Linear Time Invariant (LTI) systems

In the previous lectures we have introduced a number of basic system properties. Two of these, linearity and time-invariance (these two properties are sometimes called superposition property), plays an important role in signals and systems analysis.

Any system possess these two properties is called linear time-invariant (LTI) system.
LTI have an important property that, if the input to a LTI system can be represented in terms of linear combination of a set of basic signals, by the same way the output of the system can be computed using the superposition property in terms of it's response to these basic signals.

The unit impulse is an important basic signal, because any general signal $x[n]$ can be represented as a linear combination of delayed impulses.

$$
x[n]=\sum_{k=-\infty}^{\infty \infty} x[k] \delta[n-k]
$$

The above two properties allow us to develop a complete characterization of LTI system in terms to it's impulse response using convolution sum for discrete time system and convolution integral for continuous time system.

Discrete Time LTI systems: the convolution sum

The convolution sum is the mathematical relationship that links the input and output signals in any linear time-invariant discrete-time system. Given an LTI system and an input signal $\mathrm{x}[\mathrm{n}]$, the convolution sum will allow us to compute the corresponding output signal $y[n]$ of the system.

Representation of Discrete-Time Signals in Terms of Impulses

A discrete-time signal $\mathrm{x}[\mathrm{n}]$ can be viewed as a linear combination of time-shifted impulses:

$$
x[n]=\sum_{k=-\infty}^{\infty \infty} x[k] \delta[n-k]
$$

Example 1:

The following signal can be written as:

$$
\mathrm{x}[\mathrm{n}]=-2 \delta[\mathrm{n}+1]+2 \delta[\mathrm{n}]+\delta[\mathrm{n}-1]+2 \delta[\mathrm{n}-2]
$$

The finite-support signal $x[n]$ shown in Figure is the sum of four impulses.

Decomposition of a discrete-time signal as a sum of shifted impulses.

Response of LTI as a linear combination of impulse response

The Principle of Superposition applies to the class of linear discrete-time systems. By the Principle of Superposition, the response $y[n]$ of a discrete-time linear system is the sum of the responses to the individual shifted impulses making up the input signal $\mathrm{x}[\mathrm{n}]$.

Let $h_{k}[n]$ be the response of the LTI system to the shifted impulse $\delta[n-k]$.
Example 2: For $\mathrm{k}=-4$, the response $\mathrm{h}_{-4}[\mathrm{n}]$ to $\delta[\mathrm{n}+4]$ might look like the one in the following figure.

Impulse response for an impulse occurring at time -4.
Example 3: For the input signal in Example 1

$$
x[n]=-2 \delta[n+1]+2 \delta[n]+\delta[n-1]+2 \delta[n-2]
$$

, the response of a linear system would be $y[n]=-2 h_{-1}[n]+2 h_{0}[n]+h_{1}[n]+2 h_{2}[n]$
Thus, the response to the input $\mathrm{x}[\mathrm{n}]$ can be written as an infinite sum of all the impulse responses:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[n] \mathrm{h}_{k}[\mathrm{n}]
$$

If we knew the response of the system to each shifted impulse $\delta[\mathrm{n}-1]$, we would be able to calculate the response to any input signal $\mathrm{x}[\mathrm{n}]$ using the above equation.

It gets better than this: for a linear time-invariant system (the time-invariance property is important here), the impulse responses $\mathrm{h}_{k}[\mathrm{n}]$ are just shifted versions of the same impulse response for $\mathrm{k}=0$.

$$
\mathrm{h}_{k}[\mathrm{n}]=\mathrm{h}_{0}[\mathrm{n}-\mathrm{k}]
$$

Therefore, the impulse response of an LTI system $h[n]=h_{0}[n]$ characterizes it completely. This is not the case for a linear time-varying system: one has to specify all the impulse responses $\mathrm{h}_{k}[\mathrm{n}]$ (an infinite number) to characterize the system.

The Convolution Sum

we obtain the convolution sum
that gives the response of a discrete-time LTI system to an arbitrary input.

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Remark: In general, for each time n, the summation for the single value $y[n]$ runs over all values (an infinite number) of the input signal $x[n]$ and of the impulse response $h[n]$.

The Convolution Operation

More generally, the convolution of two discrete-time signals $v[n]$ and $w[n]$, denoted as $v[n] * w[n]$ (or sometimes $(v * w)[n]$), is defined as follows:

$$
v[n] * w[n]=\sum_{k=-\infty}^{\infty} v[k] w[n-k] .
$$

The convolution operation has the following properties. It is

- Commutative:

$$
v[n] * w[n]=\sum_{k=-\infty}^{\infty} v[k] w[n-k]=\sum_{m=\infty}^{-\infty} v[n-m] w[m]=\sum_{n=-\infty}^{+\infty} w[m] v[n-m]=w[n] * v[n]
$$

(after the change of variables $m=n-k$)

Associative:

$$
\nu[n] *(w[n] * y[n])=v[n] *(y[n] * w[n])
$$

- Distributive:

$$
\begin{aligned}
x[n] *(v[n]+w[n]) & =\sum_{k=-\infty}^{+\infty} x[k](v[n-k]+w[n-k]) \\
& =\sum_{k=-\infty}^{+\infty} x[k] v[n-k]+\sum_{k=-\infty}^{+\infty} x[k] w[n-k]=x[n] * v[n]+x[n] * w[n]
\end{aligned}
$$

- Commutative with respect to multiplication by a scalar:

$$
a(v[n] * w[n])=(a v[n]) * w[n]=v[n] *(a w[n])
$$

Time-shifted when one of the two signals is time-shifted:

$$
v[n] * w[n-N]=\sum_{k=-\infty}^{\infty} v[k] w[n-N-k]=(v * w)[n-N]
$$

Finally, the convolution of a signal with a unit impulse leaves the signal unchanged (this is just Equation $x[n]=\sum_{k=-\infty}^{\infty \infty} x[k] \delta[n-k]$), and therefore the LTI system defined by the impulse response $h[n]=\delta[n]$ is the identity system.

Graphical Computation of a Convolution

One way to visualize the convolution sum for simple examples is to draw the weighted and shifted impulse responses one above the other and to add them up.
Example : Let us compute $y[n]=\sum_{k=1}^{-} x[k] h[n-k]=\sum_{k=0}^{\dot{*}} \dot{x}[k] h[n-k]$ for the impulse response and input signal shown in Figure

Graphical computation of a convolution.

Example: Let us compute $y[0]$ and $y[1]$ for the input signal and impulse response of an LTI system shown in the following Figure.

Convolution of an input signal with an impulse response.

Case $n=0$:
Step 1: Sketch $x[k]$ and $h[0-k]=h[-k]$ as in Figure

Impulse response flipped around the vertical axis.
Step 2: Multiply $x[k]$ and $h[-k]$ to get $g[k]$ shown in Figure

Product of flipped impulse response with input signal for $n=0$.
Step 3: Sum all values of $g[k]$ from $k=-\infty$ to $+\infty$ to get $y[0]$:

$$
y[0]=3
$$

Case $n=1$:
Step 1: Sketch $x[k]$ and $h[1-k]=h[-(k-1)]$ (i.e., the signal $h[-k]$ delayed by 1) as in Figure

Time-reversed and shifted impulse response for $n=1$.

Step 2: Multiply $x[k]$ and $h[1-k]$ to get $g[k]$ shown in Figure

Product of flipped and shifted impulse response with input signal for $n=1$.
Step 3: Sum all values of $g[k]$ from $k=-\infty$ to $+\infty$ to get $y[1]$:

$$
y[1]=2+3=5
$$

Solved Problems

1. Let $x[n]=\delta[n]+2 \delta[n-1]-\delta[n-3]$ and $h[n]=2 \delta[n+1]+2 \delta[n-1]$

Compute and plot each of the following convolutions:
a. $y[n]=x[n] * h[n]$
(a) We know that

$$
\begin{equation*}
y_{1}[n]=x[n]-h[n]=\sum_{k=-\infty}^{\infty} A[k] x[n-k] \tag{S2.1-1}
\end{equation*}
$$

The signals $x[r i]$ and $h[n]$ are as shown in Figure S2.1.

Figure S2. 1
From this figure, we can easily see that the above convolution sum recluces to

$$
\begin{aligned}
y_{1}[n] & =h[-1] x[n+1]+h[1] x[n-1] \\
& =2 x[n+1]+2 x[n-1]
\end{aligned}
$$

This gives

$$
y_{1}[n]=2 \delta[n+1]+4 \delta[n]+2 \delta[n-1]+2 \delta[n-2]-2 \delta[n-4]
$$

b. $y[n]=x[n+2] * h[n]$
(b) We know that

$$
y_{2}[n]=x[n+2]+h[n]=\sum_{k=-\infty}^{\infty} h[k] x[n+2-k]
$$

Comparing with eq. (S2.1-1), we see that

$$
y_{2}[n]=y_{1}[n+2]
$$

c. $y[n]=x[n] * h[n+2]$
(c) We may rewrite eq. (S2.1-1) as

$$
y_{1}[n]=x[n] \cdot h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Similarly, we may write

$$
y_{3}[r]=x[r] \cdot n[n+2]=\sum_{k=-\infty}^{\infty} x[k] h[n+2-k]
$$

Comparing this with eq. (S2.1), we see that

$$
\left.y_{3}[n]=y_{1} \mid n+2\right]
$$

2. Compute and plot $y[n]=x[n] * h[n]$ where
$x[n]=\left\{\begin{array}{ll}1 & 3 \leq n \leq 8 \\ 0 & \text { otherwise }\end{array}, h[n]=\left\{\begin{array}{cc}1 & 4 \leq n \leq 15 \\ 0 & \text { otherwise }\end{array}\right.\right.$
We know that

$$
y[n]=x[n] * h[n]=\sum_{k=\infty}^{\infty} x[k] h[n-k]
$$

The signals $x[n]$ and $y[n]$ are as shown in Figure
From this figure, we see that the above summation reduces to
$y[n]=x[3|h| n-3]+x[4] h[n-4]+x[5] h[n-5]+x[6] h[n-6]+x[7] h[n-7]+x[8] h[n-8]$ This gives

$$
y[n]= \begin{cases}n-6, & 7 \leq n \leq 11 \\ 6, & 12 \leq n \leq 18 \\ 24-n, & 19 \leq n \leq 23 \\ 0, & \text { otberwise }\end{cases}
$$

3. A linear system has the relationship

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] g[n-2 k]
$$

Between its input $\mathrm{x}[\mathrm{n}]$ and its output $\mathrm{y}[\mathrm{n}]$ where $\mathrm{g}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-4]$.
a. Determine $y[n]$ when $x[n]=\delta[n-1]$
b. Determine $\mathrm{y}[\mathrm{n}]$ when $x[n]=\delta[n-2]$
c. Is the system is LTI?
d. Determine $y[n]$ when $x[n]=u[n]$.
(a) Given that

$$
x[n]=\delta[n-1]
$$

we see that

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] g[n-2 k]=g[n-2]=u[n-2]-u[n-6]
$$

(b) Given that $x[n]=\delta[n-2]$,
we see that $\quad y[n]=\sum_{k=-\infty}^{\infty} x[k] g[n-2 k]=g[n-4]=u[n-4]-u[n-8]$
(c) The input to the system in part (b) is the same as the input in part (a) shutw: by 1 to the right. If S is time invariant then the system output obtained in past (b) isan te the be the same as the system output obtained in part (a) shifted by 1 tw the right. Clealry, this is not the case. Therefore, the system is not LTI.
(d) If $x[n]=u[n]$, then

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] g[n-2 k]=\sum_{k=0}^{\infty} g[n-2 k]
$$

The signal $g[n-2 k]$ is plotted for $k=0,1,2$ in Figure. From this figure it is clear that

$$
y[n]=\left\{\left.\begin{array}{ll}
1, & n=0,1 \\
2, & n>1 \\
0, & \text { otherwise }
\end{array}=2 u[n]-\delta[n]-\delta \right\rvert\, n-1\right]
$$

Figure

te-time systems:
a. $y[n]+0.2 y[n-1]=x[n]-x[n-1]$.

$$
\begin{aligned}
& y[n]+0.2 y[n-1]=x[n]-x[n-1] . \text { let } y[n]=h[n] \text { then } x[n]=\delta[n] \\
& h[n]+0.2 h[n-1]=\delta[n]-\delta[n-1] \\
& h[n]=-0.2 h[n-1]+\delta[n]-\delta[n-1]
\end{aligned}
$$

at $n=0 \rightarrow h[0]=-0.2 h[0-1]+\delta[0]-\delta[0-1]$

$$
=-0.2 h[-1]+\delta[0]-\delta[-1]=-0.2 * 0+1-0=1 \rightarrow(1)
$$

at $n=1 \rightarrow h[1]=-0.2 h[1-1]+\delta[1]-\delta[1-1]$

$$
\begin{equation*}
=-0.2 h[0]+\delta[1]-\delta[0]=-0.2 * 1+0-1=-1.2 \tag{2}
\end{equation*}
$$

at $n=2 \rightarrow h[2]=-0.2 h[1]+\delta[2]-\delta[1]=-0.2 *-1.2+0-0=0.24$
at $n=3 \rightarrow h[3]=-0.2 h[2]+\delta[3]-\delta[2]=-0.2 * 0.24+0-0=-0.48$
From (1), (2), (3), (4) $h[n]=(-0.2)^{n+1}(-1.2) \quad$ for $n \geq 1$
b. $y[n]+1.2 y[n-1]=2 x[n-1]$.
$y[n]=-1.2 y[n-1]+2 x[n-1]$. Put $y[n]=h[n]$ and $x[n]=\delta[n]$

$$
\begin{aligned}
& h[n]=-1.2 h[n-1]+2 \delta[n-1] \\
& h[0]=-1.2 h[-1]+2 \delta[-1]=-1.2 * 0+2 * 0=0 \rightarrow \text { Put } \mathrm{n}=0 \\
& h[1]=-1.2 h[0]+2 \delta[0]=-1.2 * 0+2 * 1=2 \rightarrow \text { put } \mathrm{n}=1 \\
& h[2]=-1.2 h[1]+2 \delta[1]=-1.2 * 2+2 * 0=-1.2 *(2) \rightarrow \text { put } \mathrm{n}=2 \\
& h[3]=-1.2 h[2]+2 \delta[2]=-1.2 *-1.2 *(2)+2 * 0=(-1.2)^{2} *(2) \rightarrow \text { put } \mathrm{n}=3
\end{aligned}
$$

from the above equations

$$
\mathrm{h}[\mathrm{n}]=(-1.2)^{\mathrm{n}-1} * 2 \text { and } \mathrm{n} \geq 0
$$

c. $y[n]=0.24\{x[n]+x[n-1]+x[n-2]+x[n-3]\}$.

Let $\mathrm{x}[\mathrm{n}]=\delta[n]$ then $\mathrm{y}[\mathrm{n}]$ will be $\mathrm{h}[\mathrm{n}]$
$\mathrm{h}[\mathrm{n}]=0.24\{\delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]\}$.
$h[n]=f(x)=\left\{\begin{aligned} 0.24, & 0 \leq n \leq 3 \\ o, & \text { Otherwise }\end{aligned}\right.$
d. $y[n]=x[n]+0.5 x[n-1]+x[n-2]$

Let $\mathrm{x}[\mathrm{n}]=\delta[n]$ then $\mathrm{y}[\mathrm{n}]$ will be $\mathrm{h}[\mathrm{n}]$
$\mathrm{h}[\mathrm{n}]=\delta[n]+0.5 \delta[n-1]+\delta[n-2]$
$h[n]=\left[\begin{array}{lll}1 & 0.5 & 1\end{array}\right], h[n]=0$ for all other n.

5. Perform the following convolutions, $x[n] * v[n]$

a. $x[n]=u[n]-u[n-4], v[n]=0.5^{n} u[n]$

$$
\begin{aligned}
& x[n] * v[n]=\sum_{k=-\infty}^{\infty} x[k] \vee[n-k] \\
& =\sum_{k=-\infty}^{\infty}(u[k]-u(k-4]) 0+5^{n-k} u[n-k] \\
& \text { if } \quad 0 \leq n \leq 4 \\
& =\sum_{k=0}^{n} 0.5^{n-k}=0.5^{n} \frac{1-2^{n+1}}{1-2}=-\left(0.5^{n}-2\right) \\
& \text { if } 4<n=\sum_{k=0}^{4} 0.5^{n-k}=0.5^{n} \frac{1-2^{5}}{i-2}=-0.5^{n}+0.5^{n-5}
\end{aligned}
$$

b. $x[n]=\left[\begin{array}{lll}1 & 4 & 8\end{array}\right] ; v[n]=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$ (the sequences starts at $\left.n=0\right)$.

$x[n]$	1	4	8	2	0	0	0	0	0
$h[n]$	0	1	2	3	4	0	0	0	0
	0	1	2	3	4	0	0	0	0
		0	4	8	12	16	0	0	0
			0	8	16	24	32	0	0
				0	2	4	6	8	0
$h[n]$	0	1	6	19	34	44	38	8	0

$$
\begin{aligned}
& \text { c. } x[n]=u[n] \quad v[n]=2 *(0.8)^{n} u[n] \\
& x[n] * v[n]=\sum_{k=-\infty}^{\infty} u[k] 2 \cdot 8^{n-k} u[n-k] \\
&=\sum_{k=0}^{n} 2(.8)^{n-k} \\
&=2(.8)^{n} \sum^{n} \cdot 8^{-k}=2(.8)^{n} \frac{1-1}{1-1.25} \\
&=-8\left(0.8^{n+1}-1.25^{n}\right) \\
&=-8(.8)^{n}+10, n \geqslant 0
\end{aligned}
$$

a. $x[n]=u[n-1] \quad v[n]=2 *(0.5)^{n} u[n]$

$$
\begin{aligned}
& y[n]=\sum_{k=-\infty}^{\infty} u\left[k-B \quad 2(.5)^{n-k} u[n-k]\right. \\
& =\sum_{k=i}^{n} 2(5)^{n-k} \\
& =\Rightarrow(.5)^{n} \sum_{k=1}^{n} 2^{k} \\
& =2(.5)^{n}\left(\sum_{k=0}^{n} \partial^{k}-1\right) \\
& =2(.5)\left[\frac{1-2^{n+1}}{1-2}-1\right] \\
& =2(.5)^{n}\left(-2+2^{n+1}\right) \\
& =-(-5)^{n-2}+4, \quad n \geq 1
\end{aligned}
$$

6. Determine the discrete-time convolution of $x[n]$ and $h[n]$ for the following two cases.

The required convolutions are most easily done graphically by reflecting $x[n]$ about the origin and shifting the reflected signal.
(a) By reflecting $x[n]$ about the origin, shifting, multiplying, and adding, we see that $y[n]=x[n] * h[n]$ is as shown in Figure

(b) By reflecting $x[n]$ about the origin, shifting, multiplying, and adding, we see that $y[n]=x[n] * h[n]$ is as shown in Figure
$y[n]$

Notice that $y[n]$ is a shifted and scaled version of $h[n]$.
Application: The distributive property sometimes facilitates the evaluation of a convolution integral.

Example : Suppose we want to calculate the output of an LTI system with impulse response $h[n]=\left(\frac{1}{4}\right)^{\pi} u[n]+4^{n} u[-n]$ to the input signal $x[n]=u[n]$; it is easier to break down $h[n]$ as a sum of its two components, $h_{1}[n]=\left(\frac{1}{4}\right)^{n} u[n]$ and $h_{2}[n]=4^{n} u[-n]$, then calculate the two convolutions $y_{1}[n]=x[n] * h_{1}[n]$, $y_{2}[n]=x[n] * h_{2}[n]$ and sum them to obtain $y[n]$.

Exercise 1

Compute the convolutions $y[n]=x[n] * h[n]$:
(a) $x[n]=\alpha^{n} u[n], h[n]=\beta^{n} u[n], \quad \alpha \neq \beta$. Sketch the output signal $y[n]$ for the case $\alpha=0.8, \beta=0.9$.
Answer: $\quad y[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k]=\sum_{k=-\infty}^{+\infty} \alpha^{k} u[k] \beta^{n-k} u[n-k]=\beta^{n} \sum_{k=0}^{n}\left(\frac{\alpha}{\beta}\right)^{k}, \quad n \geq 0$

$$
=\beta^{n}\left(\frac{1-\left(\frac{\alpha}{\beta}\right)^{n+1}}{1-\left(\frac{\alpha}{\beta}\right)}\right) u[n]=\left(\frac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha}\right) u[n], \quad \alpha \neq \beta
$$

For $\alpha=0.8, \beta=0.9$, we obtain

$$
y[n]=\left(\frac{(0.9)^{n+1}-(0.8)^{n+1}}{0.1}\right) u[n]=\left[9(0.9)^{n}-8(0.8)^{n}\right] u[n]
$$

which is plotted in Figure
(b) $x[n]=\delta[n]-\delta[n-2], h[n]=u[n]$

Answer: $y[n]=\sum_{k=\infty}^{+\infty} x[k] h[n-k]=\sum_{k=\infty}^{+\infty}(\delta[k]-\delta[k-2]) u[n-k]=u[n]-u[n-2]$.
(c) The input signal and impulse response depicted in Figure Sketch the output signal $y[n]$.

Input signal and impulse response in Problem 2 (c).
Answer: Let us compute this one by time-reversing and shifting $x[k]$ (note that timereversing and shifting $h[k]$ would lead to the same answer)

Time-reversing and shifting the input signal to compute the convolution in Exercise 2. (c).

Intervals:

$$
\begin{array}{ccc}
n<2 & h[k] x[k-n]=0, \forall k & y[n]=0 \\
2 \leq n \leq 4: & h[k] x[k-n]=1,2 \leq k \leq n & y[n]=\sum_{k=2}^{n} 1=n-(2)+1=n-1 \\
5 \leq n \leq 7: & h[k] x[k-n]=1, n-2 \leq k \leq n & y[n]=\sum_{k=n-2}^{n} 1=3 \\
8 \leq n \leq 9: & h[k] x[k-n]=1, n-2 \leq k \leq 7 & y[n]=\sum_{k=n-2}^{7} 1=7-(n-2)+1=10-n \\
n \geq 10 & h[k] x[k-n]=0, \forall k & y[n]=0
\end{array}
$$

the Figure shows a plot of the output signal:

Output of discrete-time LTI system obtained by convolution in Exercise 2. (c).
(d) $x[n]=u[n], h[n]=u[n]$

Answer: $y[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k]=\sum_{k=-\infty}^{+\infty} u[k] u[n-k]$

$$
\begin{aligned}
& =\sum_{k=-\infty}^{+\infty} u[k] u[-(k-n)]=\left\{\begin{array}{c}
\sum_{k=0}^{n} 1=n+1, \quad n \geq 0 \\
0, \quad n<0
\end{array}\right. \\
& =(n+1) u[n]
\end{aligned}
$$

Evaluate $y[n]=x[n] * h[n]$, where $x[n]$ and $h[n]$ are shown in Fig. 2-23, (a) by an analytical technique, and (b) by a graphical method.

Fig. 2-23
(a) Note that $x[n]$ and $h[n]$ can be expressed as

$$
\begin{aligned}
& x[n]=\delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3] \\
& h[n]=\delta[n]+\delta[n-1]+\delta[n-2]
\end{aligned}
$$

Now, using Eqs. (2.38), (2.130), and (2.131), we have

$$
\begin{aligned}
x[n] * h[n] & =x[n] *\{\delta[n]+\delta[n-1]+\delta[n-2]\} \\
& =x[n] * \delta[n]+x[n] * \delta[n-1]+x[n] * \delta[n-2]\} \\
& =x[n]+x[n-1]+x[n-2]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
y[n]= & \delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3] \\
& +\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4] \\
& +\delta[n-2]+\delta[n-3]+\delta[n-4]+\delta[n-5]
\end{aligned}
$$

or

$$
y[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5]
$$

or $\quad y[n]=\{1,2,3,3,2,1\}$
(b) Sequences $h[k], x[k]$ and $h[n-k], x[k] h[n-k]$ for different values of n are sketched in Fig. 2-24. From Fig. 2-24 we see that $x[k]$ and $h[n-k]$ do not overlap for $n<0$ and $n>5$, and hence $y[n]=0$ for $n<0$ and $n>5$. For $0 \leq n \leq 5, x[k]$ and $h[n-k]$ overlap. Thus, summing $x[k] h[n-k]$ for $0 \leq n \leq 5$, we obtain

$$
\begin{array}{llllll}
y[0]=1 & y[1]=2 & y[2]=3 & y[3]=3 & y[4]=2 & y[5]=1
\end{array}
$$

or

$$
y[n]=\{1,2,3,3,2,1\}
$$

$$
n=4
$$

$n=5$

Fig. 2-24
2.34. The impulse response $h[n]$ of a discrete-time LTI system is shown in Fig. 2-26(a). Determine and sketch the output $y[n]$ of this system to the input $x[n]$ shown in Fig. 2-26(b) without using the convolution technique.

From Fig. 2-26(b) we can express $x[n]$ as

$$
x[n]=\delta[n-2]-\delta[n-4]
$$

Fig. 2-26

Since the system is linear and time-invariant and by the definition of the impulse response, we see that the output $y[n]$ is given by

$$
y[n]=h[n-2]-h[n-4]
$$

which is sketched in Fig. 2-27.

Fig. 2-27

