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ABSTRACT: We argue that for situations involving spatially
varying linear transport coefficients (diffusivities, thermal
conductivities, and viscosities), the original Fick’s, Fourier’s,
and Newton’s law equations should be modified to place the
diffusivity, thermal conductivity, and viscosity inside the
derivative operator, that is, in one-dimensional rectilinear

situations, j Dc
x

( )= − ∂
∂

, q kT
x

( )= − ∂
∂

, and xy
v

x

( )yτ = −
μ∂
∂

. We

present simple derivations of these formulas in which diffusive
mass transfer, conductive heat transfer, and molecular
momentum transfer processes are described using lattice
random walk models. We also present simple examples
demonstrating how these modifications affect calculations.

1. INTRODUCTION

Adolph Fick proposed in 18551 that in a simple one-
dimensional situation, the diffusive flux, say of species A, is
proportional to the concentration gradient of the species along
the system axis (the x-axis) (“Fick’s first law”)

j D
c
x

= − ∂
∂ (1)

The proportionality factor D is what is called the diffusion
coefficient or diffusivity. From this relationship, Fick also
computed the rate of change of the concentration of A by
diffusion (“Fick’s second law” or “equation of continuity for
A”)
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where D is assumed to be spatially “constant” and “dependent
(only) upon the nature of the substances”. In general
situations, however, the diffusivity is position-dependent
because of the spatial variation of, for instance, concentration
or temperature and the dependence of the diffusivity on these
variables. A common approach to deal with spatially varying
diffusivity is to use the following modification of eq 2 above
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where use is still made of Fick’s first law equation in its original
form (eq 1); the only modification is that D is not factored out
of the outer derivative.2 Recently, we proposed an argument
that to exactly track spatial changes in D, Fick’s first law
equation must also be generalized to the form3

j
Dc
x

D
c
x

c
D
x

( )= − ∂
∂

= − ∂
∂

− ∂
∂ (4)

which thus also gives a different equation for Fick’s second law
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When mass flows have components in all directions, eqs 4 and
5 should be expressed in the vectorial form, respectively, as

Dc D c c Dj ( )= −∇ = − ∇ − ∇ (6)

and

c
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Dc( )2∂
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= ∇
(7)

The correctness of eq 4 (or eq 6) is intuitively obvious; eq 4
predicts that even in the absence of a concentration gradient, a
diffusive flux of A arises if there exists a gradient of diffusivity
and also that in the absence of a net material flux (j = 0), a
spatial gradient of diffusivity results in a spontaneous buildup
of nonuniform concentrations of A (note that these
phenomena are not describable within the original Fick’s law
framework).3

As discussed in ref 3, the above eq 4 can be obtained using
the lattice model description of diffusion.4 For the purpose of
setting the basis for the discussion to be presented in the
present article, this derivation is briefly repeated here. In this
derivation, we consider a steady-state situation described in
Figure 1A, where a suspension of Brownian particles
(molecules) (species A) is contained in a tube. The
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concentration of this species varies only along the tube axis (x-
direction). For simplicity, the three-dimensional (3D) space
within the tube is pictured as being divided into square lattice
sites; each site of the lattice can hold at most one molecule at a
time and has a characteristic dimension of λ. Under this
setting, we model the diffusive motion of the molecules to be a
3D random walk process.4 Specifically, we assume that each
molecule steps to an adjacent lattice site with a jump frequency
of ν. As illustrated in Figure 1A, let us now consider a plane of
constant x between two adjacent lattice layers. The magnitude
of the flux of the molecules from lesser x to greater x across the
plane (located at x) and that of the flux from greater x to lesser
x across the same plane can be calculated, respectively, as
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where c is the concentration of A (e.g., in units of mass of
molecules per unit volume), and the one-sixth factor is
introduced because in 3D space, a molecule can move to one
of the six nearest-neighbor sites with the equal probability of
1/6. Therefore, the net mass flux of the molecules across the
plane located at x is given by
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where the product 1
6

2νλ is the diffusion coefficient (in lattice

units) for that location, i.e., D 1
6

2νλ≡ . The resulting equation

(eq 10) is the steady-state version of eq 4. This derivation has

been given in an earlier publication (in the Supporting

Information of ref 3).
The realization of this generalized form of Fick’s first law

equation raises two important questions. First, can (or even

should) this same argument be applied to Fourier’s law of heat

conduction and Newton’s law of viscosity, respectively, for

situations involving spatially varying thermal conductivities and

viscosities? The answer is intuitively obvious (yes) because as

stated in Bird, Stewart, Lightfoot, and Klingenberg (BSLK),2

“the molecular mechanisms responsible for the transport of

chemical species, energy and momentum are closely related

(the same molecular motions and interactions are responsible

for diffusivity, thermal conductivity and viscosity)”. The

second question is: In reality, how much difference would

using, for instance, eq 5 instead of eq 3 (for solving mass

transfer problems involving position-dependent diffusivities)

make to the result? Or, alternatively put, what is the range in

which the commonly used approximation (eq 3, as opposed to

the more accurate equation, eq 5) is valid? In the context of

these questions, the present paper attempts to serve two

purposes. It first presents simplistic arguments that justify the

generalization of Fourier’s thermal conductivity and Newton’s

viscosity equations, respectively, for spatially varying thermal

conductivities and viscosities; these arguments are similar to

those used above for generalizing Fick’s first law equation for

spatially varying diffusivities. It then discusses simple (but

realistic) examples demonstrating how these modifications

impact the calculations and predictions of the equations of

change for mass, energy, and momentum.

2. RESULTS AND DISCUSSION

2.1. Derivations. Fick deduced his first law of diffusion (eq

1) by analogy with Fourier’s law of heat conduction (and

Ohm’s law of electrical conduction).1 Likewise, it is reasonable

to expect that the same generalization as in eq 4 is applicable to

Fourier’s law. To actually show such a derivation, let us first

consider heat conduction in a gaseous system. We use the

same lattice model description of diffusion as in Section 1; see

Figure 1A for the geometry of the system. Assuming that the

lattice dimension (λ) is comparable to the mean free path of

the molecules, the magnitude of the heat flux (i.e., the

molecular transport of the internal energy due to collision of

the molecules) from lesser x to greater x across the plane

located at x and that of the heat flux from greater x to lesser x

across the same plane can be calculated, respectively, as

Figure 1. Molecular transport of (A) mass, internal energy, and (B) y
momentum due to gradients of Dc, kT, and μvy along the x-direction,
respectively.
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where C̅ is the heat capacity per molecule (at a constant
volume) and Tref is the reference temperature; C̅(T − Tref)
thus gives the internal energy per molecule. All other
parameters are the same as in eqs 8 and 9. The net heat flux
across the plane located at x is, therefore, given by
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where ( )k c C1
6

2ν λ≡ ̅ is the thermal conductivity; Tref is set to 0.

Note that the exactly same argument can also be applied to
heat conduction in a solid body, simply by replacing c with the
phonon concentration, νλ with the mean phonon velocity, and
C̅ with the phonon heat capacity.5 Therefore, when the
thermal conductivity varies with position, the original Fourier’s
law equation
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which yields a different expression, for instance, for the
equation of temperature for a solid
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see eqs (11.2−10) of ref 2 for the original version of the
equation. When heat flows have components in all directions,
eq 15 should be expressed in the vectorial form as

kT k T T kq ( )= −∇ = − ∇ − ∇ (17)

where a bold character is used to denote a vector.
It is trivial to show the same derivation for momentum

transfer in a lattice gas (flowing in the y-direction with a
velocity gradient dvy/dx). Again assuming that the lattice
dimension (λ) is comparable to the mean free path of the
molecules, the magnitude of the y momentum flux (i.e., the
molecular transport of the y momentum due to collision of the
molecules) across the plane of constant x located at x in the
positive x-direction and that of the y momentum flux across
the same plane in the negative x-direction (Figure 1B) can be
calculated, respectively, as
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where m is the mass of the molecule and vy is the velocity of
the gas along the y-direction; mvy thus gives the y momentum
of the molecule. The net y momentum flux across the plane of
constant x located at x is, therefore, given by
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where ( )c m1
6

2μ ν λ≡ is the (shear) viscosity of the gas. Sir

Isaac Newton proposed in “Principia” that “the resistance (τxy)
arising from the lack of slipperiness (μ) in a fluid is
proportional to the velocity with which the parts of the fluid
are separated from one another (∂vy/∂x)”,

6 which has been
formulated later by scientists into the equation
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For spatially varying viscosities, this original Newton’s viscosity
equation is generalized to the form
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Logic suggests that for flows involving position-dependent
viscosities the full vector−tensor expression for the viscous
stress (momentum flux) tensor should also be generalized to
the form
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where [∇(μv)]† is the transpose of the ∇(μv) tensor, κ is the
dilatational viscosity, δ is the unit tensor, and bold characters
denote vector and tensor quantities; further study is needed to
prove this generalization rigorously. Accordingly, the equation
of motion2 becomes
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where ρ is the density, p is the pressure, g is the gravitational
acceleration, and D/Dt is the substantial time derivative
operator. Note that now even for an incompressible fluid (∇·v
= 0) the third and fourth terms on the right-hand side above
do not vanish in general, which will make computation more
difficult.
2.2. Implications. To our knowledge, the generalized

expressions of Fick’s law of diffusion, Fourier’s law of heat
conduction, and Newton’s law of viscosity proposed in the
present work (eqs 6, 17, and 23, respectively) have not been
demonstrated in the transport phenomena/continuum me-
chanics literature previously (although such formalisms have
been implied in statistical mechanics as briefly discussed in the
next subsection). For instance, in COMSOL (a commercial
finite element method simulator that is widely used for solving
fluid mechanics problems), nonisothermal flow problems
(involving spatially varying μ and k) are typically solved
using the modified equations of motion and temperature, in
which (analogously to the diffusive flux term in eq 3, that is,
−∇·j = ∇·(D∇c) in full vector notation) the viscous
momentum flux term (−∇·τ) and the conductive heat flux
term (−∇·q) are calculated, respectively, using the original
forms of Newton’s law of viscosity and Fourier’s law of heat
conduction7
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where the simplicity of the latter expression is due to the
assumption of constant ρ (∇·v = 0), and

k Tq ( )−∇· = ∇· ∇ (26)

We now argue that these conventional expressions (eqs 25 and
26) are only approximations for the general expressions given
in eqs 24 and 17, respectively. It will require extensive
investigations to establish the ranges of conditions under which
the use of the generalized formulas that we propose (eqs 24
and 17) is required rather than the standard “approximations”
(eqs 25 and 26). In the present paper, we do not intend to
offer a full analysis of this question. Instead, we will present
simple examples that demonstrate a need for further research
in this direction. Ordinary examples are well suited for this
purpose. For this reason, examples have been taken from one
of the most popular textbooks of transport phenomena, BSLK.
The first example concerns the heating of electric wire

(Figure 2A) with temperature-dependent thermal and

electrical conductivities, k and ke, respectively (Problem
#10C.1 of BSLK)
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where k0 and ke0 are, respectively, the thermal and electrical
conductivities at a reference temperature T0, Θ(=(T − T0)/
T0) is a dimensionless temperature, and the coefficients αi and
βi (i = 1, 2,...) are material-dependent constants. The steady-
state energy balance in cylindrical coordinates gives2
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where E is the voltage drop and L is the wire length; note that
the quantity on the right-hand side of the equation represents

Figure 2. (A) Electrically heated wire. (B) Dimensionless temper-
ature profiles predicted using eqs 30 vs 32. Difference (%) is defined
as (Θ(eq 30) − Θ(eq 32))/Θ(eq 32) × 100. (C) Dimensionless

deviation factor
i

k
jjjjjj

y

{
zzzzzzZ

T

k T
q

k
r

T
r

k
r

d
d

d
d

d
d

≡
+

as a function of r/R; absolute

magnitudes are compared because the T k
r

d
d

and k T
r

d
d

terms have

opposite signs.
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the rate of heat generation per unit length of the wire due to
electrical energy dissipation, and the final expression is
obtained by substituting the original Fourier’s law equation

(similarly to eq 14, q k T
r

= − ∂
∂

in cylindrical coordinates) for q.

When this equation is solved using a perturbation method with
the boundary conditions that T is finite at r = 0 and T = T0 at r
= R, one obtains a solution for the radial temperature profile in
the electrically heated wire in a dimensionless form
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where B = (ke0R
2E2)/(k0L

2T0), ξ = r/R, and O(B2) means
terms of the order of B2 and higher.2 If we use the generalized

form of Fourier’s law (eq 15, that is, q kT
r

( )= − ∂
∂

in cylindrical

coordinates), the energy balance equation (eq 29) changes to
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Now, it can be shown that this modification leads to a
(slightly) different solution
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By way of example, for a copper wire of radius R = 2 mm and
length L = 5 m across a voltage drop of E = 40 V at T0 = 20 °C
(k0 = 385 W/(m K), α1 = 0.0508 (estimated from Tables 9.5−
4 of BSLK), ke0 = 5.99 × 105 Ω−1 cm−1, β1 = 0.872 (estimated
from Tables 9.5−4 and eqs 9.9−1 of BSLK), which gives a
value of B = 0.136 for the dimensionless heat source
strength),2 the temperature distributions were calculated
using the two equations above, eqs 30 and 32. These results
are displayed in Figure 2B. As shown in the figure, for these
mild parameter values used, the generalized Fourier’s law
produces predictions for electrical heating of the wire that are
practically indistinguishable from those of the original Fourier’s
law; the differences are less than 0.2%, although this small
difference increases as the rate of electrical energy dissipation
(B) is increased. This result is due to the fact that, as shown in
Figure 2C, the heat flux due to the thermal conductivity

gradient ( )T k
r

d
d

− is negligible relative to the heat flux due to

the temperature gradient ( )k T
r

d
d

− .

Next, let us consider a nonisothermal momentum transfer
process that involves a (Newtonian) liquid flowing downward
(in the positive y-direction) along the surface of a vertical plane
in a steady laminar flow (Figure 3A); this example is again
taken from BSLK (examples 11.4−3 and 2.2−2). The
temperature of the free liquid surface (x = 0) is kept at a
constant T0 and that of the solid surface (x = δ) is kept at Tδ.
At these temperatures, the liquid has viscosities of μ0 and μδ,
respectively. For simplicity, we assume that within this given
range of temperature, the density (ρ) and thermal conductivity
(k) of the liquid are constant. Due to the Arrhenius-type
dependence of viscosity on temperature (that is, μ/μ0 =
exp[B(1/T − 1/T0)], where B is a constant), the spatial
variation of viscosity also has an exponential character2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjjjj

y
{
zzzzz
i
k
jjj

y
{
zzz
É

Ö

ÑÑÑÑÑÑÑÑÑÑ
B

T T
T T

x
exp e x

0

0

0

/μ
μ δ

≅
−

=δ

δ

α δ−

(33)

Substitution of the original Newton’s viscosity law (eq 21)
with variable viscosity (eq 33) into the steady-state y
momentum balance gives

v

x
gxe

d

dxy
x y

0
/τ μ ρ= − =α δ−

(34)

which upon integration with the no-slip boundary condition
(that is, vy = 0 at x = δ) gives2
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(35)

If we use the generalized Newton’s law of viscosity (eq 22), the
above momentum balance equation (eq 34) is changed to

x
v gx

d
d

( e )x
y0

/μ ρ− =α δ−
(36)

This equation yields a different velocity profile under the same
no-slip boundary condition
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Note that in the constant viscosity limit (that is, when α = 0),
both eqs 35 and 37 reduce to an identical form
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which supports consistency between the two equations. For
demonstration of the difference between the predictions based

Figure 3. (A) Nonisothermal falling liquid film. (B) Velocity profiles
predicted using eqs 35 vs 37. Difference (%) is defined as (vy(eq 35)
− vy(eq 37))/vy(eq 37) × 100. (C) Dimensionless deviation factor
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on the original vs generalized Newton’s law equations, we now
assume that the liquid is an oil whose viscosity is μ0 = 0.16 Pa s
and density is ρ = 0.8 × 103 kg/m3 at temperature T0 = 20 °C
and that the falling film has a thickness of δ = 2.5 mm, the
vertical wall is kept at a temperature of Tδ = 10 °C, and the
Arrhenius activation energy for viscosity has a value of B = 1.04
× 103 K (for n-heptane8) (which gives a value of −0.125 for
the dimensionless constant α). For these parameter values, the
velocity profiles were calculated using the two different
versions of the velocity equation shown above. As shown in
Figure 3B, eqs 35 and 37 predict significantly different velocity
profiles. This difference further increases as the temperature
gradient (α) is increased. As shown in Figure 3C, near the free
liquid surface (at small x), the y momentum flux due to the

viscosity gradient ( )vy x
d
d

− μ is, in fact, comparable in magnitude

to the y momentum flux due to the velocity gradient( )v

x

d

d
yμ− .

Finally, let us discuss a mass transfer example (discussed in
Section 18.3 of BSLK). As shown in Figure 4A, a solid sphere

of potassium permanganate (KMnO4) is placed in a stationary
reservoir of water. KMnO4 is only slightly soluble in water; the
solubility of KMnO4 in water is about 0.0758 g cm3 at 25 °C.9

Therefore, the outward flux of the dissolved MnO4
− ions

(away from the sphere surface) is predominantly diffusive (the
convective flux is negligible). Also, the slowness of the
dissolution process allows us to make a quasi-steady-state
approximation; the mass transfer process can be approximated
as occurring at a steady state. The steady-state mass balance for
dissolved MnO4

−1 ions in spherical coordinates can be written
as
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where the total mass flux of MnO4
−1 (n (=cv + j)) is equated to

the diffusive mass flux of MnO4
− (j) in the absence of

convection (v = 0), and then, j is replaced by D c
r

d
d

− , as related

by the original Fick’s first law equation in spherical coordinates
(similarly to eq 1). The diffusivity for binary liquid mixtures is
typically non-negligibly dependent on species concentration.
By substituting an approximate expression for the concen-
tration dependence of the diffusivity10

D D vc(1 )0≅ − ̲ (40)

in which D0 is the diffusion coefficient in infinite dilution
(=1.632 × 10−5 cm2/s for MnO4

− in water at 25 °C9) and v̲ is
the specific volume of the MnO4

−1 ion (estimated to be about
0.3699 cm3/g) into eq 39, we obtain
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Integration of this equation with the boundary conditions that
c = cR (which we assume to be equal to the solubility of
KMnO4 in water, that is, 0.0758 g cm3 at 25 °C) at r = R
(assumed to be 1 μm) and c = 0 at r → ∞ gives the
concentration profile of MnO4

− at the (quasi)-steady state
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Alternatively, we can use the generalized Fick’s first law (eq 4)
to obtain
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(43)

Upon integration of this equation with the same boundary
conditions, we get
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The two expressions for c
cR

(eqs 42 and 44) are plotted as a

function of r
R
in Figure 4B. The two curves are supposed to

have common asymptotes for small and large r
R
(as required by

the boundary conditions), but in fact, they are found to be
practically identical to each other at all distances. This result
justifies the use of the original Fick’s law to model the mass
transfer associated with dissolution and diffusion of slightly
soluble material in a solvent. In this case, the mass flux due to

the diffusivity gradient ( )c D
r

d
d

− is negligible in magnitude

compared to the mass flux due to the concentration gradient

( )D c
r

d
d

− (Figure 4C).

2.3. Consistency. We would like to add a few remarks
regarding whether the proposed correction to Fick’s, Fourier’s,
and Newton’s laws fits within (or violates any of) the
established principles of thermodynamics and statistical
physics. First, we note that eq 17 (or eq 15) suggests an
interesting possibility that the net conductive heat flow may
occur even in the direction of increasing temperature if the
magnitude of the T∇k term is greater than the magnitude of
the k∇T term (e.g., at very high temperature); this is possible,
for instance, in solids because (as can be seen from eq 27) the
thermal conductivity of a solid typically decreases with
increasing temperature, and thus ∇T and ∇k have opposite

Figure 4. (A) Diffusion from a slightly soluble sphere. (B)
Concentration profiles predicted using eqs 42 vs 44. Difference (%)
is defined as (c(eq 42) − c(eq 44))/c(eq 44) × 100. Note that all c

cR

points and curves overlap with one another. (C) Dimensionless

deviation factor
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signs. We note that this prediction, though somewhat
counterintuitive, does not violate the second law of
thermodynamics (“no process is possible, which consists solely
in the transfer of heat from one temperature level to a higher
one”11). The second law of thermodynamics concerns
processes that start and end with equilibrium states within
globally isolated systems (e.g., heat exchange between two heat
reservoirs), whereas Fourier’s law is an energy balance
equation for a local differential control volume, which is, by
definition, a non-isolated (e.g., open) system. Therefore, it is
generally impertinent to discuss whether predictions of
Fourier’s law are consistent with the second law of
thermodynamics.
As noted in Section 1 (also discussed in ref 3), eq 6 (or eq

4) implies that even in the absence of a concentration gradient
(∇c = 0), the net material flow occurs when the diffusivity
gradient is nonzero (j = −c∇D). This situation is not
unphysical. It is the chemical potential gradient that actually
drives diffusion (not the concentration gradient), and a
uniform concentration does not necessarily mean that the
chemical potential (μ) is uniform. Note that

RT cln( )oμ μ γ= + (45)

where μo and γ are the standard state chemical potential and
activity coefficient of the solute, respectively, and R is the
universal gas constant. Therefore, even under constant μo, T
and c, a nonzero ∇μ may develop if γ varies spatially (due to
spatially varying D); it is known that γ and D are related by the
following equation12
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where kB is Boltzmann’s constant and f is the friction factor of
the the solute molecule. Note that this argument is relevant to
non-dilute situations. However, even in the dilute limit, a non-
zero ∇μ may develop if μo varies spatially, for instance, because
of spatially varying solvation states of a solute molecule as in
the pH-phoretic situation discussed in ref 3.
Finally, we would like to point out that the proposed

correction to Fick’s first law is implied in the form of the
Fokker−Planck equation derived using Ito’s stochastic calculus
(also known as the Kolmogorov forward equation) for the
probability density of a stochastic process;13 in one-dimen-
sional situations

p
t x

vp
x

Dp( ) ( )
2

2
∂
∂

= − ∂
∂

+ ∂
∂ (47)

where p is the probability density, v is the average (convection)
velocity, and D is the diffusion coefficient. Similarly to eq 2, a
probability continuity equation can be written in terms of the
probability flux (jp)

p
t

j

x
p∂

∂
= −

∂

∂ (48)

Comparing eq 48 with eq 47 gives

j vp
Dp
x

( )
p = −

∂
∂ (49)

In the absence of convection (v = 0), eq 49 reduces to a form
analogous to eq 4 (generalized Fick’s first law)

j
Dp
x

( )
p = −

∂
∂ (50)

Interestingly, if we assume that the system obeys the principle
of detailed balance (microscopic reversibility (jp = 0 at all x),
which is a sufficient condition for equilibrium), we obtain13

v
p

Dp

x
1 ( )

e

e=
∂

∂ (51)

where pe is the probability density at equilibrium. Assuming
that pe is a weak function of x, we get

v
D
x

≈ ∂
∂ (52)

Substitution of this equation into eq 47 gives
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which coincides with the conventional form of Fick’s second
law equation for position-dependent diffusivity (eq 3); thus,
the original Fick’s second law can be considered a restricted
form of the Fokker−Planck equation. We note that detailed
balance is a sufficient condition for entropy maximization in an
isolated system.14 Therefore, detailed balance is not generally
necessary for the continuity (Fokker−Planck) equation to be
consistent with the second law of thermodynamics.

3. CONCLUSIONS
The diffusion(-like) equations representing Fick’s, Fourier’s,
and Newton’s laws were originally derived for constant
diffusivity, thermal conductivity, and viscosity, respectively.
However, even when dealing with problems involving spatially
varying diffusivity, thermal conductivity, and viscosity, the
original Fick’s, Fourier’s, and Newton’s laws have always been
used (i.e., in their original forms) without questioning the
validity of such uses. We here argue that for position-
dependent diffusivity, thermal conductivity, and viscosity,
Fick’s, Fourier’s, and Newton’s law formulas should, in
principle, be changed such that the viscosity, thermal
conductivity, and viscosity are moved inside the derivative
(gradient) operator; that is, in one-dimensional situations, for

instance, j Dc
x

( )= − ∂
∂

, q kT
x

( )= − ∂
∂

, and xy
v

x

( )yτ = −
μ∂
∂

, respec-

tively. Our examples demonstrate that even with moderate
spatial variations of diffusivity, thermal conductivity, or
viscosity, the proposed modifications of Fick’s, Fourier’s, and
Newton’s law equations might lead to predictions that are
discernibly different from those of the original formulas under
certain circumstances. This issue is expected to become more
important, for instance, for highly nonisothermal processes,
particularly, those that involve viscous dissipation of energy
that induces large spatial temperature gradients such as in
fluids around rapidly moving objects. In a previous publication,
we have shown that there exists a special situation in which a
spontaneous build-up of non-uniform concentrations of a
solute occurs in the absence of net material flux

j D c( 0)c
x

D
x

= − − =∂
∂

∂
∂ because of a spatial gradient of

diffusivity, that is, 0c
x

c
D

D
x

= − ≠∂
∂

∂
∂

;3 such a phenomenon

(“pH phoresis” discussed in ref 3) cannot be described using
the original Fick’s first law equation. Further study on this
general topic is desirable.
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