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a b s t r a c t 

Histopathological analysis is the present gold standard for precancerous lesion diagnosis. The goal of au- 

tomated histopathological classification from digital images requires supervised training, which requires 

a large number of expert annotations that can be expensive and time-consuming to collect. Meanwhile, 

accurate classification of image patches cropped from whole-slide images is essential for standard sliding 

window based histopathology slide classification methods. To mitigate these issues, we propose a care- 

fully designed conditional GAN model, namely HistoGAN , for synthesizing realistic histopathology image 

patches conditioned on class labels. We also investigate a novel synthetic augmentation framework that 

selectively adds new synthetic image patches generated by our proposed HistoGAN, rather than expanding 

directly the training set with synthetic images. By selecting synthetic images based on the confidence of 

their assigned labels and their feature similarity to real labeled images, our framework provides quality 

assurance to synthetic augmentation. Our models are evaluated on two datasets: a cervical histopathol- 

ogy image dataset with limited annotations, and another dataset of lymph node histopathology images 

with metastatic cancer. Here, we show that leveraging HistoGAN generated images with selective aug- 

mentation results in significant and consistent improvements of classification performance ( 6.7 % and 2.8 % 

higher accuracy, respectively) for cervical histopathology and metastatic cancer datasets. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Image analysis of digitized histopathological slides can con- 

ribute significantly to cancer diagnosis ( Irshad et al., 2013 ). For in- 

tance, the diagnosis of cervical cancer and its precancerous stages 

an be accomplished through assessment of histopathology slides 

f cervical tissue by pathologists. An important outcome of the as- 

essment is the cervical intraepithelial neoplasia (CIN) grade, an 

ssential indicator for abnormality assessment identified by the ab- 

ormal growth of cells on the surface of the cervix. Over the past 

ecade, computer-assisted diagnosis (CAD) algorithms have been 

eveloped for histopathology images to complement the opinion of 

he pathologist for accurate disease detection, diagnosis, and prog- 

osis prediction ( Gurcan et al., 2009 ). Considering the shortage of 

athologists, automatic histopathology image classification systems 

ave great potential in underdeveloped regions for its low cost and 
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ccessibility. Moreover, such a system can help pathologists with 

iagnosis and potentially mitigate the inter- and intra- pathologist 

ariation. 

The supervised training of image recognition systems often re- 

uires huge amounts of expert annotated data to reach a high 

evel of accuracy. However, for many practical applications us- 

ng histopathology images, only small datasets of labeled data are 

vailable due to annotation cost and privacy concerns, and the la- 

els are often imbalanced between grades and subtypes. While tra- 

itional data augmentation can increase the amount of training 

ata to some degree, commonly employed random transformations 

r distortions (such as cropping and flipping) lack flexibility and 

annot fill the entire data distribution with missing data samples. 

Motivated by the aforementioned difficulties in creating suffi- 

iently large training sets for histopathology image recognition sys- 

ems, we focus on the problem of expanding training sets with 

igh-quality synthetic examples. Recently, several works in med- 

cal image analysis have leveraged unsupervised learning meth- 

ds, more specifically, Generative Adversarial Networks (GANs) 

 Goodfellow et al., 2014 ), to mitigate the effects of small training 

https://doi.org/10.1016/j.media.2020.101816
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101816&domain=pdf
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ets on network training ( Liu et al., 2019; Frid-Adar et al., 2018 ).

hese works show that carefully designed GANs can generate vi- 

ually appealing synthetic images, but two major issues remain in- 

ufficiently investigated for generalized and robust synthetic aug- 

entation: 1) how to mitigate label ambiguity of generated im- 

ges; and 2) how to ensure the feature quality of synthetic im- 

ges used for data augmentation. In other words, blindly incor- 

orating synthetic samples into the original training set, even if 

hey are visually realistic, is not guaranteed to improve the classi- 

cation model performance. Synthetic images without quality as- 

urance can potentially adversely alter the data distribution and 

owngrade model performance. We provide a detailed analysis in 

ection 4.3 . 

In this paper, we aim at solving these two issues by designing 

 novel conditional GAN (cGAN) Mirza and Osindero (2014) frame- 

ork, termed as HistoGAN, for high-fidelity histopathology im- 

ge synthesis, then selectively adding synthetic samples generated 

y HistoGAN to the original training set. Our proposed Histo- 

AN model consists of multiple progressive generation and refine- 

ent modules which gradually generate images with better qual- 

ty. To encourage the diversity of synthetic images, we incorpo- 

ate the minibatch discrimination ( Salimans et al., 2016 ) to reduce 

he closeness between examples inside a minibatch. Self atten- 

ion ( Vaswani et al., 2017 ) is employed to capture relationships 

etween pixels inside an image. Such relationships contain cru- 

ial information about histopathology images, including the den- 

ity distribution of nuclei and color changes in different locations. 

lass conditional batch normalization ( De Vries et al., 2017 ) and 

pectral normalization ( Miyato et al., 2018 ) are also utilized to sta- 

ilize the adversarial training process and improve the quality of 

ynthetic images. Further, during HistoGAN training, we calculate a 

moothed version of Fr ̧E chet Inception Distance (FID) ( Heusel et al., 

017 ) score after each epoch of training so that the trained mod- 

ls can be compared and the model with weights that give rise to 

he best FID score can be selected. Our proposed HistoGAN con- 

istently generates realistic histopathology image patches on two 

ifferent datasets, which shows the robustness and generality of 

he model. 

Our proposed selective synthetic augmentation framework con- 

ists of two steps. First, we select generated images that can be 

lassified into some class with certainty, by calculating the expec- 

ation of predictive entropy of each sample and keeping those sam- 

les with relatively low entropy ( i.e. , high label confidence). Sec- 

nd, we compare the features of real images and synthetic im- 

ges where the ground truth label of the real images matches 

he conditional label used to generate the synthetic images, and 

nly select those synthetic images that are sufficiently close to the 

eal-image centroid in feature space. The features of the images 

re extracted by a feature extractor pre-trained with Monte Carlo 

ropout (MC-dropout) ( Gal and Ghahramani, 2016 ). This second 

tep of selection is to ensure that a selected synthetic image in- 

eed belongs to the class that corresponds to the conditional label 

sed to generate it. The total number of selected samples is deter- 

ined according to the augmentation ratio r ( i.e. , the proportion of 

he number of augmented samples to the number of original train- 

ng samples). Experimental results show that our proposed His- 

oGAN model along with selective synthetic augmentation signif- 

cantly outperforms the baseline ResNet34 ( He et al., 2016 ) model 

ith traditional augmentation, and also outperforms the synthetic 

ugmentation methods without selection. 

To validate the effectiveness and generality of our proposed se- 

ective synthetic augmentation framework, we conduct extensive 

xperiments on two histopathology datasets. We first study the 

-class (Normal, CIN 1-3) cervical histopathology image classifi- 

ation problem and evaluate our models on a heterogeneous ep- 

thelium image dataset ( Xue et al., 2019 ) with limited and highly 
2 
nbalanced numbers of patch-level annotations per class label. 

he second dataset we use is a small subset of the PCam dataset 

 Veeling et al., 2018 ), consisting of lymph node histopathology im- 

ges. We compare our proposed selective synthetic augmentation 

ethod with baseline methods including baseline classification 

odels, models trained with traditional augmentation, and models 

rained with synthetic augmentation but without quality-assuring 

election. Experimental results show that our model achieves sig- 

ificant improvements with 6.7 % and 2.8 % higher accuracy than 

aseline classification models on cervical and lymph node datasets, 

espectively. 

The main contributions of this work are as follows: 

• We design a novel conditional GAN model architecture for syn- 

thesizing realistic histopathology image patches. A smoothed 

version of FID score is used as a metric to select the best cGAN 

model during training. With only a limited amount of training 

data, our GAN model can generate synthetic images with high 

fidelity and diversity. 
• We propose a selective synthetic augmentation method that ac- 

tively selects synthetic samples with high confidence of match- 

ing to their conditional label and are close to real images in fea- 

ture space. By only adding selected synthetic samples instead of 

arbitrary synthetic samples to augment the limited training set, 

our proposed method can significantly outperform other base- 

line augmentation methods in improving classification perfor- 

mance. The proposed selective synthetic augmentation is gen- 

eral and can also be used in conjunction with other augmenta- 

tion methods. 
• We conduct extensive experiments on both a cervical 

histopathology dataset and a lymph node histopathology 

dataset. Compared with baseline models, including our previ- 

ous state-of-the-art synthetic augmentation model ( Xue et al., 

2019 ), our proposed method improves the augmented classifi- 

cation performance. 

. Related work 

.1. Histopathology image classification 

Machine learning, especially deep learning methods have 

chieved promising results on general histopathology image clas- 

ification. While whole slide images (WSI) are often with unusu- 

lly high resolutions, commonly used methods ( Hou et al., 2016; 

u et al., 2017; Tomita et al., 2019 ) alleviate this issue by applying

atch-level image classification on cropped image patches or slid- 

ng windows rather than the original WSI. Individual classification 

esults on cropped patches are aggregated to infer the final image- 

evel label for the WSI. In such methods, accurate patch-level im- 

ge classification is fundamental to reach the accuracy level of hu- 

an pathologists. 

In the area of cervical histopathology analysis, existing litera- 

ure ( Chankong et al., 2014; Guo et al., 2016 ) have studied various

upervised learning methods for nuclei-based cervical cancer clas- 

ification. Chankong et al. (2014) proposed automatic cervical can- 

er cell segmentation and classification using fuzzy C-means (FCM) 

lustering and various types of classifiers. Guo et al. (2016) de- 

igned hand-crafted nuclei-based features for fusion-based classi- 

cation on digitized epithelium histopathology slides with linear 

iscriminant analysis (LDA) and support vector machines (SVM) 

lassifier. While accomplishments have been achieved with fully- 

upervised learning methods, the training of models require large 

mounts of expert annotations of cervical histopathology images. 

ince the annotation process can be expensive, tedious, and time- 

onsuming, it often results in limited or insufficient number of la- 

eled data available for supervised learning models. 
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.2. Conditional image synthesis 

Generative adversarial networks (GANs) ( Goodfellow et al., 

014 ) as an unsupervised learning technique, has enabled a wide 

ariety of applications including image synthesis, object detection 

 Li et al., 2017 ) and image segmentation ( Xue et al., 2018 ). Among

ariants of GANs, conditional GAN (cGAN) generates ( Mirza and 

sindero, 2014; Odena et al., 2017 ) more interpretable results with 

onditional inputs. For instance, images can be generated condi- 

ioning on class labels, which enables cGAN to serve as a tool 

o generate labeled samples for synthetic augmentation. Current 

tate-of-the-art cGAN models often breaks the task into smaller 

radual generation or refinement sub-tasks ( Zhang et al., 2018; 

arras et al., 2017 ), or employs large scale training ( Brock et al.,

018 ), which enable them to generate high fidelity images. In this 

ork, we use our proposed HistoGAN, which is inspired by state- 

f-the-art cGANs ( Zhang et al., 2018; 2019; Brock et al., 2018 ), to

enerate high-fidelity synthetic images to augment classification 

odel training. To improve the quality of synthetic images and sta- 

ilize the training process, our model utilizes numerous techniques 

ncluding minibatch discrimination ( Salimans et al., 2016 ), self at- 

ention ( Vaswani et al., 2017 ), class conditional batch normaliza- 

ion ( De Vries et al., 2017 ), and spectral normalization ( Miyato 

t al., 2018 ) following prior art. While generating visually appeal- 

ng histopathology images, HistoGAN serves as an essential prereq- 

isite for the synthetic data augmentation. 

.3. Synthetic data augmentation 

To better utilize training data and reduce over-fitting during the 

raining process, data augmentation has become a common prac- 

ice for training deep neural networks. The objective of augmen- 

ation is to add to the original training set new samples that fol- 

ow the original data distribution. Therefore, a good augmentation 

cheme should generate samples that follow the original data dis- 

ribution but are different from those in the original training set. 

n the other hand, a bad augmentation scheme can generate sam- 

les that deviate from the original data distribution thus can mis- 

ead training when added to the training set. 

Traditional data augmentation ( Wang and Perez, 2017 ) often in- 

olves transformations applied directly on original training data, 

uch as cropping, flipping and color jittering. While serving as 

n implicit regularization, straightforward data augmentation tech- 

iques are limited in augmentation diversity. To overcome the lim- 

tation of traditional augmentation, several works have been done 

o improve the effectiveness of data augmentation. Rather than us- 

ng a pre-defined augmentation policy, Auto Augmentations ( Cubuk 

t al., 2019; Ho et al., 2019 ) use hyper-parameter searching to au- 

omatically find the optimal augmentation policy. 

Another popular trend is to generate synthetic images to in- 

rease the amount and diversity of original training data, which 

e denote as Synthetic Augmentation . Along this direction, for 

atural images, Ratner et al. (2017) learns data transformation 

ith unlabeled data using GANs. GAGAN ( Antoniou et al., 2017 ) 

nd BAGAN ( Mariani et al., 2018 ) uses cGANs ( Mirza and Osin-

ero, 2014 ) generated samples to augment the standard classi- 

er in the low-data regime. Compared with works done in the 

atural image domain, issues related to insufficient and imbal- 

nced data are more prominent in the medical image domain. 

o mitigate these problems, researchers have been working on 

ynthetic augmentation for medical image recognition tasks. Frid- 

dar et al. (2018) proposes to use cGAN generated synthetic CT im- 

ges to improve the performance of CNN in liver lesion classifica- 

ion. Gupta et al. (2019) synthesizes lesion images from non-lesion 

nes using CycleGAN ( Zhu et al., 2017 ). Bowles et al. (2018) uses

AN derived synthetic images to augment medical image seg- 
3 
entation models. Zhao et al. (2018) proposes a GAN model for 

ynthesizing retinal images from small sized samples and uses 

he synthetic images to improve semantic segmentation perfor- 

ance. Mahapatra et al. (2018) applies a Bayesian neural network 

BNN) ( MacKay, 1992 ) to calculate the informativeness of the syn- 

hetic images for improved classification and segmentation results. 

hao et al. (2019) uses transformations of labeled images for one- 

hot image segmentation. GAN based synthetic augmentation has 

chieved promising results, but typically blindly adds synthetic 

amples to the original data. Few consider how to assure the qual- 

ty of synthetic images or control the augmentation step after im- 

ge synthesis. 

.4. Our previous work 

In our recent work ( Xue et al., 2019 ), we propose a feature

ased filtering mechanism for synthetic augmentation. While im- 

roving classification performance, our previous cGAN generated 

mages are not realistic enough and the work lacks rigorous study 

f its GAN model training and feature extractor training processes. 

n this work, we propose an improved GAN model for histopathol- 

gy image generation, and develop a more general synthetic aug- 

entation framework by reducing the randomness in GAN model 

nd feature extractor training through MC-sampling and FID score 

ased model selection. Our new contributions and differences from 

revious work are summarized as follows: 

• We design and utilize an improved conditional GAN model 

architecture, namely HistoGAN, with a self-attention module 

among other techniques to stabilize the training and improve 

the quality of synthetic images. 
• We propose a more general selective synthetic augmentation 

method which achieves better performances than our previous 

method. 
• We conduct more comprehensive experiments including more 

ablation study and new results on the PCam dataset. 

. Methodology 

In traditional fully-supervised training methods, the model is 

rained on training images and the inference is done by feeding 

he test data to the trained model. In previous GAN-based augmen- 

ation works ( Frid-Adar et al., 2018; Madani et al., 2018 ), a GAN 

odel is first trained to generate some synthetic images based on 

he training data, then the generated images are added to the orig- 

nal training data as a data augmentation strategy. However, since 

he discriminator in GAN only outputs a high level judgement (0 or 

) of the fidelity of generated images, such pipelines cannot guar- 

ntee that the generated data contain meaningful features which 

ontribute to improving classification model training. To tackle this 

ssue, we propose a selective synthetic augmentation algorithm to 

valuate the quality and fidelity of synthetic images and select only 

hose samples with high-confidence in label correctness and real- 

mage likeness to be added to the training set. The comparison be- 

ween different training procedures is illustrated in Fig. 1 . 

An overall illustration of our proposed selective synthetic aug- 

entation method can be found in Fig. 2 . We first train a condi- 

ional GAN model based on the labeled training images. The op- 

imal model weights is selected based on the smoothed FID score 

eusel et al. (2017) . A pool of synthetic images are then generated 

sing the selected model. All images are then passed into the im- 

ge selection module to filter out the ones that fail to contribute 

ufficient amount of meaningful information. After image selection, 

 classification model is trained with both original and synthetic 

raining data. Trained classification models can then be used for 

nference on test data. More details are introduced in the follow- 

ng subsections. 
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Fig. 1. Comparison between different training processes. (a) Traditional training 

pipeline; (b) Conditional GAN augmented training pipeline; (c) Our proposed se- 

lective synthetic augmentation with quality assurance. The input to the cGAN are 

noise vector z and label condition vector y . 
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.1. HistoGAN model 

In this section, we introduce our proposed HistoGAN architec- 

ure and how to select the best model with highest synthetic im- 

ge quality from a set of trained models. 

.1.1. Model architecture 

The conventional cGANs ( Mirza and Osindero, 2014 ) have an 

bjective function defined as: 

in 

θG 

max 
θD 

L cGAN = E x ∼P data 
[ log D (x, y )] 

+ E z∼N [ log (1 − D (G (z, y )))] . (1) 

n the equation above, x represents the real data from an unknown 

mage distribution P data and y is the conditional label ( e.g. , CIN 

rades). z is a random vector for the generator G , drawn from a 

tandard normal distribution N (0 , 1) . During the training, G and D 

re alternatively optimized to compete with each other. 

Since there is no existing cGAN framework specifically designed 

or histopathology image synthesis, we choose to design a new 

odel, HistoGAN , based on previous state-of-the-art conditional 

AN models and techniques ( Zhang et al., 2018; Brock et al., 2018; 

hang et al., 2019 ). The architecture of our HistoGAN model is 

llustrated in Fig. 3 . We aim to generate synthetic images in a 
ig. 2. The architecture of the proposed selective synthetic augmentation algorithm. Th

riginal training set to improve classification model training and test performance. 

4 
oarse-to-fine fashion through multiple stages, where details of 

mages are gradually refined to guarantee the fidelity. The train- 

ng procedure of HistoGAN is similar to Eq. (1) . The generator of 

he first stage takes a random noise vector and class label as in- 

ut, and the generator of remaining stages will take the output of 

he previous stage as input instead of random noise. To increase 

iversity among the generated examples and mitigate the issue of 

ode collapse indicated by the high homogeneity of the synthetic 

mage pool, we incorporate the minibatch discrimination module 

 Salimans et al., 2016 ) into our discriminator. Following state-of- 

he-art works in conditional image synthesis ( Zhang et al., 2019; 

rock et al., 2018 ), class conditional batch normalization is used 

n both generators and discriminators to enhance the learning ef- 

ectiveness of the inter class feature discrepancy. And spectral nor- 

alization ( Miyato et al., 2018 ) is utilized in discriminators of all 

tages to further improve model performance. 

To better capture the distribution of nucleus density and color 

hanges in histopathology images of different classes, we leverage 

elf attention ( Vaswani et al., 2017; Zhang et al., 2019 ) at early 

tages of generation and throughout all stages in the discrimina- 

ion process. The application of self attention mechanism enables 

oth generator and discriminator to better learn the dependencies 

etween spatial regions by looking at the relationship between 

ne pixel and all other positions in the same image. Similar to 

hang et al. (2019) , the image features from the previous hidden 

ayer x are first transformed into two feature spaces q, k as query 

nd key in self attention ( Vaswani et al., 2017 ) to calculate the 

ttention map. Let q (x ) = W q x and k (x ) = W k x, the attention map

ver the i th location when synthesizing the j th region is 

j,i = 

exp 

(
s ji 

)
∑ N 

i =1 exp 

(
s ji 

) , where s ji = q ( x i ) 
T k 

(
x j 

)
. (2) 

The output of the self attention of the j th region o j is calculated

y applying attention weight over the value v as 

 j = 

N ∑ 

i =1 

α j,i v ( x i ) , where v ( x i ) = W v x i . (3) 

n all transformation matrices W q , W k , and W v , weight matrices 

re implemented as 1 × 1 convolutions. Compared with the Stack- 

AN model implemented in our previous work ( Xue et al., 2019 ), 
e ∪ symbol indicates that the selected synthetic image set is unioned with the 
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Fig. 3. The architecture of a 3-stage HistoGAN for cervical epithelium synthesis. The number of stages can be adjusted according to the desired final image resolution. 

Detailed features such as cytoplasm texture and nuclei shapes get progressively refined in synthetic images of higher resolution from stage I to III. The self attention layer 

is applied after stage I generator where the sketch outline and rough pattern of images are shaping up. Self attention layers are also incorporated in discriminators at all 

stages to further enforce the consistency of focused local regions more accurately. Conditional batch normalization De Vries et al. (2017) is used after convolutional layers 

for flexibly modulating convolutional feature maps. 
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ur HistoGAN generates more realistic image patches which also 

enefits the following synthetic augmentation step. An example of 

GAN result comparison is shown in Fig. 6 . 

.1.2. Model selection 

During training of the HistoGAN model, the model weights vary 

rom epoch to epoch. A challenge is to determine which model 

eights gives rise to better synthetic image quality. For natural 

mage synthesis tasks, Inception Score ( Salimans et al., 2016 ) and 

r ̧E chet Inception Distance (FID) ( Heusel et al., 2017 ) score are 

wo commonly used metrics. The calculation of these two metrics 

ely on the pre-trained Inception V3 ( Szegedy et al., 2016 ) model 

rained on ImageNet ( Deng et al., 2009 ). However, since the distri- 

ution of natural images and that of medical images such as cer- 

ical histopathology images can be quite different, we can not di- 

ectly use the aforementioned two scores for evaluating our Histo- 

AN model. Instead, we follow the calculation of the original FID 

core while replacing the Inception V3 model pre-trained on Ima- 

eNet with a ResNet34 ( He et al., 2016 ) model pre-trained on the

ervical histopathology dataset. 

To compare the trained models after running different numbers 

f epochs, we save the HistoGAN model after each epoch of train- 

ng. To estimate the performance of each saved model, we calcu- 

ate the FID score between the feature vectors of real and gener- 

ted images extracted from the pre-trained ResNet34 model as fol- 

ows: 

(x, ̃  x ) = 

∣∣∣∣μx ∼P data 
φ(x ) − μ ˜ x ∼P G φ( ̃  x ) 

∣∣∣∣2 

2 

+ Tr 

(
�x ∼P data 

φ(x ) + � ˜ x ∼P G φ( ̃  x ) − 2 

(
�x ∼P data 

φ(x )� ˜ x ∼P G φ( ̃  x ) 
) 1 

2 

)
, 

(4) 
5 
here ˜ x represents synthetic images generated by the saved Histo- 

AN model being evaluated, and φ denotes the features extracted 

rom intermediate layers of the pre-trained ResNet34 model. As- 

ume feature vectors follow a multivariate Gaussian distribution, 

he mean and covariance are estimated for the real and fake data 

 Borji, 2019 ) for fr ̧E chet distance calculation to measure the visual 

uality of generated images. Smaller FID scores indicate better vi- 

ual quality. Although the FID score itself cannot guarantee agree- 

ent with human judgment, trends of FID often provide a reliable 

stimation of the quality of a GAN model. As we can observe from 

ig. 4 , due to the instability in GAN training, the FID scores of each

aved epoch fluctuate constantly and fail to provide a distinguish- 

ble pattern. Based on the unaltered FID scores, one should choose 

he model saved at epoch 286 or epoch 374. However, one can see 

hat images generated by these chosen models are not satisfactory 

s in Fig. 4 . To get a robust estimation of model quality and miti-

ate the effect caused by outliers, we apply the Exponential Mov- 

ng Average (EMA) ( Hunter, 1986 ) algorithm to smooth the curve 

f original FID score. With smoothing, the FID score at time t is: 

ˆ 
 = 

{
d t , t = 1 

α ˆ d t−1 + (1 − α) d t , t > 1 

(5) 

We monitor the training process with the smoothed FID. As 

hown in Fig. 4 , different values of α lead to different levels of 

moothing in FID and we observed that the chosen model associ- 

ted with the lowest smoothed FID score has better image quality 

han the model chosen using the lowest original FID score. In our 

xperiments, we set α to 0.5 for a medium level of smoothing. One 

an see that, after smoothing with the EMA algorithm, the mini- 

um in smoothed FID score is reached at epoch 634, which is the 
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Fig. 4. FID scores (pre-trained ResNet34) of HistoGAN models saved after different number of epochs of training. Scores are smoothed with varying EMA parameter α. 
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Fig. 5. Illustration of the image selection process. r and N represent the augmenta- 

tion ratio and the number of original training data. The same feature extractor runs 

multiple times through MC-dropout for both entropy and class centroid distance 

calculations to increase robustness. 

Algorithm 1 Selective Synthetic Augmentation 

Input : a set of trained HistoGAN models { G t }, number of classes 

C, augmentation ratio r, number of original training samples N = ∑ C 
i =1 N i . 

Output : selected synthetic samples X with |X | = rN. 

Initialization : X 1 = ∅ , ̂ t = arg min ( ̂  d t ) , G ˆ t generated samples X 0 

= { x i 
j 

: i ≤ C, j ≤ 4 rN i },entropy E i = { e i 
j 

: e i 
j 
= −∑ 

p i 
j 
log p i 

j 
, i ≤

C, j ≤ 4 rN i } . 
for x i 

j 
∈ X 0 do 

if e i 
j 
< Median (E i ) then 

X 1 = X 1 ∪ { x i 
j 
} 

end if 

end for 

class centroid distance D 

i = { d i 
j 

: d i 
j 
= D f (x i 

j 
, c i ) } . 

for x i 
j 
∈ X 1 do 

d i 
j 
= D f { x i j , c i } 

if d i 
j 
< Median (D 

i ) then 

X = X ∪ { x i 
j 
} 

end if 

end for 

f

p

b

W

AN model we chose for the follow-on synthetic data augmenta- 

ion. 

.2. Image selection 

Given a trained cGAN model, one can sample infinite number 

f noise-vector inputs from the Gaussian distribution and gener- 

te infinite number of synthetic images. While a good cGAN model 

an generate images that look real, there are no guarantee that 

hose images would be good to be used for augmenting the orig- 

nal training set in visual recognition tasks. In current GAN-based 

ata augmentation methods, with different data augmentation ra- 

io, different number of generated images are added to the train- 

ng set. However, the effectiveness of such augmentation pipeline 

s heavily affected by the varying quality of synthetic images as 

ell as the diversity of the images. To reduce the randomness in 

he synthetic augmentation process and selectively add in new im- 

ges, we break the whole process into two steps: find samples 

hat can be confidently classified into certain classes thus contain- 

ng enough diagnosable features; then find samples whose features 

re within a certain neighborhood of class centroids in the feature 

pace to assure matching between the synthetic image and its as- 

igned label. Such steps are done with a pre-trained feature ex- 

ractor to calculate centroids for real samples and extract features 

or fake samples. Considering that a single feature extractor can- 

ot provide robust feature extraction results, we use a feature ex- 

ractor with Monte Carlo dropout (MC-dropout) ( Gal and Ghahra- 

ani, 2016 ) and take the expectation value of multiple samplings 

o reduce the uncertainty of feature extraction. A depiction of our 

roposed selective synthetic augmentation algorithm is shown in 

ig. 5 and a detailed description is given in Algorithm 1 . 

The first step of selection is based on label certainty of a sam- 

le. In traditional machine learning systems, real samples that lie 

ear the decision boundary are often assumed to contain more im- 

ortant features for classification purposes. However, as we con- 

ucted experiments to select good synthetic images, one interest- 

ng finding is that selecting the fake samples with more certain 

abels gives better classification performance than selecting those 

ith less certain labels. This may be due to the cGAN model be- 

ng imperfect and conditionally-generated fake examples with less 

abel certainty being more likely to deviate from the real data dis- 

ribution. In our algorithm, we evaluate the label certainty of a 
6 
ake example by calculating the entropy score of its predicted class 

robabilities. If the feature extractor is certain that a sample can 

e classified into a certain class, the entropy score would be low. 

e rank the entropy scores of all generated images in ascending 
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rder and choose the first half of images with lower entropy. The 

ecessity of this entropy-based selection is proved by experiments 

n different datasets, which will later be discussed in Section 4 . 

After the entropy selection step, we further select synthetic 

mages based on their distance to class centroids in the feature 

pace. In this second step of selection, all remaining samples that 

ave passed the entropy-based selection will have their feature 

istances to their class centroids calculated. All distances will be 

orted in ascending order and the first half of these samples with 

maller distances will be kept. The motivation behind ranking sam- 

les based on their feature distance to class centroids is to help 

lter out samples whose assigned labels (i.e. the conditional labels 

sed by the cGAN model to generate them) do not match their 

lassified labels in feature space so that only samples that confi- 

ently match with their assigned labels are selected and added to 

he training set. In our implementation, instead of using a single 

un of the feature extractor to extract features, we run the fea- 

ure extractor multiple times with MC-sampling and then calcu- 

ate feature distances based on the average feature distance from 

he multiple runs. Similar to Xue et al. (2019) , the feature distance 

etween image x and centroid c is defined as 

 f (x, c i ) = 

1 

K 

∑ 

k 

∑ 

l 

1 

H l W l 

∣∣∣∣∣∣ ˆ φk 
l 
(x ) − ˆ φk 

l 
(c i ) 

∣∣∣∣∣∣2 

2 
, (6) 

here ˆ φk 
l 

is the unit-normalized activation in the channel dimen- 

ion A l of the l th layer of the k th MC-sampling feature extraction 

etwork with shape H l × W l . We denote the total sampling time 

s K. D f ( x, c i ) can be regarded as an estimated cosine distance be-

ween sample and i th centroid in the feature space. 

The centroid c is calculated as the average feature of all labeled 

raining images in the same class. For class i , its centroid c i is rep-

esented by 

 i = 

[ 

1 

N i 

N i ∑ 

j=1 

φ1 (x j ) , ..., 
1 

N i 

N i ∑ 

j=1 

φL (x j ) 

] 

, (7) 

here N i denotes the number of training samples in i th class and 

 j is the j th training sample. Similar to Eq. (6) , φl is the activation

xtracted from the l th layer of the feature extraction network. L is 

he total number of layers utilized in the feature distance selec- 

ion. c i is retained by one time MC-sampling and fixed during the 

istance calculation. 

In conclusion, given augmentation ratio r , we first generate 4 rN i 

mages for each class i , then select rN i images according to the 

wo-step selection process described above. Regarding the choice 

f r , we provide an ablation study in Section 4.3 . 

. Experiments 

.1. Datasets 

The first dataset contains labeled cervical histopathology im- 

ges collected from a collaborating health sciences center. All im- 

ges are annotated by the same pathologist. The data process- 

ng follows ( Xue et al., 2019 ), and results in patches with a uni-

ed size of 256 × 128 pixels. Compared with the dataset used in 

ue et al. (2019) , we include more data for more comprehensive 

xperiments. In total, there are 1,284 Normal, 410 CIN1, 481 CIN2, 

72 CIN3 patches. Examples of the images can be found in the first 

ow of Fig. 6 . We randomly split the dataset, by patients, into train-

ng, validation, and testing sets, with ratio 7:1:2 and keep the ratio 

f image classes almost the same among different sets. All evalua- 

ions and comparisons reported in this section are carried out on 

he test set. 

To further prove the generality of our proposed method, we 

lso conduct experiments on the public PatchCamelyon (PCam) 
7 
enchmark ( Veeling et al., 2018 ). PCam consists of 327,680 color 

atches extracted from histopathologic scans of lymph node sec- 

ions with unified size of 96 × 96 pixels. The PCam dataset is split 

nto 75%:12.5%:12.5% of training, validation, and testing sets, se- 

ected using a hard-negative mining regime. Each image is anno- 

ated with a binary label indicating presence of metastatic tissue. 

o mimic the situation where only a limited amount of training 

ata is available, we use randomly selected 10% of the training set, 

hich has 32,768 patches, to train our proposed HistoGAN model 

nd the baseline classifier. Trained models are evaluated on the full 

est set. 

.2. Implementation details 

.2.1. HistoGAN implementation 

The proposed HistoGAN model is trained in parallel on 4 

VIDIA TITAN Xp GPUs, each with 11G of RAM. We train HistoGAN 

ith WGAN-GP Gulrajani et al. (2017) loss on the discriminators at 

ll stages. Based on different sizes of images in the training set, we 

onstruct a 3-stage HistoGAN for cervical histopathology images 

nd a 2-stage HistoGAN for the PCam lymph node histopathology 

mages. 

The input of the generator at the first stage is the concatenation 

f random noise and class label ( e.g. , CIN1-3, Normal) that are first 

ne-hot encoded and then embedded by a transposed convolution 

ayer. The first stage generator consists of 4 up-sampling blocks 

ith 3 × 3 conv kernels. Each block contains an upsample layer 

ith bilinear interpolation followed by a combination of a convo- 

utional layer with 3 × 3 kernel size. The output then goes through 

 conditional batch normalization De Vries et al. (2017) layer to 

odulate convolutional feature maps based on the corresponding 

ssigned labels of the images generated. Blocks of the same archi- 

ecture but different in and out channels are employed in genera- 

ors of the next stages respectively, after a set of residual blocks. 

Considering the future stages are learning the features from a 

ore granularized level based on the output of the first stage, we 

mploy self attention right after the first stage to facilitate the 

earning and focus on the desired features that are decisive for 

lassification. Next, together with the real images from the original 

ataset with the same resolution, synthetic images of each scale 

re fed into corresponding stages of discriminators. Inside each dis- 

riminator, the main structure contains several down-sampling lay- 

rs with 4 × 4 conv kernels. Similar to the aforementioned blocks 

n the generator, class-conditional batch normalization are used af- 

er each convolutional layer to embed more class specific informa- 

ion. The down-sampling layers are followed by a 3 × 3 conv layer, 

 spectral normalization layer, a batch normalization layer, a Leaky 

eLU activation layer, a minibatch discrimination ( Salimans et al., 

016 ) block for preventing mode collapse during GAN training, and 

 fully connected layer for the final output. 

Regarding the hyperparameters, the HistoGAN model used for 

enerating cervical histopathology and PCam images are trained 

ith batch size set to 64 for the cervical and 256 for the PCam 

ataset for 10 0 0 training epochs with fixed learning rate 2 e − 4 .

he parameter δ for WGAN-GP loss is set to 50. 

.2.2. Model and image selection framework 

In the next step, GAN models at each epoch are saved af- 

er the 100th epoch for model selection. For reasons mentioned 

n Section 3.1.2 , the feature extractor used for FID score calcula- 

ion is the same as our baseline classifier (ResNet34), followed by 

MA-based smoothing to accentuate the pattern of synthetic image 

uality trend during the GAN training process. The optimal GAN 

odel weights selected for further stages of our purposed sample 

election corresponds to the epoch with the lowest adjusted FID 

core. Next, we generate 4 rN synthetic images for each class i with 
i 
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Synthetic Images
5

Fig. 6. Examples of real images, synthetic images generated from Xue et al. (2019) , and images generated by our HistoGAN model trained on cervical histopathology dataset 

before and after selection. Our HistoGAN generates realistic images with clearly better visual quality than those by Xue et al. (2019) . Zoom in for better view. 
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he chosen GAN, on which the same feature extractor is run for 5 

imes in order to extract the predicted probability from the soft- 

ax layer for entropy calculation, and also extract feature vectors 

fter each residual block to obtain distance to centroids of ground 

ruth. A dropout layer of rate 0.5 is inserted before the last residual 

lock right above the fully-connected layer of the feature extractor 

ResNet34) for Monte Carlo sampling. Then the generated images 

re ranked based on the mean of entropy across 5 runs in ascend- 

ng order, of which half images in each class are kept. The selected 

ool of synthetic images are further ranked based on the mean of 

osine distance to the centroid that corresponds to the assigned 

abel of each image over 5 runs also in ascending order. Similarly, 

alf are filtered out, leaving the rest for the final augmentation. 

.3. Results analysis 

.3.1. Evaluation by expert pathologists 

To evaluate the quality of images generated by the proposed 

istoGAN and validate the effectiveness of the selective synthetic 

ugmentation method, we invited two pathologists to conduct ex- 

ert evaluation on the cervical histopathology dataset. To prepare 

or the pathologist evaluation, we randomly chose 100 synthetic 

mages where half of them are before selection and the other half 

re after selection. These images are then divided into 10 groups. 

ithin each group of 10 images, there are two subgroups of 5 im- 

ges where one subgroup is from the before-selection set and the 

ther one is from the after-selection set. The 10 groups of images 

ere then presented to the two pathologists who evaluated their 

uality independently. For each group, a pathologist was asked 
8 
o choose one subgroup that has better quality, without knowing 

hich subgroup corresponds to the one after selection; if the two 

ubgroups were considered to have similar quality, the pathologist 

hose a tie. After the pathologists completed their evaluation, we 

ompared their selected subgroups with the ground truth about 

hich subgroups are from the after-selection image set. The com- 

arison result shows that the two pathologists were able to differ- 

ntiate before-selection subgroups from after-selection subgroups 

ith high consistency: among the 10 groups, they chose the after- 

election subgroup as having better quality 7 times, they chose a 

ie 2 times, and only once they chose the before-selection sub- 

roup as having better quality. This evaluation result demonstrates 

hat our image selection method is highly effective, since the ex- 

ert pathologists consistently chose the after-selection images as 

aving better quality. 

Besides the group-level evaluation of our image selection 

ethod, the two pathologists also assessed the quality and realism 

f the individual synthetic images. They highlighted some realistic 

haracteristics of the synthesized images, such as correct orienta- 

ion, cell polarity, clear borders, and correct color of the cytoplasm. 

hey also pointed out some unrealistic characteristics that repeat- 

dly appeared in the generated image, such as smudged chromatin, 

issing nuclear details for large dark nuclei, and incorrect texture 

f large sheets of keratin. Despite the unrealistic aspects that they 

aw in the images, the pathologists actually view most of the im- 

ges as containing meaningful features that make the images diag- 

osable. We are encouraged by these findings and plan to incorpo- 

ate such expert knowledge in our future work to further improve 

ur image synthesis model. 
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Fig. 7. Examples of real and synthetic images generated by HistoGAN trained on 10% of PCam dataset. 

Fig. 8. Examples of real and synthetic images generated by HistoGAN trained on 3%, 5%, 10% and 20% of PCam dataset. All generated images are chosen from the pool after 

applying our proposed image selection method. Zoom in for better view. 
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.3.2. Qualitative evaluation 

The image synthesis results for cervical and lymph node 

atasets are demonstrated in Figs. 6 and 7 , respectively. In Fig. 6 ,

e also show a comparison of synthetic images generated by our 

revious work ( Xue et al., 2019 ) and by our proposed HistoGAN in

his work. In both datasets, as we have already achieved promis- 

ng image generation results, determining whether those samples 

an be used for data augmentation or not cannot be easily done 

y human observations. However, the discrepancy between images 

ith and without selection is much more prominent in the fea- 

ure space. In order to visualize such differences, after training a 

aseline ResNet34 classifier with the original training data, we use 

he pre-trained ResNet34 model as the feature extractor to extract 

eatures from the last convolutional layer in the ResNet model. We 

xplore the distribution of training samples, including both origi- 

al images and synthetic images, in the feature space using t-SNE 

 Maaten and Hinton, 2008 ). In Fig. 10 , without image selection, 

amples from different classes are entangled together, introducing 

bscuring noise that disrupts the data distribution that real data 

resents. On the contrary, selected images have clearly more dis- 

inguishable features and can potentially help with improving the 
c

9 
lassification model performance. Similar phenomenon is also ob- 

erved with more noticeable pattern in Fig. 11 : while data aug- 

entation without image selection increases the number of train- 

ng samples, the original data distribution is distorted. After im- 

ge selection, the original data distribution is recovered along with 

ore number of data points. 

The self attention mechanism ( Section 3.1.1 ) is a core improve- 

ent of our proposed HistoGAN model in this work as compared 

o the GAN model used in our previous work ( Xue et al., 2019 ). In

rder to examine the role of self attention, we visualize the con- 

itional attention maps for images from different classes in Fig. 9 . 

rom the figure, one can see that HistoGAN with self attention suc- 

essfully learns meaningful features by attending to important ar- 

as containing patterns most useful in distinguishing images of dif- 

erent disease grades. 

.3.3. Quantitative comparisons 

We report quantitative evaluation scores between all baseline 

ugmentation models and our models including the accuracy, area 

nder the ROC curve (AUC), sensitivity and specificity to provide a 

omprehensive comparison. All models are run for 5 rounds with 
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Fig. 9. The attention map extracted from the self attention layer applied after stage I generator as illustrated in Fig. 2 . The first row shows the synthetic images generated 

by our proposed HistoGAN model; the second row gives the most attended regions of each image during the GAN training phase by overlaying the attention map on top of 

the original image. Higher attention scores correspond to the highlighted areas where distinguishing patterns like cell crowding and nuclei distribution are highlighted. It 

demonstrates the effectiveness of the attention mechanism incorporated in our HistoGAN model. 

Fig. 10. t-SNE of the original and augmented cervical histopathology training set before and after image selection. The augmented training data after selection clearly have 

more distinguishable features than the ones without selection. 
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andom initialization for fair comparison. The mean and standard 

eviation results of the 5 runs are reported. 

In Table 1 , we compare quantitative results with different base- 

ine augmentation methods. We use the same backbone ResNet34 

lassifier with same hyperparameters setting in all experiments to 

nsure differences only come from the augmentation mechanisms. 

eyond the backbone baseline model ( He et al., 2016 ) without aug- 

entation, we construct a baseline model with traditional aug- 

entation including horizontal flipping and color jittering. Another 

aseline is GAN augmentation without selection where the train- 

ng set is expanded by blindly adding GAN-generated images. We 

lso compare the selective augmentation method proposed in this 

ork with our prior work ( Xue et al., 2019 ). Since in this work

e use HistoGAN, an improved cGAN model that generates better 
10 
ynthetic images (as shown in Fig. 6 ) than the cGAN model origi- 

ally described in Xue et al. (2019) , we re-implemented ( Xue et al.,

019 ) to also use HistoGAN generated images, for fair comparison 

f the image selection algorithms. From Table 1 , one can see that 

he selective augmentation algorithm brings obvious benefits to all 

valuation metrics, and our full model with augmentation ratio 

 = 0 . 5 achieves best performance in all metrics. More specifically, 

nder r = 0 . 5 , our image selection method improves the classifi- 

ation result by nearly 2% compared to the method in our prior 

ork ( Xue et al., 2019 ). This quantitative result demonstrates that 

ur proposed selection method can better select high-quality im- 

ges for augmentation than previous work. 

To provide further insights on how the choice of the augmenta- 

ion ratio r affects augmentation performance, we also conduct an 



Y. Xue, J. Ye, Q. Zhou et al. Medical Image Analysis 67 (2021) 101816 

Fig. 11. t-SNE of the original and augmented PCam histopathology training set before and after image selection. While data augmentation without image selection increases 

the number of training samples, the original data distribution is distorted. After image selection, the original data distribution is recovered along with more number of data 

points. 

Table 1 

Classification results of baseline and augmentation models with different settings. Each model is run 5 times for the calculation 

of all evaluation metrics. For fair comparison between ( Xue et al., 2019 ) and our work, we reimplemented ( Xue et al., 2019 ) for 

it to use the same pool of synthetic images generated by HistoGAN. 

Accuracy AUC Sensitivity Specificity 

Baseline Model ( He et al., 2016 ) 0.754 ± 0.012 0.836 ± 0.008 0.589 ± 0.017 0.892 ± 0.005 

+ Traditional Augmentation 0.766 ± 0.013 0.844 ± 0.009 0.623 ± 0.029 0.891 ± 0.006 

+ GAN Augmentation, r = 0 . 5 0.787 ± 0.005 0.858 ± 0.003 0.690 ± 0.014 0.909 ± 0.003 

+ Single Filtering ( Xue et al., 2019 ) ∗ , r = 0 . 5 0.808 ± 0.005 0.872 ± 0.004 0.639 ± 0.015 0.912 ± 0.006 

+ Selective Augmentation, r = 0 . 5 0.821 ± 0.011 0.881 ± 0.007 0.671 ± 0.022 0.917 ± 0.005 

Fig. 12. Classification results of the proposed selective synthetic augmentation with different augmentation ratios on the cervical dataset. N in candidate pool sizes indicates 

the number of images in the original training dataset. For the same candidate pool size, selected images with different ratios are from the same pool. The error bar represents 

the standard deviation of classification accuracy from 5 multiple runs of each setting, the middle dot refers to the mean of 5 accuracy scores of the aforementioned multiple 

runs. 
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blation study using different values of r , on different-sized candi- 

ate pools of HistoGAN-generated images. A summary of the ab- 

ation study is illustrated in Fig. 12 . For this study, we generated 

ynthetic image pools of four sizes: 2 N , 4 N , 6 N , and 8 N , where N

s the size of the original training set. On these pools, we tested 

ifferent values of r , between 0.4 and 1.0. Each test is run for 5

ounds, and the mean and standard deviation of the 5 runs are 

eported. From the results shown in Fig. 12 , one can see that ei-

her too small or too large a value of r compromises the advan- 

age of synthetic augmentation, and the best and most consistent 

erformance gain is achieved at r = 0 . 5 . This observation is true

or all four pools of different sizes. Our explanation for this phe- 

omenon is related to the motivation behind using selective syn- 

hetic augmentation: the synthetic images have different levels of 
11 
uality, and the number of images with good quality and meaning- 

ul diverse features generated by a trained GAN model is limited. 

hile our sample selection can provide quality assurance, the to- 

al number of diverse, good images that provide complementary 

nformation to the existing training set is constrained by the GAN 

odel and more relevantly, by the original labeled training data 

sed to train the GAN model. Therefore, a larger pool of generated 

mages does not always translate to more high-quality images that 

ill be selected by our method, as shown by this ablation study. 

nce our selection method has chosen those good images gener- 

ted by the particular GAN model, adding more images such as 

mages that do not improve diversity but may contain artifacts or 

ad features would indeed add noise to the training set thus de- 

rade performance. Since our experiments show that the best aug- 
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Table 2 

The performance of baseline and augmentation models using 3%, 5%, 10% and 20% of PCam as the training set. Each model is run 5 times 

for the calculation of all evaluation metrics. To further prove the effectiveness of our proposed selective augmentation, we compared the 

performance of our method and other augmentation methods when using 10% of PCam as the training set. 10% is chosen for demonstration 

because in this case the synthetic images show appealing visual quality as we can observe from Fig. 8 , and consistently the classification 

performance presents improvement by a large margin. 

PCam Model Accuracy AUC Sensitivity Specificity 

3 % Baseline 0.872 ± 0.0030 0.914 ± 0.0019 0.826 ± 0.0080 0.903 ± 0.0030 

+ Selective Augmentation, r = 0 . 5 0.900 ± 0.0024 0.933 ± 0.0016 0.865 ± 0.0060 0.924 ± 0.0030 

5 % Baseline 0.893 ± 0.0006 0.929 ± 0.0004 0.863 ± 0.0010 0.913 ± 0.0020 

+ Selective Augmentation, r = 0 . 5 0.917 ± 0.0033 0.945 ± 0.0022 0.892 ± 0.0040 0.935 ± 0.0040 

10 % Baseline 0.910 ± 0.0012 0.940 ± 0.0009 0.883 ± 0.0050 0.929 ± 0.0030 

+ Traditional Augmentation 0.916 ± 0.0102 0.944 ± 0.0067 0.893 ± 0.0140 0.933 ± 0.0090 

+ GAN Augmentation, r = 0 . 5 0.920 ± 0.0020 0.947 ± 0.0014 0.898 ± 0.0050 0.935 ± 0.0020 

+ Selective Augmentation, r = 0 . 5 0.937 ± 0.0011 0.958 ± 0.0007 0.916 ± 0.0070 0.951 ± 0.0040 

20 % Baseline 0.932 ± 0.0014 0.955 ± 0.0010 0.909 ± 0.0080 0.948 ± 0.0040 

+ Selective Augmentation, r = 0 . 5 0.948 ± 0.0003 0.965 ± 0.0005 0.931 ± 0.0040 0.960 ± 0.0020 
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entation performance is achieved at r = 0 . 5 , we use this value

or all ours and other baseline models and all experiments on the 

Cam dataset. 

In Table 2 , we use 3%, 5%, 10% and 20% of the training data in

Cam to simulate training sets with limited annotations and eval- 

ate our models on the full testing set. Compared with the cer- 

ical dataset, the baseline classification model achieves higher ac- 

uracy on the reduced PCam dataset which makes it more diffi- 

ult to further improve the performance. However, our model still 

utperforms all baseline models using training sets of different 

izes. For instance, when using 10% of the entire dataset as train- 

ng data, the classification accuracy improved by 1% when using 

istoGAN generated images for augmentation, without selection. 

fter applying image selection, the accuracy is further improved 

y another 1.7%. By conducting experiments on two histopathology 

mage datasets and showing improved classification performances, 

e prove that our proposed HistoGAN model and synthetic aug- 

entation algorithm are general and can be applied to various 

ypes of histopathology data. 

. Discussion 

Our proposed selective synthetic augmentation expands the 

raining dataset by selectively adding synthetic images that do not 

istort the original data distribution, thus providing quality assur- 

nce in augmentation. The selected synthetic images are shown to 

mprove the performance of automated image recognition systems 

ith limited amount of manual annotation. We believe our pro- 

osed method is applicable to other histopathology image recog- 

ition tasks with insufficient annotated data. In addition, our pro- 

osed image selection algorithm is complementary to existing data 

ugmentation methods, which further indicates the generality of 

ur method. 

While our selective synthetic augmentation significantly outper- 

orms all baseline models, partial credits should go to the high- 

delity images generated by our proposed HistoGAN. However, the 

enerated images are still not perfect, especially when viewed by 

xpert pathologists, and we expect to further improve our GAN 

odel with help from clinical experts. Besides the visual quality of 

mages, the diversity of images also plays a critical role in synthetic 

ugmentation. Since synthetic augmentation is imperative in sce- 

arios with very scarce training samples, combining our pipeline 

ith a GAN model that can learn from limited data ( Wang et al.,

018; Lu ̌ci ́c et al., 2019; Noguchi and Harada, 2019 ) would further

mprove the generality of our method. As we provide a solution 

o assure the synthetic image quality during augmentation, there 

s still room for improvement in selection mechanisms. More ad- 

anced methods for model selection and image selection, such as 
12 
n end-to-end method and reinforcement learning based method, 

ill be investigated in our future works. 

. Conclusion 

In this paper, we design a new cGAN model termed HistoGAN 

or high-fidelity histopathology image synthesis and propose a syn- 

hetic augmentation method with quality assurance. By selectively 

dding realistic samples generated by HistoGAN into the original 

ataset, our method remarkably boosts the classification perfor- 

ance of baseline models. Experiments on two histopathology im- 

ge datasets demonstrate the effectiveness and generality of our 

ethod. 
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