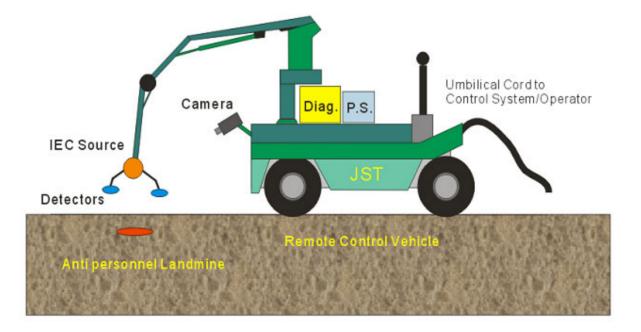
R&D of Technology for Humanitarian Landmine Detection by a Compact IEC Fusion Neutron Source

Oct.10-11, 2002 U. of Wisconsin, Madison

5th US-Japan Workshop on Inertial Electrostatic Confinement Fusion

IAE, Kyoto University Kiyoshi Yoshikawa


Outline of Project

Sensing technique

- In 5 years, develop techniques to be able to identify
- •Landmine exists?
- •Plastic or LM? Then what kind ?
- •Then, where is it?

Detection thru neutron-related reactions, able to identify

- •Constituents ; $(n, \gamma), (n, n' \gamma)$
- Location; tomography, and by
- •Innovative IEC neutron source; >10⁸n/s, in Pulse, CW modes

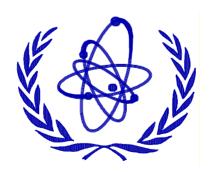
Requirements for Landmine Detection >30g in depth of 20cm,100% detection

Characteristics of the landmines found in Croatia

Mine	Туре	Buried -B, Surface -S	Metal Content	Dimensions	Weight total	Weight explo.	Kill/ Casualty radius
				mm	kg	kg	m
PMR_2A	AP	S	m	φ 66×122	1.70	0.10	1/25
TMA_3	AT	В	n	$\phi 260 \times 80$	6.50	6.50	
PMA_2	AP	В	n	ϕ 60×33	0.135	0.10	1/25
PMA_3	AP	В	n	$\phi 104 \times 40$	0. 183	0.035	1/25
TMR_P6	AT	B, tilt rod on S	m	φ 290×137	7.20	5.10	
TMM_1	AT	В	m	φ 250×85	8.65	5.60	
PROM_1	AP	B,protruding assembly on S	m	φ75×329	3.00	0. 425	50/100
TMA_4	AT	В	n	ϕ 280×65	6.30	5.50	
TMA_5	AT	В	n	300×275×113	6.60	5.50	
PMA_1	AP	В	n	142×68×35	0.40	0.20	1/25
MRUD	AP	S	m	231×46×89	1.50	0.90	50/200
TMA_1	AT	В	n	φ 310×100	6.50	5.40	
TMA_2	AT	В	n	330×260×100	6.50	5.40	
PMR_3	AP	S	m	φ 80×150	1.70	0.41	20/100

Principle of LM Detection

Atomic ratio of explosives fixed


explosives	Atomic number			
	Н	С	Ν	0
TNT	3	7	3	6
Pentrite	8	5	4	12
Hexogen	2	1	2	2
Ammonium nitrite	4	-	2	3

neutron-captured γray(kind of LM) H(n, γ)··· 2.22 MeV γray emission N(n, γ)···10.83 MeV γray emission

back-scattered neutron(existence of LM) H(n, n')···scattering cross section of H large

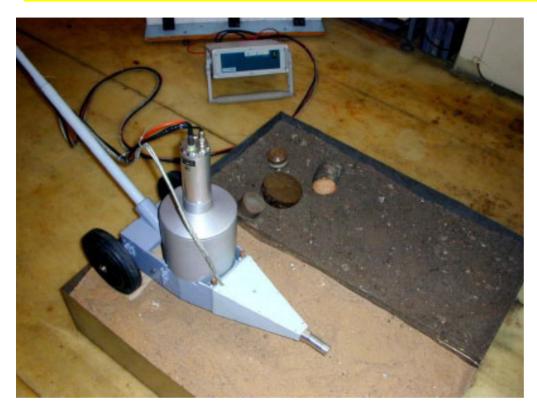
IAEA ACTIVITIES IN HUMANITARIAN DEMINING

Ulf Rosengård IAEA/Physics Section

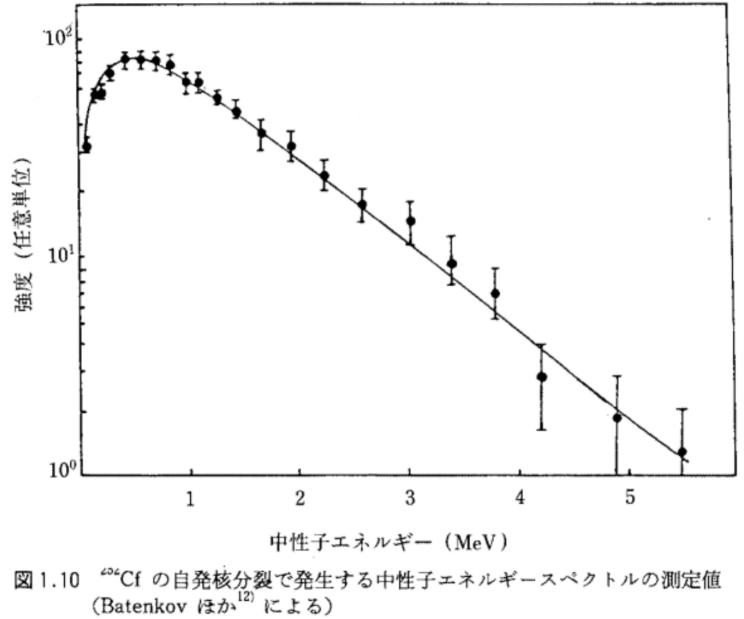
September 6, 2002, Kyoto

Table 1. Nuclear methods under development

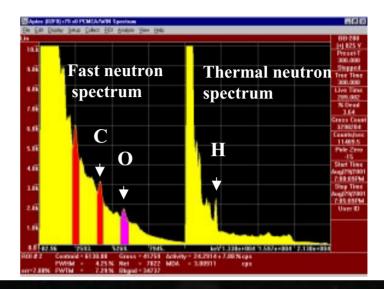
Name	Principle	Advantages	Issues	Status	CRP Groups
Methods to fi	nd buried objects		-		
X−ray Backscatter	X-rays backscattered form soil can be imaged using collimated detectors	Real time images sufficiently detailed to identify landmine size and type, independent of surface clutter.	Limited x-ray penetration depth into soil, speed of ground coverage, portability, cost (minimum \$250K).	Tested with plastic and metal antitank mines as well as anti– personnel mines.	Shope (USA)
Neutron Backscatter	Quantity of neutrons backscattered from soil can indicate concentrations of hydrogen.	Focuses on plastic landmines, insensitive to metallic clutter, emulates a metal detector (simple to use), simple and low cost, portability (<\$10K)	Sensitivity to hydrogen clutter, possible depth limitation, dependence of soil moisture stand off distance dependence.	Successful in laboratory	Brooks (SAF) Bom (HOL)
Positron annihilation Compton scatter imaging (PACSI)	Gamma rays backscattered from soil can indicate density of buried objects.	Simple and low cost method for forming 3D images to a depth of 20–30 cm. Potentially low cost (about 10 k\$)	Experimental test needed.	Demonstrated in computer simulation.	Tickner (AUL)
Methods to ia	lentify composition	n of buried objects	•		
Neutron- induced gamma rays	Neutrons enter the soil and cause emission of gamma rays. Identify elemental compositions from the gamma ray energies.	Identify composition of buried objects to determine presence of explosives. Compact portable system. Easy operated training.	Speed limited by neutron source strength. Background gamma rays must be subtracted.	The PELAN method (Prof. Vourvopoulos) has been demonstrated successfully with unexploded ordnance and is ready for field testing in minefield.	Vourovoupolous (USA) Hussein (CAN) Valkovic (CRO) Viesti (ITA) Ringbom (SWE)
Backscattered neutrons	Measure the energies of backscattered neutrons.	Good penetration of neutrons into soil. High neutron cross sections.	Neutron energy measurement requires complex electronics & analysis.	Tested in laboratory. and verified by simulations	Csikai (HUN) Hlavac (SLV) Kuznetsof (RUS) Hussein (CAN)


The battery-powered, handheld HYDAD-H landmine detector. (Univ. of Cape Town).

³He proportional N counter with ²⁵²Cf source.



Associated Particle Detection


Khlopin Institute St:Petersburg

Prototype of the mobile device with 2 mg ²⁵²Cf source with various investigated objects: TNT imitators, metallic cylinder, wet root etc.

PELAN TRIALS, 8/99, OHIO, Battle

PERANII; $10^8 n/s(D-T)$

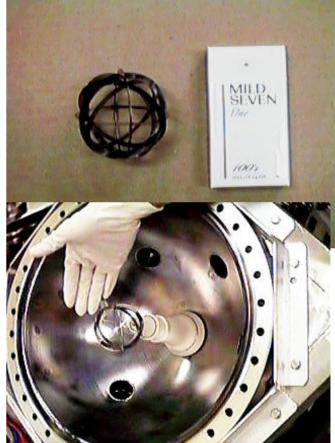
DEMO for Identification of explosives

Demonstration of the PELAN device in Vienna

February 2002

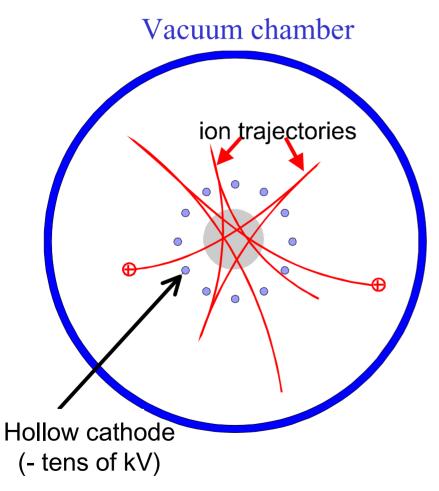
<mark>Sode</mark>rn社製 NG(France)

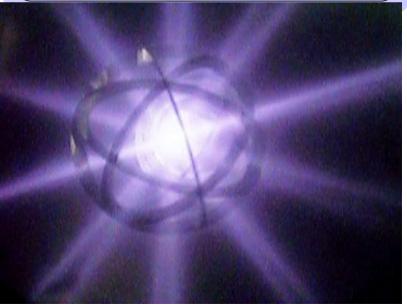
2002/9/8


Kyoto

Sept.6, 2002, IAE., Kyoto U., by Ulf Rosengard, IAEA

Compact Discharge-type Fusion Neutron Source


慣性静電閉じ込め核融合 IECF (Inertial Electrostatic Confinement Fusion)



Principle of Inertial Electrostatic Confinement Fusion

I E C F (Inertial Electrostatic Confinement Fusion)

D⁺ accelerated to the center of hollow cathode <u>Fusion reaction</u> D + D \rightarrow T + p (3.03 MeV) \rightarrow ³He + n (2.45 MeV)

			V-I dependence of pulsed
	As of	March, 2002	neutron yield (TIT)
	Neutror	yield [n/sec]	
IAE, Kyoto U.	1.1 × 10 ⁷	(CW;62kV30mA)	$\begin{array}{c c} \hline & \\ \hline \\ \hline$
UIUC	2 × 10 ⁶	(CW)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0100	7 × 10 ⁸	(pulse)	$\begin{array}{c} 10 \\ 5 \\ 10^{5} \\ 10^{5} \\ 1 \\ 10^{5} \end{array}$
	1.1 × 10 ⁸	(CW, D-D,	
UW, Madison		135kV,58mA)	DC Discharge
	1.6 × 10 ⁸	(CW, D- ³ He)	$2 10^{2}$ 10 ² 20 30 40 50 60 70 80 90
LANL	1 × 10 ⁶	(CW)	Cathode Voltage [kV]
тіт	5 × 10 ⁵	(CW)	Neutron yield
111	2 × 10 ⁶	(pulse;30kV,2A)	
Hitachi	7.5 × 10 ⁷	(CW)	$(10^8 n/s \rightarrow 80 kV, 10A?)$

R&D Organization & Budget

1R&D of compact IEC

CW/pulse IEC;Kyoto-U, Kansai-U.

•CW/Pulse power supply; TIT 2 R&D of LM Detection

Diagnostics; Kyoto-U., TIT, Kyushuu-U.
Tomography; Kyoto-U., JAERI,Wakasa-bay Energy Res. Center,
Total system;

Kyoto-U., Nikki Co.

Budget(2002.9-2006.3); about US\$2~2.5M