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A B S T R A C T 

Multispectral imaging systems are currently expanding with a variety of multispectral demosaicking algorithms. 

In this paper, we propose a powerful multispectral image demosaicking method that focuses on the G band and 

luminance component. We first identified a relevant 4-and 5-band multispectral filter array (MSFA) with the 

dominant G-band and then proposed an algorithm that consistently estimates the missing G values and other 

missing components using a convolution operator and a weighted bilinear interpolation algorithm based on the 

luminance component. Using the considered MSFA patterns, we also demonstrated that our algorithm outperforms 

existing approaches both visually and quantitatively in terms of the PSNR and SSIM. 
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1. Introduction  

    Multispectral images are made of more than three bands. The higher the number of bands, the more information 

that is available and the more useful the image is [1, 2]. The MSFA imaging system is still a subject of considerable 

research and is still under development. 

   Multispectral image acquisition systems can be classified into three types [3]:  

- multi-camera systems that capture images in a single shot using several cameras with different filters, thereby 

making the system quite complicated because a perfect alignment of several different cameras is required [4]; 

- single-camera multi-shot systems that capture images with a high spectral resolution but require multiple shots 

to obtain images with a high-speed lighting system for real-time imaging [5]; and 

- single-camera systems that overcome the problems of the first two categories of systems in terms of size, cost, 

and real-time imaging [6-8]. Examples of the latter are RGB cameras equipped with one of Bayer’s well-known 

color filter arrays (CFAs). 

   To capture multispectral images with a single image capture system, a multispectral filter array (MSFA) inspired 

by digital cameras featuring a Bayer CFA is required. Therefore, the use of a single camera system involves the 

design of MSFA-selective spectral filters arranged in a periodic mosaic defined by a basic pattern [2, 7, 9-13]. 

However, owing to the lack of a standard MSFA, as in the case of color images with a Bayer CFA, it is difficult 

to design an optimal MSFA and thus develop a powerful demosaicking algorithm. Several algorithms have been 

proposed in the literature [1, 3, 7, 9, 10, 14-19] using different MSFAs and achieving an attenuated performance. 

Although the luminance component is important in an image, few algorithms have explicitly used it in their 

demosaicking process [18]. 
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   In this paper, we have identified a 4- and 5-band MSFA and proposed a luminance component-based 

multispectral demosaicking algorithm (LCBD) that estimates the missing G component at each pixel by applying 

a convolution method, and the other components missing at each pixel using a luminance component. This paper 

is organized as follows: In the second section, we review the multispectral imaging systems proposed in the 

literature, and in the third section, we describe the actual proposed algorithm. The results and discussion are 

presented in the fourth Section. 

2. State-of-the-art demosaicking techniques for multispectral image 

    For the implementation of multispectral image demosaicking techniques, the design of an optimal MSFA and 

an efficient demosaicking algorithm are two fundamental processes for the reconstruction of a full-resolution 

multispectral image that best limits the presence of artifacts. Several related proposals have been made in the 

literature. 

 

2.1 Approaches to the design of the MSFA 

   Although Bayer’s CFA was unanimously approved for use with color images, this is not the case with 

multispectral images. Numerous MSFA patterns have also been proposed [6]. For example, Miao et al. proposed 

a generic method for the design of MSFAs based on a binary tree, considering the probability of occurrence of 

each spectral band [10, 14]. The MSFA is generated based on the number of spectral bands and their appearance 

probabilities.  Many of the recently proposed MSFAs have been inspired by this generic method. In addition, 

Monno et al. [7] proposed a 5-band MSFA pattern based on the high-density requirement of the G-band, as with 

Bayer’s CFA, and their proposal was applied by Jaiswal et al. in their multispectral demosaicking algorithm [20]. 

Bangyong et al. also proposed a 4-band MSFA pattern [18] with the same probability of occurrence for each band 

and a 9-band MSFA [19] in which one band is dominant and the other bands with equal probability of occurrence 

are arranged in 4 × 4 patterns. Brauers and Aach [11] implemented a six-band MSFA in a 3 × 2 pattern to speed 

up the linear interpolation. Aggarwal and Majumdar proposed another simple MSFA by arranging four diagonally 

distributed filters [21] and then another random MSFA pattern [22], where each channel has the same probability 

of occurrence. Noting that the number of bands is inversely proportional to the spatial correlation, Shrestha et al. 

[23] proposed a particular MSFA pattern for a spectral reconstruction and estimation of the reflectance spectra. To 

find the best compromise between spatial and spectral resolution, Yasuma et al. designed a seven-band MSFA 

composed of three primary and four secondary color filters [12]. To overcome the difficulties in combining the 

spectral resolution and spatial correlation in multispectral imaging systems, Mihoubi et al. proposed a 16-band 

MSFA without dominant bands [2]. 

   Several proposals have also been made for imaging systems involving the visible and near infrared (NIR) 

domains. Hershey and Zhang [24] designed a multispectral camera based on a 4-band MSFA with three color 

bands and a near-infrared band. Lu et al. [38] proposed an MSFA pattern as an optimization problem in the space 

domain by providing an iterative procedure to search locally for the optimal solutions. In addition, Kiku et al. [25] 

proposed a modified Bayer CFA pattern in which the additional fourth band was weakly sampled and arranged in 

a slightly tilted square grid. Indeed, their approach is based on the assumption that there is no correlation between 

the RGB and additional bands. The so-called Hybrid CFA still maintains a high density of the G band. Lapray et 

al. [6] defined two MSFA patterns with a periodic spatial distribution corresponding to two different approaches. 

One approach favors spatial information, and the other favors spectral information. For remote sensing 

applications, Mercier et al. [26] examined the usefulness of the design of an MSFA instantaneous sensor. These 

different MSFAs have been used in several multispectral demosaicking algorithms. 

 
2.2 Review of the MSFA demosaicking algorithms 

   Demosaicking is one of the most delicate tasks in a multispectral imaging system. Numerous demosaicking 

algorithms have been proposed based on an extension of a classical CFA algorithm [27, 28]. Miao et al. [9] 

proposed a generic multispectral demosaicking method that interpolates each missing band using edge correlation 

information. The method first determines the interpolation order of the different spectral bands, followed by the 

interpolation order of the pixel locations for each spectral band. Finally, an interpolation algorithm that uses the 

edge correlation information is applied. By exploring the spatial and spectral correlation information in an 

interpolation of the missing bands, Aggarwal et al. [29] proposed a linear demosaicking technique that applies 

linear filtering on a raw MSFA image with a kernel whose parameters are determined through training. In [12], 

the MSFA is composed of three primary and four secondary color filters, and a low-pass filter in the Fourier 

domain is used to reconstruct the primary color, whereas the principle of a constant channel difference and residual 

interpolation by means of the correlation between channels is exploited to reconstruct the secondary spectral bands. 
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In [11], Brawers and Aach proposed a linear algorithm in which the conventional color difference is first smoothed. 

The authors initially compute the sparse channel difference for each spectral band, and a fully defined channel 

difference is then estimated at each spectral band through a convolution of the previous sparse channel difference 

with a low-pass filter, which is a smoothing operation. Finally, a weighted bilinear interpolation is applied to the 

channel difference estimated to obtain the band at each pixel. Mizutani et al. [39] proposed an improvement of 

Brawers and Aach’s method by iterating the process a certain number of times depending on the neighborhood 

considered. The interpolation was then extended to a multispectral approach. Wang et al. [13] extended classical 

median filtering to MSFA demosaicking. The spectral response of the filtering is derived from the input vectors 

by estimating the missing value at one band with another value close to the same or another band. In [30], the 

authors extended a CFA method based on the discrete wavelet transform to multispectral demosaicking by 

estimating the low-and high-frequency components of the missing bands. Later, they proposed a generic MSFA 

demosaicking algorithm based on linear interpolation, which combines the linear minimum mean square error 

(LMMSE) technique and the residual interpolation method [31]. Monno et al. [3, 7, 16, 17, 32] also proposed a 

series of demosaicking algorithms for a 5-band MSFA with a dominant G-band with a probability of occurrence 

of 50%. The first of these algorithms [3] uses an adaptive kernel that is estimated directly from a raw MSFA image 

and applied to an adaptive Gaussian oversampling to generate a guide image from the G-band data. The technique 

of joint bilateral adaptive oversampling is applied to both the guide image and the data of each spectral band to 

obtain the reconstructed image. In [16], the authors improved this method by using a guide filter, which is an 

excellent structure preservation filter that performs a linear transformation of a given guide image to interpolate 

the missing bands. The authors used a residual interpolation to generate a guide image for a structure preserving 

interpolation [17] and proposed an adaptive residual interpolation by adaptively combining two algorithms based 

on residual interpolation and selecting an appropriate number of iterations for each pixel [32]. The authors then 

developed several guided images that were used in the interpolation of different bands [7]. Jaiswal et al. [20] also 

used the high-frequency component of the G-band to interpolate the other bands based on an inter-band correlation 

analysis. In addition, Mihoubi et al. [2] proposed a 16-band MSFA algorithm based on a pseudo-panchromatic 

image (PPI), which is estimated by applying an averaging filter to the raw image and then adjusted such that the 

PPI values are correlated. The difference between each available value of the adjusted raw image and PPI is 

calculated. The calculated local directional weights are then used to estimate the fully defined difference using an 

adaptive weighted bilinear interpolation. Each band is finally estimated by adding a PPI and the difference. In [33], 

the authors proposed a method that uses spatial and spectral correlations to estimate the missing bands. Recently, 

Amba et al. [34] extended the algorithm based on linear minimum mean square errors for RGB color to 

multispectral demosaicking by applying a linear operator that minimizes the mean square error between the 

reconstructed image and the original raw image. This linear operator multiplied by the MSFA image provides an 

estimate of the reconstructed image. In [18], a method of applying directional interpolation along the edges of an 

image was proposed. In this method, the image edges are calculated from the raw image to define the direction 

interpolation with the neighbors. Considering the features of the filter arrays, image edges, and a constant hue, the 

missing bands per pixel were recovered from the existing bands. Then, the image is separated into high-and low-

frequency components by applying a wavelet transform, and the high-frequency images that are highly correlated 

are modified using luminance information to refine the demosaicked image.  In [19], a multispectral algorithm that 

estimates the missing dominant band at each spatial position with a weighted average of the neighboring values of 

the dominant band was described. The dominant band reconstructed at different spatial positions is then used as a 

guided image to estimate all other missing bands using the guided filter and a residual interpolation.  
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Table 1. Comparison table of existing methods 

Authors Contributions Limitations References 
Dates of 

Publication  

Miao et al. 

- Generic MSFA based on binary tree 

- Generic multispectral demosaicking 

- Spatial and spectral correlation 

exploitation 

- Utilisation of edge correlation 

information 

- Probabilies occurrence of spectral 

bands are in order ½, ¼, or 1/8 which 

are restrictive and cannot  be arbitrary 

- The performance of edge sensing 

interpolation is limited 

[9] 
November  

2006 

Brauers et 

Aach 

- Periodic 6-band MSFA 

- Spectral correlation exploitation 

- Bilinear interpolation of  color difference  

using convolution 

- Applicable to generic MSFA 

 Not taken into account of degree of 

cross-correlation between the 

demosaicked spectral bands 

[11] 
October 

2006 

Yasuma et 

al. 

- 7-band MSFA with three primary and 

four secondary color filters 

- Linear interpolation with best 

compromise among spatial resolution, 

spectral resolution and dynamic range 

 

 Insufficient performance 
[12] 

September 

2010 

Wang et al. 

- Interpolation based on discrete wavelet 

transform 

- Low-frequency  and high-frequency 

components are interpolated differently 

 The performance depends a lot on 

the spectral correlation 
[30] 

 

September 

2013 

- LMMSE and residual interpolation 

combination using Wiener interpolation 

- Low dependence on the MSFA pattern 

 

Sensitive to noise 

 

[31] 

 

July 2014 

 

Mizutani et 

al. 

- Improvement  Brauers method by an 

iterative color difference algorithm 

 Higher the number of spectral band, 

higher the iteration and more 

complex the algorithm 

 

[39] 

 

December 

2014 

 

Aggarwal 

et al. 

- Periodic diagonal MSFA 

- Weighted linear interpolation based on 

prior learning of weights 

 Limited performance for random 

MSFA 
[29] June 2014 

Monno et 

al. 

- Generic 5-band  MSFA with  dominant  

G-band 

- Guided filtering interpolation 

 

 Insufficient performance 

 

[16] 

 

January 

2012 

- Generic 5-band MSFA with  dominant  

G-band 

- Adaptative residual interpolation 

 Some appearances artefacts in the 

reconstruct image 

 

[32] 

December 

2017 

 

Jaiswal et 

al. 

- Using Generic MSFA of Monno et al. 

- Algorithm based on inter-band 

correlation using frequency domain 

analysis 

 The performance depends on 

spectral correlation 
[20] 

February 

2017 

 

Amba et 

al. 

-LMMSE extension for 8-band MSFA 

algorithm 

 Limited performance in the object   

edge 
[34] June 2017 

 

Mihoubi et 

al. 

- 16-band MSFA algorithm 

- Algorithm based on the pseudo-

panchromatic image estimation 

 

 The complexity of the method 

 

[2] 

 

April 2017 

Sun et al. 

- Generic 4-band MSFA uniform 

- Method based on constant hue and 

wavelet transform 

 Limited performance for random 

MSFA 
[18] 

 

April 2018 
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3.   Proposed multispectral demosaicking system  

3.1 Selected MSFA pattern 

    In multispectral single-sensor imaging, an increase in the number of spectral bands weakens the spatial 

correlation. To preserve the spectral coherence and spatial uniformity, we generate the MSFA using a generic 

method based on a binary tree [9,10,14,15]. With this method, the MSFA is generated by recursively dividing the 

checkerboard pattern based on a binary tree. The binary tree is defined by the number of spectral bands and the 

sampling densities of each spectral band, which are considered as parameters. The MSFA is formed by assigning 

each spectral band to the leaf of the binary tree. 

   In our case, for the 4- and 5-band MSFA patterns identified (see Figs. 1 and 2), we assigned higher sampling 

densities in the following order: G, R, and B-O for the 4-band MSFA and G, R-B-O-C for the 5-band MSFA, 

respectively. Table 2 shows the probability of the occurrence of spectral bands in each MSFA pattern. 

 

 

 Fig. 1. 4-band MSFA configuration preceded by binary tree: (a) Binary tree considering appearance 

probabilities (b) Decomposition and subsampling processes (c) MSFA configuration. 

 

- Generic 9-band MSFA with dominant G-

band 

- Guided filtering and  residual 

interpolation 

 Processing limits information to 

edge 

 

[19] 

 

January 

2020 
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Fig. 2. 5-band MSFA configuration preceded by binary tree: (a) Binary tree considering appearance probabilities 

(b) Decomposition and subsampling processes (c) MSFA configuration. 

 

                            Table 2. Probability occurrence of spectral bands 

 

 

 

 

 

 

3.2 Estimating multispectral luminance 

   A multispectral image is represented by an array of M rows, N columns, and P spectral channels. At each spatial 

location (x, y), several spectral components (𝑆𝑝) are defined by  

         


 dyxLyxS pp )(),,(),(                                                                                                                                  (1)            

 where 𝐿(𝑥, 𝑦, 𝜆) is the spectrally dependent irradiance at each location, 𝜙𝑝(𝜆) is the spectral sensitivity function 

for a given sensor response (Fig.3), and 𝜆 is the wavelength [6]. 

   Let 𝐼𝑀𝑆𝐹𝐴(𝑥, 𝑦) be a raw multispectral digital image from a single sensor. 𝐼𝑀𝑆𝐹𝐴(𝑥, 𝑦) is a mosaic image with 

one channel per pixel and can be represented by 

          p ppMSFA yxZyxSyxI ),(),(),(                                                                                                                          (2)                                                                                                                                       

where 𝐙𝐩(𝐱, 𝐲) are the orthogonal functions of dimension 𝑃  and take values of 1 or 0 if channel 𝑝 is present or 

not at the location (𝐱, 𝐲), respectively.  

MSFA Spectral Band 

R G B O C 
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Fig. 3. Spectral sensitivity of the 4- (left) and 5-band (right) filters  

   In frequency domain, referring to the MSFA in [18], an N-band single-sensor spectral imaging process raw data 

is expressed as follows: 

 p ppMSFA yxmyxSyxI ),(),(),(                                                                                                                               (3)                                                                                                                                                                                                                                                                                                 

where 𝑚𝑝(𝑥, 𝑦), (𝑝 = 𝑅, 𝐺, 𝐵, 𝑂, 𝐶) are the modulation functions at position (𝑥, 𝑦) whose expressions depend on 

the MSFA pattern. Applied to our 4- and 5-band MSFA patterns chosen in Figs. 1(c) and 2(c), these modulation 

functions can be expressed as follows:   
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          For 5-band MSFA 

From equation (4) of 4-band MSFA, Eq. (3) becomes  
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 (6)                         

 Let consider the following transformation: 

𝑐𝑜𝑠(𝜋𝑥) = 𝑐𝑜𝑠(𝜋(𝑥 + 𝑦 − 𝑦)) = 𝑐𝑜𝑠(𝜋(𝑥 + 𝑦)) 𝑐𝑜𝑠(𝜋𝑦) + 𝑠𝑖𝑛(𝜋(𝑥 + 𝑦)) 𝑠𝑖𝑛(𝜋𝑦).                  (A) 

Our MSFA pattern is such that the sum of the spatial coordinates x and y at G pixels in the MSFA image is even,  

 then, 𝑐𝑜𝑠(𝜋(𝑥 + 𝑦)) = 1 ; 𝑠𝑖𝑛(𝜋(𝑥 + 𝑦)) = 0.                                                                              (B) 

 From (A) and (B), we have cos(𝜋𝑥) = cos(𝜋𝑦). Therefore, at G pixels, Equation (6) becomes    
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This equation can be separated into two parts through 

  



OBGRS

SMSFA yxmyxSyxOyxByxGyxRyxI
,,,

),(~),(),(
2

1),(
2

1),(2),(
4

1),(                     (8)                                              

   Similarly, under the same conditions, the 5-band MSFA multispectral image can be written as 

    

  )cos()cos(),(),(),(),(4),(
8

1

)cos()cos(),(),(
8

1),(),(),(),(4),(
8

1),(

yxyxCyxByxOyxGyxR

yxyxOyxRyxCyxOyxByxGyxRyxI MSFA







      (9)                    

and (9) can be separated into two terms as  

  



COBGRS

SMSFA yxmyxSyxCyxOyxByxGyxRyxI
,,,,

),(~),(),(),(),(),(4),(
8

1),(                             (10)                                                                     

From equations (8) and (10), we obtain the following terms      

 ),(
2

1),(
2

1),(2),(
4

1),(_4 yxOyxByxGyxRyxL MSFA                                                                      (11)                                                                                                                                                                                                                                         

 ),(),(),(),(4),(
8

1),(_5 yxCyxOyxByxGyxRyxL MSFA                                                                (12)         

      Equations (11) and (12) represent the luminance components at the G pixels, in the 4-and 5-band MSFA, and 

the other terms of equations (8) and (10) represent the chrominance components. In [35], a Gaussian low-pass 

filter with 11 × 11 support was used to estimate the luminance at each pixel of the CFA image. Lyan et al. [36] 

also showed the limitations of this filter and proposed a Gaussian low-pass filter with a 5 × 5 support to estimate 

the luminance at the G pixels of the CFA image because there is less overlap between the luminance and 

chrominance. Consequently, the complexity of the algorithm is reduced and the results are improved as much as 

possible. In our case, the condition of the spatial coordinates at G pixels reduces the overlap between the luminance 

and chrominance components and can avoid artifacts in the reconstructed multispectral image. Thus, we use a 

Gaussian low-pass filter with a 5 × 5 support in [36] to estimate the luminance component at the G pixels, and for 

other pixels, a Gaussian low-pass filter with 11 × 11 support was proposed in [35]. The chrominance components 

were obtained by the color difference. 

3.3 Proposed multispectral demosaicking algorithm 

   The algorithm is a multistep approach and first estimates the missing G components. 

3.3.1 G component missing estimation 

     To consider at the edges, we used the convolution method to estimate the missing green components with a 

symmetric 3 × 3 low-pass filter according to equation (13). Let �̂� be the estimated G component at each pixel R, 

G, B, O, and C. 

 

                     
 


m

i

n

j

jyixfjigyxG
1 1

),(),(),(ˆ                                                                                                                                                      (13) 

The convolution kernel g is a low pass filter defined as    

 

              



















010

141

010

4
1g

                                                                                                                                                                  (14)                                                                                                                                                                                                                           

The matrix product 𝑓 of �̆� and 𝐼𝑀𝑆𝐹𝐴 allows an updating of the values of the different pixels at each spatial position 

before the convolution. 

Jo
urn

al 
Pre-

pro
of



 

                   
MSFAIyxGyxf ),(),(


                                                                                                                                                                             (15)                                               

 

The subsampling �̆� of G band is obtained from MSFA (Figs. 1(c) and 2(c)) by filling in of each G pixel with a 1 

the other pixels by zero: 
 

 

             






otherwise      0

pixelG in       1
),( yxG

                                                                                                                                                                        (16) 

 

Fig.4. G band estimation using convolution method: (a) f matrix (b) G estimated values at each pixel (c) g 

convolution kernel 

3.3.2 Other channels estimation at G pixels  

    After estimating the missing green bands at different pixels, each missing component, R, B, O, and C, at G 

pixels is determined through a bilinear interpolation of the color difference 𝑅 − �̂�, 𝐵 − �̂�, 𝑂 − �̂�, and 𝐶 − �̂�, 

respectively. 

    Referring to the 4-band MSFA (Fig. 1(c)), G pixels have red (R) neighbors in the horizontal or vertical 

direction. Therefore, we estimate R using   

  









neighbors lin vertica R if  y))1,+G(x-y)1,+R(x+y)1,-G(x-y)1,-(R(x

2
1+y)G(x,

neighbors horizontalin  R if 1))+yG(x,-1)+yR(x,+1)-yG(x,-1)-y(R(x,
2

1+y)G(x, 
),( yxR

           (17) 
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Moreover, the G pixels have similar B and O neighbors in the horizontal and vertical directions. Therefore, B and 

O were estimated in the same manner. In the horizontal direction, they occupy (x, y − 1), (x, y + 3), (first 

position), or (x, y − 3), (x, y + 1)  (second position) of the G pixels. Next, we estimate B as follows: 

 









position  secondin  B if   1))+yG(x,-1)+yB(x,+3)-yG(x,-3)-y(B(x, 

2
1+y)G(x, 

  position  first in  B if   3))+yG(x,-3)+yB(x,+1)-yG(x,-1)-y(B(x, 
2

1+y)G(x, 
),( yxB

  (18) 

         

In the vertical direction, B is estimated in the same way by inverting the index order. 

   For a 5-band MSFA (Fig. 2(c)), the same strategy is used to estimate the R, B, O, and C bands in the G pixels. 

3.3.3 Other missing component estimation at other pixels  

   The other missing components 𝑅, 𝐵, 𝑂 and 𝐶 at the pixels 𝐶, 𝑂, 𝐵 and 𝑅 are estimated by the weighted sum of 

the color differences, where the weights are calculated on the basis luminance components according to the steps: 

 3.3.3.1 Multispectral luminance �̂̂̂�(𝒙, 𝒚) estimation  

   We estimate the luminance component L̂(𝑥, 𝑦)  at different pixels according to the methods described in section 

3.2 

 3.3.3.2 Weight calculation 

   The estimated luminance L̂(𝑥, 𝑦)  is decomposed using a low-pass filter normalized as 𝐻0 = 1/8 [1 3 3 1] and 

transposing 𝐻0
′ into the horizontal L̂HL(x, y) and vertical L̂LH(x, y) components, unlike the wavelets used in our 

previous article [27]. 

   We calculated the energies of �̂�𝐻L(𝑥, 𝑦) and  �̂�L𝐻(𝑥, 𝑦), denoting them as 𝑒𝐻L(𝑥, 𝑦) and 𝑒L𝐻(𝑥, 𝑦), respectively, 

and used them to compute the horizontal and vertical weights at each pixel: 
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where 𝐹 is a spatial averaging kernel of 3 × 3 size.  
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The energies 𝑒𝐻L(𝑥, 𝑦) and 𝑒L𝐻(𝑥, 𝑦) are calculated as 
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The red samples in the blue locations were estimated as follows: 
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Where: 

            ),(ˆ),(ˆ),(ˆ yxByxRyxDRB                                                                                                                                                                                          (24) 
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The same strategy was applied to reconstruct the blue component in the red locations. This was the same for the 

other components. A block diagram of the proposed algorithm is shown in Fig.5. 

 

          

Fig. 5. Block diagram of the proposed algorithm 

 

4. Results and discussion 

    In our experiments, we used 15 images from a cave dataset [37], in which multispectral images consist of 31-

band multispectral images acquired under illuminant D65. The 31-band images were acquired every 10 nm at 

between 400 and 700 nm. The image size was 512×512 pixels. The CAVE dataset is often used as a standard 

multispectral image dataset.  

    To evaluate the performance of the proposed algorithm, we compared it with recent 4-band multispectral 

demosaicking methods, namely inter-band bilinear interpolation (IBBI) [28], generic binary tree edge sensing 

(BTES) [9], learned interpolation weights (LIW) [29], and directional filtering and wavelet transformation 
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(DFWF) [18]. In the case of 5-band multispectral demosaicking methods, the comparison is applied using the 

demosaicking algorithm based on adaptive spectral-correlation demosaicking (ASCD) [20], Practical One-Shot 

multispectral demosaicking (POS) [7], the BTES method [9], a guided filter (GF) [16], linear interpolation (LI) 

[31], and the iterative intensity difference (IID) [33]. Visual and objective evaluations were also conducted.  

 

4.1. Visual performance evaluations 

    For evaluation purposes, we selected the statue, bead, and sponge images from the cave dataset. Fig. 6 shows 

the results of the R-band of the image statue for different algorithms. The images reconstructed by the different 

comparison algorithms appear sharper than those of the original image, but are highly blurred. The BTES, LI, and 

POS methods show an edge degradation; however, such problems are reduced with the GF, ASCD, and IID 

methods. However, the image reconstructed using the proposed method has almost the same sharpness as the 

original image, but with almost no edge distortion or blurring. Fig.7 shows the results of the G-band of the image 

bead of the different algorithms. As can be seen, the BTES and LI methods exhibit severe edge distortion and 

blurring. These distortions are also visible with the ASCD method but are less accentuated. With the GF, POS, 

and IID methods, blurring was noticeable. Our method presents slight edge distortions, but with an almost complete 

absence of blurring. In Fig.8, we show the results of the visual comparison of the O-band of the image sponge 

produced using the demosaicking algorithms. We see that the image reconstructed by the GF method appears 

sharper than the original image but with artifacts, whereas the image reconstructed by the ASCD method is less 

sharp but retains the edges. With the BTES, LI, and POS methods, the reconstructed images show artifacts, and 

the text is extremely unclear. Similarly, the performance of the IID method is insufficient compared with our 

approach in terms of the reconstructed image. By contrast, the image reconstructed by the proposed algorithm 

contains fewer distortions, and the text is clearer. Clearly, the same behavior was observed for the B- and C-bands. 

 

    Fig. 6. Visual comparison of R band of statue image: (a) Original R Band, (b) GF, (c) BTES, (d) LI, (e) 

ASCD, (f) POS, (g) IID, and (h) proposed approach for 5-band MSFA. 
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      Fig. 7.  Visual comparison of G band of bead image: (a) Original G Band, (b) GF, (c) BTES, (d) LI, (e) 

ASCD, (f) POS, (g) IID, and (h) proposed approach for 5-band MSFA.  

 

Fig.8. Visual comparison of O band of sponge image: (a) Original G Band; (b) GF; (c) BTES; (d) LI; (e) ASCD; 

(f) POS; (g) IID;(h) proposed approach for 5-band MSFA. 
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4.2. Quantitative performance evaluations  

   To quantitatively assess the objective performance of the proposed 4- and 5-band MSFA algorithms, we used 

the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) metrics as described in [18, 31], 

calculated from the original and demosaicked images.  

   The average results obtained from the proposed algorithm through the PSNR and SSIM values are recorded in 

Tables 3 and 4 for the 4-band MSFA and in Tables 5 and 6 for the 5-band MSFA. The results of the other algorithms 

are provided in [20].   

   
       Table 3. PSNR results of 4-band MSFA demosaicking algorithms 

             

 

 

 

 

 

 
 
                

 

 

 

           

            Table 4. SSIM results of 4-band MSFA demosaicking algorithms 

                      

 

 

 

 

 

 

 

 

 

 

 

                  

 

 

                        

              Table 5. Average PSNR results of 5-band MSFA demosaicking algorithms 

 

Images IBBI[28] BTES[9] LIW[29] DFWF[18]  LCBD 

Balloons 45.67 42.03 38.07 46.94 50.19 

Feathers 37.43 35.15 33.19 39.44 41.38 

Pompoms 41.40 38.46 30.06 41.29 43.14 

Toys 43.90 42.71 34.54 43.43 44.52 

Beads 32.31 30.75 26.48 33.21 31.68 

Cloth 30.86 28.53 29.99 31.36 34.29 

Statue 42.75 40.63 37.81 44.14 38.14 

Face 41.28 38.21 36.05 40.29 42.71 

Flowers 42.87 39.11 36.07 38.43 44.03 

Beans 35.04 32.62 30.68       36.93 35.26 

Painting 31.99 30.89 31.02 34.86 35.81 

Thread 38.62 36.34 37.77 43.30 41.22 

Superballs 43.59 41.79 39.47 44.93 39.60 

Food 42.73 40.08 37.37 43.26 40.65 

Watercolors 34.49 32.25 27.05 36.15 45.70 

Average 38.99 36.64 33.71 39.73 40.55 

Images IBBI[28] BTES[9] LIW[29] DFWF[18]  LCBD 

Balloons 0.9012 0.9110 0.9025 0.9017 0.9980 

Feathers 0.9576 0.9934 0.9902 0.9907 0.9870 

Pompoms 0.9228 0.9928 0.9905 0.9898 0.9852 

Toys 0.9657 0.9983 0.9972 0.9972 0.9917 

Beads 0.8900 0.8857 0.8758 0.8823 0.8903 

Cloth 0.9011 0.8670 0.8677 0.8862 0.9272 

Statue 0.8816 0.8727 0.8849 0.8828 0.9776 

Face 0.9924 0.9972 0.9983 0.9970 0.9939 

Flowers 0.9663 0.9958 0.9946 0.9929 0.9859 

Beans 0.9539 0.9864 0.9911 0.9835 0.9500 

Painting 0.9415 0.9393 0.9833 0.9625 0.9231 

Thread 0.9818 0.9888 0.9969 0.9942 0.9812 

Superballs 0.9763 0.9968 0.9935 0.9952 0.9680 

Food 0.8821 0.8864 0.8827 0.8639 0.9688 

Watercolors 0.9739 0.9848 0.9934 0.9831 0.9857 

Average 0.9393 0.9531 0.9562 0.9535 0.9676 

Cave Dataset 

Algo. Spectral Band Mean 

R G B O C 
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                     Table 6. Average SSIM results of 5-band MSFA demosaicking algorithms 

 

 
 
 
 

   

 

 

 

 

 

 

 

 

 

 

    The best scores in the tables are in bold, and our MSFA pattern is not the same as that of the comparison 

methods. According to the results in Table 3, our proposed 4-band MSFA algorithm outperformed the other 

methods for 10 out of 15 images used in the Cave dataset in terms of the PSNR, achieving the best average PSNR 

value. This is followed by the DFWF method, which shows good scores for five of the images. As shown in Table 

4, for the SSIM values, our method presents better results with five images and the best average SSIM value, 

followed by the BTES method, which presents good results with six images but a lower mean SSIM value than 

our approach. In general, the 4-band MSFA method proposed in this study is better than all other methods in terms 

of both the PSNR and SSIM. 

    Regarding the mean PSNR and SSIM of the proposed 5-band MSFA algorithm in Tables 5 and 6, our algorithm 

outperformed the others with three bands, i.e., G, B, and O, in terms of the PSNR, but with a slightly lower mean 

value, which is very close to the highest mean value of the ASCD method. This can be explained by the fact that 

the convolution technique used to estimate the dominant band considers the details of the edge where the inter-

channel correlation is sufficiently high, which is not the case for the other bands, notably, the band C. However, 

in terms of the SSIM, the proposed method outperformed all other approaches. Globally, our algorithm has a high 

objective performance compared to the methods we selected from the recent literature. 

5. Conclusion 

   In this paper, we propose a multispectral demosaicking algorithm that exploits a convolution method used to 

estimate the G-band and the luminance component to estimate the other missing bands of a single sensor image. 

To generate the identified MSFA as a function of the required density in the G-band, we used the generic Benary 

tree method. To extract this luminance component at the green pixels, we used a 5 × 5 Gaussian low-pass filter, 

and for the other components we applied an 11 × 11 Gaussian low-pass filter. The results of the tests carried out 

on the selected filters show that the proposed algorithm is more powerful than the existing approaches, both 

visually and in terms of objective measurements. In our future work, we will study the application of these results 

in areas such as agriculture, medicine, and other fields. Extensive studies will be undertaken to provide a general 

extension of the proposed algorithm to more than five image bands. In addition, the MSFAs upon which our study 

is related are rectangular, and we plan to explore the efficiency of hexagonal MSFAs. 

ASCD[20] 45.81 47.85 44.94 45.20 44.60 45.68 

POS [7] 45.36 48.06 43.96 44.75 44.69 45.36 

BTES[9] 42.60 46.54 40.46 39.41 37.84 41.37 

GF [16] 44.61 47.65 43.31 42.13 41.25 43.79 

LI [31] 43.79 47.05 41.05 40.65 39.12 42.33 

IID [33]  44.10 46.31 43.34 43.12 42.52 43.87 

   LCBD 45.62 50.36 48.74 47.53 35.13 45.48 

Cave Dataset 

Algo. Spectral Band Mean 

R G B O C 

ASCD[20] 0.9841 0.9917 0.9856 0.9865 0.9821 0.9860 

POS [7] 0.9831 0.9922 0.9822 0.9840 0.9825 0.9848 

BTES[9] 0.9724 0.9801 0.9710 0.9610 0.9524 0.9674 

GF [16] 0.9805 0.9910 0.9801 0.9770 0.9790 0.9815 

LI [31] 0.9780 0.9889 0.9791 0.9671 0.9612 0.9749 

IID [33] 0.9795 0.9874 0.9802 0.9701 0.9807 0.9796 

   LCBD 0.9899 0.9946 0.9902 0.9897 0.9908 0.9910 
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