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1 Introduction

In this paper, we model and estimate financial uncertainty by introducing two-state

regimes for the steady states of a volatility process related to capital market conditions

that affect entrepreneurial activities under a dynamic stochastic general equilibrium

(DSGE) framework. We label the steady state of volatility as SS-uncertainty, and

our model introduces a shock to the SS-uncertainty regimes and allows transition

probabilities of the regimes to vary dependent upon a set of previous shocks as well

as the SS-uncertainty shock. We view that transition probabilities in our setup may

characterize the (subjective) outlook on economic and financial conditions. Extending

Christiano et al. (2014) (CMR), we define an uncertainty process (σ) to follow an

autoregressive process

log(σt/σ∗) = ρσ log(σt−1/σ∗) + σe,σe
∗
σt ,

where e∗σt refers to a σ-shock perceived by an agent. Our main departure from CMR

lies in the assumption that e∗σt consists of a fundamental volatility shock (eσ,t) and an

uncertainty shock (Ut) associated with the economic agents’ perception about steady

state uncertainty. A simple example would be e∗σt = eσt + Ut. An uncertainty shock

Ut can be interpreted as a belief term resulting from processing available information,

which we illustrate below. In describing an economic situation, it is customary to

use two regimes, such as high and low, positive and negative, favorable and adverse,

or optimistic and pessimistic. Information processing can be costly and therefore

distinguishing individual economic states is difficult, especially if economic agents

need to solve a highly complex multivariate optimization problem. In this vein, we

suppose that the agent views that the steady state level of uncertainty can be either

high (σss) or low (σss) to reflect the struggling agents’ heuristic belief formation

(σss > σss > 0). Specifically, we may express the uncertainty shock (Ut) as

Ut =

 1
σe,σ

[log(σss/σ∗)− ρσ log(σss,t−1/σ∗)] , if perceived uncertainty is high,

1
σe,σ

[log(σss/σ∗)− ρσ log(σss,t−1/σ∗)] , if otherwise.

Combining the above two equations, we write the perception-adjusted uncertainty
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process as

log(σω,t/σss,t) = ρσ log(σω,t−1/σss,t−1) + σe,σωeσω ,t,

where σss,t = σss if the steady-state uncertainty is high, and σss,t = σss, otherwise.

Then, we can make the switching of σss,t endogenous and conditional on key economic

shocks to model financial market uncertainty.

Mounting empirical evidence indicates that adverse changes in financial market

conditions are among the leading sources of the sharp contraction and slow recovery

of the U.S. economy during the Great Recession and its aftermath.Theoretical jus-

tifications exist as well. Cagetti et al. (2002) and Hansen (2007) show the roles of

uncertainty produced by hidden Markov switching models to study equity premiums.

Kim et al. (2009), Kim and Park (2018), and Kim et al. (2020) show that regime-

switching models or similar nonlinear volatility models imply that the volatility of

volatility is much higher in times of switching regimes or fast transitions in states.

This can produce uncertainty distinct from risk. To be specific, define Xσ
t = ln σt

σss,t
,

where Xσ
t = ρXσ

t−1 + σe,σeσ,t. Then, we can easily see that σt = exp(Xσ
t )σss,t, where

σss,t is a step function having values of either σss or σss depending upon economic

states. Taken together, our volatility process is a two-factor nonlinear model in which

one factor (σss) represents a source of uncertainty related to the economic agent’s be-

lief formation. Furthermore, because (σss) process switches over time, X, or the

logarithmic deviation of volatility from its steady state will depend on the level and

change of the uncertainty regime.

Anecdotally, regime-switching frictions appear necessary to explain data, which

shows significant and recurrent up-and-down variations in the corporate bond spread

defined by Baa-rated bond yields over 10-year treasury rates. The spread rises in

recessions and declines in expansions, where rises are associated with tightening and

declines with loosening in credit conditions. Many authors (e.g., Reinhart and Ro-

goff (2008)) document that credit conditions drastically loosened leading up to the

financial crisis. In this light, we estimate the risk and uncertainty process from the

core model of CMR,1 and demonstrates that a model without time-varying financial

1The uncertainty process is generated with a smoothing filter at the posterior mean. Compared
to CMR, we assume away term structure, news shocks, and all distortionary taxation. The data
set contains eight standard macro variables and three financial variables spanning from 1995Q1 to
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Figure 1: Credit Spread, Credit Information Uncertainty and Financial Risks

Notes: This figure compares credit spread and a credit information uncertainty measure with the

volatility of capital efficiency shock, estimated without regime-switching in steady-state levels of un-

certainty. The dashed blue curve (right scale) in both panels plots smoothed uncertainty (volatility)

in natural log produced at the posterior mean of the estimated quantitative model with financial

friction in a fixed regime, following Christiano et al. (2014). The data spans from 1995Q1 to 2018Q2.

The dark curve (left scale) in the left panel plots credit spread in natural log defined by the spread

of Baa-rated corporate bonds yields over U.S. 10-year constant maturity treasury rates. The dark

dotted curve (left scale) in the right panel plots the issue-amount weighted credit rating dispersion

(credit information uncertainty: CIU). The correlation between the credit spread and the estimated

volatility (left panel) is 0.576, and the correlation between the CIU and the estimated volatility

(right panel) is 0.119.

uncertainty regimes cannot fully explain the spread dynamics.

Further, we measure credit information uncertainty (CIU) as a proxy for the

quantity of uncertainty, extending Kim et al. (2018) and Johnson et al. (2020) by

aggregating the cross-sectional dispersion of credit ratings of firms with issue-amount

weights. We believe that the CIU measure matches the description of our uncertainty

term generated by the cross-sectional volatility of “perceived” market conditions.

2018Q2 and is inherently a subset of CMR. CMR reports a similar comparison in Panel F of Figure
1.
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Figure 2: Credit spread, Credit Information Uncertainty, and Financial Risk and
Uncertainty

Notes: This figure compares credit spread and a credit information uncertainty measure with the

volatility of capital efficiency shock, estimated with endogenous regime-switching in steady-state

levels of uncertainty. The dashed red curve (right scale) in both panels plots smoothed risk and

uncertainty (volatility) in natural log produced at the posterior mean of the estimated quantitative

model with financial friction with the endogenous regime-switching mechanism suggested in Chang

et al. (2017). The data spans from 1995Q1 to 2018Q2. The dark curve (left scale) in the left panel

plots credit spread in natural log defined by the spread of Baa-rated corporate bonds yields over

U.S. 10-year constant maturity treasury rates. The dark dotted curve (left scale) in the right panel

plots the issue-amount weighted credit rating dispersion (credit information uncertainty: CIU). The

correlation between the credit spread and the estimated volatility (left panel) is 0.792, and the

correlation between the CIU and the estimated volatility (right panel) is 0.325.

We compare this credit uncertainty proxy with the estimated volatility process

without regime-switching, again to find that the conventional fixed regime model has

limitations in measuring uncertainty. Figure 1 suggests that the estimated model

under a fixed financial condition regime reveals two major episodes of disconnect be-

tween credit spreads and uncertainty in the period of 1995-early 2000, and the period

since 2010, where the model overstates the level of uncertainty by a significant margin.

A similar pattern prevails between the estimated risk process and the credit informa-

tion uncertainty in that the estimated risk process misses important fluctuations of

the CIU.
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Figure 3: Credit spread, Credit Information Uncertainty, and Financial Uncertainty

Notes: This figure compares credit spread and a credit information uncertainty measure with the

differences of capital efficiency volatilities estimated with and without regime-switching in the steady-

state level of uncertainty. The volatility difference is to identify financial uncertainty arising from

endogenous regime-switching. The solid blue curve (right scale) in both panels plots smoothed

uncertainty (volatility difference) in natural log produced at the posterior mean of the estimated

quantitative model with and without the endogenous regime-switching mechanism suggested in

Chang et al. (2017). The data spans from 1995Q1 to 2018Q2. The dark curve (left scale) in the

left panel plots credit spread in natural log defined by the spread of Baa-rated corporate bonds

yields over U.S. 10-year constant maturity treasury rates. The dark dotted curve (left scale) in the

right panel plots the issue-amount weighted credit rating dispersion (credit information uncertainty:

CIU). The correlation between the credit spread and the estimated volatility difference (left panel)

is 0.40, and the correlation between the CIU and the estimated volatility difference (right panel) is

0.328.

A potential answer to the slow rebound rate lies in uncertainty and the related

agents’ expectations. With a bleak outlook of financial conditions, agents substitute

out future investment for current investment since the price of credit appears ex-

pensive going forward, resulting in slower future growth and the resultant low credit

spreads reflecting the lower credit demand. Regarding credit information uncertainty,

uncertainty may be lower when an economy is already in a bad state because of the

lower likelihood of a sudden regime change to a good state. Thus, transitions in

regimes amplify uncertainty effect, and when the economy is stable, whether in a
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good or a bad state, the uncertainty effect can be less intense. A proper adjustment

deems necessary due to this nonlinear and non-monotonic uncertainty link.

Our uncertainty-augmented expectation channel show some promising results. For

instance, Figure 2 plots the comparison results when the volatility of capital effi-

ciency shock is estimated using the endogenous regime-switching model applied to

the steady-state level of the financial uncertainty. Both panels show improvements

over the results in Figure 1 in explaining both price and quantity of financial un-

certainties. To illustrate if the marginal contribution is significant, we compute the

differences of capital efficiency volatilities estimated with and without the endoge-

nous regime-switching, and Figure 3 compares those with the credit spread and CIU.

Results visually confirm that our regime-switching uncertainty model clearly explains

data. Despite that CIU, measured by cross-sectional dispersion of credit rating, is

outside of the model and not at all utilized in the estimation, our model-based finan-

cial uncertainty successfully delineates the quantities of uncertainty over time.

A systematic analysis of time-varying transition calls for proper extension of the

model of constant transition. A reasonable assumption is to have regime dynamics

of financial conditions tied to economic fundamentals. To this end, we adopt the

feedback mechanism of Chang et al. (2017), in which the transition probabilities

are functions of historical shocks. The regime-switch is determined by a stationary

AR(1) regime factor and a threshold parameter. It is a normal regime if the regime

factor is below the threshold, and a distress regime otherwise. The innovation of

the regime factor can be decomposed into a linear combination of past fundamental

shocks and an exogenous innovation. The vector of coefficients has a unit length

by construction. Therefore the squares of the coefficients may be interpreted as

percentage contributions of the corresponding shocks to the regime shifts. States of

the uncertainty process identify the financial regimes. We estimate the model on

1981Q1-2019Q3 data. As seen from the previous figures, the estimated uncertainty

explains drops in corporate bond spreads observed in the mid-1990s and mid-2000s

much better compared to the fixed-regime model.2

We quantify the contribution of each of the structural shocks to changes in agents’

outlook of financial markets. Financial conditions ridden with frictions are time-

2We also tried exogenous regime-switching models to compare and find that our endogenous
regime-switching model outperforms in this regard. Results are readily available upon request.
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varying and affect forming expectations of economic agents, and their decisions, in

turn, have feedback effects in determining future capital market conditions. Moreover,

this helps to identify uncertainty shocks by teasing out fundamental economic and

financial shocks.

Our result states that structural shocks explain a significant portion of the vari-

ation in the regime factor, yet independent fluctuations in uncertainty shocks exist

and vary over time.3 Our estimation results state that dynamic responses to the

SS-uncertainty shock differ entirely from those to other fundamental shocks, both

qualitatively and quantitatively. This shock affects transition probabilities directly.

Partly due to the persistence of SS-uncertainty regimes, the direction of this shock

often does not matter, and its dynamic effect depends mostly on which regime the

economy belongs to at the impact date. Inertia and asymmetric effects prevail as

a result. Specifically, in the high (low) SS-uncertainty regime, economic activities

decrease (increase) regardless of the shocks’ direction. For a large shock or when the

economy experiences transitions, this shock has more symmetric effects. Economists

are often puzzled by anomalous responses of crucial economic variables against shocks

affecting the degrees of risk and uncertainty. Our volatility setup can explain such

seemingly counterintuitive results. Overall, we believe that our model identifies an

uncertainty shock that has distinctive propagation channels.

The paper proceeds as follows. Section 2 relates this paper to the literature.

Section 3 explains the model. Section 4 discusses the effects of switching financial

conditions and reports estimation results. Section 5 presents our main results. Then,

we conclude. We leave a description of the economic model and its solution, estima-

tion, and filtering procedures in the Appendix, and provide additional details of the

numerical procedures we implement in the Online Appendix.

3Quantitatively, investment-specific shocks, firms’ net worth, investment efficiency, monetary
and fiscal policies shocks are important with time-varying degrees. Qualitatively, variables related to
decreases in adjustment costs tend to improve the financial conditions, while the variables associated
with possibly more financing and resource needs such as net worth shocks tend to deteriorate future
financial conditions, creating a more pessimistic future outlook. Related, monetary and fiscal policies
are likely to lower the degree of financial uncertainty in bad times, which is consistent with the story
of public liquidity provision.
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2 Literature

The relation between uncertainty and output growth in the business cycle frequency,

and the transmission mechanism from one to the other, has received substantial at-

tention since the influential work of Bloom (2009). Uncertainty is a key suspect of the

depth of the Great Recession. Proxies of uncertainty rise sharply with NBER-based

recessions and financial markets react ((Bloom, 2009; Kim et al., 2009; Bloom et al.,

2018; Jeong et al., 2015; Jurado et al., 2015; Baker et al., 2016; Chang et al., 2016;

Kim et al., 2020)). Evidence from a dynamic factor model suggests that two classes

of highly correlated shocks, namely, credit supply and financial/political uncertainty,

were the primary drivers of variation in growth of detrended GDP and employment

during the Great Recession (Stock and Watson, 2012).4

Models on the real-option channel typically predict a relatively quick overshoot-

ing of output several periods after the initial reduction due to high uncertainty. The

slow recovery following the great slump thus presents a challenge as Bachmann et al.

(2013) in a VAR analysis with standard recursive identification strategy detect no

evidence suggesting quick rebound and overshooting effect in the U.S. data. Gilchrist

et al. (2014) provide strong VAR evidence suggesting credit spread as a critical con-

duit of uncertainty transmission in the U.S. during 1963Q3 - 2012Q3, and theorize

that increases in firm risk lead to a rise in bond premia and the cost of capital which,

in turn, triggers a prolonged decline in investment activity. Christiano et al. (2014)

demonstrate that fluctuations in uncertainty can generate sizable and persistent re-

ductions in output and argue it is the primary determinant of the US business cycle

using an estimated medium-scale DSGE model with BGG financial friction, a sharply

different result concerning the contribution of a conventional set of structural shocks

compared to the estimated model of Christiano et al. (2005). Moreover, Caldara et al.

4This paper also relates to works concerning policy effectiveness in an economy with uncertainty.
On the one hand, the real-option effect in uncertain times implies temporarily less effective fiscal
policies because firms are more cautious in responding to price changes due to irreversible investment
(Bloom et al., 2018). On the other hand, in line with real-option theory, evidence from structural
VARs suggests dampened effects of monetary policy shocks in more uncertain times (Aastveit et al.,
2017). Additionally, the effect of monetary policy instruments on macro variables is at best indirect
(Bernanke and Kuttner, 2005). Monetary policy actions more directly influence financial markets
by affecting asset prices and returns. Empirically, monetary policy surprises are shown to signifi-
cantly impact asset prices, which is primarily associated with changes to risk premia (Bernanke and
Kuttner, 2005; Drechsler et al., 2018).
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(2016) employ a VAR model identified via the penalty function approach and posit

that the Great Recession is likely a consequence of the interaction of acutely elevated

uncertainty and tightened financial constraint.

Another strand of relevant literature regards the effects of expectation formation.

In a DSGE model, Liu et al. (2011) examine the importance of expectation forma-

tion effects of regime-switching on monetary policy. They show that the possibility

of regime shifts in policy can significantly influence agents’ expectation formation

and equilibrium dynamics. Bianchi (2013) estimates a DSGE model with switching

monetary policy regimes and finds that if agents in the 1970s had anticipated a more

aggressive response to inflation by the Federal Reserve, inflation would have been

lower. Bianchi and Ilut (2017) extend this work by allowing a mixture of monetary-

fiscal policy regimes.

On the topic of uncertainty and time-varying financial friction, this paper is related

to Linde et al. (2016). They demonstrate the macroeconomic implications of financial

market friction in a medium-scale DSGE model with BGG financial accelerator and

regime-switching monitoring cost, without further discussion of the expectation effect.

By modeling switching monitoring cost, they generate non-zero predictive density on

observing the low output growth in 2008Q4.5

There are three essential differences in our approach. First, their results rest heav-

ily upon the specification of the Markov-switching SVAR, and ours do not. Second,

they assume a first-order log-linear approximation of the Markov-switching DSGE

solution around a regime-independent steady state, whereas we solve the regime-

switching DSGE model around two regime-specific steady states. Third, we include

feedback channels to regime transition so that we may more coherently discuss the

effect of expectation induced by time-varying transition probabilities.6

5Extending this work, Lhuissier and Tripier (2021) estimate a similar model by minimizing the
distance between the impulse responses of an identified Markov-switching SVAR, and those of a
medium-scale Markov-switching DSGE. Driven by the Markov-switching SVAR evidence, they con-
clude that the amplification effect of financial friction diminishes as agents grow more confident in
their outlook of the financial market.

6On regime-switching with time-varying transition probabilities in DSGE models, Benigno et al.
(2020) consider switching between a financially constrained state and a non-binding state, with
switching probabilities depending on the indebtedness of agents. On the other hand, we use regimes
to define the steady-state level of volatility related to entrepreneurial capital efficiency, which depend
on the full set of fundamental shocks.
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Table 1: List of Fundamental Shocks and Feedback Parameters

Shocks Feedback Label

εt ρv,ε Transitory Technology Shock
µz∗,t ρv,µz Persistent Technology Growth Shock
gt ρv,g Government Spending Shock
εp,t ρv,p Monetary Policy Shock
π∗t ρv,π∗ Inflation Target Shock
µΥ,t ρv,µΥ

Investment-Specific Shock
γt ρv,γ Equity Shock
λf,t ρv,λf Price Markup Shock
ζc,t ρv,ζc Preference Shock
ζi,t ρv,ζi Marginal Efficiency of Investment Shock

Notes: This table presents a complete list of fundamental shocks along with their feedback

parameters and labels.

3 Model

The model features a regime-switching financial accelerator in a steady-state variable

on top of a Smets and Wouters (2007) medium-scale DSGE model. Our model un-

der a fixed regime is a special case of CMR in that the model abstracts from term

structure, news shocks, and distortionary taxes. A utility-maximizing representative

household accumulates raw capital transformed into effective capital by risk-neutral

financial firms, and the production of consumption goods uses the latter form capital.

Uncertainty is defined as the standard deviation of the distribution for idiosyncratic

efficiency of the effective physical capital. We describe the economic model in sections

A.1-A.3 of the Online Appendix.

3.1 Shock Processes

Table 1 presents a complete list of fundamental shocks along with their feedback

parameters. The log-deviation to steady state of conventional fundamental shocks,

follow generic AR(1) processes of form

(3.1) log(xt/xss) = ρx log(xt−1/xss) + σe,xex,t.
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The coefficients ρεp = 0 and ργ = 0 for the monetary policy shocks and the equity

shock, respectively. As in CMR, we fix ρπ∗ = 0.975 and σe,π∗ = 0.0001 for the inflation

target shock to accommodate the downward trend of inflation in the data. The

idiosyncratic uncertainty process (σω) follows an autoregressive process, embedding

regime-switching steady-state means in addition to the conventional risk shock:

log(σω,t/σss,t) = ρσ log(σω,t−1/σss,t−1) + σe,σeσ,t,(3.2)

σss,t = stσss + (1− st)(2σss − σss), σss < σss,(3.3)

with the regime indicator st = 1, indicating the low steady-state uncertainty (SS-

uncertainty) regime, and st = 2 (the high SS-uncertainty regime), following a Markov

chain with a 2×2 transition matrix Pt. We view SS-uncertainty regimes as the states

of economy observed by market participants who collect and process information to

make economic decisions.

3.2 Regime-Switching and Uncertainty

Equation (3.3) states that the steady-state level of uncertainty σss,t has binary regimes

and the following model describes the switching mechanism:

(3.4) st = 1 + 1{wt ≥ τ},

where τ is a threshold parameter and its driver is a stationary autoregressive process

(3.5) wt = αwwt−1 + vt, vt ∼ N(0, 1).

Following Chang et al. (2017), we consider intertemporal correlation between the

column vector of all historical structural shocks εt−1 and the regime factor innovation

vt of form (
εt−1

vt

)
∼ N

(
0,

(
I ρε,v

ρ′ε,v 1

))
, ρ′ε,vρε,v < 1(3.6)

where ρε,v is the column vector of correlation coefficients between each structural

shock and the regime factor innovation. See a summary of feedback coefficients in
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Table 1. The above feedback model is a convenient approach to introduce flexible

time-varying conditional expectations formed by economic agents. This is a key

departure of our model from the existing ones employing Markov chains with constant

transition probabilities. The transition probabilities of staying in Regime-1 at t, P1|1,t,

and the probabilities of switching to Regime-1 at t from Regime-2 at t − 1, P1|2,t,

characterize the time-varying transition matrix Pt. Easy to show that

P1|1,t =

∫ τ
√

1−α2
w

−∞
Φρε,v

(
τ − αww√

1−α2
w

− ρ′ε,vεt−1

)
dΦ(w)

Φ(τ
√

1− α2
w)

(3.7)

P1|2,t =

∫ ∞
τ
√

1−α2
w

Φρε,v

(
τ − αww√

1−α2
w

− ρ′ε,vεt−1

)
dΦ(w)

1− Φ(τ
√

1− α2
w)

(3.8)

with Φ(·) denoting the standard normal distribution function and

Φρε,v(w) = Φ
((

1− ρ′ε,vρε,v
)−1/2

w
)
.

P1|1,t and P1|2,t are time-invariant if ρε,v = 0, and the regime process (st) is Marko-

vian in this case. Therefore, the conventional regime-switching DSGE models with

constant transition probabilities are encompassed in our framework as a special case.

Indeed, Chang et al. (2017) show that, when feedback is not allowed with ρε,v = 0, the

pair of parameters (αw, τ) maps one-to-one to a time-invariant transition matrix P

characterized by constant transition probabilities P1|1 and P1|2. Hence a more realistic

and flexible setup prevails in our model without losing parsimony.

We project the regime factor innovation vt onto the space span by εt−1 and de-

compose

(3.9) vt = ρ′ε,vεt−1 +
(
1− ρ′ε,vρε,v

)1/2
ηt

into a feedback term ρ′ε,vεt−1 and an innovation term
(
1− ρ′ε,vρε,v

)1/2
ηt, where εt−1

and ηt are standard normal random variables independent of each other. The unit
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variance of vt has decomposition

(3.10) var(vt) =
∑
i

ρε,v
2
(i) + (1− ρ′ε,vρε,v)

in which ρε,v(i) is the i-th element of the vector ρε,v. Since the regime factor wt is driven

by its innovation vt, we may interpret ρε,v
2
(i) × 100% as the percentage contribution

of the i-th structural shock to regime shifts. Likewise, ρ′ε,vρε,v × 100% is the total

contribution of structural shocks to regime shifts in percentage term. Moreover, there

is an MA(∞) representation of wt by stationarity

wt =
∞∑
k=0

φkvt−k(3.11)

=
∞∑
k=0

φk

(
ρ′ε,vεt−1−k +

(
1− ρ′ε,vρε,v

)1/2
ηt−k

)
,

with φk = αkw for k = 0, 1, 2, · · · . Hence the latent factor wt is a linear function

of the historical structural shocks and the factor innovations to the infinite past.

For an intuitive explanation, in the case of ρ′ε,vρε,v ≈ 1, the latent factor wt can be

approximated by a linear function of the historical structural shocks

wt ≈
∞∑
k=0

φkρ
′
ε,vεt−1−k,(3.12)

and can potentially be expressed as a function of historical state variables. Related,

the difference between equations (3.11) and (3.12) reveals how the history of the

exogenous uncertainty shocks contributes to regime-switching in the steady-state level

of uncertainty.

As mentioned earlier, if a volatility variable measures risk and uncertainty, our

model in equations (3.3) to (3.9) distinguishes the expectation shock (vt) from the eσ,t

shock, because the former shock operates mainly through the expectation channel. If

the economy is in one SS-uncertainty regime and likely to stay in the same regime, the

effect of v shock mainly depends on the regime that the economy belongs to. Suppose

there exists a small v shock that perturbs the probabilities of regime switches. If the

probability p of being in the low SS-uncertainty regime is close to 1, a small shock
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will result in a similar switching probability regardless of the direction of the shock

(e.g., for a small v shock ε > 0, both p − ε and p + ε will be close to 1). If an

agent makes economic decisions, such as investment, it is likely that she increases

(decreases) an investment in the low (high) steady-state uncertainty environment,

and regime-switching probability works as a weight in computing the expectations

using the above regime-contingent outcomes. For a simple exposition, consider a

response of investment of size ∆Iσss > 0. In the low SS-uncertainty regime, the size

of the investment response is going to be ∆Iσss > 0, while it is assumed −∆Iσss < 0

in case of the high SS-uncertainty regime. Suppose that the economy is currently in

the low SS-uncertainty regime (σss). Then, in response to a v shock that perturbs the

distribution, if the size of the shock (ε) is sufficiently small and p ≈ 1, the expected

responses are

(p± ε)∆Iσss + (1− (p± ε))(−∆Iσss) = 2(p± ε)∆Iσss −∆Iσss .

Thus, if p ≈ 1 and ε ≈ 0, the expected responses will be ∆Iσss for both a positive

(+ε) and a negative −ε shock. Similarly, if the economy is currently in the high

SS-uncertainty regime and unlikely to shift toward the low SS-uncertainty regime

(i.e., p ≈ 0), the response to the expectation shock, provided the size of the shock (ε)

being small, is going to be (−∆Iσss) whether the shock is positive or negative. In sum,

for a small v shock, the dynamic effects of this uncertainty shock depend critically

on the regime with which the economy is faced, and the direction of the shock is

relatively unimportant. This is because the uncertainty shock in our model only

slightly perturbs the regime-switching probability distribution and is not large enough

to move the needle for a switch. This differs both qualitatively and quantitatively

from other shocks including the risk shock.

Note that we emphasize the ‘size’ of this expectation shock in explaining the mech-

anism of the shock propagation. If this shock is sufficiently large, regime-switching

probabilities can change significantly, and the resulting impulse response can be quite

different from the above cases. To make it more concrete, suppose first that the econ-

omy is right in the middle of regime-switching, and the size of v shock is sufficiently

large, then a positive v shock makes the probability of high SS-uncertainty regime

much higher and closer to 1, whereas a negative v shock leads to the same probability

towards 0. Then, the impulse responses to a sufficiently large v shock are going to
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be similar to those to other structural shocks. For a positive uncertainty shock of

v, investment decreases, and a negative uncertainty shock increases investment over

time. Now suppose another plausible situation where the economy is currently in

the low SS-uncertainty regime, but there exists a nontrivial chance of switching to

the high SS-uncertainty regime, then it is possible to observe a highly asymmetric

response against a positive or negative v shock. For a negative v shock, the shock

simply states that the economy is going to continue to stay in the low SS-uncertainty

regime. Then, an increase in investment will prevail in response to this reduction

in uncertainty. However, when there exists a sizable positive uncertainty shock, the

probabilities of the economy in the high and low SS-uncertainty regimes now become

similar. If these two probabilities are the same at 0.5, the investment responses are

going to be zero. That is, due to the increases in transition to the high steady-state

risk regime in a near future, highly muted or no responses can be observed.

Our model has a novel shock propagation mechanism that distinguishes from the

conventional models. We believe that our model has potentials to explain seemingly

puzzling behaviors of economic variables in a coherent way. In the next section, we

estimate our model to verify if our theory is valid and data are consistent with the

above explanations.

4 Estimation

This section describes the data and report estimation results for two sample periods.

The first set spans from 1981 to 2019. For the second set, a sub-period of 1981 to

2010 is used. The latter set corresponds to the sample used in CMR, hence facilitates

comparison.

4.1 Data

The data set contains quarterly observations of eleven variables spanning from 1981Q1

to 2019Q3. All of the variables are in real and per capita terms. There are eight stan-

dard aggregate variables in our empirical analyses: GDP, consumption, investment,

inflation, real wage, relative price of investment goods, labor hours, and effective

federal funds rate.
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Table 2: Calibrated Parameters

Parameter Label Value

β Discount rate 0.9987
σL Curvature, disutility of labor 1.0000
ψL Disutility weight on labor 0.7705
λw,ss Steady state, markup, labor 1.0500
µz Growth rate of economy 0.4100
Υ Trend of investment technology 0.4200
δ Capital depreciation rate 0.0250
α Capital share 0.4000
λf,ss Steady state, markup, intermediate good 1.2000
γss Steady state, survival rate of entrepreneurs 0.9850
We Transfer to entrepreneurs 0.0050
ηg Steady state, spending-to-GDP ratio 0.2000
π∗ Steady state, inflation target 2.4300

Notes: This table presents the parameters we fix a priori. The parameter values are set following

CMR.

GDP is deflated by its implicit price deflator; real household consumption is the

sum of household purchases of non-durable goods and services, each deflated by its

implicit price deflator; investment is the sum of gross private domestic investment

plus household purchases of durable goods, each deflated by its price deflator. The

per capita terms are divided by the population over 16. Annual population data ob-

tained from the Organization for Economic Cooperation and Development are linearly

interpolated to obtain quarterly frequency observations. The real wage is the hourly

compensation of all employees in non-farm business divided by the GDP implicit price

deflator. The short-term risk-free interest rate is the three-month average of the daily

effective federal funds rate. The level of inflation is measured as the logarithmic first

difference of the GDP deflator. The relative price of investment goods is measured as

the implicit price deflator for investment goods divided by the implicit price deflator

for GDP. The labor hours are in log (per capita) levels, net of the sample mean.

There are also three financial variables: credit to non-financial firms, net worth

of entrepreneurs, and credit spread. The credit to non-financial firms is taken from

the flow of funds data set constructed by the U.S. Federal Reserve Board. The

entrepreneurial net worth is the Dow Jones Wilshire 5000 index. The credit spread
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Table 3: Estimation Results: Regime-Switching Model with Feedback

1981-2019 1981-2010
Priors Posteriors Posteriors

Parameters Type Q5 Q95 Mode Mean 90% HPD Mode Mean 90% HPD

ξw B 0.7 0.9 0.89 0.88 0.87 0.90 0.91 0.92 0.91 0.94
b B 0.5 0.9 0.95 0.94 0.92 0.95 0.92 0.93 0.91 0.94
σa Γ 1.5 3 2.15 2.14 1.77 2.48 1.99 1.91 1.46 2.35
S′′ N 5 15 3.71 3.58 3.27 3.88 3.43 3.43 3.07 3.79
ξp B 0.5 0.9 0.72 0.71 0.69 0.73 0.69 0.68 0.65 0.71
απ N 1.5 3 3.44 3.45 3.20 3.71 3.33 3.58 3.30 3.88
ρp B 0.5 0.9 0.84 0.83 0.81 0.85 0.84 0.80 0.77 0.82
ι B 0.3 0.65 0.36 0.39 0.29 0.49 0.33 0.29 0.20 0.38
ιw B 0.3 0.65 0.49 0.47 0.37 0.57 0.35 0.33 0.24 0.42
ιµ B 0.3 0.65 0.88 0.88 0.84 0.92 0.80 0.79 0.74 0.85
α∆,t N 0.1 0.4 0.21 0.23 0.13 0.34 0.17 0.17 0.05 0.28
ρλf

B 0.6 0.9 0.98 0.98 0.97 0.99 0.98 0.98 0.97 0.99
ρµΥ

B 0.6 0.9 0.99 0.99 0.98 1.00 0.94 0.94 0.91 0.96
ρg B 0.6 0.9 0.96 0.96 0.95 0.97 0.96 0.96 0.94 0.97
ρµz

B 0.01 0.4 0.00 0.01 0.00 0.03 0.00 0.03 0.00 0.06
ρε B 0.6 0.9 0.76 0.76 0.73 0.80 0.73 0.69 0.65 0.74
ρσ B 0.6 0.9 0.88 0.88 0.86 0.89 0.90 0.93 0.92 0.95
ρζc B 0.6 0.9 0.67 0.82 0.73 0.90 0.86 0.85 0.80 0.90
ρζi B 0.6 0.9 0.96 0.96 0.95 0.96 0.95 0.95 0.95 0.96
σe,σ Γ−1 0.01 0.09 0.08 0.07 0.06 0.08 0.11 0.11 0.10 0.12
σe,λf

Γ−1 0.0005 0.0015 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
σe,µΥ Γ−1 0.002 0.006 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01
σe,g Γ−1 0.001 0.0033 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
σe,µz

Γ−1 0.003 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
σe,γ Γ−1 0.003 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02
σe,ε Γ−1 0.003 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01
σe,p Γ−1 0.01 1 0.82 0.81 0.74 0.90 0.74 0.81 0.70 0.93
σe,ζc Γ−1 0.003 0.01 0.08 0.08 0.06 0.09 0.07 0.07 0.06 0.08
σe,ζi Γ−1 0.003 0.01 0.19 0.19 0.18 0.19 0.19 0.18 0.18 0.19

αw B 0.5 0.95 0.96 0.96 0.94 0.98 0.89 0.87 0.81 0.93
τ N 0 1 0.29 0.30 -0.05 0.60 0.46 0.64 0.32 0.93
ρv,ε U -0.9 0.9 0.13 0.13 -0.09 0.36 -0.11 -0.05 -0.27 0.20
ρv,g U -0.9 0.9 -0.17 -0.26 -0.42 -0.07 -0.05 -0.27 0.20 0.05
ρv,γ U -0.9 0.9 0.61 0.51 0.38 0.63 0.06 0.07 -0.10 0.25
ρv,λf

U -0.9 0.9 0.07 0.07 -0.11 0.25 0.22 0.00 -0.21 0.22
ρv,µΥ U -0.9 0.9 -0.32 -0.24 -0.42 -0.07 -0.17 -0.30 -0.49 -0.11
ρv,µz

U -0.9 0.9 -0.07 -0.04 -0.23 0.15 0.29 -0.11 -0.34 0.12
ρv,π∗ U -0.9 0.9 0.00 -0.04 -0.23 0.19 0.07 0.01 -0.21 0.23
ρv,σ U -0.9 0.9 0.15 0.09 -0.09 0.29 0.13 -0.04 -0.24 0.15
ρv,p U -0.9 0.9 -0.20 -0.25 -0.44 -0.08 -0.28 -0.50 -0.67 -0.31
ρv,ζc U -0.9 0.9 0.05 -0.04 -0.24 0.15 0.32 -0.14 -0.30 0.03
ρv,ζi U -0.9 0.9 -0.64 -0.54 -0.69 -0.40 -0.78 -0.64 -0.76 -0.50
F (ω̄)1 B 0.003 0.03 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01
F (ω̄)2 B 0.02 0.07 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.02
µ B 0.1 0.3 0.15 0.28 0.23 0.33 0.14 0.12 0.10 0.15

Notes: B:“Beta distribution”; Γ: “Gamma distribution”; N: “Normal distribution”; Γ−1: “Inverse
gamma distribution”; U: “Uniform distribution.”
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is the difference between the interest rate on Baa-rated corporate bonds and the rate

of the 10-Year U.S. Treasury bonds in constant maturity. The credit spread and the

risk-free rate are measured in level.7

Among all variables, the consumption, investment, credit, GDP, net worth, rela-

tive price of investments, and real wages are demeaned first-order log-difference.

4.2 Priors and Posteriors

We estimate the quantitative DSGE model using a Random-Walk Metropolis-Hastings

(RWMH) sampler. The time-varying transition matrix in a DSGE model complicates

the estimation procedure since the filtering problem within the sampler requires a

complete history of regimes in general. For a two-regime model, the computation

quickly becomes infeasible as the history unfolds because the total number of paths

to track is 2T with the sample size T .

We apply the Chang et al. (2021) regime-switching filter to overcome the issue of

exploding regime history. Instead of introducing another set of notations, we use yt, xz

and zt to denote observables, state variables and exogenous variables in this section,

and use ut and εt to denote measurement errors and state innovations, respectively.

The filter assumes a state space model (SSM) of the form

yt = Dst + Zstxt + Fstzt +Qstut(4.1)

xt = Cst +Gstxt−1 + Estzt +Rstεt(4.2)

with regime dynamics of (st) specified by (3.4) and (3.5) allowing feedback of the

form (3.6). Equation (4.1) describes the relationship between data and the state

variables in the model. Equation (4.2) is the system of policy functions. The SSM

is completed by the time-varying transition probabilities characterized by (3.7) and

(3.8). The filter performs the predict-update recursion and takes a marginalizing-

collapsing approach to approximate the likelihood function p(Y1:T |θ). For notational

convenience, we do not differentiate the exact and the approximate likelihood, ac-

knowledging that the likelihood is always approximated in our empirical analysis.

7Our data set is a subset of CMR. We exclude the term-spread because the term structure is
not explicitly modeled in our setup. Additionally, CMR find the term structure to be quantitatively
unimportant in their exercises.
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Readers are referred to Chang et al. (2021) for a complete description of the filtering

algorithm (endogenous-switching Kalman filter), and to Appendix C.1 for a detailed

description of the procedure we use.

We partition the parameters into two sets. The first set contains the parameters

we set a priori. We follow CMR closely in fixing this subset of structural param-

eters. These parameters are reported in Table 2.8 Table 3 reports the full sample

posterior estimates of our model. We call a feedback channel positive when a positive

structural shock further increases the probability of switching to the high-uncertainty

regime. Analogously, we call a feedback channel negative when a positive structural

shock decreases the probability of switching to the high-uncertainty regime. The only

significant positive feedback channel in the model pertains to the net worth shock.

The significant negative feedback channels include the investment-specific technology

shock, MEI shock, fiscal policy shock, and the monetary policy shock. We observe that

most of the posterior mean estimates of the regime-switching and feedback parame-

ters are similar across the full sample (1981-2019) and the CMR sample (1981-2010),

and our quantitative results barely change as we use either group of the parameter

estimates.

4.3 Sources of Time-varying Transitions and Expectations

An agent with knowledge of wt−1 can form the expectation concerning regime st easily

by comparing its value against threshold τ . It is more likely to have a regime switched

if wt−1 is close to the threshold. Neither agents in our model nor econometricians

observe the regime factor. Nonetheless, its conditional mean can be estimated and

serves as a decent proxy for the degree of optimism in agents’ expectations from an

econometrician’s viewpoint.

We obtain the smoothed regime factor at the posterior mean and decompose it

using the estimated shocks recursively with the following equation

(4.3) E(wt|FT ) = αE(wt−1|FT ) + ρ′E(εt−1|FT ) + (1− ρ′ρ)
1/2 E(ηt|FT ).

Figure 4 reports the conditional mean of the regime factor with the threshold esti-

8We set all tax rates at zero because our model does not include the tax on consumption, capital
income, and labor income.
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Figure 4: Estimated Regime Factor and Threshold
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Notes: This figure presents the estimated regime factor wt, and its implied high-risk regime, and
compare them to the NBER recession index. The diamond red curve (left scale) plots the smoothed
regime factor wt computed at the posterior mean of the 1981-2019 sample. The dash-dotted dark
line plots the posterior mean of the regime threshold τ . The shaded areas highlight the high-risk
regimes identified by times at which wt > τ . And the solid black line (right scale) reports the NBER
recession indicator from the period following the peak through the trough aggregated from monthly
frequency to quarterly frequency.

mated at the posterior mean. The high SS-uncertainty regime corresponds to the

region above the threshold. Agents, from an econometrician’s perspective, become

more optimistic (pessimistic) as the regime factor falls deeper in the low (high) SS-

uncertainty regime. The estimated regime factor depicts that uncertainty perception

dramatically increases during the recession period then stays in the high uncertainty

region persistently. Thus, the empirical result suggests that the resolution of uncer-

tainty is slow. The degree of pessimistic outlook on financial condition in the early

1980s recession is weaker by our estimate compared to all later recessions, but it is

clear that our estimated high SS-uncertainty regimes are compatible with the U.S. re-

cession periods. Given the size of output contraction, we expect a deeper contraction

in consumption and labor hours with slower recovery in a high SS-uncertainty regime,
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as demonstrated in the preceding section. Indeed, the “jobless recovery” is a common

pattern shared by all major recessions after 1982. The 2008 global financial crisis is

also well known for its slow recoveries in investment, output, and consumption.

Figure 5: Historical Decomposition of Regime Factor
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Notes: This figure presents the historical decomposition of the latent regime factor reported in
Figure 4 with respect to the smoothed historical shocks computed at the posterior mean of the
1981-2019 sample. The decomposition is produced recursively using (4.3).

The latent regime factor wt can be written as a linear combination of its lag

value, previous structural shocks and an exogenous innovation as shown in (3.11).

Figure 5 presents the historical decomposition of the latent regime factor with respect

to historical shocks estimated at the posterior mean. At each t, the bars in the

stacked bar chart represent the cumulative contributions of the corresponding shocks.
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The latent regime factor is persistent, with the posterior mean of its autoregressive

coefficient, αw, at 0.96. This observation translates to the fact that the lag of itself

explains a substantial portion of the regime factor dynamics.

Figure 6: Estimated Regime Factor Shock (η)
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Notes: This figure presents the estimated regime factor shock η computed from (3.11) using smoothed
regime factor w and the smoothed structural shocks at the full sample posterior mean.

However, the regime factor innovation ηt also accounts for a rather significant por-

tion of the regime factor. The implied shock size can be as large as about 60 standard

deviations by the fact that ρ′ρ ≈ 1. We regard this SS-uncertainty shock as a key

source of uncertainty in financial market condition, distinct from the conventional risk

shock. Figure 6 plots the estimated sample path of this new uncertainty shock.9 The

investment-specific shock (IST), the marginal efficiency of investment shock (MEI),

and the net worth shock (Net Worth) all account for significant portions of the regime

factor throughout the entire sample span. For the most part, the IST shock is quan-

titatively more important than the MEI shock, but it also works together with the

9We also conducted a full set of counterfactual analyses by shutting down one shock at a time, and
obtained results that are consistent with those reported in Figure 5. These counterfactual regime
factors are available upon request.
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MEI shock when pushing the regime factor upward. This observation is evident in

the early 1990s, early 2000s, and also in the aftermath of Great Recession. These

two shocks also work in opposite directions in the late 1990s and at the onset of the

Great Recession. Finally, the net worth shocks by our estimate primarily contribute

to the lowering of the regime factor in the 1980s and 2000s.

Figure 7: Estimated Regime Factor and Probability of High Steady-State Uncertainty
Regime
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Notes: This figure presents the scatter plot of the latent regime factor in Figure 4 and the corre-
sponding high-uncertainty regime probabilities. The red (black) crosses label selected dates of high
(low) high-uncertainty regime probabilities at which we produce regime-dependent impulse responses
to uncertainty shocks in Figure 11.

Both transitory and persistent technological growth shocks are quantitatively im-

portant. The persistent TFP shock mainly contributes to the lowering of the regime

factor in the early 1990s and early 2000s, and to the rising of the regime factor in

the mid-1990s and after the Great Recession. On the other hand, the transitory TFP

shock often work in the opposite direction of the persistent TFP shock. It elevates the

23



regime factor in early 1990s, and lower the factor in mid 1990s and in the aftermath

of the Great Recession.

The historical decomposition reveals a substantive role of government in anchoring

agents’ expectations of the financial market condition. The government spending

shock contributes to the lowering of the regime factor substantially in the Great

Recession, and the monetary policy shock lowers the regime factor significantly in

both of the early-1990s and early-2000s recessions. We argue that this result is natural

because the government spending shock and the monetary policy shock reflect the

authorities discretion in crisis times. Monetary policy’s small effect, relative to the

fiscal policy, during the Great Recession is well expected as the federal funds rate

reaches the zero lower bound.

According to our model, the probability of an SS-uncertainty regime, the size of

expectation shock that moves the regime factor w and the current state of the economy

determine the dynamic effects of the uncertainty channel. To better understand the

mechanism and how it operates quantitatively, we compute the probabilities of the

high SS-uncertainty regime and the regime factor for each time period. Figure 7 plots

them as pairs and it clearly demonstrates how they are related. First, low (high) w

values correspond to the low (high) probabilities of the high SS-uncertainty regime.

However, it is of critical importance to observe that there exist wide intervals of w

values that correspond to either 0 or 1 for the high SS-uncertainty regime probabilities.

This confirms our economic story that once an economy enters an SS-uncertainty

regime, it is likely to stay in the same regime for a while, unless very large shocks

hit the economy. An important implication of this evidence is that the rigidity of

perception about SS-uncertainty affects the directions of impulse responses. If the size

of the uncertainty shock is sufficiently big, conventional impulse responses will prevail.

However, for a small uncertainty shock, the direction of the impulse responses depends

on the current SS-uncertainty regime. The next section quantitatively investigates

these hypotheses.

5 Quantitative Results

This section studies the effects of uncertainty shocks. We also report results related to

other structural shocks to investigate the importance of our expectation-augmenting
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feedback channels.

5.1 Impulse Response Functions

We construct conventional impulse response functions (IRFs) for a vector of endoge-

nous variables Xt to structural shocks. The IRFs are defined given initial state

X0, initial regime s0, and a baseline transition probability matrix P when there is

no shock. We denote a size-one change to the j-th structural shock at time t by

ejt = (0, · · · , 0, 1, 0, · · · , 0), and denote zero shocks before and after t by e0
−t. We use

e0 to represent zero shocks for all time. Equipped with these conditions, we ask how a

structural shock affects the conditional expectation about future regimes of financial

market condition to formally define the h-step ahead impulse response as

(5.1) IRP
x (h, ej1, s0) = EP (Xh|s0, X0, e

j
1, e

0
−1)− EP (Xh|s0, X0, e

0)

where EP (·) is the expectation with respect to the baseline transition probability

matrix P which subjects to further perturbation by structural shocks through feed-

back channels. This impulse response is produced recursively for h = 1, 2, · · · . Let

(Ti, Ri), i = 1, 2 be the regime specific solutions solved around the corresponding

steady states Xss
i , i = 1, 2 of Xt.

10 For h = 1,

IRP
x (1, ej1, s0) =

[
R1P (s1 = 1|s0) +R2P (s1 = 2|s0)

]
ej1

in which P (s1 = i|s0), i = 1, 2 are the baseline transition probabilities given s0. For

h ≥ 2,

IRP
x (h, ej1, s0) = [Xss

1 + T1(EP (Xh−1|s0, X0, e
j
1, e

0
−1)−Xss

1 )]P (sh = 1|s0, e
j
1, e

0
−1)

+ [Xss
2 + T2(EP (Xh−1|s0, X0, e

j
1, e

0
−1)−Xss

2 )]P (sh = 2|s0, e
j
1, e

0
−1)

− [Xss
1 + T1(EP (Xh−1|s0, X0, e

0)−Xss
1 )]P (sh = 1|s0, e

0)

− [Xss
2 + T2(EP (Xh−1|s0, X0, e

0)−Xss
2 )]P (sh = 2|s0, e

0)

Appendix D.1 presents the detailed derivation of the above equations. As demon-

strated in preceding discussions, the conditional regime probability P (sh|s0, e
j
1, e

0) is

10We consider regime specific solutions of form x′(x, e) = Xss
i + Ti(x−Xss

i ) +Rie for i = 1, 2.
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a function of the shock ej1 because of the feedback mechanism. Let P1,j be the transi-

tion matrix perturbed by shock ej1. If s0 = 1, for example, we may use the following

conditional regime probabilities

(5.2)
(
P (sh = 1|s0 = 1, ej1, e

0
−1), P (sh = 2|s0 = 1, ej1, e

0
−1)
)

= (1, 0)×P×P1,j×P h−2.

to weight the regime-dependent responses in the preceding computation of impulse

responses of the endogenous variables to the structural shocks.

To elicit effects of a pure expectation shock associated with our SS-uncertainty

process, we construct an impulse response function to a shock only to the expectation,

and with all structural shocks fixed at zero. Recall that, for the regime factor

wt = αwwt−1 + vt, vt ∼i.i.d N(0, 1)

we may decompose the factor innovation

vt = ρ′et−1 + (1− ρ′ρ)1/2ηt, ηt ∼i.i.d N(0, 1).

We consider a one-period perturbation eη1 of size one to the mean of ηt at t = 1.This

one-time perturbation results in a one-time change in the transition probability matrix

P that governs the regime-change from t = 0 to t = 1. We denote the perturbed

transition matrix by P0,η. The impulse response function is defined as

(5.3) IRP
x (h, eη1, s0) = EP (Xh|s0, X0, e

η
1, e

0)− EP (Xh|s0, X0, e
0)

and is generated recursively for h = 1, 2, · · · . For h = 1,

IRP
x (1, eη1, s0) = [Xss

1 + T1(X0 −Xss
1 )] {P (s1 = 1|s0, e

η
1)− P (s1 = 1|s0)}

+ [Xss
2 + T2(X0 −Xss

2 )] {P (s1 = 2|s0, e
η
1)− P (s1 = 2|s0)}
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For h ≥ 2,

IRP
x (h, eη1, s0) =

[
Xss

1 + T1(EP (Xh−1|s0, X0, e
η
1, e

0)−Xss
1 )
]
P (sh = 1|s0, e

η
1, e

0)

+
[
Xss

2 + T2(EP (Xh−1|s0, X0, e
η
1, e

0)−Xss
2 )
]
P (sh = 2|s0, e

η
1, e

0)

− [Xss
1 + T1(EP (Xh−1|s0, X0, e

0)−Xss
1 )]P (sh = 1|s0, e

0)

− [Xss
2 + T2(EP (Xh−1|s0, X0, e

0)−Xss
2 )]P (sh = 2|s0, e

0).

Interested readers are referred to Appendix D.2 for a more detailed calculation. In

the case that s0 = 1, we use the following conditional regime probabilities

(5.4)
(
P (sh = 1|s0 = 1, eη1, e

0), P (sh = 2|s0 = 1, eη1, e
0)
)

= (1, 0)× P0,η × P h−1

to weight the regime-dependent responses in the preceding computation of impulse

responses of the endogenous variables to the expectation shock.

Our impulse response naturally extends to admit a sequence of shocks {ejt}t=1,2,··· ,k,

as well as a sequence of predetermined regimes {st}t=1,2,··· ,l for analysis of the time-

varying expectation effect induced by the time-varying transition probabilities. We

can further extend this definition to allow for time-varying impulse responses by

weighting the state-dependent impulse responses IRP
x (h, ej1, s0) with estimated regime

probability P (s0|F0) given information F0 available before the materialization of

structural shocks. As a special case, we can compute IRFs by applying uncondi-

tional initial regime probabilities as weights.

5.2 Dynamic Responses to Structural and Uncertainty Shocks

We now examine the dynamic responses of consumption, investment, labor hours, and

GDP with respect to both structural shocks and the novel uncertainty shock.11 We

begin with the impulse responses given unconditional initial regime probabilities with

respect to the shock η, and Figure 8 displays the results. Panels (a) and (b) show the

same responses, except that panel (a) also plots the highest posterior density (HPD)

regions as credible intervals in conjunction with the impulse responses. In each panel,

the first row plots the impulse responses of the macro variables to a positive η shock,

11Impulse responses of all other variables are omitted for conserving space and available upon
request.
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or an increase in the likelihood of the high SS-uncertainty regime. The second row

shows the impulse responses when the direction of the η shock is negative, implying

that the probability of the low SS-uncertainty regime increases. As explained in

Section 3.2, the η shock perturbs transition probabilities across uncertainty regimes,

and its responses can vary significantly, depending upon the current regime and the

persistence of staying in the same regime. Indeed, the estimated IRFs in Figure 8

shows striking results.

Panel (a) states the following: When uncertainty blows to increase the chance of

the high steady-state uncertainty (i.e., a positive shock to η), all the key macroe-

conomic variables rarely respond. However, when η decreases, to the contrary, in-

vestment, hours of work, and output increase. In case of consumption, it initially

decreases, presumably due to substitution for investment, then starts increasing after

about five periods. These ‘highly asymmetric’ responses to positive and negative η

shocks lead us to examine if the extreme inertial reactions in case of an increase in

uncertainty have at least the opposite direction of movement, qualitatively speaking,

compared to those cases with a negative η shock. However, the figures in Panel (b)

that simply magnify the vertical axes of Panel (a) reveal that both positive and neg-

ative η shocks have the same direction: macroeconomic activities increase, regardless

of the direction of the uncertainty shock. The only difference is that an increase in

uncertainty to the high steady-state regime barely affects real activities, but lower

uncertainty shocks significantly increase investment, hours of work, and output.

According to our exposition regarding the novel uncertainty shock and its prop-

agation mechanism in Section 3.2, the observed pattern can arise if the economy is

currently in the low SS-uncertainty regime (i.e., when wt < τ), yet the distance be-

tween wt and τ is relatively short. When there exists a shock that decreases wt, this

makes the switching probability to the high SS-uncertainty regime even lower. Thus,

the impulse responses with respect to this distributional shock (η) will be dictated by

the low uncertainty regime probabilities. At the same time, an exogenous perturba-

tion that increases the likelihood of migrating to the high SS-uncertainty regime also

becomes nontrivial because of the shorter distance of (τ−wt). Impulse responses then

depend on both regimes that have the opposite signs of reactions. The conditional

expectations of future economic performances, defined in equations (5.3) and (5.4),

can be close to zero, depending on the degree of transitions from the low to the high
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uncertainty regimes.

This is a plausible interpretation consistent with our model. If it is the right

interpretation, we should first observe that impulse responses to other structural

shocks are much less asymmetric, if not entirely symmetric, due to the feedback

channels. Second, if the size of this uncertainty shock is sufficiently large, we can infer

that the asymmetry should disappear, because a large deviation from the existing

transition probability implies a much higher likelihood of switching regimes to the

respective direction of the shock. Thus, in this case, we expect usual, symmetric

impulse responses. Third, if we face different distances between the current w and

the threshold τ , one should observe highly regime-dependent and counter-intuitive

responses. That is, if w is far above τ or the economy is in the high SS-uncertainty

regime, regardless of the direction of η shock, impulse responses will look like those

to a bad risk shock. If, to the contrary, w is well below τ , impulse responses resemble

those to a good risk shock, whether the uncertainty shock is positive or negative.

We test the above three hypotheses. Figures 9-11 plot the appropriate impulse

response functions to verify each conjecture. Figure 9 plots the impulse responses

of the key macro variables with respect to eight structural shocks but not our new

uncertainty shock η. They show highly symmetric responses, at least qualitatively.

Thus, it is correct that our novel uncertainty shock differs from other shocks, and our

computation procedure is well executed. Second, we check if a large uncertainty shock

resolves the issues presented in Panel (a) of Figure 8. Figure 10 plots the impulse

responses to five standard deviation η shocks. Now the impulse responses look much

more conventional, though some level of quantitative asymmetry exists, due to the

current location of w and the estimated value of τ . Thus, when the magnitude of the

shock is large enough to lead to a shift in the average perception of financial risk and

uncertainty, the propagation mechanism operates like a conventional shock. However,

this case is rare. For the most part, shocks are of small magnitudes, and economic

responses to the shocks affecting probability assessment can depend on the regime,

the speed of transition may be slow, and the resultant reactions can be inertial or very

regime-specific. The results suggest that our model may be able to explain various

puzzling economic and financial market behaviors when there exist shocks associated

with risk and uncertainty of an economy.

As the third conjecture stated, we check if the impulse responses with respect to
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the uncertainty shock η differ across the regimes of steady-state uncertainty. Figure 4

shows that several episodes of the high and low steady-state uncertainty regimes ex-

ist, and we can use those to draw the impulse responses to the uncertainty shock

hitting the economy in the low or high regimes of uncertainty. Based on our esti-

mated regimes, the three periods, 1995Q3, 2006Q4, and 2011Q4, belong to the high

steady-state uncertainty regime, and the following four periods, 1985Q1, 1990Q3,

2000Q4, and 2008Q3, are from the low steady-state risk regime. Figure 11 presents

the corresponding IRFs for the low (high) uncertainty periods plotted in black (red).

As we conjectured, the results are highly regime-dependent, and the direction of the

shock does not matter at all. In a low uncertainty period, where the average percep-

tion of financial risk and uncertainty is low, perturbations in probability distribution

increase economic activities over time. We observe the exact opposite in the case of

a high uncertainty period. Any news on uncertainty is bad news. Does this pattern

vary quantitatively, depending on the period? We expect the regime dependence re-

sults to prevail more or less, depending on the location of the economy in terms of

the regime factor and threshold. Figure 11 shows the pattern, especially in the high

uncertainty regime (i.e., red-colored responses), consistent with our arguments above,

in that impulse responses with different initial regimes show quantitative differences.

In conjunction with Figure 4, the initial regimes proximate to a transition lead to

fewer fluctuations than otherwise. Nevertheless, the regime dependence of impulse

responses irrespective of the direction of the uncertainty shock is largely intact and

significant.

Finally, our model allows structural shocks in the previous period to affect tran-

sition probabilities of regimes in steady-state risks, and therefore it is worthwhile

to check if this feedback channel has quantitative impacts on the impulse responses

against other structural shocks. From (4.3) and Figure 5, it is clear that past shocks

εt−1 feed into the expectation equation for the regime factor wt and the unexplained

part involving the uncertainty shock ηt constitutes a significant portion of the regime

factor. Figure 12 reports the impulse responses weighted by unconditional initial

regime probabilities to the same set of eight structural shocks with and without the

feedback channels. The dashed lines display the counterfactual impulse responses

obtained by turning off the feedback channels, while the solid lines present those

from our benchmark model with the feedback channels open. The historical decom-
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position of the regime factor in Figure 5 suggested that several shocks such as the

MEI shock, the IST shock, and in particular, the net worth (equity) shock signifi-

cantly contribute to the fluctuations of the regime factor w. The IRF results indeed

show that these feedback channels operate significantly for the case of these shocks

related closely to firm decisions. In case of a shock to the marginal efficiency of invest-

ment, or an investment adjustment cost shock (ζi,t), the feedback channel strengthens

the effect of the MEI shock. Regarding the net worth shock, an increase in equity

has more muted dynamic responses with an active feedback channel than otherwise.

Perhaps, unexpected, positive shocks in equity value may increase concerns about

future economy, leading to the more cautious responses. In case of policy-related

shocks, impulse responses with feedback have relatively small deviations from those

without feedback. However, Figure 5 shows that monetary policy and government

spending shocks sometimes contribute significantly to the fluctuation of the regime

factor. Thus, we suspect that policy shocks can have conditional effects in forming

expectations. Taken together, while individual contributions are somewhat limited,

as a whole, all the structural shocks account for about 80% of the regime factor fluc-

tuations. This reflects the complexity of an expectation formation process, and at

the same time, the importance of the exogenous uncertainty shocks to understand

business cycles.

5.3 Discussion

This paper has come a long way to show that our SS-uncertainty switching model

can identify new shocks, after teasing out the roles of key economic variables that

contribute to the expectation and volatility of those variables. The estimated σ

process contains both conventional risks and SS-uncertainty terms. Hence, this is our

noisy measure of uncertainty in that both risk and uncertainty affect the evolution

of the σ process. We compare the estimated sample path with some of the existing

uncertainty measures. Specifically, we use financial uncertainty indices by Jurado

et al. (2015) (JLN) and economic policy uncertainty by Baker et al. (2016) (EPU).

Panels (a) and (b) of Figure 13 display the result. All the measures show that

there is a common trend, and our measure is successfully picking the US recession

periods recorded by the NBER. Interestingly, adjusting for scales, our measure is
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higher when compared to the JLN and EPU measures during the 1990 to 1998 and

post-2010 periods. Note that there was a Peso crisis, Asian crisis, Russian debt

crisis, and Brazilian Devaluation in the 1990s, and after the 2007-2008 financial crisis,

various European sovereign debt crises, followed by the COVID-19 shock in 2020. It

appears that our measure does a decent work in capturing the era of uncertainty. One

conundrum that applies to all three measures would be that the level of the indices

are quite low in 2006-2008. Several draconian economic events have been unraveling

during this period, and the period should be filled with uncertainty. Panels (c)

and (d) of Figure 13 confirm this conjecture. Uncertainty shocks (η) that move the

regime factor w increased substantially over this period. In addition, the estimated

uncertainty shocks feature several distinctive patterns that are in line with the various

adverse economic and financial events in which uncertainty was rising.

6 Conclusion

In economic and financial decision-making, economic agents may heuristically view

that the average perception on future states of risk and uncertainty is either low or

high, possibly because of limited information processing ability or other informational

frictions. The associated switching probability distribution stochastically evolves, and

some exogenous shocks about this probability distribution can arise. Our model and

estimation results show that the expectation effect of switching levels of uncertainty

exerts a significant impact on the macro-economy, and its channel differs from the

conventional risk channels. Our novel uncertainty shock and its propagation mech-

anism show stark differences in dynamic responses, and the results are sensitive to

where the economy is in terms of the mean perception of risk and uncertainty. The

proposed model can explain both inertial and abrupt swings of economic variables

when there exists a shock increasing or decreasing economic uncertainty in a unified

framework. The estimation results related to the uncertainty regime shock suggest

that the average level of uncertainty stays long in one regime, once the economy enters

it. In particular, we find that the average uncertainty perception sharply increases

to the pessimistic regime during recessions, and the heightened level of uncertainty

tends to unravel very slowly.
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Figure 8: Responses to Uncertainty Shocks

(a) Impulse Responses with HPD Regions
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Notes: The figure reports the impulse responses of consumption (C), output (Y), labor hours (H)

and investment (I) to positive one-standard deviation uncertainty shocks (η) under unconditional

initial regime probabilities. Panels (a) and (b) display the same graphs, except for the vertical

scales, because panel (a) plots the highest posterior density (HPD) regions as well. Darker and

lighter shaded areas signify 68% and 95% HPD regions, respectively. That is, Panel (b) delineates

only the estimated impulse responses. In each panel, the first row (solid line) shows the responses

to a positive η shock, whereas the second row (dashed line) plots the response in case of a negative

η shock.
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Figure 9: Responses to Structural Shocks
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Notes: The figure reports the impulse responses of consumption (C), output (Y), labor hours (H)

and investment (I) to positive and negative structural shocks of size one-standard deviation under

unconditional initial regime probabilities.
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Figure 10: Responses to Large Uncertainty Shocks
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Notes: The figure reports the impulse responses of consumption (C), output (Y), labor hours (H)

and investment (I) to large uncertainty shocks of size five-standard deviations under unconditional

initial regime probabilities. Darker and lighter shaded areas in each figure signify 68% and 95%

highest posterior density (HPD) regions, respectively.

Figure 11: Regime-Dependent Responses to Uncertainty Shocks
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Notes: The figure reports the impulse responses of consumption (C), output (Y), labor hours (H) and

investment (I) to positive one-standard deviation uncertainty shocks given initial regime probabilities

conditional on information at different times. The red (black) curves label the dates of large (small)

high-risk regime probabilities at which we produce regime-dependent impulse responses.
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Figure 12: Impulse Responses to Structural Shocks with and without Feedback
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Notes: The figure reports impulse responses of consumption (C), output (Y), labor hours (H) and

investment (I) to positive one-standard-deviation structural shocks with and without feedback under

unconditional initial regime probabilities. The darker (lighter) shaded area in each figure signifies

68% (95%) highest posterior density (HPD) interval.
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Figure 13: Risk and Uncertainty: A Comparison
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Notes: The figure displays the estimated sample paths of the estimated σ (estimated smoothed risk
and uncertainty) and the uncertainty shock ηt in comparison with the financial market uncertainty
(JLN) indices by Jurado et al. (2015) and the Economic Policy Uncertainty (EPU) indices by Baker
et al. (2016). The JLN and EPU indices are the mean values for each quarter computed from
monthly frequency data. The shaded areas are NBER recessions, and the dashed vertical lines mark
the starting dates of Quantitative Easing (QE1-QE4).
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Appendix A Economic Model

A.1 The Real Sector

A.1.1 Household

In the model, there is a large number of competitive and identical households. A rep-

resentative household chooses consumption, investment in physical capital, nominal

bond, and differentiated labor {Ct, It, Bt+1, {ht(i)}i∈[0,1]} to maximize the expected

discounted utility

maxE0

∞∑
t=0

βtζc,t

{
log(Ct − bCt−1)− ψL

∫ 1

0

ht(i)
1+σL

1 + σL
di

}
,(A.1)

with β ∈ (0, 1) the discount factor, b ∈ [0, 1) the habit formation parameter, σ−1
L

the Frisch elasticity of labor hours and ψL the labor disutility parameter. In (A.1),

ζc,t is a preference shock, Ct denotes the per capita consumption, and ht(i) is the

differentiated labor offered by this household. At each period t, the household faces

the budget constraint

(A.2)

PtCt +Bt+1 +

(
Pt

ΥtµΥ,t

)
It +QK̄,t(1− δ)K̄t

=

∫ 1

0

Wt(i)ht(i)di+RtBt +QK̄,tK̄t+1 + Πt,

in which Pt is the nominal price for the consumption good, Bt is a one-period nominal

bond with rate of return Rt, It is the investment good, K̄t is the physical capital with

market price QK̄,t, K̄t+1 is the end-of-period physical capital, Wt(i) is the wage for

the differentiated labor ht(i), and Πt is a lump-sum transfer of dividend payment

including intermediate goods profits and transfers from entrepreneurs.

Equation (A.2) indicates that the household produces physical capital. After

the production of final goods in period t, the representative household produces the
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physical capital K̄t+1 at the end of the period t, with the technology

(A.3) K̄t+1 = (1− δ)K̄t +

(
1− S

(
ζi,t

It
It−1

))
It,

where 0 < δ < 1 denotes the depreciation rate of the physical capital, S(·) is an

adjustment cost to investment, and ζi,t is the marginal efficiency of investment (MEI)

shock. The household has access to a technology that translates one unit of the

homogeneous consumption good Ct into ΥtµΥ,t units of investment good It with a

constant growth rate Υ > 1 and an investment technology shock µΥ,t. The relative

price of the investment good in terms of the consumption good is 1/(ΥtµΥ,t).

The investment adjustment cost function S(·) is an increasing and convex function

of form

(A.4) S(κt) =
[
e
√
S′′(κt−κss) + e−

√
S′′(κt−κss) − 2

]/
2,

in which κt = ζi,tIt/It−1, κss is the corresponding steady-state value. The curvature

parameter S ′′ characterizes the cost of (dis)investing away from the steady state.

A.1.2 Goods and Labor Markets

A representative and competitive final good packer combines the intermediate goods

Yt(j) for j ∈ [0, 1] to produce homogeneous good Yt with the following technology

Yt =

[∫ 1

0

Yt(j)
1/λf,tdj

]λf,t
,

where λf,t ≥ 1 is the price markup shock. The j-th intermediate good is produced

by a monopolist with the production function

(A.5) Yt(j) = max
{

0, εtKt(j)
α(ztlt(j))

1−α − Φz∗t

}
.

The shock to the total factor of production is separated into a stationary technology

shock εt and a shock zt with a stationary growth rate. In the production function,

Kt(j) represents the effective capital which is a constant multiple of the physical

capital K̄t(j). The lt(j) is the total amount of homogeneous labor employed by the j-
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th intermediate good producer. There is a fixed cost Φz∗t to ensure zero long-run profit

in the intermediary good market and to preclude entry and exit at the steady state.

As shown in CMR, for the existence of a balanced growth path, z∗t = ztΥ
(α/(1−α))t.

We adopt the Calvo’s pricing scheme and allow the j-th intermediate good pro-

ducer to re-optimize the price Pt(j) with probability 1 − ξp. With probability ξp,

the producer set the price following Pt(j) = π̃tPt−1(j) with indexation factor π̃t =

(π∗t )
ι(πt−1)1−ι. The parameter ξp characterizes the price rigidity of the intermediary

good market. The inflation rate of the final good Yt is defined to be πt = Pt/Pt−1,

and π∗t denotes the inflation target in the monetary policy rule.

A representative and competitive labor contractor demands differentiated labor

service ht(i) for i ∈ [0, 1] and combines them into homogeneous bundles of labor with

the technology

lt =

[∫ 1

0

ht(i)
1/λwdi

]λw
(A.6)

and with wage markup parameter λw ≥ 1. The contractor then sells lt to the inter-

mediate good producers for nominal wage Wt. The differentiated labor suppliers are

assumed to adopt Calvo-style frictions. With probability 1−ξw, the i-th differentiated

labor supplier optimizes the wage rate Wt(i). If otherwise, the labor supplier follows

indexation rule Wt(i) = (µz∗,t)
ιµ(µz∗)

1−ιµ π̃w,tWt−1(i), where µz∗ is the growth rate

of z∗t in the deterministic steady state and µz∗,t is the persistent technology shock.12

In this indexation rule, π̃w,t = (π∗t )
ιw(πt−1)1−ιw . The parameter ξw characterizes the

wage rigidity in the differentiated labor market.

A.2 Financial Sector

In each of the identical households, there is a large number of risk-neutral entrepreneurs

with different levels of initial net worth. After the production in period t, an en-

trepreneur with net worth N ≥ 0 borrows Bt+1(N) from banks to purchase physical

capital K̄t+1(N) from households following

QK̄,tK̄t+1(N) = N +Bt+1(N).(A.7)

12Following CMR, the persistent technology growth shock µz∗,t = z∗t /z
∗
t−1.
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The physical capital is then turned into efficiency unit Kt+1(N) = ωK̄t+1(N) in

production by an idiosyncratic capital efficiency level ω. At each period t, the unit

efficiency level ωt+1 for each entrepreneur is drawn independently as

ωt+1 ∼ log-normal

(
−
σ2
ω,t

2
, σ2

ω,t

)
(A.8)

to ensure a unit mean. In this distribution, σω,t is a stochastic process of the level of

uncertainty.13 Upon realization of aggregate rates of return, prices and the efficiency

level of the physical capital, the entrepreneur chooses the utilization rate ut+1 of the

effective capital to maximize the return of capital for a competitive market rate rkt+1.

The gross rate of return in consumption of this entrepreneur is given by ωt+1R
k
t+1

with

Rk
t+1 ≡

(1− δ)QK̄,t+1 + [ut+1r
k
t+1 − a(ut+1)]Υ−(t+1)Pt+1

QK̄,t

.(A.9)

This equation means that entrepreneurs receive income by reselling the depreciated

physical capital back to households and return of utilized capital after an adjustment

cost a(ut+1). The adjustment cost a(·) to variable utilization is an increasing and

convex function of form

(A.10) a(u) = rk
[
eσa(u−1) − 1

]/
σa.

The curvature parameter σa > 0 characterizes the cost of capital utilization and rk is

the steady-state rental rate in the model.

At period t+ 1, a portion of the entrepreneurs default when the realized idiosyn-

cratic efficiency shocks to physical capital fall too low. The financial market fric-

tion emerges from the asymmetric information between banks and the entrepreneurs

because banks do not automatically observe these efficiency shocks to the physical

capital. Instead, banks must pay a monitoring cost of proportion µ to the net worth

of a borrowing entrepreneur to acquire information of the realized efficiency level.

13CMR refer to this process as the risk process associated with entrepreneurial and financing
activities, and use the terms risk and idiosyncratic uncertainty interchangeably. Because we extend
the volatility to incorporate uncertainty in regimes of steady state values, we refer to this process
as uncertainty.
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Let ω̄t+1 denote the threshold that separates the repaying entrepreneurs from the

defaulting ones. A class of optimal contract dictates that the banks demand a rate

of return Zt+1 to loans from those repaying entrepreneurs such that

(A.11) ω̄t+1R
k
t+1QK̄,tK̄t+1(N) = Bt+1(N)Zt+1.

For each entrepreneur of net worth N at period t, the law of motion of net worth

after receiving transfer W ent follows

Nt+1(N) = γt
[
Rk
tQK̄,t−1K̄t(N)− Zt(QK̄,t−1K̄t(N)−N)

]
+W ent,(A.12)

where γt denotes a net worth (equity) shock. Banks receive zero profit after portfolio

diversification in equilibrium. Given price and transfer, the entrepreneur chooses

ω̄t+1, K̄t+1 to optimize expected net worth

maxEt
{

[1− Γt(ω̄t+1)]Rk
t+1QK̄,tK̄t+1

}
(A.13)

subject to the bank’s zero-profit condition

[Γt(ω̄t+1)− µGt(ω̄t+1)]Rk
t+1QK̄,tK̄t+1 = Rt+1Bt+1.(A.14)

In the preceding equations,

µGt(ω̄t+1) = µΦ(mt − σω,t)(A.15)

Γt(ω̄t+1) = Gt(ω̄t+1) + ω̄t+1(1− Φ(mt))(A.16)

denote the expected monitoring cost of banks and the expected gross share of profit

going to the banks, respectively, with Φ(·) being the CDF of a standard normal

distribution and

(A.17) mt =

(
log ω̄t+1 +

1

2
σ2
ω,t

)/
σω,t.
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Banks’ zero-profit condition implies the leverage ratio

QK̄,tK̄t+1(N)

N
=

{
1−

Rk
t+1

Rt+1

[Γt(ω̄t+1)− µGt(ω̄t+1)]

}−1

.(A.18)

The shadow price Λt at optimal choice ω̄t+1 is

Λt =
Γ′t(ω̄t+1)

Γ′t(ω̄t+1)− µG′t(ω̄t+1)
.(A.19)

Clearly, all entrepreneurs choose identical ω̄t+1 such that

Et
{

[1− Γt(ω̄t+1)]
Rk
t+1

Rt+1

+ Λt

[
Rk
t+1

Rt+1

(Γt(ω̄t+1)− µGt(ω̄t+1))− 1

]}
= 0.(A.20)

Therefore, the law of motion of total net worth after aggregation is

Nt+1 = γt
[
(1− Γt−1(ω̄t))R

k
tQK̄,t−1K̄t

]
+W ent,(A.21)

in which K̄t is the aggregated physical capital.

A.3 Policy Rules and Aggregate Resource Constraint

We consider linearized monetary policy rule

(A.22)

Rt −R = ρp(Rt−1 −R) + (1− ρp)
[
απ(πt+1 − π∗t ) + α∆y

1

4
(∆yt − µz∗)

]
+

1

400
σe,pεp,t

where ρp is the policy smoothing parameter, εp,t is the monetary policy shock (in

annual percentage points), R is the steady-state quarterly interest rate, π∗t is the

inflation target, ∆yt is the quarterly growth in GDP and µz∗ is the corresponding

steady state.

The fiscal policy rule of government expenditure follows

G∗t = z∗t gt(A.23)

with gt a stationary process, and Yt/z
∗
t converges to a constant in the deterministic
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steady state.

Finally, the aggregate resource constraint is given by

Yt = Ct + It/(Υ
tµΥ,t) +G∗t(A.24)

+µGt−1(ω̄t)(1 +Rk
t )QK̄,t−1K̄t/Pt + a(ut)K̄tΥ

−t.

Appendix B Solution

B.1 Solution Method

The notation we use within Appendix A is independent of other sections. For st = i,

st+1 = j, and i, j ∈ {1, 2}, we look for regime-dependent policy functions

(B.1) Xt = Ti(Xt−1, εt),

that solve the system of equations of first-order conditions and constraints

(B.2) 0 = Et

 2∑
j=1

pi,j(εt)fi(Tj(Ti(Xt−1, εt), εt+1)︸ ︷︷ ︸
Xt+1

, Ti(Xt−1, εt)︸ ︷︷ ︸
Xt

, Xt−1, εt)

 .
We apply the perturbation method proposed by Maih and Waggoner (2018), which

features state-dependent policy functions perturbed around the state-dependent steady

states x̄i and perturbation parameter σ in the time-varying transition matrix pi,j(εt).

Specifically, Maih and Waggoner (2018) obtain a Taylor series approximation of the

regime-dependent policy functions by introducing perturbed policy functions

(B.3) Xt = Ti(Xt−1, σ, εt), i = 1, 2

with perturbation parameter σ ∈ [0, 1] such that

Ti (Xt−1, 1, εt) = Ti (Xt−1, εt) ,(B.4)

Ti (xi, 0, 0) = x̄i.(B.5)
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The perturbed policy functions solve the system of equations

(B.6)

0 =Et

[ ∑
j=1,2

pi,j(σ, εt)fi

(
Tj

(
hi(Xt−1, σ, εt), σ, σεt+1

)
, Ti (Xt−1, σ, εt) , Xt−1, εt

)]
,

where

hi(Xt−1, σ, εt) = Ti (Xt−1, σ, εt) + (1− σ) (xj − Ti (xi, 0, 0))(B.7)

pi,j(σ, εt) =

{
σpi,j(εt) for i 6= j

1− σ (1− pi,i(εt)) for i = j
(B.8)

Note that the perturbed hi(Xt−1, σ, εt) and pi,j(σ, εt) become the original policy func-

tions to solve and transition probabilities if σ = 1, and reduces to a tractable system

when σ = 0. Hence, the perturbed system of equations (B.6) reduces to

(B.9) 0 = fi(x̄i, x̄i, x̄i, 0),

at the steady-state x̄i when σ = 0, εt = 0 given (B.5), and is equivalent to (B.2) when

σ = 1. Moreover, the transition probability at the expansion point is an identity

matrix. The approximate solutions at expansion points are the state-dependent policy

functions assuming the regime is fixed. Finally, the feedback effects disappear in the

policy functions by 1-st order solution, and show up in the transition probability

functions governing the regime dynamics.

We use the RISE implementation of the solution algorithm by Maih and Waggoner

(2018) for computation and estimation purposes.14.

Appendix C Estimation, Optimization and Filter-

ing Method

This section describes the estimation and filtering procedures of this paper. Addi-

tional details of the numerical procedures we implement are available in the Online

14RISE is a flexible Matlab toolbox for regime-switching DSGE models. The toolbox is available
at https://github.com/jmaih/RISE toolbox
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Appendix.

C.1 Bayesian Estimation

The notation we use within Appendix B is independent of other sections. We perform

Bayesian estimation in two steps. The first step is what often referred to as the quasi-

Bayesian estimation, in which we resort to numerical optimization and attempt to

find

θ̂ = arg max
θ∈Θ

[
log p(y1:T ; θ) + log q(θ)

]
,(C.1)

with q(θ) the prior distribution, and p(y1:T ; θ) the likelihood of θ. The θ̂, if successfully

found, is the posterior mode. Although it is generally difficult to obtain θ̂ precisely

simply by numerical optimization, the resulting estimate is often a good initial value

for the Markov Chain Monte Carlo (MCMC) procedure thereafter. In the second step,

we construct MCMC chains of parameters drawn from the posterior distribution, and

the posterior mean is calculated from the obtained draws. And we report the 90%

Highest Probability Density (HPD) intervals which minimize the ranges on posteriors

that cover 90% posterior probability for inference.

The numerical optimization over the posterior surface in the first step entails

repeated evaluations of likelihood function p(y1:T ; θ). To this end, we compute the

likelihood of each trial point θ taking the following steps:

1. For each trial point θ, solve Xt = Ti(Xt−1, εt; θ).

2. Stack observation equations, regime transitions and solutions to form a state-

space representation.

3. Apply Chang et al. (2021) filter to obtain approximated p(y1:T ; θ).

We leave the detail of the optimizer in Appendix C.2 and filtering algorithm in Ap-

pendix C.3.

In the second step, we use a Random-Walk Metropolis-Hasting (RWMH) sampler

in RISE to draw samples from the posterior distribution p(θ|Y1:T ). Specifically, we

draw a chain of {θi} following steps:
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0. Use θ̂ as θ1.

1. Given θi−1, p(Y |θi−1) and q(θi−1), draw ϑ = θi−1 +η with η ∼ N(0, c2Σi−1), with

the covariance matrix Σi−1 estimated from the sampled draws, and c a scalar.

2. Let θi = ϑ with probability α = min
{

p(ϑ|Y )
p(θi−1|Y )

, 1
}

, and θi = θi−1 otherwise.

In the adaptive setting, the covariance matrix Σi computed from the past draws

occasionally become numerically singular, with only a few eigenvalues fall inside the

neighborhood of zero. We further adjust Σi by first obtaining its spectral (eigenvalue)

decomposition UiΛiU
′
i , and adding a positive hair amount ε > 0 to its eigenvalues to

have Λ+
i = Λi + εI where I is an identity matrix of dimension identical to Λi. We

then use the adjusted covariance Σ+
i = UiΛ

+
i U
′
i in the RWMH sampler going forward.

We choose ε = 1e− 8 because it appears to us that this small amount is sufficient to

handle all the errors we have encountered.

The RWMH algorithm takes a 300,000 burn-in chain and 1,000,000 draws and

targets an acceptance rate between .25 and .45 by adjusting the multiplier c in front

of Σi−1. We then thin the collected chain by 100, that is 7,000 accepted draws in

total.

C.2 Numerical Optimization

We apply a DIRECT search method with Matlab implementation“Pattern Search”,

among a collection of alternative methods for its global convergence and superior

numerical stability in our application. Alternative methods can generally be divided

into local and global methods, as well as derivative-based and derivative-free methods.

Pattern Search is a derivative-free global search method. At iteration i, it evaluates

the objective function on grid points round θi with distance (mesh size) di = d and

moves to the point with the highest evaluation in the next iteration, and set di+1 = 2d.

If it does not find a higher function value, it generates a new set of grid points to

evaluate by reducing the distance to di+1 = d/2, and stop if di+1 < εtolerance that is

small. In our application, εtolerance = 1e− 5.

Pattern search is superior to local methods in our exercises because it converges

globally provided the objective function has global maximum on a compact support.

Its convergence rate is in general slower than derivative-based methods because it
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does not take into account the slope information of the objective function. However,

it is numerically more stable because the numerical derivatives are often evaluated

with non-trivial errors in our problem.

Pattern search, to our experience, is numerically more stable compared to other

global methods implemented in Matlab such as particle swarm and simulated anneal-

ing because it generates candidate points in a more controlled manner, whereas the

alternatives often generate candidates at which the model is unsolvable.

C.3 Filtering Algorithm

We describe the filtering algorithm in this appendix. The readers are referred to the

“Endogenous-Switching Kalman Filter” of Chang et al. (2021) (Algorithm 1) for a

more extensive exposition. For a l× 1 vector of observable yt, a m× 1 vector of state

variables xt, and a k × 1 vector predetermined variables zt, the filtering algorithm

considers a state-space model (SSM) of form

yt = Dst + Zstxt + Fstzt +Qstut, ut ∼ N(0l×1, Il)(C.2)

xt = Cst +Gstxt−1 + Estzt +Rstεt, εt ∼ N(0n×1, In)(C.3)

with st specified by

wt = αwt−1 + vt, −1 < α < 1(C.4)

st = 1 + 1{wt ≥ τ}(C.5)

allowing correlation between vt and εt−1 with a n× 1 vector of correlation coefficients

ρ. The mapping from our model solution to the SSM above is straightforward.

This filter approximates the likelihood and states using a ‘marginalization-collapsing’

procedure in the vein of Kim (1994), for an exact filter must track the complete his-

tory of {st}Tt=1 ∈ {1, 2}T which renders the likelihood infeasible to compute for large

T . In the marginalization step, the state variables are integrated out with standard

Kalman filtering by exploiting the conditional linearity and Gaussianity given the pre-

vious state. And in the collapsing step, the history-dependent filtered distributions

are approximated by a mixture of two Gaussian distributions.
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Appendix D Impulse Response Functions

This section presents a more detailed construction of the impulse response functions

we use in the paper.

D.1 Structural Shocks

The h-step ahead impulse response to structural shocks is defined as

IRP
x (h, ej1, s0) = EP (Xh|s0, X0, e

j
1, e

0
−1)− EP (Xh|s0, X0, e

0)

where EP (·) is the expectation with respect to the baseline transition probability

matrix P which is subjected to further perturbation by structural shocks through

feedback channels. Note that our solution entails regime-dependent policy functions.

Specifically, under regime i, for i = 1, 2, the solution given state (x, e) is in form of

x′ = Xss
i + Ti(x−Xss

i ) +Rie

in which Xss
i , i = 1, 2 are the regime-dependent steady states of Xt, and (Ti, Ri), i =

1, 2 are the regime specific solutions solved around the corresponding steady states.

Given the regime-dependent policy functions (around regime specific steady states),

the h-step forecasts

EP (X1|s0, X0, e
j
1, e

0
−1) = [Xss

1 + T1(X0 −Xss
1 ) +R1e

j
1]P (s1 = 1|s0)

+ [Xss
2 + T2(X0 −Xss

2 ) +R2e
j
1]P (s1 = 2|s0)

EP (X1|s0, X0, e
0) = [Xss

1 + T1(X0 −Xss
1 )]P (s1 = 1|s0)

[Xss
2 + T2(X0 −Xss

2 )]P (s1 = 2|s0)
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where P (s1 = i|s0), i = 1, 2 are the baseline transition probabilities given s0. There-

fore, for h = 1,

IRP
x (1, ej1, s0) = EP (X1|s0, X0, e

j
1, e

0
−1)− EP (X1|s0, X0, e

0)

= [Xss
1 + T1(X0 −Xss

1 ) +R1e
j
1]P (s1 = 1|s0)

+ [Xss
2 + T2(X0 −Xss

2 ) +R2e
j
1]P (s1 = 2|s0)

− [Xss
1 + T1(X0 −Xss

1 )]P (s1 = 1|s0)

− [Xss
2 + T2(X0 −Xss

2 )]P (s1 = 2|s0)

=
[
R1P (s1 = 1|s0) +R2P (s1 = 2|s0)

]
ej1

We can produce the h−step impulse responses recursively for h > 1. Specifically, for

h ≥ 2,

IRP
x (h, ej1, s0) = EP (Xh|s0, X0, e

j
1, e

0
−1)− EP (Xh|s0, X0, e

0)

= [Xss
1 + T1(EP (Xh−1|s0, X0, e

j
1, e

0
−1)−Xss

1 )]P (sh = 1|s0, e
j
1, e

0
−1)

+ [Xss
2 + T2(EP (Xh−1|s0, X0, e

j
1, e

0
−1)−Xss

2 )]P (sh = 2|s0, e
j
1, e

0
−1)

− [Xss
1 + T1(EP (Xh−1|s0, X0, e

0)−Xss
1 )]P (sh = 1|s0, e

0)

− [Xss
2 + T2(EP (Xh−1|s0, X0, e

0)−Xss
2 )]P (sh = 2|s0, e

0)

with the conditional regime probability P (sh|s0, e
j
1, e

0) being a function of the shock

ej1 because of the feedback mechanism. Let P1,j be the transition matrix perturbed by

shock ej1. The h-step conditional regime probabilities under s0 = 1 can be computed

as

(
P (sh = 1|s0 = 1, ej1, e

0
−1), P (sh = 2|s0 = 1, ej1, e

0
−1)
)

= (1, 0)× P × P1,j × P h−2.

in weighting the regime-dependent responses to the structural shocks.

D.2 Uncertainty Shock

With all structural shocks fixed at zero, we consider a one-period perturbation eη1 of

size one to the mean of ηt at t = 1. We denote the perturbed transition matrix from

53



t = 0 to t = 1 by P0,η. The impulse response function is defined as

IRP
x (h, eη1, s0) = EP (Xh|s0, X0, e

η
1, e

0)− EP (Xh|s0, X0, e
0)

and is generated recursively for h = 1, 2, · · · . For h = 1, we plug in the regime-specific

policy function and conditional regime probabilities to have

IRP
x (1, eη1, s0) = EP (X1|s0, X0, e

η
1, e

0)− EP (X1|s0, X0, e
0)

= [Xss
1 + T1(X0 −Xss

1 )]P (s1 = 1|s0, e
η
1)

+ [Xss
2 + T2(X0 −Xss

2 )]P (s1 = 2|s0, e
η
1)

− [Xss
1 + T1(X0 −Xss

1 )]P (s1 = 1|s0)

− [Xss
2 + T2(X0 −Xss

2 )]P (s1 = 2|s0)

= [Xss
1 + T1(X0 −Xss

1 )] {P (s1 = 1|s0, e
η
1)− P (s1 = 1|s0)}

+ [Xss
2 + T2(X0 −Xss

2 )] {P (s1 = 2|s0, e
η
1)− P (s1 = 2|s0)}

As in the previous subsection, we may recursively obtain impulse responses for h ≥ 2,

IRP
x (h, eη1, s0) = EP (Xh|s0, X0, e

η
1, e

0)− EP (Xh|s0, X0, e
0)

=
[
Xss

1 + T1(EP (Xh−1|s0, X0, e
η
1, e

0)−Xss
1 )
]
P (sh = 1|s0, e

η
1, e

0)

+
[
Xss

2 + T2(EP (Xh−1|s0, X0, e
η
1, e

0)−Xss
2 )
]
P (sh = 2|s0, e

η
1, e

0)

− [Xss
1 + T1(EP (Xh−1|s0, X0, e

0)−Xss
1 )]P (sh = 1|s0, e

0)

− [Xss
2 + T2(EP (Xh−1|s0, X0, e

0)−Xss
2 )]P (sh = 2|s0, e

0).

Note that a perturbation in the η will generate a change in transition probabilities

one period earlier than the structural shocks, which leads to h-step conditional regime

probabilities under s0 = 1

(
P (sh = 1|s0 = 1, eη1, e

0), P (sh = 2|s0 = 1, eη1, e
0)
)

= (1, 0)× P0,η × P h−1.
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Appendix E Data Set

We follow CMR closely in constructing and transforming the data set, spanning from

1980Q1 to 2019Q3. In this section, we present the data source for each variable.

All data series are obtained from the Federal Reserve Economic Data (FRED) of

the Federal Reserve Bank of St. Louis at https://fred.stlouisfed.org. Table 4

and Table 5 provide details of the data series we use to construct the data set in

estimation in the alphabetic order. The inflation and relative price of investments are

already included in Table 5 are already processed and only require demeaning prior

to estimation.
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Table 4: Data Source and Description (A-D)

Data Series Description

A006RD3Q086SBEA Gross private domestic investment (implicit price deflator),
Index 2012=100, Quarterly, Seasonally Adjusted

BAA10YM Moody’s Seasoned Baa Corporate Bond Yield
Relative to Yield on 10-Year Treasury Constant Maturity,
Percent, Quarterly, Not Seasonally Adjusted

BOGZ1FA234190005Q Total liabilities Noncorporate farm business,
Millions of Dollars, Quarterly, Not Seasonally Adjusted

BOGZ1FL184190005Q Corporate farm business; total liabilities,
Level, Millions of Dollars, Quarterly, Not Seasonally Adjusted

COMPNFB Nonfarm Business Sector: Compensation Per Hour,
Index 2012=100, Quarterly, Seasonally Adjusted

DDURRD3Q086SBEA Personal consumption expenditures:
Durable goods (implicit price deflator),
Index 2012=100, Quarterly, Seasonally Adjusted

DFF Effective Federal Funds Rate,
Percent, Quarterly, Not Seasonally Adjusted

DHCERC1Q027SBEA Personal consumption expenditures:
Services: Household consumption expenditures,
Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate

DNDGRD3Q086SBEA Personal consumption expenditures:
Nondurable goods (implicit price deflator),
Index 2012=100, Quarterly, Seasonally Adjusted

DSERRD3Q086SBEA Personal consumption expenditures:
Services (implicit price deflator),
Index 2012=100, Quarterly, Seasonally Adjusted

Notes: All data series are obtained from FRED of the Federal Reserve Bank of St. Louis at

https://fred.stlouisfed.org.
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Table 5: Data Source and Description (E-Z)

Data Series Description

GDP Gross Domestic Product,
Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate

GDPDEF Gross Domestic Product: Implicit Price Deflator,
Index 2012=100, Quarterly, Seasonally Adjusted

GPDI Gross Private Domestic Investment,
Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate

HOANBS Nonfarm Business Sector: Hours of All Persons,
Index 2012=100, Quarterly, Seasonally Adjusted

inflation Log first difference of GDP deflator GDPDEF
LFWA64TTUSQ647S OECD Working Age Population: Aged 15-64:

All Persons for the United States,
Persons, Quarterly, Seasonally Adjusted

NCBLL Nonfinancial corporate business; loans; liability, Level,
Millions of Dollars, Quarterly, Not Seasonally Adjusted

NNBLL Nonfinancial noncorporate business; loans; liability, Level,
Millions of Dollars, Quarterly, Not Seasonally Adjusted

PCDG Personal Consumption Expenditures: Durable Goods,
Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate

PCEND Personal Consumption Expenditures: Nondurable Goods,
Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate

pinvest Relative price of investment,
log first difference of investment goods deflator A006RD3Q086SBEA
over GDP deflator GDPDEF

WILL5000IND Wilshire 5000 Total Market Index,
Index, Quarterly, Not Seasonally Adjusted

Notes: All data series are obtained from FRED of the Federal Reserve Bank of St. Louis at

https://fred.stlouisfed.org.
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