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Linear Systems
Lecture Summary # 1

WHAT IS A SYSTEM?

Several definitions exist, two of them are provided below.

• Definition 1: A set of components connected together to
perform a desired task.

• Definition 2: Process or entity with well-defined inputs
and outputs.

It is possible to combine the two definitions as follows

• Definition 3: A set of components with well-defined
inputs and outputs, connected together to perform a
desired task.

Systems can be very simple or extremely complex. Some
examples of systems are below

• The world’s economy
• Solar system
• RC filter
• Human body

When we talk about a system we may refer to the actual
physical system or to its mathematical representation. Systems
are typically grouped into linear and nonlinear systems. Real
world systems are typically nonlinear but many of these
nonlinear systems can be approximated by linear systems.
This process is called linearization. Block diagrams are widely
used to represent systems such as the one shown in figure 1.
The mathematical description of a system is simply a function
relating the inputs and outputs such as

y(t) = F [u(t)] (1)

It is possible to have a system of a system as shown in figure
1-bottom. In this case

y(t) = G[F [u(t)]] (2)

In general, F is not a simple algebraic function. For example,
a dynamic system is represented by differential equations or
difference equations, and y(t) is not a function of u(t) only,
but a function of the history as well.

TIME INVARIANT SYSTEMS

This is an important class of systems where the output
satisfies

y(t− τ) = F [u(t− τ)] (3)

If the input signal is delayed by amount τ , the output is the
same without delay and delayed by the same amount as the
input. Example: Apply an impulse (hand clap)

• At time t, we measure the response
• At time t− τ , we obtain the same response.

This is illustrated in figure 2.

Fig. 1. Block diagram representation if a system

Fig. 2. Illustration of time invariance

LINEARITY

Linear systems obey the superposition principle, which
consists of two properties: Homogeneity and additivity

• Homogeneity: If we increase the strength of the input,
the output increases by the same factor, for example if
we double the input, we expect the output to double.

• Additivity: If input u1 produces y1, and u2 produces y2,
then the application of u1 + u2 will produce y1 + y2.

These two conditions define the necessary and sufficient con-
ditions for linearity. Combining these two properties together,
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Fig. 3. Illustration of causal system response

it is possible to write

F (au1 + bu2) = aF (u1) + bF (u2) (4)

CAUSALITY

The output before time t does not depend on the input after
t. In other words, the output of the system depends on the
present and past values of the input but not the future inputs.
This is illustrated in figure 3

BASIC EXAMPLES OF SYSTEMS

Some examples of systems are provided below.

• Squarer:
y(t) = (u(t))

2 (5)

• Time delay:
y(t) = u(t− τ) (6)

• Differentiator
y(t) =

du(t)

dt
(7)

• Integrator:

y(t) =

∫ t

0

u(τ)dτ (8)

IMPULSE RESPONSE

Linear time invariant systems are characterized by their
impulse response. Consider a LTI system with input u and
output y. The impulse response is the output h(t) = y(t)
when the input is an impulse: u(t) = δ(t). By definition

h(t) =

∫ t

−∞
δ(τ)dτ (9)

The output of the system can be found using the impulse
response of the system as follows

y(t) = u(t) ∗ h(t) = h(t) ∗ u(t) (10)

=

∫ ∞
−∞

u(t− τ)h(τ)dτ (11)

=

∫ ∞
−∞

u(τ)h(t− τ)dτ (12)

This operation is called convolution and represents one of the
most important properties of LTI systems.

CLASSIFICATION OF STATE MODELS

State models can be grouped under several categories

Nonlinear time varying

ẋ(t) = f(x(t), u(t), t) (13)
y(t) = h(x(t), u(t), t) (14)

Nonlinear time invariant

ẋ(t) = f(x(t), u(t)) (15)
y(t) = h(x(t), u(t)) (16)

Linear time varying

ẋ(t) = A(t)x(t) +B(t)u(t) (17)
y(t) = C(t)x(t) +D(t)u(t) (18)

Linear time invariant

ẋ(t) = Ax(t) +Bu(t) (19)
y(t) = Cx(t) +Du(t) (20)

LINEAR SYSTEMS IN STATE SPACE

A continuous time linear system can be written as

ẋ(t) = Ax(t) +Bu(t) (21)
y(t) = Cx(t) +Du(t) (22)

The first equation is called the state equation and the second
one is called the output or measurement equation, where x ∈
Rn, u ∈ Rk, y ∈ Rm. The system represents an input output
relationship. For a given input the output can be obtained by
solving for x(t) and plug in the solution in the output equation.
Some particular cases are as follows
• When u is a scalar (k = 1), the system is called single

input
• When y is a scalar (m = 1), the system is called single

output
• When both u and y are scalar, the system is called single

input-single output (SISO)

2



Linear Systems, spring 2017 Summary 1

• When both u and y are not scalar, the system is called
multiple input-multiple output (MIMO)

• When n = 0, there is no state and the system simply be-
comes y(t) = Du(t). This system is called memoryless.
A system is called memoryless if the output at any time
depends on the value of the input at the same time.

DISCRETE TIME SYSTEMS

A LTI discrete state space system is given by

x(k + 1) = Ax(k) +Bu(k) (23)
y(k) = Cx(k) +Du(k) (24)

Discrete time systems have the exact same properties as
continuous time systems.

SOLUTION OF LTI SYSTEM

Consider a LTI system of the form

ẋ(t) = Ax(t) (25)
x(t0) = x0 (26)

The solution of the system is

x(t) = φ(t, t0)x0 = x(t, t0, x0) = eA(t−t0)x0 (27)

The solution is unique and φ(t, t0) is called the fundamental
matrix. For the general LTI case

ẋ(t) = Ax(t) +Bu(t) (28)
y(t) = Cx(t) +Du(t) (29)
x(t0) = x0 (30)

The solution is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ (31)

The second term in the equation represents the convolution.
Recall that eAt is a matrix exponential. One way to calculate
this matrix is by using the Taylor series.

eAt = I +At+
1

2
A2t2 + ... (32)

Matlab has a built in function ”expm” that can be used to
calculate the exponential of a matrix.

LINEARIZATION

Most real world systems are nonlinear. Linear systems are
the exception, not the rule. A time invariant nonlinear system
can be written as

ẋ(t) = f(x(t), u(t)) (33)
y(t) = h(x(t), u(t))

where f, h are nonlinear functions. We can study certain
classes of linear systems by simply linearizing them. Recall
that f and h are vector functions. For example, it is possible
to write for f :

f = [f1, f2, ..., fn]
T (34)

Since x is also a vector, the derivative of f with respect to x
is a matrix of partial derivatives given by

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 (35)

This matrix is called the Jacobian matrix. The following
notation is used

∂f

∂x
=

[
∂fi
∂xj

]
ij

(36)

Linearization uses the Jacobian matrix.

Definition

A pair (xeq, ueq) ∈ Rn ×Rk is called equilibrium point of
(33) if

f(xeq, ueq) = 0 (37)

In this case
yeq = h(xeq, ueq) (38)

The equilibrium points are special solutions for which the state
of the system does not change ẋ = 0. Suppose now we apply
an input given by

u = ueq + δu (39)

where δu is small, it is possible to write

x = xeq + δx (40)

We can write
ẋ = ẋeq + ˙δx (41)

Knowing that

ẋ = f(xeq + δx, ueq + δu) (42)

and
ẋeq = f(xeq, ueq) (43)

we can write

˙δx = ẋ− ẋeq = f(xeq + δx, ueq + δu)− f(xeq, ueq) (44)

˙δx =
∂f(xeq, ueq)

∂x
δx+

∂f(xeq, ueq)

∂u
δu+o(||δx||2)+o(||δu||2)

(45)
where

∂f

∂x
=

[
∂fi
∂xj

]
ij

(46)

∂f

∂u
=

[
∂fi
∂uj

]
ij

(47)

It is possible to ignore the higher order terms in (45). In this
case, we can write:

˙δx = Aδx+Bδu (48)

where
A =

[
∂fi
∂xj

]
ij

(49)
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B =

[
∂fi
∂uj

]
ij

(50)

It is possible to apply the same approach to the output
equation as follows

y = yeq + δy (51)

Knowing that

y = h(xeq + δx, ueq + δu) (52)

and
yeq = h(xeq, ueq) (53)

Thus

δy = y − yeq = h(xeq + δx, ueq + δu)− h(yeq, ueq) (54)

δy =
∂h(xeq, ueq)

∂x
δx+

∂h(xeq, ueq)

∂u
δu+o(||δx||2)+o(||δu||2)

(55)
where

∂h

∂x
=

[
∂hi
∂xj

]
ij

(56)

∂h

∂u
=

[
∂hi
∂uj

]
ij

(57)

It is possible to ignore the higher order terms in (55). In
this case, we can write:

δy = Cδx+Dδu (58)

where
C =

[
∂hi
∂xj

]
ij

(59)

D =

[
∂hi
∂uj

]
ij

(60)

LINEARIZATION EXAMPLES

Example 1

The simple pendulum can be described by the following
equation

ẍ+ k sinx = 0; k > 0 (61)

We want to linearize the system near its operating points. The
system can be written as

ẋ1 = x2 (62)
ẋ2 = −ksinx1 (63)

where x1 = x represents the angle as shown in figure 4. First,
we find the operating points. By putting ẋ1 = 0, ẋ2 = 0 and
solving, we get two solutions:
• Operating point 1: (x1, x2) = (0, 0)
• Operating point 2: (x1, x2) = (π, 0)

Now, we know that

f1(x1, x2) = x2 (64)
f2(x1, x2) = −k sinx1 (65)

The Jacobian matrix is given by

A =
∂f

∂x
=

[
0 1

−k cosx 0

]
(66)

which gives
• Operating point 1:

A1 =

[
0 1
−k 0

]
(67)

The linearized system is then

ẋ1 = x2 (68)
ẋ2 = −kx1 (69)

• Operating point 2:

A2 =

[
0 1
k 0

]
(70)

The linearized system is then

ẋ1 = x2 (71)
ẋ2 = kx1 (72)

Example 2

Consider the water tank shown in figure 4. We assume that
the nominal inflow rate is constant and equal to ueq . It can
be proven that the output is related to the water level by the
following equation

y(t) = Cv
√
x(t) (73)

where Cv is a positive constant. The water level changes
according to the following equation

ẋ(t) = −Cv
a

√
x(t) +

1

a
u(t) (74)

y(t) = Cv
√
x(t) (75)

aẋ = u(t)− y(t) (76)

where a is the cross sectional area of the tank. Since ueq is
given, we can find the operating point by putting ẋ = 0 and
solving, which gives

xeq =
u2eq
C2
v

(77)

The equilibrium for the output is

yeq = ueq (78)

Linearizing about the operating points gives us

∂f

∂x
= −Cv

a

1

2
√
x
|xeq = − C2

v

2aueq
(79)

∂h

∂x
=

Cv
2
√
x
|xeq

=
C2
v

2ueq
(80)

Therefore, the linearized system is given by

˙δx = − C2
v

2aueq
δx+

1

a
δu (81)

δy =
C2
v

2ueq
δx (82)
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Fig. 4. Examples for linearization

I. STABILITY

Stability is among the most important concepts and proper-
ties in dynamic systems and controls. There are two types of
stability:
• Internal stability or Lyapunov stability: Stability of the

unforced system (no input).
• Input/output stability: Concerned with the effect of the

inputs on the outputs.

A. Internal stability

Internal stability deals with the boundedness and the asymp-
totic behavior if the solution of

ẋ = A(t)x(t) (83)
x(t0) = x0

We want the solution to be bounded regardless of the initial
conditions x0, t0. Some definitions are provided below:
• Definition 1: Uniform stability:

The linear system of equation (83) is called uniformly
stable if there exist a finite positive constant γ such that
for any x0, t0, the corresponding solution satisfies

||x(t)|| ≤ γ||x0|| (84)

for t ≥ t0
Constant γ does not depend on the choice of the initial
state.

• Definition 2: Uniform exponential stability:
The linear system of equation (83) is called uniformly
exponentially stable if there exist finite positive constants
β, γ such that for any x0, t0, the corresponding solution
satisfies

||x(t)|| ≤ γe−β(t−t0)||x0|| (85)

for t ≥ t0. Both uniform stability and uniform exponen-
tial stability are internal stability concepts.

Fig. 5. Illustration of uniform stability and uniform asymptotic stability

• Definition 3: Lyapunov stability:
The equilibrium point is said to be Lyapunov stable if for
every ε > 0, there exist δ > 0, such that if

||x(0)− xeq|| < δ (86)

then
||x(t)− xeq|| < ε (87)

for t ≥ 0.
• Definition 4: Asymptotic stability:

The equilibrium point is said to be asymptotically stable
if it is Lyapunov stable and here exist δ > 0, such that if

||x(0)− xeq|| < δ (88)

then
lim
t→∞

||x(t)− xeq|| = 0 (89)

Lyapunov stability implies that a solution that start close
enough to xeq will stay close enough for ever. Asymptotic
stability implies that the solution will go to its equilibrium
point with time.

LYAPUNOV FIRST METHOD

This method is valid for linear systems and can be extended
to nonlinear systems by using linearization. The method uses
the eigenvalues of the state transition matrix A.

B. Theorem
Consider a linear system of the form

ẋ = Ax (90)

Let λi, i = 1, 2, . . . , n be the eigenvalues of matrix A.
• The linear is asymptotically stable if Re{λi} < 0, i =

1, 2, . . . , n.
• The system is unstable if there exist at least one λi with
Re{λi} > 0.

• The system is stable if Re{λi} ≤ 0 , i = 1, 2, . . . , n, and
there are no repeated eigenvalues on the imaginary axis.
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Fig. 6. Illustration of Lyapunov stability

Fig. 7. Illustration of asymptotic stability

Fig. 8. Illustration of the concept of stability

LYAPUNOV SECOND METHOD

Lyapounov second method is also called Lyapunov direct
method. It uses a concept similar to the energy of the system.
We consider a nonlinear system as follows

ẋ(t) = f(x(t)) (91)

• Definition 1: Positive definite function:
Function V : Rn → R is positive definite if

– V (x) > 0 for all x 6= 0
– V (x) = 0 if and only if x = 0

• Definition 2: Negative definite function :
Function V : Rn → R is negative definite if

– V (x) < 0 for all x 6= 0
– V (x) = 0 if and only if x = 0

• Definition 3: Positive semi definite function:
Function V : Rn → R is positive semi definite if

– V (x) ≥ 0 for all x 6= 0
– V (x) = 0 if and only if x = 0

• Definition 4: Negative semi definite function:
Function V : Rn → R is negative semi definite if

– V (x) ≤ 0 for all x 6= 0
– V (x) = 0 if and only if x = 0

Note that V (x) is a scalar function of n variables, that is
V (x1, x2, ..., xn). Its time derivative is

V̇ =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 + ... (92)

=
∂V

∂x1
f1 +

∂V

∂x2
f2 + ... (93)

= ∇V (x)f(x) (94)

where ∇ is the gradient symbol.

Stability criterion

Let xeq be an equilibrium point of system (91). Let
V : Rn →∈ R be a positive definite and continuously
differentiable function
• If V̇ is negative semi definite, then xeq is stable
• If V̇ is negative definite, then xeq is asymptotically stable
• If V̇ is positive definite, then xeq is unstable

Example

Lets consider the following linear scalar system

ẋ(t) = −ax(t) (95)

where a > 0. Lets define V (x) as follows

V (x) = xT 2x = 2x2 (96)

Clearly, V (x) is positive definite function, its time derivative
is

V̇ (x) = 4x(−ax) = −4ax2 (97)

Clearly, V̇ (x) is negative definite, therefore, the system is
asymptotically stable.
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LINEAR TIME INVARIANT CASE

We start with a simple definition

Definition

Matrix P is positive definite if
• xTPx > 0 for all nonzero values of x
• All eigenvalues of P are positive

Example 1

Let
P =

[
1 0
0 1

]
(98)

and
x =

[
x1
x2

]
(99)

and
xTPx = x21 + x22 (100)

which is positive when x 6= 0. Therefore, P is positive definite.
Clearly, the eigenvalues of P are {1, 1} and thus both positive.

The following result is concerned with the stability of LTI
system

Theorem

A LTI system is asymptotically stable if and only if for
any positive definite matrix Q there exist a positive definite
symmetric matrix solution to the Lyapunov equation

ATP + PA = −Q (101)

Proof

We use a quadratic Lyapunov function

V (x) = xTPx (102)
P > 0 (103)

We have

V̇ (x) = ẋTPx+ xTPẋ (104)
= (xA)TPx+ xTPAx (105)
= xTATPX +XTPAx (106)
= xT

[
ATP + PA

]
x (107)

= −xTQx (108)

with
ATP + PA = −Q (109)

Therefore, for V̇ (x) to be negative definite, matrix Q has to
be positive definite.

BOUNDED INPUT-BOUNDED OUTPUT STABILITY

A system is said to be bounded input bounded output stable
if every bounded input produces a bounded output. Bounded
input means that there exist a finite constant K such that
u(t) ≤ K.

• Theorem 1: A SISO system is BIBO stable if and only if
its impulse response h(t) is absolutely integrable in the
interval [0,∞), that is if∫ ∞

0

|h(τ)|dτ ≤M (110)

where M is finite constant.
• Theorem 2: BIBO stability and steady state response If a

system with transfer function G(s) is BIBO stable, then
as t → ∞, the output excited by a step u(t) = a for
t ≥ 0 approaches G(0).
This result specifies the response of a BIBO stable system
to a step input.

• Theorem 3: A LTI system transfer matrix is BIBO stable
if and only if every pole of every entry of Gij has negative
real part.
It is clear that there is a relationship between the poles
and the eigenvalues of the state transition matrix since

G(s) = C(sI −A)−1B +D (111)

Thus, if there is no pole–zero cancellation, the eigenval-
ues of A are the poles of the transfer function. However,
not all eigenvalues of A will appear in G(s) if there is
zero–pole cancellation. The following example illustrates
this case.

Example

Consider the following example

ẋ =

[
−1 10
0 1

]
x+

[
−1
0

]
u (112)

y =
[
−1 3

]
x− 2u (113)

The eigenvalues of A are {−1, 1}, thus the system is not stable
in the sense of Lyapunov. The system’s transfer function is
given by

G(s) =
2(1− s)
s+ 1

(114)

The system is BIBO because it has a negative pole at −1. In
conclusion
• Asymptotic stability ⇒ BIBO stability
• BIBO stability ; Asymptotic stability

Figure 9 shows a comparison between internal and BIBO
stability.
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Fig. 9. Comparison between internal and BIBO stability
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