Bayesian Networks

Read R\&N Ch. 14.1-14.2

Next lecture: Read R\&N 18.1-18.4

You will be expected to know

- Basic concepts and vocabulary of Bayesian networks.
- Nodes represent random variables.
- Directed arcs represent (informally) direct influences.
- Conditional probability tables, P(Xi| Parents(Xi)).
- Given a Bayesian network:
- Write down the full joint distribution it represents.
- Given a full joint distribution in factored form:
- Draw the Bayesian network that represents it.
- Given a variable ordering and some background assertions of conditional independence among the variables:
- Write down the factored form of the full joint distribution, as simplified by the conditional independence assertions.

Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka "summing out" or marginalization)

$$
\begin{aligned}
\mathrm{P}(\mathrm{a}) & =\Sigma_{\mathrm{b}} \mathrm{P}(\mathrm{a}, \mathrm{~b}) \\
& =\Sigma_{\mathrm{b}} \mathrm{P}(\mathrm{a} \mid \mathrm{b}) \mathrm{P}(\mathrm{~b}) \quad \text { where } \mathrm{B} \text { is any random variable }
\end{aligned}
$$

Why is this useful?
given a joint distribution (e.g., $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$) we can obtain any "marginal"
probability (e.g., $\mathrm{P}(\mathrm{b})$) by summing out the other variables, e.g.,

$$
\mathrm{P}(\mathrm{~b})=\Sigma_{\mathrm{a}} \Sigma_{\mathrm{c}} \Sigma_{\mathrm{d}} \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})
$$

Less obvious: we can also compute any conditional probability of interest given a joint distribution, e.g.,

$$
\begin{aligned}
\mathrm{P}(\mathrm{c} \mid \mathrm{b})= & \Sigma_{\mathrm{a}} \Sigma_{\mathrm{d}} \mathrm{P}(\mathrm{a}, \mathrm{c}, \mathrm{~d} \mid \mathrm{b}) \\
= & (1 / \mathrm{P}(\mathrm{~b})) \Sigma_{\mathrm{a}} \Sigma_{\mathrm{d}} \mathrm{P}(\mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{~b}) \\
& \text { where }(1 / \mathrm{P}(\mathrm{~b})) \text { is just a normalization constant }
\end{aligned}
$$

Thus, the joint distribution contains the information we need to compute any probability of interest.

Computing with Probabilities: The Chain Rule or Factoring

We can always write

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots z) P(b, c, \ldots z)
$$

(by definition of joint probability)

Repeatedly applying this idea, we can write

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots z) P(b \mid c, . . z) P(c \mid . . z) . . P(z)
$$

This factorization holds for any ordering of the variables

This is the chain rule for probabilities

Conditional I ndependence

- 2 random variables A and B are conditionally independent given C iff

$$
P(a, b \mid c)=P(a \mid c) P(b \mid c) \quad \text { for all values } a, b, c
$$

- More intuitive (equivalent) conditional formulation
- A and B are conditionally independent given C iff

$$
P(a \mid b, c)=P(a \mid c) \quad O R \quad P(b \mid a, c)=P(b \mid c), \quad \text { for all values } a, b, c
$$

- Intuitive interpretation:
$P(a \mid b, c)=P(a \mid c)$ tells us that learning about b, given that we already know c , provides no change in our probability for a,
i.e., b contains no information about a beyond what c provides
- Can generalize to more than 2 random variables
- E.g., K different symptom variables $\mathrm{X} 1, \mathrm{X} 2, \ldots \mathrm{XK}$, and $\mathrm{C}=$ disease
- $\mathrm{P}(\mathrm{X} 1, \mathrm{X} 2, \ldots \mathrm{XK} \mid \mathrm{C})=\Pi \mathrm{P}(\mathrm{Xi} \mid \mathrm{C})$
- Also known as the naïve Bayes assumption
"...probability theory is more fundamentally concerned with the structure of reasoning and causation than with numbers."

Glenn Shafer and Judea Pearl
Introduction to Readings in Uncertain Reasoning, Morgan Kaufmann, 1990

Bayesian Networks

- A Bayesian network specifies a joint distribution in a structured form
- Represent dependence/independence via a directed graph
- Nodes = random variables
- Edges = direct dependence
- Structure of the graph \Leftrightarrow Conditional independence relations

In general,

$$
\text { p(} \left.\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{N}}\right)=\Pi \mathrm{p}\left(\mathrm{X}_{\mathrm{i}} \mid \operatorname{parents}\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian network
- The graph structure (conditional independence assumptions)
- The numerical probabilities (for each variable given its parents)

Example of a simple Bayesian network

$$
p(A, B, C)=p(C \mid A, B) p(A) p(B) \longleftrightarrow
$$

- Probability model has simple factored form
- Directed edges => direct dependence
- Absence of an edge => conditional independence
- Also known as belief networks, graphical models, causal networks
- Other formulations, e.g., undirected graphical models

Examples of 3-way Bayesian Networks

Marginal Independence: $p(A, B, C)=p(A) p(B) p(C)$

Examples of 3-way Bayesian Networks

Conditionally independent effects: $p(A, B, C)=p(B \mid A) p(C \mid A) p(A)$

B and C are conditionally independent Given A
e.g., A is a disease, and we model B and C as conditionally independent symptoms given A

Examples of 3-way Bayesian Networks

Independent Causes: $p(A, B, C)=p(C \mid A, B) p(A) p(B)$
"Explaining away" effect:
Given C, observing A makes B less likely e.g., earthquake/burglarylalarm example
A and B are (marginally) independent but become dependent once C is known

Examples of 3-way Bayesian Networks

Markov dependence:
$p(A, B, C)=p(C \mid B) p(B \mid A) p(A)$

Example

- Consider the following 5 binary variables:
- $B=a$ burglary occurs at your house
- $E=$ an earthquake occurs at your house
- A = the alarm goes off
- J = John calls to report the alarm
- M = Mary calls to report the alarm
- What is $P(B \mid M, J)$? (for example)
- We can use the full joint distribution to answer this question
- Requires $2^{5}=32$ probabilities
- Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

The Desired Bayesian Network

Constructing a Bayesian Network: Step 1

- Order the variables in terms of causality (may be a partial order)

$$
\text { e.g., }\{E, B\}->\{A\}->\{J, M\}
$$

- $P(J, M, A, E, B)=P(J, M \mid A, E, B) P(A \mid E, B) P(E, B)$

$$
\begin{aligned}
& \approx P(J, M \mid A) \quad P(A \mid E, B) P(E) P(B) \\
& \approx P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)
\end{aligned}
$$

These Cl assumptions are reflected in the graph structure of the Bayesian network

Constructing this Bayesian Network: Step 2

- $P(J, M, A, E, B)=$
$P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)$

- There are 3 conditional probability tables (CPDs) to be determined: $P(J \mid A), P(M \mid A), P(A \mid E, B)$
- Requiring $2+2+4=8$ probabilities
- And 2 marginal probabilities $P(E), P(B)->2$ more probabilities
- Where do these probabilities come from?
- Expert knowledge
- From data (relative frequency estimates)
- Or a combination of both - see discussion in Section 20.1 and 20.2 (optional)

The Resulting Bayesian Network

Example (done the simple, marginalization way)

- So, what is $P(B \mid M, J)$?
E.g., say, $P(b \mid m, \neg j)$, i.e., $P(B=$ true $\mid M=$ true $\wedge J=$ false $)$
$P(b \mid m, \neg j)=P(b, m, \neg j) / P(m, \neg j) ;$ by definition
$P(b, m, \neg j)=\Sigma A \in\{a, \neg a\} \Sigma E \in\{e, \neg e\} P(\neg j, m, A, E, b) ;$ marginal
$P(J, M, A, E, B) \approx P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)$; conditional indep.
$P(\neg j, m, A, E, b) \approx P(\neg j \mid A) P(m \mid A) P(A \mid E, b) P(E) P(b)$
Say, work the case $A=a \wedge E=\neg e$
$\mathrm{P}(\neg j, m, a, \neg e, b) \approx P(\neg j \mid a) P(m \mid a) P(a \mid \neg e, b) P(\neg e) P(b)$

$$
\approx 0.10 \times 0.70 \times 0.94 \times 0.998 \times 0.001
$$

Similar for the cases of a $\wedge e, ~ \neg a \wedge e, ~ \neg a \wedge \neg e$.
Similar for $P(m, \neg j)$. Then just divide to get $P(b \mid m, ~ \neg j)$.

Number of Probabilities in Bayesian Networks

- Consider n binary variables
- Unconstrained joint distribution requires $\mathrm{O}\left(2^{\mathrm{n}}\right)$ probabilities
- If we have a Bayesian network, with a maximum of k parents for any node, then we need $O\left(\begin{array}{l} \\ \left.2^{k}\right)\end{array}\right)$ probabilities
- Example
- Full unconstrained joint distribution
- $\mathrm{n}=30$: need 10^{9} probabilities for full joint distribution
- Bayesian network
- $\mathrm{n}=30, \mathrm{k}=4$: need 480 probabilities

The Bayesian Network from a different Variable Ordering

(a)

The Bayesian Network from a different Variable Ordering

(b)

Given a graph, can we "read off" conditional independencies?

The "Markov Blanket" of X (the gray area in the figure)

X is conditionally independent of everything else, GIVEN the values of:

* X's parents
* X's children
* X's children's parents

X is conditionally independent of its non-descendants, GIVEN the values of its parents.

General Strategy for inference

- Want to compute $\mathrm{P}(\mathrm{q} \mid \mathrm{e})$

Step 1:

$$
P(q \mid e)=P(q, e) / P(e)=\alpha P(q, e), \quad \text { since } P(e) \text { is constant wrt } Q
$$

Step 2:

$$
\mathrm{P}(\mathrm{q}, \mathrm{e})=\Sigma_{\mathrm{a} . . z} \mathrm{P}(\mathrm{q}, \mathrm{e}, \mathrm{a}, \mathrm{~b}, \ldots \mathrm{z}), \quad \text { by the law of total probability }
$$

Step 3:

$$
\Sigma_{\mathrm{a} . . \mathrm{z}} \mathrm{P}(\mathrm{q}, \mathrm{e}, \mathrm{a}, \mathrm{~b}, \ldots \mathrm{z})=\Sigma_{\mathrm{a} . . \mathrm{z}} \Pi_{\mathrm{i}} \mathrm{P}(\text { variable } \mathrm{i} \mid \text { parents } \mathrm{i})
$$

(using Bayesian network factoring)
Step 4:
Distribute summations across product terms for efficient computation

Naïve Bayes Model

Features X are conditionally independent given the class variable C
Widely used in machine learning
e.g., spam email classification: X's = counts of words in emails

Probabilities $\mathrm{P}(\mathrm{C})$ and $\mathrm{P}(\mathrm{Xi} \mid \mathrm{C})$ can easily be estimated from labeled data

Naïve Bayes Model (2)

$$
P\left(C \mid X_{1}, \ldots X_{n}\right)=\alpha \Pi P\left(X_{i} \mid C\right) P(C)
$$

Probabilities $P(C)$ and $P(X i \mid C)$ can easily be estimated from labeled data
$\mathrm{P}(\mathrm{C}=\mathrm{cj}) \approx \#($ Examples with class label cj$) / \#($ Examples $)$
$\mathrm{P}(\mathrm{Xi}=x i k \mid C=c j)$
₹ \#(Examples with Xi value xik and class label cj)
/ \#(Examples with class label cj)
Usually easiest to work with logs

$$
\begin{aligned}
\log [P(C & \left.\left.\mid X_{1}, \ldots X_{n}\right)\right] \\
& =\log \alpha+\Sigma\left[\log P\left(X_{i} \mid C\right)+\log P(C)\right]
\end{aligned}
$$

DANGER: Suppose ZERO examples with Xi value xik and class label cj? An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every \#() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Hidden Markov Model (HMM)

Two key assumptions:

1. hidden state sequence is Markov
2. observation Y_{t} is Cl of all other variables given S_{t}

Widely used in speech recognition, protein sequence models
Since this is a Bayesian network polytree, inference is linear in n

Summary

- Bayesian networks represent a joint distribution using a graph
- The graph encodes a set of conditional independence assumptions
- Answering queries (or inference or reasoning) in a Bayesian network amounts to efficient computation of appropriate conditional probabilities
- Probabilistic inference is intractable in the general case
- But can be carried out in linear time for certain classes of Bayesian networks

