using the semi-closed-form expressions.

For the first block in Algorithm3, given(Yl,Zl) in iterationl, the joint optimization

subproblem (4.20) for (a,W) can be further decoupled into two subproblems forW and

a separately. This can be seen fromLρ(a,W,Y,Z) in (4.19), where the terms contain

W or a separately. Thus, in the following subsections, we will first describe the solution

for updatingW in Section4.3.1, and then we derive a closed-form solution for updat-

ing a in Section4.3.2. The solution to subproblem (4.21) for updatingY is described in

Section4.3.3.

4.3.1 UpdateW

Given (Yl,Zl) in iterationl, in the subproblem (4.20), we first minimizeLρ(a,W,Y,Z)

w.r.t. W. After removing the terms in (4.19) that are irrelevant toW, the problem is

equivalent to

min
W

tr(WWH) + ρ‖W −Yl + Zl‖2F (4.23)
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s.t. tr(RikWDikW
H) ≥ σ2γik, k ∈ Ki, i ∈ G.

Subproblem (4.23) is a non-convex NP-hard problem.3 To obtain a good solution

that is also computationally efficient, we propose an inner-layer consensus-ADMM-based

algorithm for subproblem (4.23). The approach for ADMM construction is similar to in

Algorithm 3 for PSINR
ADMM . First, after expanding the second term of the objective function

in (4.23) and removing the constant terms, problem (4.23) is equivalent to the following

problem

PW : min
W

(ρ + 1)tr(WWH) + 2ρRe{tr(BlWH)}

s.t. tr(RikWDikW
H) ≥ σ2γik, k ∈ Ki, i ∈ G.

whereBl , −Yl + Zl.

Introducing auxiliary variablesVik ∈ CM×G andWik ∈ CM×G, for k ∈ Ki, i ∈ G,

we have the following equivalent problem toPW:

PADMM
W : min

W,{Vik,Wik}
(ρ + 1)tr(WWH) + 2ρRe{tr(BlWH)}

s.t. Re{tr(RikVikW
H
ik)} ≥ σ2γik, k ∈ Ki, i ∈ G. (4.24a)

Wik = W, k ∈ Ki, i ∈ G. (4.24b)

Vik = WDik, k ∈ Ki, i ∈ G. (4.24c)

Denote the feasibility set of{Vik,Wik} satisfying constraints in (4.24a) asF , and define

the indicator functionIF({Vik,Wik}) , {0 : if {Vik,Wik} ∈ F ;∞ : otherwise}. We

transferPADMM
W to the following equivalent problem with only linear equality constraints:

min
W,{Vik,Wik}

(ρ + 1)tr(WWH) + 2ρRe{tr(BlWH)}+ IF
(
{Vik,Wik}

)
(4.25)

s.t. Wik = W, k ∈ Ki, i ∈ G.

Vik = WDik, k ∈ Ki, i ∈ G.

The augmented Lagrangian to problem (4.25) is given by

L̃ρ̃

(
W, {Vik,Wik,Sik,Tik}

)
= (ρ + 1)tr(WWH) + 2ρRe{tr(BlWH)}

3The constraint in (4.23) is similar to those in the multicast beamforming QoS problems.
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Algorithm 4 Consensus-ADMM-based Algorithm forPW

Initialization : Setρ̃; Set initialW0, a0, S0
ik = 0, T0

ik = 0, ∀k, i; Setj = 0.
repeat

1) Update the auxiliary matrices{Wj+1
ik }:

{Wik}
j+1= arg min

{Wik}
L̃ρ

(
Wj , {Vj

ik,Wik,S
j
ik,T

j
ik}
)
. (4.27)

2) Update the auxiliary matrices{Vl+1
ik }:

{Vik}
j+1= arg min

{Vik}
L̃ρ̃

(
Wj , {Vik,W

j+1
ik ,Sj

ik,T
j
ik}
)
. (4.28)

3) Update beamforming matrixWj+1:

Wj+1 = arg min
W

L̃ρ̃

(
W, {Vj+1

ik ,Wj
ik,S

j
ik,T

j
ik}). (4.29)

4) Update dual variablesSj+1
ik ,Tj+1

ik :

Sj+1
ik = Sj

ik + Wj+1 −Wj+1
ik , (4.30)

Tj+1
ik = Tj

ik + Wj+1Dik −Vj+1
ik . (4.31)

5) Setj ← j + 1.
until convergence

+ IF
(
{Vik,Wik}

)
+ ρ̃

G∑

i=1

K∑

k=1

‖WDik −Vik + Tik‖
2
F +

ρ̃
G∑

i=1

K∑

k=1

‖W −Wik + Sik‖
2
F . (4.26)

where{Sik} and{Tik} are the dual variables associated with the constraints in (4.24b) and

(4.24c), respectively, and̄ρ is the penalty parameter.

Based on the above, we construct three ADMM blocks to update these variables iter-

atively by minimizingL̃ρ̃

(
W, {Vik,Wik,Sik,Tik}) w.r.t. {Wik}, {Vik}, andW, respec-

tively, to solvePADMM
W . This consensus-ADMM-based algorithm is summarized in Algo-

rithm 4. The three updating blocks involve solving optimization problems (4.27), (4.28),

and (4.29), respectively. Below, we develop a closed-form solution for each of these three

subproblems. For notation simplicity, we remove the superscript for iteration index, with

the understanding that the solutions are used for updates in iterationj.
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UpdateWik

We first fix (W, {Vik,Sik,Tik}) and minimizeL̃ρ̃

(
W, {Vik,Wik,Sik,Tik} w.r.t. {Wik}

in (4.27). From (4.26), we see that the problem can be decomposed into
∑G

i=1 Ki separate

subproblems, one for eachk andi:

P in
Wik

: min
Wik

‖W −Wik + Sik‖
2
F .

s.t.Re{tr(RikVikW
H
ik)} ≥ σ2γik.

SincePWik
is a convex problem with one linear constraint, we can obtain its solution in

closed-form. The optimalW?
ik is one of the following two solutions: i)W?

ik = Sik + W:

it is the optimal solution toP in
Wik

if it satisfies the constraint. Otherwise: ii) The constraint

is active. We solvePWik
via the KKT conditions. The Lagrangian forPWik

is given by

L(Wik, λik) =‖W −Wik + Sik‖
2
F + λik(−Re{tr(RikVikW

H
ik)}+ σ2γik).

whereλik is the Lagrangian multiplier associated with the constraint. Set the gradient w.r.t.

WH
ik to zero,i.e.,∇W∗

ik
L(Wik, λik) = 0, we obtain the optimalW?

ik as

W?
ik = W + Sik +

1

2
λikRikVik. (4.32)

Substitute the expression ofW?
ik in (4.32) into the constraint with equality:Re{tr(RikVikW

H
ik)}−

σ2γik = 0, we obtain the optimalλ?
ik:

λ?
ik =

2
(
−Re{tr(RikVik(W + Sik)

H)}+ σ2γik

)

‖RikVik‖2F
. (4.33)

Note thatλ?
ik ≥ 0 in (4.33); otherwise, the solution in i) holds.

UpdateVik

To updateVik for fixed (W, {Sik,Tik}), the optimization problem (4.28) can again be

decomposed into
∑G

i=1 Ki separate subproblems, one for eachk andi:

P in
Vik

: min
Vik

‖WDik −Vik + Tik‖
2
F .

s.t.Re{tr(RikVikW
H
ik)} ≥ σ2γik.
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The form ofP in
Vik

is the same asP in
Wik

. Thus, we directly have the solution as follows:

i) V?
ik = WDik + Tik: it is the optimal solution toP in

Vik
if it satisfies the constraint;

otherwise:

ii) The constraint is active, and we have

V?
ik = WDik + Tik +

1

2
λ̃?

ikR
H
ikWik (4.34)

whereλ̃?
ik =

2(−Re{tr(Rik(WDik + Tik)W
H
ik)}+ σ2γik)

‖WH
ikRik‖2F

.

UpdateW

Problem (4.29) to solveW for fixed {Vik,Wik,Sik,Tik} is an unconstrained quadratic

optimization problem, given by

min
W

(ρ + 1)tr(WWH) + 2ρRe{tr(BlWH)}+ ρ̃

G∑

i=1

K∑

k=1

‖WDik −Vik + Tik‖
2
F

+ ρ̃
G∑

i=1

K∑

k=1

‖W −Wik + Sik‖
2
F .

Taking the derivative of the objective function and setting it to zero, we obtain

W? = (ρ̄C− ρBl)
(
ρ̃

G∑

i=1

K∑

k=1

D2
ik +

(
ρ̃

G∑

i=1

Ki + ρ + 1
)
I
)−1

. (4.35)

whereC ,
∑G

i=1

∑K
k=1(Wik − Sik + (Vik −Tik)Dik).

4.3.2 Updatea

For subproblem (4.20), we now minimizeLρ(a,W,Yl,Zl) w.r.t. a. After removing the

terms in (4.19) that are not related toa, we have the following equivalent problem:

min
a

ζ|aTa− L| (4.36a)

s.t.‖eT
mY‖2 ≤ amPmax, m ∈M, (4.36b)

1Ta = L, (4.36c)

0 4 a 4 1. (4.36d)
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We further reformulate the above problem. First, note that by (4.36c) and (4.36d), we

haveaTa ≤ 1Ta = L. Thus, minimizing the objective function in (4.36a) is equivalent to

maximizingaTa. Next, we can combine constraints (4.36b) and (4.36d) to determine the

lower bound onam. The resulting equivalent problem to problem (4.36) is given by

Pa : max
a

aTa

s.t.p 4 a 4 1,

1Ta = L.

wherep , [p1, . . . , pM ]T with pm ,
‖eT

mY‖2

Pmax
. Note thatpm ≤ 1 for Pa being feasible.

SincePa contains only linear constraints, it meets the linearity constraint qualification

(LCQ), one of the regularity conditions under which the KKT conditions is necessary for

optimality [129]. Thus, we use the KKT conditions to derive the solution toPa. In partic-

ular, we show there is a unique solution satisfying the KKT conditions, and thus it is the

optimal solution toPa. The Lagrangian forPa is

L(a, λ1, λ2, μ) =− aTa + λT
1 (p− a) + λT

2 (a− 1) + μ(1Ta− L) (4.37)

whereλ1, λ2, andμ are the Lagrangian multipliers associated with the constraints inPa,

respectively. The KKT conditions are listed below:

C1 : ∇aL(a, λ1, λ2, μ) = 0⇒ −2a− λ1 + λ2 + μ1 = 0.

C2 : λ1 � (p− a) = 0,

C3 : λ2 � (a− 1) = 0,

C4 : p 4 a 4 1,

C5 : 1Ta− L = 0.

From C2–C4, we have the following three situations foram, m ∈M:

S1) If λ2m 6= 0, thenam = 1 andλ1m = 0.

S2) If pm < am < 1, thenλ1m = λ2m = 0; and by C1,am = μ/2 , ā, where

ā ∈ (pm, 1).
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S3) If λ1m 6= 0, thenam = pm, andλ2m = 0.

From the above three possible values foram, we divide{am} into three sets. Define

the following index sets:S1 , {m : am = 1, m ∈ M}, S2 = {m : am = ā, m ∈ M},

S3 = {m : am = pm, m ∈ M}. Also, denoteN1 , |S1| andN2 , |S2|. We have

|S3| = M −N1 −N2. With these three sets, C5 can be rewritten as

N1 + N2ā +
∑

m∈S3

pm = L. (4.38)

Similarly, we also rewrite the objective function inPa as

aTa = N1 + N2ā
2 +

∑

m∈S3

p2
m. (4.39)

Thus, to solvePa, we need to determineN1 andN2, i.e., the sizes of these sets, and

the valuēa for S2.

Note that in general, if
∑

m∈S3
pm /∈ Z+, then for (4.38) holds, we must haveN2 ≥ 1

(S2 6= ∅). Thus, we have the following two possible cases forS2: 1) N2 ≥ 1; 2) N2 = 0.

In what follows, we first focus onN2 ≥ 1, which is the most likely case.

CaseN2 ≥ 1

First, assume thatS3 is given. Letz , N1 + N2, wherez > N1 for N2 ≥ 1. Also, sinceS3

is given,z is fixed. From (4.38), we have

N1 + N2ā = L−
∑

m∈S3

pm , L′ (4.40)

whereL′ is fixed for givenS3. Then, we havēa = L′−N1

z−N1
. From (4.39), let y , N1 + N2ā

2.

Replacinḡa with the expression above, we can writey as a function ofN1 as

y(N1) = N1 +
(L′ −N1)

2

z −N1

. (4.41)

Following this, the objective function is given by

aTa = y(N1) +
∑

m∈S3

p2
m (4.42)
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where the second term at the right hand side (RHS) is fixed for givenS3. Thus,Pa is

equivalent to

max
N1:N1<z

y(N1), (4.43)

for which we only need to check the difference iny(N1) w.r.t. N1. ConsiderN1 + 1 < z.

From (4.41), we have

y(N1 + 1)− y(N1) =
(z − L′)2

(z −N1)(z −N1 − 1)
> 0. (4.44)

Thus, for any givenz > 0, y(N1) is an increasing function ofN1, and therefore for (4.43),

N1 should be maximized. This leads toN ?
1 = z − 1, andN?

2 = 1, for givenz > 0. Thus,

we obtainN?
2 for S2, i.e.,only oneam = ā with inactive inequality constraints.

Next, we selectS3 and determineN?
1 . Note that forN?

2 = 1, the objective function in

(4.39) becomes

aTa = N1 + ā2 +
∑

m∈S3

p2
m , g(N1,p) (4.45)

where|S3| = M −N1 − 1. Now we examineg(N1,p) w.r.t. N1. By (4.40), we have

N1 = L−
(
ā +

∑

m∈S3

pm

)
. (4.46)

Substituting the above expression intog(N1,p), we have

g(N1,p) = L− ā + ā2 −
∑

m∈S3

pm +
∑

m∈S3

p2
m.

Note that increasingN1 to N1 + 1 means removing an element fromS3 and reducing|S3|

by one. Letm′ be the entry that is removed fromS3. Then, we have

g(N1 + 1,p)− g(N1,p) = pm′ − p2
m′ ≥ 0, (4.47)

where the last inequality is due to0 ≤ pm ≤ 1, ∀m. Thus, withā given,g(N1,p) is an

increasing function ofN1, and maximizingN1 leads to the maximum objective valueaTa

in (4.45).
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Now considerN1 in (4.46) obtained from the equality constraint C5. For any given size

|S3|, N1 in (4.46) is maximized by choosing elements inS3 whosepm’s have the lowest

values. Hence, for anyN1, S3 can be determined as follows. Sort{pm} in the ascending

order:pm1 ≤ pm2 ≤ ∙ ∙ ∙ ≤ pmM
. Then,S3 = {m1, m2, . . . , mM−N1−1} and

N1 = L−
(
ā +

M−N1−1∑

j=1

pmj

)
. (4.48)

To determineN?
1 , we recall that̄a < 1. From (4.48), we have the following bounds:

L − 1 < N ?
1 +

∑M−N?
1−1

j=1 pmj
< L. This leads to a simple search for the optimalN?

1 :

Starting fromN1 = L, we reduceN1 until the above inequalities are met.

OnceN?
1 is obtained, the optimal̄a? is given by

ā? = L−N?
1 −

M−N?
1−1∑

j=1

pmj
. (4.49)

CaseN2 = 0

In the above, for generalp, we have assumedN2 ≥ 1 in (4.40) and obtainN?
2 = 1. In the

less likely case, it is possible thatN2 = 0 for someS3, where
∑

m∈S3
pm ∈ Z+. Denote

such special set asSz
3. Then,N1 in (4.46) is reduced toN1 = L−

∑
m∈Sz

3
pm. Comparing

it with N?
1 in (4.48), since0 < ā < 1, it is not difficult to see that unlessSz

3 happens to

contain the indices of the lowest values in{pm}, N?
1 in (4.48) underN?

2 = 1 still has the

maximum value and is optimal forPa. If Sz
3 happens to contain the indices of the lowest

values in{pm}, i.e.,Sz
3 = {m1, . . . , mM−N1}, then

N1 = L−
M−N1∑

j=1

pmj
. (4.50)

Compared the above expression with that in (4.48), we see that in fact we can treat the

solution above as the special case of (4.48) for N2 ≥ 1, where substitutingN1 in (4.50)

into (4.49), we haveā? = pmM−N?
1
. In other words, in this special case,S2 andS3 are

merged intoS3.
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Algorithm 5 The optimal solutiona? for Pa.
1) Sortp in ascending order:pm1 ≤ pm2 ≤ ∙ ∙ ∙ ≤ pmM

.
2) InitializeN1 = L− 1.
while N1 +

∑M−N1−1
j=1 pmj

≥ L do
N1 ← N1 − 1.

end while
3) SetN?

1 = N1.
4) Determine the optimala?:

a)a?
mj

= pmj
, j = 1, . . . , M −N?

1 − 1.
b) a?

mM−N1
= ā? as in (4.49).

c) a?
mj

= 1, j = M −N?
1 + 1, . . . , M .

Based on both cases discussed above, we summarize the optimal solutiona? to Pa in

Algorithm 5. In this algorithm, only sorting of elements inp is required; otherwise,a? is

provided in closed-form.

Remark 2. In the reformulated problemPSINR
3 (andP3), the objective function contains an

additional penalty termζ|aTa − L|, whereζ is the penalty parameter. We point out that

as a feature of our proposed ADMM structure in Algorithm3, no tuning ofζ is needed.

Specifically, as discussed earlier, the joint optimization in (4.20) can be separated forW in

problem (4.23) anda in problem (4.36). Problem (4.36) is equivalent toPa, whereζ does

not affect the optimal solutiona and can be ignored.

4.3.3 UpdateY

Subproblem (4.21) for updatingY can be decomposed intoM sperate subproblems, one

for eachym , eT
mY, m ∈M, given by

P in
ym

: min
ym

ρ‖eT
mW − ym + eT

mZ‖2F

s.t.‖ym‖
2 ≤ amPmax. (4.51)

SinceP in
ym

is a convex QCQP problem with a single constraint, it yields a closed-form so-

lution with two possible forms:

i) y?
m = eT

m(W+Z): if it satisfies constraint (4.51); otherwise ii)y?
m =
√

amPmax
eT

m(W + Z)

‖eT
m(W + Z)‖

.
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4.3.4 Discussions

Summary of Algorithm

For the mixed-integer joint robust multicast beamforming and antenna selection in problem

P1, we exploit an equivalent set of constraints to transfer the problem into problemP2 with

all continuous variables. To transfer problemP2 into a more tractable problem, we use the

exact penalty term to relax the problem by transferring the quadratic equality constraint

in problemP2 to the objective function as in problemP3. ProblemP3 due to relaxation

does not guarantee a binary variable. Hence, we develop a two-phase approach, the first

phase focus on antenna selection, followed by the second phase to design the beamform-

ing matrix with the selected antennas. In Phase 1 rather than resorting to the conventional

convex approximation approach, which is difficult to apply, we explore the structure of this

non-convex problem formulation and directly solve it by leveraging the ADMM technique.

Our overall proposed ADMM-based fast algorithm to solvePSINR
ADMM contains two layers of

ADMM procedures. The outer-layer ADMM given by Algorithm3 solves the non-convex

problemPSINR
3 by decomposing the problem into three main subproblems (4.20)- (4.22),

which are solved iteratively. The salient feature in our design is that for these subprob-

lems formed by our ADMM construction inPSINR
3 , we can develop special techniques to

derive the semi-closed-form solutions to these subproblems. For the second subproblem,

we develop the inner-layer consensus-ADMM-based three-block algorithm (Algorithm4)

to solve it, where the closed-form solutions are obtained for the updates in each ADMM

iteration. These closed-form solutions are essential in our ADMM-based algorithm for fast

computing the solution toPSINR
3 , especially for large-scale systems such as massive MIMO.

One challenge in the exact penalty approach used to transfer problemP2 toP3 is to obtain

the optimum value for the penalty parameterζ. One common method in the literature to

find the optimum value ofζ is an exhaustive search over a range ofζ values. An exhaustive

search for large-scale problems adds considerable computational complexity due to solving

the problem frequently to find the optimum value forζ. One other significant benefit of our

proposed ADMM solution in Algorithm3 is to remove the dependency of the solution in
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problemPSINR
3 to the value ofζ. In problem4.3.2, ζ is a positive coefficient of the objective

function. Consequently,ζ does not affect the optimum solution of the optimization prob-

lem 4.3.2. Hence, problemPSINR
3 does not need to be solved iteratively for the optimum

value ofζ. This leads to a considerable improvement in the computational complexity of

problemPSINR
3 .

4.4 Antenna Selection: SLR-Based Approach

4.4.1 The SLR-Based Problem Formulation

Our previous approach for antenna selection inPSINR
3 is based on SINR under the estimated

channel covariance matrix. To further reduce the computational complexity involved in

antenna selection in Phase 1, in this section, we propose a different approach for the antenna

selection based on signal-to-leakage-ratio (SLR). SLR is a heuristic performance metric

often used for downlink multiuser (unicast) beamforming design in the literature [130]. It

is shown to lead to a simpler problem and yet provides an effective solution with good

performance, since the metric heuristically resembles the optimal beamforming structure.

In our problem, the SLR for userk in groupi is defined as the ratio of the received

signal power at the user to the interference that the beamformer of groupi causes to the

other groups:

SLRik =
wH

i Rikwi
∑

l∈G−i

∑Kl

j=1 wH
i Rljwi + σ2

. (4.52)

Then, instead ofPSINR
3 , we formulate the antenna selection problem for Phase 1 by setting

the minimum SLR requirements, given by

PSLR
3 : min

W,a

G∑

i=1

‖wi‖
2 + ζ|aHa− L|

s.t.
wH

i Rikwi
∑

l∈G−i

∑K
j=1 wH

i Rljwi + σ2
≥ γ̂ik, k ∈ Ki, i ∈ G,

‖eT
mW‖2 ≤ amPmax, m ∈M,

1Ta = L,
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0 4 a 4 1

whereγ̂ik is the minimum SLR target.

Remark 3. Note that due to the difference of SINR and SLR metrics, the value of the

SLR target̂γik may be different from the SINR targetγik, although we do not expect the

difference to be significant. Since Phase 1 focuses on the antenna selection, the problem is

not sensitive to the value of̂γik. Hence, we chosêγik = γik. In our simulation study, we

will compare two approaches for antenna selection the Phase 1 and show that they achieve

near identical performance.

4.4.2 The ADMM-Based Fast Algorithm

We again develop an ADMM-based fast algorithm to solvePSLR
3 with low computational

complexity. The construction procedure is similar toPSINR
ADMM for PSINR

3 in Section4.3. Thus,

we will only describe the procedure briefly. Using auxiliary variablesY ∈ CM×G, we have

the following equivalent problem toPSLR
3 :

PSLR
ADMM : min

W,a

G∑

i=1

‖wi‖
2 + ζ|aHa− L|

s.t. wH
i (Rik − γikR−i)wi ≥ σ2

ikγ̂ik, k ∈ Ki, i ∈ G, (4.53a)

‖eT
mY‖2 ≤ amPmax, j ∈M, (4.53b)

1Ta = L, (4.53c)

0 4 a 4 1, (4.53d)

Y = W (4.53e)

whereR−i ,
∑

l∈G−i

∑Kl

j=1 Rlj. Denote the feasibility set of(W, a,Y) satisfying con-

straints in (4.53a)–(4.53d) asH and define the indicator functionIH(a,W,Y) similarly as

in (4.17). We transformPSLR
ADMM to the following equivalent problem:

min
W,a,Y

G∑

i=1

‖wi‖
2 + ζ|aHa− L|+ IH

(
a,W,Y

)

s.t.Y = W
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for which the augmented Lagrangian is given by

L̄ρ̄

(
a,W,Y,Z

)
=

G∑

i=1

‖wi‖
2 + ζ|aHa− L|+ IH

(
a,W,Y

)
+ ρ̄‖W −Y + Z‖2F

whereZ ∈ CM×G is the dual variable associated with constraint (4.53e) andρ̄ is the penalty

parameter.

Similar to Algorithm3, we construct two ADMM blocks to minimizēLρ̄

(
a,W,Y,Z

)

alternatingly w.r.t.a, W, andY. Once the convergence is reached, we round the elements

in a to the nearest0 or 1 for antenna selection. The algorithm is summarized in Algorithm

6. Again, in the first block of Algorithm6, the joint optimization of(a,W) in subproblem

(4.54) can be decoupled into separate subproblems forW anda, respectively. In particular,

for the first two ADMM blocks:

• Updatea: In subproblem (4.54), the minimization ofL̄ρ̄(a,W,Y
l
,Z

l
) w.r.t. a is the

same as in problem (4.36) in Section4.3. Thus, Algorithm5 provides the optimal

solutiona? for updatinga.

• UpdateY: Subproblem (4.55) is the same as subproblem (4.21). Thus, the solution

in Section4.3.3follows.

Thus, only the minimization of̄Lρ̄(a,W,Y
l
,Z

l
) w.r.t. W in subproblem (4.54) in the first

ADMM block is different from that forPSINR
ADMM due to the SLR constraints in (4.53a). Below,

we showW update can be computed efficiently using the semi-closed-form expressions.

In particular, we will show that the SLR metric allows us to further decompose the opti-

mization problem into smaller subproblems, which yields (semi)-closed-form updates with

lower computational complexity.

UpdateW

RecallW = [w1, . . . ,wG]. Similarly, wedenoteY = [ȳ1, . . . , ȳG] andZ = [z̄1, . . . , z̄G].

Then, optimizingW in subproblem (4.54) can be written as follows:

min
{wi}

G∑

i=1

‖wi‖
2 + ρ̄

G∑

i=1

‖wi − ȳi + z̄i‖
2 (4.57)
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Algorithm 6 The ADMM-Based Algorithm forPSLR
3

Initialization : Setρ̄; Set initialW0, a0, Z̄0 = 0; Setl = 0.
repeat

1) Update beamforming matrixWl+1, al+1 :

(Wl+1, al+1) = arg min
a,W

L̄ρ̄

(
a,W,Y

l
,Z

l)
. (4.54)

2) Update the auxiliary matricesYl+1:

Y
l+1

= arg min
Y

L̄ρ̄

(
al+1,Wl+1,Y,Z

l)
. (4.55)

3) Update dual variablesZl+1:

Z
l+1

= Z
l
+ Y

l+1
−Wl+1. (4.56)

4) Setl ← l + 1.
until convergence
Obtaina: am = round(al

m), m ∈M.

s.t.wH
i (Rik − γ̂ikR−i)wi ≥ σ2γ̂ik, k ∈ Ki, i ∈ G.

The above problem can be decomposed intoG sperate subproblems, one for eachwi, given

by

Pwi
: min

wi

‖wi‖
2 + ρ̄‖wi − ȳi + z̄i‖

2

s.t. wH
i (Rik − γ̂ikR−i)wi ≥ σ2γ̂ik, k ∈ Ki.

Remark 4. Compared withPW in Algorithm 3 for solvingPSINR
3 , the SLR constraints in

PSLR
3 allow us to decompose problem (4.57) into G subproblems to solve separately, which

leads to simpler subproblems with closed-form solutions.

ProblemPwi
is a non-convex QCQP problem. We again develop an inner consensus-

ADMM-based fast algorithm to solve it. For notation simplicity, in the discussion below,

we remove subscripti from all variables inPwi
, with the understanding that they are all for

groupi. Using auxiliary variableŝwk ∈ CM×1, k ∈ K, we have the equivalent problem to

Pwi
as shown below. :

min
w,{ŵk}

‖w‖2 + ρ̄‖w − ȳ + z̄‖2
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Algorithm 7 Consensus-ADMM-Based Algorithm forPwi

Initialization : Setρ̂; Set initialw0, {z̃k}
0 = 0; Setq = 0.

repeat
1) Update the auxiliary matrices{ŵq+1

k }:

{ŵq+1
k } = arg min

{ŵk}
L̂ρ̂

(
wq, {ŵk, ẑ

q
k}
)
. (4.59)

2) Update beamforming matrixwq+1:

wq+1 = arg min
w
L̂ρ̂

(
w, {ŵq+1

k , ẑq
k}
)
. (4.60)

3) Update dual variables{ẑq+1
k }:

ẑq+1
k = ẑq

k + wq+1−wq+1
k . (4.61)

4) Setq ← q + 1.
until convergence

s.t. wHRw −
1

γ̂k

ŵH
k Rkŵk + σ2 ≤ 0, k ∈ K,

ŵk = w, k ∈ K. (4.58)

DefineV as the feasible set satisfying the inequality constraints in the above problem and

define the indicator functionIV
(
w, {ŵk}

)
, {0 : if (w, {ŵk}) ∈ V ;∞ : otherwise}.

Then, the above problem is equivalent to

min
w,{w̄k}

‖w‖2 + ρ̄‖w − ȳ + z̄‖2 + IV
(
w, {ŵk}

)

s.t.ŵk = w, k ∈ K.

for which the augmented Lagrangian is given by

L̂ρ̂

(
w, {ŵk, ẑk}

)
= ‖w‖2 + ρ̄‖w − ȳ + z̄‖2 + IV

(
w, {ŵk}

)
+ ρ̂

K∑

k=1

‖w − ŵk + ẑk‖
2

where ẑk is the dual variable associated with constraint (4.58) and ρ̂ is the penalty pa-

rameter. Again, we construct ADMM blocks to minimizêLρ̂

(
w, {ŵk, ẑk}

)
alternatingly.

We show below that each optimization problem yields a (semi)-closed-form solution. The

consensus-ADMM-based algorithm is illustrated in Algorithm7.
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i) Update{ŵk}: The subproblem (4.59) can be decomposed intoK (= |K|) separate

subproblems, each given by

min
ŵk

‖w + ẑk − ŵk‖
2

s.t.ŵH
k Rkŵk ≥ γk(w

HRw + σ2) (4.62)

Problem (4.62) is a QCQP problem with a single concave constraint function. It satisfies

the linear independence constraint qualification (LICQ) under which the KKT conditions

is necessary for optimality [129]. Thus, we use the KKT conditions to derive the solution

and obtain a unique semi-closed-form solution, which is optimal to problem (4.62). There

are two possible solutions:

i) ŵ◦
k = w + ẑk: This is the solution if it satisfies the constraint in (4.62). Otherwise,

ii) The constraint in (4.62) holds with equality. Letbk , γ̂k(w
HR̄w+σ2). The Lagrangian

of problem (4.62) is given by

L(ŵk, λ̂k) = ‖w − ŵk + ẑk‖
2 + λ̂k(−ŵH

k Rkŵk + bk)

whereλ̂k is Lagrange multiplier associated with the constraint in (4.62). Set the gradient

of L(ŵk, λ̂k) to 0, we have

∇ŵ∗
k
L(ŵk, λ̂k) = −w + ŵk − ẑk − λ̂kRkŵk = 0, (4.63)

which leads to

ŵk = (λ̂kRk + I)−1(w + ẑk). (4.64)

Since−ŵH
k Rkŵk + bk = 0, we obtainλ̂k as the solution of the following equality:

(w + ẑk)
H(λ̂kRk + I)−1Rk(λ̂kRk + I)−1(w + ẑk) = bk. (4.65)

Consider eigenvalue decompositionRk = UkΣkU
H
k , whereΣk , diag(σ̃2

1k, . . . , σ̃
2
Mk).

Then, (4.65) is equivalent to

M∑

m=1

σ̃2
mk|βmk|2

(1 + λ̂kσ̃2
mk)

2
= bk (4.66)
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whereβk , [β1k, . . . , βMk]
T = UH

k (w + ẑk). Sinceλ̂k ≥ 0, the LHS of (4.66) is a

decreasing function of̂λk ≥ 0. Thus, the solution̂λk can be found via bi-section search.

Since the solution is unique, it is the optimal solution to problem (4.62).

ii) Updatew: The subproblem (4.60) for w is given by

min
w
‖w‖2 + ρ̄‖w − ȳ + z̄‖2 + ρ̂

K∑

k=1

‖w − ŵk + ẑk‖
2

s.t. wHRw ≤ min
k∈K

1

γ̂k

ŵH
k Rkŵk − σ2. (4.67)

It is a convex QCQP problem with a single constraint, for which we obtain the closed-form

solution. There are two possible solutions:

i) w◦ = 1
1+ρ+Kρ̄

(ρ̄
∑K

k=1(ŵk − ẑk) + ρ(ȳ − z̄k)): This is the solution if it satisfies the

constraint in (4.67). Otherwise, ii) The constraint in (4.67) holds with equality. Define

d , mink
1
γ̂k

ŵH
k Rkŵk − σ2. The Lagrangian for problem (4.67) is

L(w, λ̄) =‖w‖2 + ρ̄‖w − ȳ + z̄‖2 + ρ̂

K∑

k=1

‖w − ŵk + ẑk‖
2

+ λ̄(wHRw − d).

whereλ̄ is the Lagrange multiplier for the constraint in (4.67). Set the gradient ofL(w, λ̄)

to 0, we have

∇ŵ∗L(w, λ̄) =
(
λ̄R + (1 + ρ̄ + Kρ̂)I

)
w − c = 0

wherec , ρ̂
∑K

k=1(ŵk − ẑk) + ρ̄(ȳ − z̄). This leads to

w = (λ̄R + (1 + ρ̄ + Kρ̂)I)−1c. (4.68)

SincewHRw − d = 0, we obtainλ̄ as the solution of the following inequality.

cH(λ̄R +(1 + ρ̄ +Kρ̂)I)−1R(λ̄R +(1 + ρ̄ +Kρ̂)I)−1c = b. (4.69)

Again, applying eigenvalue decompositiononR = U Σ U
H

with Σ , diag(σ̄2
1, . . . , σ̄

2
M ),

we can rewrite (4.69) as the following equation:

M∑

m=1

σ̄2
m|c̄m|2

(1 + ρ + Kρ̄ + λ̄σ̄2
m)2

= b. (4.70)
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wherec̄ , [c1, . . . , cM ]T = ŪHc. The solution̄λ ≥ 0 to equation (4.70) can be found via

bi-section search.

4.4.3 Computational Complexity Comparison

The SINR-based approach viaPSINR
3

The computational complexity of the proposed ADMM-based algorithm in Algorithm3

mainly occurs at updatingW in PW in Section4.3.1, which is computed by the consensus-

ADMM- based algorithm in Algorithm4. The updates ofa andY both yield closed-form

solutions as shown in Algorithm5 and in Section4.3.3, respectively, where only simple

matrix-vector operations are involved. Since Algorithm5 involves sorting with average

complexityO(M log(M)), the overall complexity fora andY updates isO(M log(M) +

MG). Algorithm 4 contains three ADMM blocks in each iteration for optimizing{Wik},

{Vik}, andW, whose closed-form solutions are given in (4.32), (4.34), and (4.35), respec-

tively. Thus, the overall computational complexity in each iteration isO(M2G
∑G

i=1 Ki).4

The SLR-based approach viaPSLR
3

The computational complexity of the ADMM-based algorithm in Algorithm6 mainly oc-

curs at updatingW in Section4.4.2, which is the consensus-ADMM- based algorithm in

Algorithm 7. As discussed in Section4.4.2, the updates of ofa andY are the same as the

SINR-based approach in Algorithm3. Thus, the only difference of the two approaches is

in the computational complexity incurred for updatingW. In particular, Algorithm7 for

updatingwi contains three ADMM blocks in each iteration for optimizing{ŵik} and{wi},

whose semi-closed-form solutions are given in (4.64) and (4.67), respectively. Note that the

matrix inversions in (4.64) and (4.67) only need to be performed once at the beginning of

Algorithm 6. The overall computational complexity in each iteration isO(M 2
∑G

i=1 Ki).

Compare this with that for the SINR-based approach above, we see that the SLR-based ap-

proach has lower computational complexity in each iteration, leading to faster computation

4Note thatDik is a diagonal matrix. We use this structure in calculating the required matrix multiplication
operation in (4.32), (4.34), and (4.35). Also, the diagonal matrix inversion in (4.35) only needs to be computed
once at the beginning of Algorithm3.
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of a solution. Furthermore, in Section3.5, we will show in our simulation study that the

SLR-based approach also results in faster convergence than the SINR-based approach.

4.5 Robust Multicast Beamforming

Given the antenna selection vectora obtained in Phase 1, in Phase 2, we find the robust

beamforming solution for the selected antennas. Denote the channel covariance matrix of

the selected antennas byRs
ik ∈ C

L×L; it is obtained by selecting the columns and rows

from Rik, for which am = 1. Similarly, denoteWs ∈ CL×G as the beamforming matrix

of selected antennas, which corresponds to theL selected rows ofW, for which am =

1. Then, removing the constraints (4.13b)–(4.13d) on a from P1, we have the following

equivalent robust multicast beamforming optimization problem:

P4 : min
Ws

tr(WsWsH)

s.t. tr(Rs
ikW

sDikW
sH)− εik‖W

sDikW
sH‖F ≥ σ2γik, k ∈ Ki, i ∈ G.

The above problem is the same as the regular robust multicast beamforming optimiza-

tion problem considered in section3.2.2, for which an ADMM-based fast algorithm has

been developed to solveP4. Thus, we can directly apply Algorithms1 and2 in Chapter??

to solveP4.

4.6 Convergence Discussion of Proposed Algorithms

ProblemsPSINR
3 andPSLR

3 in Phase 1 andP4 in Phase 2 are all non-convex problems. The

convergence results of ADMM for the non-convex problems are rather limited in the lit-

erature. Typically numerical results are used to study the convergence and performance

of ADMM for a specific optimization problem. Nonetheless, in a recent work [51], the

convergence of ADMM to a wide range of non-convex problems is shown. Based on this

result, we have proven in3.3.3that the convergence of the proposed ADMM-based algo-

rithm for robust multicast beamforming is guaranteed. That is, the algorithm to solveP4

is guaranteed to converge. Furthermore, we point out that for the subproblems solved by
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Algorithms3, 4, and6, their structure (both the objective and constraint functions) are sim-

ilar to optimization problem in (3.16) of section3.2.2, and the construction of two ADMM

blocks is used in each algorithm. Thus, the convergence of Algorithms3, 4, and 6 is also

guaranteed by applying the similar convergence proof. Algorithm7 uses three ADMM

blocks for the non-convex subproblem, where the convergence guarantee is more challeng-

ing to show theoretically. Instead, we resort to simulation study in Section3.5 to show the

convergence of this algorithm.

4.7 Simulation Results

We consider a downlink multicast beamforming scenario withG groups andKi = K,

∀ i ∈ G, andγik = γ, ∀ k ∈ Ki, i ∈ G. Unless otherwise stated, the default setup isG = 3

groups,K = 4 users per group,M = 100 antennas,L = 10 RF chains, andγ = 3 dB. We

set noise variance toσ2 = 1.

For the error bound in (4.4), we express it asεik = η‖Rik‖F , whereη is the normalized

error bound. We useη to study the robust beamforming performance. For modeling the

channel covariance matrix, consider the channel vectorhik between userk ∈ Ki, i ∈ G and

BS, and the estimated channelĥik = hik +eik, whereeik is estimation error. We model the

channel covariance matrix and estimated channel covariance matrix asR̄ik = hikh
H
ik and

Rik = ĥikĥ
H
ik, respectively. The error matrix is obtained asEik = Rik −Rik. We generate

each channel vector independently ashik ∼ CN (0, I), and the error vectors independently

aseik
i.i.d.
∼ CN (0, σ2

eI), whereσ2
e is the corresponding variance. To model the bounded error

in (4.4) more realistically, we obtainEik as the above. We then setη as a cut-off bound

such that‖Eik‖F ≤ η‖Rik‖F = εik holds for90% of realizations ofeik. Finally, those

realizations withEik satisfying (4.4) are considered in the simulation. Unless otherwise

stated, we set the default value toη = 0.01.
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Figure 4.1: The convergence behavior of relative residualΔa by Algorithms3 and6.

4.7.1 Convergence Behaviour of Algorithms for Phase 1

For the proposed SINR-based and SLR-based approaches for antenna selection in Phase

1, we study the convergence behaviour of the ADMM-based algorithm developed for each

approach.

For the SINR-based approach, Algorithm3 provides the outer-layer ADMM procedure

for solvingPSINR
3 , where the update forW in (4.20) is obtained by the inner-layer ADMM

algorithm in Algorithm4. Similarly, for the SLR-based approach, Algorithm6 provides

the outer-layer ADMM procedure for solvingPSLR
3 , where the update forW in (4.54) is

obtained by the inner-layer ADMM algorithm in Algorithm7. We first consider the outer-

layer ADMM-based algorithm in each approach. We consider both residual convergence

and objective convergence. Define the relative difference fora between iterationsl − 1

andl asΔa , ‖al−al−1‖
‖al‖ , and the relative residual for the equality constraint in (4.16e) as

ΔW , ‖Wl−Yl−1‖F

‖Wl‖F
(for the equality constraint in (4.53e) asΔW , ‖Wl−Y

l−1
‖F

‖Wl‖F
). Let

P l = tr(WlWlH) denote the value of the power objective function inP1 in iterationl. We

define the relative objective convergence asΔP = |P l−P l−1|
P l . Figs.4.1 and4.2 show the

trajectories ofΔa andΔW over iterations fora andW, respectively, by both SINR-based
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Figure 4.2: The convergence behavior ofΔW by Algorithms3 and6.

and SLR-based approaches. We see that the convergence behavior for both approaches

are similar: the values ofΔa andΔW drop below10−3 after20 iterations, indicating fast

convergence. Fig.4.3 shows the trajectory ofΔP over iterations. Again, we see that the

value ofΔP drops below10−3 after 15 iterations.

Next, we study the convergence of the inner-layer ADMM-based algorithm to up-

dateW in each approach: Algorithm4 for PSINR
3 and Algorithm 7 for PSLR

3 . For the

SINR-based approach, Algorithm4 iterates among three update blocksW, {Wik}, and

{Vik}. Define the relative residuals in iterationj for the equality constraints in (4.24b)

and (4.24c) asΔW , maxi,k{
‖Wj

ik−Wj‖F

‖Wj
ik‖F

} andΔV = maxi,k{
‖Vj

ik−WjDik‖F

‖Vj
ik‖F

}, respec-

tively. Figs.4.4 and4.5 plot the trajectories ofΔW andΔV over iterations, respectively,

for M = 50, 100, 200. We see that their values drop below10−3 within about200 iter-

ations for all value ofM . For the SLR-based approach, Algorithm7 for PSLR
3 has two

update blockswi and{wik} (with subscripti reinstated). Define the relative residual for

the equality constraint in (4.58) asΔwi = maxk{
‖wj

ik−wj
i ‖

‖wj
ik‖
}. Fig. 4.6 show the trajectory

of Δwi for M = 50, 100, 200. We see that the value ofΔwi drops below10−3 after 100

iterations. Compared with Fig.4.4, we see that the convergence speed of Algorithm7 is

86



0 5 10 15 20 25 30 35 40

Iteration

10-8

10-6

10-4

10-2

100
SINR-based solution
SLR-based solution

Δ
P

Figure 4.3: The convergence behavior of the relative objective differenceΔP of P1 by
Algorithm 4.

approximately two times faster than that of Algorithm4 for the SINR-based approach. As

analyzed in Section4.4.3, the computational complexity of Algorithm7 is lower than that

of Algorithm 4 per ADMM iteration. Thus, overall the SLR-based approach is a faster

algorithm with lower complexity than the SINR-based approach to compute the solution.

4.7.2 Impact of Approximated Approach in Phase 1

In our proposed two-phase approach, to determine antenna selection in Phase 1, we sim-

plify the problem by proposingPSINR
3 , where we ignore the second term of the constraint

(4.15a) in P3. Now, we study the effect of such approximation as compared to the original

problemP3. Specifically, in Phase 1, we solveP3 directly via the interior point method

(IPM) to obtain the antenna selection vectora and then round its elements to the nearest0

or 1 for binary selection. Phase 2 is carried the same way as before. IPM is implemented

via the genetic nonlinear program solverfmincon in MATLAB. 5 We tune the value of

ζ from 0.005 to 2 and select the one resulting in the lowest transmit power. Fig.4.7-top

shows the transmit power normalized by noiseP/σ2 vs. the normalizes error boundη for

5We resort to the generic IPM as there is no other existing algorithm to solve the problem.
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Figure 4.4: The inner-layer ADMM of SINR-based approach: the convergence behavior of
relative residualΔW in Algorithm 4.

channel covariance. We see that using the approximate versionPSINR
3 for antenna selection

results in less than0.3 dB performance gap to that of directly solvingP3. Fig. 4.7-middle

and Fig.4.7-bottom showP/σ2 vs. L andK, respectively. The performance of our SINR-

based approach usingPSINR
3 is near identical to that usingP3 directly in Phase 1. These

demonstrate that the effectiveness of our proposed approach in Phase 1 for antenna selec-

tion, which has small to negligible impact on the overall performance, but with significantly

less computational complexity as we will see in the next subsection.

4.7.3 Performance Comparison

We now evaluate the performance of our proposed algorithms for antenna selection and ro-

bust multicast beamforming. For comparison, we consider the following methods to solve

PSINR
3 andPSLR

3 for antenna selection in Phase 1: i) SINR-ADMM and SLR-ADMM: our

proposed SINR-based approach with Algorithms4 and SLR-based approach with Algo-

rithm 7; ii) SINR-IPM and SLR-IPM: solvingPSINR
3 andPSLR

3 using IPM via the genetic

nonlinear program solverfmincon in MATLAB; iii) Heuristic selection: antenna selec-

tion based on the average channel strength, where we compute the average channel power
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Figure 4.5: The inner-layer ADMM of SINR-based approach: the convergence behavior of
relative residualΔV in Algorithm 4.

gain from each antennam to all users:ḡm = 1∑G
i=1 Ki

∑G
i=1

∑Ki

k=1[Rik]mm, and select the

antennas with theL largest gains; iv) Random search-100: instead of exhaustive search

of L antennas, we consider 100 trials of random selection, and choose the best selection

among these trials that gives the lowest transmit power; v) All antennas: allM antennas

are used for multicast beamforming and Phase 1 is not used. We use this benchmark as a

lower bound for all antenna selection methods.

Performance vs. number of selected antennasL

Fig. 4.8 shows the normalized transmit powerP
σ2 vs. the number of selected antennasL

for the default setup. As expected, the transmit power decreases asL increases for all the

antenna selection methods. Our proposed two-phased solutions (SINR-ADMM and SLR-

ADMM) outperforms the heuristic selection and random search-100. The performance

gap becomes significant whenL becomes smaller, as the good antenna selection becomes

critical when only a few antennas are selected. Furthermore, comparing between the SINR-

based and SLR-based approaches in Phase 1, from the zoom-in plot, we see the SLR-

ADMM shows a negligible loss as compared to SINR-ADMM; the two approaches result in
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Figure 4.6: The inner-layer ADMM of SLR-based approach: the convergence behavior of
relative residualΔwi in Algorithm 7.

Table 4.1: Average Computation Time OverL (sec.)

L 5 10 15 20

SINR-ADMM 98 100 102 104

SLR-ADMM 22.3 25 27.8 30.6

SINR-IPM 10178 12119 12396 13016

SLR-IPM 6069.5 6983.1 7754.7 7906.7

nearly identical performance. Comparing the two approaches with their IPM counterpart,

wee see that the performance of our ADMM-based algorithms is nearly identical to that

produced by IPM. This demonstrates the effectiveness of our proposed fast algorithms.

The computational advantage of our proposed ADMM-based algorithms is shown in

Table4.1, where we provide the average computation time for the plots of SINR-based

and SLR-based approaches in Fig.4.8. Our proposed ADMM-based algorithms are sig-

nificantly faster in computing a solution than IPM for both of the SINR-based and SLR-

based approaches. Furthermore, SLR-ADMM has lower computational complexity than

SINR-ADMM for all L values, with nearly identical performance. This demonstrates the

effectiveness of our proposed SLR-based approach.
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P
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Performance vs. number of usersK

Fig. 4.9shows the normalized transmit powerP
σ2 vs. the number of users per groupK for

the default setup. Our proposed two-phased solutions outperforms the heuristic selection

and random search-100 for all values ofK considered. Also, the performance of SLR-

based and SINR-based approaches is nearly identical. The performance of our proposed

SINR-ADMM and SLR-ADMM is close but slightly better than SINR-IPM and SLR-IPM.

Table4.2 shows the computational advantage of our proposed ADMM-based fast al-

gorithms for difficult values ofK. Similar to Table4.1, our ADMM-based algorithms are

substantially faster than IPM, and the SLR-based approach provides lower complexity than

the SINR-based approach, with a similar performance.
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Table 4.2: Average Computation Time OverK (sec.)

K 2 3 4 5 6

SINR-ADMM 46 70 100 110 124

SLR-ADMM 11.5 17.5 25 27.5 31

SINR-IPM 6314.9 9566.8 12119 14769 16869

SLR-IPM 4031 5588.3 6983.1 9372.7 11177
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Chapter 5

Conclusion and Future Works

In this chapter, summarize the main results in this dissertation and outline some possible

future works.

5.1 Robust multicast Beamforming Design for Massive MIMO

In this work, we have considered the robust multi-group multicast beamforming design

under channel uncertainty and proposed an ADMM-based fast algorithm to find a solu-

tion. Using channel covariance matrix for beamforming design, we have considered the

QoS problem using the worst-case SINR constraints, under the assumption that the esti-

mation error is within a spherical region. We have directly solved this formulated non-

convex problem by developing an ADMM-based fast algorithm with convergence guaran-

tee. The algorithm contains two layers of ADMM procedures. The outer-layer ADMM

breaks the problem into two subproblems, which are solved iteratively. We have developed

special techniques to derive closed-form or semi-closed-form solutions to these subprob-

lems. For one of the subproblems, we have developed an inner-layer consensus-ADMM-

based algorithm, which leads to a semi-closed-form solution in each iterative update. The

semi-closed-form solution significantly reduces computational complexity and allows us to

compute the solution fast for large-scale systems with for a large number of antennas and

users. Our simulation results have shown significant power saving offered by our solution

compared with existing conservative methods for robust design, while showing substantial



computational saving over the existing methods.

5.2 Joint Antenna Selection and Robust Multicast Beam-
forming Design for Massive MIMO

In this work, we have considered joint antenna selection and robust multi-group multicast

beamforming design in massive MIMO systems with a limited number of RF chains. Our

design is based on the estimated channel covariance matrices available at the BS with a

given error bound. Our design is to ensure the worst-case SINR meets the target at each

user. We reformulate this NP-hard joint robust optimization problem, into a more tractable

form, for which we proposed a two-phased approach with antenna selection phase, fol-

lowed by multicast beamforming optimization. For the antenna selection phase, we have

proposed the SINR-based approach and develop a two-layered ADMM-based fast algo-

rithm to solve the joint optimization problem. In particular, our algorithm contains (semi-

)closed-form solutions in each iteration update. To further lower the complexity, we have

proposed the SLR-based approach for antenna selection and similarly developed a two-

layered ADMM-based fast algorithm with closed-form updates in each iteration. With the

selected antennas, we can apply the fast algorithm in Chapter?? for robust multicast beam-

forming design. The simulation results show that our proposed approaches outperforms

other antenna selection methods, and our ADMM-based algorithms provide fast computa-

tion of both antenna selection and beamforming solution.

5.3 Future work: Robust Multi-group Multicast Beam-
forming in Cloud Radio Access Networks(C-RAN)

Due to the nature of our work in the previous studies on large-scale systems, one possible

extension of our current work is to extend our algorithms to C-RAN. One of the concerns

in wireless communication is the raising demand for the mobile data due to evolution of

the wireless communication and the progress in the devices capability of media streaming

[131]. On the other hand, increasing the number of users requesting the same content
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leads to overwhelming interference in the network [132]. One solution to these problems

is C-RAN, in which high-speed backhaul links connect the BSs to cooperate through a

baseband unit (BBU) to manage the interference and improve the spectrum efficiency [132].

However, requesting massive CSI for interference management imposes challenges in the

C-RAN architecture [132]. Furthermore, the limited capacity of the backhaul links in large-

scale systems results in joint multicast beamforming design and backhaul links selection

[133].

One possible extension of our work is to tackle the joint robust quality of service

problem and backhaul link selection. We can exploit our result on the exact worst-case

SINR in the C-RAN to formulate the robust QoS problem. Due to the limited capacity of

the backhaul links, a backhaul capacity constraint is added to the problem. This constraint

guarantees the maximum data rate from the BBU to remote radio heads (RRHs) is less

than the available capacity of the links. A transmit power constraint on each RRH, also,

is imposed due to the high interference in the C-RAN. Compared with our previous work,

the power consumption in the C-RAN is affected by both the BS and the backhaul links.

The challenge here is solving the obtained NP-hard, non-convex, mixed-integer variables

problem with low computational complexity while maintaining high performance.
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Appendix A

Chapter 3 Appendices

A.1 Derivation of (3.14)

The Lagrangian for problem (3.13) is given byL(Eik, νik) = J(Eik; {wi})+νik(‖Eik‖2F −

ε2
ik), whereνik is the Lagrange multiplier associated with the constraint onEik. By the KKT

conditions, we set the derivative ofL(Eik, νik) w.r.t. Eik to zero and obtainEik as

Eik = −
1

2νik

wiw
H
i − γik

∑
l∈G−i

wlw
H
l

‖ wiwH
i − γik

∑
l∈G−i

wlwH
l ‖F

. (A.1)

From (A.1), we haveνik > 0; otherwise, the error bound‖Eik‖2F ≤ ε2
ik will not hold. By

the complimentary slackness conditionνik(‖Eik‖2F−ε2
ik) = 0, It follows that‖Eik‖2F = ε2

ik.

Bring this to (A.1), we have (3.14).
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A.2 Derivation of (3.33)

SubstitutingRe{z} in (3.31) into (3.32), we have

(
Re{rC(λ)b} − 1
1− λrHC(λ)r

)2

(1− λ2rHP(λ)r)

− 2λ

(
Re{rHC(λ)b} − 1

1− λrHC(λ)r

)

Re{rHP(λ)b} − bHP(λ)b = 0.

If 1− λrHC(λ)r 6= 0, multiplying both sides of the above equation by(1− λrHC(λ)r)2,

we arrive at the equation in (3.33). Note that asλrHC(λ)r → 1, the LHS of the above

equation goes to either−∞ or +∞. Thus,λ satisfyingλrHC(λ)r = 1 is not the root of

(3.32). Therefore, solving (3.32) is equivalent to solving (3.33).
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A.3 Derivation of Re{z̄} and λ̃ for wo in (3.47)

Sincewo in (3.47) has exactly the same form asvo in (3.29), the expression ofRe(z̄) has

the same structure as in (3.31), given by

Re{z̄} =
Re{r̄HC̄(λ̃)b̄} − λ̃r̄HC̄(λ̃)r̄

1− λ̃r̄HC̄(λ̃)r̄
(A.2)

whereC̄(λ̃) , (Ī+ λ̃Vc)
−1. To determinewo, we only need to find̃λ. Similar to (3.33), by

substituting the expressions ofwo in (3.47) andRe(z̄) in (A.2) into the equality constraint

in (3.44) of P ′
w, we obtainλ̃ as a root of the following equation:

(Re{r̄HC̄(λ̃)b} − 1)2(1− λ̃2r̄HP̄(λ̃)r̄)

− 2λ̃(Re{r̄HC̄(λ̃)b̄} − 1)(1− λ̃r̄HC̄(λ̃)r̄)Re{r̄HP̄(λ̃)b̄})

− b̄HP̄(λ̃)b̄(1− λ̃r̄HC̄(λ̃)r̄)2 = 0 (A.3)

whereP̄(λ̃) , C̄(λ̃)VcC̄(λ̃).

We further simplify (A.3) by examining the structure of̄C(λ̃). Define

V̄c , Ī−
1
2VcĪ

− 1
2 . (A.4)

Then, we havēC(λ̃) = Ī−
1
2 (I + λ̃V̄c)

−1Ī−
1
2 . Applying this into the definition ofP(λ̃), we

haveP̄(λ̃) = Ī−
1
2 (I + λ̃V̄c)

−1V̄c(I + λ̃V̄c)
−1Ī−

1
2 . Consider the eigenvalue decomposition

of V̄c in (A.4). Recall that̄I = μI + ρD
2
, whereD = D⊗ IM . We can rewritēI = μIG ⊗

IM +ρD2⊗IM = Dc⊗IM , whereDc , μIG +ρD2. Recall thatVc = ε2

(σ2γ)2
VTVj∗⊗IM .

Substituting the expressions ofVc andĪ in (A.4), we have

V̄c =
ε2

(σ2γ)2
D

− 1
2

c VTV∗D
− 1

2
c ⊗ IM . (A.5)

Consider the following eigenvalue decompositionε
2

(σ2γ)2
D

− 1
2

c VTV∗D
− 1

2
c = UvΣvU

H
v ,

whereΣv = diag(σ̃2
1, ∙ ∙ ∙ , σ̃

2
G), with σ̃2

j being thejth eigenvalue ofVv andUv being a

unitary matrix. Then, we havēVc = UvΣvU
H
v ⊗ IM . Using this structure of̄Vc, we have

C̄(λ̃) = D
− 1

2
c Uv(I + λ̃Σv)

−1UH
v D

− 1
2

c ⊗ IM andP̄(λ̃) = D
− 1

2
c Uv(I + λ̃Σv)

−1λ̃Σv(I +

λ̃Σv)
−1UH

v D
− 1

2
c ⊗ IM . This leads to the simplification of the terms in (A.3) as follows:

Re{r̄HC̄(λ̃)b̄}=
G∑

j=1

Re{r̃H
j b̃j}

1 + λ̃σ̃2
j

, r̄HC̄(λ̃)r̄ =
G∑

j=1

‖r̃j‖2

1 + λ̃σ̃2
j
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r̄HP̄(λ̃)r̄ =
G∑

j=1

σ̃2
j‖r̃j‖2

(1 + λ̃σ̄2
j )

2
, b̄HP̄(λ̃)b̄ =

G∑

j=1

σ̃2
j‖b̃j‖2

(1 + λ̃σ̃2
j )

2
,

Re{r̄HP̄(λ̃)b̄} =
G∑

j=1

σ̃2
jRe{r̃

H
j b̃j}

(1 + λ̃σ̃2
j )

2

whereb̃ , (D
− 1

2
c Uv ⊗ IM )H b̄ = [b̃H

1 , . . . , b̃H
G ]H , with b̃j ∈ CM×1, j = 1, . . . , M , and

r̃ , (D
− 1

2
c Uv ⊗ IM )H r̄ = [r̃H

1 , . . . , r̃H
G ]H , with r̃j ∈ CM×1, j = 1, . . . , M . Note that

from the definitions of̄b andr̄, we can efficiently computẽb andr̃ asb̃ = vec((ρZDc +

μY)D
− 1

2
c U∗

v) andr̃ = 1
σ2γ

vec(RD
− 1

2
c U∗

v). Based on the above, (A.3) can be simplified as

( G∑

j=1

Re{r̃H
j b̃j}

1 + λ̃σ̃2
j

− 1
)2(

1− λ̃2
G∑

j=1

σ̃2
j ‖r̃j‖2

(1 + λ̃σ̄2
j )

2

)

− 2λ̃
( G∑

j=1

Re{r̃H
j b̃j}

1 + λ̃σ̃2
j

− 1
)(

1− λ̃
G∑

j=1

‖r̃j‖2

1 + λ̃σ̃2
j

) G∑

j=1

σ̃2
j ‖r̃j‖2

(1 + λ̃σ̄2
j )

2

−
G∑

j=1

σ̃2
j ‖b̃j‖2

(1 + λ̃σ̃2
j )

2

(
1− λ̃

G∑

j=1

‖r̃j‖2

1 + λ̃σ̃2
j

)2
= 0. (A.6)

As the LHS of equation (A.6) is a smooth polynomial function of̃λ, its roots can be easily

found. With the constraintRe{z̄} − 1 ≥ 0 imposed onP ′
w, we select the root of (A.6) that

results in the minimum objective value ofP ′
w while satisfyingRe{z̄} − 1 ≥ 0.
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