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Introduction to random fields and scale
invariance

Hermine Biermé

Abstract In medical imaging, several authors have proposed to characterize rough-
ness of observed textures by their fractal dimensions. Fractal analysis of 1D signals
is mainly based on the stochastic modeling using the famous fractional Brownian
motion for which the fractal dimension is determined by its so-called Hurst param-
eter. Lots of 2D generalizations of this toy model may be defined according to the
scope. This lecture intends to present some of them. After an introduction to random
fields, the first part will focus on the construction of Gaussian random fields with
prescribed invariance properties such as stationarity, self-similarity, or operator scal-
ing property. Sample paths properties such as modulus of continuity and Hausdorff
dimension of graphs will be settled in the second part to understand links with frac-
tal analysis. The third part will concern some methods of simulation and estimation
for these random fields in a discrete setting. Some applications in medical imaging
will be presented. Finally, the last part will be devoted to geometric constructions
involving Marked Poisson Point Processes and shot noise processes.

1 Random fields and scale invariance

We recall in this section definitions and properties of random fields. Most of them
can also be found in [22] but we try here to detail some important proofs. We stress
on invariance properties such as stationarity, isotropy, and scale invariance and il-
lustrate these properties with typical examples.

Hermine Biermé
LMA, UMR CNRS 7348, Université de Poitiers, bd Marie et Pierre Curie, 86962 Chasseneuil,
France, e-mail: hermine.bierme@math.univ-poitiers.fr
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2 Hermine Biermé

1.1 Introduction to random fields

As usual when talking about randomness, we let (Ω ,A ,P) be a probability space,
reflecting variability.

1.1.1 Definitions and distribution

Let us first recall the general definition of a stochastic process. For this purpose we
have to consider a set of indices T . In this lecture we assume that T ⊂ Rd for some
dimension d ≥ 1.

Definition 1. A (real) stochastic process indexed by T is just a collection of real
random variables meaning that for all t ∈ T , one has Xt : (Ω ,A )→ (R,B(R))
measurable.

Stochastic processes are very important in stochastic modeling as they can mimic
numerous natural phenomena. For instance, when d = 1, one can choose T ⊂ R
(seen as time parameters) and consider Xt(ω) as the real value of heart frequency at
time t ∈ T with noise measurement or for an individual ω ∈Ω . Note that, in practice
data are only available on a discrete finite subset S of T , for instance each millisec-
ond. When d = 2, choosing T = [0,1]2, the value Xt(ω) may correspond to the grey
level of a picture at point t ∈ T . Again, in practice, data are only available on pixels
S = {0,1/n, . . . ,1}2 ⊂ T for an image of size (n+ 1)× (n+ 1). In general we talk
about random fields when d > 1 and keep the terminology stochastic process only
for d = 1. Since we have actually a map X from Ω × T with values in R we can
also consider it as a map from Ω to RT . We equip RT with the smallest σ -algebra
C such that the projections πt : (RT ,C )→ (R,B(R)), defined by πt( f ) = f (t) are
measurable. It follows that X : (Ω ,A )→ (RT ,C ) is measurable and its distribu-
tion is defined as the image measure of P by X , which is a probability measure
on (RT ,C ). An important consequence of Kolmogorov’s consistency theorem (see
[37] p.92) is the following equivalent definition.

Definition 2. The distribution of (Xt)t∈T is given by all its finite dimensional distri-
bution (fdd) ie the distribution of all real random vectors

(Xt1 , . . . ,Xtk) for k ≥ 1, t1, . . . , tk ∈ T.

Note that joint distributions for random vectors of arbitrary size k are often dif-
ficult to compute. However we can infer some statistics of order one and two by
considering only couples of variables.

Definition 3. The stochastic process (Xt)t∈T is a second order process if E(X2
t ) < + ∞,

for all t ∈ T . In this case we define

• its mean function mX : t ∈ T → E(Xt) ∈ R;
• its covariance function KX : (t,s) ∈ T ×T → Cov(Xt ,Xs) ∈ R.
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A particular case arises when mX = 0 and the process X is said centered. Other-
wise the stochastic process Y = X−mX is also second order and now centered with
the same covariance function KY = KX . Hence we will mainly consider centered
stochastic processes. The covariance function of a stochastic process must verify
the following properties.

Proposition 1. A function K : T ×T → R is a covariance function iff

1. K is symmetric ie K(t,s) = K(s, t) for all (t,s) ∈ T ×T ;
2. K is non-negative definite: ∀k ≥ 1, t1, . . . , tk ∈ T, : λ1, . . . ,λk ∈ R,

k

∑
i, j=1

λiλ jK(ti, t j)≥ 0.

Proof. The first implication is trivial once remarked the fact that Var
(
∑

k
i=1 λiXti

)
=

∑
k
i, j=1 λiλ jK(ti, t j). For the converse, we need to introduce Gaussian processes. ut

1.1.2 Gaussian processes

As far as second order properties are concerned the most natural class of processes
are given by Gaussian ones.

Definition 4. A stochastic process (Xt)t∈T is a Gaussian process if for all k ≥ 1 and
t1, . . . , tk ∈ T

(Xt1 , . . . ,Xtk) is a Gaussian vector of Rk,

which is equivalent to the fact that for all λ1, . . . ,λk ∈ R, the real random variable
k

∑
i=1

λiXti is a Gaussian variable (eventually degenerate ie constant).

Note that this definition completely characterizes the distribution of the process in
view of Definition 2.

Proposition 2. When (Xt)t∈T is a Gaussian process, (Xt)t∈T is a second order pro-
cess and its distribution is determined by its mean function mX : t 7→ E(Xt) and its
covariance function KX : (t,s) 7→ Cov(Xt ,Xs).

This comes from the fact that the distribution of the Gaussian vector (Xt1 , . . . ,Xtk)
is characterized by its mean (E(Xt1), . . . ,E(Xtk)) = (mX (t1), . . . ,mX (tk)) and its co-
variance matrix

(
Cov(Xti ,Xt j)

)
1≤i, j≤k

= (KX (ti, t j))1≤i, j≤k.
Again Kolmogorov’s consistency theorem (see [37] p.92 for instance) allows to

prove the following existence result that finishes to prove Proposition 1.

Theorem 1. Let m : T → R and K : T ×T → R a symmetric and non-negative def-
inite function, then there exists a Gaussian process with mean m and covariance
K.
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Let us give some insights of construction for the fundamental example of Gaussian
process, namely the Brownian motion. We set here T = R+ and consider (Xk)k∈N
a family of independent identically distributed second order random variables with
E(Xk) = 0 and Var(Xk) = 1. For any n≥ 1, we construct on T the following stochas-
tic process

Sn(t) =
1√
n

[nt]

∑
k=1

Xk.

By the central limit theorem (see [28] for instance) we clearly have for t > 0,√
n
[nt]Sn(t)

d−→
n→+∞

N (0,1) so that by Slutsky’s theorem (see [15] for instance)

Sn(t)
d−→

n→+∞
N (0, t). Moreover, for k ≥ 1, if 0 < t1 < .. . < tk, by independence

of marginals,

(Sn(t1),Sn(t2)−Sn(t1), . . . ,Sn(tk)−Sn(tk−1))
d−→

n→+∞
Z = (Z1, . . . ,Zk),

with Z ∼ N (0,KZ) for KZ = diag(t1, t2− t1, . . . , tk − tk−1). Hence identifying the

k× k matrix Pk =


1 0 . . . 0
1 1
...

. . .
1 . . . . . . 1

 with the corresponding linear application on Rk,

(Sn(t1),Sn(t2), . . . ,Sn(tk)) = Pk(Sn(t1),Sn(t2)−Sn(t1), . . . ,Sn(tk)−Sn(tk−1))

d−→
n→+∞

PkZ,

with PkZ ∼N (0,PkKZP∗k ) and PkKZP∗k = (min(ti, t j))1≤i, j≤k. In particular the func-
tion

K(t,s) = min(t,s) =
1
2
(t + s−|t− s|)

is a covariance function on the whole space R+×R+ and (Sn)n converges in finite
dimensional distribution to a centered Gaussian stochastic process X = (Xt)t∈R+

with covariance K, known (up to continuity of sample paths) as the standard Brow-
nian motion on R+.

Fig. 1 Sample paths of a
Brownian motion on [0,1].
The realization is obtained
using fast and exact synthesis
presented in Section 3.1.1
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Now we can extend this process on R by simply considering X (1) and X (2) two
independent centered Gaussian processes on R+ with covariance function K and
defining Bt :=X (1)

t for t ≥ 0, Bt :=X (2)
−t for t < 0. Computing the covariance function

of B yields the following definition.

Definition 5. A (standard) Brownian motion on R is a centered Gaussian process
(Bt)t∈R with covariance function given by

KB(t,s) = Cov(Bt ,Bs) =
1
2
(|t|+ |s|− |t− s|) , ∀t,s ∈ R.

From Gaussian stochastic processes defined on R we can define Gaussian random
fields defined on Rd in several ways. We give some possibilities in the next section.

1.1.3 Gaussian fields defined from processes

We consider on Rd the Euclidean norm, denoted by ‖ · ‖ with respect to the Eu-
clidean scalar product x · y for x,y ∈ Rd . The unit sphere {θ ∈ Rd ;‖θ‖ = 1} is
denoted as Sd−1 and we let (ei)1≤i≤d stand for the canonical basis of Rd .

A first example of construction is given in the following proposition.

Proposition 3. Let K : R×R→ R be a continuous covariance function. For all µ

non-negative finite measure on the unit sphere Sd−1, the function defined by

(x,y) ∈ Rd×Rd 7→
∫

Sd−1
K(x ·θ ,y ·θ)dµ(θ) ∈ R,

is a covariance function on Rd×Rd .

Proof. According to Proposition 1, it is enough to check symmetry and non-
negative definiteness. Symmetry is clear and for all k≥ 1, x1, . . . ,xk ∈Rd , λ1, . . . ,λk ∈
R,

k

∑
i, j=1

λiλ j

∫
Sd−1

K(xi ·θ ,x j ·θ)dµ(θ) =
∫

Sd−1

(
k

∑
i, j=1

λiλ jK(xi ·θ ,x j ·θ)

)
dµ(θ)≥ 0,

since for all θ ∈ Sd−1, x1 ·θ , . . . ,xk ·θ ∈ R with K non-negative definite on R×R
and µ non-negative measure. ut

As an example we can note that
∫

Sd−1 |x ·θ |dθ = cd‖x‖, with cd =
∫

Sd−1 |e1 ·θ |dθ

for e1 = (1,0, . . . ,0) ∈ Sd−1. Then, for KB the covariance function of a standard
Brownian motion on R we get∫

Sd−1
KB(x ·θ ,y ·θ)dθ =

cd

2
(‖x‖+‖y‖−‖x− y‖) .
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Definition 6. A (standard) Lévy Chentsov field on Rd is a centered Gaussian field
(Xx)x∈Rd with covariance function given by

Cov(Xx,Xy) =
1
2
(‖x‖+‖y‖−‖x− y‖) , ∀x,y ∈ Rd .

Let us note that (Xtθ )t∈R is therefore a standard Brownian motion for all θ ∈ Sd−1.

Fig. 2 Sample paths of a Lévy Chentsov field on [0,1]2. The realization is obtained using fast and
exact synthesis presented in Section 3.1.3. On the left we draw the obtained surface, on the right
the two corresponding images with colors or gray levels given according to the values on each
points.

Another example is given using a sheet structure according to the following
proposition.

Proposition 4. Let K1,K2, . . . ,Kd be covariance functions on R×R, then the func-
tion defined by

(x,y) ∈ Rd×Rd 7→
d

∏
i=1

Ki(x · ei,y · ei) ∈ R,

is a covariance function on Rd×Rd .

Proof. Since for 1 ≤ i ≤ d, the function Ki is a covariance function on R×R we
may consider independent centered Gaussian processes X (i) = (X (i)

t )t∈R with co-
variance given by Ki. For x = (x1, . . . ,xd) ∈ Rd , we may define the random variable
Xx = ∏

d
i=1 X (i)

x·ei so that the random field X = (Xx)x∈Rd is second order (but no more
Gaussian!), centered, with covariance given by

Cov(Xx,Xy) = E(XxXy) =
d

∏
i=1

E
(

X (i)
x·eiX

(i)
y·ei

)
=

d

∏
i=1

Ki(xi,yi),

by independence of X (1), . . . ,X (d). ut

This leads to the second fundamental extension of Brownian motion on the whole
space Rd , by choosing Ki = KB for all 1≤ i≤ d.

Definition 7. A (standard) Brownian sheet on Rd is a centered Gaussian field
(Xx)x∈Rd with covariance function given by
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Cov(Xx,Xy) =
d

∏
i=1

1
2
(|x · ei|+ |y · ei|− |x · ei− y · ei|), ∀x,y ∈ Rd .

Note that it implies that this field is equal to 0 on the axes {x∈Rd ;∃i∈ {1, . . . ,d},x ·
ei = 0} and corresponds to a Brownian motion (non-standard) when restricted to
{x+ tei; t ∈R}, for x ∈Rd with x ·ei = 0. The following section will focus on some
invariance properties.

1.2 Stationarity and Invariances

When considering stochastic modeling of homogeneous media it is usual to assume
an invariance of distributions under translation (stationarity) or vectorial rotation
(isotropy).

1.2.1 Stationarity and Isotropy

Definition 8. The random field X = (Xx)x∈Rd is (strongly) stationary if, for all x0 ∈
Rd , the random field (Xx+x0)x∈Rd has the same distribution than X .

It implies a specific structure of second order moments.

Proposition 5. If X = (Xx)x∈Rd is a stationary second order random field, then,

• its mean function is constant mX (x) = mX , for all x ∈ Rd and some mX ∈ R;
• its covariance may be written as KX (x,y) = cX (x− y) with cX : Rd → R an even

function satisfying

(i) cX (0)≥ 0 ;
(ii) |cX (x)| ≤ cX (0) ∀x ∈ Rd ;

(iii) cX is of non-negative type ie ∀k ≥ 1,x1, . . . ,xk ∈ Rd ,λ1, . . . ,λk ∈ C,

k

∑
j,l=1

λ jλlcX (x j− xl)≥ 0. (1)

Let us remark that the two above properties characterize the weak (second-order)
stationarity. Note also that they imply strong stationarity when the field is assumed
to be Gaussian. This is because mean and covariance functions characterize the
distribution of Gaussian fields.

Proof. Since Xx
d
= X0 we get mX (x) = E(Xx) = E(X0) := mX . For the covariance

structure we set cX (z) = KX (z,0), for all z∈Rd , and remark that for y∈Rd , one has

(Xz+y,Xy)
d
= (Xz,X0) so that Cov(Xz+y,Xy) = cX (z). Hence for z = x− y we obtain

KX (x,y) = cX (x− y). Since (Xx,X0)
d
= (X0,X−x), the function cX is even. The first

point comes from the fact that cX (0) = Var(X0) = Var(Xx) ≥ 0, the second one is
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obtained using Cauchy-Schwarz inequality to bound |Cov(Xx,X0)|. The last one is
just a reformulation of the non-negative definiteness of KX when λ1, . . . ,λk ∈ R.
Otherwise, it follows writing λ j = a j + ib j since we have ℜ(λ jλl) = a jal + b jbl

and ℑ(λ jλl) = b jal−bla j with cX even. ut

Remark that when a function c : Rd → R satisfies (1), then c must be even and
satisfy points (i) and (ii). Actually, (i) is obtained for k = 1, λ1 = 1 and x1 = 0.
Considering k = 2, x1 = 0 and x2 = x ∈ Rd , we first obtain for λ1 = 1 and λ2 = i
that 2c(0) + ic(x)− ic(−x) ≥ 0 hence c is even, while for λ1 = λ2 = 1 it yields
−c(x)≤ c(0) and for λ1 = 1 =−λ2 we get c(x)≤ c(0) so that (ii) is satisfied.

By Bochner’s theorem (1932), a continuous function of non-negative type is a
Fourier transform of a non-negative finite measure. This can be rephrased as the
following theorem.

Theorem 2 (Bochner). A continuous function c : Rd → R is of non-negative type if
and only if c(0)≥ 0 and there exists a symmetric probability measure ν on Rd such
that

∀x ∈ Rd , c(x) = c(0)
∫
Rd

eix·ξ dν(ξ ).

In other words there exists a symmetric random vector Z on Rd such that

∀x ∈ Rd , c(x) = c(0)E(eix·Z).

When c = cX is the covariance of a random field X , the measure ν = νX is called the
spectral measure of X . This strong result implies in particular that we may define
stationary centered Gaussian random field with a covariance function given by the
characteristic function of a symmetric random vector.

Proof. Note that the converse implication is straightforward so we will only prove
the first one. We may assume that c(0)> 0, otherwise there is nothing to prove. The
first step is to assume that c ∈ L1(Rd). Note that in view of (ii), since c is bounded
we also have c ∈ L2(Rd). We will prove that its Fourier transform ĉ ∈ L2(Rd) is
necessarily non-negative. To this end remark that, approximating by Riemann sums
for instance, we necessarily have∫

Rd

∫
Rd

g(x)g(y)c(x− y)dxdy≥ 0, (2)

for all g∈S (Rd), the Schwartz class of infinitely differentiable function with rapid
decreasing. We denote as usual ĝ(ξ ) =

∫
Rd e−ix·ξ g(x)dx, the Fourier transform, that

may be extended to any L2(Rd) function. We may rewrite
∫
Rd
∫
Rd g(x)g(y)c(x−

y)dxdy=
∫
Rd g(x)c∗g(x)dx, where ∗ is the usual convolution product on L1(Rd) and

c∗g ∈ L2(Rd) since c ∈ L1(Rd) and g ∈S (Rd)⊂ L2(Rd). Hence, by Plancherel’s
theorem (see [55] for instance), we have

1
(2π)d

∫
Rd

ĉ(ξ )|ĝ(−ξ )|2dξ =
∫
Rd

g(x)c∗g(x)dx, (3)
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where the right hand side is non-negative in view of (2). Now, for σ > 0, let us
denote by hσ the density of a centered Gaussian vector of Rd with covariance σ2Id ie

hσ (x) = 1
σd(2π)d/2 e−

‖x‖2

2σ2 . Its characteristic function is given by the Fourier transform

ĥσ (ξ )= e−σ2 ‖ξ‖2
2 . In this way (hσ )σ is an approximation of identity and c∗hσ (x)→

c(x), as σ → 0, since c is continuous. Moreover, ĉ is also continuous as the Fourier
transform of an L1(Rd) function, so that we also have ĉ ∗ hσ (ξ )→ ĉ(ξ ). Now we
will prove that ĉ≥ 0. Let us take gσ (x) = σd/2

2d/4π3d/4 e−σ2‖x‖2 such that |ĝσ |2 = hσ , by
(2) and (3), we obtain that for all σ > 0

ĉ∗hσ (0) =
∫
Rd

ĉ(ξ )hσ (ξ )dξ = (2π)d
∫
Rd

gσ (x)c∗gσ (x)dx≥ 0.

Letting σ tend to 0 we get ĉ(0) ≥ 0. But for all ξ ∈ Rd , the function e−iξ ·c is
an L1(Rd) function satisfying (1). Hence its Fourier transform is non-negative at
point 0, according to previously. But this is exactly ĉ(ξ ) and therefore ĉ is non-
negative. Using Fatou Lemma in (1), for g = hσ as σ tends to 0 we also obtain
that

∫
Rd ĉ(ξ )dξ ≤ c(0) ensuring that ĉ ∈ L1(Rd). Then, by the Fourier inversion

theorem, since c and ĉ are even, we get

c(x) =
1

(2π)d

∫
Rd

eix·ξ ĉ(ξ )dξ ,

with c(0) = 1
(2π)d

∫
Rd ĉ(ξ )dξ . Hence we can choose Z a random vector with density

given by ĉ/((2π)dc(0)).
For the general case we remark that cĥσ is also a function of non-negative type.
Actually, since ĥσ is the Fourier transform of a non-negative function, by converse
of Bochner’s theorem it is of non-negative type and we may consider Xσ a cen-
tered stationary Gaussian random field with covariance ĥσ . Let us also consider X a
centered stationary Gaussian random field with covariance c, independent from Xσ .
Then the random field XXσ is stationary and admits cĥσ for covariance function.
Since c is bounded by (ii), the function cĥσ is in L1(Rd) and we may find Zσ such
that [cĥσ ] = c(0)E(eix·Zσ ). But cĥσ tends to c which is continuous at 0 as σ tends
to 0. Hence, by Lévy’s theorem (see [28] for instance), there exists a random vector
Z such that Zσ

d−→
σ→0

Z and ν = PZ is convenient. Let us finally conclude that Z is

symmetric since c is even. ut

Examples of stationary Gaussian processes are given by Ornstein Uhlenbeck pro-
cesses constructed on R with a parameter θ > 0 and B a standard Brownian motion
on R+, by

Xt = e−θ tBe2θ t ,∀t ∈ R.

Then X = (Xt)t is clearly a centered Gaussian process with covariance

Cov(Xt ,Xs) = e−θ |t−s| := cX (t− s), ∀t,s ∈ R.
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θ = 5 θ = 1 θ = 1/5

Fig. 3 Sample paths of Ornstein Uhlenbeck process on [0,1], using fast and exact synthesis via
circulant embedding matrix method.

Hence it is weakly stationary and also strongly since it is Gaussian. Now the
spectral measure is given by νX (dt) = θ 2

π(θ 2+t2)
dt, or equivalently cX (t) = E(eit·Zθ ),

with Zθ a random variable with Cauchy distribution of parameter θ .

Definition 9. The random field X = (Xx)x∈Rd is isotropic if, for all R rotation of Rd ,
the random field (XRx)x∈Rd has the same distribution than X .

Note that, contrarily to the stationarity, the notion of isotropy is useless in dimension
1! We already have seen one example of isotropic random field when considering
the Lévy Chentsov random field. Actually, for all R rotation of Rd ,

Cov(XRx,XRy) =
1
2
(‖Rx‖+‖Ry‖−‖Rx−Ry‖) = Cov(Xx,Xy).

Since X is centered and Gaussian this implies that (XRx)x∈Rd has the same distri-
bution than X . However X is not stationary (note that X(0) = 0 a.s.). An example
of stationary and isotropic random field may be given by considering Gaussian co-
variances ĥσ , for σ > 0 (with Zσ ∼N (0,σ Id) in Bochner’s theorem). Let us also
remark that considering the covariance function kσ (t,s) = e−σ2(t−s)/2 on R×R we
also have

Kσ (x,y) = ĥσ (x− y) =
d

∏
i=1

kσ (x · ei,y · ei),

so that this field has also a sheet structure as in Proposition 4. Since ĥσ is isotropic,
we also have Kσ (Rx,Ry) = Kσ (x,y) for x,y∈Rd , and this allows to define a station-
ary isotropic centered Gaussian field with covariance Kσ .

Another very important invariance property is the scale invariance also called
self-similarity for random fields.

1.2.2 Self-similarity or scale invariance

Definition 10. The random field X = (Xx)x∈Rd is self-similar of order H > 0 if,
for all λ > 0, the random field (Xλx)x∈Rd has the same distribution than λ HX =
(λ HXx)x∈Rd .
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σ2 = 100 σ2 = 300 σ2 = 1000

Fig. 4 Sample paths of center Gaussian random fields with Gaussian covariances on [0,1]2, ob-
tained using circulant embedding matrix method (see [53] for details).

Note that the Lévy Chentsov field, and in particular the Brownian motion (d = 1),
is self-similar of order H = 1/2 since

Cov(Xλx,Xλy) =
1
2
(‖λx‖+‖λy‖−‖λx−λy‖)

= λCov(Xx,Xy) = Cov(λ 1/2Xx,λ
1/2Xy)

Recall that X is isotropic but not stationary. Actually, there does not exist a non-
trivial stationary self-similar second order field since we should have Var(Xx) =
Var(Xλx) = λ 2HVar(Xx) for all λ > 0 and x ∈ Rd , implying that Var(Xx) = 0. In
order to define self-similar fields for homogeneous media we must relax stationary
property. This is done throught the notion of stationary increments.

1.2.3 Stationary increments

Definition 11. The random field X = (Xx)x∈Rd has (strongly) stationary increments
if, for all x0 ∈Rd , the random field (Xx+x0−Xx0)x∈Rd has the same distribution than
(Xx−X0)x∈Rd .

Of course a stationary random field X has stationary increments but this class is
larger: it also contents X −X0 for instance that can not be stationary except if it is
almost surely equal to 0. An example of field with stationary increments is given by
the Levy Chentsov field X since we have

Cov(Xx+x0 −Xx0 ,Xy+x0 −Xx0) = Cov(Xx−X0,Xy−X0),

using the fact that X0 = 0 a.s. We have an analogous of Proposition 5 concerning
second order structure of fields with stationary increments.

Proposition 6. If X = (Xx)x∈Rd is a second order centered random field with sta-
tionary increments and X0 = 0 a.s., then its covariance function may be written as

KX (x,y) =
1
2
(vX (x)+ vX (y)− vX (x− y)) ,
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with the function vX (x) = Var(Xx+x0 −Xx0) = Var(Xx−X0) = Var(Xx) called vari-
ogram satisfying

1. vX (0) = 0
2. vX (x)≥ 0 and vX (−x) = vX (x)
3. vX is conditionally of negative type ie ∀k ≥ 1,x1, . . . ,xk ∈ Rd ,λ1, . . . ,λk ∈ C,

k

∑
j=1

λ j = 0⇒
k

∑
j,l=1

λ jλlvX (x j− xl)≤ 0.

Note that when X0 does not vanish a.s. this proposition applies to X−X0.

Proof. Compute Var(Xx−Xy) = Var(Xx)+Var(Xx)+ 2KX (x,y) and note that Xx−
Xy

d
= Xx−y−X0 = Xx−y to get KX with respect to vX . We clearly have vX ≥ 0 as a

variance and vX (0) = 0 since X0 = 0 a.s. The evenness comes from X−x = X−x−
X0

d
= X0−Xx =−Xx. The last property follows from the fact that

Var(
k

∑
j=1

λ jXx j) =
1
2

k

∑
j,l=1

λ jλl (vX (x j)+ vX (xl)− vX (x j− xl))≥ 0,

for λ1, . . . ,λk ∈ R, using the expression of KX (x j,xl) with respect to vX . The in-
equality is extended for λ1, . . . ,λk ∈ C as in Proposition 5 since vX is also even.
ut
In order to define centered Gaussian random fields we can use the following result.

Theorem 3 (Schoenberg). Let v : Rd → R be a function such that v(0) = 0. The
following are equivalent.

i) v is conditionally of negative type;
ii) K : (x,y) ∈ Rd×Rd 7→ 1

2 (v(x)+ v(y)− v(x− y)) is a covariance function;
iii)For all λ > 0, the function e−λv is of non-negative type.

Proof. To prove that i)⇒ ii), we use Proposition 1. Symmetry comes from the fact
that v is even. Actually, taking k = 2, λ1 = i = −λ2 and x1 = x, x2 = 0 we obtain
that v(x)≤ v(−x) since v(0) = 0, such that replacing x by −x we get v(x) = v(−x).
For the second point let k≥ 1, x1, . . . ,xk ∈Rd , λ1, . . . ,λk ∈R and set λ0 =−∑

k
i=1 λi

and x0 = 0. We compute
k

∑
i, j=1

λiλ jK(xi,x j) as

k

∑
i, j=1

λiλ jv(xi)−
1
2

k

∑
i, j=1

λiλ jv(xi− x j) = −λ0

k

∑
i=1

λiv(xi)−
1
2

k

∑
j=1

λ j

k

∑
i=1

λiv(xi− x j)

= −1
2

λ0

k

∑
i=1

λiv(xi)−
1
2

k

∑
j=0

λ j

k

∑
i=1

λiv(xi− x j)

= −1
2

k

∑
j=0

λ j

k

∑
i=0

λiv(xi− x j)≥ 0,
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since v is even and conditionally of negative type.
Let us now consider ii)⇒ iii). Let (X (n))n be a sequence of iid centered Gaus-
sian random fields with covariance function given by K and N an independent
Poisson random variable of parameter λ > 0. We may define a new random field
Y = ∏

N
n=1 X (n), with the convention that ∏

0
n=1 = 1. Therefore, for all x,y ∈ Rd , we

get

E(YxYy) =
+∞

∑
k=0

E(YxYy|N = k)P(N = k)

=
+∞

∑
k=0

E(
k

∏
n=1

X (n)
x X (n)

y )e−λ λ k

k!

=
+∞

∑
k=0

K(x,y)ke−λ λ k

k!
= e−λ (1−K(x,y)),

by independence. Now remark that E(Y 2
x ) = e−λ (1−K(x,x)) = e−λ (1−v(x)). Hence

defining the random field Z by setting Zx =
Yx√
E(Y 2

x )
eλ/2 we get

E(ZxZy) =
eλ

e−λ (1− 1
2 (v(x)+v(y)))

e−λ (1−K(x,y)) = e−
λ
2 v(x−y).

As a consequence, for all k ≥ 1, x1, . . . ,xk ∈ Rd and λ1, . . . ,λk ∈ R

k

∑
j,l

λ jλle−
λ
2 v(x j−xl) = E

( k

∑
j

λ jZx j

)2
≥ 0.

Note that v must be even since K(x,0) = K(0,x) by symmetry of a covariance func-
tion and v(0) = 0 so that the previous inequality extends to λ1, . . . ,λk ∈ C. This
finishes to prove iii).
The last implication iii) ⇒ i) comes from the fact for k ≥ 1, λ1, . . . ,λk ∈ C s.t.
∑

k
j=1 λ j = 0, x1, . . . ,xk ∈ Rd , we may write for all ε > 0,

k

∑
j,l=1

λ jλlv(x j− xl)
1
ε

∫
ε

0
e−λv(x j−xl)dλ =

1
ε

k

∑
j,l=1

λ jλl(1− e−εv(x j−xl))≥ 0,

since ∑
k
j=1 λ j = 0 and e−εv is of non-negative type. Hence letting ε tend to 0 we get

the result. ut

As an application of this result we may deduce that the function v(x) = ‖x‖2 is
a variogram. Actually, this easily follows from bi-linearity of the Euclidean product
since v(x− y) = ‖x‖2 +‖y‖2−2x · y. But we can also remark that for all σ > 0, the

function e−
σ2
2 v is the Gaussian covariance function which implies that v is condi-

tionally of negative type. Let us remark that this variogram corresponds to a kind
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of trivial field since choosing Z ∼N (0, Id), one can define the centered Gaussian
random field Xx = x ·Z, for x ∈ Rd , that admits v for variogram.

An important corollary for the construction of self-similar fields with stationary
increments is the following one due to J. Istas in [35].

Corollary 1. If v :Rd→R+ is a variogram then the function vH is also a variogram
for all H ∈ (0,1].

Proof. There is nothing to prove for H = 1 and when H ∈ (0,1), it is sufficient to
remark that, by a change of variable, one has for t ≥ 0,

tH = cH

∫ +∞

0

1− e−λ t

λ H+1 dλ ,

for c−1
H =

∫ +∞

0
1−e−λ

λ H+1 dλ ∈ (0,+∞). Hence, for k≥ 1, λ1, . . . ,λk ∈C s.t. ∑
k
j=1 λ j = 0,

x1, . . . ,xk ∈ Rd , we get

k

∑
j,l=1

λ jλlv(x j− xl)
H =−cH

∫ +∞

0

k

∑
j,l=1

λ jλle−λv(x j−xl)λ
−H−1dλ ≤ 0,

in view of Schoenberg’s theorem since v is a variogram. ut

It follows that for all H ∈ (0,1] the function vH(x) = ‖x‖2H is conditionally of neg-
ative type and leads to the next definition.

Definition 12. A (standard) fractional Brownian field on Rd , with Hurst parameter
H ∈ (0,1], is a centered Gaussian field (BH)x∈Rd with covariance function given by

Cov(BH(x),BH(y)) = 1
2

(
‖x‖2H +‖y‖2H −‖x− y‖2H

)
, ∀x,y ∈ Rd .

Of course when H = 1/2, we recognize B1/2 as the Lévy Chentsov field. The order
of self-similarity is now given by H. Note also that the case H = 1 corresponds to a
degenerate case where B1 = (x ·Z)x for Z ∼N (0, Id).

Proposition 7. Up to a constant, the fractional Brownian field of order H ∈ (0,1]
is the unique isotropic centered Gaussian field with stationary increments which is
self-similar of order H.

Proof. This comes from the fact that the distribution of a centered Gaussian field X
with stationary increments is characterized by its variogram vX as soon as X(0) =
0 a.s. Self-similarity implies that X(0) = 0 and therefore, for all λ > 0 we have
vX (λx) = Var(Xλx) = Var(λ HXx) = λ 2HVar(Xx) = λ 2HvX (x). Hence for all x 6= 0,

vX (x) = ‖x‖2HvX (
x
‖x‖ ). But isotropy also implies that Xθ

d
= Xe1 for all θ ∈ Sd−1 and

e1 = (1,0, . . . ,0) ∈ Sd−1. Hence vX (θ) = vX (e1) and X d
=
√

vX (e1)BH . ut

Let us also remark that we cannot find a second order field with stationary in-
crements that is self-similar for an order H > 1. Actually, by triangular inequality
for ‖ · ‖2 :=

√
Var(·), when X is a second order field, we have ‖X2x‖2 ≤ ‖X2x−
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H = 0.2 H = 0.4 H = 0.6

Fig. 5 Sample paths realizations of fractional Brownian fields on [0,1]2 for different values of H,
obtained using the fast and exact synthesis method presented in Section 3.1.3.

Xx‖2 + ‖Xx‖2, for all x ∈ Rd . Self-similarity of order H > 0 implies that X0 = 0
a.s. and ‖X2x‖2 = 2H‖Xx‖2, while stationary increments imply that ‖X2x−Xx‖2 =
‖Xx−X0‖2 = ‖Xx‖2. Therefore we must have 2H−1‖Xx‖2 ≤ 1 and H ≤ 1 or Xx = 0
for all x ∈ Rd .

In dimension d = 1, it is called fractional Brownian motion, implicitly introduced
in [41] and defined in [47]. The order of self-similarity H is also called Hurst pa-
rameter. Hence the fractional Brownian field is an isotropic generalization of this
process. Other constructions using sheet structure are known as fractional Brownian
sheets but these fields loose stationary increments (see e.g. [22]).

Anisotropy may be an interesting property in applications (see [16] for instance).
We also refer to [2] for many examples of anisotropic variograms. For instance, we
can consider several anisotropic generalizations of fractional Brownian motions by
keeping self-similarity and stationary increments properties following Proposition
3. Let H ∈ (0,1) and vH : t ∈ R 7→ |t|2H be the variogram of a fractional Brownian
motion that is conditionally of negative type. If µ is a finite positive measure on
Sd−1, we may define on Rd ,

vH,µ(x) =
∫

Sd−1
vH(x ·θ)µ(dθ) =

∫
Sd−1
|x ·θ |2H

µ(dθ) = cH,µ

(
x
‖x‖

)
‖x‖2H , (4)

that is now a conditionally of negative type function on Rd . Hence we may consider
XH,µ = (XH,µ(x))x∈Rd a centered Gaussian random field with stationary increments
and variogram given by vH,µ . This new random field is still self-similar of order H
but may not be isotropic according to the choice of µ . The function cH,µ , describing
anisotropy, is called topothesy function as in [25].

For instance, when d = 2 we can choose µ(dθ) = 1(−α,α)(θ)dθ for some
α ∈ (0,π/2]. Let βH (t) =

∫ t
0 uH−1/2(1−u)H−1/2du, t ∈ [0,1], be a Beta incomplete

function. Then the corresponding topothesy function denoted now by cH,α is a π

periodic function defined on (−π/2,π/2] by
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cH,α(θ) = 22H


βH

(
1−sin(α−θ)

2

)
+βH

(
1+sin(α+θ)

2

)
if −α ≤ θ + π

2 ≤ α

βH

(
1+sin(α−θ)

2

)
+βH

(
1−sin(α+θ)

2

)
if −α ≤ θ − π

2 ≤ α∣∣∣βH

(
1−sin(α−θ)

2

)
−βH

(
1+sin(α+θ)

2

)∣∣∣ otherwise

We refer to [13] for computations details and to Figure 6 for plots of these functions.

Fig. 6 Topothesy functions of some elementary anisotropic fractional Brownian fields

The associated Gaussian random field denoted by XH,α is called elementary
anisotropic fractional Brownian field. Several realizations are presented in Figure
7 for different values of parameters α and H. Note that when α = π/2 the ran-
dom field XH,α is isotropic and therefore corresponds to a non-standard fractional
Brownian field.

Another anisotropic generalization is obtained by considering a generalization
of the self-similarity property that allows different scaling behavior according to
directions.

1.2.4 Operator scaling Property

Definition 13. Let E be a real d× d matrix with eigenvalues of positive real parts
and H > 0. The random field X =(Xx)x∈Rd is (E,H)-operator scaling if for all λ > 0,
the random field (Xλ E x)x∈Rd has the same distribution than λ HX = (λ HXx)x∈Rd ,
where λ E = exp(E logλ ) with exp(A) = ∑

∞
k=0

Ak

k! the matrix exponential.

Note that when E is the identity matrix we recover the definition of self-similarity of
order H. Note also that (E,H)-operator scaling property is equivalent to (E/H,1)
operator scaling property. We refer to [12] for general cases and focus here on a
simple example where the matrix E is assumed to be diagonalizable. In particular
when E is a diagonal matrix, this property may be observed for limit of aggregated
discrete random fields (see [42, 52] for instance). In the general case where E is
diagonalizable, we assume that its eigenvalues, denoted by α

−1
1 , . . . ,α−1

d , are all
greater than 1. They are also eigenvalues of the transpose matrix Et and we denote
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Fig. 7 Sample paths realizations of some elementary anisotropic fractional Brownian fields on
[0,1]2 using Turning band method presented in Section 3.1.2 (see also [13])

by θ1, . . . ,θd the corresponding eigenvectors such that Etθi = α
−1
i θi. We obtained

in [11] the following proposition.

Proposition 8. For H ∈ (0,1], the function defined on Rd by

vH,E(x) = τE (x)
2H =

(
d

∑
i=1
|x ·θi|2αi

)H

=

(
d

∑
i=1

vαi (x ·θi)

)H

,

is a variogram.

Proof. According to Corollary 1, it is enough to prove that τE (x)
2 is a variogram

but this follows from the fact that vαi (x ·θi) is the variogram of
(

B(i)
αi (x ·θi)

)
x∈Rd

,

where B(1)
α1 , . . . ,B

(d)
αd are d independent fractional Brownian motions on R with Hurst

parameter given by α1, . . . ,αd ∈ (0,1]. ut

Therefore, we can consider a centered Gaussian random field XH,E = (XH,E(x))x∈Rd

with stationary increments and variogram given by vH,E . Then, XH,E is (E,H) op-
erator scaling since vH,E(λ

Ex) = λ 2HvH,E(x) for all x ∈ Rd . When α1 = . . . =
αd = α ∈ (0,1], or equivalently when E = α−1Id , the random field XH,E is ac-
tually αH ∈ (0,1) self-similar with topothesy function given by vH,E(

x
‖x‖ ). Now

considering (θi)1≤i≤d = (ei)1≤i≤d , the canonical basis, such fields are examples
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of Minkowski fractional Brownian fields (see Proposition 3.3 in [49]). In par-
ticular, when d = 2, we get the topothesy functions as the π-periodic functions
θ 7→ (|cos(θ)|2α + |sin(θ)|2α)H (see Figure 8 for some plots).

Fig. 8 Topothesy functions of self-similar fields XH,E obtained for E = α−1Id .

Some realizations of operator scaling self-similar random fields are presented in
Figure 9. Note that the case where α = 1 corresponds to the isotropic case, whereas
the case where H = 1 is a degenerate one obtained by adding two independent frac-
tional Brownian processes.

H = 0.6 H = 0.7 H = 0.8

Fig. 9 Sample paths realizations of self-similar fields XH,E obtained for E = α−1Id and Hα = 0.5,
using the simulation method presented in Section 3.1.3.

The realizations of Figure 10 are no more self-similar but when restricting to
horizontal, respectively vertical, lines we get fractional Brownian motions of order
Hα1, respectively Hα2. The sheet structure appearing as H increases to 1 should
come from the reduction of dependency between directions. The vertical gradient
comes from the fact that the self-similarity exponent Hα2 is chosen greater than the
horizontal one. This is also linked to sample paths regularity as we will see in the
following section.
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H = 0.6 H = 0.7 H = 0.8

Fig. 10 Sample paths realizations of operator scaling fields XH,E obtained for E = diag(α−1
1 ,α−1

2 )
with Hα1 = 0.5 and Hα2 = 0.6, using the simulation method presented in Section 3.1.3.

2 Sample paths properties

In this section we focus on Hölder sample paths properties related to fractal proper-
ties of Gaussian random fields. In particular we will see that self-similarity proper-
ties induce such fractal behaviors.

2.1 Sample paths regularity

Before considering sample paths continuity we must introduce the weak notion of
stochastic continuity.

Definition 14. Let X = (Xx)x∈Rd be a random field. We say that X is stochastically
continuous at point x0 ∈ Rd if

∀ε > 0, lim
x→x0

P(|Xx−Xx0 |> ε) = 0.

Let us emphasize that a centered Gaussian random field with stationary increments
is stochastically continuous as soon as its variogram is continuous at point 0, accord-
ing to Bienaymé Chebyshev’s inequality. Since we have only defined random fields
as a collection of real variables (Xx)x∈Rd , when studying the functions x 7→ Xx(ω)
for some typical ω ∈Ω , we can in general only state results for a modification of X .

Definition 15. Let X = (Xx)x∈Rd be a random field. We say that X̃ = (X̃x)x∈Rd is a
modification of X if

∀x ∈ Rd ,P(Xx = X̃x) = 1.

Note that it follows that X and X̃ have the same distribution since (Xx1 , . . . ,Xxk) =
(X̃x1 , . . . , X̃xk) a.s. for all k ≥ 1 and x1, . . . ,xk ∈ Rd . This implies a weaker notion.

Definition 16. Let X = (Xx)x∈Rd be a random field. We say that X̃ = (X̃x)x∈Rd is a
version of X if X and X̃ have the same finite dimensional distributions.

We refer to Chapter 9 of [56] for the interested reader.
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2.1.1 Hölder regularity

Definition 17. Let K = [0,1]d . Let γ ∈ (0,1). A random field X = (Xx)x∈Rd is γ-
Hölder on K if there exists a finite random variable A such that a.s.∣∣Xx−Xy

∣∣≤ A‖x− y‖γ ,∀x,y ∈ K.

Note that it implies that X is a.s. continuous on K. The following theorem gives
a general criterion to ensure the existence of an Hölder modification, particularly
helpful for Gaussian fields, generalizing the one dimensional case (see [39] p.53).

Theorem 4 (Kolmogorov-Chentsov 1956). If there exist 0 < β < δ and C > 0 such
that

E
(
|Xx−Xy|δ

)
≤C‖x− y‖d+β ,∀x,y ∈ K,

then there exists X̃ a modification of X γ-Hölder on K, for all γ < β/δ .

Let us note that the assumption clearly implies stochastic continuity of X on K in
view of Markov’s inequality. We give the constructing proof of this result.

Proof. Step 1. For k ≥ 1 we introduce the dyadic points of [0,1]d

Dk =

{
j

2k ; j = ( j1, . . . , jd) ∈ Nd with 0≤ ji ≤ 2k for all 1≤ i≤ d
}
.

Note that for x ∈ [0,1]d , there exists xk ∈ Dk with ‖x− xk‖∞ ≤ 2−k so that Dk is a
2−k net of K for ‖ · ‖∞, where ‖x‖∞ = max

1≤i≤d
|x · ei|. The sequence (Dk)k is clearly

increasing.
Let γ ∈ (0,β/δ ). For i, j ∈ [0,2k]d ∩Nd with i 6= j define the measurable set

Ek
i, j = {ω ∈Ω ; |Xi/2k(ω)−X j/2k(ω)|> ‖i/2k− j/2k‖γ

∞}.

By assumption and Markov’s inequality

P(Ek
i, j)≤ 2−k(d+β−γδ )‖i− j‖d+β−γδ

∞ .

Set
Ek = ∪

(i, j)∈[0,2k];0<‖i− j‖∞≤5
Ek

i, j.

It follows that

P(Ek) ≤ 5d+β−γδ 2−k(d+β−γδ )#{(i, j) ∈ [0,2k];0 < ‖i− j‖∞ ≤ 5}
≤ 5d+β−γδ 10d2−k(β−γδ ).

Hence, by Borel-Cantelli Lemma we get P(limsupk Ek) = 0 so that the event Ω̃ =
∪k ∩l≥k Ω rE l satisfies P(Ω̃) = 1. Hence, for ω ∈ Ω̃ , there exists k∗(ω) such that
for all l ≥ k∗(ω) and x,y ∈Dl with 0 < ‖x− y‖∞ ≤ 5×2−l , we have
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|Xx(ω)−Xy(ω)| ≤ ‖x− y‖γ
∞.

Step 2. Let us set D = ∪kDk. For x,y ∈D with 0 < ‖x−y‖∞ ≤ 2−k∗(ω), there exists
a unique l ≥ k∗(ω) with

2−(l+1) < ‖x− y‖∞ ≤ 2−l .

Moreover, one can find n ≥ l +1 such that x,y ∈ Dn and for all k ∈ [l,n−1], there
exist xk,yk ∈ Dk with ‖x− xk‖∞ ≤ 2−k and ‖y− yk‖∞ ≤ 2−k. We set xn = x and
yn = y. Therefore

‖xl− yl‖∞ ≤ ‖xl− x‖∞ +‖x− y‖∞ +‖y− yl‖∞

≤ 2×2−l +‖x− y‖∞.

But 2−l < 2‖x− y‖∞ and ‖xl− yl‖∞ ≤ 5‖x− y‖∞ ≤ 5×2−l and since l ≥ k∗(ω)

|Xxl (ω)−Xyl (ω)| ≤ ‖xl− yl‖γ
∞ ≤ 5γ‖x− y‖γ

∞.

But for all k ∈ [l,n−1], ‖xk− xk+1‖∞ ≤ 2−k +2−(k+1) ≤ 3×2−(k+1) so that

|Xxk(ω)−Xxk+1(ω)| ≤ ‖xk− xk+1‖γ
∞ ≤ (3/2)γ 2−kγ .

Similarly,
|Xyk(ω)−Xyk+1(ω)| ≤ ‖yk− yk+1‖γ

∞ ≤ (3/2)γ 2−kγ .

It follows that

|Xx(ω)−Xy(ω)| ≤
n−1

∑
k=l
|Xxk(ω)−Xxk+1(ω)|+ |Xxl (ω)−Xyl (ω)|+

n−1

∑
k=l
|Xyk(ω)−Xyk+1(ω)|

≤ 2×3γ

2γ −1
×2−lγ +5γ‖x− y‖γ

∞

≤ cγ‖x− y‖γ
∞.

Step 3. By chaining, we obtain that for all x,y ∈D

|Xx(ω)−Xy(ω)| ≤ cγ 2k∗(ω)‖x− y‖γ
∞,

and we set A(ω) = cγ 2k∗(ω). Hence we have proven that for all ω ∈ Ω̃ , x,y ∈D ,

|Xx(ω)−Xy(ω)| ≤ A(ω)‖x− y‖γ
∞.

We set X̃x(ω) = 0 if ω /∈ Ω̃ . For ω ∈ Ω̃ , if x ∈D we set X̃x(ω) = Xx(ω). Otherwise,
there exists (xk)k a sequence of dyadic points such that xk→ x. Therefore (Xxk(ω))
is a Cauchy sequence and we define X̃x(ω) as its limit. By stochastic continuity we
have

P(X̃x = Xx) = 1,
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ensuring that X̃ is a modification. ut

In order to get the best regularity we can use the notion of critical Hölder exponent,
as defined in [16].

2.1.2 Critical Hölder exponent

Definition 18. Let γ ∈ (0,1). A random field (Xx)x∈Rd admits γ as critical Hölder
exponent on [0,1]d if there exists X̃ a modification of X such that:

(a) ∀s < γ , a.s. X̃ satisfies H(s): ∃A ≥ 0 a finite random variable such that ∀x,y ∈
[0,1]d , ∣∣Xx−Xy

∣∣≤ A‖x− y‖s.

(b) ∀s > γ , a.s. X̃ fails to satisfy H(s).

For centered Gaussian random fields it is enough to consider second order regularity
property as stated in the next proposition (see also [1]).

Proposition 9. Let (Xx)x∈Rd be a centered Gaussian random field. If for all ε > 0,
there exist c1,c2 > 0, such that, for all x,y ∈ [0,1]d ,

c1‖x− y‖2γ+ε ≤ E(Xx−Xy)
2 ≤ c2‖x− y‖2γ−ε ,

then the critical Hölder exponent of X on [0,1]d is equal to γ .

Proof. The upper bound allows to use Kolmogorov-Chentsov theorem since for all
k ∈ N∗ and ε > 0, using the fact that X is Gaussian, one can find c with

E(Xx−Xy)
2k =

(2k−1)!
2k−1(k−1)!

(
E(Xx−Xy)

2
)k
≤ c‖x− y‖2γk−ε .

Hence considering X̃ the modification of X constructed in the previous proof we
see that X̃ is a.s. s-Hölder for all s < 2γk−ε

2k . But since 2γk−ε

2k → γ , this is true for all
s < γ . Note that according to the lower bound, for any s > γ , choosing ε = s− γ ,
for any x 6= y, the Gaussian random variable X̃x−X̃y

‖x−y‖s admits a variance greater than

c1‖x− y‖−(s−γ), that tends to infinity as x tends to y. Therefore it is almost surely
unbounded as ‖x− y‖→ 0. ut

We have therefore a very simple condition on variogram for Gaussian random fields
with stationary increments.

Corollary 2. Let X be a centered Gaussian field with stationary increments. If for
all ε > 0, there exist c1,c2 > 0, such that for all x ∈ [−1,1]d ,

c1‖x‖2γ+ε ≤ vX (x) = E((Xx−X0)
2)≤ c2‖x‖2γ−ε ,

then X has critical Hölder exponent on [0,1]d equal to γ .
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This allows to compute critical exponents of several examples presented above.

• Fractional Brownian fields with variogram vH(x) = ‖x‖2H and 2-dimensional
elementary anisotropic fractional Brownian fields with variogram vH,α(x) =
cH,α(x/‖x‖)‖x‖2H for α ∈ (0,π/2] have critical Hölder exponent given by H
(see Figures 1.2.3 and 7).

• Stationary Ornstein Uhlenbeck processes have variogram given by vX (t) =
2(cX (0)− cX (t)) = 2(1− e−θ |t|). It follows that their critical Hölder exponent
is given by 1/2 as for Brownian motion (see Figure 3).

• Operator scaling random fields with variogram given by vH,E(x)=
(
∑

d
i=1 |x ·θi|2αi

)H

admit H min1≤i≤d αi for critical Hölder exponent (see Figures 9 and 10).

Note that this global regularity does not capture anisotropy of these last random
fields. In order to enlighten it we can consider regularity along lines.

2.1.3 Directional Hölder regularity

Considering a centered Gaussian random field with stationary increments X , one
can extract line processes by restricting values along some lines. For x0 ∈ Rd and
θ ∈ Sd−1, the line process is defined by Lx0,θ (X) = (X(x0 + tθ))t∈R. It is now a one-
dimensional centered Gaussian process with stationary increments and variogram
given by vθ (t) = E

(
(X(x0 + tθ)−X(x0))

2
)
= vX (tθ).

Definition 19 ([16]). Let θ ∈ Sd−1. We say that X admits γ(θ) ∈ (0,1) as direc-
tional regularity in the direction θ if, for all ε > 0, there exist c1,c2 > 0, such that

c1|t|2γ(θ)+ε ≤ vθ (t) = vX (tθ)≤ c2|t|2γ(θ)−ε , ∀t ∈ [−1,1].

It follows that the process Lx0,θ (X) admits γ(θ) as critical Hölder exponent. Actu-
ally, by stationarity of increments, the directional regularity-if exists- may not have
more than d values as stated in the following proposition.

Proposition 10 ([16]). If there exists γ : Sd−1 → (0,1) such that for all θ ∈ Sd−1,
X admits γ(θ) as directional regularity in the direction θ , then γ takes at most
d values. Moreover, if γ takes k values γk < .. . < γ1, there exists an increasing
sequence of vectorial subset {0}=V0 (V1 ( . . .(Vk := Rd such that

γ(θ) = γi⇔ θ ∈ (Vi rVi−1)∩Sd−1.

In our previous examples we get the following results.

• For fractional Brownian fields with variogram vH(x) = ‖x‖2H and 2-dimensional
elementary anisotropic fractional Brownian fields with variogram vH(x)= cH,α(x/‖x‖)‖x‖2H :
for all θ ∈ Sd−1, the directional Hölder regularity in direction θ is given by H
and hence is constant.
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• For operator scaling fields with variogram vH,E(x) =
(
∑

d
i=1 |x ·θi|2αi

)H
, for all

1≤ i≤ d, the directional Hölder regularity in direction θ̃i is given by Hαi where
θ̃i is an eigenvector of E associated with the eigenvalue α

−1
i ie Eθ̃i = α

−1
i θ̃i.

Moreover, assuming for instance that α1 > α2 > .. . > αd , the strict subspaces
defined by Vk = span(α1, . . . ,αk) for 1≤ k≤ d illustrate the previous proposition
by choosing γk = Hαk for 1 ≤ k ≤ d. For example, in Figure 10, the greater
directional regularity is given by Hα2 = 0.4 only in vertical directions θ =±e2.
For any other direction, the directional regularity is given by Hα1 = 0.3. We refer
to [44] for more precise results and to [24] for a general setting.

Hölder regularity properties are often linked with fractal properties as developed
in the following section.

2.2 Hausdorff dimension of graphs

We will see in this section how to compute Hausdorff dimension of some Gaussian
random fields graphs. The fractal nature comes from the fact that the dimension will
not be an integer as usual. We shall recall basic facts on Hausdorff measures and
dimensions before.

2.2.1 Hausdorff measures and dimensions

We follow [27] Chapter 2 for these definitions. Let U ⊂ Rd be a bounded Borel set
and ‖ · ‖ be a norm on Rd . For δ > 0, a finite or countable collection of subsets
(Bi)i∈I of Rd is called a δ -covering of U if diam(Bi) ≤ δ for all i and U ⊂ ∪i∈IBi.
Then, for s≥ 0, we set

H s
δ
(U) = inf

{
∑
i∈I

diam(Bi)
s;(Bi)i∈I δ − covering of U

}
.

Note that for all δ < δ ′, since a δ covering is also a δ ′-covering we get H s
δ
(U) ≥

H s
δ ′(U). The sequence (H s

δ
(U))δ being monotonic we can give the following def-

inition.

Definition 20. The s-dimensional Hausdorff measure of U is defined by

H s(U) = lim
δ→0

H s
δ
(U) ∈ [0,+∞].

Note that Hausdorff measures define measures on (Rd ,B(Rd)) that generalize
Lebesgue measures so that H 1(U) gives the length of a curve U , H 2(U) gives the
area of a surface U , etc... Let us also remark that for s′ > s and (Bi)i∈I a δ -covering
of U we easily see that for all δ > 0
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∑
i∈I

diam(Bi)
s′ ≤ δ

s′−s
∑
i∈I

diam(Bi)
s,

so that H s′
δ
(U) ≤ δ s′−s H s

δ
(U) ≤ δ s′−s H s(U). Hence, if H s(U) < +∞, we get

H s′(U) = 0. Conversely, if H s′(U) > 0, we obtain that H s(U) = +∞. Actually,
the function s ∈ [0,+∞) 7→H s(U) jumps from +∞ to 0.

Definition 21. The Hausdorff dimension of U is defined as

dimH(U) = inf{s≥ 0;H s(U) = 0}= sup{s≥ 0;H s(U) = +∞} .

Let us emphasize that in general we do not know the value of H s∗(U) ∈ [0,+∞] at
s∗ = dimH(U). But we always have that H s(U) > 0 implies dimH(U) ≥ s, while
H s(U)<+∞ implies that dimH(U)≤ s, allowing to compute dimH(U).

For instance, when U = [0,1]d , choosing ‖ · ‖∞, we can cover U by cubes δ i+
[0,δ ]d of diameter δ , for i ∈Nd satisfying 0≤ ik ≤ δ−1−1. Hence we need around
δ−d such cubes to cover U so that H s

δ
(U) ≤ cδ−d × δ s. It follows that for s ≥ d,

H s(U)<+∞ and dimH(U)≤ d. But if (Bi)i∈I is a δ covering of U with diam(Bi)=
ri we get 1 = L eb(U) ≤ ∑i∈I rd

i and therefore H d(U) > 0 and dimH(U) ≥ d. In
conclusion we obtain that dimH(U) = d. This can be generalized as in the following
Proposition (see [27] for instance).

Proposition 11. If U is a non-empty open bounded set of Rd then dimH(U) = d.

Following similar computations we can deduce an upper bound of Hausdorff
dimension for graphs of Hölder functions.

2.2.2 Upper bound of graphs Hausdorff dimension

Let f : [0,1]d → R and denote its graph by

G f = {(x, f (x));x ∈ [0,1]d} ⊂ Rd+1.

Note that we clearly have dimHG f ≥ d. An upper bound may be set according to the
Hölder regularity of the function.

Proposition 12. If there exist γ ∈ (0,1] and C > 0 such that for all x,y ∈ [0,1]d one
has | f (x)− f (y)| ≤C‖x− y‖γ

∞, then dimHG f ≤ d +1− γ .

Proof. Write [0,1]d ⊂
Nδ∪
i=1

(
xi +[0,δ ]d

)
, where we can choose Nδ of the order of

δ−d and xi ∈ δNd for 1≤ i≤ Nδ as previously. Then

G f ⊂
Nδ∪
i=1

(
xi +[0,δ ]d

)
× ( f (xi)+ [−Cδ

γ ,Cδ
γ ])

⊂
Nδ∪
i=1

Nγ

δ∪
j=1

(
xi +[0,δ ]d

)
× ( f (xi)+ I j(δ )) ,
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choosing Nγ

δ
intervals (I j(δ )) j of size δ to cover [−Cδ γ ,Cδ γ ], with Nγ

δ
of the order

of δ γ−1. Hence H s
δ
(G f )≤Nδ Nγ

δ
δ s≤ cδ−d+γ−1+s. Therefore choosing s> d+1−γ

implies that H s(G f ) = 0 and dimHG f ≤ s. Since this holds for all s < d+1− γ we
obtain that dimHG f ≤ d +1− γ . ut

Lower bounds for Hausdorff dimension are usually more difficult to obtain.

2.2.3 Lower bound of graphs Hausdorff dimension

One usual way to get lower bounds is to use Frostman criteria [27]. For second order
random fields, this can be formulated as in the following theorem (see Lemma 2 of
[3]).

Theorem 5. Let (Xx)x∈Rd be a second order field a.s. continuous on [0,1]d such that
there exists s ∈ (d,d +1],∫

[0,1]d×[0,1]d
E
((
|Xx−Xy|2 +‖x− y‖2)−s/2

)
dxdy <+∞,

then a.s. dimHGX ≥ s.

For Gaussian random fields this can be used in the following way.

Corollary 3. Let (X(x))x∈Rd be a Gaussian random field. If there exists γ ∈ (0,1)
such that for all ε > 0, there exist c1,c2 > 0,

c1‖x− y‖2γ+ε ≤ E(X(x)−X(y))2 ≤ c2‖x− y‖2γ−ε ,

then, for any continuous modification X̃ of X, one has

dimHGX̃ = d +1− γ a.s.

Proof. The upper bound allows to construct a modification X̃ of X that is β -
Hölder on [0,1]d for any β < γ in view of Kolmogorov-Chentsov theorem so that
dimHGX̃ ≤ d+1−γ a.s. according to the previous part. Following [3] and [4], since
X is Gaussian, one can prove that for any s > 1 and β > γ , there exists c > 0 such
that

E
((
|Xx−Xy|2 +‖x− y‖2)−s/2

)
≤ c‖x− y‖1−β−s,

using the fact that E(X(x)−X(y))2 ≥ c1‖x−y‖2β by assumption. It follows that for
1−β − s+d > 0 the integral in Theorem 5 is finite. Hence a.s. dimHGX̃ ≥ s. Since
this holds for all β > γ and s < d +1−β we get the desired lower bound and then
the result. ut

Note that in particular we obtain that the Hausdorff dimension of fractional
Brownian fields graphs, respectively 2-dimensional elementary anisotropic frac-
tional Brownian fields graphs, with Hurst parameter H ∈ (0,1), is given by d +
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1−H /∈ N, respectively 2+ 1−H /∈ N. For (E,H)-operator scaling random fields
graphs, it is given by d + 1−H min1≤i≤d αi /∈ N, where (α−1

i )1≤i≤d are the eigen-
values of E (see [12]).

3 Simulation and estimation

This section focuses on some exact methods of simulation for some previously stud-
ied Gaussian random fields. We also give one way of estimation for fractal rough-
ness and some applications in medical imaging.

3.1 Simulation

In order to simulate a centered Gaussian random field X on [0,1]d for instance, the
first step is to choose the mesh of discretization, let say 1/n for some n ∈ N. Then
one want to simulate the centered Gaussian random vector (Xk/n)k∈[[0,n]]d that is of
size (n+ 1)d . Choleski’s method for diagonalizing the covariance matrix becomes
quickly unpractical as n increases. Some helpful results concerning diagonalization
of circulant matrices by discrete Fourier transforms may be sometimes used under
an assumption of stationarity implying a Toeplitz structure of the covariance matrix.
We refer to [26] for general framework and only illustrate these ideas to set fast and
exact algorithms for some fractional or operator scaling 2-dimensional fields. The
first step is to simulate one-dimensional fractional Brownian motion.

3.1.1 Fast and exact synthesis of fractional Brownian motion

Let H ∈ (0,1) and BH = (BH(t))t∈R be a fractional Brownian motion and recall that

for n∈N we want to simulate (BH(k/n))0≤k≤n. By self-similarity, (BH(k/n))0≤k≤n
d
=

n−H(BH(k))0≤k≤n, with BH(k) =
k−1

∑
j=0

(BH( j+1)−BH( j)) for k≥ 1, since BH(0) = 0

a.s. Hence, let us define the fractional Gaussian noise as Yj = BH( j+1)−BH( j), for
j ∈Z. Since BH has stationary increments, (Yj) j∈Z is a centered stationary Gaussian
sequence with covariance given by

ck = Cov(Yk+ j,Yj) =
1
2
(
|k+1|2H −2|k|2H + |k−1|2H) ,∀k ∈ Z.
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It follows that the Gaussian vector Y = (Y0, . . . ,Yn) has a Toeplitz covariance ma-

trix given by KY =


c0 c1 . . . cn

. . .
...

. . . c1
c0

 . The idea of the circulant embedding matrix

method [26] is to embed KY in the symmetric circulant matrix S = circ(s) of size 2n
with

s = (c0 c1 . . . cn cn−1 . . . c1) = (s0 s1 . . . sn sn+1 . . . s2n−1),

and more precisely

S =


s0 s2n−1 . . . s2 s1
s1 s0 s2n−1 s2
... s1 s0

. . .
...

s2n−2
. . . . . . s2n−1

s2n−1 s2n−2 . . . s1 s0

=

(
KY S1
St

1 S2

)
.

Then S = 1
2n F∗2ndiag(F2ns)F2n with F2n =

(
e

2iπ( j−1)(k−1)
2n

)
1≤ j,k≤2n

the matrix of dis-

crete Fourier transform.
The symmetric matrix S may be used as a covariance matrix as soon as its eigen-
values are non-negative, which is equivalent to the fact that F2ns ≥ 0. This is in
general difficult to establish and sometimes only checked numerically. However
as far as fractional Gaussian noises are concerned we have a theoretical positive
result established in [23, 51]. So we may consider a square root of S given by
R2n =

1√
2n

F∗2ndiag(F2ns)1/2 ∈M2n(C). Hence, choosing two independent centered

Gaussian vectors ε(1),ε(2) with covariance matrix I2n (hence iid marginals of stan-
dard Gaussian variables), we get using the fact that R2nR∗2n = S,

R2n[ε
(1)+ iε(2)] = Z(1)+ iZ(2),

with Z(1),Z(2) iid N (0,S). It follows that

Y d
=
(

Z(1)
k

)
0≤k≤n

d
=
(

Z(2)
k

)
0≤k≤n

∼N (0,KY ).

Choosing n = 2p we can use fast discrete Fourier transforms to get a cost of simula-
tion O(n log(n)) to compare with O(n3) for Choleski method. On Figure 11, we can
now illustrate previous results on the regularity and graphs Hausdorff dimension of
fractional Brownian motions given respectively by H and 2−H in dimension 1.

When considering 2-dimensional Gaussian fields, several extensions are possi-
ble. For instance, if (Yk1,k2)(k1,k2)∈Z2 is stationary, its covariance function may be
written as Cov(Yk1+l1,k2+l2 ,Yl1,l2) = rk1,k2 . Hence we may use a block Toeplitz co-
variance matrix with Toeplitz blocks and embed in a block circulant matrix (see
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Fig. 11 Simulation of (BH(k/n))0≤k≤n for n = 212 using circulant embedding matrix method
.

[21, 26]). When only stationary increments are assumed one can still try to simu-
late the increments but in dimension d > 1 the initial conditions now correspond to
values on axis and are correlated with increments [38].

We present two other possible generalizations for considered random fields based
on more general ideas.

3.1.2 Turning band method for 2-dimensional anisotropic self-similar fields

The turning band method was introduced by Matheron in [48]. It is mainly based
on similar ideas developed in Proposition 3 when considering isotropic fields con-
structed from processes. Actually, when Y is a centered second order stationary
process with covariance KY (t,s) = cY (t− s) one can define the field

Z(x) = Y (x ·U) for x ∈ R2,

by choosing U ∼U (S1) independent from Y . It follows that Z is a centered station-
ary isotropic field such that identifying θ ∈ [−π,π] with u(θ) = (cos(θ),sin(θ)) ∈
S1,

cZ(x) = Cov(Z(x+ y),Z(y)) =
1
π

∫
π/2

−π/2
cY (x ·u(θ))dθ .

Let us note that even if Y is Gaussian Z is not a Gaussian field.
Assuming that we are able to simulate Y one can define for K ≥ 1, θ1, . . . ,θK ∈
[−π/2,π/2] and λ1, . . . ,λK ∈ R+, an approximated field

ZK(x) =
K

∑
i=1

√
λiY (i)(x ·u(θi)),

with Y (1), . . . ,Y (K) independent realizations of Y . The field ZK is a centered station-
ary field with covariance

cZK (x) =
K

∑
i=1

λicY (x ·u(θi)),
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such that choosing convenient weights it can be an approximation of the covariance
cZ . For Gaussian random field, Matheron proposes to use the central limit theorem
and considers 1√

N
(Z(1)

K + . . .+Z(N)
K ), with Z(1)

K , . . . ,Z(N)
K independent realizations of

ZK . In [13] we have exploited these ideas to propose simulations of anisotropic self-
similar fields. Let H ∈ (0,1), µ be a finite non-negative measure on S1, and XH,µ =
(XH,µ(x))x∈R2 be a centered Gaussian random field with stationary increments and
variogram given by

vH,µ(x) =
∫

S1
|x ·θ |2H

µ(dθ) =CH,µ

(
x
‖x‖

)
‖x‖2H .

We recall that XH,µ is self-similar of order H. Note also that choosing µ the uniform
measure on S1, the corresponding field XH,µ is isotropic and therefore it is a frac-
tional Brownian field. When µK is a discrete measure ie µK = ∑

K
i=1 λiδθi for some

θ1, . . . ,θK ∈ S1 and λ1, . . . ,λK ∈ R+, we get

vH,µK (x) =
K

∑
i=1

λi|x ·θi|2H =
K

∑
i=1

λiVar(BH(x ·θi)).

Hence, considering, (B(i)
H )1≤i≤K independent realizations of the one dimensional H-

fractional Brownian motion,

XH,µK (x) :=
K

∑
i=1

√
λiB

(i)
H (x ·θi), x ∈ R2,

is a centered Gaussian random field with stationary increments and variogram vH,µK .

Hence the simulation of these random fields depends on the simulation of BH
on some specific points. We can exploit further on this fact using specific choices
of lines and weights. Actually, to simulate

(
XH,µK

(
k1
n ,

k2
n

))
0≤k1,k2≤n

one has to

simulate for 1≤ i≤ K,

B(i)
H

(
k1

n
cos(θi)+

k2

n
sin(θi)

)
for 0≤ k1,k2 ≤ n.

When cos(θi) 6= 0, by choosing θi with tan(θi) =
pi
qi

for pi ∈ Z and qi ∈ N, using
self-similarity we get(

B(i)
H

(
k1

n
cos(θi)+

k2

n
sin(θi)

))
k1,k2

f dd
=

(
cos(θi)

nqi

)H (
B(i)

H (k1qi + k2 pi)
)

k1,k2
.

Using the previous algorithm we are able to simulate this with a cost given by
O(n(|pi|+qi) log(n(|pi|+qi))). For µ(dθ) = c(θ)dθ , in particular for elementary
anisotropic fractional fields (see Figure 7), Riemann approximation for convenient
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µK yields to error bounds between the distribution of XH,µK and the distribution of
XH,µ so that XH,µK may be used as an approximation to simulate XH,µ . Note that
contrarily to the original Turning band method, the simulated fields are all Gaus-
sian, with stationary increments, and self-similar of order H. We refer to Figure 12
where we can see the effect of the number of chosen lines on induced realizations
as well as on corresponding variograms.
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Fig. 12 Top: realizations of XH,µK with H = 0.2 to approximate the isotropic field XH,µ for
µ(dθ) = dθ and n = 512 ; Bottom: corresponding variograms vH,µK (see [13]).

Actually, a fast and exact method of simulation has been set up in [57] for
isotropic fractional Brownian fields XH,µ . This is based on a local stationary ap-
proximation of this field by considering a stationary field with compactly supported
covariance function for which the 2-dimensional circulant embedding matrix algo-
rithm is running. These ideas have also been exploited in [29] and may be partially
used for more general operator scaling random field [11]. We briefly present this in
the following section.

3.1.3 Stein method for 2-dimensional Operator Scaling fields

For the sake of simplicity we consider here the diagonal case and set E = diag(α−1
1 ,α−1

2 )
for some α1,α2 ∈ (0,1] and τE (x)

2 := |x1|2α1 + |x2|2α2 . Recall that, by Proposition
8, for H ∈ (0,1] we can define XH,E = (XH,E(x))x∈R2 a centered Gaussian random
field with stationary increments and variogram given by

vH,E(x) = τE (x)
2H =

(
|x1|2α1 + |x2|2α2

)H
,

so that XH,E is (E,H)-operator scaling. Let us also note that for α1 =α2 =α ∈ (0,1],
the field XH,E is αH-self-similar but it is isotropic only when the common value
α is equal to 1. In this case XH,E corresponds to a fractional Brownian field of
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order αH = H. In [11], we extend the procedure developed in [57] for fast and
exact synthesis of these last fields. Let us define for cH = 1−H, the real compactly
supported function

KH,E(x) =

{
cH − τE (x)

2H +(1− cH)τE (x)
2 if τE (x)≤ 1

0 else
for x ∈ R2.

Assuming that KH,E is a covariance function on R2 we can define YH,E a stationary
centered Gaussian random field with covariance KH,E . Then, computing covariance
functions we get that {

XH,E(x);x ∈ [0,M]2
}

f dd
=
{

YH,E(x)−YH,E(0)+
√

1− cHB(1)
α1 (x1)+

√
1− cHB(2)

α2 (x2);x ∈ [0,M]2
}
,

for M = max
{

0≤ r ≤ 1; r2α1 + r2α2 ≤ 1
}

and B(1)
α1 , B(2)

α2 two standard independent
1-dimensional fractional Brownian motions, independent from YH,E . Since we are

already able to simulate
(

B(i)
αi (k/n)

)
0≤k≤n

in view of Section 3.1.1, it is enough to

simulate (YH,E(k1/n,k2/n))0≤k1,k2≤n in order to simulate (XH,E(k1/n,k2/n))0≤k1,k2≤Mn
But if KH,E is a covariance function, since it has compact support in [−1,1]2, its pe-
riodization

K per
H,E(x) = ∑

k1,k2∈Z2

KH,E(x1 +2k1,x2 +2k2),

will also be a periodic covariance function on R2. Denoting by Y per
H,E a stationary

periodic centered Gaussian random field with covariance function K per
H,E and remark-

ing that KH,E(x) = KH,E(|x1|, |x2|), the random vector
(

Y per
H,E

(
k1
n ,

k2
n

))
0≤k1,k2≤2n

has a block circulant covariance matrix diagonalized by 2D discrete Fourier trans-
form. Following [26], a fast and exact synthesis of

(
YH,E

(
k1
n ,

k2
n

))
0≤k1,k2≤n

d
=(

Y per
H,E

(
k1
n ,

k2
n

))
0≤k1,k2≤n

is possible with a cost of the order O(n2 log(n)). Note

that according to Theorem 2, by the Fourier inverse theorem, the function KH,E
is a covariance matrix if and only if its Fourier transform, defined for ξ ∈ R2 by
K̂H,E(ξ ) =

∫
R2 e−ix·ξ KH,E(x)dx, is non-negative. This was proven in [57] in the

isotropic case for α1 = α2 = α = 1 and H ∈ (0,3/4). Note also that in this case

we simply have (B(i)
αi (xi))

d
= (xiN(i)) with N(i) ∼N (0,1) for i = 1,2. As long as we

only want to synthesize the vector (XH,E(k1/n,k2/n))0≤k1,k2≤Mn it is actually suffi-
cient to check numerically the non-negativeness of eigenvalues for the covariance
matrix of

(
Y per

H,E

(
k1
n ,

k2
n

))
0≤k1,k2≤2n

. We refer to Figures 13 and 14 for some real-

izations.
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H = 0.3 H = 0.4 H = 0.5

Fig. 13 Top: realizations of anisotropic self-similar fields XH,E with E = α−1I2 and Hα = 0.2 for
n = 210 ; Bottom: corresponding variograms vH,E (see [11]).

H = 0.3 H = 0.4 H = 0.5

Fig. 14 Top: realizations of operator scaling fields XH,E with E = diag(α−1
1 ,α−1

2 ) and Hα1 = 0.2,
Hα2 = 0.3 for n = 210 ; Bottom: corresponding variograms vH,E (see [11]).
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3.2 Estimation

We describe here one way of estimation for Hölder directional regularity from a dis-
cretized sample paths observation. Our procedure is based on the variogram method
for estimation of Hurst parameter of one-dimensional fractional Brownian motions.

3.2.1 1D estimation based on variograms

We first assume to observe (BH(k))0≤k≤n for some large n, where BH = (BH(t))t∈R
is a fractional Brownian motion with Hurst parameter H ∈ (0,1). We exploit the
stationarity of increments by considering the increments of BH with step u ∈ N

∆uBH(k) = BH(k+u)−BH(k)

Note that the sequence (∆uBH(k))k∈Z is a stationary Gaussian centered sequence,
with common variance given by vH(u) = cH |u|2H . Hence, considering the statistics

Vn(u) =
1

n−u

n−1−u

∑
k=0

∆uBH(k)2, (5)

we immediately see that E(Vn(u)) = vH(u). Actually, since ∆uBH is Gaussian and
Cov(∆uBH(k),∆uBH(0)) −→

k→+∞
0, this sequence is ergodic (see [45]) so that Vn(u)

is a strongly consistent estimator of vH(u) meaning that Vn(u) −→
n→+∞

vH(u) a.s. This

naturally leads us to consider for two different steps u 6= v, the statistic

Ĥn =
1
2

log
(

Vn(u)
Vn(v)

)
/ log

(u
v

)
. (6)

Theorem 6. For H ∈ (0,1), the statistic Ĥn is a strongly consistent estimator of H.
Moreover for H ∈ (0,3/4) it is also asymptotically normal.

Proof. The consistency is immediate once remarked that H = 1
2 log

(
vH (u)
vH (v)

)
/ log

( u
v

)
.

To prove asymptotic normality, the first step is a central limit theorem for

Vn(u)
vH(u)

=
1

n−u

n−1−u

∑
k=0

Xu(k)2 with Xu(k) =
∆uBH(k)√

vH(u)
,

so that (Xu(k))k is a centered stationary Gaussian sequence with unit variance. Then,
denoting H2(x) = x2−1 the Hermite polynomial of order 2 we consider

Qn(u) :=
√

n−u
(

Vn(u)
vH(u)

−1
)
=

1√
n−u

n−1−u

∑
k=0

H2 (Xu(k)). (7)
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We will use a general result of Breuer Major [17] giving a summability condition
on the covariance sequence to get asymptotic normality.

Proposition 13 ([17]). If (ρu(k))k = (Cov(Xu(k),Xu(0)))k satisfies

σ
2
u = ∑

k∈Z
ρu(k)2 <+∞, then

i) Var(Qn(u))→ 2σ2
u ;

ii) Qn(u)√
Var(Qn(u))

d→ N, with N ∼N (0,1).

But since Xu(k) =
∆uBH (k)√

vH (u)
we obtain that

ρu(k) =
1
2
(
|k+u|2H −2|k|2H + |k−u|2H)= O|k|→+∞(|k|−2(1−H)).

Hence, we check that ∑k∈Z ρu(k)2 < +∞ for H < 3/4, and by Slutsky’s theorem

Qn(u)
d→N (0,σ2

u ). By Delta-method (see [58] for instance), asymptotic normality
of Ĥn will follow from asymptotic normality of the couple (Qn(u),Qn(v)). Note
that we already have checked it for each marginal. However since Qn(u) and Qn(v)
are in the same Wiener chaos of order two we can use a very strong result of [50]
saying that if Cov(Qn(u),Qn(v))→ σuv, asymptotic normality of marginals imply
asymptotic normality of the couple namely

(Qn(u),Qn(v))
d→N

(
0,
(

σ2
u σuv

σuv σ2
v

))
,

that concludes the proof. ut
In order to get rid of the upper bound H < 3/4 for asymptotic normality, Istas and
Lang [36] have proposed to consider generalized quadratic variations. In particular
we can replace ∆uBH(k) by second order increments

∆
(2)
u BH(k) = BH(k+2u)−2BH(k+u)+BH(k)

so that we keep a centered Gaussian stationary sequence with a similar variance
given by v(2)H (u) = Var(∆ (2)

u BH(k)) = c(2)H |u|2H but now the covariance sequence is
Ok→+∞(|k|−2(2−H)) ensuring asymptotic normality for Q(2)

n (u), obtained by replac-

ing Xu by X (2)
u = ∆

(2)
u BH√
v(2)H (u)

in (7) and, as a consequence for Ĥ(2)
n for all H ∈ (0,1).

This way of estimation is particularly robust and consistency as well as asymptotic
normality still hold for infill or high frequency estimation where we now assume
to observe (BH(k/n))0≤k≤n instead of (BH(k))0≤k≤n. In this framework we have to
replace ∆

(2)
u BH(k) by

∆
(2)
u/nBH(k/n) = BH

(
k+2u

n

)
−2BH

(
k+u

n

)
+BH

(
k
n

)
.
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Let us note that by self-similarity (∆
(2)
u/nBH(k/n))k

d
= (n−H∆

(2)
u BH(k))n but we can

also replace the self-similar process BH by Y a centered Gaussian process with sta-
tionary increments such that

vY (u) = E
(
(Y (t +u)−Y (t))2

)
= cY |u|2H +O|u|→0

(
|u|2H+ε

)
.

Asymptotic normality still hold assuming that ε > 1/2 but now, under our assump-
tion, we get an estimator of Hölder regularity of Y , given by H in view of Proposition
9. We refer to [8] for more details and to [6] for complements.

3.2.2 Application to random fields by line processes

This framework may be used when considering random fields (X(x))x∈Rd instead of
one-dimensional processes. Actually, for x0 ∈Rd and θ ∈ Sd−1 we can consider the
line process Lx0,θ (X) = {X(x0 + tθ); t ∈ R} already defined in Section 2.1.3.

Fig. 15 A realization of a 2-dimensional random field and two line processes. In green for the
horizontal direction θ = (1,0). In red for the vertical one θ = (0,1).

Recall that when X is a centered stationary Gaussian random field with station-
ary increments and variogram vX , the process Lx0,θ (X) is centered Gaussian with
stationary increments and variogram

vθ (t) = E
(
(X(x0 + tθ)−X(x0))

2
)
= vX (tθ), t ∈ R.

When moreover X is self-similar of order H ∈ (0,1), we clearly get that vθ (t) =
vX (θ)|t|2H , ensuring that Lx0,θ (X)− Lx0,θ (X)(0) is also self-similar of order H ∈
(0,1) and therefore it is a (non-standard) fractional Brownian motion with Hurst
parameter H. Hence estimators set up in previous section may be used to estimate
H. Note also that when X is isotropic we must have θ ∈ Sd−1 7→ vX (θ) a constant
function. Finally, let us remark that considering (E,H)-operator scaling fields with
α1, . . . ,αd ∈ (0,1], H ∈ (0,1) and E the diagonal matrix diag(α−1

1 , . . . ,α−1
d ), for any

1≤ i≤ d, the line process Lx0,ei(X)−Lx0,ei(X)(0) is a fractional Brownian motion
with Hurst parameter Hαi, where (ei)1≤i≤d is the canonical basis of Rd . This follows
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from the fact that vei(t) = vH,E (tei) = |t|αiH since vH,E (x) = (|x1|α1 + . . .+ |xd |αd )2H .
Hence we are able to estimate α1H, . . . ,αdH (see [11] for numerical results).

We can illustrate this with some applications in medical imaging.

3.3 Application in medical imaging analysis

There are numerous methods and studies around what is called fractal analysis in
medical imaging. We refer to [46] for a good review. The main goal is to character-
ized self-similarity of images with a fractal index H ∈ (0,1) to extract some help-
ful information for diagnosis. Our point of view consists in considering an image
(I(k1,k2))1≤k1,k2≤n as a realization of a random field. Then,

• Extract a line from the image (Lθ (k))1≤k≤nθ
for θ a direction.

• Compute vθ (u) =
1

nθ −u

nθ−u

∑
k=1

(Lθ (k+u)−Lθ (k))
2.

• Average along several lines of the same direction vθ (u) and compute Ĥθ (u,v) =
1
2 log

(
vθ (u)
vθ (v)

)
/ log

( u
v

)
.

Of course there are several implementation issues according to the chosen direction.
It follows that considering estimation on oriented lines without interpolation does

Black = out of lattice.
Precision of

red = 1, green =
√

2

not allow to reach any direction. Moreover precision is not the same in all direc-
tions. However the procedure is successful when considering horizontal and verti-
cal direction and may also be compared with diagonal directions. We present in the
following some results obtained with two kind of medical images: bone radiographs
and mammograms.

3.3.1 Osteoporosis and bone radiographs

According to experts from the World Health Organization, osteoporosis is a dis-
ease affecting many millions of people around the world. It is characterized by
low bone mass and micro-architectural deterioration of bone tissue, leading to bone



38 Hermine Biermé

fragility and a consequent increase in risk of fracture. Bone mineral density allows
to measure low bone mass and is used for diagnosis while micro-architectural de-
terioration is not quantify. Several medical research teams have been working on
micro-architectural deterioration assessment from bone radiographs, an easiest and
cheapest clinical exam. Several authors have proposed to use fractal analysis with
different methods of analysis for instance for calcaneous bone in [31], and can-
cellous bone in [20]. In [5], it allows to discriminate between osteoporotic cases
Hmean = 0.679±0.053 and control cases Hmean = 0.696±0.030, by coupling with
bone mineral density.

ROI control case osteoporotic case

Fig. 16 Standardized acquisition of region of interest (ROI) of Inserm unit U658 [43].

In [7], we have considered a data set composed of 211 numeric radiographs high-
resolution of calcaneum (bone heel) with standardized acquisition of region of in-
terest (ROI) 400×400 of Inserm unit U658 [43] (see Figure 16). Figure 17 gives the
results we obtained for horizontal and vertical directions. Log-log plots are linear
for small scales in adequation with a self-similarity property valid for small scales.
Estimated values are greater in the vertical direction than in the horizontal direc-
tion contradicting an isotropic or self-similar model. Similar results were recently
obtained using different kinds of estimators in [32]. Moreover, comparisons with
diagonal direction lead us to think that operator scaling random fields could be used
for modeling.

θ1 = (1,0), Hθ1 = 0.51±0.08 θ2 = (0,1), Hθ2 = 0.56±0.06 Hθ2 vs Hθ1

Fig. 17 Mean of log-log plot of mean quadratic variations in horizontal and vertical direction. The
last plot indicates estimated values of couple (Hθ1 ,Hθ2 ) for each 211 images (see [7]).
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3.3.2 Mammograms and density analysis

Fractal analysis has also been used in mammograms analysis. In particular, it was
used for the characterization and classification of mammogram density [19]. Actu-
ally, breast tissues are mainly composed of two kinds of tissues called dense and
fatty (see Figure 18) and the amount of dense tissues is believed to be a risk factor
for developing breast cancer [19, 33].

dense breast tissue fatty breast tissue

Fig. 18 Region of interest extracted from real mammograms.

In [33], the hypothesis of a self-similar behavior is validated using a power spec-
trum method with an estimated fractal index range H ∈ [0.33,0.42]. Based on the
variogram method presented above we also found a local self-similar behavior with
similar values H = 0.31±0.05 on a data set of 58 cases with 2 mammograms (left
and right) ROI of size 512× 512 in [14]. Note that, contrarily to bones data, we
do not have a standardized procedure to extract ROI. Very interesting results were
obtained in [40] who manages to discriminate between dense and fatty breast tis-
sues using the Wavelet Transform Modulus Maxima method with respective fractal
indices given by H ∈ [0.55,0.75] and H ∈ [0.2,0.35]. Fractal analysis is also linked
with lesion detectability in mammogram textures. Actually, as observed in [18], it
may be more difficult to detect lesion in dense tissues than in fatty tissues. This was
mathematically proven in [30], using a-contrario model, for textures like isotropic
fractional Brownian fields, showing that size and contrast of lesions are linearly
linked in log-log plot with a slope depending on the H index. This is illustrated in
Figure 19, where we have added a spot with an increasing radius on two simulations
of fractional Brownian fields of size 512×512 for H = 0.3, corresponding to values
of fatty tissues, and for H = 0.7, corresponding to values of dense tissues. Contrarily
to white noise images, obtained with independent identically distributed Gaussian
variables on each pixel, in fractal images the more the radius increases, the less the
spot is observable.

4 Geometric construction

We present here geometric construction for some fractional Brownian fields based
on Chentsov’s representation of random fields using a random measure and a par-
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White noise

H = 0.3

H = 0.7
radius 5 radius 10 radius 50

Fig. 19 Examples of simulated spots with various sizes (radius 5, 10, and 50) but similar contrast
in a white noise texture (top row) and in fractional Brownian fields H = 0.3 and H = 0.7 (bottom
row).

ticular class of Borel sets indexed by points of Rd . This is particularly interesting as
it yields possible extensions, in particular beyond the Gaussian framework.

4.1 Random measures

A random measure will be defined as a stochastic process indexed by some Borel
set. We still consider (Ω ,A ,P) a probability space. Let k ≥ 1 and µ be a σ -finite
non-negative measure on (Rk,B(Rk)). Let set

Eµ = {A ∈B(Rk) such that µ(A)<+∞}.

Definition 22. A random measure M is a stochastic process M = {M(A);A ∈ Eµ}
satisfying

• For all A ∈ Eµ , M(A) is a real random variable on (Ω ,A );
• For A1, . . . ,An ∈ Eµ disjoint sets the random variables M(A1), . . . ,M(An) are in-

dependent;
• For (An)n∈N disjoint sets such that ∪

n∈N
An ∈ Eµ ,
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M( ∪
n∈N

An) = ∑
n∈N

M(An) a.s.

Let us emphasize that this definition does not ensure that almost surely M is a mea-
sure. However some random measures may be almost surely measures.

Definition 23. A Poisson random measure N with intensity µ is a random measure
such that for any A ∈ Eµ , the random variable N(A) follows a Poisson distribution
of intensity µ(A) ie N(A)∼P(µ(A)).

In this case N is a random discrete measure given by N =∑i∈I δTi , where Φ = (Ti)i∈I
is a countable family of random variables with values in Rk called Poisson point
process on Rk with intensity µ (see [37] for instance). For example, when k = 1 and
µ = λ×Lebesgue for some λ > 0, (N([0, t]))t≥0 is the classical Poisson process of
intensity λ and Φ corresponds to the jumps of the Poisson process.

Definition 24. A Gaussian random measure W with intensity µ is a random measure
such that for any A ∈ Eµ , the random variable W (A) follows a normal distribution
with mean 0 and variance µ(A), ie W (A)∼N (0,µ(A)).

In this case, W is not an a.s. measure. It is a centered Gaussian stochastic process
(sometimes called set-indexed process, see [34] for instance) with covariance given
by

Cov(W (A),W (B)) = µ(A∩B) =
1
2
(µ(A)+µ(B)−µ(A∆B)) ,

for all A,B∈ Eµ , with A∆B= (A∩Bc)
⋃
(B∩Ac). Let us note that this is also the co-

variance function of any second order random measure M satisfying Var(M(A)) =
µ(A) and so for N a Poisson random measure of intensity µ . For example, when
k = 1 and µ = λ× Lebesgue for some λ > 0, (W ([0, t]))t≥0 is the classical (non-
standard) Brownian motion with diffusion λ , up to continuity of sample paths. Con-
versely, considering a Brownian motion (Bt)t∈R one can define a Gaussian random
measure on R given by W (A) =

∫ +∞

−∞
1A(t)dBt .

The link between Poisson and Gaussian measures is given by the central limit
theorem. Actually, if N(1), . . . ,N(n) are independent Poisson random measures with

the same intensity µ , by superposition principle
n

∑
i=1

N(i) is a Poisson random mea-

sure with intensity n×µ . By the central limit theorem we immediately deduce that
for A ∈ Eµ

1√
n

(
n

∑
i=1

N(i)(A)−nµ(A)

)
d−→

n→+∞
W (A).

More generally we have the following normal approximation for Poisson measures
in high intensity.

Proposition 14. If Nλ is a Poisson random measure with intensity λ × µ and W is
a Gaussian random measure with the same intensity µ , then(

λ
−1/2 (Nλ (A)−λ µ(A))

)
A∈Eµ

f dd−→
λ→+∞

(W (A))A∈Eµ
.
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4.2 Chentsov’s representation: Lévy and Takenaka constructions

Chentsov’s type representation (see [56]) consists in constructing a random field X
with M a random measure with intensity µ on Rk and V = {Vx;x ∈ Rd} a class of
sets of Eµ indexed by Rd for d ≥ 1, by setting

Xx = M(Vx), x ∈ Rd .

Then X is called Chentsov random field associated with M and V . If M is a
second order random measure satisfying Var(M(A)) = µ(A) then X is a second
order random field with

∀x,y ∈ Rd , Var(Xx−Xy) = µ(Vx∆Vy).

Then invariance properties of X imply several relations on µ and V . If X has sta-
tionary increments then we must have µ(Vx∆Vy) = µ(Vx−y∆V0) for all x,y ∈ Rd ;
If X is isotropic and X0 = 0 a.s. then µ(VRx) = µ(Vx), for all vectorial rotations R;
Finally if X is H-self-similar and X0 = 0 a.s. then we obtain µ(Vcx) = c2H µ(Vx),
for all c > 0. It follows that for X to be isotropic, H self-similar with station-
ary increments, we necessarily have µ(Vx∆Vy) = µ(Vx−y) = c‖x− y‖2H , t,s ∈ Rd ,
for some constant c > 0. This is only possible when H ∈ (0,1/2]. This comes
from the fact that V2x ⊂ (V2x∆Vx)∪Vx. Hence, by increments stationarity, µ(V2x)≤
µ(Vx∆V0)+µ(Vx)≤ 2µ(Vx) since µ(V0) = Var(X0) = 0. By self-similarity we ob-
tain that 22H µ(Vx) ≤ 2µ(Vx) for all x ∈ Rd , implying H ≤ 1/2. We describe in the
following the different constructions given by Lévy and Chentsov (1948 & 1957)
for H = 1/2 and Takenaka (1987) for H ∈ (0,1/2).

Proposition 15. Let µ and V be defined on (Rd ,B(Rd)) by

• µ(dz) = ‖z‖−d+1dz

• V = {Vx,x ∈ Rd} with Vx = B
(

x
2 ,
‖x‖
2

)
=
{

z ∈ Rd :
∥∥z− x

2

∥∥< ‖x‖
2

}
, the ball of

diameter [0,x], for all x ∈ Rd .

Then, µ(Vx∆Vy) = µ(Vx−y) = cd‖x− y‖, for all x,y ∈ Rd .

Proof. For x∈Rd , we may used polar coordinates to identify Vx with
{
(r,θ) ∈ R+×Sd−1 : 0 < r < θ · x

}
Then,

µ(Vx) =
∫

Sd−1

∫
R+

1{r<θ ·x}drdθ =
1
2

∫
Sd−1
|θ · x|dθ =

cd

2
‖x‖,

with cd =
∫

Sd−1 |e1 · x|dθ . Moreover, for y 6= x,

µ(Vx∩V c
y ) =

∫
Sd−1

∫
R+

1{θ ·y≤r<θ ·x}drdθ

=
∫

0<θ ·y<θ ·x
θ · (x− y)dθ +

∫
θ ·y<0<θ ·x

θ · xdθ .
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Similarly, by a change of variables,

µ(Vy∩V c
x ) =

∫
θ ·y<θ ·x<0

|θ · (x− y)|dθ +
∫

θ ·y<0<θ ·x
(−θ · y)dθ ,

so that
µ(Vx∆Vy) =

1
2

∫
Sd−1
|θ · (x− y)|dθ =

cd

2
‖x− y‖.

ut

One can therefore check that the Chentsov random field associated with a Gaussian
measure W of intensity µ and V , given in Proposition 15 is a (non-standard) Levy
Chentsov field, or equivalently, a fractional Brownian field of index H = 1/2. The
construction for H ∈ (0,1/2) has been given by Takenaka and relies on the following
proposition.

Proposition 16. Let H ∈ (0,1/2), µ and V be defined on (Rd+1,B(Rd+1)) by

• µH(dz,dr) = r2H−d−11r>0dzdr for (z,r) ∈ Rd×R;
• V = {Vx,x ∈Rd} with Vx = Cx∆C0 where Cx =

{
(z,r) ∈ Rd×R : ‖z− x‖ ≤ r

}
,

for all x ∈ Rd .

Then, µH(Vx∆Vy) = µH(Vx−y) = cH,d‖x− y‖2H , for all x,y ∈ Rd .

Proof. Let x ∈ Rd with x 6= 0. Let us note that µH(Cx) = +∞ but, integrating first
with respect to r,

µH(Cx∩C c
0 ) =

1
d−2H

∫
‖z−x‖<‖z‖

(
‖z− x‖2H−d−‖z‖2H−d

)
dz

= cH,d‖x‖2H = µH(C0∩C c
x ),

using translation invariance of Lebesgue’s measure, where

cH,d =
1

d−2H

∫
‖z−e1‖<‖z‖

(
‖z− e1‖2H−d−‖z‖2H−d

)
dz ∈ (0,+∞).

Again by translation invariance of Lebesgue’s measure, for y 6= x, we get µH(Cx∆Cy)=
µH(Cx−y∆C0) = cH,d‖x− y‖2H . The result follows once remarked that Vx∆Vy =
Cx∆Cy. ut

Of course, considering an associated Gaussian random measure we obtain the
Chentsov’s representation of fractional Brownian fields for H ∈ (0,1/2). Let us re-
mark that it also allows to define self-similar symmetric α-stable fields considering
an SαS random measure (see [56]) but we leave our second order framework in
this way! However, considering instead a Poisson random measure, we can define a
Poisson analogous of fractional Brownian fields when H ∈ (0,1/2).
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4.3 Fractional Poisson fields

When Nλ ,H is a Poisson random measure on Rd×R with intensity λ×µH for λ > 0,
and µH given by Proposition 16, we can define a Chentsov’s field by

Nλ ,H(Cx∆C0) = Nλ ,H(Cx∩C c
0 )+Nλ ,H(C

c
x ∩C0), ∀x ∈ Rd .

However, since Nλ ,H(Cx∆C0) is a Poisson random variable of parameter λ µH(Cx∆C0),
this field is not a centered. But remarking that µH

(
Cx∩C c

0
)
= µH (C c

x ∩C0), we
may define the centered fractional Poisson field on Rd by

Fλ ,H(x) = Nλ ,H(Cx∩C c
0 )−Nλ ,H(C

c
x ∩C0), ∀x ∈ Rd .

Actually, Fλ ,H may also be defined as the stochastic integral with respect to the
Poisson random measure Nλ ,H as

Fλ ,H(x) =
∫
Rd×R

(
1Cx∩C c

0
(z,r)−1C c

x ∩C0(z,r)
)

Nλ ,H(dz,dr)

=
∫
Rd×R

(
1B(z,r)(x)−1B(z,r)(0)

)
Nλ ,H(dz,dr).

Heuristically, we can throw centers and radius with respect to a Poisson point pro-
cess on Rd ×R of intensity λ × µH , meaning that centers are thrown uniformly in
Rd with intensity λ and independently marked with a radius. Then Fλ ,H(x) will
count the number of balls falling on x minus the number of balls falling on 0. It is
close to a shot noise random field obtained as the sum of randomly dilated and trans-
lated contributions. We refer to [10] and [9] for more details. Then (Fλ ,H(x))x∈Rd is
centered, with stationary increments, isotropic with covariance

Cov(Fλ ,H(x),Fλ ,H(y)) =
λcH,d

2
(
‖x‖2H +‖y‖2H −‖x− y‖2H) .

This field is not self-similar but

(Fλ ,H(cx))x∈Rd
f dd
= (Fλc2H ,H(x))x∈Rd , ∀c > 0.

Moreover, according to normal approximation of Poisson measures for high inten-

sity we can prove that (λ−1/2Fλ ,H(x))x∈Rd
f dd−→

λ→+∞

(
√

CH,dBH(x))x∈Rd . This is illus-

trated in Figure 20. Note that sharp contours of fractional Poisson fields disappear
in the asymptotic Gaussian limits, that are Hölder continuous. Another interest-
ing property of this field is that its distribution is also preserved along lines (and
more generally along affine subspaces). More precisely, for x0 ∈ Rd and θ ∈ Sd−1,
defining the line process Lx0,θ (Fλ ,H) =

(
Fλ ,H(x0 + tθ)

)
t∈R, computing characteris-

tic functions we can prove that
(
Lx0,θ (t)−Lx0,θ (0)

)
t∈R has the same distribution

than a fractional Poisson process (defined for d = 1), with the same H index and
intensity given by cH,dλ where cH,d =

∫
Rd−1(1−‖y‖2)1/2−H1‖y‖≤1dy (see [10]).
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Fig. 20 Convergence of a fractional Poisson field to a fractional Brownian field as the intensity
increases.

Hence, we can also use estimation based on variograms to build estimators of H.
Consistency has been proven in [9]. Figure 21 presents sample paths comparison
between Poisson and Gaussian cases. To conclude, let us note that, contrarily to the
Gaussian case, one can prove that the increments E(|Fλ ,H(x)−Fλ ,H(x)|q) behave
like ‖x− y‖2H for any q ≥ 2 as ‖x− y‖ → 0. Such a feature still holds allowing
some interactions for the radii as done in [54].

H = 0.1 H = 0.2 H = 0.3 H = 0.4

Fig. 21 Sample paths of fractional Poisson process (top) vs fractional Brownian motion (bottom)
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51. E. Perrin, R. Harba, R. Jennane, and I. Iribarren. Fast and exact synthesis for 1-D fractional
Brownian motion a nd fractional gaussian noises. IEEE Signal Processing Letters, 9(11):382–
384, 2002.
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