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Abstract. Numerically solving the Liouville equation in classical mechanics with a discontinuous potential often leads to the4
challenges of how to preserve the Hamiltonian across the potential barrier and a severe time step constraint according to the CFL5
condition. Motivated by the Hamiltonian-preserving finite volume schemes by Jin and Wen [19], we introduce a Hamiltonian-6
preserving discontinuous Galerkin (DG) scheme for the Liouville equation with discontinuous potential in this paper. The DG7
method can be designed with arbitrary order of accuracy, and offers many advantages including easy adaptivity, compact stencils8
and the ability of handling complicated boundary condition and interfaces. We propose to carefully design the numerical fluxes9
of the DG methods to build the behavior of a classical particle at the potential barrier into the numerical scheme, which ensures10
the continuity of the Hamiltonian across the potential barrier and the correct transmission and reflection condition. Our scheme11
is proved to be positive and stable in L1 norm if the positivity-preserving limiter is applied. Numerical examples are provided to12
illustrate the accuracy and effectiveness of the proposed numerical scheme.13
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1. Introduction. In this paper, we develop and analyze high order Hamiltonian-preserving discontinuous17

Galerkin (DG) methods for the d-dimensional Liouville equation in classical mechanics18

ft +∇vH · ∇xf −∇xH · ∇vf = 0, x,v ∈ Rd,(1.1)1920

where the Hamiltonian H is given by21

(1.2) H =
1

2
|v|2 + V (x),22

and V (x) is the potential. Here f(t,x,v) is the probability density function of particles at position x, time t
and traveling with velocity v. The Liouville equation (1.1) can be viewed as a different Eulerian formulation
of Newton’s second law:

dx

dt
= v,

dv

dt
= −∇xV,

which is a Hamiltonian system with the Hamiltonian H defined in (1.2).23

If the potential V (x) is smooth, the Liouville equation (1.1) is a linear kinetic equation, which has been24

well studied in the literature. Many existing numerical methods can be applied to provide good numerical25

approximation. However, a discontinuous potential V (x) may cause extra challenges both theoretically and26

numerically, and special attention shall be paid to the case with a potential barrier when the potential V (x)27

is discontinuous. Potential barriers appear in many practical physical problems including the quantum tun-28

neling, materials or media with interfaces, etc. Under such case, the Liouville equation (1.1) becomes a linear29

hyperbolic model with measure-valued coefficients. We refer to the results in [1, 2, 3, 12, 16, 27, 28] for some30

theoretical analysis on the uniqueness of weak solutions to transport equation with discontinuous (but not31

measure-valued) coefficients, as the latter can be viewed as a special case of the Liouville equation. Numer-32

ically, standard numerical methods may suffer from two challenges [19]. First, numerical approximation of33

Vx near the discontinuity is of the order O(1/∆x), therefore, if an explicit numerical method is used for time34

discretization, the stringent CFL condition ∆t = O(∆x∆v) is required, with ∆x, ∆v being the mesh size under35

the one-dimensional spatial space and one-dimensional velocity space (1D1V) setting. This leads to smaller36
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∆t, hence more expensive computation. Second, the Hamiltonian H = ξ2/2 +V (x) is not preserved across the37

discontinuities of V (x), which may lead to at least a poor numerical resolution, or more seriously, unphysical38

solutions [21].39

It is well-known from classical mechanics that, across a potential barrier, the Hamiltonian should remain
constant. Motivated by this, Hamiltonian-preserving methods have been proposed and studied in [19] to solve
the Liouville equation with discontinuous potential based on finite difference and finite volume approaches.
The main idea was to use the behavior of the classical particle at the potential barrier, namely, transmission
or reflection, and build it into the design of the Hamiltonian-preserving methods to be consistent with the
constant Hamiltonian across the discontinuity. This mechanism was first used to construct the numerical flux
and to build the well-balanced kinetic scheme in [26] for the shallow water equations with non-flat topography,
in order to preserve the steady state solution. It was also shown in [19] that the proposed explicit Hamiltonian-
preserving schemes admit a standard CFL condition ∆t = O(∆x, ∆v), and the positivity property and the
stability in L1 and L∞ norms are also provided. The proof of the L1-stability and error estimates of the
proposed schemes are further discussed in [34, 35, 33, 23]. We also refer readers to [20, 21] for the Hamiltonian-
preserving methods to solve the Liouville equation (1.1) arising from the applications in geometrical optics,
with the Hamiltonian

H = c(x)|v|,
where c(x) is the local wave speed of the medium. It can be viewed as the high frequency limit of the second
order wave equation

utt − c(x)2∆u = 0, t > 0, x ∈ Rd.

Here the wave speed c(x) has isolated discontinuities due to different media, and waves crossing the discontin-40

uous interface will be transmitted or reflected. Hamiltonian-preserving methods for more complex cases like41

high frequency waves propagating through different media can be found in [17, 22, 32].42

In this paper, we consider solving the Liouville equation (1.1) in the discontinuous Galerkin (DG) frame-43

work. DG methods are a class of finite element methods, where both the numerical solution and the test44

functions belong to discontinuous piecewise polynomial spaces. They were first designed to solve linear trans-45

port equations in [30], and later were extended to solve hyperbolic conservation laws in a series of papers46

[7, 8, 9, 10]. DG methods have been successfully applied to a wide range of mathematical models, including47

the kinetic equations, see [6, 13, 15, 29, 4, 5] and the references therein for an incomplete list.48

DG methods enjoy many advantages, including h-p adaptivity, arbitrarily unstructured meshes, compact49

stencils, efficient parallel implementation, and the ability of handling complicated boundary conditions and50

curved interface, etc. The goal of this paper is to design Hamiltonian-preserving DG (HPDG) methods for51

the Liouville equation (1.1), extending the low order Hamiltonian-preserving finite difference and finite volume52

methods in [19] to high order HPDG methods. As illustrated in [19], one of the key ideas to design Hamiltonian-53

preserving methods is to build the behavior of a classical particle at the potential barrier into the numerical54

scheme. Here, we propose to carefully design the numerical fluxes of the DG methods to adopt such mechanism.55

The HPDG method is built upon the standard DG method for hyperbolic conservation laws, with extra56

attention paid to the design of numerical fluxes at the positions where the potential V (x) is discontinuous to57

ensure the continuity of the Hamiltonian across the potential barrier. As a result, the boundary integration of58

numerical fluxes at the cell interfaces may be converted into another integration over a range of cell interfaces,59

which can be evaluated numerically via a carefully designed Gaussian quadrature rule. In [19], the low order60

Hamiltonian-preserving finite difference and finite volume methods were proven to be positive and stable in L161

and L∞ norm. After extending these to arbitrary high order HPDG methods, one non-trivial challenge lies in62

the stability of the resulting method. To provide extra robustness and stability, a simple positivity-preserving63

limiter, studied in [36] for DG methods, is combined with the proposed HPDG methods. We demonstrate64

theoretically that the resulting DG methods preserve the non-negativity of the numerical solution, and have65

the L1 stability, even under the situation when the potential V (x) is discontinuous. Numerical examples are66

provided for both one-dimensional (1D1V) and two-dimensional (2D2V) Liouville equations to demonstrate67

the performance of the proposed methods.68

The paper is organized as follows: In Section 2, we first discuss the problems with the standard DG69

method to solve the Liouville equation under 1D1V setting with discontinuous potentials. We then present the70
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Hamiltonian-preserving numerical fluxes by adopting the behavior of classical particles at a potential barrier.71

This leads to the HPDG methods. In addition, we combine the resulting method with a simple positivity-72

preserving limiter to ensure the solution stay non-negative during the simulation. In Section 3, we establish the73

positivity and stability analysis for our Hamiltonian-preserving scheme. We extend the proposed methods to74

two-dimensional space in Section 4. In Section 5, several numerical examples are presented to investigate the75

accuracy and effectiveness of our Hamiltonian-preserving scheme. We conclude the paper with some remarks76

in Section 6.77

2. Hamiltonian-preserving DG methods. In this section, we lay out the details of the algorithm78

formulation of the HPDG method for the Liouville equation (1.1) under the1D1V setting, given by79

ft + ξfx − Vxfξ = 0,(2.1)8081

equipped with suitable initial and boundary conditions, where ξ denotes the one-dimensional variable in the v82

direction. Our starting point is the standard DG method presented in the following section.83

2.1. Standard DG methods. In this section, we briefly present the standard DG method for solving84

(2.1) and discuss the difficulties arising from the discontinuous potentials.85

We first introduce some notations. Assume x ∈ [−L,L] and ξ ∈ [−Ac, Ac]. The domain is uniformly (to86

simplify the presentation) partitioned as follows:87

−L = x 1
2
< x 3

2
< · · · < xNx+ 1

2
= L, −Ac = ξ 1

2
< ξ 3

2
< · · · < ξNξ+ 1

2
= Ac.88

We use a mesh that is a tensor product of grids in the x and ξ direction, respectively, defined as89

Kij = [xi− 1
2
, xi+ 1

2
]× [ξi− 1

2
, ξi+ 1

2
], Ii = [xi− 1

2
, xi+ 1

2
], Jj = [ξj− 1

2
, ξj+ 1

2
].90

91

Denote the cell center as xi = 1
2 (xi+ 1

2
+ xi− 1

2
) and ξj = 1

2 (ξj+ 1
2

+ ξj− 1
2
). Denote the mesh size as ∆x =

xi+ 1
2
− xi− 1

2
and ∆ξ = ξj+ 1

2
− ξj− 1

2
. We also define a discontinuous Galerkin finite element approximation

space as

Vkh := {v : v|Kij ∈ P k(Kij), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nξ},

where P k(Kij) denotes the set of polynomials of total degree up to k on cell Kij . Denote v−, v+ as the left92

and right limits of the function v at the cell interface, respectively. We also introduce the following notations93

to simplify the presentation:94

(u, v)Kij =

∫
Kij

uv dxdξ, 〈u, v〉Ii =

∫
Ii

uv dx, 〈u, v〉Jj =

∫
Jj

uv dξ.(2.2)95

96

With a slight abuse of notation, the standard semi-discrete DG method for solving (2.1) is defined as97

follows: to find a unique function f : [0, T ]→ Vkh, such that: for i = 1, · · · , Nx, j = 1, · · · , Nξ,98

(ft, φ)Kij − (ξf, φx)Kij +
〈
ξf̂i+ 1

2 ,ξ
, φ(x−

i+ 1
2

, ξ)
〉
Jj
−
〈
ξf̂i− 1

2 ,ξ
, φ(x+

i− 1
2

, ξ)
〉
Jj

+ (Vxf, φξ)Kij −
〈
Vxf̃x,j+ 1

2
, φ(x, ξ−

j+ 1
2

)
〉
Ii

+
〈
Vxf̃x,j− 1

2
, φ(x, ξ+

j− 1
2

)
〉
Ii

= 0,
(2.3)99

100

holds for all test functions φ ∈ Vkh. Here101

f̂i+ 1
2 ,ξ

= f̂(xi+ 1
2
, ξ), f̃x,j+ 1

2
= f̃(x, ξj+ 1

2
)(2.4)102

103

are the so-called numerical fluxes, defined at the cell interfaces and in general depend on the values of the104

numerical solution f from both sides of the interface. They are usually taken as monotone fluxes and we refer105
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the readers to the review paper [11] for more details. For example, we can take the following simple upwind106

numerical fluxes107

f̂i+ 1
2 ,ξ

=

{
f(x−

i+ 1
2

, ξ) if ξ ≥ 0,

f(x+
i+ 1

2

, ξ) if ξ < 0,
(2.5)108

f̃x,j+ 1
2

=

{
f(x, ξ+

j+ 1
2

) if Vx ≥ 0,

f(x, ξ−
j+ 1

2

) if Vx < 0.
(2.6)109

110

Thus we obtain a standard semi-discrete DG scheme for solving the Liouville equation (2.1).111

For the temporal discretization, we consider the third-order strong-stability-preserving (SSP) Runge-Kutta112

(RK) method [31]. For solving113

(2.7)
du

dt
= L(u).114

with L being a spatial discretization operator, the SSP-RK method is given by115

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4

(
u(1) + ∆tL(u(1))

)
,

un+1 =
1

3
un +

2

3

(
u(2) + ∆tL(u(2))

)
.

(2.8)116

117

The standard DG method (2.3), combined with the SSP-RK temporal discretization (2.8), works very well118

when the potential V (x) is smooth. However, if V (x) contains discontinuity, the standard DG method suffers119

from the following two difficulties as outlined in [19]:120

• The Hamiltonian H = ξ2/2 +V (x) is not preserved across the discontinuities of V (x), which may lead121

to an unphysical solution or poor numerical resolution.122

• The CFL condition of the DG scheme, coupled with an explicit time discretization, is given by123

∆t

[
maxj |ξj |

∆x
+

maxi |Vx|i
∆ξ

]
≤ CFL,(2.9)124

125

where |Vx|i denotes some numerical approximation of Vx at x = xi. Usually, to have a stable approxi-126

mation, the time step needs to satisfy ∆t ≤ O(∆x,∆ξ), for smooth potentials V (x). For discontinuous127

potential Vx, we have max |Vx|i = O(1/∆x) in the numerical approximation if one smooths Vx through128

a few mesh points, which leads to a more stringent and unnecessary CFL condition ∆t ≤ O(∆x∆ξ).129

2.2. Hamiltonian-preserving numerical flux. To overcome these numerical difficulties, in this section,130

we unravel the reconstruction of the Hamiltonian-preserving numerical flux for the DG method for solving the131

Liouville equation with a discontinuous potential, based on the behavior of a classical particle at a potential132

barrier.133

By the theory of the classical mechanics, a particle at a potential barrier either crosses it with a different134

momentum or is reflected, depending on its momentum and the strength of the potential barrier. Across the135

potential barrier, the Hamiltonian H = ξ2/2 + V (x) should be preserved, i.e.,136

1

2
(ξ−)2 + V − =

1

2
(ξ+)2 + V +,(2.10)137

138

where the superscript ± denote the right and left limits of the function at the potential barrier. Therefore, at139

the discontinuity of the potential V (x), given the velocity ξ− on the left of the discontinuity, the velocity ξ+140

on the right can be computed by this constant Hamiltonian condition, yielding141

ξ+ =

{ √
(ξ−)2 + 2(V − − V +) if (ξ−)2 + 2(V − − V +) ≥ 0,

−ξ− otherwise.
(2.11)142

143

4

This manuscript is for review purposes only.



More details to explain the behavior of a classical particle at a potential barrier can be found in [19]. We144

remark here that in defining numercial fluxes, we use the property that the density function f(t, x, ξ) stays145

unchanged across the discontinuity of the potential, in the following manner:146

f(t, x−, ξ−) = f(t, x+, ξ+),(2.12)147148

where x is some discontinuous point of V (x), and ξ± are related by (2.11).149

Now we use the above mechanism to construct Hamiltonian-preserving numerical flux of high-order DG150

methods for solving (2.1), in order to maintain a constant Hamiltonian across the potential barrier. Throughout151

this paper, we assume that the discontinuous points of the potential V (x) are located at the cell interface152

and V (x) is Lipschitz continuous in the region between these discontinuities. In order to take care of the153

discontinuity of the potential, we first introduce numerical fluxes f̂+
i− 1

2 ,ξ
, f̂−
i+ 1

2 ,ξ
at each cell interface in the154

x-direction and modify the semi-discrete DG scheme (2.3) as155

(ft, φ)Kij − (ξf, φx)Kij +
〈
ξf̂−
i+ 1

2 ,ξ
, φ(x−

i+ 1
2

, ξ)
〉
Jj
−
〈
ξf̂+
i− 1

2 ,ξ
, φ(x+

i− 1
2

, ξ)
〉
Jj

+ (Vxf, φξ)Kij −
〈
Vxf̃x,j+ 1

2
, φ(x, ξ−

j+ 1
2

)
〉
Ii

+
〈
Vxf̃x,j− 1

2
, φ(x, ξ+

j− 1
2

)
〉
Ii

= 0,
(2.13)156

157

where the numerical fluxes f̃x,j± 1
2

in the ξ direction still take the form of upwind fluxes defined in (2.6). Note158

that if V (x) is continuous at the point xi− 1
2
, both f̂+

i− 1
2 ,ξ

and f̂−
i− 1

2 ,ξ
reduce to the standard numerical fluxes159

f̂i+ 1
2 ,ξ

as defined earlier.160

Now, assume V (x) is discontinuous at xi− 1
2
, our focus is on the reconstruction of the numerical fluxes161

f̂±
i− 1

2 ,ξ
in the scheme (2.13), which is explained in details in the following.162

If ξ > 0, following the idea of upwind flux, we define163

f̂−
i− 1

2 ,ξ
= f(x−

i− 1
2

, ξ),(2.14)164
165

which is the same as the standard upwind flux in (2.5) and ξ is taken from the interior of the cell. But for the166

other flux f̂+i−1/2,ξ, we define it as167

f̂+
i− 1

2 ,ξ
= f(x−

i− 1
2

, ξ̃),(2.15)168
169

where ξ̃ is connected to ξ via the relation (2.10), i.e.,170

1

2
ξ̃2 + V (x−

i− 1
2

) =
1

2
ξ2 + V (x+

i− 1
2

),(2.16)171
172

or the equivalent form (2.11):173

ξ̃ =

{ √
ξ2 − 2(V (x−

i− 1
2

)− V (x+
i− 1

2

)) if ξ2 − 2(V (x−
i− 1

2

)− V (x+
i− 1

2

)) ≥ 0,

−ξ otherwise.
(2.17)174

175

The definition of the flux (2.15) is consistent with the upwind flux (2.5) when V (x) is continuous, since176

V (x−
i− 1

2

) = V (x+
i− 1

2

) under such case and we have ξ̃ = ξ.177

If ξ < 0, we similarly define178

f̂+
i− 1

2 ,ξ
= f(x+

i− 1
2

, ξ),(2.18)179
180

following the upwind flux (2.5), and181

f̂−
i− 1

2 ,ξ
= f(x+

i− 1
2

, ξ̃),(2.19)182
183

5
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where ξ̃ is again connected to ξ via the relation (2.10) or (2.11), i.e.,184

ξ̃ =

{
−
√
ξ2 + 2(V (x−

i− 1
2

)− V (x+
i− 1

2

)) if ξ2 + 2(V (x−
i− 1

2

)− V (x+
i− 1

2

)) ≥ 0,

−ξ otherwise .
(2.20)185

186

Up to now, we have defined the semi-discrete HPDG scheme (2.13) with fluxes discussed in (2.14)-(2.20).187

The integral of the numerical flux f̃x,j+ 1
2

in the cell Ii in the scheme (2.13) is in general evaluated by directly188

applying standard Gauss quadrature rules in this cell. However, this approach may be inaccurate when dealing189

with the integral of the Hamiltonian-preserving numerical fluxes f̂±
i− 1

2 ,ξ
in the same way, since the range of ξ̃190

defined in (2.17) and (2.20) with ξ ∈ Jj may span over more than one cell. Therefore, we have to be more191

careful when approximating the integrals involving fluxes f̂±
i− 1

2 ,ξ
.192

We now use the case of ξ > 0 to explain in details the approximation of these integrals. Here we assume193

V (x) has a discontinuity at the cell interface xi− 1
2

with the jump D = V −
i− 1

2

− V +
i− 1

2

> 0. The other cases,194

namely D < 0 or ξ < 0 can be treated in a similar fashion. To simplify the presentation, we assume that195

the mesh in ξ-direction is partitioned such that 0, ±
√

2D are located at the cell interface. For the integral196 〈
ξf̂−
i+ 1

2 ,ξ
, φ(x−

i+ 1
2

, ξ)
〉
Jj

, it equals to
〈
ξf(x−

i+ 1
2

, ξ), φ(x−
i+ 1

2

, ξ)
〉
Jj

following the definition (2.14) and thus can be197

approximated by the standard Gauss quadrature rules in the cell Jj . The integral
〈
ξf̂+
i− 1

2 ,ξ
, φ(x+

i− 1
2

, ξ)
〉
Jj

is198

more complicated and the detailed approximation is given in the following with two cases considered.199

If D = V −
i− 1

2

− V +
i− 1

2

> 0 and ξj− 1
2
≥
√

2D, with the definition (2.15) and (2.17), we have200

〈
ξf̂+
i− 1

2 ,ξ
, φ(x+

i− 1
2

, ξ)
〉
Jj

=

∫ ξ
j+1

2

ξ
j− 1

2

ξf(x−
i− 1

2

, ξ̃)φ(x+
i− 1

2

, ξ)dξ201

=

∫ η
j+1

2

η
j− 1

2

ηf(x−
i− 1

2

, η)φ
(
x+
i− 1

2

,
√
η2 + 2D

)
dη,(2.21)202

203

where η =
√
ξ2 − 2D and ηj± 1

2
=
√
ξ2
j± 1

2

− 2D. There are two possibilities for the locations of two end points204

ηj± 1
2
, though they may not be at the cell interface any more. They either fall into the same computational205

cell, or belong to different cells. In the former case, the integral (2.21) can be approximated by standard Gauss206

quadrature rules with sufficient accuracy. In the latter case, the integral can be approximated by a composite207

quadrature rule, where we first decompose the integration domain into the union of computational cells (or part208

of the computational cell near the end point) and then apply standard Gauss quadrature rules with sufficient209

accuracy.210

If D = V −
i− 1

2

− V +
i− 1

2

> 0 and ξj− 1
2
<
√

2D, it leads to that ξj+ 1
2
≤
√

2D due to the assumption that
√

2D211

is located at the cell interface. With the definition (2.15) and (2.17), we have212 〈
ξf̂+
i− 1

2 ,ξ
, φ(x+

i− 1
2

, ξ)
〉
Jj

=

∫ ξ
j+1

2

ξ
j− 1

2

ξf(x−
i− 1

2

, ξ̃)φ(x+
i− 1

2

, ξ)dξ =

∫ ξ
j+1

2

ξ
j− 1

2

ξf(x−
i− 1

2

,−ξ)φ(x+
i− 1

2

, ξ)dξ,213

214

which can be approximated by standard Gauss quadrature rules with sufficient accuracy.215

2.3. Positivity-preserving limiter . In this section, we apply a positivity-preserving limiter to the216

HPDG scheme to provide an extra stabilizing mechanism, since the exact solution of the Liouville equation is217

always non-negative if the initial condition satisfies this.218

Starting from the numerical solution fn at time level n (for the initial condition, f0 is simply taken as the219

standard L2 projection of the analytical initial condition into Vkh), a positivity-preserving limiter can be applied220

to “limit” fn to obtain a new function fn,new, which preserves certain positive properties. The “limited” fn,new221

is then advanced to the next time level with the SSP-RK time discretization methods (2.8). We present the222

limiting procedure to compute fn,new from fn in the following and omit the superscript n for simplicity.223
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Denote fij(x, ξ) as the DG approximation polynomial on the cell Ki,j and f̄ij as the cell average of fij(x, ξ)224

on the cell Kij . The “limited” function fnew is defined by225

fnewij (x, ξ) = θ1(fij(x, ξ)− f̄ij) + f̄ij ,(2.22)226227

where θ1 ∈ [0, 1] is determined by228

θ1 = min

{
f̄ij

f̄ij − fmin
, 1

}
, fmin = min

(x,ξ)∈Kij
fij(x, ξ).(2.23)229

230

Clearly the cell average of fnewij (x, ξ) over Kij is still f̄ij and fnewij (x, ξ) ≥ 0 in the cell Kij if f̄ij ≥ 0. We refer231

readers to [25, 24, 37, 36] and the references cited therein for more detailed discussions on the positive-preserving232

and maximum-principle-satisfying limiter.233

Remark 2.1. In order to successfully apply the positivity-preserving limiter (2.22), one needs the assump-234

tion that f̄ij ≥ 0. We will analytically prove that the cell average of the DG numerical solution at the next235

time level tn+1 satisfies this assumption in Theorem 3.3.236

Remark 2.2. For numerical implementation, the exact value fmin in (2.23) can be easily found for k = 1, 2237

by comparing a finite set of special points. However, the exact value of fmin is difficult to compute for238

higher order polynomials (k > 2), especially for multi-dimensional cases. One practical approach is to use239

min
(x,ξ)∈G

fij(x, ξ) as an approximation, where the set G contains the Gauss-Lobatto quadrature points inside240

each computational cell and all the quadrature points used to evaluate the integrals in (2.21). As a result241

of this, the “limited” function fnew is no longer positive everywhere, instead we have fnew(x, ξ) ≥ 0 for any242

(x, ξ) ∈ G. Note that Theorem 3.3 still holds for such case, since the integrals in (3.11) are non-negative after243

applying a (composite) quadrature rule based on the points in G.244

Remark 2.3. The positivity-preserving limiter (2.22) can be easily extended to be a bound-preserving245

limiter to enforce the “limited” function fnew ∈ [0, 1] and ensure extra stability if the initial condition satisfies246

it, following the maximum-principle-satisfying limiter in [36]. If the potential V (x) is smooth, it can be247

analytically proved that the numerical solutions of the DG methods coupling with the bound-preserving limiter248

stay within the range of [0, 1], as did in [36]. When the potential V (x) is discontinuous, the first order finite249

volume Hamiltonian-preserving method in [19] is shown to be L∞ stable, and the L∞ norm is shown to grow250

with an amplification factor of order 1 +O(∆t). Thus the bound-preserving property is not clear for the finite251

volume method which is equivalent with the DG methods of k = 0. Therefore we do not engage in depth the252

bound-preserving property for the high order HPDG methods. We numerically apply the bound-preserving253

limiter to test its performances in Examples 5.2 and 5.3.254

3. Positivity and L1 stability. In this section, we investigate the positivity-preserving property and L1255

stability of the proposed DG scheme in Section 2, for solving the Liouville equation (2.1) with discontinuous256

potential. The study is based on the simple first order Euler forward temporal discretization. High-order257

SSP-RK time discretizations will keep the validity of the properties, since they can be written as convex258

combinations of forward Euler steps.259

A fully discrete scheme for the semi-discrete scheme (2.13) with Euler forward is given by260 (
fn+1 − f

∆t
, φ

)
Kij

− (ξf, φx)Kij +
〈
ξf̂−
i+ 1

2 ,ξ
, φ(x−

i+ 1
2

, ξ)
〉
Jj
−
〈
ξf̂+
i− 1

2 ,ξ
, φ(x+

i− 1
2

, ξ)
〉
Jj

+ (Vxf, φξ)Kij −
〈
Vxf̃x,j+ 1

2
, φ(x, ξ−

j+ 1
2

)
〉
Ii

+
〈
Vxf̃x,j− 1

2
, φ(x, ξ+

j− 1
2

)
〉
Ii

= 0,

(3.1)261

262

where we omit the superscript of fn,new and still use f to denote the limited solution by the positivity-preserving263

limiter discussed in Section (2.3) at time level n. Here f̃x,j+ 1
2

are the upwind fluxes defined in (2.6). f̂±
i+ 1

2 ,ξ
264

are the the Hamiltonian-preserving fluxes defined in Section 2.2 at the discontinuity point xi+ 1
2

of V (x), while265

f̂+
i+ 1

2 ,ξ
= f̂−

i+ 1
2 ,ξ

= f̂i+ 1
2 ,ξ

defined in (2.5) for the smooth point xi+ 1
2

of V (x).266
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The first order version of the proposed DG methods (with polynomial degree k = 0) reduces to the finite267

volume methods designed in [19], and the positivity-preserving limiter (2.22) is not active. Therefore, this first268

order method has the properties of being positive, L1-contracting and L∞ stable as studied in [19]. Next, we269

would like to prove that some properties also hold for the high order DG methods with polynomials of arbitrary270

degree. We first show in the following lemma that one-dimensional integral at the cell boundary is bounded271

by the cell average.272

Lemma 3.1. For any ϕ(x, ξ) ∈ Pk(Kij) and ϕ(x, ξ) ≥ 0, there exists a positive constant ω = ω(k) depending273

on the polynomial degree k, such that274 ∫
Jj

ϕ(x+
i− 1

2

, ξ)dξ ≤ ω

∆x
(ϕ)Kij ,

∫
Jj

ϕ(x−
i+ 1

2

, ξ)dξ ≤ ω

∆x
(ϕ)Kij ,(3.2)275 ∫

Ii

ϕ(x, ξ+
j− 1

2

)dx ≤ ω

∆ξ
(ϕ)Kij ,

∫
Ii

ϕ(x, ξ+
j− 1

2

)dx ≤ ω

∆ξ
(ϕ)Kij ,(3.3)276

277

where (ϕ)Kij denotes the integral of ϕ(x, ξ) on the cell Kij.278

Proof. Denote {ζ`}k`=0 as the Legendre-Gauss-Lobatto quadrature points in [−1, 1] and {ω`}k`=0 as the279

associated quadrature weights. By the Legendre-Gauss-Lobatto quadrature rule with k + 1 points which is280

exact for polynomials of degree up to 2k − 1, we have281

(ϕ)Kij =

∫
Jj

∫
Ii

ϕ(x, ξ)dxdξ =

k∑
`=0

ω`∆x

∫
Jj

ϕ(xi +
∆x

2
ζ`, ξ)dξ

≥ ω0∆x

∫
Jj

ϕ(xi− 1
2
, ξ)dξ + ωk∆x

∫
Jj

ϕ(xi+ 1
2
, ξ)dξ,

(3.4)282

283

where the last inequality is based on the fact that ϕ(x, ξ) ≥ 0 and ω` > 0 for ` = 0, · · · , k. Since ω0 = ωk, we284

obtain (3.2) by setting ω = 1/ω0. (3.3) can be proved similarly.285

Remark 3.2. The proof is valid for k > 0. In particular, ω = 2 when k = 1 and ω = 6 when k = 2,286

according to the quadrature weights. For the case when k = 0, (3.2) and (3.3) hold with ω = 1, since ϕ(x, ξ)287

is a constant function with k = 0.288

Next we investigate the positivity of the fully discrete scheme (3.1). We show in the following theorem289

that by adding a positivity-preserving limiter discussed in Section 2.3 to the HPDG methods, and coupling290

with the time evolution by Euler forward method, the resulting Hamiltonian-preserving scheme (3.1) preserves291

the positivity in the sense that the cell averages are always positive if they are positive initially, under under292

suitable CFL conditions. We remark here that the proof can not be trivially extended from the classical DG293

methods for hyperbolic conservation laws in [36, 24], due to the complication appeared when the potential294

V (x) is discontinuous.295

Theorem 3.3 (Positivity). The solution fn+1 of (3.1) satisfies (fn+1)Kij ≥ 0 under the CFL condition296

ω∆t

(
max |ξ|

∆x
+

maxi supx∈int(Ii) |Vx|
∆ξ

)
≤ 1,(3.5)297

298

where ω is the positive constant presented in Lemma 3.1 and int(Im) denotes the interior of the cell Im.299

Proof. For simplicity, we consider the case when ξ > 0 and 0 is located at the cell interface in ξ-direction,300

V (x) has only one discontinuity point located at the cell interface xm− 1
2

with jump D = V −
m− 1

2

− V +
m− 1

2

> 0,301

and V ′(x) < 0 at smooth points. The other cases, namely, when ξ < 0 or the potential V (x) has several302

discontinuity points with positive or negative jumps, or V ′(x) > 0, can be discussed in the similar fashion. We303

further assume that the mesh is partitioned such that 0, ±
√

2D are grid points in ξ-direction.304

The fully discrete scheme (3.1) with the test function taken as φ ≡ 1 yields305

(fn+1)Kij − (f)Kij
∆t

+
〈
ξf̂−
i+ 1

2 ,ξ

〉
Jj
−
〈
ξf̂+
i− 1

2 ,ξ

〉
Jj
−
〈
Vxf̃x,j+ 1

2

〉
Ii

+
〈
Vxf̃x,j− 1

2

〉
Ii

= 0.(3.6)306
307
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Here f is the limited solution at time level n after applying the positivity-preserving limiter, and thus f(x, ξ) ≥308

0, (x, ξ) ∈ Kij for i = 1, · · · , Nx, j = 1, · · · , Nξ.309

Recall that the discontinuity of V (x) is located at xm− 1
2

and
√

2D is a grid point in the ξ-direction. When310

i = m, with the Hamiltonian-preserving fluxes defined in Section 2.2, we have311

• if ξ2
j− 1

2

− 2D ≥ 0,312

(fn+1)Kmj − (f)Kmj
∆t

+

∫
Jj

ξf(x−
m+ 1

2

, ξ)dξ −
∫ η

j+1
2

η
j− 1

2

ηf(x−
m− 1

2

, η)dη

−
〈
Vxf̃x,j+ 1

2

〉
Im

+
〈
Vxf̃x,j− 1

2

〉
Im

= 0,

(3.7)313

314

where η =
√
ξ2 − 2D and ηj± 1

2
=
√
ξ2
j± 1

2

− 2D;315

• if ξ2
j− 1

2

− 2D < 0,316

(fn+1)Kmj − (f)Kmj
∆t

+

∫
Jj

ξf(x−
m+ 1

2

, ξ)dξ −
∫
Jj

ξf(x+
m− 1

2

,−ξ)dξ

−
〈
Vxf̃x,j+ 1

2

〉
Im

+
〈
Vxf̃x,j− 1

2

〉
Im

= 0.

(3.8)317

318

By Lemma 3.1 and (2.6), we have319 ∫
Jj

ξf(x−
m+ 1

2

, ξ)dξ ≤ |ξj+ 1
2
|
∫
Jj

f(x−
m+ 1

2

, ξ)dξ ≤
ω|ξj+ 1

2
|

∆x
(f)Kmj ,(3.9)320

−
〈
Vxf̃x,j+ 1

2

〉
Im

= −
∫
Im

Vxf(x, ξ−
j+ 1

2

)dx ≤
ω supx∈int(Im) |Vx|

∆ξ
(f)Kmj ,(3.10)321

322

where int(Im) denotes the interior of the cell Im, i.e. int(Im) = (xm− 1
2
, xm+ 1

2
). Since V (x) is Lipschitz323

continuous for x ∈ int(Im) under our assumption, supx∈int(Im) |Vx| has a finite upper bound. Notice that324

η ≥ 0, ηj± 1
2
≥ 0, combining with the assumption that ξ > 0, V ′(x) < 0 at smooth points and f being325

non-negative, yielding326 ∫ η
j+1

2

η
j− 1

2

ηf(x−
m− 1

2

, η)dη ≥ 0,

∫
Jj

ξf(x+
m− 1

2

,−ξ)dξ ≥ 0,(3.11)327

328

and329 〈
Vxf̃x,j− 1

2

〉
Ii

=
〈
Vxf(x, ξ−

j− 1
2

)
〉
Ii
≤ 0.(3.12)330

331

Therefore, we have, by (3.7)-(3.12),332

(f)
n+1

Kmj
≥

(
1− ω∆t

(
|ξj+ 1

2
|

∆x
+

supx∈int(Im) |Vx|
∆ξ

))
(f)Kmj .(3.13)333

334

This proves that (f)
n+1

Kmj
≥ 0 under the CFL condition (3.5).335

For the case when i 6= m, the fully scheme (3.1) is simply the standard DG scheme with upwind fluxes.336

Similar proof can be found in [37, 36], and thus is omitted.337

Remark 3.4. The CFL condition (3.5) in Theorem 3.3 is similar to the CFL condition (2.9). However, |Vx|338

now represents the derivative of the potential V (x) at its Lipschitz continuous region and thus has an O(1)339

upper bound, since V (x) is only discontinuous at grid points under our assumption. Thus our proposed scheme340

has a hyperbolic CFL condition.341
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Now we study the stability property of the proposed scheme.342

Theorem 3.5 (L1 contracting). Assume that f(x, ξ) = 0 at the boundary and no particles come from343

outside of the domain [−L,L]× [−Ac, Ac]. Then the solution fn+1 of (3.1) is L1-contracting, i.e.344 ∑
ij

|(f)n+1
Kij
| ≤

∑
ij

|(f)Kij |(3.14)345

346

under the CFL condition (3.5).347

Remark 3.6. Due to the linearity of the scheme (3.1), the equation for the error between the analytical348

solution and the numerical solution is the same as the scheme (3.1) itself. Thus we assume there is no error at349

the boundary, and zero Dirichlet boundary conditions can be considered as a simplified case.350

Remark 3.7. After applying the positivity-preserving limiter (2.22), the limited numerical solution at time
lever n + 1, i.e. fn+1,new is non-negative and also maintains the cell average of the solution fn+1. Thus we
have (|f |)n+1,new

Kij
= |(f)n+1,new

Kij
| = |(f)n+1

Kij
|. Combining with (3.14) leads to

‖fn+1,new‖L1 ≤ ‖fn,new‖L1 ,

i.e., the L1 stability property of the numerical solutions.351

Proof. For simplicity, we again consider the case when V (x) has only one discontinuity at the cell interface352

xm− 1
2

with jump D = V −
m− 1

2

− V +
m− 1

2

> 0, and V ′(x) < 0 at smooth points. The other cases can be discussed353

similarly. We again assume that the mesh is partitioned such that 0, ±
√

2D are grid points in ξ-direction. We354

further assume that ξNξ+ 1
2
>
√

2D to include all the possible behaviors of the particles such as crossing the355

potential barrier with increased/reduced momentum, or being reflected.356

By taking the test function φ ≡ 1 in the fully discrete scheme (3.1), we can rewrite it as357

(fn+1)Kij − (f)Kij
∆t

= −
〈
ξf̂−
i+ 1

2 ,ξ

〉
Jj

+
〈
ξf̂+
i− 1

2 ,ξ

〉
Jj

+
〈
Vxf̃x,j+ 1

2

〉
Ii
−
〈
Vxf̃x,j− 1

2

〉
Ii︸ ︷︷ ︸

Rij

.(3.15)358

359

Here f is the limited solution at time level n after applying the positivity-preserving limiter, and thus f(x, ξ) ≥
0, (x, ξ) ∈ Kij for i = 1, · · · , Nx, j = 1, · · · , Nξ. By Theorem (3.3), we have (fn+1)Kij ≥ 0 under the CFL

condition (3.5). Therefore, to show the L1 contracting property (3.14), we only need to prove that∑
ij

Rij ≤ 0.

With the upwind fluxes defined in (2.5) and (2.6), and the Hamiltonian-preserving numerical fluxes defined360

in (2.14), (2.15), (2.18) and (2.19), we have361

(1) if ξj > 0, i 6= m,362

Rij = −
∫
Jj

ξf(x−
i+ 1

2

, ξ)dξ +

∫
Jj

ξf(x−
i− 1

2

, ξ)dξ +
〈
Vxf̃x,j+ 1

2

〉
Ii
−
〈
Vxf̃x,j− 1

2

〉
Ii

;(3.16)363

364

(2) if ξj < 0, i 6= m− 1,365

Rij = −
∫
Jj

ξf(x+
i+ 1

2

, ξ)dξ +

∫
Jj

ξf(x+
i− 1

2

, ξ)dξ +
〈
Vxf̃x,j+ 1

2

〉
Ii
−
〈
Vxf̃x,j− 1

2

〉
Ii

;(3.17)366

367

(3) if ξj > 0, i = m,368

Rij = −
∫
Jj

ξf(x−
i+ 1

2

, ξ)dξ +
〈
ξf̂+
i− 1

2 ,ξ

〉
Jj

+
〈
Vxf̃x,j+ 1

2

〉
Ii
−
〈
Vxf̃x,j− 1

2

〉
Ii

;(3.18)369
370
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(4) if ξj < 0, i = m− 1,371

Rij = −
〈
ξf̂−
i+ 1

2 ,ξ

〉
Jj

+

∫
Jj

ξf(x+
i− 1

2

, ξ)dξ −
〈
Vxf̃x,j+ 1

2

〉
Ii

+
〈
Vxf̃x,j− 1

2

〉
Ii
.(3.19)372

373

Summing up (3.16)-(3.19) over all the elements i, j, we have374

∑
ij

Rij =
∑
ξj>0

(〈
ξf̂+
m− 1

2 ,ξ

〉
Jj
−
∫
Jj

ξf(x−
m− 1

2

, ξ)dξ

)

−
∑
ξj<0

(〈
ξf̂−
m− 1

2 ,ξ

〉
Jj
−
∫
Jj

ξf(x+
m− 1

2

, ξ)dξ

)
,

(3.20)375

376

due to zero boundary condition, and all the numerical fluxes in the ξ direction cancel after the summation. To
simplify the presentation, we omit the subscript m− 1

2 in the following. Let us introduce the notations

η =
√
ξ2 − 2D, ηj± 1

2
=
√
ξ2
j± 1

2

− 2D, η′ = −
√
ξ2 + 2D, η′j± 1

2
= −

√
ξ2
j± 1

2

+ 2D.

By a change of variables as in (2.21) and utilizing the definition of the Hamiltonian-preserving numerical fluxes377

f̂± in Section 2.2, we obtain378 ∑
ij

Rij =
∑

ξ
j− 1

2
≥
√
2D

∫ η
j+1

2

η
j− 1

2

ηf(x−, η)dη +
∑

0≤ξ
j− 1

2
<
√
2D

∫
Jj

ξf(x−,−ξ)dξ

−
∑
ξj>0

∫
Jj

ξf(x−, ξ)dξ +
∑
ξj<0

∫
Jj

ξf(x+, ξ)dξ −
∑

ξ
j+1

2
≤0

∫ η′
j+1

2

η′
j− 1

2

η′f(x+, η′)dη′

=

∫ √
ξ2
Nξ+

1
2

−2D

0

ηf(x−, η)dη −
∫ 0

−
√
2D

ξf(x+, ξ)dξ

−
∫ ξ

Nξ+
1
2

0

ξf(x−, ξ)dξ +

∫ 0

−ξ
Nξ+

1
2

ξf(x+, ξ)dξ −
∫ −√2D

−
√
ξ2
Nξ+

1
2

+2D

η′f(x+, η′)dη′

= −
∫ ξ

Nξ+
1
2√

ξ2
Nξ+

1
2

−2D
ξf(x−, ξ)dξ +

∫ −ξ
Nξ+

1
2

−
√
ξ2
Nξ+

1
2

+2D

ξf(x+, ξ)dξ ≤ 0,

(3.21)379

380

where the second equality is due to the fact that 0 and ±
√

2D locate at the cell interfaces in the ξ-direction,381

and the last inequality follows from the fact that f is non-negative and no particles come from outside of the382

domain according to our assumption.383

4. Extension to higher dimensions. In this section, we extend our proposed scheme for the Liouville384

equation under 1D1V setting to higher dimensions. As an example, we consider the following two-dimensional385

Liouville equation386

ft + ξfx + ηfy − Vxfξ − Vyfη = 0,(4.1)387388

in the 2D2V setting. Let Th be uniform partition of the computational domain with the meshes Kijκ` =

I
(x)
i ×I

(y)
j ×J

(ξ)
κ ×J (η)

` = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]× [ξκ− 1

2
, ξκ+ 1

2
]× [η`− 1

2
, η`+ 1

2
] and the cell interfaces located

at xi+ 1
2
,yj+ 1

2
,ξκ+ 1

2
,η`+ 1

2
in each direction. The mesh size is denoted by ∆x = xi+ 1

2
−xi− 1

2
, ∆y = yj+ 1

2
− yj− 1

2
,

∆ξ = ξκ+ 1
2
− ξκ− 1

2
, ∆η = η`+ 1

2
− η`− 1

2
. Let us define a high dimensional DG finite element approximation

space
Wk
h = {v : v|Kijκ` ∈ P k(Kijκ`), Kijκ` ∈ Th}.
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Similarly to the one-dimensional case, the semi-discrete HPDG scheme for the 2D2V Liouville equation389

(4.1) is defined as: for any test function φ ∈Wk
h, we have390

(ft, φ)Kijκ` − (ξf, φx)Kijκ` − (ηf, φy)Kijκ` + (Vxf, φξ)Kijκ` + (Vyf, φη)Kijκ`

+
〈
ξ

ˆ̂
f−
i+ 1

2 ,j,ξ,η
, φ(x−

i+ 1
2

, y, ξ, η)
〉
I
(y)
j ×J

(ξ)
κ ×J(η)

`

−
〈
ξ

ˆ̂
f+
i− 1

2 ,j,ξ,η
, φ(x+

i− 1
2

, y, ξ, η)
〉
I
(y)
j ×J

(ξ)
κ ×J(η)

`

+

〈
η

ˆ̂
f̂−
i,j+ 1

2 ,ξ,η
, φ(x, y−

j+ 1
2

, ξ, η)

〉
I
(x)
i ×J

(ξ)
κ ×J(η)

`

−
〈
η

ˆ̂
f̂+
i,j− 1

2 ,ξ,η
, φ(x, y+

j− 1
2

, ξ, η)

〉
I
(x)
i ×J

(ξ)
κ ×J(η)

`

−
〈
Vx

˜̃
fx,y,κ+ 1

2 ,η
, φ(x, y, ξ−

κ+ 1
2

, η)
〉
I
(x)
i ×I

(y)
j ×J

(η)
`

+
〈
Vx

˜̃
fx,y,κ− 1

2 ,η
, φ(x, y, ξ+

κ− 1
2

, η)
〉
I
(x)
i ×I

(y)
j ×J

(η)
`

−
〈
Vy

˜̃̃
fx,y,ξ,`+ 1

2
, φ(x, y, ξ, η−

`+ 1
2

)

〉
I
(x)
i ×I

(y)
j ×J

(ξ)
`

+

〈
Vy

˜̃̃
fx,y,ξ,`− 1

2
, φ(x, y, ξ, η+

`− 1
2

)

〉
I
(x)
i ×I

(y)
j ×J

(ξ)
`

= 0,

391

392

where numerical fluxes
˜̃
f and

˜̃̃
f in the ξ- and η-direction take the upwind fluxes as defined in (2.6). We393

also define the fluxes
ˆ̂
f± and

ˆ̂
f̂± at the cell interface to account for the potential discontinuous potential.394

They are defined following the same procedure as in Section 2.2 to preserve a constant Hamiltonian across the395

potential barrier. The two-dimensional version of the positivity-preserving limiter, similar to those in (2.22),396

can be applied to enhance the stability and preserve non-negativity of density distribution f . The third order397

SSP-RK temporal discretization (2.8) can again be utilized to advance in time.398

5. Numerical results. In this section, we present some numerical tests to demonstrate the performance399

of the proposed HPDG scheme with the positivity-preserving limiter. In the examples, the time step size is400

set as ∆t = CFL ·∆x, where CFL is taken as indicated in (3.5). For the accuracy tests (e.g., Example 5.1),401

we adjust the time step ∆t as ∆t = CFL ·∆x4/3 for P 3 case so that the temporal and spatial error are of the402

same level.403

Example 5.1. Accuracy test404

In this example, we consider the following Liouville equation in a 1D1V setting405

ft + ξfx − Vxfξ = (x+ ξ − 1) cos(x+ ξ − t), (x, ξ) ∈ [−π, π]× [−π, π](5.1)406407

with the continuous potential V (x) = −x
2

2 to test the accuracy of the HPDG scheme. The initial condition is
set to be

f(x, ξ, 0) = sin(x+ ξ),

and periodic boundary conditions are applied. The exact solution takes the form

f(x, ξ, t) = sin(x+ ξ − t).

We perform numerical simulations up to t = 0.1 and list the L1 and L∞ errors and orders of accuracy408

for the HPDG method with polynomials of degree k (k = 1, 2, 3) in Table 5.1. We can see that for all three409

polynomial spaces, the proposed DG scheme achieved the optimal k + 1-th order of accuracy.410

Example 5.2. 1D1V problem with an exact L∞ solution411

In this example, we consider one-dimensional Liouville equation (2.1) with a discontinuous potential V (x) given412

by413

(5.2) V (x) =

{
0.2, x < 0,
0, x > 0,

414

and the initial condition set as415

f(x, ξ, 0) =

 1, x ≤ 0, ξ > 0,
√
x2 + ξ2 < 1,

1, x ≥ 0, ξ < 0,
√
x2 + ξ2 < 1,

0, otherwise.

(5.3)416

417
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Table 5.1
Errors and orders of accuracy for the HPDG method solving the Liouville equation with a continuous potential in Example 5.1.

P 1 P 2

Nx ×Nξ L1 error Order L∞ error Order L1 error Order L∞ error Order
30× 30 1.58E-02 1.93E-03 2.71E-04 7.46E-05
40× 40 8.89E-03 2.00 1.08E-03 2.01 1.14E-04 3.00 3.12E-05 3.04
50× 50 5.69E-03 2.00 6.88E-04 2.03 5.74E-05 3.09 1.59E-05 3.00
75× 75 2.52E-03 2.01 3.04E-04 2.02 1.68E-05 3.03 4.99E-06 2.86

100× 100 1.41E-03 2.01 1.71E-04 1.99 7.05E-06 3.02 2.12E-06 2.98

P 3

Nx ×Nξ L1 error Order L∞ error Order
30× 30 4.82E-06 1.68E-06
40× 40 1.57E-06 3.91 5.07E-07 4.16
50× 50 6.19E-07 4.16 2.09E-07 3.97
75× 75 1.21E-07 4.02 4.07E-08 4.04

100× 100 3.83E-08 4.01 1.27E-08 4.04

The computational domain is set as [−1.5, 1.5]× [−1.5, 1.5]. This is a 1D1V problem with an exact L∞ solution418

available, and the exact solution at time t = 1, as constructed in [19], is given by419

(5.4) f(x, ξ, 1) =



1, x ≥ 0, ξ <
√

0.4, ξ ≥ x,

1, 0 ≤ x < 1, ξ < 0, ξ >
x−
√

2− x2
2

,

1, x ≤ 0, x < (1− 0.6− ξ2

0.4 + ξ2
)ξ, −

√
0.6 < ξ < x,

1, −1 < x ≤ 0, ξ > 0, ξ <
x+
√

2− x2
2

,

1, x ≥ 0, x > (1−
√

1.4− ξ2√
ξ2 − 0.4

)ξ, ξ > x,
√

0.4 < ξ <
√

1.4,

0, otherwise.

420

We perform numerical simulations on 100× 100 meshes for the proposed DG method with P 2 polynomials421

up to t = 1. Figure 5.1 shows the initial solution (taken as the standard L2 projection of the initial condition422

(5.3)), the “limited” initial solution after applying the total variation bounded (TVB) minmod limiter [10]423

or the bound-preserving limiter to keep 0 ≤ f(x, ξ, 0) ≤ 1. Figure 5.2 shows the numerical solution at t = 1424

obtained by the HPDG method only, numerical solution obtained by the HPDG method with the TVB minmod425

limiter, and numerical solution obtained by the HPDG method with the bound-preserving limiter. We observe426

that there are some oscillations in the plots of the initial condition when projecting the solutions to the piece-427

wise P 2 polynomial space, since the initial solution is discontinuous. When either limiter is applied, there428

are no oscillations in the numerical solutions. For this example, the boundary-preserving limiter can achieve429

good non-oscillatory results as the TVB minmod limiter, and a sharp and smooth interface can be observed430

numerically.431

Example 5.3. 1D1V problem with a measure-valued solution432

In this example, we consider one-dimensional Liouville equation (2.1) with the same potential (5.2) as in433

Example 5.1. The initial condition is given by434

f(x, ξ, 0) = δ(ξ − ν(x)),(5.5)435436
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Fig. 5.1. 1D1V problem with an exact L∞ solution in Example 5.2. Contour plot (left) and 3D plot (right) of the initial
solution at t = 0 without limiter (top), initial solution after applying the TVB minmod limiter (middle), and initial solution after
applying the bound-preserving limiter (bottom) on 100 × 100 meshes.

where437

(5.6) ν(x) =



0.9, x ≤ −2,

0.9− 0.9

4
(x+ 2)2, −2 < x ≤ 0,

−0.9 +
0.9

4
(x− 2)2, 0 < x < 2,

−0.9, x ≥ 2.

438
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Fig. 5.2. 1D1V problem with an exact L∞ solution in Example 5.2. Contour plot (left) and 3D plot (right) of the numerical
solution of DG method without any limiter (top), numerical solution of DG method with the TVB minmod limiter (middle) and
numerical solution of the proposed DG method with the bound-preserving limiter (bottom) on 100 × 100 meshes at t = 1 (with
k = 2).

The computational domain is [−2, 2] × [−1.6, 1.6]. This example is a 1D1V problem with a measure-valued
solution [19], which may arise in the computation of the semiclassical limit of the Schrodinger equation. We
are interested in the approximation of the moments, such as the density ρ and the averaged velocity u, defined
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as

ρ(x, t) =

∫
f(x, ξ, t)dξ, u(x, t) =

∫
f(x, ξ, t)ξdξ∫
f(x, ξ, t)dξ

.

Following the level set method proposed in [18] for smooth potentials and extended in [19] to discontinuous
potentials, we decompose f into the level set function f1 and the modified density function f2, which satisfy
the same Liouville equation (2.1) with the following initial conditions

f1(x, ξ, 0) = 1, f2(x, ξ, 0) = ξ − ν(x).

The moments ρ and u can be numerically approximated by439

ρ(x, t) =

∫
f1(x, ξ, t)δω(f2(x, ξ, t))dξ,

u(x, t) =
1

ρ(x, t)

∫
f1(x, ξ, t)ξδω(f2(x, ξ, t))dξ,

(5.7)440

441

on a uniform mesh [14]. Here δω is an approximation to the δ function, given by442

δω(x) =


1

2ω
(1 + cos(|πx|/ω)),

∣∣∣x
ω

∣∣∣ ≤ 1,

0,
∣∣∣x
ω

∣∣∣ > 1,
(5.8)443

444

and ω is taken as half of the support size of the discrete delta function δω. In our computation, we take

ω = max(|(f2)ξ|, 1)∆x,

where the derivative (f2)ξ can be directly computed from the polynomial expression of f2 in each cell. The445

exact velocity profile and the corresponding velocity at t = 1.8 can be found in the Appendix of [19].446

We perform numerical simulations for the proposed DG method with P 2 piecewise polynomials on 400×320447

meshes up to t = 1.8. Figures 5.3 shows the density and the averaged velocity of the exact solutions and448

numerical solutions at t = 1.8. The numerical solutions are obtained by the HPDG method with the TVB449

minmod limiter [10], and by the HPDG method with the bound-preserving limiter to keep −2.4 ≤ f2 ≤ 2.4450

for the decomposed equation f2(x, ξ, 0) = ξ − ν(x). We observe that both limiters can achieve satisfying451

non-oscillatory results for the density, while the boundary-preserving limiter yields a better non-oscillatory452

approximation than the TVB minmod limiter for the averaged velocity, especially in the average velocity plot453

near the region x ∈ [0.3, 1]. In addition, we also observe that the average velocity is better resolved in this454

region when compared with the result in [19] obtained with the finite volume method on a much refined mesh,455

thanks to the high order feature of the proposed HPDG methods.456

Example 5.4. 2D2V problem with a measure-valued solution457

In this example, we consider two-dimensional Liouville equation given by458

ft + ξfx + ηfy − Vxfξ − Vyfη = 0,(5.9)459460

with a discontinuous potential461

V (x, y) =

{
0.1, x > 0, y > 0,
0, else.

(5.10)462
463

The initial condition takes the form464

f(x, y, ξ, η, 0) = ρ(x, y, 0)δ(ξ − p(x, y))δ(η − q(x, y)),(5.11)465466
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Fig. 5.3. 1D1V problem with a measure-valued solution in Example 5.3. Exact solution (lines) and numerical solution
(circles) of the density (left) and the averaged velocity (right) of the proposed DG method at t = 1.8 with k = 2 using the TVB
minmod limiter (top) and the bound-preserving limiter(bottom), on 400 × 320 meshes.

where467

ρ(x, y, 0) =

{
0, x > −0.1, y > −0.1,
1, else,

(5.12)468

p(x, y) = q(x, y) =

{
0.4, x > 0, y > 0,
0.6, else.

(5.13)469
470

The computational domain is set as [x, y, ξ, η] ∈ [−0.2, 0.2]× [−0.2, 0.2]× [0.3, 0.9]× [0.3, 0.9]. This example is471

a 2D2V problem with a measure-valued solution studied in [19]. We are interested in the approximation of the472

zeroth moment, i.e. the density ρ, defined as473

ρ(x, y, t) =

∫ ∫
f(x, y, ξ, η, t)dξdη.(5.14)474

475
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The exact density at time t = 0.4 is given by476

ρ(x, y, 0.4) =



1, x < 0 or y < 0,

1.5, 0 ≤ x ≤ 14

150
, y ≥ 3x

2
,

1.5, 0 ≤ y ≤ 14

150
, y ≤ 2x

3
,

0, otherwise.

(5.15)477

478

We perform numerical simulations of the proposed HPDG method with piecewise P 1 polynomials up to479

t = 0.4 with a positivity-preserving limiter. Figure 5.4 shows numerical results of the density ρ with 124, 204480

and 304 meshes in the phase space, compared with the reference exact solution. We can observe that as the481

meshes are refined, the solution converges to the exact solution. When compared with the numerical results in482

[19], the proposed high order HPDG method can achieve a sharper transition near discontinuity with a coarser483

mesh.484

Fig. 5.4. 2D2V problem with a measure-valued solution in Example 5.4. Exact solution (top left) and numerical solutions
of the density with k = 1 on the 124 (top right), 204 (bottom left) and 304 (bottom right) meshes at t = 0.4.

6. Conclusions. In this paper, we design the HPDG method for the Liouville equation with discontinuous485

potentials, to maintain constant Hamiltonian across a potential barrier, which allows to capture the correct486

transmission and reflection behavior of particles. The proposed method can also be viewed as a high order487

extension of the finite difference and finite volume methods discussed in [19]. Based on the standard DG488
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method for hyperbolic conservation laws, we make extra effort to construct numerical fluxes to take care of489

the behavior of a particle at a potential barrier such as either crossing it with a different momentum or being490

reflected. We further apply a positivity-preserving limiter to add extra robustness and stability. We provide491

a theoretical study of the positivity and stability properties of our proposed scheme. Numerical results show492

the accuracy and robustness of the proposed methods for 1D1V and 2D2V test problems. The discontinuity493

of the potential V (x) in the 2D2V setting is assumed to occur only in the direction aligned with our spatial494

discretization in this paper. Future works include the generalization of the HPDG scheme to the case of curved495

discontinuity to further leverage the flexibility of DG method, and the study of HPDG method on unstructured496

meshes to accommodate general computational domains.497
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