Growth and Productivity

E. Charlie Nusbaum

University of California - Santa Barbara
January 24, 2017

Outline

- In previous lectures we have looked at how to measure economic success
- Today we want to:
(1) Identify which factors determine economic success
(2) Try to explain why some countries are so poor while others are rich

Production function

- Production function: mathematical function that relates inputs to output:

$$
Y=A F(L, K, H, N)
$$

- Y is output
- A is Technology
- L is Labor
- K is Capital
- H is Human Capital
- N is Natural Resources

Returns to Scale

- Qualitative measure of how output changes when you change inputs
- Constant Returns to Scale
- Increasing Returns to Scale
- Decreasing Returns to Scale
- Constant Returns to Scale: Doubling inputs exactly doubles output

$$
t F(K, L)=F(t K, t L) \quad \forall t \geq 1
$$

- Decreasing Returns to Scale: Doubling inputs more than doubles output

$$
t F(K, L)>F(t K, t L) \quad \forall t \geq 1
$$

- Increasing Returns to Scale: Doubling inputs less than doubles output

$$
t F(K, L)<F(t K, t L) \quad \forall t \geq 1
$$

Examples: Returns to scale

Do the following functions exhibit constant returns to scale?
(1) $F(L, K, H, N)=K+L+H+N$

- Double Inputs: $F(t L, t K, t H, t N)=t K+t L+t H+t N$
- $\Leftrightarrow F(t L, t K, t H, t N)=t(K+L+H+N)=t F(L, K, H, N)$
- \Rightarrow Constant returns to scale
(2) $F(L, K, H, N)=K \times L \times H \times N$
- Double Inputs: $F(t L, t K, t H, t N)=t K \times t L \times t H \times t N$
- $\Leftrightarrow F(t L, t K, t H, t N)=t^{4}(K \times L \times H \times N)=t^{4} F(L, K, H, N)$
- \Rightarrow Increasing returns to scale

You Try

Does the production function, $F(K, L)=K+\sqrt{L}$, have increasing, decreasing, or constant returns to scale?

You Try

Does the production function, $F(K, L)=K+\sqrt{L}$, have increasing, decreasing, or constant returns to scale?

$$
\begin{gathered}
F(t K, t L)=(t K)+\sqrt{t L} \quad t F(K, L)=t(K+\sqrt{L}) \\
\Leftrightarrow F(t K, t L)=t K+t^{0.5} \sqrt{L} \quad \Leftrightarrow t F(K, L)=t K+t \sqrt{L} \\
\Rightarrow t F(K, L)>F(t K, t L)
\end{gathered}
$$

- This example illustrates why it's important to only consider $t \geq 1$

Productivity

- The standard of living in an economy depends on the economy's ability to produce goods and services
- Often measured as GDP per capita
- Why not just GDP?
- Productivity can be defined as the quantity of goods and services produced from each unit of labor (hour worked)
- productivity $=\frac{Y}{L}$
- Productivity is the main driver of increases in the standard of living
- Kydland \& Prescott show things like technology are key (not required)
- Can think of labor augmenting technology, TFP, etc.

$$
A F(K, L) \text { v.s. } F(K, A L)
$$

Factors that determine productivity

(1) Physical capital per worker (sometimes just called capital)

- More capital per worker makes workers more productive
- Example: If I have 2 stove-tops, I can cook more than if I only have 1

$$
\operatorname{prod}=\frac{F(K, L)}{L} \Rightarrow \frac{\partial p r o d}{\partial K}>0
$$

(2) Human capital per worker

- Knowledge and skills that workers acquire through education, training, and experience
- Romer-Jones model endogenizes productivity growth with sector for ideas (not required)
- Example: Great calculus teacher can increase human capital and improve your productivity in economics classes

Factors that determine productivity

(3) Natural resources per worker

- Natural resources (i.e. land, oil, etc.) are important inputs into production of goods and services
- Example: More land you have the more crops you can grow
- Technological knowledge
- Understanding of the best way to produce goods and services
- Example: Cars were initially built one by one, but now companies use an assembly line which significantly increases productivity
- Kydland \& Prescott's claim to fame!!!

$$
Y=F(K, A L) \quad Y=A F(K, L)
$$

- Where A could be subject to random shocks, growth trend, etc.

Example: Productivity

In-N-Out produces 1,000 hamburgers a day. Each employee works 5 hours a day. In-N-Out's productivity is 20 hamburgers per hour of labor. How many workers does In-N-Out employ?

- Each employee can produce: $5 \times 20=100$ hamburgers per day
- $\Rightarrow \frac{1,000}{100}=10$ workers are needed

Example: Diminishing returns to capital

Bob the baker can make 240 cupcakes a day using 1 oven in his store. If Bob were to install a 2nd oven in his store, what would be the most realistic expectation for Bob's new per day cupcake production level?
A. 600
B. 550
C. 500
D. 450

Example: Diminishing returns to capital

Bob the baker can make 240 cupcakes a day using 1 oven in his store. If Bob were to install a 2nd oven in his store, what would be the most realistic expectation for Bob's new per day cupcake production level?
A. 600
B. 550
C. 500
D. 450

Answer: D

The second oven can't be more productive than the first oven; idea of diminishing marginal product

$$
M P_{k}=\frac{\partial F}{\partial K} \quad \frac{\partial M P_{k}}{\partial K}<0
$$

Growth

- Economic growth is a result of increased productivity
- Productivity depends on the 4 factors we discussed earlier (physical capital per worker, human capital per worker, etc.)
- Growth: How can a country increase productivity ?

Growth

Growth: How can a country increase productivity ?

- Save and invest
- Instead of consuming spend output to accumulate capital
- Next period there will be more capital per worker, which will increase productivity
- Invest in improved education
- Health and nutrition
- Property rights and political stability
- Free trade and markets
- Research and Development

Solow Model

Everything from here on is just food for thought! (i.e. not required)

- Reduced form model to describe economic growth, capital accumulation, and dynamics of aggregates
- All long-run growth is driven by technology
- Takes production function, savings rate, and technology progress as given

- Assume a Cobb-Douglas production function and standard evolution of capital

$$
F(K, A L)=K^{\alpha}(A L)^{1-\alpha} \quad \frac{\partial K}{\partial t}=s F(K, A L)-\delta K
$$

- pop. growth rate $=n$, savings rate $=s$, depreciation rate $=\delta$, capital share $=\alpha$, and productivity growth rate $=g$
- We can define the change of variables $k=\frac{K}{A L}$ and derive $\frac{\partial k}{\partial t}$

$$
\frac{\partial k}{\partial t}=s k^{\alpha}-(n+g+\delta) k \Rightarrow k^{*}=\left(\frac{s}{n+g+\delta}\right)^{\frac{1}{1-\alpha}}
$$

- From the steady state value of k^{*}, we can describe dynamics of any aggregate ratio
- $\frac{Y^{*}}{L}=y^{*} A$
- $\frac{K^{*}}{L}=k^{*} A$
- The dynamics of the k can be summarized in the following diagram
- What's the effect of an increase in the aggregate savings rate?
- Recall: $\frac{\partial k}{\partial t}=s k^{\alpha}-(n+g+\delta) k$

FIGURE 1.4 The effects of an increase in the saving rate on investment

- What's the effect of an increase in the aggregate savings rate?
- Recall: $\frac{\partial k}{\partial t}=s k^{\alpha}-(n+g+\delta) k$

FICIIRF 1.5 The effects of an increase in the saving rate

