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Abstract. Autumn leaf phenology marks the end of the growing season, during which trees assimilate atmospheric CO2. The 

length of the growing season is affected by climate change because autumn phenology responds to climatic conditions. Thus, 

the timing of autumn phenology is often modelled to assess possible climate change effects on future CO2 mitigating capacities 

and species compositions of forests. Projected trends have been mainly discussed with regards to model performance and 10 

climate change scenarios. However, there has been no systematic and thorough evaluation of how performance and projections 

are affected by the calibration approach. Here, we analyzed >2.3 million performances and 39 million projections across 21 

process-oriented models of autumn leaf phenology, 5 optimization algorithms, ≥7 sampling procedures, and 26 climate model 

chains from two representative concentration pathways. Calibration and validation were based on >45 000 observations for 

beech, oak, and larch from 500 Central European sites each. 15 

Phenology models had the largest influence on model performance. The best performing models were (1) driven by daily 

temperature, day length, and partly by seasonal temperature or spring leaf phenology and (2) calibrated with the Generalized 

Simulated Annealing algorithm (3) based on systematically balanced or stratified samples. Assuming an advancing spring 

phenology, projected aAutumn phenology was projected to shift between −13 and +20 days by 2080–2099 compared to 1980–

1999, resulting in a lengthening of the growing season by 7–40 days. Climate scenarios and sites explained more than 80% of 20 

the variance in these shifts and thus had an influence eight to 22 times greater than the phenology models. Warmer climate 

scenarios and better performing models predominantly projected larger backward shifts than cooler scenarios and poorer 

models. 

Our results justify inferences from comparisons of process-oriented phenology models to phenology-driving processes and we 

advocate species-specific models for such analyses and subsequent projections. For sound calibration, we recommend a 25 

combination of cross-validations and independent tests, using randomly selected sites from stratified bins based on mean 

annual temperature and average autumn phenology, respectively. Poor performance and little influence of phenology models 

on autumn phenology projections suggest that current models are overlooking relevant drivers. While the uncertain projections 

indicate an extension of the growing season, further studies are needed to develop models that adequately consider the relevant 

processes for autumn phenology. 30 
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Summary 35 

This study analyzed the impact of process-oriented models, optimization algorithms, calibration samples and climate scenarios 

on the simulated timing of autumn leaf phenology (Figure 2). The accuracy of the simulated timing was assessed by the root 

mean square error (RMSE) between observed and simulated timing of autumn phenology. The future timing was expressed as 

projected shift between 1980–1999 and 2080–2099 (Δ100). While the RMSE was related to the models, optimization 

algorithms, and calibration samples with linear mixed-effects models (LMM), Δ100 was related to the climate change scenarios, 40 

models, optimization algorithms, and calibration samples. The analyzed >2.3 million RMSE and 39 million Δ100 were derived 

from site- and species-specific calibrations (i.e., one set of parameters per site and species vs. one set of parameters per species, 

respectively). The calibrations were based on 17 211, 16 954, and 11 602 observed site-years for common beech (Fagus 

sylvatica L.), pedunculate oak (Quercus robur L.), and European larch (Larix decidua MILL.), respectively, which were 

recorded at 500 Central European sites per species. 45 

Process-oriented models are a useful tool to study leaf senescence 

The assessed phenology models differed in their functions and drivers, which had the largest influence on the accuracy of the 

simulated autumn phenology (i.e., model performance). In all 21 models, autumn phenology occurs when a threshold related 

to an accumulated daily senescence rate is reached. While the threshold is either a constant or depends linearly on one or two 

seasonal drivers, the rate depends on daily temperature and, in all but one model, on day length. Depending on the model, the 50 

rate is (1) a monotonically increasing response to cooler days and (i) amplified or (ii) weakened by shorter days, or (2) a 

sigmoidal response to both cooler and shorter days. In the three most accurate models, the threshold was either a constant or 

derived from the timing of spring leaf phenology (site-specific calibration) or the average temperature of the growing season 

(species-specific calibration). Further, the daily rate of all but one of these models was based on monotonically increasing 

curves, which were both amplified or weakened by shorter days. Overall, the relatively large influence of the models on the 55 

performance justifies inferences from comparisons of process-oriented models to the leaf senescence process. 

Chosen optimization algorithms must be carefully tuned 

The choice of the optimization algorithm and corresponding control settings had the second largest influence on model 

performance. The models were calibrated with five algorithms (i.e., Efficient Global Optimization based on kriging 

with/without Trust-Region formation, Generalized Simulated Annealing, Particle Swarm Optimization, and Covariance Matrix 60 

Adaptation with Evolutionary Strategies), each executed with few and many iterations. In general, Generalized Simulated 

Annealing found the parameters that led to the best performing models. Depending on the algorithm, model performance 
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increased with more iterations for calibration. The positive and negative effects of more iterations on subsequent model 

performance relativize the comparison of algorithms in this study and exemplify the importance of carefully tuning the chosen 

algorithm to the studied search space. 65 

Stratified samples result in most accurate calibrations 

Model performance was relatively little influenced by the choice of the calibration sample in both the site- and species-specific 

calibration. The models were calibrated and validated with site-specific five-fold cross-validation as well as with species-

specific calibration samples that contained 75% randomly assigned observations from between 2 and 500 sites and 

corresponding validation samples that contained the remaining observations of these sites or of all sites of the population. For 70 

the site-specific cross-validation, observations were selected in a random or systematic procedure. The random procedure 

assigned the observations randomly. For the systematic procedure, observations were first ordered based on year, mean annual 

temperature (MAT), or autumn phenology date (AP). Thus, every 5th observation [i.e., 1+i, 6+i,… with i ∈ (0,1,…,4); 

systematically balanced] or each fifth of the n observations [i.e.; 1+i,2+i,…,n/5+i with i ∈ (0,1/5×n,…,4/5×n); systematically 

continuous] was assigned to one of the cross-validation samples. For the species-specific calibration, sites were selected in a 75 

random, systematic, or stratified procedure. The random procedure randomly assigned 2, 5, 10, 20, 50, 100, or 200 sites from 

the entire or half of the population according to the average MAT or average AP. For the systematic procedure, sites were first 

ordered based on average MAT or average AP. Thus, every jth site was assigned to a particular calibration sample with the 

greatest possible difference in MAT or AP between the 2, 5, 10, 20, 50, 100, or 200 sites. For the stratified procedure, the 

ordered sites were separated into 12 or 17 equal-sized bins based on MAT or AP, respectively (i.e., the smallest possible size 80 

that led to at least one site per bin). Thus, one site per bin was randomly selected and assigned to a particular calibration sample. 

The effects of these procedures on model performance were analyzed together with the effect of sample size. The results show 

that at least nine observations per free model parameter (i.e., the parameters that are fitted during calibration) should be used, 

which advocates the pooling of sites and thus species-specific models. These models likely perform best when (1) sites are 

selected in a stratified procedure based on MAT for (2) a cross-validation with systematically balanced observations based on 85 

site and year, and their performance (3) should be tested with new sites selected in a stratified procedure based on AP. 

Projections of autumn leaf phenology are highly uncertain 

Projections of autumn leaf phenology to the years 2080–2099 were mostly influenced by the climate change scenarios, whereas 

the influence of the phenology models was relatively small. The analyzed projections were based on 16 and 10 climate model 

chains (CMC) that assume moderate vs. extreme future warming, following the Representative Concentration Pathways (RCP) 90 

4.5 and 8.5, respectively. Under more extreme warming, the projected autumn leaf phenology occurred 8–9 days later than 

under moderate warming, namely shifting by -4 to + 20 days (RCP 8.5) vs. -13 to +12 days (RCP 4.5). While autumn phenology 

was projected to generally occur later according to the better performing models, the projections were over six times more 

influenced by the climate scenarios than by the phenology models. This small influence of models that differ in their functions 

and drivers indicates that the modelled relationship between warmer days and slowed senescence rates suppresses the effects 95 
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of the other drivers considered by the models. However, because some of these drivers are known to considerably influence 

autumn phenology, the lack of corresponding differences between projections of current phenology models underscores their 

uncertainty rather than the reliability of these models. 

1 Introduction 

Leaf phenology of deciduous trees describes the recurrent annual cycle of leaf development from bud set to leaf fall (Lieth, 100 

1974). In temperate and boreal regions, spring and autumn leaf phenology divide this cycle into a photosynthetically active 

and inactive period, hence forth referred to as the growing and dormant season (Lang et al., 1987; Maurya and Bhalerao, 2017). 

The response of leaf phenology to climate change affects the length of the growing season and thus the amount of atmospheric 

CO2 taken up by trees (e.g. Richardson et al., 2013; Keenan et al., 2014; Xie et al., 2021), as well as species distribution and 

species composition (e.g. Chuine and Beaubien, 2001; Chuine, 2010; Keenan, 2015). While several studies found spring 105 

phenology to advance due to climate warming (e.g. Fu et al., 2014a; Meier et al., 2021), findings regarding autumn phenology 

are more ambiguous (Piao et al., 2019; Menzel et al., 2020) but tend to indicate a backward shift (e.g. Bigler and Vitasse, 2021; 

Meier et al., 2021). 

Various models have been used to study leaf phenology and provide projections, which may be grouped in correlative and 

process-oriented models (Chuine et al., 2013). Both types of models have served to explore possible underlying processes (e.g. 110 

Xie et al., 2015; Lang et al., 2019). The former models have often been used to analyze the effects of past climate change on 

leaf phenology (e.g. Asse et al., 2018; Meier et al., 2021), while the latter models have usually been applied to study the effects 

of projected climate change (e.g. Morin et al., 2009; Zani et al., 2020). Popular representatives of the correlative models applied 

in studies on leaf phenology are based on linear mixed-effects models and generalized additive models (e.g. Xie et al., 2018; 

Menzel et al., 2020; Meier et al., 2021; Vitasse et al., 2021), while the many different process-oriented phenology models all 115 

go back to the growing-degree day model (Chuine et al., 2013; Chuine and Régnière, 2017; Fu et al., 2020) of Réaumur (1735). 

Different process-oriented models rely on different assumptions regarding the driving processes of leaf phenology (e.g. Meier 

et al., 2018; Chuine et al., 1999), but their functionality is identical. Process-oriented leaf phenology models typically consist 

of one or more phases during which daily rates of relevant driver variables are accumulated until a corresponding threshold is 

reached (Chuine et al., 2013; Chuine and Régnière, 2017). The rate usually depends on daily meteorological drivers and 120 

sometimes on day length (Chuine et al., 2013; Fu et al., 2020), while the threshold either is a constant (Chuine et al., 2013), 

depends on latitude (Liang and Wu, 2021) or on seasonal drivers (e.g. the timing of spring phenology with respect to autumn 

phenology; Keenan and Richardson, 2015). 

Models of spring phenology regularly outcompete models of autumn phenology by several days when assessed by the root 

mean square error between observed and modelled dates (4–9 vs. 6–13 days, respectively; Basler, 2016; Liu et al., 2020). 125 

These errors have been interpreted in different ways and have multiple sources. Basler (2016) compared over 20 different 

models and model combinations for spring leaf phenology of trees. He concluded that the models underestimated the inter-
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annual variability of observed dates of spring leaf phenology and were not transferable between sites. Liu et al. (2020) 

compared six models of autumn leaf phenology of trees and concluded that the inter-annual variability was well represented 

by the models, while their representation of the inter-site variability was relatively poor. 130 

Well-calibrated models of autumn leaf phenology are a prerequisite for sound conclusions about phenology-driving processes 

and for reducing uncertainties in phenological projections under distant climatic conditions. Studies of leaf phenology models 

generally show that certain models lead to better results and thus conclude that these models consider the relevant phenology-

driving processes more accurately or add an important piece to the puzzle (Delpierre et al., 2009; Keenan and Richardson, 

2015; Lang et al., 2019; Liu et al., 2019; Zani et al., 2020). Such conclusions can be assumed to be stronger if they are based 135 

on sound calibration and validation. However, so far, different calibration and validation methods have been applied (e.g. 

species- or site-specific calibration; Liu et al., 2019; Zani et al., 2020), which makes the comparison of study results difficult. 

Moreover, the uncertainty in leaf phenology projections is related to both climate projections and phenology models. While 

the uncertainty associated with climate projections has been extensively researched (e.g. Palmer et al., 2005; Foley, 2010; 

Braconnot et al., 2012), so far the uncertainty associated with process-oriented phenology models has only been described in 140 

a few notable studies: Basler (2016) compared spring phenology models calibrated per species and per site as well as calibrated 

per species with pooled sites, Liu et al. (2020) compared autumn phenology models with a focus on inter-site and inter-annual 

variability, and Liu et al. (2021) focused on sample size and observer bias in observations of spring and autumn phenology. 

Therefore, this uncertainty and its drivers are arguably largely unknown and thus poorly understood, which may be part of the 

reason for debates such as the one surrounding the Zani et al. (2020) study (Norby, 2021; Zani et al., 2021; Lu and Keenan, 145 

2022). 

When considering phenology data from different sites, one must, in principle, decide between two calibration modes, namely 

a calibration per site and species or a calibration over various sites with pooled data per species. While the former calibration 

leads to a set of parameters per species and site, the latter leads to one set of parameters per species. On the one hand, site-

specific models may respond to local adaptation (Chuine et al., 2000) without explicitly considering the underlying processes 150 

as well as to relevant but unconsidered drivers. For example, a model based solely on temperature may provide accurately 

modelled data due to site-specific thresholds, even if the phenological observations at some sites are driven by additional 

variables such as soil water balance. On the other hand, species-specific models may consider local adaptation via parameters 

such as day length (Delpierre et al., 2009) and may be better suited for projections to new other sites and changed climatic 

conditions, as they apply to the whole species and follow a space-for-time approach (but see Jochner et al., 2013). 155 

Independent of the calibration mode, various optimization algorithms have been used for the calibration of the model 

parameters. The resulting parameters are often intercorrelated (e.g. the base temperature for the growing degree days function 

and the corresponding threshold value to reach) and the parameter space may have various local optima (Chuine and Régnière, 

2017). To calibrate phenology models, different optimization algorithms have been applied to locate the global optimum, such 

as Simulated Annealing, Particle Swarm Optimization, or Bayesian optimization methods (e.g. Chuine et al., 1998; Liu et al., 160 

2020; Zhao et al., 2021). Simulated Annealing and its derivatives seem to be used the most in the calibration of process-
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oriented models of tree leaf phenology (e.g. Chuine et al., 1998; Basler, 2016; Liu et al., 2019; Zani et al., 2020). However, a 

systematic comparison of these different optimization algorithms regarding their influence on model performance and 

projections has been missing so far. 

Previous studies on process-oriented phenology models have generally provided little information on the sampling procedure 165 

used to assign observations to the calibration and validation samples. Observations and sites may be sampled according to 

different procedures, such as random, stratified, or systematic sampling (Taherdoost, 2016). In contrast to random sampling, 

systematic and stratified sampling require a basis to which the systematic or stratification refers to. For example, when 

assigning observations based on year, observations from every ith year or one randomly selected observation from each of the 

i bins with equal time spans may be selected in systematic or stratified sampling, respectively. Studies on phenology models 170 

have usually considered all sites of the underlying dataset and declared the size of calibration and validation samples or the 

number of groups (k) in a k-fold cross-validation (e.g. Delpierre et al., 2009; Basler, 2016; Meier et al., 2018). However, the 

applied sampling procedure has not always been specified, but there are notable exceptions, such as Liu et al. (2019) for 

random sampling, Chuine et al. (1998) for systematic sampling, and Lang et al. (2019) for leave-one-out cross-validation. 

Moreover, the effects of the sampling procedure on the performance and projections of phenology models have not been 175 

studied yet. 

Sample size in terms of the number of observations per site and the number of sites may influence the quality of phenology 

models as well. Studies on phenology models have usually selected sites with at least 10 or 20 observations per site, 

independent of the calibration mode (e.g. Delpierre et al., 2009; Keenan and Richardson, 2015; Lang et al., 2019). In studies 

with species-specific models, a wide range in the number of sites have been considered, namely 8 to >800 sites (e.g. Liu et al., 180 

2019; Liu et al., 2020). In site-specific calibration, the number of sites may be neglected as the site-specific models cannot be 

applied to other sites. However, the number of observations is crucial, as small samples may lead to overfitted models due to 

the bias-variance trade-off (James et al., 2017, Ch. 2.2.2), i.e. the trade-off between minimizing the prediction error in the 

validation sample versus the variance of the estimated parameters in the calibrated models. To our knowledge, no study to date 

has examined possible overfitting in phenology models. In addition, in species-specific calibration, the number of sites could 185 

influence the degree to which the population is represented by the species-specific models. While such reasoning appears 

intuitively right, we are unaware of any study that has systematically researched the correlation between the number of sites 

and the degree of representativeness. 

Phenology models are typically calibrated, their performance is estimated, and some studies project leaf phenology under 

distant climatic conditions. The performance of phenology models has often been estimated with the root mean square error 190 

that is calculated from modelled and observed data (e.g. Delpierre et al., 2009; Lang et al., 2019) and has been generally used 

for model comparison (e.g. Basler, 2016; Liu et al., 2020) and model selection (e.g. Liu et al., 2019; Zani et al., 2020). When 

phenology has been subsequently projected under distant climatic conditions, projections may have been compared between 

models (Zani et al., 2020), but no correlation with model performance has been established yet. 
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With this study, we take a first step towards closing the gap of unknown uncertainties associated with process-oriented models 195 

of autumn tree leaf phenology, which has been left open by current research so far. We focused on uncertainties related to 

phenology models, optimization algorithms, sampling procedures, and sample sizes, evaluating their effects on model 

performance and model projection separately in site- and species-specific calibration mode. To this end, we conducted an 

extensive computer experiment with 21 autumn phenology models from the literature, 5 optimization algorithms, each run 

with 2 different settings, and various samples based on random, structured, and stratified sampling procedures and on different 200 

sample sizes. We analyzed the performance of >2.3 million combinations of model, algorithm, sample, and calibration mode 

based on observations for beech, pedunculate oak, and larch from Central Europe for the years 1948–2015 (500 sites per 

species; PEP725; Templ et al., 2018). Further, we analyzed 39 million projections to the year 2099 according to these 

combinations under 26 different climate model chains, which were split between 2 different representative concentration 

pathways (CORDEX EUR-11; RCP 4.5 and RCP 8.5; Riahi et al., 2011; Thomson et al., 2011; Jacob et al., 2014). We 205 

addressed the following research questions: 

I. What is the effect of the phenology model and calibration approach (i.e. calibration mode, optimization algorithm, 

and calibration sample) on model performance and projections? 

II. What is the effect of sample size on the degree to which models are overfitted or represent the entire population? 

III. Do better performing models lead to more accurate predictions? 210 

2 Data and methods 

2.1 Data 

2.1.1 Phenological observations 

We ran our computer experiment with leaf phenology observations from Central Europe for common beech (Fagus sylvatica 

L.), pedunculate oak (Quercus robur L.), and European larch (Larix decidua MILL.). All phenological data were derived from 215 

the PEP725 project database (http://www.pep725.eu/; accessed on April 13, 2022). The PEP725 dataset mainly comprises data 

from 1948–2015 that were predominantly collected in Austria, Belgium, Czech Republic, Germany, the Netherlands, 

Switzerland, and the United Kingdom (Templ et al., 2018). We only considered site-years for which the phenological data 

were in the proper order (i.e., the first leaves have separated before they unfolded, BBCH10 before BBCH11, and 40% of the 

leaves have colored or fallen before 50% of the leaves, BBCH94 before BBCH95; Hack et al., 1992; Meier, 2001) and the 220 

period between spring and autumn phenology was at least 30 days. Subsequently, we only considered sites with at least 20 

years for which both spring and autumn phenology data were available. We randomly selected 500 of these sites per species. 

Each of these sites comprised 20–65 (beech), 20–64 (oak), or 20–30 (larch) site-years, all of which included a datum for spring 

and autumn phenology. This added up to 17 211 site-years for beech, 16 954 site-years for oak, and 11 602 site-years for larch. 
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Spring phenology corresponded to BBCH11 for beech and oak and BBCH10 for larch, while autumn phenology for all three 225 

species was represented by BBCH94, hence forward referred to as leaf coloration (Hack et al., 1992; Meier, 2001). 

The 500 selected sites per species differed in location as well as in leaf phenology and climatic conditions. Most sites were 

from Germany but also from other countries such as Slovakia or Norway (Fig. 1). Autumn phenology averaged over selected 

site-years per site ranged from day of year 254–308 (beech), 265–309 (oak), and 261–314 (larch). Corresponding average 

mean annual temperatures ranged from 0.6–11.0 °C (beech), 6.3–11.0 °C (oak), and 4.1–11.0 °C (larch) and annual 230 

precipitation ranged from 470–1272 mm (beech), 456–1232 mm (oak), and 487–1229 mm (larch; Fig. 1). 

 

 
Figure 1: Sites of considered leaf phenology data with respective average climatic conditions for beech, oak, and larch. (a) The 
location of each site is marked with a dot, the color of which indicates the average day of year of autumn phenology. (b) and (c) show the 235 
distribution of average mean annual temperature (MAT; [°C]) and average annual precipitation sum (APS; [mm]) per site. 

2.1.2 Model drivers 

The daily and seasonal drivers of the phenology models were derived and calculated from interpolated daily weather data as 

well as data of different time scales of short- and longwave radiation, atmospheric CO2 concentration, leaf area indices, and 

soil moisture. Daily drivers are daily minimum air temperature which is mostly combined with day length (cf. Sect. 2.2). Some 240 
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models further consider seasonal drivers, which we derived from daily mean and maximum air temperature, precipitation, soil 

moisture, net and downwelling shortwave radiation, and net longwave radiation, from monthly leaf area indices, from monthly 

or yearly atmospheric CO2 concentration data, as well as from site-specific plant-available water capacity data. We calculated 

day length according to latitude and day of year (Supplement S3: Eq. S1; Brock, 1981). The other daily variables were derived 

from two NASA global land data assimilation system datasets on a 0.25° 0.25° grid (~25 km; GLDAS-2.0 and GLDAS-2.1 245 

for the years 1948–2000 and 2001–2015, respectively; Rodell et al., 2004; Beaudoing and Rodell, 2019, 2020) for the past and 

from the CMIP5-based CORDEX-EUR-11 datasets on a rotated 0.11°  0.11° grid (~12.5 km; for the years 2006–2099; Riahi 

et al., 2011; Thomson et al., 2011; Jacob et al., 2014) for two representative concentration pathways (RCP). After examining 

the climate projection data (Supplement S1: Sect. 2), we remained with 16 and 10 climate model chains (CMC; i.e., particular 

combinations of global and regional climate models) for the RCP 4.5 and 8.5, respectively. Atmospheric CO2 concentrations 250 

were derived from the historical CMIP6 and observational Mauna Loa datasets for the years 1948–2014 and for 2015, 

respectively (monthly data; Meinshausen et al., 2017; Thoning et al., 2021) for the past and from the CMIP5 datasets for the 

years 2006–2099 (yearly data; Meinshausen et al., 2011) for the climate projections, matching the RCP 4.5 and RCP 8.5 

scenarios (Smith and Wigley, 2006; Clarke et al., 2007; Wise et al., 2009; Riahi et al., 2007). Leaf area indices were derived 

from the GIMMS LAI3g dataset on a 0.25°  0.25° grid, averaged over the years 1981–2015 (Zhu et al., 2013; Mao and Yan, 255 

2019). The plant-available water capacity per site was derived directly or estimated according to soil composition (i.e. 

volumetric silt, sand, and clay contents) from corresponding ISRIC SoilGrids250m datasets on a 250 m  250 m grid (versions 

2017-03 or 2.0 for water content or soil composition, respectively; Hengl et al., 2017). More detailed information about the 

applied driver data and driver calculation is given in Supplement S1 and S3, respectively. 

2.2 Phenology models 260 

We based our analysis on 21 process-oriented models of autumn phenology, which differ in their underlying functions and the 

drivers they consider (Table 1; Meier, 2022). In all models, the projected date for autumn phenology corresponds to the first 

day of the year, for which an accumulated daily senescence rate (RS) exceeds a corresponding threshold value. RS responds to 

daily minimum temperature (cf. Sect 4.5.2) and, except for the CDD model, to day length (see Table 1 and Supplement S2). 

While the senescence rate increases with cooler temperatures, it may increase or decrease with shorter days, depending on the 265 

response function. Thus, with cooler temperatures, the rate follows either a monotonically increasing response curve (Mon; 

with RS ≥ 0) or a sigmoidal response curve (Sig; with 0 ≤ RS ≤ 1), with the monotonous increase weakened or amplified with 

shorter days (Mon– or Mon+), depending on the model (Dufrêne et al., 2005; Delpierre et al., 2009; Lang et al., 2019). The 

threshold value for the accumulated rate is either a constant (Co) or depends linearly on one or two seasonal drivers (Li). 

Accumulation of the daily rate starts on the first day after the 173rd day of the year (summer solstice) or after the 200th day of 270 

the year, for which minimum temperature and/or day length fall below corresponding thresholds. The models have between 2 

and 7 free parameters, which are jointly fitted during calibration. 
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While all models differ in their functions and drivers considered, they can be grouped according to the formulation of the 

response curve of the senescence rate and of the threshold function (Table 1). Models within a particular group differ by the 

number of free parameters, by the determination of the initial day of the accumulation of the senescence rate, or by the seasonal 275 

drivers of the threshold. The difference in the number of free parameters is relevant for the groups Mon− (Co) and Mon+ (Co). 

These groups contain two models each, which differ by the two exponents for the effects of cooler and shorter days on the 

senescence rate. Each of these exponents can be calibrated to the values 0, 1, or 2 in the models with more parameters, whereas 

the exponents are set to 1 in the models with fewer parameters. The initial day of the accumulation of the senescence rate is 

either defined according to temperature or day length in the two models of the group Sig (Co). The one or two seasonal drivers 280 

considered by the models of the groups Mon− (Li), Mon+ (Li), and Sig (Li) are site-specific anomalies of the timing of spring 

phenology, the growing season index, and daytime net photosynthesis accumulated during the growing season ignoring or 

considering water limitation constraints, as well as the actual leafy season or growing season mean temperature, the low 

precipitation index averaged over the leafy season, or the adapted low precipitation index of the growing season. All models 

are explained in detail in Supplement S2). 285 

 
Table 1. Compared process-oriented models of autumn phenology grouped according to their response curve for the daily senescence 
rate and their corresponding threshold function. 

Response curve 
(threshold function) 

Model Daily 
drivers 

Seasonal drivers Number of 
free 
parameters 

Source 

Mon (Co) CDD T - 2 Du05 
Mon− (Co) DM1 

DM1Za20 
T, L - 5 

3 
De09 
Za20 

Mon− (Li) SIAM 
TDM1 
PDM1 
TPDM1 

T, L a.dSP 
TLS 
LPILS 
TLS, LPILS 

4 
6 
6 
7 

Ke15 
Li19 
Li19 
Li19 

Mon+ (Co) DM2 
DM2Za20 

T, L - 5 
3 

De09 
Za20 

Mon+ (Li) TDM2 
PDM2 
TPDM2 

T, L TLS 
LPILS 
TLS, LPILS 

6 
6 
7 

Li19 
Li19 
Li19 

Sig (Co) TPMt 
TPMp 

T, L - 4 
4 

La19 
La19 

Sig (Li) SIAMZa20 
TDMZa20 
PDMZa20 
TPDMZa20 
PIAGSI 
PIA+ 

T, L a.dSP 
TGS 
LPIZa20 
TGS, LPIZa20 
a.GSI 
a.Anet 

5 
5 
5 
6 
5 
5 

Za20 
Za20 
Za20 
Za20 
Za20 
Za20 
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PIA− a.Anet–w 5 Za20 
Note: Daily senescence rate responds to the daily drivers minimum temperature (T) and day length (L), following either a 

monotonically increasing curve (Mon) with cooler temperatures, which may be weakened or amplified with shorter days 290 

(Mon− or Mon+), or a sigmoidal curve (Sig). The threshold value is either a constant (Co) or a linear function (Li) of one or 

two of the following seasonal drivers: site-specific anomaly of (1) spring phenology (a.dSP), (2) growing season index (a.GSI), 

and (3) daytime net photosynthesis accumulated during the growing season ignoring or considering water limitation constraints 

(a.Anet and a.Anet–w), as well as the actual (4) leafy season or growing season mean temperature (TLS and TGS), (5) low 

precipitation index averaged over the leafy season (LPILS), or (6) adapted low precipitation index of the growing season 295 

(LPIZa20). Further, the number of free parameters fitted during model calibration and the sources for each model are listed (i.e., 

De09: Delpierre et al. (2009); Du05: Dufrêne et al. (2005); Ke15: Keenan and Richardson (2015); La19: Lang et al. (2019); 

Li19: Liu et al. (2019); Za20: Zani et al. (2020)). Note that the models CDD, DM1, DM2, SIAM, TDM1, TDM2, PDM1, 

PDM2, TPDM1, and TPDM2 are originally driven by daily mean  rather than daily minimum temperature (cf. Sect. 4.5.2). All 

models are explained in detail in Supplement S2. 300 

 

2.3 Model calibration and validation 

2.3.1 Calibration modes 

We based our study on both a site- and species-specific calibration mode. In the site-specific mode, we derived for every 

calibration a species- and site-specific set of parameters (i.e. every combination of optimization algorithm and sample). In the 305 

species-specific mode, we derived for every calibration a species-specific set of parameters based on the observations from 

more than one site, depending on the calibration sample. Model performances were estimated with an external model 

validation, namely with a 5-fold cross-validation (James et al., 2017, Ch. 5.1.3) and a separate validation sample in the site- 

and species-specific mode, respectively. 

2.3.2 Optimization algorithms 310 

We calibrated the models with five different optimization algorithms, which can be grouped into Bayesian and non-Bayesian 

algorithms. The two Bayesian algorithms that we evaluated are Efficient Global Optimization algorithms based on kriging 

(Krige, 1951; Picheny and Ginsbourger, 2014): one is purely Bayesian (EGO), whereas the other combines Bayesian 

optimization with a deterministic trust-region formation (TREGO). The three non-Bayesian algorithms that we evaluated are 

Generalized Simulated Annealing (GenSA; Xiang et al., 1997; Xiang et al., 2013), Particle Swarm Optimization (PSO; Clerc, 315 

2011, 2012; Marini and Walczak, 2015), and Covariance Matrix Adaptation with Evolutionary Strategies (CMA-ES; Hansen, 

2006, 2016). Every Bayesian and non-Bayesian algorithm was executed in a normal and extended optimization mode, i.e. with 

few and many iterations/steps (norm. and extd., respectively; Supplement S4: Table S1). In addition, the parameter boundaries 
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within which all algorithms searched for the global optimum (Supplement S2: Table S1) were scaled to range from 0 to 1. All 

algorithms optimized the free model parameters to obtain the smallest possible root mean square error (RMSE; Supplement 320 

S4: Eq. S1) between the observed and modelled days of year of autumn phenology. As the Bayesian algorithms cannot handle 

iterations that produce NA values (i.e. modelled day of year > 366), such values were set to day of year = 1 for all algorithms 

and before RMSE calculation. 

2.3.3 Calibration and validation samples 

Calibration and validation samples can be selected according to different sampling procedures with different bases (e.g. 325 

randomly or systematically based on the year of observation) and have different sizes (i.e. number of observations and/or 

number of sites). Here, we distinguished between the sampling procedures random, systematically continuous, systematically 

balanced, and stratified. Further, our populations consisted of sites that included between 20 and 65 years, which directly 

affected the sample size in the site-specific calibration mode. In the species-specific mode, we calibrated the models with 

samples that ranged from 2 to 500 sites. 330 

In the site-specific mode, the observations for the 5-fold cross-validation were selected (1) randomly or (2) systematically 

(Supplement S4: Fig. S1). For the random sampling procedure, the observations were randomly assigned to one of five 

validation bins. For the systematic sampling procedure, we ranked the observations based on the year, mean annual temperature 

(MAT), or autumn phenology date (AP) and created five equally sized samples containing continuous or balanced (i.e. every 

5th) observations (see Supplement S4: Sect. 2.1 for further details regarding these procedures). Hence, every model was 335 

calibrated seven times for each of the 500 sites per species, namely with a randomized or a time-, phenology-, or temperature-

based systematically continuous or systematically balanced cross-validation. This amounted to 2 205 000 calibration runs (i.e. 

500 sites × 3 species × 21 models × 5 optimization algorithms × 2 optimization modes × 7 sample selection procedures) that 

consisted of 5 cross-validation runs each. Further, for the projections, every model was calibrated with all observations per site 

and species. 340 

In the species-specific mode, we put aside 25% randomly selected observations per site and per species (rounded up to the 

next integer) for external validation samples and created various calibration samples from the remaining observations, selecting 

the different sites with different procedures. These calibration samples either contained the remaining observations of all 500 

sites (full sample) or of (1) randomly selected, (2) systematically selected, or (3) stratified sites per species (Supplement S4: 

Fig. S2). The random and systematic samples contained the observations of 2, 5, 10, 20, 50, 100, or 200 sites. Randomly 345 

sampled sites were chosen either from the entire or half the population, with the latter being determined according to MAT 

and AP (i.e. cooler average MAT or earlier or later average AP). The systematically sampled sites were selected according to 

a balanced procedure in which the greatest possible distance between sites ranked by average MAT or AP was chosen. (Note 

that the distance between the first and last site was 490, not 500 sites, allowing up to ten draws with a parallel shift of the first 

and last site.) The stratified samples consisted of one randomly drawn site from each of 12 MAT- or 17 AP-based bins. The 350 

chosen bin widths maximized the number of equal-sized bins so that they still contained at least one site (see Supplement S4: 



13 

Sect. 2.2 for further details regarding these procedures). We drew five samples per procedure and size, except for the full 

sample, which we drew only once, as it contained fixed sites, namely all sites in the population. Altogether, this amounted to 

139 230 calibration runs (i.e. 3 species × 21 models × 5 optimization algorithms × 2 optimization modes × (6 sample selection 

procedures × 7 sample sizes × 5 draws + 2 sample selection procedures × 5 draws + 1 sample selection procedure)) that differed 355 

in the size and selection procedure of the corresponding sample. Every calibration run was validated with the sample-specific 

and population-specific external validation sample. While the former consisted of the same sites as the calibration sample, the 

latter consisted of all 500 sites and hence was the same for every calibration run per species. Every calibration run was validated 

with the sample-specific and population-specific external validation sample, hence forward referred to as “validation within 

sample” and “validation within population”. While the former consisted of the same sites as the calibration sample, the latter 360 

consisted of all 500 sites and hence was the same for every calibration run per species. 

2.4 Model projections 

We projected autumn phenology to the years 2080–2099 for every combination of phenology model, calibration mode, 

optimization algorithm, and calibration sample that converged without producing NA values, assuming a linear trend for spring 

phenology. While non-converging runs did not produce calibrated model parameters, we further excluded the converging runs 365 

that resulted in NA values in either the calibration or validation. In addition, we excluded combinations where projected leaf 

senescence occurred before the 173rd or 200th day of the year (i.e. the earliest possible model-specific day of senescence rate 

accumulation). Thus, we received 41 901 704 site-specific time series for the years 2080–2099 of leaf senescence projected 

with site-specific models, hereafter referred to as site-specific projections. These time series differed in climate projection 

scenario (i.e. per combination of representative concentration pathway and climate model chain), phenology model, 370 

optimization algorithm, and calibration sample. Species-specific models led to projections for all 500 sites per species (i.e. the 

entire populations) and thus to 1 574 378 000 time series for the years 2080–2099 that differed in climate projection scenario, 

model, algorithm, and calibration sample, hereafter referred to as species-specific projections. For site- and species-specific 

models, we projected the spring phenology relevant for the seasonal drivers assuming a linear trend of −2 days per decade 

(Piao et al., 2019; Menzel et al., 2020; Meier et al., 2021). This trend was applied from the year after the last observation 375 

(ranging from 1969 to 2015, depending on site and species) and was based on the respective site average over the last 10 

observations per species. 

2.5 Proxies and statistics 

2.5.1 Sample size proxies 

We approximated the effect of sample size (1) on the bias-variance trade-off and (2) on the degree to which models represent 380 

the entire population with the respective size proxies (1) number of observations per parameter and (2) site ratio. The effect of 

sample size on the bias-variance trade-off may depend on the number of observations in the calibration sample (N) relative to 
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the number of free parameters (q) in the phenology model. In other words, a sample of, say, 50 observations may lead to a 

better calibration of the CDD model (2 free parameters) compared to the TPDM1 model (7 free parameters). In the site-specific 

calibration, we calculated for each site and model the ratio N:q with N being 80% of the total number of observations per site 385 

to account for the 5-fold cross-validation. Assuming the 50 observations in the example above are the basis for the 5-fold 

cross-validation, N becomes 40, resulting in N:q = 40/2 for the CDD model and N:q = 40/7 for the TPDM1 model. With 

species-specific calibration, we considered the average number of observations per site (�) and calculated for each calibration 

sample and model the ratio N:q to separate this ratio from the site ratio explained further below. Assuming the 50 observations 

in the example above correspond to a calibration sample based on 2 sites, � becomes 25, resulting in N:q = 25/2 for the CDD 390 

model and N:q = 25/7 for the TPDM1 model. The effect of sample size on the degree to which models represent the entire 

population with species-specific calibration may depend on the number of sites in the calibration sample (s) relative to the 

number of sites in the entire population (S; i.e. site ratio; s:S). Thus, we derived the site ratio by dividing s by 500. Note that 

the combined ratios N:q and s:S account for the effect of the total sample size as (� × s) / (q × S) = N / (q × S). 

2.5.2 Model performance 395 

We quantified the performance of each calibrated model according to the root mean square error (RMSE; Supplement S4: Eq. 

S1). The RMSE was calculated for the calibration and the validation samples (i.e. internal and external RMSE, respectively) 

as well as at the sample- and population level with the species-specific calibration (i.e. validated within sample or population; 

external sample RMSE or external population RMSE, respectively). We derived each RMSE per sample at the site level with 

the site-specific calibration and at the sample level with the species-specific calibration. 400 

To measure the effect (1) on the bias-variance trade-off and (2) on the degree to which models represent the entire population, 

we derived two respective RMSE ratios. Regarding the bias-variance trade-off and with the site-specific calibration, we divided 

the external RMSE by the internal RMSE derived from the calibration run with all observations per site and species (Cawley 

and Talbot, 2010, Sect. 5.2.1; James et al., 2017, Ch. 2.2.2). The numerator was expected to be larger than the denominator 

and increasing ratios were associated with an increasing bias, indicating overfitting. Regarding the degree to which models 405 

represent the entire population and hence with the species-specific calibration, we divided the external sample RMSE by the 

external population RMSE. Here, the numerator was expected to be smaller than the denominator and increasing ratios were 

associated with increasing representativeness. 

We applied two different treatments to calibration runs that led to NA values (i.e. the threshold value was not reached by the 

accumulated senescence rate until day of year 366) or did not converge at all (Supplement S6: Fig. S1). On the one hand, the 410 

exclusion of such runs may bias the results regarding model performance, since a non-converging model must certainly be 

considered to perform worse than a converging one. Therefore, in contrast to the model calibration, we replaced the NA values 

with the respective observed date + 170 days (i.e. a difference that exceeds the largest modelled differences in any calibration 

or validation sample by two days) and assigned an RMSE of 170 to non-converging runs before we analyzed the model 

performance. On the other hand, replacing NA values with a fixed value leads to an artificial effect and affects the performance 415 
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analysis, as, say, a linear dependence of the RMSE on a predictor is suddenly interrupted. Moreover, projections based on 

models that converged but produced NA values seem questionable, while projections based on non-converging models are 

impossible. Therefore, we implemented a second analysis of performance, from which we excluded the calibration runs that 

did not converge or contained one or more NA values in either the calibration or the validation sample. Our main results 

regarding model performance were based on the substituted NA values and the RMSE of 170 days for non-converging runs. 420 

However, where necessary, we have referred to the results based only on converged runs without NA values (provided in 

Supplement S6: Sects. 2.1.2 and 2.2.2). Furthermore, our results regarding projections and our comparisons between 

performance and projections are based solely on converging runs without NA values. 

2.5.3 Model projections 

We analyzed the site- and species-specific projections of autumn phenology according to a 100-year shift (Δ100) at the site 425 

level. Δ100 was defined as the difference between the means of the observations for the years 1980–1999 and of the projections 

for the years 2080–2099. If observations for the years 1980–1999 were missing, we used the mean of the 20 last observations 

instead. Thus, the derived shift was linearly adjusted to correspond to 100 years. 

2.6 Evaluation of model performance and autumn phenology projections 

To answer research question I (RQ I), we calculated the mean, median, standard deviation, and skewness of the RMSE 430 

distributed across phenology models, optimization algorithms, sampling procedures, and (binned) sample size proxies. These 

statistics were derived separately per site- and species-specific calibration validated within sample or population, giving a first 

impression of the effects on model performance. Further, the distribution of the RMSE was relevant for subsequent evaluations. 

To answer RQ I and RQ II, we estimated the effects of phenology models, optimization algorithms, sampling procedures, and 

sample size proxies on model performance and, together with climate projection scenarios, on model projections with 435 

generalized additive models (GAMs; Wood, 2017) and subsequent analyses of variance (ANOVA; Fig. 2; Chandler and Scott, 

2011). We fitted the GAMs separately per calibration and projection mode, i.e. per site- and species-specific calibration 

validated (projected) within sample or population (Supplement S5: Sect. 1; Supplement S5: Eqs. S1 and S2). The response 

variables RMSE and Δ100 were assumed to depend linearly on the explanatory factors phenology models, optimization 

algorithms, sampling procedures, and climate projection scenarios (only regarding Δ100) as well as on the continuous sample 440 

size proxies as explanatory variable. Sites and species were included as smooth terms, which were set to crossed random effects 

such that the GAM mimicked linear mixed-effects models with random intercepts (Supplement S5: Sect. 2; Pinheiro and Bates, 

2000; see the discussion for reasons and implications of our choice). The RMSE and sample size proxies were log-transformed, 

since they can only take positive values and followed right-skewed distributions (i.e. skew > 0; Supplement S6: Tables S1–

S4). Coefficients were estimated with fast restricted maximum likelihood (Wood, 2011). Thereafter, the fitted GAMs served 445 

as input for corresponding type-III ANOVA (Supplement S5: Sect. 4; Yates, 1934; Herr, 1986; Chandler and Scott, 2011), 

with which we estimated the influence on the RMSE and the Δ100. The influence was expressed as the relative variance in 
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RMSE or in Δ100 explained by phenology models, optimization algorithms, sampling procedures, sample size proxies, and 

climate projection scenarios (only regarding Δ100). Regarding model projections, we drew five random samples of 105 

projections per climate projection scenario and per Δ100 projected with site- and species-specific models within sample or 450 

population. Thereafter, we fitted a separate GAM and ANOVA for each of these 15 samples (see the discussion for reasons 

and implications of this approach). 

The coefficient estimates of the GAMs expressed (relative) changes towards the corresponding reference levels of RMSE or 

Δ100. The reference levels were based on the CDD model calibrated with the GenSA (norm.) algorithm on a randomly selected 

sample and, only regarding Δ100, projected with the CMC 1 of the RCP 4.5. Hence, the estimates of the intercept refer to the 455 

estimated log-transformed RMSE or Δ100 according to these reference levels with sample size proxies of 1 (i.e. log-transformed 

proxies of 0). Regarding interpretation of model performance, negative coefficient estimates indicated better performance, 

which was reflected in smaller RMSE values. The effects of the explanatory variables were expressed as relative changes of 

the reference RMSE, due to the log-transformation of the latter (Supplement S5; Sect. 3). Regarding model projections, while 

negative coefficient estimates in combination with negative reference Δ100 resulted in an accelerated projected advancement 460 

of autumn phenology, they weakened a projected delay of autumn phenology or changed it to a projected advancement in 

combination with positive reference Δ100 and vice versa. In other words, negative coefficient estimates only translated into 

earlier projected autumn phenology when the corresponding reference Δ100 was negative or their absolute values were larger 

than the (positive) reference Δ100 and vice versa. 

To answer RQ III, we related both (1) the ranked effects on model performance to the ranked effects on model projections and 465 

(2) the performance ranks of phenology models to the ranked influence of explanatory variables on Δ100 per model (Fig. 2). 

First, we ranked phenology models, optimization algorithms, and sampling procedures according to their estimated effects on 

log-transformed RMSE or Δ100, and calculated the Kendall rank correlation (Kendall, 1938) within each group of factors (e.g. 

within phenology models). Negative correlations indicated, for example, that models with better performance projected later 

autumn phenology than models with poorer performance and vice versa. Second, we fitted GAMs per site- and per species-470 

specific phenology model to the response variable Δ100 as described above (Supplement S5: Eq. S1) but excluded phenology 

models from the explanatory variables. We derived type-III ANOVA per GAM (Supplement S5, Eq. S14) and ranked the 

influence of optimization algorithms, sampling procedures, sample size proxies, and climate projection scenarios across 

phenology models. Thus, we calculated the Kendall rank correlation (Kendall, 1938) between these newly derived ranks and 

the ranks of the phenology models based on their effect on performance. In other words, we analyzed if the ranked influence 475 

of, for example, aggregated climate projection scenarios on Δ100 correlated with the ranked performance of phenology models. 

In this example, negative correlations indicated that climate projection scenarios had a larger relative influence on projected 

autumn phenology when combined with phenology models that performed better than with models that performed worse and 

vice versa. As before, each GAM and ANOVA was fitted and derived five times per phenology model and climate projection 

scenario based on five random samples of 105 corresponding projections per climate projection scenario. Therefore, the ranks 480 
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of optimization algorithms, sampling procedures, sample size proxies, and climate projection scenarios were based on the 

mean coefficient estimates or mean relative explained variance. 

 

 
Figure 2: Concept and methods applied. This study assumed that, in addition to phenology models and climate scenarios, the choice of 485 
optimization algorithm and calibration sample (i.e., sampling procedure and sample size) affect model performance and model projections 
(i.e., the root mean square error, RMSE, and the shift between autumn leaf phenology in 2080–2099 and 1980–1999, Δ100, respectively). To 
answer research questions I and II (RQ I & II), the effects of these factors on the RMSE and Δ100 were quantified with linear mixed-effects 
models. Subsequently, the relative influence of the factors (e.g., all phenology models) on the explained variance (σ2) of RMSE and Δ100 
were quantified with type-III ANOVA. To answer RQ III, the effects on the RMSE were related to the effects on Δ100 and the influences on 490 
σ∆100

2  by calculating the Kendall rank correlations (e.g., between the effects of the phenology models on the RMSE and Δ100 or between the 
effect of the phenology models on the RMSE and the influence of each model on σ∆100

2 ). The phenology models were calibrated site- and 
species-specifically (i.e., one set of parameters per site and species vs. one set of parameters per species, respectively). Sample size was 
quantified by the number of observations relative to the number of free parameters in the phenology model (N:q), the average number of 
observations relative to the number of free parameters (N:q), and the number of sites relative to the 500 sites of the entire population (s:S). 495 

We chose a low significance level and specified Bayes factors to account for the large GAMs with many explanatory variables 

and the frequent mis- or overinterpretation of p-values (Benjamin and Berger, 2019; Goodman, 2008; Ioannidis, 2005; 

Wasserstein et al., 2019; Nuzzo, 2015). We applied a lower than usual significance level, namely α = 0.01 (i.e. p < 0.005 for 

two-sided distributions; Benjamin and Berger, 2019), and included the 99% confidence intervals in our results. In addition, we 

complemented the p-values with Bayes factors (BF) to express the degree to which our data changed the odds between the 500 

respective null hypothesis H0 and the alternative hypothesis H1 (BF01; Johnson, 2005; Held and Ott, 2018). For example, if 

we assume a prior probability of 20% for the alternative hypothesis (i.e. a prior odds ratio H0:H1 of 80/20 = 4/1), then a BF01 
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of 1/20 means that the new data suggests a posterior odds ratio of 1/5 (i.e. 4/1 × 1/20) and thus a posterior probability of 83.3% 

for the alternative hypothesis. Our study was exploratory in nature (Held and Ott, 2018, Sect. 1.3.2), hence our null hypothesis 

was that there is no effect as opposed to the alternative hypothesis that there is one, for which a local distribution around zero 505 

is assumed (Held and Ott, 2018, Sect. 2.2). We derived the corresponding sample-size adjusted minimum BF01 (BF01) from the 

p-values of the GAM coefficients, ANOVA, and Kendall rank correlations (Johnson, 2005, Eq. 8; Held and Ott, 2016, Sect. 

3; 2018, Sect. 3). While BF01 never exceed the value of 1, BF01 below 1/100 may be considered “very strong” and BF01 above 

1/3 may be (very) “weak” (Held and Ott, 2018, Table 2). Hence forward, we refer to results with p < 0.005 as significant and 

with BF01 < 1/1000 as “decisive”. Note that the BF01 expresses the most optimistic shift towards the alternative hypothesis. 510 

All computations for data preparations, calculations, and visualizations were conducted in R (versions 4.0.2 and 4.1.3 for 

scientific computing and data visualisations, respectively; R Core Team, 2022) with different packages: Data were prepared 

with data.table (Dowle and Srinivasan, 2021), phenology models were coded based on phenor (Hufkens et al., 2018) and 

calibrated with DiceDesign and DiceOptim (for the optimisation algorithms EGO and TREGO; Dupuy et al., 2015; Picheny 

et al., 2021), GenSA via phenor (GenSA; Xiang et al., 2013; Hufkens et al., 2018), pso (PSO; Bendtsen, 2012), and cmaes 515 

(CMA-ES; Trautmann et al., 2011), while the RMSE was calculated with hydroGOF (Zambrano-Bigiarini, 2020). The 

formulas for the GAMs were translated from linear mixed-effects models with buildmer (Voeten, 2022), GAMs were fitted 

with mgcv::bam (Wood, 2011, 2017), the corresponding coefficients and p-values were extracted with mixedup (Clark, 2022), 

and sample size-adjusted BF01 were derived from p-values with pCalibrate::tCalibrate (Held and Ott, 2018). Summary 

statistics, ANOVA, and correlations with respective p-values were calculated with stats (R Core Team, 2022). Figures and 520 

tables were produced with ggplot2 (Wickham, 2016), ggpubr (Kassambara, 2020), and gtable (Wickham and Pedersen, 2019). 

3 Results 

3.1 Model performance 

We evaluated 2 217 888 and 139 231 externally validated site- and species-specific calibration runs. Each of these runs 

represented a unique combination of 21 models, 10 optimization algorithms, 7 calibration samples × 500 sites with the site-525 

specific calibration or 9 calibration samples with the species-specific calibration, and 3 species. All samples for the species-

specific calibration were drawn 5 times except for the full sample. From the initial site- and species-specific calibration runs, 

136 500 and 7 048 runs, respectively, did not converge, while another 373 126 and 12 524 runs led to NA values in either the 

internal or external validation (Supplement S6: Fig. S1). 

3.1.1 Observed effects 530 

Across the phenology models, optimization algorithms, and sampling procedures, the observed distribution of the external root 

mean square error (RMSE) of the pooled species differed considerably between the calibration and validation modes. Overall, 

the smallest median RMSEs were similar between the site- and species-specific calibration modes, ranging from 10.1 to 12.4 
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and 11.7 to 12.6 or 12.4 to 12.9 days in the respective site- and species-specific calibration validated within sample or within 

population (Fig. 3, Supplement S6: Table S1). The smallest mean RMSE were considerably larger with the site- than with the 535 

species-specific calibration (19.2–52.1 vs. 11.6–23.9 or 12.9–24.4 days; grey dots in Fig. 3). Accordingly, standard deviations 

were larger with the site- than with the species-specific calibration (28.4–66.5 vs. 3.7–36.6 or 1.2–36.0 days; Fig. 3, 

Supplement S6: Table S1). 

In the site-specific calibration, increasing sample size relative to the number of free model parameters (N:q) first lowered and 

then increased the RMSE and generally decreased the bias-variance trade-off. Binned mean RMSE and corresponding standard 540 

deviations ranged from 35.8 to 61.1 and from 58.5 to 71.9 days, respectively (Fig. 4c; Supplement S6: Table S2). The binned 

mean RMSE ratio regarding the bias-variance trade-off (i.e. external RMSE:internal mean RMSE) decreased steadily from 1.5 

to 1.0 and at decreasing step sizes with bins of increased N:q. Step sizes between binned N:q were considerably larger for 

N:q < 9.4 than for N:q ≥ 11.8 (Supplement S6: Table S2), and we observed an abrupt increase in the scatter of the RMSE and 

RMSE ratio below an N:q of ~9 (Fig. 4c). 545 

In species-specific calibration, larger sample sizes generally co-occurred with smaller population RMSE and higher degrees 

to which a model represented the population, except for the stratified samples, which led to the best modelled phenology at 

the population level and the highest degree of population representation. The mean population RMSE and corresponding 

standard deviation ranged from 24.4 to 30.2 and 36.0 to 40.4 days (Fig. 4d; Supplement S6: Table S2). We observed the 

smallest mean population RMSE in the stratified sample based on average mean annual temperature (MAT; 12 sites; 550 

RMSE = 24.4 days [d]), followed by the stratified sample based on average autumn phenology (AP; 17 sites; RMSE = 25.9 d), 

and the full sample (500 sites; RMSE = 25.9 d). Except for the stratified samples, increasing sample size resulted in a steady 

increase in the RMSE ratio regarding the degree to which a model represents the population, which indicated a generally better 

representation of the population with larger samples. The ratio for stratified MAT samples followed just behind that of the full 

sample and was 0.95, followed by the samples with 200 and 100 sites that led to a ratio of 0.94. The ratio for the stratified AP 555 

samples even exceeded that of the full sample and was 1.21 (i.e., the validation within the samples led to larger RMSE than 

the validation within the population). Thus, the most accurate modelling of autumn phenology at the population level was 

achieved with stratified MAT samples rather than with the full sample. Furthermore, models calibrated with AP samples 

performed better when applied to the whole population, suggesting that the population is better represented with AP samples 

than with the full sample. 560 
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Figure 3: Observed distributions of the external root mean square error (RMSE) of the pooled species according to (a) phenology 
models, (b) optimization algorithms, and (c) sampling procedures. The thick horizontal lines and grey dots indicate the respective median 
and mean. Boxes cover the inner quartile range, whiskers extend to the most extreme observations or to 1.5 times the inner quartile range, 565 
and outliers are indicated as colored circles. Note that the y-axes were log-transformed. In all figures, the colors represent the calibration and 
validation modes. The abbreviations for the models, algorithms, and sampling procedures are explained in respective Tables Supplement 
S2: Table S1, Supplement S4: Table S1, and Supplement S4: Table S2/S3. 
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Figure 4: The relative variance in the log-transformed external root mean square error (RMSE) explained by phenology models, 
optimization algorithms, and calibration samples (i.e. sampling procedures and sample size proxies) together with the effects of the 
individual factors and the observed distribution of the RMSE according to sample size proxies. The relative variance was estimated 
from analyses of variance (a) based on generalized additive models (GAM; b) for site-specific calibration (left) as well as for within-sample 
validated (middle) and within-population validated (right) species-specific calibration. Observed distribution is plotted against (c) the number 575 
of observations per free model parameter (N:q) and (d) the number of sites relative to the 500 sites of the entire population (s:S), illustrating 
the bias-variance trade-off with site-specific calibration and the degree to which a model represents the population with species-specific 
calibration, respectively. In (a), the bars indicate the estimated influence of phenology models, optimization algorithms, sampling procedures, 
and sample size proxies (N:q, N:q, and s:S) as well as of the random effects sites and species on the variance in RMSE. The connected dots 
show the cumulated influence. (b) shows the coefficient estimates (dots or circles) of the GAM together with their 0.5–99.5% confidence 580 
limits (whiskers) on an inverted x-axis. Dots represent significant (p < 0.005) coefficients. Significance levels of each coefficient are 
indicated with ., *, **, or *** corresponding to p < 0.1, 0.05, 0.01, or 0.001, respectively. Further, the minimum Bayes factor is indicated 
with +, #, #+, ##, ##+, or ### corresponding to BF01 < 1/3, 1/10, 1/30, 1/100, 1/300, or 1/1000, respectively. Adjusted R2 and deviance 
explained are printed (Adj. R2 and Dev. expl., respectively). Note, that negative coefficients (i.e. to the right of the dashed black line) indicate 
lower RMSE and thus better model performance. In (c), the observed distribution of the actual (top) and relative (bottom) external RMSE 585 
are plotted against N:q. The color of the hexagons represents the respective number of observations within the area they cover, and the 
dashed black line indicates N:q = 9. For the actual RMSE, the estimated effect size according to the GAM is plotted with a solid golden line 
(median) and a golden shaded area (0.5–99.5% confidence limits). For the relative RMSE, the external RMSE is larger than the internal 
RMSE in observations above the dot-dashed black line and vice versa. In (d), the observed distribution of the actual (top) and relative 
(bottom) external population RMSE are plotted for each s:S. For the actual RMSE, the estimated effect size according to the GAM is plotted 590 
with purple dots (median) and purple whiskers (0.5–99.5% confidence limits). For the relative RMSE, the external population RMSE is 
larger than the external sample RMSE in observations above the dot-dashed black line and vice versa. In (c) and (d), the printed values of 
the corresponding coefficient estimates (�) refer to the log-transformed RMSE and respective N:q or s:S. The abbreviations for the models, 
algorithms, and sampling procedures in all figures are explained in respective Tables Supplement S2: Table S1, Supplement S4: Table S1, 
and Supplement S4: Table S2/S3. 595 

3.1.2 Estimated effects 

The evidence in the analyzed data against H0 was significant and decisive for the estimated effects (p < 0.005 and BF01 < 

1/1000) and influences (p < 0.01 and BF01 < 1/1000) of most factors, while the deviances explained ranged from 0.41 to 0.67 

(Fig. 4, Supplement S6: Fig. S4, Supplement S6: Tables S8–S11 and S15–S18). 

Phenology models had generally the largest influence on model performance among optimization algorithms, sampling 600 

procedures, sample size, sites, and species, but the degree of influence as well as the best performing models depended on the 

calibration mode (Fig. 4, Supplement S6: Tables S5–S8). Phenology models explained 52% and 62% or 69% of the variance 

in RMSE in the site- and species-specific calibration when validated with the sites of the sample or the entire population, 

respectively (Fig. 4, Supplement S6: Table S8). We estimated the effect on the RMSE of each model relative to the reference 

CDD model and per calibration mode. In the site-specific calibration, the effects were generally larger than in the species-605 

specific calibration (Fig. 4, Supplement S6: Tables S9–S11). Further, the ranks of the models according to their effects differed 

between calibration modes (Fig. 4, Supplement S6: Tables S5–S7). 

In the site-specific calibration, all 20 phenology models had decisive and significant effects compared to the RMSE of the 

reference CDD model, which ranged from halving to tripling, and their ranking depended strongly on the treatment of NA 

values and non-converging runs (Fig. 4 and Supplement S6: Fig. S4, Supplement S6: Tables S5 and S12). The reference model 610 

CDD led to an RMSE of 49.8–58.6 days in site-specific calibration (99% confidence interval, CI99; see Supplement S5: Sect. 3 

for the back-transformation of the coefficient estimates; Fig. 4, Supplement S6: Tables S5 and S9). The largest reduction from 

this RMSE was achieved with the models SIAMZa20, DM2Za20, DM1Za20, and PIA+, ranging from −50% to −39% (CI99). Model 
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ranks and effect sizes changed considerably if NA-producing and non-converging calibration runs were excluded: The RMSE 

of the reference model CDD dropped to 6.0–7.6 days (CI99) and was not reduced by any of the other models (Supplement S6: 615 

Fig. S4, Supplement S12: Table S16). In other words, if only calibration runs without NAs were considered, the CDD model 

performed best, followed by SIAM, DM2Za20, and TPMp. 

In the species-specific calibration, all 20 or 9 models had decisive and significant effects compared to the reference model 

CDD if validated within sample or population, respectively, with effects ranging from a reduction by one-fifth to a tripling and 

resulting in fairly consistent model ranks between the two NA treatments (Fig. 4, Supplement S6: Fig. S4, Supplement S6: 620 

Tables S6–S7 and S13–S14). The RMSE according to the reference model CDD was 12.1–15.7 or 10.1–11.9 days (CI99) if 

validated within sample or population, respectively (Fig. 4, Supplement S6: Tables S6–S7 and S10–S11). According to the 

within-sample validation, the RMSE was reduced the most with the DM1, DM2, TDMZa20, and SIAMZa20, with reductions 

between −16% and −15% (CI99). According to the within-population validation, the models DM2, DM1, TPMp, and TDMZa20 

reduced the RMSE the most and reductions ranged from -10% to -1% (CI99; Fig. 4, Supplement S6: Tables S6–S7 and S10–625 

S11). If NA-producing and non-converging runs were excluded, the reference RMSE increased to 16.2–20.2 or 12.9–13.9 days 

(CI99; validated within sample or population, respectively), while model ranks were changed in two positions (Supplement S6: 

Fig. S4, Supplement S6: Tables S13–S14). 

Optimization algorithms had the second largest influence on model performance, explaining about one-third of the variance in 

RMSE, with differences between the calibration modes and NA treatments regarding degree of influence and ranking of 630 

individual algorithms (Fig. 4, Supplement S6: Fig. S4, Supplement S6: Tables S5–S8 and S12–S15). Algorithms explained 

39% and 33% or 30% of the variance in RMSE in site- and species-specific calibration validated within sample or population, 

respectively (Fig. 4, Supplement S6: Table S8). In the site-specific calibration, both CMA-ES algorithms (norm. and extd.) 

resulted in the smallest RMSEs, which were −76% to −71% (CI99) lower than the RMSE according to the reference GenSA 

(norm.; CI99 of 49.9–58.6 days, see above; Fig. 4, Supplement S5: Tables S5 and S9). In species-specific calibration, the best 635 

results were obtained with both GenSA algorithms (norm. and extd.), whereas the Bayesian algorithms (EGO and TREGO, 

norm. and extd.) performed worst and resulted in RMSEs +57% to +91% (CI99) larger the RMSE according to the reference 

RMSE (CI99 of 12.1–15.7 or 10.0–11.9 days if validated within sample or population, see above; Fig. 4, Supplement S6: Tables 

S6–S7 and S10–S11). If NA-producing and non-converging calibration runs were excluded, the lowest and largest RMSEs 

with site-specific calibration were obtained with the GenSA and the Bayesian algorithms, respectively. With species-specific 640 

calibration, we observed little change when only calibration runs without NAs were analyzed: As before, Bayesian algorithms 

led to the largest RMSEs, while both GenSA algorithms resulted in the smallest RMSEs (Supplement S6: Fig. S4, Supplement 

S6: Tables S12–S14). 

Sampling procedures had little influence on model performance in general (third or fourth largest) and were more important 

with species- than with site-specific calibration where stratified sampling procedures led to the best results (Fig. 4, Supplement 645 

S6: Tables S5–S8). Sampling procedures explained 0.3% and 4.0% or 0.7% of the variance in RMSE with site- and species-

specific calibration validated within sample or population, respectively (Fig. 4, Supplement S6: Table S8). With site-specific 
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calibration, systematically continuous samples based on mean annual temperature (MAT) and year performed best, diverging 

by −4.3% to −1.3% (CI99, Fig. 4, Supplement S6: Tables S5 and S9) from the RMSE according to the reference random 

sampling. With species-specific calibration, we received the lowest RMSEs with random samples from half of the population 650 

(split according to MAT or autumn phenology, AP) when validated within sample (Fig. 4, Supplement S6: Tables S6 and S10). 

When validated within population, stratified samples based on MAT performed best, diverging by −6.9% to −2.3% (CI99) from 

the RMSE according to the reference random sampling from the entire population (Fig. 4, Supplement S6: Tables S7 and S11). 

The alternative NA treatment had little effect on these results in general but led to an influence of 49% of sampling procedures 

with species-specific calibration validated within sample, while systematically balanced samples performed best with site-655 

specific calibration (Supplement S6: Fig. S4, Supplement S6: Tables S12–S15). Note that for the site-specific calibration, these 

sampling procedures refer to the allocation of observations for the 5-fold cross-evaluation, whereas for the species-specific 

calibration they refer to the selection of sites. 

Sample size effects on model performance were very small but showed that more observations per free model parameter led 

to smaller RMSE, except with site-specific calibration when NA-producing runs were excluded (Fig. 4, Supplement S6: Fig. 660 

S5, Supplement S6: Tables S5–S8 and S12–S15). Among the size proxies relative (average) number of observation (N:q or N:q) and site ratio (s:S), only s:S with species-specific calibration validated within population explained more than 0.15% of 

the variance in RMSE, namely 1.0% (Fig. 4, Supplement S6: Table S8). An increase of 10% in N:q reduced the RMSE by 

approximately −0.5% to −0.1% with site-specific calibration, while an increase of 10% in the N:q led to reductions of 

approximately −1.8% to −1.2% or −1.0% to −0.4% (CI99) with respective species-specific calibration validated within sample 665 

or population (Supplement S6: Tables S5–S7). A 10% increase in s:S with species-specific calibration increased the RMSE by 

+0.08% to +0.13% (CI99) if validated within sample and decreased it by −0.30% to −0.26% (CI99) if validated within population 

(Supplement S6: Tables S6 and S7). By excluding NA-producing and non-converging runs, a 10 % increase in N:q increased 

the RMSE in site-specific calibration by +0.4 to +0.6% (CI99; Supplement S6: Fig. S4, Supplement S6: Tables S12–S15). 

Sites and species were included as grouping variables for the random effects and had little influence on model performance, 670 

except for sites with site-specific calibration. Sites explained 8.4% of the variance in RMSE with site-specific calibration and 

hence had a larger influence than sampling procedure and sample size (i.e. N:q) combined (Fig. 4, Supplement S6: Table S8). 

Species only explained more than 0.1% of the variance in species-specific calibration validated within sites, namely 0.4%. 

Thus, species had a slightly greater influence than N:q and s:S combined (Fig. 4, Supplement S6: Table S8). When only 

converged calibration runs without NAs were analyzed, sites became the second most important driver of the variance in 675 

RMSE in site-specific calibration, explaining 27% (Supplement S6: Fig. S4, Supplement S6: Table S15). 

3.2 Model projections 

We analyzed the effects on the 100-year shifts at site level (Δ100) in autumn phenology projected with site- and species-specific 

models within sample or population and based on five random samples per projection mode. Each sample consisted of 105 

projected shifts per climate projection scenario, i.e. 2.6  106 projected shifts per sample, which were drawn from 680 
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corresponding datasets that consisted of >4.1  107 and >1.9  108 or >1.5  109 Δ100 projected with site- and species-specific 

phenology models for the sites within sample or population, respectively. These datasets were based on 16 climate model 

chains (CMC) based on the representative concentration pathway 4.5 (RCP 4.5), and 10 CMC based on RCP 8.5. The analyzed 

data (i.e. 3.9  107 Δ100) provided significant and decisive evidence against H0 for most estimated effects and most influences 

(Fig. 5, Supplement S6: Tables S22–S25). 685 
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Figure 5: The relative variance in the projected 100-year shifts at site level (Δ100) of autumn phenology and corresponding effects 
explained by climate projection scenarios (i.e. representative concentration pathways, RCP, and climate model chains, CMC), 
phenology models, optimization algorithms, and calibration samples (i.e. sampling procedures and sample sizes). The relative variance 690 
was estimated from analyses of variance (a) based on generalized additive models (GAM; b) for Δ100 according to site-specific models (left) 
as well as according to species-specific models when projected within sample (middle) or within population (right). In (a), the black error-
bars indicate the range of estimated influence from the five GAM based on random samples. In (b), the median coefficient estimates from 
the five GAMs are visualized. If all five estimates were significant (p < 0.005), the median is indicated with a dot and with a circle otherwise. 
None of the 99% confidence intervals from any of the five GAMs extended beyond either dot or circle and are thus not shown. Note that 695 
coefficients estimate the difference to the reference Δ100. Thus, a negative coefficient estimate may indicate a projected advance or delay in 
autumn phenology, depending on how it relates to the reference. The abbreviations for the climate projection scenarios, phenology models, 
optimization algorithms, and sampling procedures in all figures are explained in respective Tables Supplement S1: Table S5, Supplement 
S2: Table S1, Supplement S4: Table S1, and Supplement S4: Table S2/S3. For a further description, see Fig. 4a and 4b. 

3.2.1 Estimated effects 700 

Climate projection scenarios had the largest and second largest influence on projected autumn phenology in general, and the 

warmer RCP 8.5 caused larger shifts than the cooler RCP 4.5. Climate projection scenarios (i.e. unique combinations of RCP 

and CMC) explained between 46% and 64% of the variance in Δ100 in all projections (Fig. 5, Supplement S6: Table S22). The 

Δ100 according to site-specific models was +10.0 to +10.3 days (CI99) based on the reference RCP 4.5 & CMC 1. This base 

Δ100 was altered between −11.1 to −11.0 days and ~−1.4 days (CI99) by the RCP 4.5 scenarios, whereas the RCP 8.5 scenarios 705 

changed it by between −2.2 to −2.1 and +7.3 to +7.4 days (CI99; except for the RCP 4.5 and CMC 2, which altered base Δ100 

by +34.7 to +35.0 days, CI99; Fig. 5, Supplement S6: Tables S19 and S23). The Δ100 according to species-specific models 

ranged from +11.4 to +11.6 days (CI99) or from +8.2 to +8.4 days (CI99) based on the reference RCP 4.5 and CMC 1 in 

respective projections within sample or within population (Fig. 5, Supplement S6: Tables S20, S21, S24, and S25). These base 

Δ100 were altered between −8.8 to −8.7 days and ±0.0 days (CI99) or between −9.4 to −9.2 days and ±0.0 days (CI99) by the 710 

RCP 4.5 scenarios, in corresponding projections within sample or within population (except for RCP 4.5 and CMC 2, which 

altered base Δ100 by >+37.1 days). The RCP 8.5 scenarios changed the base Δ100 projected within sample or within population 

by between −1.8 to −1.7 days and +5.8 to +6.0 days (CI99) or between −2.0 to −1.8 days and +6.1 to +6.2 days (CI99), 

respectively. 

When analyzed per phenology model, climate projection scenarios exhibited the largest influence on autumn phenology 715 

projected by over one-third of the models. Across the site-specific models, climate projections were most influential on Δ100 

for 13 models and the largest fractions were observed for the models DM2 (76%) and DM2Za20 (69%; Supplement S6: Fig. S6; 

Supplement S6: Table S27). Across the species-specific models, climate projections within sample or population were most 

influential on Δ100 for 12 or 8 models, respectively, and the largest fractions were observed for the models DM2 (49% or 58%) 

and DM2Za20 (49% or 56%; Supplement S6: Fig. S7 and S8; Supplement S6: Tables S28 and S29). 720 

Phenology models had the third and fourth largest influence on projections of autumn phenology according to site- and species-

specific models, respectively, while TDM, PDM, and TPDM models generally projected the most pronounced forward shifts 

and CDD, TPMt and PIA models the most pronounced backward shifts. Phenology models explained 11% and 4% or 5% of 

the variance in Δ100 when projected with site- and species-specific models within sample or population, respectively (Fig. 5, 
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Supplement S6: Table S22). When projected by site-specific models, the Δ100 based on the reference CDD model was reduced 725 

the most with the PDM1, TPDM1, and TDM1 models (from −11.8 to −9.8 days; CI99; Fig. 5, Supplement S6: Tables S19 and 

S23). The largest increases occurred with the PIA+, PIA−, TPDMZa20 models (from +0.9 to +1.8 days, CI99). When projected 

with species-specific models, the Δ100 based on the reference CDD model was reduced with all other models (Fig. 5, 

Supplement S6: Tables S20, S21, S24, and S25). Here, the largest reductions occurred with the PDM1, TPDM1, and PDM2 

or TDM1 models (from v12.0 to −11.2 or from −10.4 to −9.7 days; CI99), while the smallest reductions occurred with the PIA−, 730 

PIA+, PIAGSI, and TPMt models (from −3.8 to −2.6 days or from −0.8 to −0.1 days, if projected within sample or population 

respectively; CI99). 

Optimization algorithms had little influence on projections in general, while the algorithms CMA-ES (norm. and extd.) and 

TREGO (norm.) led to the largest deviations from the reference. Optimization algorithms explained less than 1% of the 

variance in Δ100 according to either site- or species-specific models (Fig. 5, Supplement S6: Table S22). When projected with 735 

site-specific models, the Δ100 according to the reference GenSA (norm.) was only reduced by the GenSA (extd.; ~−0.1 days; 

CI99) algorithm and increased most, namely between +0.9 and +2.1 days (CI99), by both CMA-ES and the TREGO (norm.) 

algorithms (Fig. 5, Supplement S6: Tables S19 and S23). When based on species-specific models, the lowest Δ100 was obtained 

with the reference. Again, both CMA-ES and the TREGO (norm.) algorithms increased Δ100 the most compared to the 

reference, namely from +3.0 to +3.3 days or +2.1 to +3.1 days (CI99) in projections within sample or within population (Fig. 740 

5, Supplement S6: Tables S20, S21, S24, and S25). 

Sampling procedures had by definition no influence on projections with site-specific models and the third or fourth largest 

influence on projections with species-specific models. Since site-specific model parameters for projections were calibrated 

with all observations per site, effects of corresponding sampling procedures on Δ100 would be random. Subsequently, our 

results indicated no general (i.e. according to all five samples) significant or decisive effect of any sampling procedure (Fig. 745 

5, Supplement S6: Table S23). However, the p-values of two sampling procedures fell below the significance level according 

to at least one of the five GAMs, leading to a type I error or “false positive”, whereas none of the GAMs resulted in a decisive 

influence according to the Bayes factor. In projections with species-specific models, sampling procedures had an influence 

and explained 3% or 6% of the variance in Δ100 when projected within site or within population (Fig. 5, Supplement S6: Table 

S22). In comparison to the reference random sample from the entire population, Δ100 was reduced or increased the most when 750 

projections were based on random samples from the lower or upper half of the population according to average autumn 

phenology, respectively (Fig. 5, Supplement S6: Tables S20, S21, S24, and S25). Corresponding effect sizes were ~−5.6 days 

or ~+4.5 days and −5.9 to −5.8 days or +5.4 to +5.5 days (CI99)) when projected within sample and within population, 

respectively. 

Sample size proxies had the smallest influence. Neither N:q and N:q nor the site ratio (s:S) explained more than 0.5% of the 755 

variance in Δ100 (Fig. 5, Supplement S6: Table S22). In projections with site-specific models, effects were ~+0.0 days for N:q 

(CI99; Fig. 5, Supplement S6: Tables S19 and S23). In projections with species-specific models, the effects were ~+0.2 days 
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or ~+0.1 days for N:q (CI99) when projected within sample and within population, respectively, and +0.0 days for s:S (CI99; 

Fig. 5, Supplement S6: Tables S20, S21, S24, and S25). 

Sites were the most and second most important driver of autumn phenology projected with both site- and species-specific 760 

models, while the influence of species was very low. Sites explained 24% and 41% or 46% of the variance in Δ100 when 

projected with site- and species-specific models within samples or population, respectively (Fig. 5, Supplement S6: Table 

S22). Species accounted for less than 0.5% of the variance in Δ100 projected with either site- or species-specific models. 

3.2.2 Relations with model performance 

Coefficient estimates for performance and projections were negatively correlated across phenology models and positively 765 

correlated across optimization algorithms for both site- and species-specific models, but with neither decisive nor significant 

evidence. With site-specific calibration and projection, we derived the highest Kendall rank correlations for sampling 

procedures with τ = +0.71 (p = 0.024 and BF01 = 1/5.1) and weaker negative and positive correlations for phenology models 

and optimization algorithms, respectively (Fig. 6, Supplement S6: Table S26). With species-specific calibrations and 

projections, the correlations for phenology models and sampling procedures were negative, whereas those for optimization 770 

algorithms were positive. When projected within sample or population, the strongest correlations were derived for optimization 

algorithms or for phenology models, namely τ = −0.50 or τ = −0.35 (p = 0.061 and BF01 = 1/2.2 or p = 0.032 and BF01 = 1/3.1), 

respectively (Fig. 6, Supplement S6: Table S26). Thus, while the best performing phenology models were related to larger 

Δ100, the best performing optimization algorithms were associated with smaller Δ100, without any regularity in sampling 

procedures. In other words, autumn phenology was projected to occur later if based on better performing models. 775 

Projections with site-specific models were influenced more by climate projection scenarios and less by sites when based on 

better performing phenology models. The evidence was strongest for the correlations between the performance rank of 

phenology models and the relative influence of climate projection scenarios on the variance in Δ100 (τ = −0.64; p < 0.005 and 

BF01 = 1/788) or sites (τ = +0.59; p < 0.005 and BF01 = 1/249; Fig. 6, Supplement S6: Fig. S5 and S6, Supplement S6: Table 

S26). This suggests that the better the underlying models performed, the more closely the projections of autumn phenology 780 

followed the climate signal, and vice versa. Also, the better the underlying models performed, the more the projections of 

autumn phenology became detached from the sites. 

Projections with species-specific models and within population were a little more influenced by climate projection scenarios 

and less influenced by optimization algorithms when based on better performing models, whereas the influence of factors on 

projections within sample appeared to be unrelated to model performance. When projected within population, the evidence 785 

was strongest for the correlations between performance rank of models and climate projection scenarios (τ = −0.32; p = 0.040 

and BF01 = 1/2.6) or optimization algorithms (τ = +0.34; p = 0.030 and BF01 = 1/3.3; Fig. 6, Supplement S6: Fig. S5, S7, and 

S8, Supplement S6: Table S26). That is, the better the models are, the more the projections depended on the climate signal and 

the less they were influenced by the optimization algorithm. 

 790 
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Figure 6: Kendall rank correlation (τ) between coefficient estimates of explanatory variables for log-transformed root mean square 
error (RMSE) and 100-year shifts (Δ100) at site level (a) and between coeffiecient estimates of phenology models for log(RMSE) and 
the relative influence on the variance in Δ100 of the remainng factors (b). The colour of the ellipses corresponds to the calibration mode 
and corresponding projections, whereas their filling visualises the value of τ. The value of τ is further expressed by the angle (negtive vs. 795 
postive) and length of minor axis (absolute value). Asterisks and dots refer to the p-value, while hashtags and crosses refer to the minimum 
Bayes factor (see Fig. 4 for further details). 

4 Discussion 

We evaluated the effects of phenology models, optimization algorithms, sampling procedures, and sample size on the 

performance of phenology models calibrated per site (i.e. one set of parameters per species and per site) and per species (i.e. 800 

one set of parameters per species and for the entire population). The performance was mainly influenced by the phenology 

models, followed by the optimization algorithms. In general, simple phenology models that depended on daily temperature, 

day length, and partly on average seasonal temperature or spring leaf phenology performed best, and non-Bayesian 

optimization algorithms outcompeted the Bayesian algorithms. The entire population was best represented by species-specific 

phenology models calibrated with stratified samples that were based on equally sized bins according to the average phenology 805 

per site. Site- or species-specific models performed best when trained with systematically balanced or stratified samples based 

on mean annual temperature, respectively. The bias-variance trade-off (i.e. overfitting) with site-specific calibration increased 

considerably when the ratio of the number of observations relative to the number of the free model parameter fell below nine. 

We further evaluated the effects of phenology models, optimization algorithms, sampling procedures, sample size, and climate 

projection scenarios on the projected 100-year shift in autumn leaf phenology according to site- or species-specific models. 810 

Projected autumn phenology generally shifted between −13 and +12 days or between −4 and +20 days according to the 

representative concentration pathway 4.5 or 8.5 (RCP 4.5 or RCP 8.5, respectively), depending on the scenario and phenology 

model and based on the reference optimization algorithm and sampling procedure. The shifts were mainly influenced by 

climate projection scenarios and sites. The relative influence of phenology models was surprisingly small, but shifts projected 

with better performing models were generally larger and depended more on projected climate change than shifts according to 815 

models with poorer performance.  

4.1 Phenology models 

Phenology models had the largest influence on model performance. In model comparisons, better performing models are 

usually accredited as being based on relevant and correctly interpreted processes (e.g. Delpierre et al., 2009; Keenan and 

Richardson, 2015; Lang et al., 2019; Zani et al., 2020). Here we show that phenology models exerted the largest influence on 820 

model performance of all the factors analyzed. This reinforces model comparisons to identify relevant processes of phenology. 

Relatively simple models driven by daily temperature, day length, and partly by seasonal temperature or spring leaf phenology 

performed best. Patterns in ranked coefficient estimates generally showed that the models DM1 and DM2 developed by 

Delpierre et al. (2009) and the models DM1Za20, DM2Za20, TDMZa20, and SIAMZa20 adapted by Zani et al. (2020) performed 
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best. These models are very similar to the models that Liu et al. (2020) adapted from Delpierre et al. (2009) and Caffarra et al. 825 

(2011), which performed best in their model comparison study. Further, the models DM1 and DM2 performed best in Delpierre 

et al. (2009). However, the models DM1Za20, DM2Za20, TDMZa20, and SIAMZa20 did not lead to the best results in Zani et al. 

(2020). Daily senescence rate in all these models depends on daily temperature and day length, while the threshold is either a 

constant or linearly derived from the actual average temperature during the growing season or the site-anomaly of spring 

phenology. Interestingly, the best performing models in site-specific calibration were those adapted by Zani et al. (2020) such 830 

that the senescence rate was based on a sigmoid curve, which economized one free model parameter (Table 1 and Supplement 

S2: Table S1). We hypothesize that fewer parameters generally lead to an advantage with few training observations, which 

needs to be examined in more detail in further studies. Finally, our study supports previous studies that have also demonstrated 

the superiority of models based on daily temperature, day length, seasonal temperature, and spring phenology, while 

questioning the effect of photosynthesis on autumn leaf phenology as suggested by Zani et al. (2020) and indicating that the 835 

model by Lang et al. (2019) benefits from considering seasonal drivers. 

Sites had a relatively large influence on projections with species-specific models, and the number of sites per sample had a 

negative effect on the sample-level model performance of species-specific models. Relevant drivers may be missed by models 

based on senescence rates driven by temperature and day length and a corresponding threshold (e.g. Fu et al., 2014b). Recent 

models accounted for this and based their threshold for the senescence rate on spring phenology (SIAM model; Keenan and 840 

Richardson, 2015) or on seasonal drivers such as the average growing season temperature or accumulated apparent 

photosynthetic product (TDM or PIA models; Liu et al., 2019; Zani et al., 2020). However, Gill et al. (2015) and Chen et al. 

(2018) observed site-specific responses of leaf phenology to climate change, which could be due to site-specific soil properties 

(Arend et al., 2016), nutrient availability (Fu et al., 2019), and local adaptation (Peaucelle et al., 2019), which are not yet 

included in the current models. In addition, observations may be biased (Liu et al., 2021) and the perceptions of observers at 845 

different sites are usually not aligned. Models can consider relevant but excluded drivers and observer bias through differently 

calibrated parameters, such as a sample-specific threshold constants, for example. this is not possible to the same extent for 

species-specific models as for site-specific models. However, the positive effect of such sample-specific parameters decreases 

as the number of sites in the sample increases, shifting the modeled values closer to the mean observation of the calibration 

sample. Consequently, we expect (1) a larger effect of sites on projections based on species-specific rather than site-specific 850 

models and (2) an increasing RMSE with more sites per sample. Here we observed both, i.e. the relative influence of sites on 

projections increased from 24% to 46% or 41% if based on site-specific models or species-specific models projected within 

sample or within the entire population, respectively. Moreover, the RMSE of species-specific models validated within sample 

increased with more sites as expressed by the site ratio s:S. This demonstrates that some relevant drivers of autumn leaf 

phenology are not yet considered in the evaluated process-oriented models and/or that bias in observed phenology data may 855 

be amplified when the same observer is at a particular site for multiple years. 
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4.2 Optimization algorithms 

We generally obtained the best results with the GenSA algorithm and found that the Bayesian algorithms ran in extensive 

mode outperformed those ran in normal mode. While Simulated Annealing and its derivatives have been the algorithms of 

choice in various studies that calibrated process-oriented models of tree leaf phenology (e.g. Chuine et al., 1998; Meier et al., 860 

2018; Zani et al., 2020), one derivative, namely GenSA (Xiang et al., 2013), is further the default algorithm of the R package 

phenoR (Hufkens et al., 2018). In this study, GenSA generally delivered the best results, which confirmed this choice. 

However, our results depended on the control settings of the algorithms such as the number of iterations. The Bayesian 

algorithms EGO and TREGO always performed better when executed in extensive mode and may lead to better results if the 

iterations and/or the number of starting points were increased further. 865 

However, more iterations did not lead to more accurate results for all optimization algorithms. We basically applied off-the-

shelf algorithms (Trautmann et al., 2011; Bendtsen, 2012; Xiang et al., 2013; Picheny and Ginsbourger, 2014; Dupuy et al., 

2015; Hufkens et al., 2018), using the respective default configurations except for the control of the number of iterations, 

which we adjusted depending on the number of free model parameters to execute them in normal and extended mode (i.e. few 

and many iterations). Expecting that more iterations lead to better results, we were surprised to find that this was not always 870 

true. However, all studied algorithms sample solutions of the cost function by changing the free parameters in small steps. 

This step size depends, among others, on the search space and the number of iterations. In turn, the complexity of the cost 

function depends on the model and the number of free parameters. While many iterations lead to small steps and vice versa, 

small steps may cause the algorithm to get stuck in a local optimum whereas large steps may cause it to overstep the global 

optimum (i.e., the exploration-exploitation trade-off; Maes et al., 2013; Candelieri, 2021). In addition, larger samples and more 875 

free parameters are expected to lead to more local optima. Therefore, we strongly suggest that studies of process-based 

phenology models carefully set and test the control parameters of the optimization algorithms in dependence of the models as 

well as communicate and discuss the applied settings. 

4.3 Calibration samples 

Stratified selected sites based on autumn phenology seemed to represent the population better than the population itself, which 880 

appears to be an artefact of a model bias towards the mean phenology. We evaluated the degree to which species-specific 

phenology models represented the entire population according to the ratio of the external sample RMSE to the external 

population RMSE. This ratio lay above one for stratified samples based on autumn phenology. In other words, the external 

RMSE decreased when calculated for the entire 500 sites instead of the 17 sites. This finding can be explained by the fact that 

modelled values tend towards the mean predictand (e.g. visible in Delpierre et al., 2009, Fig. 2, and in Lang et al. 2019, Fig. 885 

4). Given such a tendency, the errors between modelled and observed values result in a U-shaped (i.e. convex) curve across 

the predictands (i.e. smaller errors for the mean predictand and larger errors for the extremes). Consequently, normally 

distributed predictands result in a smaller RMSE than for example uniformly distributed predictands because the former 
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distribution accounts for relatively more small errors around the mean predictand than the latter. Here we argue that autumn 

phenology (i.e. the predictand) tends to follow a uniform distribution in stratified samples based on autumn phenology and 890 

normally distributed in the full sample. Further, the tendency of phenology models towards the mean observed phenology 

manifested in smaller variances of modelled than observed phenology in Delpierre et al. (2009, Fig. 2), Keenan and Richardson 

(2015, Fig. 3), Lang et al. (2019, Fig. 4), Liu et al. (2019, Fig. 2), and Zani et al. (2020; Fig. 3D, only for some models). Thus, 

we suggest that our phenology models were biased towards the mean, too, which led to the seemingly better representation of 

the population by stratified samples based on autumn phenology. Moreover, we hypothesize that the RMSE ratio in the other 895 

samples did not exceed one because the distributions of autumn phenology tended towards normal in all these samples. Finally, 

it follows from the above line of thought that models with a tendency towards the mean predictand have an advantage over 

models without such a tendency when the RMSE is calculated from normally distributed observations (provided convex and 

uniform error curves cover the same area within the observation range). This seems to be a hindrance in the search for models 

that represent a population and thus should fit all observations equally. Therefore, we advocate the use of stratified samples 900 

based on autumn phenology to test and evaluate calibrated models at the population level. 

Our results suggest the use of systematically balanced observations in cross-validation and of randomly selected sites from 

stratified bins based on mean annual temperature in species-specific modelling. Systematically continuous samples led to the 

best results of cross-validated models, if NA values and non-converging runs were penalized and included, whereas they were 

outperformed by systematically balanced samples based on autumn phenology or year, if NA-producing and non-converging 905 

runs were excluded. Thus, the exclusion of such runs benefitted the balanced samples and/or penalized the continuous samples. 

This may be the case when some balanced samples led to more NAs or non-converging calibration runs than the continuous 

samples and/or some continuous samples led to very small root mean square errors despite one or more NAs. Since the first 

possibility seems more likely, we suggest that the best cross-validations are obtained with systematically balanced observations 

based on phenology or year, but this may also lead to convergence problems. In addition, we studied the effects of site selection 910 

on model calibration. Not surprisingly, if validated within sampled sites, the best results were obtained with samples of more 

uniform phenological patterns, namely with randomly sampled sites from either half of the population according to autumn 

phenology. More interestingly, if validated within the sites of the entire population, models calibrated with 12 randomly 

selected sites from stratified equally sized bins based on mean annual temperature outperformed models calibrated with all 

500 sites (i.e. full sample) and led to lowest RMSE. This result is in line with the conclusions by Cochran (1946) and Bourdeau 915 

(1953) that random components are beneficial in ecological studies and stratified sampling represents a population equally or 

better than random sampling. Even more remarkable is that the calculation time of the calibrations for models trained with 

these stratified samples was notably shorter than for models trained with the full sample. Therefore, we recommend stratified 

sampling based on mean annual temperature for the calibration of species-specific models, since it leads to the best model 

performance at the population level while requiring very little computational resources. 920 

Sample size effects suggested to calibrate with at least nine observations per free model parameter (N:q) to prevent serious 

overfitting. We estimated the degree of the bias-variance trade-off with the ratio between external and internal RMSE (Cawley 
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and Talbot, 2010, Sect. 5.2.1). Our results showed that, while this ratio decreases constantly, the rate of decrease changes 

notably between N:q = ~9 to ~12. This range is in line with the sometimes mentioned rule of thumb of at least N:q = 10 in 

regression analysis. Besides and more specific, Jenkins and Quintana-Ascencio (2020) suggest the use of at least N:q = 8 in 925 

regression analysis if the variance of predictands is low and at least N:q = 25 when it is high. Although we calibrated process-

oriented models and not regression models, these minimum N:q are in line with our study and thus seem to apply, too. 

Moreover, while N:q = 9 appear to be the minimum, we suggest the use of larger N:q if the model is calibrated with 

observations derived from more than one site to account for an increased variance. 

The RMSE increased for some models when non-converging calibration runs or runs that yielded NA values in either the 930 

calibration or validation were excluded. For our performance results, we substituted NA values with an error between observed 

and simulated day of autumn leaf phenology of 170 d (i.e., a larger error than observed in any calibration run). Accordingly, 

non-converging runs led to an RMSE of 170 d, which were analyzed together with the RMSE of converging runs (cf. 

Sect. 2.5.2). Now, if the RMSE is analyzed excluding the non-converging runs and the runs that yielded NA values, intuitively 

one would expect the average RMSE to shrink, but this was not the case in the species-specific models (cf. Supplement 6: 935 

Sect. S2.2.2). In other words, punishing with large RMSE and large errors for non-converging runs and NA values led to 

smaller estimated RMSE and thus better estimated model performance. The relationship between performance and sample size 

may explain this counterintuitive result. Large samples favored the performance of species-specific models but also more often 

led to NA values than smaller samples (cf. Supplement 6: Sect. S1). At the same time, larger samples weaken the effect of a 

particular substitution of an NA value with 170 d on the RMSE. Thus, calibrations with large samples may well have been 940 

more accurate despite some NA values and may have resulted in lower RMSE despite NA substitution, which positively 

affected the overall performance of the models. 

4.4 Projections of autumn phenology 

Overall, the climate projection scenarios were the primary drivers of the projected shifts in autumn phenology, with the warmer 

scenario causing later autumn phenology than the cooler scenario, which is consistent with the currently observed main effect 945 

of climate warming. Having the largest influence in two out of three projection modes, climate projection scenarios explained 

between 46% and 64% of the variance in the 100-year shifts of autumn phenology. On average, the projected autumn 

phenology occurred 8–9 days later when projected with the warmer RCP 8.5 than with the cooler RCP 4.5 scenarios, which 

corresponds to the observed main effect of warming. Past climate warming was found to mainly delay autumn phenology 

(Ibáñez et al., 2010; Meier et al., 2021), but slight forward shifts or a distribution around a temporal change rate of zero have 950 

also been observed (Menzel et al., 2020; Piao et al., 2019). Such inconsistent past trends may be explained by the fact that 

autumn phenology (i.e., observed with canopy greenness rather than chlorophyl content; cf. Sect. 2.1.1 and Mariën et al., 2021) 

depends more on the severity than the type of weather event, with, for example, moderate heat spells causing backward shifts 

but extreme heat spells and drought causing forward shifts (Xie et al., 2015). Since the number and severity of heat spells is 

related to sites (e.g. warmer lowland vs. cooler highland sites; Bigler and Vitasse, 2021), such opposing effects of weather 955 
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events may explain the large influence of sites on projected shifts in autumn phenology, as discussed below. In addition, the 

length of the growing season is affected by shifts in spring and autumn phenology for deciduous trees. Our projections were 

based on spring phenology that advanced by 20 days within 100 years. Subsequently, the projected growing season lengthened 

by 7–32 days (RCP 4.5) or by 16–40 days (RCP 8.5), even when autumn phenology shifted forward, as projected with some 

models and discussed further below. Therefore, our study supports a general lengthening of the growing season due to projected 960 

climate warming, as also suggested by Delpierre et al. (2009), Keenan and Richardson (2015), and Meier et al. (2021), in 

contrast to Zani et al. (2020). 

The divergent autumn phenology projections of the scenario RCP 4.5 and CMC 2 might be due to temperature and precipitation 

biases in this scenario. We based our autumn phenology projections on 26 different climate model chains of the EURO 

CORDEX dataset, each consisting of a global and regional climate model (GCM and RCM, respectively; Supplement S1: 965 

Table S5). While the patterns in the projections generally matched our expectations, the projected autumn phenology based on 

the scenario RCP 4.5 and CMC 2 behaved differently from those based on the other scenarios (Fig. 5). The EURO CORDEX 

is a state-of-the-art GCM and RCM ensemble and widely accepted to contain high quality climate projection data despite some 

biases (Coppola et al., 2021; Vautard et al., 2021). The afore mentioned RCP 4.5 and CMC 2 stands for the RCM CNRM-

ALADIN63 (ALADIN63; Nabat et al., 2020) driven by the GCM CNRM-CERFACS-CNRM-CM5 (CM5; Voldoire et al., 970 

2013) under RCP 4.5 (version two of the run r1i1p1; Supplement S1: Table S5). This scenario is the only one based on the 

RCM ALADIN63 in this study, whereas five other scenarios were also based on the GCM CM5. ALADIN63 is the successor 

of CNRM-ALADIN53 (ALADIN53; Colin et al., 2010), which emerged after ten years of development and is arguably 

different from the latter but still related to it (Nabat et al., 2020). The GCM-RCM chain CM5 - ALADIN53 had comparatively 

great difficulty in accurately modeling the interannual and seasonal variability of mean temperature, seasonal precipitation for 975 

summer (i.e., June, July, and August; JJA), and the seasonal variability of different drought indices in a comparison of the 

historical runs from the EURO-CORDEX ensemble with observational data for southern Italy (Peres et al., 2020). Another 

comparison resulted in relatively large errors in the minimum temperature during summer (JJA) for both ALADIN53 and 

ALADIN63 driven by CM5 as well as in the second largest deviation from the observed temperature trend for 

CM5 - ALADIN63 (i.e. more than twice the temperature increase during 1970–2005 as observed) based on historical runs of 980 

the EURO-CORDEX ensemble and weather observations for the Pannonian Basin in the southeast of Central Europe (Lazić 

et al., 2021). Since we treated all GCM-RCM used in this study the same (Supplement S1: Sect. 2), it may be that such biases 

in temperature variability and summer temperature are responsible for the deviating projections of autumn phenology when 

based on RCP 4.5 and CMC 2. 

Sites generally exhibited the second largest influence on projected shifts and had more influence when the latter were projected 985 

with species- than with site-specific models, which could be due to correct modelling of site differences or to poorer calibration 

for sites with phenology that deviates from the sample mean. Studies of past changes in autumn phenology of trees found 

ambiguous trends between different sites (Piao et al., 2019; Meier et al., 2021). Different trends may be the result of opposing 

weather effects, e.g. moderate versus severe heat and drought spells (Xie et al., 2015), or of different correlations between 
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spring and autumn phenology, dependent on nutrient availability and elevation (Fu et al., 2019; Charlet de Sauvage et al., 990 

2022), possibly related to local adaptation (Alberto et al., 2011; Quan and Wang, 2018). Thus, it may be that such opposing 

weather effects or different correlations led to the strong influence of sites on projected autumn phenology. However, this 

strong influence could also be due to the above-described tendency of models to the mean and subsequent poorer calibration 

for sites at the extremes of the climatic and phenological spectrum within samples. This hypothesis is further supported by the 

larger relative influence of sites on projections with species- than with site-specific models. In addition, species-specific models 995 

performed worse than site-specific models (based on converged runs without NA values), as was also reported by Basler (2016) 

with respect to models of spring phenology, while Liu et al. (2020) found that species-specific models poorly reflected the 

spatial variability of autumn phenology. Thus, it seems improbable that the species-specific models with generally poorer 

performance predicted site differences more accurately than the site-specific models with generally better performance. 

Therefore, we suspect that the large influence of sites on projections with species-specific models is primarily due to 1000 

insufficiently modelled processes of leaf phenology and the consequent tendency of phenology models to the mean. 

The influence of phenology models on projected autumn phenology was relatively low and the range of projections relatively 

small. The largest influence of phenology models was 11% and occurred in projections based on site-specific models and 

hence was almost six times smaller than the influence of climate projection scenarios. While the underlying processes differ 

between each model (Delpierre et al., 2009; Keenan and Richardson, 2015; Lang et al., 2019; Liu et al., 2019; Zani et al., 1005 

2020), the influence of these differences on the projected autumn phenology did not affect the projected lengthening of the 

growing season: Different models altered the reference shifts of +8.2 to +11.6 days by -12 to +2 days, which resulted in some 

forward shifts in autumn phenology with the cooler RCP 4.5 scenarios, but never in a shortening of the growing season because 

the latter is calculated in combination with the -20 days shift in spring phenology. Moreover, the difference between the models 

lay within 14 days (i.e., −12 to +2 days), which is less than the uncertainty attached to recordings of autumn phenology based 1010 

on human observations (i.e. due to small sample sizes and observer bias; Liu et al., 2021). In other words, the different process-

oriented models led to differences in the length of the growing season that were smaller than the uncertainty in the data upon 

which we based our projections. Therefore, our results justify the assumption, that the examined phenology models do not 

differ fundamentally in their underlying processes, even if we acknowledge that the TDM, PDM, and TPDM models (Liu et 

al., 2019) behaved differently than the other models (i.e. they resulted in the largest forward or smallest backward shifts of 1015 

autumn phenology). Rather, we suggest that the effects of temperature and day length, which all analyzed models simplify in 

different ways, mostly suppress the effects of other concerned drivers. 

Better-performing models generally projected later autumn leaf phenology, which may add a new dimension to the discussion 

about realistic projections of autumn leaf phenology, but should be treated with caution, as corresponding correlations were 

relatively low. The PIA models in Zani et al. (2020) projected autumn phenology to advance and caused a shortening of the 1020 

growing season between the years 2000 and 2100 as a result of increased photosynthetic activity. This result has thus been 

debated (Norby, 2021; Zani et al., 2021; Lu and Keenan, 2022; Marqués et al., 2023) and could not be reproduced in our study. 

Here, we found positive and negative coefficient estimates, depending on the projection mode, which seems to be partly in 
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line with Zani et al. (2020), but that is actually not the case: First, our estimates refer to changes relative to the reference, which 

was always positive. Thus, while the negative coefficients for the PIA models indicated negative deviations from the reference, 1025 

they still resulted in later autumn phenology and longer growing seasons. Second, Zani et al. (2020) reported an advancement 

of autumn phenology only for projections based on PIA models and in contrast to the other models, while our results suggest 

the largest forward shifts for the TDM, PDM, and TPDM models (Liu et al., 2019). Moreover, the negative correlations 

between phenology models ranked by their performance and projection estimates showed that models with smaller root mean 

square errors generally projected larger shifts than models with larger root mean square errors. In other words, while we were 1030 

unable to replicate the projected pronounced forward shifts in autumn phenology due to increased photosynthetic activity, our 

results suggest that better performing models tend to project a later autumn phenology. 

4.5 Methodological issues 

4.5.1 Driver data 

Modelled weather data can be biased, which affects model outputs based on these data. For example, correcting climate 1035 

projections for bias increased the accuracies of projected forest ecosystem function and of the simulated timing of leaf 

phenology (Drepper et al., 2022; Jourdan et al., 2021). Here, we refrained from bias-correcting the meteorological data for the 

past and future, which likely negatively affected the accuracy of the simulated timing of autumn leaf phenology for the past 

and future. Thus, we probably received too large RMSE and projected shifts that were both too small and too large. But did 

the use of uncorrected meteorological data affect our comparison of model vs. calibration effects on model performance and 1040 

projections? The used meteorological data for the past is likely more accurate for some sites than for others. This is probably 

also true for the used meteorological data for the future, but the sites with more vs. less accurate data likely differ between 

climate scenarios. In addition, some scenarios can be systematically warmer than others, for example (cf. above). Therefore, 

the effect of sites on model performance and the effect of climate scenarios on model projections was probably inflated by the 

uncorrected meteorological data. In contrast, these data probably affected all models similarly and the sampling procedures 1045 

randomly, whereas the optimization algorithms remained unaffected. Thus, the use of uncorrected meteorological data most 

likely had little impact on our results. 

Spatial and elevational differences between a particular site and the centre of the corresponding grid cell, from which the 

meteorological data were extracted, affect the input data. Gridded data may poorly represent the conditions at a particular site 

due to spatial and elevational differences. For example, precipitation and temperature can change in response to different 1050 

terrain and the lapse rate, respectively, while the leaf area index and plant-available water capacity can change due to different 

vegetation and soil conditions. These effects of spatial and elevational differences were not considered in this study and may 

have led to inaccurate input data (e.g., average MAT for the site Grossarl, 47.2° N / 13.2° E at 900 m a.s.l., in the Austrian 

Alps was ~0.6° C, which makes beech growth unlikely; Holtmeier and Broll, 2020). The degree of inaccuracy probably differs 

between sites, which inflated the site effects on model performance and model projections. In contrast, the effects of models, 1055 
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sampling procedures, and optimization algorithms were probably unaffected by the inaccurate input data (cf. above), so these 

data most likely had a neglectable effect on our results. 

4.5.2 Daily minimum vs. mean temperature as driver of the senescence rate 

Most original publications of the compared models calculated the senescence rate from the mean rather than the minimum 

temperature, whereas we used the minimum temperature for all models. Our choice was based on the stress exhibited by cool 1060 

temperatures that promotes leaf senescence (Jibran et al., 2013; Lim et al., 2007) and the recent model comparison by Zani et 

al. (2020), who used daily minimum temperature throughout their study. This choice allowed to compare or study with Zani 

et al. (2020) and to assess the response curves of the senescence rate. However, inferences on the drivers of leaf senescence 

would be more profound, if they were based on a comparison that additionally considers models driven by mean temperature, 

as suggested in some of the original publications (i.e., Delpierre et al., 2009; Dufrêne et al., 2005; Keenan and Richardson, 1065 

2015; Liu et al., 2019). Such an extended comparison is certainly essential to gain further insight in the process of leaf 

senescence but may only focus on the models to remain feasible, rather than also including optimization algorithms and 

sampling procedures. 

4.5.3 Treatment of NA values and non-converging calibration runs 

Especially the ranks of site-specific phenology models and corresponding optimization algorithms were affected by the 1070 

treatment of NA values and non-converging calibration runs. Here, we performed two analyses in which we either replaced 

NA values and non-converging runs with a fixed value or we excluded the affected runs. We are not aware of any other study 

involving process-oriented models of tree leaf phenology that has mentioned NA-producing or non-converging calibration 

runs and their treatment. We doubt that our study is an exception in that it produced NAs or non-converging runs at all. Be 

that as it may, in the absence of previous studies addressing this issue, we could not refer to any established treatment and had 1075 

to find a way to deal with NA values and non-converging runs. We chose (1) to penalize NAs with a replacement slightly 

larger than the largest modelled differences or (2) to exclude concerned runs. Since only “bad” runs were excluded, exclusion 

may bias the analysis by leading to overly optimistic results and replacement seemed preferrable, especially for ranking factors 

by their effect on performance. However, replacement adds an artificial effect and thus affects the estimated effect sizes, why 

they should be compared with corresponding effect sizes after exclusion and treated with caution. The models with the most 1080 

parameters also led to the most NA-producing or non-converging runs, especially with site-specific calibration performed with 

GenSA or Bayesian optimization algorithms. Subsequently, we found considerable differences between the ranking of 

phenology models and optimization algorithms depending on the treatments with replacement and exclusion. 

4.5.4 Evaluation of model performance based on the root mean square error 

We evaluated model performance solely based on the RMSE, which allows only limited conclusions to be drawn about 1085 

biological processes but reveals the effects of various factors on model performance and projections. Small RMSE values may 
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also result from poorly calibrated models, due to intercorrelation between free model parameters or limited data (e.g. regarding 

the base temperature and threshold in the CDD model or climatic and temporal sections of the habitat and longevity of a 

species, respectively; Chuine and Régnière, 2017). Therefore, Chuine and Régnière (2017) recommended to complement the 

quantitative evaluation with a qualitative assessment of the calibrated parameters and the resulting curves of the rate functions. 1090 

Since we were less interested in the biological processes that drive leaf phenology and since we evaluated over 2 million 

different models, we refrained from a qualitative assessment and focused solely on the quantitative RMSE. Therefore, 

conclusions about the processes driving autumn phenology should be drawn from our study with caution. At the same time, 

the RMSE remains an important measure for model comparison and selection. Thus, our conclusions about the relationships 

between the factors analyzed and model performance or projections, and between model performance and projections, are 1095 

relevant for future studies of leaf phenology. 

4.5.5 Choice of generalized additive models instead of linear mixed-effects models 

We opted for generalized additive models rather than linear mixed-effects models due to software limitations and thus benefited 

from higher computing speed without affecting the results. The amount of Δ100 data was too large and thus the variance-

covariance matrix could not be solved by the LAPACK library (Anderson et al., 1999) integrated in R (R Core Team, 2022) 1100 

and called upon by the function lme4::lmer (Bates et al., 2015). However, the data could be processed with the function 

mgcv::bam (Wood, 2011, 2017), which allowed an alternative formulation of a linear model with random intercepts. While 

mgcv::bam was much faster than lme4::lmer (personal observation), the corresponding coefficient estimates were practically 

identical (comparison not shown). 

4.5.6 Evaluation based on sampled model projections 1105 

Since we feared hardware limitations if we evaluated all Δ100 data, we opted for an evaluation based on samples, the results of 

which are convincing. While we were able to fit the generalized additive models for all Δ100 data, the subsequent analysis of 

variance (functions aov and drop1 in the R package stats; R Core Team, 2022) required an enormous amount of computing 

power (>600 GB RAM per CPU-core for the smallest dataset, i.e. the projections based on site-specific calibration). Therefore, 

we reduced the amount of data to be processed by drawing samples, fitting a generalized additive model for each sample, and 1110 

deriving an ANOVA from each model. Since the resulting coefficient estimates, confidence intervals, and estimates of the 

relative explained variance were within reasonable ranges, this procedure further strengthened our confidence in the results. 

4.5.7 Significance level and Bayes factors 

We chose a lower significance level than commonly used in ecology studies and complemented the p-value with the minimum 

Bayes factor to prevent over- or misinterpretation of our results. The p-values decrease as datasets and measurement precision 1115 

increase (Wasserstein and Lazar, 2016), and the analysis of many coefficients increases the probability of type I errors (i.e. 

“false positives”; Oxman and Guyatt, 1992; Ioannidis, 2005). Further, the p-value is often misinterpreted (Goodman, 2008) 
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and biased (Ioannidis, 2019), which may lead to overinterpretation of scientific results. We have accounted for these relations 

and possible overinterpretations by choosing a lower significance level than commonly used in ecology studies and 

complementing the p-value with the minimum Bayes factor of the null hypothesis to the alternative hypothesis. While 1120 

ecological studies generally apply a significance level of α = 0.05, we applied a smaller level of α = 0.01 and thus a threshold 

of p = 0.005 for two-sided distributions. Even with this lower α, most coefficients in our generalized additive model fits and 

ANOVAs were significant. Further, most of our statistically significant findings were accompanied by a minimum Bayes 

factor of 1/1000 or lower, indicating that our data suggest with decisive evidence that “no effect” is unlikely (i.e. the null 

hypothesis is rejected). As our study was exploratory, we believe that further studies to verify or falsify and quantify the 1125 

presumed effects are worthwhile and will provide exciting new insights. 

5 Conclusion 

Based on our combined results, we recommend (1) species-specific models for the analysis of underlying phenology processes 

and for projections, (2) a combination of samples for cross-validation and independent test samples, and (3) to consider a 

possible tendency to the mean underlying the models. The choice of species- rather than site-specific models leads to generally 1130 

larger sample sizes and larger ranges of considered drivers. In addition, species-specific models facilitate the assessment of 

the extent to which calibrated models tend towards the mean observation due to insufficient consideration of relevant processes. 

We advocate cross-validation of possibly regional, species-specific models, followed by independent tests. Specifically, we 

propose that (1) sites are selected in a stratified procedure based on annual mean temperature for (2) the cross-validation of a 

species-specific model with systematically balanced observations selected based on site and year, before (3) the calibrated 1135 

model is tested with new sites selected in a stratified procedure based on phenology. For both cross-validation and testing, the 

degree to which the model tends to the mean should be examined to assess how well the models perform at individual sites, 

within the entire region of interest, and, where possible, under different climate regimes. 

We conclude that generally uncertain projections tend towards later autumn leaf phenology. Accurate projections of changes 

in the timing of autumn phenology under projected climate change are essential for our understanding of the future CO2 1140 

mitigating capacity and of future species compositions and distributions of forests. Our results suggest that projected autumn 

phenology will be delayed due to projected climate warming, and thus the projected length of the growing season will increase. 

However, this result appears to be based on models that respond to quite similar underlying processes and may underestimate 

adverse effects of climate warming on autumn phenology, such as severe droughts. Therefore, further studies are needed to 

develop models that adequately account for processes relevant to autumn leaf phenology, and thus provide more valid 1145 

projections. 
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S1 Process-oriented models for autumn phenology 

In this study, we compared 21 process-oriented models for autumn phenology (Meier, 2022). In all models, the 

projected date for autumn phenology corresponds to the first day of year [doy] a daily accumulated senescence rate 

(Eq. S1) exceeds a corresponding threshold (Eq. S2): 

� = �  

Eq. S1 � ≥ �  

Eq. S2 

 

Here, RSi is the senescence rate of the ith day of the accumulation period for RSi that consists of n consecutive days and 

starts with d1. Sdn is the senescence status at day dn, and Ycrit is the corresponding threshold value.  

Depending on the model, the daily senescence rate is formulated in one of three different ways and, with colder 

temperatures, follows either a monotonically increasing (Eqs. S3 and S4) or a sigmoidal (RS,Sig; Eq. S5) response 

curve, with the monotonous increase weakened (RS,Mon–; Eq. S3) or amplified (RS,Mon+; Eq. S4) with shorter days 

(Delpierre et al., 2009; Lang et al., 2019; Dufrêne et al., 2005). 

 

� , = (� − � ) × � � , � < � ∧ � < �0 , � ≥ � ∨ � ≥ �  

Eq. S3 

� , = (� − � ) × 1 − � � , � < � ∧ � < �0 , � ≥ � ∨ � ≥ �  

Eq. S4 � , = 1 1 + � ×( × ) 
Eq. S5 

Here, Ti and Li are the minimum temperature and day length of day i, Tbase and Lbase are the corresponding threshold 

values fitted during model calibration. The parameters x, y, a, and b are free parameters, which are also fitted during 
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model calibration. For the DM1 and DM2 models, x and y are restrained to integers [∈ (0, 1, 2)] (Delpierre et al., 

2009), whereas for the SIAM model, x and y are fixed to 1 (Keenan and Richardson, 2015). Moreover, in the CDD 

model, RS depends linearly on daily minimum temperature and the response is neither decreasing nor increasing with 

shorter day lengths (i.e. x = 1 and y = 0; Dufrêne et al., 2005). We used the daily minimum temperature in all models 

for the reasons discussed in Sect. 4.5.2, rather than the daily mean temperature in the models CDD, DM1, DM2, 

SIAM, TDM1, TDM2, PDM1, PDM2, TPDM1, and TPDM2, which would have been in accordance to the 

corresponding original publications (Delpierre et al., 2009; Dufrêne et al., 2005; Keenan and Richardson, 2015; Liu 

et al., 2019). 

The first day of the accumulation period (d1) depends on the day of year, on daily minimum temperature, and/or on 

day length. Depending on the model, the earliest possible day for d1 is either the 173th or 200th day of year, with the 

former day corresponding to summer solstice. Thereafter, d1 is the first day with a lower temperature than Tbase (CDD 

and TPMt) or a shorter day length than Lbase (TPMp, SIAMZa20, TDMZa20, PDMZa20, TPDMZa20, PIAGSI, PIA+, and  

PIA−) or both (other models). Furthermore, in all models RS approaches or becomes 0 with high temperatures (Eqs. 

S3–S5). Therefore, even if d1 is theoretically independent of temperature in certain models, the accumulation of RS 

generally only starts after temperatures are sufficiently low. 

The threshold value (Ycrit; Eq. S6) is either a constant (c) which is optimized during model calibration (for the CDD, 

DM1, DM2, DM1Za20, DM2Za20, TPMt, and TPMp models) or depends linearly on one or two seasonal drivers. If Ycrit 

depends linearly on seasonal drivers (D1 and D2), the coefficients for the intercept (b0) and respective drivers (b1 and 

b2) are optimized during model calibration. 

 � = � + � � + � �  

Eq. S6 

 

Generally, the seasonal drivers correspond to a typical growing period which was defined before the calibration (e.g. 

observed spring phenology to averaged autumn phenology). But the seasonal drivers for the models by Liu et al. 

(2019; i.e. TDM1, TDM2, PDM1, PDM2, TPDM1, and TPDM2 models) correspond to the “leafy season”, defined as 

the period from the observed spring phenology to the first day of the accumulation period (d1). This day is the first 

day after summer solstice for which Li < Lbase. and it may change for each year at a given site and for a given species. 
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Table S1. The 21 process-oriented phenology models compared in this study with their functions, free parameters and 
corresponding boundaries for parameter optimization. 
Model Daily senescence rate (RS), starting day (d1), 

and threshold (Ycrit) 
Free parameters 
and boundaries 

CDD 
(Du05) 

RS = RS,Mon−  with x = 1 and y = 0 15 ≤ Tbase ≤ 30 
d1 = ���(�) for which � > 200 ∧ � < �        

Ycrit = c 0 ≤ c ≤ 15000 

DM1 
(De09) 

RS = RS,Mon– 

15 
11 

≤ 
≤ 

Tbase 
Lbase 

x 
y 

≤ 
≤ ∈ ∈ 

30 
20 
(0,1,2) 
(0,1,2) 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        
Ycrit = c 0 ≤ c ≤ 15000 

DM1Za20 
(Za20) 

RS = RS,Mon–  with x = 1 and y = 1 15 
11 

≤ 
≤ 

Tbase 
Lbase 

≤ 
≤ 

35 
20 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        
Ycrit = c 0 ≤ c ≤ 15000 

DM2 
(De09) 

RS = RS,Mon+ 

15 
11 

≤ 
≤ 

Tbase 
Lbase 

x 
y 

≤ 
≤ ∈ ∈ 

30 
20 
(0,1,2) 
(0,1,2) 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        
Ycrit = c 0 ≤ c ≤ 15000 

DM2Za20 
(Za20) 

RS = RS,Mon+  with x = 1 and y = 1 
15 
11 

≤ 
≤ 

Tbase 
Lbase 

≤ 
≤ 

35 
20 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        
Ycrit = c 0 ≤ c ≤ 15000 

SIAM 
(Ke15) 

RS = RS,Mon–  with x = 1 and y = 1 
15 
11 

≤ 
≤ 

Tbase 
Lbase 

≤ 
≤ 

35 
20 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        

Ycrit = � + � × �. �   
0 
0 

≤ 
≤ 

b0 
b1 

≤ 
≤ 

15000 
5 

SIAMZa20 
(Za20) 

RS = RS,Sig 
0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 173 ∧ � < �   10 ≤ Lbase ≤ 20 

Ycrit = � + � × �. �   
0 
0 

≤ 
≤ 

b0 
b1 

≤ 
≤ 

150 
5 

TPMt 
(La19) 

RS = RS,Sig 0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 200 ∧ � < �   0 ≤ Tbase ≤ 35 
Ycrit = c 0 ≤ c ≤ 150 

TPMp 
(La19) 

RS = RS,Sig 
0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 173 ∧ � < �   10 ≤ Lbase ≤ 20 
Ycrit = c 0 ≤ c ≤ 150 
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Table S1. Continued. 

TDM1 
(Li19) 

RS = RS,Mon– 

10 
11 
0 
0 

≤ 
≤ 
≤ 
≤ 

Tbase 
Lbase 

x 
y 

≤ 
≤ 
≤ 
≤ 

35 
20 
2 
2 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        

Ycrit = � + � × ∑ �   
0 

−50 
≤ 
≤ 

b0 
b1 

≤ 
≤ 

15000 
15 

PDM1 
(Li19) 

RS = RS,Mon– 

10 
11 
0 
0 

≤ 
≤ 
≤ 
≤ 

Tbase 
Lbase 

x 
y 

≤ 
≤ 
≤ 
≤ 

35 
20 
2 
2 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        

Ycrit = � + � × ∑ ���   
0 

−40 
≤ 
≤ 

b0 
b1 

≤ 
≤ 

15000 
15 

TPDM1 
(Li19) 

RS = RS,Mon– 

10 
11 
0 
0 

≤ 
≤ 
≤ 
≤ 

Tbase 
Lbase 

x 
y 

≤ 
≤ 
≤ 
≤ 

35 
20 
2 
2 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        

Ycrit = � + � × ∑ � + � × ∑ ���   
0 

−50 
−40 

≤ 
≤ 
≤ 

b0 
b1 

b2 

≤ 
≤ 
≤ 

15000 
15 
15 

TDM2 
(Li19) 

RS = RS,Mon+ 

10 
11 
0 
0 

≤ 
≤ 
≤ 
≤ 

Tbase 
Lbase 

x 
y 

≤ 
≤ 
≤ 
≤ 

35 
20 
2 
2 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        

Ycrit = � + � × ∑ �   
0 

−50 
≤ 
≤ 

b0 
b1 

≤ 
≤ 

15000 
15 

PDM2 
(Li19) 

RS = RS,Mon+ 

10 
11 
0 
0 

≤ 
≤ 
≤ 
≤ 

Tbase 
Lbase 

x 
y 

≤ 
≤ 
≤ 
≤ 

35 
20 
2 
2 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        

Ycrit = � + � × ∑ ���   
0 

−40 
≤ 
≤ 

b0 
b1 

≤ 
≤ 

15000 
15 
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Table S1. Continued. 

TPDM2 
(Li19) 

RS = RS,Mon+ 

10 
11 
0 
0 

≤ 
≤ 
≤ 
≤ 

Tbase 
Lbase 

x 
y 

≤ 
≤ 
≤ 
≤ 

35 
20 
2 
2 

d1 = ���(�) for which � > 173 ∧ � < � ∧ � < �        

Ycrit = � + � × ∑ � + � × ∑ ���   
0 

−50 
−40 

≤ 
≤ 
≤ 

b0 
b1 

b2 

≤ 
≤ 
≤ 

15000 
15 
15 

TDMZa20 
(Za20) 

RS = RS,Sig 
0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 173 ∧ � < �   10 ≤ Lbase ≤ 20 

Ycrit = � + � × ∑ �   
0 

−50 
≤ 
≤ 

b0 
b1 

≤ 
≤ 

150 
15 

PDMZa20 
(Za20) 

RS = RS,Sig 
0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 173 ∧ � < �   10 ≤ Lbase ≤ 20 

Ycrit = � + � × ���   0 
−15 

≤ 
≤ 

b0 
b1 

≤ 
≤ 

150 
40 

TPDMZa20 
(Za20) 

RS = RS,Sig 
0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 173 ∧ � < �   10 ≤ Lbase ≤ 20 

Ycrit = � + � × ∑ � + � × ���   
0 

−15 
−40 

≤ 
≤ 
≤ 

b0 
b1 
b2 

≤ 
≤ 
≤ 

150 
40 
15 

PIAGSI 
(Za20) 

RS = RS,Sig 
0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 173 ∧ � < �   10 ≤ Lbase ≤ 20 

Ycrit = � + � × �. ���   0 
0 

≤ 
≤ 

b0 
b1 

≤ 
≤ 

300 
5 

PIA+ 
(Za20) 

RS = RS,Sig 
0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 173 ∧ � < �   10 ≤ Lbase ≤ 20 

Ycrit = � + � × �. �   0 
0 

≤ 
≤ 

b0 
b1 

≤ 
≤ 

300 
5 

PIA− 
(Za20) 

RS = RS,Sig 
0 
0 

≤ 
≤ 

a 
b 

≤ 
≤ 

0.1 
250 

d1 = ���(�) for which � > 173 ∧ � < �   10 ≤ Lbase ≤ 20 

Ycrit = � + � × �. �   0 
0 

≤ 
≤ 

b0 
b1 

≤ 
≤ 

300 
5 

Note: The functions for the daily senescence rate (RS), starting day of the accumulation of the rate (d1), and respective 
threshold value (Ycrit) to determine the date of autumn phenology are listed together with the corresponding free 
parameters and their boundaries. Daily drivers of the senescence rate are minimum temperature (Ti) and/or day length 
(Li) of day i [doy]. Seasonal drivers of the threshold value for the senescence rate are averaged daily low precipitation 
indices (LPIi), minimum temperatures (Ti), and actual adapted low precipitation indices by Za20 (LPIZa20), as well as 
site-specific anomalies of spring phenology (a.dSP), of the growing season index by Za20 (a.GSIZa20), and of 
accumulated net daytime apparent photosynthesis without or with water limitation (a.Anet or a.Anet–w). The averaged 
drivers either correspond to the period from spring phenology (dSP) to the starting day of the accumulation of the rate 
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(d1) or to the site-specific average of autumn phenology (� ). Free parameters may be a threshold value for daily 
temperature and day length (Tbase and Lbase), shaping parameters of the monotonic decreasing or increasing or the 
sigmoid response function of the senescence rate (x, y, a, and b), a constant or coefficients of the linear function 
determining the threshold value for the senescence rate (c, b0, b1, and b2), depending on the model. References for the 
models are De09: Delpierre et al. (2009); Du05: Dufrêne et al. (2005); Ke15: Keenan and Richardson (2015); La19: 
Lang et al. (2019); Li19: Liu et al. (2019); Za20: Zani et al. (2020). 
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S1 Daily drivers of the senescence rate 

The senescence rate in all models that we evaluated either depends on daily minimum temperature [°C] and, except 

for the CDD model, on day length [h]. Daily minimum temperature was taken directly from the corresponding 

climate datasets (GLDAS and CRODEX; Rodell et al., 2004; Jacob et al., 2014), while day length (L; [h]) was 

approximated from latitude (LAT; [°]) and the day of year (DOY; [doy]; e.g. 32 for February 2) according to Brock 

(1981, p. 4): 

 � = 24[h] 180° × cos − tan(���) × tan 23.45° × sin 360° × (284 + ���) 365  

Eq. S1 

S2 Seasonal drivers of the threshold for the senescence rate 

The threshold value is either a constant or depends linearly on one or two of the following seasonal drivers: the 

timing of spring phenology in the current year, the mean temperature or low precipitation index (LPI) of the typical 

growing season or leafy season, the current growing season index (GSI), or the accumulated apparent photosynthetic 

rate ignoring or considering water limitation constraints (Anet or Anet–w) during the current growing season. These 

drivers were calculated from the minimum, mean, and maximum air temperature, net short- and longwave radiation, 

downwelling shortwave radiation, precipitation, and soil moisture as well as plant-available water capacity, 

atmospheric CO2 concentration, leaf area index and plant functional type (cf. Supplement S1). We calculated driver 

values according to Eqs. S2–S42 and either applied directly or as site-specific anomalies (in the SIAM, SIAMZa20, 

PIAGSI, PIA+, and PIA– models), depending on the model. Furthermore, all driver values except for the spring 

phenology depend on the period for which they are calculated. This period was either from observed spring to 

average autumn phenology per site and species (average temperature, LPIZa20, GSI, Anet, and Anet–w for the TDMZa20, 

PDMZa20, TPDMZa20, PIAGSI, PIA+, and PIA– models) or from observed spring phenology to the first day of the 

accumulation period (d1; average temperature and LPI for the TDM1, PDM1, TPDM1, TM2, PDM2, TPDM2 

models). 
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S2.1 Low precipitation index and adapted low precipitation index 

The models by Liu et al. (2019) base their threshold value on the average temperature (TDM1, TDM2, TPDM1, and 

TPDM2 model) and/or the low precipitation index (LPI; PDM1, PDM2, TPDM1, and TPDM2 model) for the leafy 

season, i.e. the period from observed spring phenology to the starting day of the accumulation of the senescence rate 

(d1; Supplement S2: Eq. S2). The LPI corresponds to the mean number of low precipitation events [∈ (0, 1)], defined 

as ≥7 consecutive days without rain, between spring phenology (dSP; [doy]) and the first day of the accumulation 

period for the senescence rate (d1; [doy]; fitted during model calibration): 

 ��� = ���  

Eq. S2 

 

Zani et al. (2020) adapted both, the calculations of the average temperature and of the LPI, for the temperature 

and/or precipitation dependent models by Zani et al. (2020) (i.e. TDMZa20, PDMZa20, and TPDMZa20). The 

corresponding periods were defined to last from the observed spring phenology to the site-specific average autumn 

phenology. Moreover, the low precipitation index was altered by Zani et al. (2020) and further adapted for this 

study, corresponding to the number of days with less than 2 mm of precipitation during the three driest periods of 30 

consecutive days, hence denoted LPIZa20. In contrast, Zani et al. (2020) based this index on the precipitation during 

the three driest months within the month of observed spring phenology to the month of the site-specific average 

autumn phenology. 

S2.2 Growing season index 

In the PIAGSI model, the threshold value depends on the anomaly of the growing season index (GSI) per site (Jolly et 

al., 2005, Eq. 3; Zani et al., 2020). Daily GSI values were accumulated between observed spring phenology and the 

site-specific average autumn phenology. The daily index values are the product of a function of the mean 

temperature [°C] f(Ti), the vapor pressure deficit [Pa] f(VPDi), and the day length [h] f(Li) of day i. Both, 

accumulation period as well as f(Ti), f(VPDi), and f(Li) were based on Zani et al. (2020, Eqs. S10–S15 and S36–S42) 

and Zanid90 (2021). 

 ��� = ���  

Eq. S3 ��� = �(� ) × �(��� ) × �(� ) 

Eq. S4 �(� ) = 11 + � ( ) × 1 − 0.01 × � ( )  

Eq. S5 
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� = 2 log 1 0.99 − 1� − �  

Eq. S6 � = � + �2  

Eq. S7 

� = log 0.99 0.01� − �  

Eq. S8 

�(��� ) = 0 , ��� ≥ ���1 − ��� − ������ − ��� , ��� > ��� > ���1 , ��� ≤ ���  

Eq. S9 

�(� ) = 0 , � ≤ �� − �� − � , � < � < �1 , � ≥ �  

Eq. S10 

 

Here, f(Ti) ranges from 0 to 1 and the values for x1, x2, x3, and x4 are 1, 18, 25, and 45 °C, respectively. VPDmin and 

VPDmax were set to 900 and 4100 Pa, respectively. Lmin and Lmax were set to the maximum day length during the 

observed growing season per site and year and to 11 h, respectively. Daily mean temperature (Ti) and day length (Li) 

were taken directly from the climate data and derived directly from the latitude and day of year (Eq. S1). However, 

daily vapor pressure deficit (VPDi; [Pa]) was derived from daily saturation vapor pressure (esi; [Pa]) and actual vapor 

pressure (eai; [Pa]), which we approximated by functions of daily minimum and maximum temperature and by 

substituting dew point temperature by minimum temperature (Sadler and Evans, 1989; Table 1.8; Allen et al., 1998, 

Eqs. 11, 12, 14, and 48; Jones, 2013, Eqs. 5.15 and 5.16). 

 ��� = � − �  

Eq. S11 � = � + � 2 

Eq. S12 � = �  

Eq. S13 � = 611.21 × �[( . ⁄ )× ] ( . )⁄  

Eq. S14 
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Here, eTji is the vapor pressure [Pa] at temperature Tj [°C] of day i, with Tj being either daily maximum or minimum 

temperature (Tx or Tn, respectively). 

S2.3 Accumulated apparent photosynthetic rate 

The threshold values of the PIA+ and PIA– models are both driven by apparent photosynthesis, ignoring and 

considering water limitation constraints, respectively (Anet and Anet–w; [mol m−2]; Zani et al., 2020). Anet and Anet–w 

were accumulated between observed spring phenology and the site-specific average autumn phenology. They are 

based on apparent photosynthesis, which signifies the daytime change in CO2. This change can be calculated by 

deducting daytime respiration from gross photosynthesis (Agd; [mol m−2]), which may also be referred to as light 

respiration and real photosynthesis, respectively (Egle, 1960; Wohlfahrt and Gu, 2015). Agd is limited by photon 

availability, Rubisco activity, and sink capacity (Farquhar et al., 1980; Kirschbaum and Farquhar, 1984; Collatz et 

al., 1991). It can be expressed as min(JE, JC, JS), with JE, JC, and JS being the respective rates depending on light, 

Rubisco activity, and sink capacity (Collatz et al., 1991, Eq. A.1): 

 

� = � × � + � − � + � − 4�� �2�  

Eq. S15 

and 

� = � + � − � + � − 4� � �2�  

Eq. S16 

 

Here, JP, which is an intermediate variable for the minimum of JE and JC. JE, JC, and JS are in [mol m−2 h−1], Li is the 

length of day i [h] (Eq. S1), and β and θCo are two shaping parameters (Table S1;Collatz et al., 1991, Eqs. A.8 and 

A.9). 

 

The daily apparent photosynthetic rate depending on light (JE) was defined as 

 � = �1 × ���� �  

Eq. S17 

 

with C1 being the daily available fraction of the absorbed photosynthetically active radiation (APAR; [mol m−2]) 

accumulated during day i (Haxeltine and Prentice, 1996, Eqs. 3 & 4; Sitch et al., 2000, Eq. 14). Daily APAR was 

derived from downward shortwave radiation as follows: 
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���� = � × � × ����� × ��� × (24 × 3600)[s] 
Eq. S18 ����� = 1 − � . ×  

Eq. S19 ��� = 0.5�  

Eq. S20 

 

Here, PAR is the photosynthetically active radiation ([W m−2]), fapar is the intercepted fraction of incoming PAR at 

ecosystem level, which was calculated from the corresponding leaf area index (LAI; Haxeltine and Prentice, 1996, 

Eq. 1; Sitch et al., 2000, Eq. 7), αa is the fraction of assimilated PAR from ecosystem to leaf level (Table S1), and cq 

is the conversion factor for solar radiation at 550 nm [E J−1] (i.e. [mol J−1]; Table S1; Sitch et al., 2000, Eq. 14; 

Smith, 2021, p. 9). PAR was estimated from the downwelling shortwave radiation (RdS [W m−2]; Prentice et al., 

1993, Eq. 12; Sitch et al., 2000, Eq. A.1) accumulated during day i. 

The fraction C1 depends on the daily internal partial pressure of CO2 (pICO2; [Pa]), CO2 condensation point (Γ*; 

[Pa]) and mean temperature (T; [°C]), as well as on a parameter accounting for the decreasing maximum 

photosynthetic rate of conifer needles with age (ФC) and for the quantum efficiency of C3 plants (αC3; Table S.C1; 

Haxeltine and Prentice, 1996, Eq. 4; Sitch et al., 2000, Eq. 15): 

 �1 = Φ × � × �(� ) × � �� − Γ∗ � �� + 2Γ∗  

Eq. S21 

 

We applied the same function of daily mean temperature f(Ti) as for the calculation of the GSI (Eq. S5). Further, the 

daily internal partial pressure of CO2 (pICO2) and the daily CO2 condensation point (Γ*) were derived according to 

 � �� = � × �� , × �  

Eq. S22 Γ∗ = � � 2� × � ,(( )⁄ ) 
Eq. S23 

 

with λC3 being the optimal ratio of internal to ambient [CO2] of C3 plants (Table S1), [CO2,A] being the ambient (i.e. 

atmospheric) [CO2] of day i, and P0 being the atmospheric standard pressure [Pa] (Table S1; Collatz et al., 1991, 

Eqs. A3 & A12; Haxeltine and Prentice, 1996, Eq. 8). In addition, pAO2 is the ambient partial pressure of O2 [Pa] 

(Table S1), τ is the CO2 to O2 specificity ratio (Table 1), Q10,τ is the corresponding change for a temperature change 

of 10 K (Table S1), and T is the mean temperature [°C] of day i (Haxeltine and Prentice, 1996, Eq. 7; Sitch et al., 

2000, Eq. 18). 
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The daily apparent photosynthetic rate depending on Rubisco activity (JC) was defined as 

 � = �2 × � 24[h] 
Eq. S24 

 

with C2 being the daily available fraction of the maximum rate of net photosynthesis (Vmax; [mol m−2]) accumulated 

during day i, divided by 24 hours (Haxeltine and Prentice, 1996, Eq. 5; Sitch et al., 2000, Eq. 20). 

The daily fraction C2 depended on the internal partial pressure of CO2 (pICO2), the CO2 condensation point (Γ*), the 

ambient partial pressure of O2 (pAO2), the kinetic coefficients for CO2 (KC) and O2 (KO), and the daily mean 

temperature (T [°C]; Table S1; Collatz et al., 1991, Eq. A12; Haxeltine and Prentice, 1996, Eq. 6; Sitch et al., 2000, 

Eq. 21): 

 �2 = � �� − Γ∗� �� + K 1 + � � K  

Eq. S25 K = � × � ,(( )⁄ ) 
Eq. S26 K = � × � ,(( )⁄ ) 
Eq. S27 

 

The maximum rate of net photosynthesis (Vmax) was calculated according to 

 � = � × �1 �2 × [(2� − 1)� − (2� � − �2 )� ] × ����  

Eq. S28 

 

with βC3 being the ratio of dark respiration to Vmax of C3 plants and θHP being a shaping parameter (Table S1; 

Haxeltine and Prentice, 1996, Eq. 11; Sitch et al., 2000, Eq. 25), whereas s and σ were derived from day length (L) 

and the fractions C1 and C2 as follows (Haxeltine and Prentice, 1996, Eqs. 12 & 13; Sitch et al., 2000, Eq. 25): 

 � = � × 24[h] �  

Eq. S29 � = 1 − �2 − � �2 − � �  

Eq. S30 
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The daily apparent photosynthetic rate depending on sink capacity (JS) was defined as 

 � = �2 × � 24[h] 
Eq. S31 

 

From Agd, we derived the daily daytime net apparent photosynthetic rate unconstrained by water limitation (Anet; 

[mol m−2]) by subtracting the daytime respiration ([mol m−2]) from Agd (Haxeltine and Prentice, 1996, Eq. 19; Sitch 

et al., 2000, Eq. 26): 

 � = � − � × � 24[h] 
Eq. S32 

 � = � × �  

Eq. S33 

While Anet depended on the daytime fraction of daily apparent respiration (Rd; [mol m−2]) and thus on day length (L; 

[h]), Rd was derived from the maximum rate of net photosynthesis (Vmax; [mol m−2]) and the fraction of leaf 

respiration per maximum Rubisco capacity for C3 plants (βC3; Table S1; Haxeltine and Prentice, 1996, Eq. 10; Sitch 

et al., 2000, Eq. 24): 

 

From Anet, we derived the daily daytime net apparent photosynthetic rate constrained by water limitation (Anet–w; 

[mol m−2]) by multiplying Anett with a factor for daily water stress (0 ≤ wd ≤ 1; Zani et al., 2020, Eq. S.34): 

 � = � × �  

Eq. S34 

 � = � �  

Eq. S35 

 

Here, ES is the abiotic, atmosphere and soil-controlled moisture supply [mm d−1] and ED is the biotic, plant-

controlled moisture demand [mm d−1] for day i (Prentice et al., 1993; Gerten et al., 2004; Zani et al., 2020, Eq. 

S.23). 

While past climate data were available for four different soil layers, climate projection data were only available for 

the entire soil in one layer. Hence, we derived daily moisture supply (ES) by adapting the two-layer approach of 

Haxeltine and Prentice (1996, Eqs. 24 & 30) and Gerten et al. (2004, Eqs. 4 & 6) to one soil layer depth of 2 m: 
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� = � × (� �⁄ ) ; � < �� ; � ≥ �  

Eq. S36 

 � = 2 × 1000[mm m ] × ���� 

Eq. S37 

 

Here, Emax is the maximum transpiration rate ([mm d−1]; Table S1), w is the soil moisture content ([mm]; for the soil 

layer depth of 0–2 m) of day i, and wmax is the corresponding plant-available water capacity [mm] according to site-

specific volumetric plant-available water capacity (PAWC, [%]). 

Daily moisture demand (ED) was derived according to Gerten et al. (2004, Eq. 7), neglecting the fraction of daytime 

during which the canopy is wet, by 

 � =  � × � 1 + � �  

Eq. S38 

 

with Eq being the daily equilibrium evapotranspiration rate [mm d−1], αm being a maximum Priestley-Taylor 

coefficient (Table S1), gm being a scaling conductance coefficient ([mm s−1]; Table S1), and gpot being the potential 

canopy conductance [mm s−1] for day i. 

The daily equilibrium evapotranspiration rate (Eq) depends on mean air temperature (T; [°C]) and net radiation (i.e. 

sum of net short- and longwave radiation with positive inward and negative outward fluxes; RS and RL, respectively; 

[W m−2]; Prentice et al., 1993, Eq. 5; Gerten et al., 2004, Eq. 1): 

 � = ∆∆ + � × � + �� × (24 × 3600)[s d ] 
Eq. S39 ∆ = 2.503 × 10 × � . × ( . )⁄(237.3 + � )  

Eq. S40 

 

Here, Δ is the temperature depending rate of increase of the saturation vapor pressure ([Pa K−1]; Prentice et al., 1993, 

Eq. 6) of day i, γ is a psychrometric constant ([Pa K−1]; Table S1), RS and RL are the net short- and longwave 

radiation [W m−2], respectively, and L is the latent heat of vaporization of water ([J kg−1]; Table S1). 

The potential canopy conductance (gpot) of day i was derived from the daytime net apparent photosynthetic product 

(ADT; [kg C m−2 s−1], Gerten et al., 2004, Eq. 8). 
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� = � + 1.6��� , × 1 − �  

Eq. S41 � = �1000[kg g ] × � [� ] 
Eq. S42 

 

Here, gmin is the plant functional type specific minimum canopy conductance ([mm s−1]; Table S1), [CO2,A] is the 

ambient [CO2], λC3 is the optimal ratio of internal to ambient [CO2] of C3 plants (Table S1), Cmol is the molecular 

mass of carbon (i.e. 12 g mol−1), and Anet is the daytime net apparent photosynthetic rate unconstrained by water 

limitation [mol m−2]. 

 

Table S1. Values and sources of constants applied to the calculation of accumulated apparent daily photosynthetic 
rates. 
Parameter Value Unit Description Source 
β 0.95 fraction co-limitation (shape) parameter Co&.91, Eq. A9 
θCo 0.98 fraction co-limitation (shape) parameter Co&.91, Eq. A8 
αa 0.5 fraction ratio of assimilated PAR from 

ecosystem to leaf level 
Si&.00, Table 4 

cq 4.6  10-6 [E J−1]  
(i.e. [mol J−1]) 

conversion factor for solar 
radiation at 550 nm 

Si&.00, Table 4 

ФC 1.0   (TBL) 
0.8   (TNL) 

fraction parameter accounting for the 
decreasing maximum 
photosynthetic rate of leaves 
with age 

H&P.96, Table 4 

αC3 0.08 fraction intrinsic quantum efficiency of 
CO2 uptake in C3 plants 

Co&.91, Table A1 
H&P.96, Table 2 

λC3 0.8 fraction optimal ratio of internal to 
ambient [CO2] for C3 plants 

Ge&.04, Eq. 8, p. 254 

P0 1.013  105 [Pa] atmospheric standard pressure  
pAO2 0.209 × P0 [Pa] partial ambient pressure of O2 Co&.91, Table A1 

H&P.96, Table 2 
τ 2600 fraction kinetic parameter for the CO2 to 

O2 specificity ratio at 25 °C 
Co&.91, Table A1 
H&P.96, Table 2 

Q10,τ 0.57 fraction relative change in τ for a 10 K 
change in temperature 

Co&.91, Table A1 
H&P.96, Table 2 

kC 30 [Pa] Michaelis constant for CO2 at 
25 °C 

Co&.91, Table A1 
H&P.96, Table 2 

Q10,kC 2.1 fraction relative change in kC for a 10 K 
change in temperature 

Co&.91, Table A1 
H&P.96, Table 2 

kO 3  104 [Pa] Michaelis constant for O2 at 25 
°C 

Co&.91, Table A1 
H&P.96, Table 2 
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Table S1. Continued. 

Q10,kO 1.2 fraction relative change in kO for a 10 K 
change in temperature 

Co&.91, Table A1 
H&P.96, Table 2 

θHP 0.7 fraction co-limitation (shape) parameter M&W.93, Table 1 
H&P.96, Table 2 

βC3 0.015 fraction ratio of dark respiration to Vmax 

for C3 plants 
Fa&.80, Table A1 
H&P.96, Table 2 

Emax 5 [mm d−1] maximum evapotranspiration 
rate 

Si&.03, Table 3 
Ge&.04, Table 1 

αm 1.391 fraction a maximum Priestley-Taylor 
coefficient 

Ge&.04, Eq. 7, p. 253 

gm 3.26 [mm s−1] scaling conductance coefficient Ge&.04, Eq. 7, p. 253 
γ 65 [Pa K−1] psychrometric constant Pr&.93, Eq. 5, p. 55 

Ge&.04, Eq. 1, p. 253 
L 2.5  106 [J kg−1] latent heat of vaporization of 

water 
Pr&.93, Eq. 5, p. 55 
Ge&.04, Eq. 1, p. 253 

gmin 0.5   (TBL) 
0.3   (TNL) 

[mm s−1] plant functional type specific 
minimum canopy conductance 

Ge&.04, Table 1 

Notes: Where indicated, constants are plant functional type specific and hence differ between temperate broad-
leaved trees (TBL) and temperate needle-leaved trees (TNL). The abbreviations of the sources are Collatz et al. 
(1991; Co&.91), Farquhar et al. (1980; Fa&.80), Gerten et al. (2004; Ge&.04), Haxeltine and Prentice (1996; 
H&P.96), Mcmurtrie and Wang (1993; M&W.93), Prentice et al. (1993; Pr&.93), Sitch et al. (2000; Si&.00), Sitch 
et al. (2003; Si&.03), and Wong et al. (1979; Wo&.79). 
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