
Bayesian Networks 

Read R&N Ch. 14.1-14.2 
 

Next lecture: Read R&N 18.1-18.4 



You will be expected to know 

• Basic concepts and vocabulary of Bayesian networks. 
– Nodes represent random variables. 
– Directed arcs represent (informally) direct influences. 
– Conditional probability tables, P( Xi | Parents(Xi) ). 

 
• Given a Bayesian network: 

– Write down the full joint distribution it represents. 
 

• Given a full joint distribution in factored form: 
– Draw the Bayesian network that represents it. 

 
• Given a variable ordering and some background assertions of 

conditional independence among the variables: 
– Write down the factored form of the full joint distribution, as 

simplified by the conditional independence assertions. 



Computing with Probabilities: Law of Total Probability 

Law of Total Probability (aka “summing out” or marginalization) 
             P(a)  = Σb  P(a, b)  
                     = Σb  P(a | b) P(b)        where B is any random variable 
 
  
Why is this useful? 
     given a joint distribution (e.g., P(a,b,c,d)) we can obtain any “marginal” 

probability (e.g., P(b)) by summing out the other variables, e.g., 
                   
                 P(b)  = Σa Σc Σd P(a, b, c, d)  
 
Less obvious: we can also compute any conditional probability of interest given a 

joint distribution, e.g., 
                
              P(c | b)  = Σa Σd P(a, c, d | b)  
                        = (1 / P(b))  Σa Σd P(a, c, d, b) 
                          where (1 / P(b)) is just a normalization constant 
 
Thus, the joint distribution contains the information we need to compute any 

probability of interest. 
 

 

 
 



Computing with Probabilities: The Chain Rule or Factoring 

We can always write 
      P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z) 
                                       (by definition of joint probability) 
 
 
Repeatedly applying this idea, we can write 
       P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 
 
This factorization holds for any ordering of the variables 
 
This is the chain rule for probabilities 
 



Conditional Independence 

• 2 random variables A and B are conditionally independent given C iff 
                     P(a, b | c) = P(a | c) P(b | c)     for all values a, b, c 
 
• More intuitive (equivalent) conditional formulation 

– A and B are conditionally independent given C iff 
            P(a | b, c) = P(a | c)     OR   P(b | a, c) =P(b | c),   for all values a, b, c 
 
– Intuitive interpretation: 
             P(a | b, c) = P(a | c) tells us that learning about b, given that we 

already know c, provides no change in our probability for a,  
    i.e., b contains no information about a beyond what c provides 
 

• Can generalize to more than 2 random variables 
– E.g., K different symptom variables X1, X2, … XK, and C = disease 

– P(X1, X2,…. XK | C) = Π  P(Xi | C) 
– Also known as the naïve Bayes assumption 

 
 



“…probability theory is more fundamentally concerned with 
the structure of reasoning and causation than with numbers.” 
 

Glenn Shafer and Judea Pearl 
Introduction to Readings in Uncertain Reasoning, 
Morgan Kaufmann, 1990 



Bayesian Networks 

• A Bayesian network specifies a joint distribution in a structured form 
 

• Represent dependence/independence via a directed graph   
– Nodes = random variables 
– Edges = direct dependence 

 
• Structure of the graph  Conditional independence relations 

 
 
 
 
 
 
 
 

• Requires that graph is acyclic (no directed cycles) 
 

• 2 components to a Bayesian network 
– The graph structure (conditional independence assumptions) 
– The numerical probabilities (for each variable given its parents) 

 

In general, 
   p(X1, X2,....XN) = Π p(Xi | parents(Xi ) ) 

The full joint distribution The graph-structured approximation 



Example of a simple Bayesian network 

A B 

C 

  

•  Probability model has simple factored form 

• Directed edges =>  direct  dependence  

• Absence of an edge  => conditional independence 

• Also known as belief networks, graphical models, causal networks 

• Other formulations, e.g., undirected graphical models 

p(A,B,C) = p(C|A,B)p(A)p(B) 



Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 
p(A,B,C) = p(A) p(B) p(C) 



Examples of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 
p(A,B,C) = p(B|A)p(C|A)p(A) 
 
B and C are conditionally independent 
Given A 
 
e.g., A is a disease, and we model  
B and C as conditionally independent 
symptoms given A 
 



Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 
p(A,B,C) = p(C|A,B)p(A)p(B) 
 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
  



Examples of 3-way Bayesian Networks 

A C B Markov dependence: 
p(A,B,C) = p(C|B) p(B|A)p(A) 



Example 

• Consider the following 5 binary variables: 
– B = a burglary occurs at your house 
– E = an earthquake occurs at your house 
– A = the alarm goes off 
– J  = John calls to report the alarm 
– M = Mary calls to report the alarm 

 
– What is P(B | M, J) ?  (for example) 

 
– We can use the full joint distribution to answer this question 

• Requires 25 = 32 probabilities 
 

• Can we use prior domain knowledge to come up with a 
Bayesian network that requires fewer probabilities? 



The Desired Bayesian Network 



Constructing a Bayesian Network: Step 1 

• Order the variables in terms of causality (may be a partial order) 
 
            e.g., {E, B} -> {A} -> {J, M} 
 
 
• P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B) 

 
                           ≈  P(J, M | A)         P(A| E, B) P(E) P(B) 
 
       ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) 
 
   
    These CI assumptions are reflected in the graph structure of the 

Bayesian network 
 
 
 

 



Constructing this Bayesian Network: Step 2 

 
• P(J, M, A, E, B) =     
         P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B) 
 
 
 
 

 
• There are 3 conditional probability tables (CPDs) to be determined: 

 P(J | A),  P(M | A),  P(A | E, B)  
– Requiring 2 + 2 + 4 = 8 probabilities 

 
• And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities 

 
 

• Where do  these probabilities come from? 
– Expert knowledge 
– From data (relative frequency estimates) 
– Or a combination of both - see discussion in Section 20.1 and 20.2 (optional) 

 
 
 
 
 
 

 



The Resulting Bayesian Network 



Example (done the simple, marginalization way) 

• So, what is P(B | M, J) ? 
 E.g., say, P(b | m, ¬j) , i.e., P(B=true | M=true ∧ J=false) 
 
P(b | m, ¬j) = P(b, m, ¬j) / P(m, ¬j) ;by definition 
 
P(b, m, ¬j) = ΣA∈{a,¬a}ΣE∈{e,¬e} P(¬j, m, A, E, b) ;marginal 
 
P(J, M, A, E, B) ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) ; conditional indep. 
P(¬j, m, A, E, b) ≈  P(¬j | A) P(m | A) P(A| E, b) P(E) P(b)  
 
Say, work the case A=a ∧ E=¬e 
P(¬j, m, a, ¬e, b) ≈  P(¬j | a) P(m | a) P(a| ¬e, b) P(¬e) P(b)  
        ≈    0.10   x   0.70   x   0.94  x  0.998 x 0.001 
Similar for the cases of a ∧e, ¬a∧e, ¬a∧¬e. 
 
Similar for P(m, ¬j).  Then just divide to get P(b | m, ¬j). 
 



Number of Probabilities in Bayesian Networks 

• Consider n binary variables 
 

• Unconstrained joint distribution requires O(2n) probabilities 
 
 

• If we have a Bayesian network, with a maximum of k parents 
for any node, then we need O(n 2k) probabilities 
 

• Example 
– Full unconstrained joint distribution 

• n = 30:  need 109 probabilities for full joint distribution 
– Bayesian network 

• n = 30, k = 4:  need 480 probabilities 
 



The Bayesian Network from a different Variable Ordering 



The Bayesian Network from a different Variable Ordering 



Given a graph, can we “read off” conditional 
independencies? 

The “Markov Blanket” of X 
(the gray area in the figure) 
 
X is conditionally independent of 
everything else, GIVEN the 
values of: 
 * X’s parents 
 * X’s children 
 * X’s children’s parents 
 
X is conditionally independent of 
its non-descendants, GIVEN the 
values of its parents. 
 



General Strategy for inference 

• Want to compute P(q | e) 
 

Step 1: 
    P(q | e) = P(q,e)/P(e)  = α P(q,e),    since P(e) is constant wrt Q 

 
Step 2: 

    P(q,e)  =  Σa..z  P(q, e, a, b, …. z),   by the law of total probability 
 

Step 3: 
 Σa..z  P(q, e, a, b, …. z)  = Σa..z  Πi P(variable i | parents i)   
                                                    (using Bayesian network factoring) 
  

Step 4: 
      Distribute summations across product terms for efficient computation 



Naïve Bayes Model 

X1 X2 X3 

C 

Xn 

                 P(C | X1,…Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Features X are conditionally independent given the class variable C 
 
Widely used in machine learning 
 e.g., spam email classification: X’s = counts of words in emails 
 
Probabilities P(C) and  P(Xi | C) can easily be estimated from labeled data 



Naïve Bayes Model (2) 

                 P(C | X1,…Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data 
 
P(C = cj)  ≈ #(Examples with class label cj)  /  #(Examples) 
 
P(Xi = xik | C = cj) 
      ≈ #(Examples with Xi value xik and class label cj)  
  /  #(Examples with class label cj) 
 
Usually easiest to work with logs 
 log [ P(C | X1,…Xn) ] 
   =  log α +   Σ  [ log P(Xi | C)  + log P (C) ] 
 
DANGER: Suppose ZERO examples with Xi value xik and class label cj ? 
An unseen example with Xi value xik will NEVER predict class label cj ! 
 
Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc. 
Theoretical solutions: Bayesian inference, beta distribution, etc. 



Hidden Markov Model (HMM) 

Y1 

S1 

Y2 

S2 

Y3 

S3 

Yn 

Sn 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

Observed 

Hidden 

Two key assumptions: 
 1. hidden state sequence is Markov 
           2. observation Yt is CI of all other variables given St 
 
Widely used in speech recognition, protein sequence models 
 
Since this is a Bayesian network polytree, inference is linear in n 
 
  



Summary 

• Bayesian networks represent a joint distribution using a graph 
 

• The graph encodes a set of conditional independence 
assumptions 
 

• Answering queries (or inference or reasoning) in a Bayesian 
network amounts to efficient computation of appropriate 
conditional probabilities 
 

• Probabilistic inference is intractable in the general case 
– But can be carried out in linear time for certain classes of Bayesian 

networks 
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