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ABSTRACT 

The aim of this study is to describe the procedure for estimation of Vector Autoregressive (VAR) Model parameters which is mostly used for forecasting and 

structural analysis. The procedures for the estimation of VAR and Vector Error Correction Model (VECM) have been explained. The study also described the 

procedures for Diagnostic test, Lag Order Selection (Informantion Criteria), Unit Roots test (Augmented Dickey-Fuller (ADF)), Structural Analysis (Granger 

Causality and Impulse Response Analysis), Random Walk Model, test for Cointegration and Forecasting.  
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1. Introduction 

Autoregressive (AR) model is used to forecast future values of a variable where the future values respond to the present and past values of that particular 

variable, this is a univariate case. But most of the economic variables depend not only on their past values but past values of other related variables. For 

example, the future rate of unemployment may depend on its present and past values, present and a previous amount of GDP and even current and past 

level of other variables. When all the variables in the model are considered to be dependent variables and their past values as regressors for each and 

every dependent variable, that is the multivariate autoregressive and is considered as Vector Autoregressive (VAR) (Lutkepohl, 2005). AR model is 

expressed as 

  (1) 

Where µ is a constant, β1 . . . βp are parameters, Xt−1 . . . Xt−p are the lags of Xt and t is the white noise. Xt process can also depend on the past values of the 

disturbance term, where it then becomes Moving Average (MA) process. At the same time also, it may simultaneously depend on its past values and past 

values of the white noise where it is called Autoregressive Moving Average (ARMA) process. It’s commonly written as ARMA(p,q) where p is the 

number of lags in the AR process, and q is the number of lags in the MA process (Pfaff, 2008). 

2. Vector Autoregressive 

AR process is scalar because it depends on its lags only. But most of the times, the dynamic behaviour of economic variables are determined jointly, 

where the process (Xt) has now become vector (N × 1) of the dependent variables (Box and Reinsel, 2008). There might be X1t, X2t, ..., XNt where N is the 

number of variables in the model. Each variable, Xit, depends on its lags and lags of every other variable in the model. In modelling exchange rate for 

example, if there are three variables (three currency combinations for instance), GBP/USD, GBP/AUD and USD/EUR, where the current value of each 

depends on its lags and lags of other variables, the VAR(1) (if it depends on only one lag) model can be represented as: 

 

The model can more compactly be written as: 

         (2) 

, 
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Here, Xt can be GBP/USD, Yt could be GBP/AUD and Zt could be USD/EUR. At is N × 1 matrix (N number of dependent variables), µ is N × 1, P is N × 

N, At−1 is N × 1 and t is also N × 1, 

 

E[ԑt]  = 0  and  E [ԑʹt ԑt] = {
∑  𝑓𝑜𝑟 𝑠 = 𝑡

 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Σ is N×N positive definite matrix. In this model, the number of parameters to estimate is N2 + N. As the lags (p) or number of variables (N) increases, the 

estimation becomes more complicated. If the number of the lags increases by 1, the total number of parameters to estimate will increase by N which is 

greater than 1. For a VAR(p) model in equation (3), the number of parameters to estimate becomes N + N2(p), where p is the number of lags (Hamilton, 

1994). 

    (3) 

Equation(2) may includes deterministic part (such as drift or trend or both) and exogenous variables; 

 

Where Dt is K × 1 deterministic variable, Yt is H × 1 vector of exogenous variables, and B and G are the parameters to be estimated (Zivot and Wang, 

2006). 

2.1 Stable VAR 

In Lutkepohl (2005), stability is the necessary feature of VAR(p) process. In equation (2), considering the system that generates the process, At are 

determined by  uniquely. 

 

  (4) 

Equation (3) can also be written in terms of lag polynomial: 

 

In practical studies, companion matrix is used to derive the stability of a VAR (p) process by computing the eigen values of the matrix. VAR(p) process 

can then equivalently be represented as VAR(1) process as: 

 

where: 

 ,  

This process is stable if: 

det(INp −Pz) 6= 0,for|z| ≤ 1 

with E[At] = (INp −Pz)−1µ. If the moduli of eigen values of P are less one, then At process is stable which implies that the means, variances and covariances 

are time-invariant. The parameters of the endogenous variables can be estimated using OLS from each equation and its equivalent to MLE if the t is 

normally distributed (Pfaff, 2008). 

If VAR (p) process is generated by a stable process, it fluctuates around its fixed mean and its variance remains constant as it fluctuates. But in practice 

most of the time series are not stable as they exhibit trend and non-constant variability (Lutkepohl, 2005). 

2.1.1 Augmented Dickey Fuller Test of Unit Roots 

One of the fundamental assumptions of VAR model is stationarity. The model is stationary if all of its roots lie outside the unit circle. Augmented Dickey-

Fuller (ADF) test is usually conducted to know whether the model is stable or not. Before conducting the ADF test, the parameters of the model are 

estimated using OLS or MLE and the test is performed to know if the values are significantly different from 1 or not (Enders, 2015). In equation (1), the 

H0 and H1 should be tested as: 
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H0 : P = 1, and H1 : P <1. 

Accepting H0 means the process is non-stationary and has unit root while rejecting H0 implies stationarity (Martin and Harris, 2013). 

Griffiths and Lim (2008), the normal procedure for conducting ADF test, is taking the first difference of the process as: 

 

where ρ = (P −1). In this case, the procedure involves testing whether ρ is significantly different from 0 or not with H0 and H1 modified as: 

H0 : ρ = 0, and H1 : ρ <0, 

where the hypotheses can be stated more compactly as: 

H0 : ρ = 0 ⇒ H0 : P = 1 and H1 : ρ < 0 ⇒ H1 : P<1 

According to Vinod (2008), to be sure that the errors are not serially correlated, more than one lag is used in the test as in the following equation: 

 

• Critical Values of ADF: After the estimation of the model, hypothesis that ρ = 0 is tested. But one challenge is that t-statistic does not follow t-

distribution, hence τ-statistic is used for the test. A value of τ-statistic is compared with the value of τ critical (τc), if τ ≤ τc, the null hypothesis is rejected, 

otherwise it is accepted (Griffiths and Lim, 2008). 

2.2 Lag Order Selection 

To select the appropriate order of VAR, the most common approaches are likelihood ratio test and information criteria 

(IC) selection. The widely used information criteria are Akaike information criteria (AIC), Hannan information criteria (HIC) and Schwarz information 

criteria (SIC), where each IC may suggests different value of p. p that minimizes the information criteria is the most appropriate one (Tsay, 2014). 

Martin and Harris (2013), gave the following values of information criteria: 

     (5) 

where k represents the total amounts of parameters in the model, s is the maximum number of lags that the model can have (qmax and pmax), and 

     (6) 

where |Vˆ| is the estimate of covariance matirx. The first part of equation (6) is neglected since it is constant and doesn’t influence the value of any of the 

ICs, hence equation (5) can be reformed to equation (7). 

     (7) 

2.3 VAR Estimation 

Maximum likelihood, least squares (both ordinary least squares and generalized least squares) and bayesian estimators are used in the estimation of VAR 

model parameters. When using least squares for a VAR(p) mode,l equation (3) can be considered where Σis the covariance matrix of t. For simplicity, the 

VAR(p) model as in equation (3) can be written as: 

 

where β0 = (P0,P1,...,Pp) is k × (kp + 1) matrix of parameters to be estimated, . Putting 

equation (3) in form of (8) is more convenient for the estimation the this transformation. 
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 X = Y β + M      (8) 

Applying the attributes of Kronecker product and vectorization of equation (8), one gets: 

vec(X) = (Ik ⊗Y )vec(β) + vec(M) where the covariance marix of the vec (M) is Σ (Tsay, 2014). 

With the same transformation (from equation 8), GLS estimates of β can be used to minimized: 

 

 

Σԑ being symmetric matrix and using the fact that tr(QRS) = vec(Sʹ)ʹ (Rʹ ⊗I)vec(Q), one gets: 

 

 ) (9) 

Tsay (2014), obtianing the normal equations, partial derivatives of equation (9) is taken with respect to vec(β) and set it equal to 0. 

 )  (10) 

lastly, the estimate of VAR(p) from GLS method is given as: 

 

 

vec(βˆ) = [Ik ⊗(Y ʹY )−1Y ʹ]vec(X) vec(βˆ) = vec[(Yʹ0Y )−1(Y ʹX)] 

hence, 

βˆ = (Y ʹY )−1(Y ʹX) 

This shows that GLS estimate of this model is the same as that of OLS in equation 8. 

3. Residual Analysis 

After the estimation of a VAR (p) model, the next most important task is to check whether the errors are consistent with the assumptions of the model. 

The following test should be conducted for the checks (Pfaff, 2008). Value of the estimated parameters from a model that has right specification should 

be so close to that of the real parameter (adequacy of the fitted model), and the residuals of the model should also behave normally with mean of zero 

and constant variance (white noise behaviour). The presence of a serial correlation is a sign of dynamic misspecification of the model. Plots of the model 

residuals should wander very close to the value of zero (Cryer and Chan, 2008). 

1. Test for Autocorrelation 

Testing for zero correlation in the data involves testing the null hypothesis that all the ρi = 0 against alternative that ρi 6= 0 (ρ is the univariate cross-

correlation). For the multivariate data is best achieved using the Ljung-Box test which is known as the multivaruate portmanteau test which is defined as: 

    (11) 

 where  = Multivariate cross correlation matrix. 

H0 : Γ1 = ··· = Γm = 0 against H1 : Γj 6= 0 

for j: 1 ≤ j ≤ m and Qk(m) asymptotically  (Tsay, 2014). 

H0 : There is no serial correlation in the model residuals, while 

H1 : There is a serial correlation in the model residuals. 

2. Normality Test 
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Zivot and Wang (2006) explained that normality test involves testing whether the data of the model are normally distributed, is best carried out by using 

Jarque-Bera statistic and follows χ2 (Pfaff, 2008). In JB (Jarque-Bera) test, a random variable that is normally distributed should have skewness of 0 and 

kurtosis of 3, and the test statistic is given as; 

 

Where Sˆ is the sample skewness and Kˆ is the sample kurtosis, the hypothesis: 

H0 : Data is normally distributed 

H1 : Data is not normally distributed. 

4. Structural Analysis 

VAR has a lot of parameters which makes analysing the dynamic interrelationships of its variables much difficult. This problem is dealt with by VAR 

structural analysis that uses three types of analysis as; Granger causality, Impulse response analysis and variance decomposition. 

1. Granger Causality 

Here, if there are two variables, say Zt and Xt, if Zt Granger causes Xt. Then it means that the information contains in Zt helps in improving the forecasting 

of Xt. It involves testing if a variable in the model is determined by lags of any other variable in the model apart from its lags which encompasses testing 

if the combined parameters of the variable are all zeroes. For example if the P matrix in equation (1) is diagonal, it means none of the variables Granger 

cause any. That is best achieved using the Wald statistic (Tsay, 2014). 

2. Impulse Response Analysis 

Impulse Response Function examines the response of one variable as a result of change in another variable holding all other variable constant. This is 

achieved by converting the VAR(p) model to its VMA representation and analysing its properties through the parameters of VMA. For example, 

 

and 

 

this shows that t affects At+1 via Ψ1 and hence t affects At+h via Ψh (Martin and Harris, 2013). If one does not react as a result of change in other variable, 

the impulse responses are zero (Lutkepohl, 2005). 

5. Random Walk Model 

In Finance and Economics, most of the series are non-stationary, series such as exchange rate, interest rate and assets returns are empirically non-

stationary. These kinds of series are unit root, and are known as Random Walk Model because their first differences are usually stationary (Tsay, 2014). 

6. Forecasting 

The major aims of VAR are forecasting and structural analysis. Forecasting is mostly associated with a cost, the data generation process might be VAR(p), 

in which the past and present information which is used for the forecast can be denoted as Ft. The best forecast is the one with minimum cost. MSE 

forecast is virtually employed in VAR settings (Lutkepohl, 2005). According to Zivot and Wang (2006), when the parameters of VAR are known, At+1 

which is the 1-step prediction based on the available information up to time T (Ft) is given as: 

At+1|T = µ + P1At + P2At−1 + ··· + PpAt−p+1 (1-step forecast)  

At+h|T = µ + P1At + P2At−1 + ··· + PpAt−p+h (h-step forecast)  

and 

 (is the forecast error) 

where: 

 

MSE matrix of the forecast is given as: 

 

But when the parameters are not known and hence are estimated, MSE matrix of the forecast error is given as: 
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6.1 Cointegrated VAR Forecast 

If series are cointegrated, Vector Error Correction Model can be estimated. After the estimation, the fitted model can be employed to generate forecasts 

of the differenced series, and can be applied to make the prediction of the original series. In VECM method, cointegration relationship is used in generating 

the forecasts (Tsay, 2014). 

7. Cointegration and VEC Model 

Using regression in non-stationary series may possibly lead to spurious regression. Where the test statistic is highly significant with high value of R2 but 

with a small value of DW statistic (not close to 2) which means that the relationship between the variables is spurious. Although, if the first differences 

of all the series are stationary and if the errors of the linear cobination of the series is stationary, this may infer an important issue about the series which 

is probably long term relationship between the variables (Griffiths and Lim, 2008). 

One of the fundamental assumptions of VAR is stability, where the process fluctuates around a constant mean and a fixed variance. Macroeconomic 

variables in some cases have a long term relationship or equilibrium and are modelled by a process integrated of order 1 (I(1)); the process then becomes 

stationary if differenced once (Zivot and Wang, 2006). 

Economic variables are normally empirically nonstationary and sometimes exhibit a trend. If two time series processes Xt and Yt are non-stationaries, 

regressing Yt on Xt, where the model can be specified as , when both of the series are I(1) and if  is stationary process 

[ I(0) ], then Yt and Xt are said to be cointegrated where (1,−α) is the cointegrating vector. Cointegration means long term relationship or equilibrium 

between series (Greene, 2013). 

The usual way of knowing whether series are cointegrated or not is to conduct stationarity test on the residuals of the model ( ) using 

Augmented Dickey-Fuller test. When there is enough evidence that the residuals are 

stationary, then the series are cointegrated. Otherwise the series not cointegrated and if there is a significant relationship between the series, this 

relationship is spurious. In testing this hypothesis, both null and alternative hypothesis are expressed respectively as; H0 : the series are stationary and H1 

: the series are non-stationary. The relationship among the variables are of two form; long term and short term. Long term relationship is the relationship 

among the series that are integrated of order 1 [I(1)]. While a short-term relationship is the relationship among stationary series that are I(0) (Griffiths 

and Lim, 2008). 

When series are cointegrated, a model known as Vector Error Correction Model (VECM) is used by enclosing their cointegrating relationships to 

determine both long run and short run relationships between the variables (Koop, 2013). Supposing bivariate model Xt and Yt, which are both I(1) with 

stationary residuals and can be regressed as: Xt = α + βYt + µ which is the long term relationship between the series. In the short run, the series remain at 

equilibrium by making adjustments in Xt , Yt or both. The series can be transformed as: 

Xt −Xt−1 = γ1ut−1 + vx,t = γ1(Xt−1 −α −βYt−1) + vx,t 

 = γ1Xt−1 −γ1α −γ1βYt−1 + vx,t (12) 

Yt −Yt−1 = γ2ut−1 + vy,t = γ2(Xt−1 −α −βYt−1) + vy,t 

 = γ2Xt−1 −γ2α −γ2βYt−1 + vy,t    (13) 

Equation (12) and (13) are known as the Vector Error Correction Model (VECM) because the two processes adjust each other in the subsequent time 

through the errors (Juselius, 2008). Martin and Harris (2013) asserts that γ1 and γ2 are known as the Error Correction Parameters, the two equations can 

more compactly be written as: 

 

This can also be written in form of VAR(1): 

  

Bt = λ + ΦBt−1 + Vt 
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where: 

 

 

This kind of VAR can encompasses p lags which has: 

Φ(L)Bt = λ + Vt 

where: Φ(L) = IN −Φ1L − ··· − ΦpL
p. Hence, the resultant VECM is written as: 

 

∆Bt = λ + Φ(1)Bt-1 + ∑ 1
𝑝−1
𝑗=1 Γj∆Bt-j Vt 

(14) 

with p-1 lags, where: Φ(1) = IN −Φ1L−···−Φp.  

Using the Beveridge-Nelson decomposition;  Φ(L) = Φ(1)L+Γ(L)(1−L) 

in which:  Γ(  and Γ .  

Hence   Φ(L)Bt = λ + Vt.  

Substituting Φ(L), . 

7.1 Johansen Test for Cointegration 

To perform a test of cointegration, restriction is imposed on matrix Φ in equation 14 which contains two matrices; cointegrating parameters β and speed 

adjustments parameters γ (Enders, 2015). Two types of test are conducted is this case: trace and eigenvalue which are all based on the rank of the matrix 

Φ, if Rank (Φ) = 0, it means that Φ = 0 and conclusion is that there is no cointegration among the variables, and the analysis should be based on the 

differenced data which is VAR(p-1), on the other side, if the Rank (Φ) = m >0: At has m cointegrating vectors, the analysis should be based on the VECM 

and α denotes outcomes of the series (Tsay, 2014). Likelihood ratio test is conducted with the view of finding out if the rank is significantly different 

from 0. The hypothesis is: 

H0 : r = 0 and H1 : r = N where N >0. 

The Likelihood ratio statistic is given as: 

LR = −2(T −p)(lnLT(θ
ˆ
0) −lnLT(θ

ˆ
1)) 

where θˆ
0 relates to the model with reduced rank and θˆ

1 relates to the model with full rank. The trace statistic is given 

as: 

 

where λˆ
i is the eigenvalues. if the value of LR >critical value, the null hypothesis is rejected in favour of alternative hypothesis (Martin and Harris, 2013). 

8. Conclusion 

This research work described the procedure for the estimation of VAR model along with the VECM. It also described the procedures for VAR daignostic 

test, lag order selection, unit roots test and structural analysis. Cointegration and forecasting were all explained. 

For the empirical analysis, two or more related time series variables are required. 
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